Science.gov

Sample records for aav9 capsid protein

  1. Systemic Delivery of shRNA by AAV9 Provides Highly Efficient Knockdown of Ubiquitously Expressed GFP in Mouse Heart, but Not Liver

    PubMed Central

    Piras, Bryan A.; O’Connor, Daniel M.; French, Brent A.

    2013-01-01

    AAV9 is a powerful gene delivery vehicle capable of providing long-term gene expression in a variety of cell types, particularly cardiomyocytes. The use of AAV-delivery for RNA interference is an intense area of research, but a comprehensive analysis of knockdown in cardiac and liver tissues after systemic delivery of AAV9 has yet to be reported. We sought to address this question by using AAV9 to deliver a short-hairpin RNA targeting the enhanced green fluorescent protein (GFP) in transgenic mice that constitutively overexpress GFP in all tissues. The expression cassette was initially tested in vitro and we demonstrated a 61% reduction in mRNA and a 90% reduction in GFP protein in dual-transfected 293 cells. Next, the expression cassette was packaged as single-stranded genomes in AAV9 capsids to test cardiac GFP knockdown with several doses ranging from 1.8×1010 to 1.8×1011 viral genomes per mouse and a dose-dependent response was obtained. We then analyzed GFP expression in both heart and liver after delivery of 4.4×1011 viral genomes per mouse. We found that while cardiac knockdown was highly efficient, with a 77% reduction in GFP mRNA and a 71% reduction in protein versus control-treated mice, there was no change in liver expression. This was despite a 4.5-fold greater number of viral genomes in the liver than in the heart. This study demonstrates that single-stranded AAV9 vectors expressing shRNA can be used to achieve highly efficient cardiac-selective knockdown of GFP expression that is sustained for at least 7 weeks after the systemic injection of 8 day old mice, with no change in liver expression and no evidence of liver damage despite high viral genome presence in the liver. PMID:24086659

  2. Protein-Protein Interfaces in Viral Capsids Are Structurally Unique.

    PubMed

    Cheng, Shanshan; Brooks, Charles L

    2015-11-06

    Viral capsids exhibit elaborate and symmetrical architectures of defined sizes and remarkable mechanical properties not seen with cellular macromolecular complexes. Given the uniqueness of the higher-order organization of viral capsid proteins in the virosphere, we explored the question of whether the patterns of protein-protein interactions within viral capsids are distinct from those in generic protein complexes. Our comparative analysis involving a non-redundant set of 551 inter-subunit interfaces in viral capsids from VIPERdb and 20,014 protein-protein interfaces in non-capsid protein complexes from the Protein Data Bank found 418 generic protein-protein interfaces that share similar physicochemical patterns with some protein-protein interfaces in the capsid set, using the program PCalign we developed for comparing protein-protein interfaces. This overlap in the structural space of protein-protein interfaces is significantly small, with a p-value <0.0001, based on a permutation test on the total set of protein-protein interfaces. Furthermore, the generic protein-protein interfaces that bear similarity in their spatial and chemical arrangement with capsid ones are mostly small in size with fewer than 20 interfacial residues, which results from the relatively limited choices of natural design for small interfaces rather than having significant biological implications in terms of functional relationships. We conclude based on this study that protein-protein interfaces in viral capsids are non-representative of patterns in the smaller, more compact cellular protein complexes. Our finding highlights the design principle of building large biological containers from repeated, self-assembling units and provides insights into specific targets for antiviral drug design for improved efficacy.

  3. AAV-8 is more efficient than AAV-9 in transducing neonatal dog heart.

    PubMed

    Pan, Xiufang; Yue, Yongping; Zhang, Keqing; Hakim, Chady H; Kodippili, Kasun; McDonald, Thomas; Duan, Dongsheng

    2015-04-01

    Adeno-associated virus serotype-8 and 9 (AAV-8 and 9) are the leading candidate vectors to test bodywide neonatal muscle gene therapy in large mammals. We have previously shown that systemic injection of 2-2.5×10(14) viral genome (vg) particles/kg of AAV-9 resulted in widespread skeletal muscle gene transfer in newborn dogs. However, nominal transduction was observed in the heart. In contrast, robust expression was achieved in both skeletal muscle and heart in neonatal dogs with 7.14-9.06×10(14) vg particles/kg of AAV-8. To determine whether superior cardiac transduction of AAV-8 is because of the higher vector dose, we delivered 6.14×10(14) and 9.65×10(14) vg particles/kg of AAV-9 to newborn puppies via the jugular vein. Transduction was examined 2.5 months later. Consistent with our previous reports, we observed robust bodywide transduction in skeletal muscle. However, increased AAV dose only moderately improved heart transduction. It never reached the level achieved by AAV-8. Our results suggest that differential cardiac transduction by AAV-8 and AAV-9 is likely because of the intrinsic property of the viral capsid rather than the vector dose.

  4. Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9

    PubMed Central

    Dashkoff, Jonathan; Lerner, Eli P; Truong, Nhi; Klickstein, Jacob A; Fan, Zhanyun; Mu, Dakai; Maguire, Casey A; Hyman, Bradley T; Hudry, Eloise

    2016-01-01

    The capacity of certain adeno-associated virus (AAV) vectors to cross the blood–brain barrier after intravenous delivery offers a unique opportunity for noninvasive brain delivery. However, without a well-tailored system, the use of a peripheral route injection may lead to undesirable transgene expression in nontarget cells or organs. To refine this approach, the present study characterizes the transduction profiles of new self-complementary AAV9 (scAAV9) expressing the green fluorescent protein (GFP) either under an astrocyte (glial fibrillary acidic (GFA) protein) or neuronal (Synapsin (Syn)) promoter, after intravenous injection of adult mice (2 × 1013 vg/kg). ScAAV9-GFA-GFP and scAAV9-Syn-GFP robustly transduce astrocytes (11%) and neurons (17%), respectively, without aberrant expression leakage. Interestingly, while the percentages of GFP-positive astrocytes with scAAV9-GFA-GFP are similar to the performances observed with scAAV9-CBA-GFP (broadly active promoter), significant higher percentages of neurons express GFP with scAAV9-Syn-GFP. GFP-positive excitatory as well as inhibitory neurons are observed, as well as motor neurons in the spinal cord. Additionally, both activated (GFAP-positive) and resting astrocytes (GFAP-negative) express the reporter gene after scAAV9-GFA-GFP injection. These data thoroughly characterize the gene expression specificity of AAVs fitted with neuronal and astrocyte-selective promoters after intravenous delivery, which will prove useful for central nervous system (CNS) gene therapy approaches in which peripheral expression of transgene is a concern. PMID:27933308

  5. Modeling virus capsids and their protein binding -- the search for weak regions within the HIV capsid

    NASA Astrophysics Data System (ADS)

    Sankey, Otto; Benson, Daryn

    2010-10-01

    Viruses remain a threat to the health of humans worldwide with 33 million infected with AIDS. Viruses are ubiquitous infecting animals, plants, and bacteria. Each virus infects in its own unique manner making the problem seem intractable. However, some general physical steps apply to many viruses and the application of basic physical modeling can potentially have great impact. The aim of this theoretical study is to investigate the stability of the HIV viral capsid (protein shell). The structural shell can be compromised by physical probes such as pulsed laser light. But what are the weakest regions of the capsid so that we can begin to understand vulnerabilities of these deadly materials? The atomic structure of HIV capsids is not precisely known and we begin by describing our work to model the capsid structure. Next we describe a course grained model to investigate protein interactions within the capsid.

  6. The Merkel Cell Polyomavirus Minor Capsid Protein

    PubMed Central

    Schowalter, Rachel M.; Buck, Christopher B.

    2013-01-01

    The surface of polyomavirus virions is composed of pentameric knobs of the major capsid protein, VP1. In previously studied polyomavirus species, such as SV40, two interior capsid proteins, VP2 and VP3, emerge from the virion to play important roles during the infectious entry process. Translation of the VP3 protein initiates at a highly conserved Met-Ala-Leu motif within the VP2 open reading frame. Phylogenetic analyses indicate that Merkel cell polyomavirus (MCV or MCPyV) is a member of a divergent clade of polyomaviruses that lack the conserved VP3 N-terminal motif. Consistent with this observation, we show that VP3 is not detectable in MCV-infected cells, VP3 is not found in native MCV virions, and mutation of possible alternative VP3-initiating methionine codons did not significantly affect MCV infectivity in culture. In contrast, VP2 knockout resulted in a >100-fold decrease in native MCV infectivity, despite normal virion assembly, viral DNA packaging, and cell attachment. Although pseudovirus-based experiments confirmed that VP2 plays an essential role for infection of some cell lines, other cell lines were readily transduced by pseudovirions lacking VP2. In cell lines where VP2 was needed for efficient infectious entry, the presence of a conserved myristoyl modification on the N-terminus of VP2 was important for its function. The results show that a single minor capsid protein, VP2, facilitates a post-attachment stage of MCV infectious entry into some, but not all, cell types. PMID:23990782

  7. Modulation of signaling pathways by RNA virus capsid proteins.

    PubMed

    Urbanowski, Matthew D; Ilkow, Carolina S; Hobman, Tom C

    2008-07-01

    Capsid proteins are structural components of virus particles. They are nucleic acid-binding proteins whose main recognized function is to package viral genomes into protective structures called nucleocapsids. Research over the last 10 years indicates that in addition to their role as genome guardians, viral capsid proteins modulate host cell signaling networks. Disruption or alteration of intracellular signaling pathways by viral capsids may benefit replication of the virus by affecting innate immunity and in some cases, may underlie disease progression. In this review, we describe how the capsid proteins from medically relevant RNA viruses interact with host cell signaling pathways.

  8. Imaging of the alphavirus capsid protein during virus replication.

    PubMed

    Zheng, Yan; Kielian, Margaret

    2013-09-01

    Alphaviruses are enveloped viruses with highly organized structures. The nucleocapsid (NC) core contains a capsid protein lattice enclosing the plus-sense RNA genome, and it is surrounded by a lipid bilayer containing a lattice of the E1 and E2 envelope glycoproteins. Capsid protein is synthesized in the cytoplasm and particle budding occurs at the plasma membrane (PM), but the traffic and assembly of viral components and the exit of virions from host cells are not well understood. To visualize the dynamics of capsid protein during infection, we developed a Sindbis virus infectious clone tagged with a tetracysteine motif. Tagged capsid protein could be fluorescently labeled with biarsenical dyes in living cells without effects on virus growth, morphology, or protein distribution. Live cell imaging and colocalization experiments defined distinct groups of capsid foci in infected cells. We observed highly motile internal puncta that colocalized with E2 protein, which may represent the transport machinery that capsid protein uses to reach the PM. Capsid was also found in larger nonmotile internal structures that colocalized with cellular G3BP and viral nsP3. Thus, capsid may play an unforeseen role in these previously observed G3BP-positive foci, such as regulation of cellular stress granules. Capsid puncta were also observed at the PM. These puncta colocalized with E2 and recruited newly synthesized capsid protein; thus, they may be sites of virus assembly and egress. Together, our studies provide the first dynamic views of the alphavirus capsid protein in living cells and a system to define detailed mechanisms during alphavirus infection.

  9. Modeling virus capsids and their protein binding -- the search for weak regions within the HIV capsid

    NASA Astrophysics Data System (ADS)

    Sankey, Otto F.; Benson, Daryn E.; Gilbert, C. Michael

    2011-03-01

    Viruses remain a threat to the health of humans worldwide with 33 million infected with HIV. Viruses are ubiquitous, infecting animals, plants, and bacteria. Each virus infects in its own unique manner making the problem seem intractable. However, some general physical steps apply to many viruses and the application of basic physical modeling can potentially have great impact. The aim of this theoretical study is to investigate the stability of the HIV viral capsid (protein shell). The structural shell can be compromised by physical probes such as pulsed laser light [1,2]. But, what are the weakest regions of the capsid so that we can begin to understand vulnerabilities of these deadly materials? The atomic structure of HIV capsids is not precisely known and we begin by describing our work to model the capsid structure. We have constructed three representative viral capsids of different CA protein number -- HIV-900, HIV-1260 and HIV-1740. The complexity of the assembly requires a course grained model to investigate protein interactions within the capsid which we will describe.

  10. Systemic gene delivery following intravenous administration of AAV9 to fetal and neonatal mice and late-gestation nonhuman primates.

    PubMed

    Mattar, Citra N; Wong, Andrew M S; Hoefer, Klemens; Alonso-Ferrero, Maria E; Buckley, Suzanne M K; Howe, Steven J; Cooper, Jonathan D; Waddington, Simon N; Chan, Jerry K Y; Rahim, Ahad A

    2015-09-01

    Several acute monogenic diseases affect multiple body systems, causing death in childhood. The development of novel therapies for such conditions is challenging. However, improvements in gene delivery technology mean that gene therapy has the potential to treat such disorders. We evaluated the ability of the AAV9 vector to mediate systemic gene delivery after intravenous administration to perinatal mice and late-gestation nonhuman primates (NHPs). Titer-matched single-stranded (ss) and self-complementary (sc) AAV9 carrying the green fluorescent protein (GFP) reporter gene were intravenously administered to fetal and neonatal mice, with noninjected age-matched mice used as the control. Extensive GFP expression was observed in organs throughout the body, with the epithelial and muscle cells being particularly well transduced. ssAAV9 carrying the WPRE sequence mediated significantly more gene expression than its sc counterpart, which lacked the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) sequence. To examine a realistic scale-up to larger models or potentially patients for such an approach, AAV9 was intravenously administered to late-gestation NHPs by using a clinically relevant protocol. Widespread systemic gene expression was measured throughout the body, with cellular tropisms similar to those observed in the mouse studies and no observable adverse events. This study confirms that AAV9 can safely mediate systemic gene delivery in small and large animal models and supports its potential use in clinical systemic gene therapy protocols.

  11. Copackaged AAV9 Vectors Promote Simultaneous Immune Tolerance and Phenotypic Correction of Pompe Disease

    PubMed Central

    Doerfler, Phillip A.; Todd, Adrian G.; Clément, Nathalie; Falk, Darin J.; Nayak, Sushrusha; Herzog, Roland W.; Byrne, Barry J.

    2016-01-01

    Pompe disease is a progressive neuromuscular disorder caused by lysosomal accumulation of glycogen from a deficiency in acid alpha-glucosidase (GAA). Replacement of the missing enzyme is available by repeated protein infusions; however, efficacy is limited by immune response and inability to restore enzymatic function in the central nervous system. An alternative therapeutic option is adeno-associated virus (AAV)-mediated gene therapy, which results in widespread gene transfer and prolonged transgene expression. Both enzyme replacement therapy (ERT) and gene therapy can elicit anti-GAA immune reactions that dampen their effectiveness and pose life-threatening risks to patient safety. To modulate the immune responses related to gene therapy, we show that a human codon-optimized GAA (coGAA) driven by a liver-specific promoter (LSP) using AAV9 is capable of promoting immune tolerance in a Gaa−/− mouse model. Copackaging AAV9-LSP-coGAA with the tissue-restricted desmin promoter (AAV9-DES-coGAA) demonstrates the necessary cell autonomous expression in cardiac muscle, skeletal muscle, peripheral nerve, and the spinal cord. Simultaneous high-level expression in liver led to the expansion of GAA-specific regulatory T-cells (Tregs) and induction of immune tolerance. Transfer of Tregs into naïve recipients prevented pathogenic allergic reactions after repeated ERT challenges. Copackaged AAV9 also attenuated preexisting humoral and cellular immune responses, which enhanced the biochemical correction. Our data present a therapeutic design in which simultaneous administration of two copackaged AAV constructs may provide therapeutic benefit and resolve immune reactions in the treatment of multisystem disorders. PMID:26603344

  12. Capsid-Incorporation of Antigens into Adenovirus Capsid Proteins for a Vaccine Approach

    PubMed Central

    Matthews, Qiana L.

    2010-01-01

    Some viral vectors are potent inducers of cellular and humoral responses; therefore, viral vectors can be used to vaccinate against cancer or infectious diseases. This report will focus on adenovirus (Ad)-based vectors. Traditional viral-vector vaccination embodies the concept that the vector uses the host-cell machinery to express antigens that are encoded as transgenes within the viral vector. Several preclinical successes have used this approach in animal model systems. However, in some instances, these conventional Ad-based vaccines have yielded suboptimal clinical results. These suboptimal results are ascribed, in part, to preexisting Ad serotype 5 (Ad5) immunity. To address this issue, the “antigen capsid-incorporation” strategy has been developed to circumvent the drawbacks associated with conventional transgene expression of antigens by Ad vectors. This strategy embodies the incorporation of antigenic peptides within the capsid structure of viral vectors. Incorporating immunogenic peptides into the Ad capsid offers potential advantages. Importantly, vaccination by means of the antigen capsid-incorporated approach results in a strong humoral response, similar to the response generated by native Ad capsid proteins. This strategy also allows for the boosting of antigenic specific responses. This strategy may be the way forward for improved vaccine schemes, especially for those infections requiring a strong humoral antigenic response. PMID:21047139

  13. Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins.

    PubMed Central

    Thomsen, D R; Roof, L L; Homa, F L

    1994-01-01

    The capsid of herpes simplex virus type 1 (HSV-1) is composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, which are the products of six HSV-1 genes. Recombinant baculoviruses were used to express the six capsid genes (UL18, UL19, UL26, UL26.5, UL35, and UL38) in insect cells. All constructs expressed the appropriate-size HSV proteins, and insect cells infected with a mixture of the six recombinant baculoviruses contained large numbers of HSV-like capsids. Capsids were purified by sucrose gradient centrifugation, and electron microscopy showed that the capsids made in Sf9 cells had the same size and appearance as authentic HSV B capsids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the protein composition of these capsids was nearly identical to that of B capsids isolated from HSV-infected Vero cells. Electron microscopy of thin sections clearly demonstrated that the capsids made in insect cells contained the inner electron-translucent core associated with HSV B capsids. In infections in which single capsid genes were left out, it was found that the UL18 (VP23), UL19 (VP5), UL38 (VP19C), and either the UL26 (VP21 and VP24) or the UL26.5 (VP22a) genes were required for assembly of 100-nm capsids. VP22a was shown to form the inner core of the B capsid, since in infections in which the UL26.5 gene was omitted the 100-nm capsids that formed lacked the inner core. The UL35 (VP26) gene was not required for assembly of 100-nm capsids, although assembly of B capsids was more efficient when it was present. These and other observations indicate that (i) the products of the UL18, UL19, UL35, and UL38 genes self-assemble into structures that form the outer surface (icosahedral shell) of the capsid, (ii) the products of the UL26 and/or UL26.5 genes are required (as scaffolds) for assembly of 100-nm capsids, and (iii) the interaction of the outer surface of the capsid with the scaffolding proteins requires the product

  14. Inhibition of protein kinase C phosphorylation of hepatitis B virus capsids inhibits virion formation and causes intracellular capsid accumulation.

    PubMed

    Wittkop, Linda; Schwarz, Alexandra; Cassany, Aurelia; Grün-Bernhard, Stefanie; Delaleau, Mildred; Rabe, Birgit; Cazenave, Christian; Gerlich, Wolfram; Glebe, Dieter; Kann, Michael

    2010-07-01

    Capsids of hepatitis B virus and other hepadnaviruses contain a cellular protein kinase, which phosphorylates the capsid protein. Some phosphorylation sites are shown to be essential for distinct steps of viral replication as pregenome packaging or plus strand DNA synthesis. Although different protein kinases have been reported to phosphorylate the capsid protein, varying experimental approaches do not allow direct comparison. Furthermore, the activity of a specific protein kinase has not yet been correlated to steps in the hepadnaviral life cycle. In this study we show that capsids from various sources encapsidate active protein kinase Calpha, irrespective of hepatitis B virus genotype and host cell. Treatment of a virion expressing cell line with a pseudosubstrate inhibitor showed that inhibition of protein kinase C phosphorylation did not affect genome maturation but resulted in capsid accumulation and inhibited virion release to the medium. Our results imply that different protein kinases have distinct functions within the hepadnaviral life cycle.

  15. A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability

    PubMed Central

    Mertens, Johann; Casado, Santiago; Mata, Carlos P.; Hernando-Pérez, Mercedes; de Pablo, Pedro J.; Carrascosa, José L.; Castón, José R.

    2015-01-01

    Viral capsids are metastable structures that perform many essential processes; they also act as robust cages during the extracellular phase. Viruses can use multifunctional proteins to optimize resources (e.g., VP3 in avian infectious bursal disease virus, IBDV). The IBDV genome is organized as ribonucleoproteins (RNP) of dsRNA with VP3, which also acts as a scaffold during capsid assembly. We characterized mechanical properties of IBDV populations with different RNP content (ranging from none to four RNP). The IBDV population with the greatest RNP number (and best fitness) showed greatest capsid rigidity. When bound to dsRNA, VP3 reinforces virus stiffness. These contacts involve interactions with capsid structural subunits that differ from the initial interactions during capsid assembly. Our results suggest that RNP dimers are the basic stabilization units of the virion, provide better understanding of multifunctional proteins, and highlight the duality of RNP as capsid-stabilizing and genetic information platforms. PMID:26336920

  16. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength

    NASA Astrophysics Data System (ADS)

    Michel, J. P.; Ivanovska, I. L.; Gibbons, M. M.; Klug, W. S.; Knobler, C. M.; Wuite, G. J. L.; Schmidt, C. F.

    2006-04-01

    The elastic properties of capsids of the cowpea chlorotic mottle virus have been examined at pH 4.8 by nanoindentation measurements with an atomic force microscope. Studies have been carried out on WT capsids, both empty and containing the RNA genome, and on full capsids of a salt-stable mutant and empty capsids of the subE mutant. Full capsids resisted indentation more than empty capsids, but all of the capsids were highly elastic. There was an initial reversible linear regime that persisted up to indentations varying between 20% and 30% of the diameter and applied forces of 0.6-1.0 nN; it was followed by a steep drop in force that is associated with irreversible deformation. A single point mutation in the capsid protein increased the capsid stiffness. The experiments are compared with calculations by finite element analysis of the deformation of a homogeneous elastic thick shell. These calculations capture the features of the reversible indentation region and allow Young's moduli and relative strengths to be estimated for the empty capsids. atomic force microscopy | cowpea chlorotic mottle virus | finite element analysis | biomechanics

  17. Calibrating elastic parameters from molecular dynamics simulations of capsid proteins

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen; Henley, Christopher

    2008-03-01

    Virus capsids are modeled with elastic network models in which a handful of parameters determine transitions in assembly [1] and morphology [2]. We introduce an approach to compute these parameters from the microscopic structure of the proteins involved. We consider each protein as one or a few rigid bodies with very general interactions, which we parameterize by fitting the simulated equilibrium fluctuations (relative translations and rotations) of a pair of proteins (or fragments) to a 6-dimensional Gaussian. We can then compose these generalized springs into the global capsid structure to determine the continuum elastic parameters. We demonstrate our approach on HIV capsid protein and compare our results with the observed lattice structure (from cryo-EM [3] and AFM indentation studies). [1] R. Zandi et al, PNAS 101 (2004) 15556. [2] J. Lidmar, L. Mirny, and D. R. Nelson, PRE 68 (2003) 051910. [3] B. K. Ganser-Pornillos et al, Cell 131 (2007) 70.

  18. Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages.

    PubMed

    Qin, Li; Fokine, Andrei; O'Donnell, Erin; Rao, Venigalla B; Rossmann, Michael G

    2010-01-29

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a "glue" between neighboring hexameric capsomers, forming a "cage" that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 A resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.

  19. Structure of the Small Outer Capsid Protein, Soc: A Clamp for Stabilizing Capsids of T4-like Phages

    SciTech Connect

    Qin, Li; Fokine, Andrei; O'Donnell, Erin; Rao, Venigalla B.; Rossmann, Michael G.

    2010-07-22

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a 'glue' between neighboring hexameric capsomers, forming a 'cage' that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 {angstrom} resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.

  20. The capsid protein of human immunodeficiency virus: designing inhibitors of capsid assembly.

    PubMed

    Neira, José L

    2009-11-01

    The mature capsid of human immunodeficiency virus, HIV-1, is formed by the assembly of copies of a capsid protein (CA). The C-terminal domain of CA, CTD, is able to homodimerize and most of the dimerization interface is formed by a single alpha-helix from each monomer. Assembly of the HIV-1 capsid critically depends on CA-CA interactions, including CTD interaction with itself and with the CA N-terminal domain, NTD. This minireview reports on the search and the design of peptides and small organic compounds that are able to interact with the CTD and/or CA of HIV-1. Such molecules aim to disrupt and/or alter the oligomerization capability of CTD. The different peptides designed so far interact with CTD mainly via hydrophobic contacts with residues close or belonging to the interface between the dimerization helices. A CTD-binding organic compound also establishes hydrophobic contacts with regions involved in the interface between the NTD and CTD. These results open new venues for the development of new antiviral drugs that are able to interact with CA and/or its domains, hampering HIV-1 assembly and infection.

  1. Antigenic properties of avian hepatitis E virus capsid protein.

    PubMed

    Zhao, Qin; Syed, Shahid Faraz; Zhou, En-Min

    2015-10-22

    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease and hepatitis-splenomegaly syndrome in chickens, and is genetically and antigenically related to mammalian HEVs. HEV capsid protein contains immunodominant epitopes and induces a protective humoral immune response. A better understanding of the antigenic composition of this protein is critically important for the development of effective vaccine and sensitive and specific serological assays. To date, six linear antigenic domains (I-VI) have been characterized in avian HEV capsid protein and analyzed for their applications in the serological diagnosis and vaccine design. Domains I and V induce strong immune response in chickens and are common to avian, human, and swine HEVs, indicating that the shared epitopes hampering differential diagnosis of avian HEV infection. Domains III and IV are not immunodominant and elicit a weak immune response. Domain VI, located in the N-terminal region of the capsid protein, can also trigger an intense immune response, but the anti-domain VI antibodies are transient. The protection analysis showed that the truncated capsid protein containing the C-terminal 268 amino acid residues expressed by the bacterial system can provide protective immunity against avian HEV infection in chickens. However, the synthetic peptides incorporating the different linear antigenic domains (I-VI) and epitopes are non-protective. The antigenic composition of avian HEV capsid protein is altogether complex. To develop an effective vaccine and accurate serological diagnostic methods, more conformational antigenic domains or epitopes are to be characterized in detail.

  2. Crystal Structure of the Human Astrovirus Capsid Protein

    PubMed Central

    Toh, Yukimatsu; Harper, Justin; Dryden, Kelly A.; Yeager, Mark; Méndez, Ernesto

    2016-01-01

    ABSTRACT Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. HAstV is a nonenveloped virus with a T=3 capsid and a positive-sense RNA genome. The capsid protein (CP) of HAstV is synthesized as a 90-kDa precursor (VP90) that can be divided into three linear domains: a conserved N-terminal domain, a hypervariable domain, and an acidic C-terminal domain. Maturation of HAstV requires proteolytic processing of the astrovirus CP both inside and outside the host cell, resulting in the removal of the C-terminal domain and the breakdown of the rest of the CP into three predominant protein species with molecular masses of ∼34, 27/29, and 25/26 kDa, respectively. We have now solved the crystal structure of VP9071–415 (amino acids [aa] 71 to 415 of VP90) of human astrovirus serotype 8 at a 2.15-Å resolution. VP9071–415 encompasses the conserved N-terminal domain of VP90 but lacks the hypervariable domain, which forms the capsid surface spikes. The structure of VP9071–415 is comprised of two domains: an S domain, which adopts the typical jelly-roll β-barrel fold, and a P1 domain, which forms a squashed β-barrel consisting of six antiparallel β-strands similar to what was observed in the hepatitis E virus (HEV) capsid structure. Fitting of the VP9071–415 structure into the cryo-electron microscopy (EM) maps of HAstV produced an atomic model for a continuous, T=3 icosahedral capsid shell. Our pseudoatomic model of the human HAstV capsid shell provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation needed for virus infectivity. Such information has potential applications in the development of a virus-like particle (VLP) vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation. IMPORTANCE Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. As a nonenveloped virus

  3. Isolation of human cytomegalovirus intranuclear capsids, characterization of their protein constituents, and demonstration that the B-capsid assembly protein is also abundant in noninfectious enveloped particles.

    PubMed Central

    Irmiere, A; Gibson, W

    1985-01-01

    Two types of intranuclear capsids have been recovered from human cytomegalovirus (HCMV, strain AD169)-infected cells. By analogy with strain Colburn (simian CMV) particles, these have been designated as A- and B-capsids. Both types of capsids are composed of proteins with molecular weights of 153,000 (major capsid protein), 34,000 (minor capsid protein), 28,000, and 11,000 (smallest capsid protein). In addition to these species, B-capsids contain a 36,000-molecular-weight (36K) protein which has been designated as the HCMV "assembly protein," based on its similarities to counterparts in strain Colburn CMV (i.e., 37K protein) and herpes simplex virus (i.e., VP22a/p40/NC-3/ICP35e). Peptide comparisons established that the assembly protein of HCMV B-capsids and the 36K protein that distinguishes HCMV noninfectious enveloped particles from virions are the same, providing direct evidence that noninfectious enveloped particles are enveloped B-capsids. Images PMID:2993655

  4. L2, the minor capsid protein of papillomavirus

    SciTech Connect

    Wang, Joshua W.; Roden, Richard B.S.

    2013-10-15

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.

  5. CapsidMaps: protein-protein interaction pattern discovery platform for the structural analysis of virus capsids using Google Maps.

    PubMed

    Carrillo-Tripp, Mauricio; Montiel-García, Daniel Jorge; Brooks, Charles L; Reddy, Vijay S

    2015-04-01

    Structural analysis and visualization of protein-protein interactions is a challenging task since it is difficult to appreciate easily the extent of all contacts made by the residues forming the interfaces. In the case of viruses, structural analysis becomes even more demanding because several interfaces coexist and, in most cases, these are formed by hundreds of contacting residues that belong to multiple interacting coat proteins. CapsidMaps is an interactive analysis and visualization tool that is designed to benefit the structural virology community. Developed as an improved extension of the φ-ψ Explorer, here we describe the details of its design and implementation. We present results of analysis of a spherical virus to showcase the features and utility of the new tool. CapsidMaps also facilitates the comparison of quaternary interactions between two spherical virus particles by computing a similarity (S)-score. The tool can also be used to identify residues that are solvent exposed and in the process of locating antigenic epitope regions as well as residues forming the inside surface of the capsid that interact with the nucleic acid genome. CapsidMaps is part of the VIPERdb Science Gateway, and is freely available as a web-based and cross-browser compliant application at http://viperdb.scripps.edu.

  6. Monitoring Protein Capsid Assembly with a Conjugated Polymer Strain Sensor.

    PubMed

    Cingil, Hande E; Storm, Ingeborg M; Yorulmaz, Yelda; te Brake, Diane W; de Vries, Renko; Cohen Stuart, Martien A; Sprakel, Joris

    2015-08-12

    Semiconducting polymers owe their optoelectronic properties to the delocalized electronic structure along their conjugated backbone. Their spectral features are therefore uniquely sensitive to the conformation of the polymer, where mechanical stretching of the chain leads to distinct vibronic shifts. Here we demonstrate how the optomechanical response of conjugated polyelectrolytes can be used to detect their encapsulation in a protein capsid. Coating of the sensor polymers by recombinant coat proteins induces their stretching due to steric hindrance between the proteins. The resulting mechanical planarizations lead to pronounced shifts in the vibronic spectra, from which the process of capsid formation can be directly quantified. These results show how the coupling between vibronic states and mechanical stresses inherent to conjugated polymers can be used to noninvasively measure strains at the nanoscale.

  7. Immune response to hepatitis A virus capsid proteins after infection.

    PubMed Central

    Wang, C H; Tschen, S Y; Heinricy, U; Weber, M; Flehmig, B

    1996-01-01

    This study was undertaken to determine the immune response of humans to viral capsid polypeptides of hepatitis A virus (HAV) after natural infection, which is very important for vaccine development. Antiviral capsids in 73 serum samples from patients with acute and chronic HAV infections were analyzed by immunoblotting against individual HAV capsid polypeptides (VP1, VP2, VP3, and VP4) by using a cell culture-based HAV antigen. For reference, total anti-HAV immunoglobulin G (IgG) and anti-HAV IgM were also determined by radioimmunoassay. As a result, a dominant immune response against VP1 (98% IgG, 94% IgM) was found in the acute phase. However, many other sera also reacted with VP0 (88% IgG; 35% IgM) and VP3 (81% IgG and 29% IgM). In contrast to the acute phase, anti-VP1, anti-VP0, and anti-VP3, IgG antibodies against all three viral proteins (29, 29, and 73% respectively), especially those against VP3, were found years after onset of HAV disease and over long periods in the sera of hepatitis patients. These results suggest that antibodies for capsid polypeptides are present over an extended period in the sera of HAV-infected patients. They are likely of importance in maintaining long-term immunity. PMID:8904442

  8. Cardiac AAV9-S100A1 gene therapy rescues postischemic heart failure in a preclinical large animal model

    PubMed Central

    Pleger, Sven T.; Shan, Changguang; Ksienzyk, Jan; Bekeredjian, Raffi; Boekstegers, Peter; Hinkel, Rabea; Schinkel, Stefanie; Leuchs, Barbara; Ludwig, Jochen; Qiu, Gang; Weber, Christophe; Kleinschmidt, Jürgen A.; Raake, Philip; Koch, Walter J.; Katus, Hugo A.; Müller, Oliver J.; Most, Patrick

    2014-01-01

    As a prerequisite to clinical application, we determined the long-term therapeutic effectiveness and safety of adeno-associated viral (AAV) S100A1 gene therapy in a preclinical, large animal model of heart failure. S100A1, a positive inotropic regulator of myocardial contractility, becomes depleted in failing cardiomyocytes in humans and various animal models, and myocardial-targeted S100A1 gene transfer rescues cardiac contractile function by restoring sarcoplasmic reticulum calcium Ca2+ handling in acutely and chronically failing hearts in small animal models. We induced heart failure in domestic pigs by balloon-occlusion of the left circumflex coronary artery, resulting in myocardial infarction. After 2 weeks, when the pigs displayed significant left ventricular contractile dysfunction, we administered through retrograde coronary venous delivery, AAV9-S100A1 to the left ventricular non-infarcted myocardium. AAV9-luciferase and saline treatment served as control. At 14 weeks, both control groups showed significantly decreased myocardial S100A1 protein expression along with progressive deterioration of cardiac performance and left ventricular remodeling. AAV9-S100A1 treatment prevented and reversed this phenotype by restoring cardiac S100A1 protein levels. S100A1 treatment normalized cardiomyocyte Ca2+ cycling, sarcoplasmic reticulum calcium handling and energy homeostasis. Transgene expression was restricted to cardiac tissue and extra-cardiac organ function was uncompromised indicating a favorable safety profile. This translational study shows the pre-clinical feasibility, long-term therapeutic effectiveness and a favorable safety profile of cardiac AAV9-S100A1 gene therapy in a preclinical model of heart failure. Our study presents a strong rational for a clinical trial of S100A1 gene therapy for human heart failure that could potentially complement current strategies to treat end-stage heart failure. PMID:21775667

  9. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    PubMed Central

    Miyanohara, Atsushi; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Navarro, Michael; Marsala, Silvia; Lukacova, Nada; Hruska-Plochan, Marian; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Ahrens, Eric T; Kaspar, Brian K; Cleveland, Don; Marsala, Martin

    2016-01-01

    Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients. PMID:27462649

  10. Cleavage sites within the poliovirus capsid protein precursors

    SciTech Connect

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.; Semler, B.L.; Wimmer, E.

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein.

  11. Chemical reactivity of brome mosaic virus capsid protein.

    PubMed

    Running, W E; Ni, P; Kao, C C; Reilly, J P

    2012-10-12

    Viral particles are biological machines that have evolved to package, protect, and deliver the viral genome into the host via regulated conformational changes of virions. We have developed a procedure to modify lysine residues with S-methylthioacetimidate across the pH range from 5.5 to 8.5. Lysine residues that are not completely modified are involved in tertiary or quaternary structural interactions, and their extent of modification can be quantified as a function of pH. This procedure was applied to the pH-dependent structural transitions of brome mosaic virus (BMV). As the reaction pH increases from 5.5 to 8.5, the average number of modified lysine residues in the BMV capsid protein increases from 6 to 12, correlating well with the known pH-dependent swelling behavior of BMV virions. The extent of reaction of each of the capsid protein's lysine residues has been quantified at eight pH values using coupled liquid chromatography-tandem mass spectrometry. Each lysine can be assigned to one of three structural classes identified by inspection of the BMV virion crystal structure. Several lysine residues display reactivity that indicates their involvement in dynamic interactions that are not obvious in the crystal structure. The influence of several capsid protein mutants on the pH-dependent structural transition of BMV has also been investigated. Mutant H75Q exhibits an altered swelling transition accompanying solution pH increases. The H75Q capsids show increased reactivity at lysine residues 64 and 130, residues distal from the dimer interface occupied by H75, across the entire pH range.

  12. L2, the minor capsid protein of papillomavirus

    PubMed Central

    Wang, Joshua W.; Roden, Richard B.S.

    2013-01-01

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ~8kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. PMID:23689062

  13. The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: a biophysical characterization.

    PubMed

    Garzón, María T; Lidón-Moya, María C; Barrera, Francisco N; Prieto, Alicia; Gómez, Javier; Mateu, Mauricio G; Neira, José L

    2004-06-01

    The type 1 HIV presents a conical capsid formed by approximately 1500 units of the capsid protein, CA. Homodimerization of CA via its C-terminal domain, CA-C, constitutes a key step in virion assembly. CA-C dimerization is largely mediated by reciprocal interactions between residues of its second alpha-helix. Here, we show that an N-terminal-acetylated and C-terminal-amidated peptide, CAC1, comprising the sequence of the CA-C dimerization helix plus three flanking residues at each side, is able to form a complex with the entire CA-C domain. Thermal denaturation measurements followed by circular dichroism (CD), NMR, and size-exclusion chromatography provided evidence of the interaction between CAC1 and CA-C. The apparent dissociation constant of the heterocomplex formed by CA-C and CAC1 was determined by several biophysical techniques, namely, fluorescence (using an anthraniloyl-labeled peptide), affinity chromatography, and isothermal titration calorimetry. The three techniques yielded similar values for the apparent dissociation constant, in the order of 50 microM. This apparent dissociation constant was only five times higher than was the dissociation constant of both CA-C and the intact capsid protein homodimers (10 microM).

  14. The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: A biophysical characterization

    PubMed Central

    Garzón, María T.; Lidón-Moya, María C.; Barrera, Francisco N.; Prieto, Alicia; Gómez, Javier; Mateu, Mauricio G.; Neira, José L.

    2004-01-01

    The type 1 HIV presents a conical capsid formed by ~1500 units of the capsid protein, CA. Homodimer-ization of CA via its C-terminal domain, CA-C, constitutes a key step in virion assembly. CA-C dimerization is largely mediated by reciprocal interactions between residues of its second α-helix. Here, we show that an N-terminal-acetylated and C-terminal–amidated peptide, CAC1, comprising the sequence of the CA-C dimerization helix plus three flanking residues at each side, is able to form a complex with the entire CA-C domain. Thermal denaturation measurements followed by circular dichroism (CD), NMR, and size-exclusion chromatography provided evidence of the interaction between CAC1 and CA-C. The apparent dissociation constant of the heterocomplex formed by CA-C and CAC1 was determined by several biophysical techniques, namely, fluorescence (using an anthraniloyl-labeled peptide), affinity chromatography, and isothermal titration calorimetry. The three techniques yielded similar values for the apparent dissociation constant, in the order of 50 μM. This apparent dissociation constant was only five times higher than was the dissociation constant of both CA-C and the intact capsid protein homodimers (10 μM). PMID:15152086

  15. High affinity anchoring of the decoration protein pb10 onto the bacteriophage T5 capsid

    PubMed Central

    Vernhes, Emeline; Renouard, Madalena; Gilquin, Bernard; Cuniasse, Philippe; Durand, Dominique; England, Patrick; Hoos, Sylviane; Huet, Alexis; Conway, James F.; Glukhov, Anatoly; Ksenzenko, Vladimir; Jacquet, Eric; Nhiri, Naïma; Zinn-Justin, Sophie; Boulanger, Pascale

    2017-01-01

    Bacteriophage capsids constitute icosahedral shells of exceptional stability that protect the viral genome. Many capsids display on their surface decoration proteins whose structure and function remain largely unknown. The decoration protein pb10 of phage T5 binds at the centre of the 120 hexamers formed by the major capsid protein. Here we determined the 3D structure of pb10 and investigated its capsid-binding properties using NMR, SAXS, cryoEM and SPR. Pb10 consists of an α-helical capsid-binding domain and an Ig-like domain exposed to the solvent. It binds to the T5 capsid with a remarkably high affinity and its binding kinetics is characterized by a very slow dissociation rate. We propose that the conformational exchange events observed in the capsid-binding domain enable rearrangements upon binding that contribute to the quasi-irreversibility of the pb10-capsid interaction. Moreover we show that pb10 binding is a highly cooperative process, which favours immediate rebinding of newly dissociated pb10 to the 120 hexamers of the capsid protein. In extreme conditions, pb10 protects the phage from releasing its genome. We conclude that pb10 may function to reinforce the capsid thus favouring phage survival in harsh environments. PMID:28165000

  16. Modulation of a Pore in the Capsid of JC Polyomavirus Reduces Infectivity and Prevents Exposure of the Minor Capsid Proteins

    PubMed Central

    Nelson, Christian D. S.; Ströh, Luisa J.; Gee, Gretchen V.; O'Hara, Bethany A.; Stehle, Thilo

    2015-01-01

    ABSTRACT JC polyomavirus (JCPyV) infection of immunocompromised individuals results in the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). The viral capsid of JCPyV is composed primarily of the major capsid protein virus protein 1 (VP1), and pentameric arrangement of VP1 monomers results in the formation of a pore at the 5-fold axis of symmetry. While the presence of this pore is conserved among polyomaviruses, its functional role in infection or assembly is unknown. Here, we investigate the role of the 5-fold pore in assembly and infection of JCPyV by generating a panel of mutant viruses containing amino acid substitutions of the residues lining this pore. Multicycle growth assays demonstrated that the fitness of all mutants was reduced compared to that of the wild-type virus. Bacterial expression of VP1 pentamers containing substitutions to residues lining the 5-fold pore did not affect pentamer assembly or prevent association with the VP2 minor capsid protein. The X-ray crystal structures of selected pore mutants contained subtle changes to the 5-fold pore, and no other changes to VP1 were observed. Pore mutant pseudoviruses were not deficient in assembly, packaging of the minor capsid proteins, or binding to cells or in transport to the host cell endoplasmic reticulum. Instead, these mutant viruses were unable to expose VP2 upon arrival to the endoplasmic reticulum, a step that is critical for infection. This study demonstrated that the 5-fold pore is an important structural feature of JCPyV and that minor modifications to this structure have significant impacts on infectious entry. IMPORTANCE JCPyV is an important human pathogen that causes a severe neurological disease in immunocompromised individuals. While the high-resolution X-ray structure of the major capsid protein of JCPyV has been solved, the importance of a major structural feature of the capsid, the 5-fold pore, remains poorly understood. This pore is conserved across

  17. Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids

    SciTech Connect

    Bucks, Michelle A.; O'Regan, Kevin J.; Murphy, Michael A.; Wills, John W.; Courtney, Richard J. . E-mail: rcourtney@psu.edu

    2007-05-10

    The assembly of the tegument of herpes simplex virus type 1 (HSV-1) is a complex process that involves a number of events at various sites within virus-infected cells. Our studies focused on determining whether tegument proteins, VP1/2 and UL37, are added to capsids located within the nucleus. Capsids were isolated from the nuclear fraction of HSV-1-infected cells and purified by rate-zonal centrifugation to separate B capsids (containing the scaffold proteins and no viral DNA) and C capsids (containing DNA and no scaffold proteins). Western blot analyses of these capsids indicated that VP1/2 associated primarily with C capsids and UL37 associated with B and C capsids. The results demonstrate that at least two of the tegument proteins of HSV-1 are associated with capsids isolated from the nuclear fraction, and these capsid-tegument protein interactions may represent initial events of the tegumentation process.

  18. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids

    PubMed Central

    Li, Yen-Li; Chandrasekaran, Viswanathan; Carter, Stephen D; Woodward, Cora L; Christensen, Devin E; Dryden, Kelly A; Pornillos, Owen; Yeager, Mark; Ganser-Pornillos, Barbie K; Jensen, Grant J; Sundquist, Wesley I

    2016-01-01

    TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings, with the SPRY domains centered on the edges and the B-box and RING domains at the vertices. Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to recognize divergent and pleomorphic retroviral capsids. DOI: http://dx.doi.org/10.7554/eLife.16269.001 PMID:27253068

  19. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly

    NASA Technical Reports Server (NTRS)

    Rodgers, R. E.; Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.

  20. Widespread neuron-specific transgene expression in brain and spinal cord following synapsin promoter-driven AAV9 neonatal intracerebroventricular injection.

    PubMed

    McLean, Jesse R; Smith, Gaynor A; Rocha, Emily M; Hayes, Melissa A; Beagan, Jonathan A; Hallett, Penelope J; Isacson, Ole

    2014-07-25

    Adeno-associated viral (AAV) gene transfer holds great promise for treating a wide-range of neurodegenerative disorders. The AAV9 serotype crosses the blood-brain barrier and shows enhanced transduction efficiency compared to other serotypes, thus offering advantageous targeting when global transgene expression is required. Neonatal intravenous or intracerebroventricular (i.c.v.) delivery of recombinant AAV9 (rAAV9) have recently proven effective for modeling and treating several rodent models of neurodegenerative disease, however, the technique is associated with variable cellular tropism, making tailored gene transfer a challenge. In the current study, we employ the human synapsin 1 (hSYN1) gene promoter to drive neuron-specific expression of green fluorescent protein (GFP) after neonatal i.c.v. injection of rAAV9 in mice. We observed widespread GFP expression in neurons throughout the brain, spinal cord, and peripheral nerves and ganglia at 6 weeks-of-age. Region-specific quantification of GFP expression showed high neuronal transduction rates in substantia nigra pars reticulata (43.9±5.4%), motor cortex (43.5±3.3%), hippocampus (43.1±2.7%), cerebellum (29.6±2.3%), cervical spinal cord (24.9±3.9%), and ventromedial striatum (16.9±4.3%), among others. We found that 14.6±2.2% of neuromuscular junctions innervating the gastrocnemius muscle displayed GFP immunoreactivity. GFP expression was identified in several neuronal sub-types, including nigral tyrosine hydroxylase (TH)-positive dopaminergic cells, striatal dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32)-positive neurons, and choline acetyltransferase (ChAT)-positive motor neurons. These results build on contemporary gene transfer techniques, demonstrating that the hSYN1 promoter can be used with rAAV9 to drive robust neuron-specific transgene expression throughout the nervous system.

  1. The hepatitis B virus core protein intradimer interface modulates capsid assembly and stability.

    PubMed

    Selzer, Lisa; Katen, Sarah P; Zlotnick, Adam

    2014-09-02

    During the hepatitis B virus (HBV) life cycle, capsid assembly and disassembly must ensure correct packaging and release of the viral genome. Here we show that changes in the dynamics of the core protein play an important role in regulating these processes. The HBV capsid assembles from 120 copies of the core protein homodimer. Each monomer contains a conserved cysteine at position 61 that can form an intradimer disulfide that we use as a marker for dimer conformational states. We show that dimers in the context of capsids form intradimer disulfides relatively rapidly. Surprisingly, compared to reduced dimers, fully oxidized dimers assembled slower and into capsids that were morphologically similar but less stable. We hypothesize that oxidized protein adopts a geometry (or constellation of geometries) that is unfavorable for capsid assembly, resulting in weaker dimer-dimer interactions as well as slower assembly kinetics. Our results suggest that structural flexibility at the core protein intradimer interface is essential for regulating capsid assembly and stability. We further suggest that capsid destabilization by the C61-C61 disulfide has a regulatory function to support capsid disassembly and release of the viral genome.

  2. The Hepatitis B Virus Core Protein Intradimer Interface Modulates Capsid Assembly and Stability

    PubMed Central

    2015-01-01

    During the hepatitis B virus (HBV) life cycle, capsid assembly and disassembly must ensure correct packaging and release of the viral genome. Here we show that changes in the dynamics of the core protein play an important role in regulating these processes. The HBV capsid assembles from 120 copies of the core protein homodimer. Each monomer contains a conserved cysteine at position 61 that can form an intradimer disulfide that we use as a marker for dimer conformational states. We show that dimers in the context of capsids form intradimer disulfides relatively rapidly. Surprisingly, compared to reduced dimers, fully oxidized dimers assembled slower and into capsids that were morphologically similar but less stable. We hypothesize that oxidized protein adopts a geometry (or constellation of geometries) that is unfavorable for capsid assembly, resulting in weaker dimer–dimer interactions as well as slower assembly kinetics. Our results suggest that structural flexibility at the core protein intradimer interface is essential for regulating capsid assembly and stability. We further suggest that capsid destabilization by the C61–C61 disulfide has a regulatory function to support capsid disassembly and release of the viral genome. PMID:25102363

  3. Chikungunya virus capsid protein contains nuclear import and export signals

    PubMed Central

    2013-01-01

    Background Chikungunya virus (CHIKV) is an alphavirus of the Togaviridae family. After autoproteolytic cleavage, the CHIKV capsid protein (CP) is involved in RNA binding and assembly of the viral particle. The monomeric CP is approximately 30 kDa in size and is small enough for passive transport through nuclear pores. Some alphaviruses are found to harbor nuclear localization signals (NLS) and transport of these proteins between cellular compartments was shown to be energy dependent. The active nuclear import of cytoplasmic proteins is mediated by karyopherins and their export by exportins. As nuclear and cytoplasmic trafficking may play a role in the life cycle of CHIKV, we have sought to identify nuclear localization and nuclear export signals in CHIKV CP in a virus-free system. Methods EGFP-fusion proteins of CHIKV CP and mutants thereof were created and used to monitor their intracellular localization. Binding of cellular proteins was confirmed in pull-down assays with purified CP using co-immuoprecipitation. Nuclear localization was demonstrated in a virus-free system using fluorescence microscopy. Results Here we show that CHIKV CP is a nuclear-cytoplasmic shuttling protein with an active NLS that binds to karyopherin α (Karα) for its nuclear translocation. We also found that the Karα4 C-terminal NLS binding site is sufficient for this interaction. We further demonstrate that CHIKV CP interacts directly with the export receptor CRM1 to transport this viral protein out of the nucleus via a nuclear export signal (NES). The CHIKV CP NES was mapped between amino acids 143 and 155 of CP. Deduced from in silico analyses we found that the NES has a mode of binding similar to the snurportin-1 CRM1 complex. Conclusions We were able to show that in a virus-free system that the CHIKV capsid protein contains both, a NLS and a NES, and that it is actively transported between the cytoplasma and the nucleus. We conclude that CHIKV CP has the ability to shuttle via

  4. The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4

    SciTech Connect

    Shen, Peter S.; Enderlein, Dirk; Nelson, Christian D.S.; Carter, Weston S.; Kawano, Masaaki; Xing Li; Swenson, Robert D.; Olson, Norman H.; Baker, Timothy S.; Cheng, R. Holland; Atwood, Walter J.; Johne, Reimar; Belnap, David M.

    2011-03-01

    Avian polyomavirus (APV) causes a fatal, multi-organ disease among several bird species. Using cryogenic electron microscopy and other biochemical techniques, we investigated the structure of APV and compared it to that of mammalian polyomaviruses, particularly JC polyomavirus and simian virus 40. The structure of the pentameric major capsid protein (VP1) is mostly conserved; however, APV VP1 has a unique, truncated C-terminus that eliminates an intercapsomere-connecting {beta}-hairpin observed in other polyomaviruses. We postulate that the terminal {beta}-hairpin locks other polyomavirus capsids in a stable conformation and that absence of the hairpin leads to the observed capsid size variation in APV. Plug-like density features were observed at the base of the VP1 pentamers, consistent with the known location of minor capsid proteins VP2 and VP3. However, the plug density is more prominent in APV and may include VP4, a minor capsid protein unique to bird polyomaviruses.

  5. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  6. Hydroxyproline in the major capsid protein VP1 of polyomavirus

    SciTech Connect

    Ludlow, J.W.; Consigli, R.A.

    1989-06-01

    Amino acid analysis of (/sup 3/H)proline-labeled polyomavirus major capsid protein VP1 by two-dimensional paper chromatography of the acid-hydrolyzed protein revealed the presence of /sup 3/H-labeled hydroxyproline. Addition of the proline analog L-azetidine-2-carboxylic acid to infected mouse kidney cell cultures prevented or greatly reduced hydroxylation of proline in VP1. Immunofluorescence analysis performed on infected cells over a time course of analog addition revealed that virus proteins were synthesized but that transport from the cytoplasm to the nucleus was impeded. A reduction in the assembly of progeny virions demonstrated by CsCl gradient purification of virus from (/sup 35/S)methionine-labeled infected cell cultures was found to correlate with the time of analog addition. These results suggest that incorporation of this proline analog into VP1, accompanied by reduction of the hydroxyproline content of the protein, influences the amount of virus progeny produced by affecting transport of VP1 to the cell nucleus for assembly into virus particles.

  7. The Smallest Capsid Protein Mediates Binding of the Essential Tegument Protein pp150 to Stabilize DNA-Containing Capsids in Human Cytomegalovirus

    PubMed Central

    Dai, Xinghong; Yu, Xuekui; Gong, Hao; Jiang, Xiaohong; Abenes, Gerrado; Liu, Hongrong; Shivakoti, Sakar; Britt, William J.; Zhu, Hua; Liu, Fenyong; Zhou, Z. Hong

    2013-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP), while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM), we determine three-dimensional structures of HCMV capsid (no pp150) and virion (with pp150) at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting “SCP-deficient” viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion. PMID:23966856

  8. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease.

    PubMed

    Xie, Chang; Gong, Xue-Min; Luo, Jie; Li, Bo-Liang; Song, Bao-Liang

    2017-03-01

    Niemann-Pick type C (NPC) disease is a fatal inherited neurodegenerative disorder caused by loss-of-function mutations in the NPC1 or NPC2 gene. There is no effective way to treat NPC disease. In this study, we used adeno-associated virus (AAV) serotype 9 (AAV9) to deliver a functional NPC1 gene systemically into NPC1(-/-) mice at postnatal day 4. One single AAV9-NPC1 injection resulted in robust NPC1 expression in various tissues, including brain, heart, and lung. Strikingly, AAV9-mediated NPC1 delivery significantly promoted Purkinje cell survival, restored locomotor activity and coordination, and increased the lifespan of NPC1(-/-) mice. Our work suggests that AAV-based gene therapy is a promising means to treat NPC disease.

  9. Sequence analysis and structural implications of rotavirus capsid proteins.

    PubMed

    Parbhoo, N; Dewar, J B; Gildenhuys, S

    Rotavirus is the major cause of severe virus-associated gastroenteritis worldwide in children aged 5 and younger. Many children lose their lives annually due to this infection and the impact is particularly pronounced in developing countries. The mature rotavirus is a non-enveloped triple-layered nucleocapsid containing 11 double stranded RNA segments. Here a global view on the sequence and structure of the three main capsid proteins, VP2, VP6 and VP7 is shown by generating a consensus sequence for each of these rotavirus proteins, for each species obtained from published data of representative rotavirus genotypes from across the world and across species. Degree of conservation between species was represented on homology models for each of the proteins. VP7 shows the highest level of variation with 14-45 amino acids showing conservation of less than 60%. These changes are localised to the outer surface alluding to a possible mechanism in evading the immune system. The middle layer, VP6 shows lower variability with only 14-32 sites having lower than 70% conservation. The inner structural layer made up of VP2 showed the lowest variability with only 1-16 sites having less than 70% conservation across species. The results correlate with each protein's multiple structural roles in the infection cycle. Thus, although the nucleotide sequences vary due to the error-prone nature of replication and lack of proof reading, the corresponding amino acid sequence of VP2, 6 and 7 remain relatively conserved. Benefits of this knowledge about the conservation include the ability to target proteins at sites that cannot undergo mutational changes without influencing viral fitness; as well as possibility to study systems that are highly evolved for structure and function in order to determine how to generate and manipulate such systems for use in various biotechnological applications.

  10. Assembly of the small outer capsid protein, Soc, on bacteriophage T4: a novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid.

    PubMed

    Li, Qin; Shivachandra, Sathish B; Zhang, Zhihong; Rao, Venigalla B

    2007-07-27

    Bacteriophage T4 capsid is a prolate icosahedron composed of the major capsid protein gp23*, the vertex protein gp24*, and the portal protein gp20. Assembled on its surface are 810 molecules of the non-essential small outer capsid protein, Soc (10 kDa), and 155 molecules of the highly antigenic outer capsid protein, Hoc (39 kDa). In this study Soc, a "triplex" protein that stabilizes T4 capsid, is targeted for molecular engineering of T4 particle surface. Using a defined in vitro assembly system, anthrax toxins, protective antigen, lethal factor and their domains, fused to Soc were efficiently displayed on the capsid. Both the N and C termini of the 80 amino acid Soc polypeptide can be simultaneously used to display antigens. Proteins as large as 93 kDa can be stably anchored on the capsid through Soc-capsid interactions. Using both Soc and Hoc, up to 1662 anthrax toxin molecules are assembled on the phage T4 capsid under controlled conditions. We infer from the binding data that a relatively high affinity capsid binding site is located in the middle of the rod-shaped Soc, with the N and C termini facing the 2- and 3-fold symmetry axes of the capsid, respectively. Soc subunits interact at these interfaces, gluing the adjacent capsid protein hexamers and generating a cage-like outer scaffold. Antigen fusion does interfere with the inter-subunit interactions, but these interactions are not essential for capsid binding and antigen display. These features make the T4-Soc platform the most robust phage display system reported to date. The study offers insights into the architectural design of bacteriophage T4 virion, one of the most stable viruses known, and how its capsid surface can be engineered for novel applications in basic molecular biology and biotechnology.

  11. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    SciTech Connect

    Kim, Yoon Sik Seo, Hyun Wook Jung, Guhung

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  12. Epitope Insertion at the N-Terminal Molecular Switch of the Rabbit Hemorrhagic Disease Virus T=3 Capsid Protein Leads to Larger T=4 Capsids

    PubMed Central

    Luque, Daniel; González, José M.; Gómez-Blanco, Josué; Marabini, Roberto; Chichón, Javier; Mena, Ignacio; Angulo, Iván; Carrascosa, José L.; Verdaguer, Nuria; Trus, Benes L.; Bárcena, Juan

    2012-01-01

    Viruses need only one or a few structural capsid proteins to build an infectious particle. This is possible through the extensive use of symmetry and the conformational polymorphism of the structural proteins. Using virus-like particles (VLP) from rabbit hemorrhagic disease virus (RHDV) as a model, we addressed the basis of calicivirus capsid assembly and their application in vaccine design. The RHDV capsid is based on a T=3 lattice containing 180 identical subunits (VP1). We determined the structure of RHDV VLP to 8.0-Å resolution by three-dimensional cryoelectron microscopy; in addition, we used San Miguel sea lion virus (SMSV) and feline calicivirus (FCV) capsid subunit structures to establish the backbone structure of VP1 by homology modeling and flexible docking analysis. Based on the three-domain VP1 model, several insertion mutants were designed to validate the VP1 pseudoatomic model, and foreign epitopes were placed at the N- or C-terminal end, as well as in an exposed loop on the capsid surface. We selected a set of T and B cell epitopes of various lengths derived from viral and eukaryotic origins. Structural analysis of these chimeric capsids further validates the VP1 model to design new chimeras. Whereas most insertions are well tolerated, VP1 with an FCV capsid protein-neutralizing epitope at the N terminus assembled into mixtures of T=3 and larger T=4 capsids. The calicivirus capsid protein, and perhaps that of many other viruses, thus can encode polymorphism modulators that are not anticipated from the plane sequence, with important implications for understanding virus assembly and evolution. PMID:22491457

  13. Characterization of post-translation products of herpes simplex virus gene 35 proteins binding to the surfaces of full capsids but not empty capsids

    SciTech Connect

    Braun, D.K.; Roizman, B.; Pereira, L.

    1984-01-01

    The authors report on the properties of a genetically and immunologically related family of structural (..gamma..) polypeptides of herpes simplex virus 1 designated as infected cell polypeptides (ICP) 35. The members of this family were identified and studied with the aid of a panel of monoclonal antibodies exemplified by H745. This monoclonal antibody reacted with six bands (ICP35a to 35f) formed by ICPs contained in either HEp-2 or Vero cell lysates electrophoretically separated in denaturing gels and transferred to nitrocell sheets. The six bands had apparent molecular weights in the range 39,000 to 50,000. Pulse-chase experiments indicate that ICP35a to 35d are cytoplasmic precursors to nuclear products. ICP35 was labeled by /sup 32/P/sub i/ added to the medium, but the extent of phosphorylation varied and may be a determinant of isoelectric properties. Iodination studies indicate that ICP35e and 35f are the predominant forms of ICP35 present on the surface of full, nuclear capsids containing DNA. None of the members of the ICP35 family were detected in empty capsids. Surface iodination labeled the major capsid protein (ICP5) of empty capsids, but not of full capsids, indicating the ICP35e of 35f coat the surface of the viral capsid and block access to sites for iodination of ICP5, the major capsid protein.

  14. Coat as a Dagger: The Use of Capsid Proteins to Perforate Membranes during Non-Enveloped DNA Viruses Trafficking

    PubMed Central

    Bilkova, Eva; Forstova, Jitka; Abrahamyan, Levon

    2014-01-01

    To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection. PMID:25055856

  15. Identification of amino acid sequences in the polyomavirus capsid proteins that serve as nuclear localization signals

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. Jr; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The molecular mechanism participating in the transport of newly synthesized proteins from the cytoplasm to the nucleus in mammalian cells is poorly understood. Recently, the nuclear localization signal sequences (NLS) of many nuclear proteins have been identified, and most have been found to be composed of a highly basic amino acid stretch. A genetic "subtractive" and a biochemical "additive" approach were used in our studies to identify the NLS's of the polyomavirus structural capsid proteins. An NLS was identified at the N-terminus (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) of the major capsid protein VP1 and at the C-terminus (Glu307 -Glu-Asp-Gly-Pro-Glu-Lys-Lys-Lys-Arg-Arg-Leu318) of the VP2/VP3 minor capsid proteins.

  16. Production and characterization of monoclonal antibodies to budgerigar fledgling disease virus major capsid protein VP

    NASA Technical Reports Server (NTRS)

    Fattaey, A.; Lenz, L.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Eleven hybridoma cell lines producing monoclonal antibodies (MAbs) against intact budgerigar fledgling disease (BFD) virions were produced and characterized. These antibodies were selected for their ability to react with BFD virions in an enzyme-linked immunosorbent assay. Each of these antibodies was reactive in the immunofluorescent detection of BFD virus-infected cells. These antibodies immunoprecipitated intact virions and specifically recognized the major capsid protein, VP1, of the dissociated virion. The MAbs were found to preferentially recognize native BFD virus capsid protein when compared with denatured virus protein. These MAbs were capable of detecting BFD virus protein in chicken embryonated cell-culture lysates by dot-blot analysis.

  17. Multiple functions of capsid protein phosphorylation in duck hepatitis B virus replication.

    PubMed Central

    Yu, M; Summers, J

    1994-01-01

    We have investigated the role of phosphorylation of the capsid protein of the avian hepadnavirus duck hepatitis B virus in viral replication. We found previously that three serines and one threonine in the C-terminal 24 amino acids of the capsid protein serve as phosphorylation sites and that the pattern of phosphorylation at these sites in intracellular viral capsids is complex. In this study, we present evidence that the phosphorylation state of three of these residues affects distinct steps in viral replication. By substituting these residues with alanine in order to mimic serine, or with aspartic acid in order to mimic phosphoserine, and assaying the effects of these substitutions on various steps in virus replication, we were able to make the following inferences. (i) The presence of phosphoserines at residues 245 and 259 stimulates DNA synthesis within viral nucleocapsids. (ii) The absence of phosphoserine at residue 257 and at residues 257 and 259 stimulates covalently closed circular DNA synthesis and virus production, respectively. (iii) The presence of phosphoserine at position 259 is required for initiation of infection. The results implied that both phosphorylated and nonphosphorylated capsid proteins were necessary for a nucleocapsid particle to carry out all its functions in virus replication, explaining why differential phosphorylation of the capsid protein occurs in hepadnaviruses. Whether these differentially phosphorylated proteins coexist on the same nucleocapsid, or whether the nucleocapsid acquires sequential functions through selective phosphorylation and dephosphorylation, is discussed. Images PMID:8207809

  18. The Impact of Capsid Proteins on Virus Removal and Inactivation During Water Treatment Processes

    PubMed Central

    Mayer, Brooke K; Yang, Yu; Gerrity, Daniel W; Abbaszadegan, Morteza

    2015-01-01

    This study examined the effect of the amino acid composition of protein capsids on virus inactivation using ultraviolet (UV) irradiation and titanium dioxide photocatalysis, and physical removal via enhanced coagulation using ferric chloride. Although genomic damage is likely more extensive than protein damage for viruses treated using UV, proteins are still substantially degraded. All amino acids demonstrated significant correlations with UV susceptibility. The hydroxyl radicals produced during photocatalysis are considered nonspecific, but they likely cause greater overall damage to virus capsid proteins relative to the genome. Oxidizing chemicals, including hydroxyl radicals, preferentially degrade amino acids over nucleotides, and the amino acid tyrosine appears to strongly influence virus inactivation. Capsid composition did not correlate strongly to virus removal during physicochemical treatment, nor did virus size. Isoelectric point may play a role in virus removal, but additional factors are likely to contribute. PMID:26604779

  19. The first identified nucleocytoplasmic shuttling herpesviral capsid protein: herpes simplex virus type 1 VP19C.

    PubMed

    Zhao, Lei; Zheng, Chunfu

    2012-01-01

    VP19C is a structural protein of herpes simplex virus type 1 viral particle, which is essential for assembly of the capsid. In this study, a nuclear export signal (NES) of VP19C is for the first time identified and mapped to amino acid residues 342 to 351. Furthermore, VP19C is demonstrated to shuttle between the nucleus and the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis. This makes VP19C the first herpesviral capsid protein with nucleocytoplasmic shuttling property and adds it to the list of HSV-1 nucleocytoplasmic shuttling proteins.

  20. The HSV-1 tegument protein pUL46 associates with cellular membranes and viral capsids

    SciTech Connect

    Murphy, Michael A.; Bucks, Michelle A.; O'Regan, Kevin J.; Courtney, Richard J.

    2008-07-05

    The molecular mechanisms responsible for the addition of tegument proteins into nascent herpesvirus particles are poorly understood. To better understand the tegumentation process of herpes simplex virus type 1 (HSV-1) virions, we initiated studies that showed the tegument protein pUL46 (VP11/12) has a similar cellular localization to the membrane-associated tegument protein VP22. Using membrane flotation analysis we found that pUL46 associates with membranes in both the presence and absence of other HSV-1 proteins. However, when purified virions were stripped of their envelope, the majority of pUL46 was found to associate with the capsid fraction. This strong affinity of pUL46 for capsids was confirmed by an in vitro capsid pull-down assay in which purified pUL46-GST was able to interact specifically with capsids purified from the nuclear fraction of HSV-1 infected cells. These results suggest that pUL46 displays a dynamic interaction between cellular membranes and capsids.

  1. In Silico Studies of Medicinal Compounds Against Hepatitis C Capsid Protein from North India

    PubMed Central

    Mathew, Shilu; Faheem, Muhammad; Archunan, Govindaraju; Ilyas, Muhammad; Begum, Nargis; Jahangir, Syed; Qadri, Ishtiaq; Qahtani, Mohammad Al; Mathew, Shiny

    2014-01-01

    Hepatitis viral infection is a leading cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Over one million people are estimated to be persistently infected with hepatitis C virus (HCV) worldwide. As capsid core protein is the key element in spreading HCV; hence, it is considered to be the superlative target of antiviral compounds. Novel drug inhibitors of HCV are in need to complement or replace the current treatments such as pegylated interferon’s and ribavirin as they are partially booming and beset with various side effects. Our study was conducted to predict 3D structure of capsid core protein of HCV from northern part of India. Core, the capsid protein of HCV, handles the assembly and packaging of HCV RNA genome and is the least variable of all the ten HCV proteins among the six HCV genotypes. Therefore, we screened four phytochemicals inhibitors that are known to disrupt the interactions of core and other HCV proteins such as (a) epigallocatechin gallate (EGCG), (b) ladanein, (c) naringenin, and (d) silybin extracted from medicinal plants; targeted against active site of residues of HCV-genotype 3 (G3) (Q68867) and its subtypes 3b (Q68861) and 3g (Q68865) from north India. To study the inhibitory activity of the recruited flavonoids, we conducted a quantitative structure–activity relationship (QSAR). Furthermore, docking interaction suggests that EGCG showed a maximum number of hydrogen bond (H-bond) interactions with all the three modeled capsid proteins with high interaction energy followed by naringenin and silybin. Thus, our results strongly correlate the inhibitory activity of the selected bioflavonoid. Finally, the dynamic predicted capsid protein molecule of HCV virion provides a general avenue to target structure-based antiviral compounds that support the hypothesis that the screened inhibitors for viral capsid might constitute new class of potent agents but further confirmation is necessary using in vitro and in vivo

  2. Localization of the N-terminus of minor coat protein IIIa in the adenovirus capsid

    PubMed Central

    San Martín, Carmen; Glasgow, Joel N.; Borovjagin, Anton; Beatty, Matthew S.; Kashentseva, Elena A.; T. Curiel, David; Marabini, Roberto; Dmitriev, Igor P.

    2008-01-01

    Summary Minor coat protein IIIa is conserved in all adenoviruses and required for correct viral assembly, but its precise function in capsid organization is unknown. The latest adenovirus capsid model proposes that IIIa is located underneath the vertex region. To obtain experimental evidence on the location of IIIa and further define its role, we engineered the IIIa gene to encode heterologous N-terminal peptide extensions. Recombinant adenovirus variants with IIIa encoding six-histidine tag (6-His), 6-His and FLAG peptides, or 6-His linked to FLAG with a (Gly4Ser)3 linker were rescued and analyzed for virus yield, capsid incorporation of heterologous peptides, and capsid stability. Longer extensions could not be rescued. Western blot analysis confirmed that the modified IIIa proteins were expressed in infected cells and incorporated into virions. In the adenovirus encoding the 6-His-linker-FLAG-IIIa gene, the 6-His tag was present in light particles but not in mature virions. Immuno-electron microscopy of this virus showed that the FLAG epitope is not accessible to antibodies on the viral particles. Three-dimensional electron microscopy (3DEM) and difference mapping located the IIIa N-terminal extension beneath the vertex complex, wedged at the interface between penton base and the peripentonal hexons, therefore supporting the latest proposed model. The position of the IIIa N-terminus and its low tolerance for modification provide new clues for understanding the role of this minor coat protein in adenovirus capsid assembly and disassembly. PMID:18786542

  3. Interactions between Sindbis virus RNAs and a 68 amino acid derivative of the viral capsid protein further defines the capsid binding site.

    PubMed Central

    Weiss, B; Geigenmüller-Gnirke, U; Schlesinger, S

    1994-01-01

    In previous studies of encapsidation of Sindbis virus RNA, we identified a 570nt fragment (nt 684-1253) from the 12 kb genome that binds to the viral capsid protein with specificity and is required for packaging of Sindbis virus defective interfering RNAs. We now show that the capsid binding activity resides in a highly structured 132nt fragment (nt 945-1076). We had also demonstrated that a 68 amino acid peptide derived from the capsid protein retained most of the binding activity of the original protein and have now developed an RNA mobility shift assay with this peptide fused to glutathione-S-transferase. We have used this assay in conjunction with the original assay in which the intact capsid protein was immobilized on nitrocellulose to analyze more extensive deletions in the 132-mer. All of the deletions led to a reduction in binding, but the binding of a 5' 67-mer was enhanced by the addition of nonspecific flanking sequences. This result suggests that the stability of a particular structure within the 132nt sequence may be important for capsid recognition. Images PMID:8139918

  4. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    SciTech Connect

    Walia, Rupali; Dardari, Rkia Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  5. Poliovirus-associated protein kinase: Destabilization of the virus capsid and stimulation of the phosphorylation reaction by Zn sup 2+

    SciTech Connect

    Ratka, M.; Lackmann, M.; Ueckermann, C.; Karlins, U.; Koch, G. )

    1989-09-01

    The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg{sup 2+}. In this paper, the effect of Zn{sup 2+} on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg{sup 2+}. In the presence of Zn{sup 2+}, phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. The results indicate the activation of more than one virus-associated protein kinase by Zn{sup 2+}. The ion-dependent behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn{sup 2+}. This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. The authors suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus.

  6. Topography of the Human Papillomavirus Minor Capsid Protein L2 during Vesicular Trafficking of Infectious Entry

    PubMed Central

    DiGiuseppe, Stephen; Keiffer, Timothy R.; Bienkowska-Haba, Malgorzata; Luszczek, Wioleta; Guion, Lucile G. M.; Müller, Martin

    2015-01-01

    ABSTRACT The human papillomavirus (HPV) capsid is composed of the major capsid protein L1 and the minor capsid protein L2. During entry, the HPV capsid undergoes numerous conformational changes that result in endosomal uptake and subsequent trafficking of the L2 protein in complex with the viral DNA to the trans-Golgi network. To facilitate this transport, the L2 protein harbors a number of putative motifs that, if capable of direct interaction, would interact with cytosolic host cell factors. These data imply that a portion of L2 becomes cytosolic during infection. Using a low concentration of digitonin to selectively permeabilize the plasma membrane of infected cells, we mapped the topography of the L2 protein during infection. We observed that epitopes within amino acid residues 64 to 81 and 163 to 170 and a C-terminal tag of HPV16 L2 are exposed on the cytosolic side of intracellular membranes, whereas an epitope within residues 20 to 38, which are upstream of a putative transmembrane region, is luminal. Corroborating these findings, we also found that L2 protein is sensitive to trypsin digestion during infection. These data demonstrate that the majority of the L2 protein becomes accessible on the cytosolic side of intracellular membranes in order to interact with cytosolic factors to facilitate vesicular trafficking. IMPORTANCE In order to complete infectious entry, nonenveloped viruses have to pass cellular membranes. This is often achieved through the viral capsid protein associating with or integrating into intracellular membrane. Here, we determine the topography of HPV L2 protein in the endocytic vesicular compartment, suggesting that L2 becomes a transmembrane protein with a short luminal portion and with the majority facing the cytosolic side for interaction with host cell transport factors. PMID:26246568

  7. Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging

    PubMed Central

    Wu, Weimin; Newcomb, William W.; Cheng, Naiqian; Aksyuk, Anastasia; Winkler, Dennis C.

    2016-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) capsid is a huge assembly, ∼1,250 Å in diameter, and is composed of thousands of protein subunits with a combined mass of ∼200 MDa, housing a 100-MDa genome. First, a procapsid is formed through coassembly of the surface shell with an inner scaffolding shell; then the procapsid matures via a major structural transformation, triggered by limited proteolysis of the scaffolding proteins. Three mature capsids are found in the nuclei of infected cells. A capsids are empty, B capsids retain a shrunken scaffolding shell, and C capsids—which develop into infectious virions—are filled with DNA and ostensibly have expelled the scaffolding shell. The possible presence of other internal proteins in C capsids has been moot as, in cryo-electron microscopy (cryo-EM), they would be camouflaged by the surrounding DNA. We have used bubblegram imaging to map internal proteins in all four capsids, aided by the discovery that the scaffolding protein is exceptionally prone to radiation-induced bubbling. We confirmed that this protein forms thick-walled inner shells in the procapsid and the B capsid. C capsids generate two classes of bubbles: one occupies positions beneath the vertices of the icosahedral surface shell, and the other is distributed throughout its interior. A likely candidate is the viral protease. A subpopulation of C capsids bubbles particularly profusely and may represent particles in which expulsion of scaffold and DNA packaging are incomplete. Based on the procapsid structure, we propose that the axial channels of hexameric capsomers afford the pathway via which the scaffolding protein is expelled. IMPORTANCE In addition to DNA, capsids of tailed bacteriophages and their distant relatives, herpesviruses, contain internal proteins. These proteins are often essential for infectivity but are difficult to locate within the virion. A novel adaptation of cryo-EM based on detecting gas bubbles generated by radiation

  8. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats.

    PubMed

    Bucher, T; Dubreil, L; Colle, M-A; Maquigneau, M; Deniaud, J; Ledevin, M; Moullier, P; Joussemet, B

    2014-05-01

    Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders.

  9. Osmolyte-Mediated Encapsulation of Proteins inside MS2 Viral Capsids

    PubMed Central

    Glasgow, Jeff E.; Capehart, Stacy L.; Francis, Matthew B.; Tullman-Ercek, Danielle

    2012-01-01

    The encapsulation of enzymes in nanometer-sized compartments has the potential to enhance and control enzymatic activity, both in vivo and in vitro. Despite this potential, there are little quantitative data on the effect of encapsulation in a well-defined compartment under varying conditions. To gain more insight into these effects, we have characterized two improved methods for the encapsulation of heterologous molecules inside bacteriophage MS2 viral capsids. First, attaching DNA oligomers to a molecule of interest and incubating it with MS2 coat protein dimers yielded reassembled capsids that packaged the tagged molecules. The addition of a protein stabilizing osmolyte, trimethylamine-N-oxide (TMAO), significantly increased the yields of reassembly. Second, we found that expressed proteins with genetically encoded negatively charged peptide tags could also induce capsid reassembly, resulting in high yields of reassembled capsids containing the protein. This second method was used to encapsulate alkaline phosphatase tagged with a 16 amino acid peptide. The purified encapsulated enzyme was found to have the same Km value and a slightly lower kcat value than the free enzyme, indicating that this method of encapsulation had a minimal effect on enzyme kinetics. This method provides a practical and potentially scalable way of studying the complex effects of encapsulating enzymes in protein-based compartments. PMID:22953696

  10. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    PubMed

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design.IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  11. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design

    PubMed Central

    Liu, Xiang; Zaid, Ali; Goh, Lucas Y. H.; Hobson-Peters, Jody; Hall, Roy A.; Merits, Andres

    2017-01-01

    ABSTRACT Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. PMID:28223458

  12. Inhibition of HIV-1 Maturation via Small Molecule Targeting of the Amino-Terminal Domain in the Viral Capsid Protein.

    PubMed

    Wang, Weifeng; Zhou, Jing; Halambage, Upul D; Jurado, Kellie A; Jamin, Augusta V; Wang, Yujie; Engelman, Alan N; Aiken, Christopher

    2017-02-15

    The HIV-1 capsid protein is an attractive therapeutic target owing to its multifunctionality in virus replication and the high fitness cost of amino acid substitutions in capsid to HIV-1 infectivity. To date, small molecule inhibitors have been identified that inhibit HIV-1 capsid assembly and/or impair its function in target cells. Here we describe the mechanism of action of the previously reported capsid-targeting HIV-1 inhibitor, BI compound 1 (C1). We show that C1 acts during HIV-1 maturation to prevent assembly of a mature viral capsid. However, unlike the maturation inhibitor Bevirimat, C1 did not significantly affect the kinetics or fidelity of Gag processing. HIV-1 particles produced in the presence of C1 contained unstable capsids that lacked associated electron density and exhibited impairments in early postentry stages of infection, most notably reverse transcription. C1 inhibited assembly of recombinant HIV-1 CA in vitro and induced aberrant crosslinks in mutant HIV-1 particles capable of spontaneous intersubunit disulfide bonds at the interhexamer interface in the capsid lattice. Resistance to C1 was conferred by a single amino acid substitution within the compound-binding site in the N-terminal domain of the CA protein. Our results demonstrate that the binding site for C1 represents a new pharmacological vulnerability in the capsid assembly stage of the HIV-1 life cycle.IMPORTANCE The HIV-1 capsid protein is an attractive but unexploited target for clinical drug development. Prior studies have identified HIV-1 capsid-targeting compounds that display different mechanisms of action, which in part reflects the requirement for capsid function at both the efferent and afferent phases of viral replication. Here we show that one such compound, Compound 1, interferes with assembly of the conical viral capsid during virion maturation, and results in perturbations at a specific protein-protein interface in the capsid lattice. We also identify and characterize a

  13. Treating Progressive Multifocal Leukoencephalopathy With Interleukin 7 and Vaccination With JC Virus Capsid Protein VP1

    PubMed Central

    Sospedra, Mireia; Schippling, Sven; Yousef, Sara; Jelcic, Ilijas; Bofill-Mas, Silvia; Planas, Raquel; Stellmann, Jan-Patrick; Demina, Viktoria; Cinque, Paola; Garcea, Robert; Croughs, Therese; Girones, Rosina; Martin, Roland

    2014-01-01

    Progressive multifocal leukoencephalopathy is a currently untreatable infection of the brain. Here, we demonstrate in 2 patients that treatment with interleukin 7, JC polyomavirus (JCV) capsid protein VP1, and a Toll-like receptor 7 agonist used as adjuvant, was well tolerated, and showed a very favorable safety profile and unexpected efficacy that warrant further investigation. PMID:25214510

  14. A recombinant capsid protein from Dengue-2 induces protection in mice against homologous virus.

    PubMed

    Lazo, Laura; Hermida, Lisset; Zulueta, Aída; Sánchez, Jorge; López, Carlos; Silva, Ricardo; Guillén, Gerardo; Guzmán, María G

    2007-01-22

    In the present work, we study the immunogenicity and protective capacity of a recombinant capsid protein from Dengue-2 virus. The capsid gene was cloned under the T5 phage promoter and expressed in Escherichia coli. The recombinant protein was obtained mainly associated to the soluble fraction upon cellular disruption and exhibited a pattern of high aggregation, determined by gel filtration chromatography. The semipurified preparation was inoculated in mice and after three doses, no antiviral antibodies were induced. On the other hand, mice intracranially challenged with homologous lethal virus, exhibited statistically significant protection with respect to the control group. These results describe, for the first time, the protective capacity of the capsid protein of Dengue virus indicating the existence of a protector mechanism, which is totally independent of the antibodies. This lack of induction of antiviral antibodies makes the capsid protein an attractive vaccine candidate against dengue since eliminates the potential risk of the induction of antibody dependent enhancement associated to the current vaccines under study.

  15. Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify re...

  16. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    PubMed

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle.

  17. Disassociation of the SV40 Genome from Capsid Proteins Prior to Nuclear Entry

    PubMed Central

    2012-01-01

    Background Previously, we demonstrated that input SV40 particles undergo a partial disassembly in the endoplasmic reticulum, which exposes internal capsid proteins VP2 and VP3 to immunostaining. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection, as well as to detection by an ethynyl-2-deoxyuridine (EdU)-based chemical reaction. The cytoplasmic partially disassembled SV40 particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Findings In the current study, we asked where in the cell the SV40 genome might disassociate from capsid components. We observed partially disassembled input SV40 particles around the nucleus and, beginning at 12 hours post-infection, 5-Bromo-2-deoxyuridine (BrdU)-labeled parental SV40 DNA in the nucleus, as detected using anti-BrdU antibodies. However, among the more than 1500 cells examined, we never detected input VP2/VP3 in the nucleus. Upon translocation of the BrdU-labeled SV40 genomes into nuclei, they were transcribed and, thus, are representative of productive infection. Conclusions Our findings imply that the SV40 genome disassociates from the capsid proteins before or at the point of entry into the nucleus, and then enters the nucleus devoid of VP2/3. PMID:22882793

  18. The HIV-1 capsid protein as a drug target: recent advances and future prospects.

    PubMed

    Domenech, Rosa; Neira, José L

    2013-12-01

    HIV-1, the agent responsible for AIDS, belongs to the retrovirus family. Assembly of the immature HIV-1 capsid occurs through the controlled polymerization of the Gag polyprotein, which is transported to the plasma membrane of infected cells, where morphogenesis of the immature, non-infectious virion occurs. Moreover, the mature capsid of HIV-1 is formed by the assembly of copies of the capsid protein (CA), which results, among other proteins, from cleavage of Gag. The C-terminal domain of CA (CTD) can homodimerize, and most of the dimerization interface is formed by a single α-helix from each monomer. Assembly of the HIV-1 capsid critically depends on CA-CA interactions, including CTD interaction with itself and with the N-terminal domain of CA (NTD). This review will report on recent advances for the search of small organic compounds and peptides that have been designed in the last four years to hamper CA assembly. Most of the molecules have been proved to interact with CA; such molecules aim to disrupt and/or alter the oligomerization capability of CTD and/or NTD.

  19. DNA condensates organized by the capsid protein VP15 in White Spot Syndrome Virus.

    PubMed

    Liu, Yingjie; Wu, Jinlu; Chen, Hu; Hew, Choy Leong; Yan, Jie

    2010-12-20

    The White Spot Syndrome Virus (WSSV) has a large circular double-stranded DNA genome of around 300kb and it replicates in the nucleus of the host cells. The machinery of how the viral DNA is packaged has been remained unclear. VP15, a highly basic protein, is one of the major capsid proteins found in the virus. Previously, it was shown to be a DNA binding protein and was hypothesized to participate in the viral DNA packaging process. Using Atomic Force Microscopy imaging, we show that the viral DNA is associated with a (or more) capsid proteins. The organized viral DNA qualitatively resembles the conformations of VP15 induced DNA condensates in vitro. Furthermore, single-DNA manipulation experiments revealed that VP15 is able to condense single DNA against forces of a few pico Newtons. Our results suggest that VP15 may aid in the viral DNA packaging process by directly condensing DNA.

  20. The flavivirus capsid protein: Structure, function and perspectives towards drug design.

    PubMed

    Oliveira, Edson R A; Mohana-Borges, Ronaldo; de Alencastro, Ricardo B; Horta, Bruno A C

    2017-01-02

    Flaviviruses, such as dengue and zika viruses, are etiologic agents transmitted to humans mainly by arthropods and are of great epidemiological interest. The flavivirus capsid protein is a structural element required for the viral nucleocapsid assembly that presents the classical function of sheltering the viral genome. After decades of research, many reports have shown its different functionalities and influence over cell normal functioning. The subcellular distribution of this protein, which involves accumulation around lipid droplets and nuclear localization, also corroborates with its multi-functional characteristic. As flavivirus diseases are still in need of global control and in view of the possible key functionalities that the capsid protein promotes over flavivirus biology, novel considerations arise towards anti-flavivirus drug research. This review covers the main aspects concerning structural and functional features of the flavivirus C protein, ultimately, highlighting prospects in drug discovery based on this viral target.

  1. Intravenous Administration of Self-complementary AAV9 Enables Transgene Delivery to Adult Motor Neurons

    PubMed Central

    Duque, Sandra; Joussemet, Béatrice; Riviere, Christel; Marais, Thibaut; Dubreil, Laurence; Douar, Anne-Marie; Fyfe, John; Moullier, Philippe; Colle, Marie-Anne; Barkats, Martine

    2009-01-01

    Therapeutic gene delivery to the whole spinal cord is a major challenge for the treatment of motor neuron (MN) diseases. Systemic administration of viral gene vectors would provide an optimal means for the long-term delivery of therapeutic molecules from blood to the spinal cord but this approach is hindered by the presence of the blood–brain barrier (BBB). Here, we describe the first successful study of MN transduction in adult animals following intravenous (i.v.) delivery of self-complementary (sc) AAV9 vectors (up to 28% in mice). Intravenous MN transduction was achieved in adults without pharmacological disruption of the BBB and transgene expression lasted at least 5 months. Importantly, this finding was successfully translated to large animals, with the demonstration of an efficient systemic scAAV9 gene delivery to the neonate and adult cat spinal cord. This new and noninvasive procedure raises the hope of whole spinal cord correction of MN diseases and may lead to the development of new gene therapy protocols in patients. PMID:19367261

  2. Expression and subcellular targeting of canine parvovirus capsid proteins in baculovirus-transduced NLFK cells.

    PubMed

    Gilbert, Leona; Välilehto, Outi; Kirjavainen, Sanna; Tikka, Päivi J; Mellett, Mark; Käpylä, Pirjo; Oker-Blom, Christian; Vuento, Matti

    2005-01-17

    A mammalian baculovirus delivery system was developed to study targeting in Norden Laboratories feline kidney (NLFK) cells of the capsid proteins of canine parvovirus (CPV), VP1 and VP2, or corresponding counterparts fused to EGFP. VP1 and VP2, when expressed alone, both had equal nuclear and cytoplasmic distribution. However, assembled form of VP2 had a predominantly cytoplasmic localization. When VP1 and VP2 were simultaneously present in cells, their nuclear localization increased. Thus, confocal immunofluorescence analysis of cells transduced with the different baculovirus constructs or combinations thereof in the absence or presence of infecting CPV revealed that the VP1 protein is a prerequisite for efficient targeting of VP2 to the nucleus. The baculovirus vectors were functional and the genes of interest efficiently introduced to this CPV susceptible mammalian cell line. Thus, we show evidence that the system could be utilized to study targeting of the CPV capsid proteins.

  3. Assembly-associated structural changes of bacteriophage T7 capsids. Detection by use of a protein-specific probe.

    PubMed Central

    Khan, S A; Griess, G A; Serwer, P

    1992-01-01

    To detect changes in capsid structure that occur when a preassembled bacteriophage T7 capsid both packages and cleaves to mature-size longer (concatameric) DNA, the kinetics and thermodynamics are determined here for the binding of the protein-specific probe, 1,1'-bi(4-anilino)naphthalene-5,5'-di-sulfonic acid (bis-ANS), to bacteriophage T7, a T7 DNA deletion (8.4%) mutant, and a DNA-free T7 capsid (metrizamide low density capsid II) known to be a DNA packaging intermediate that has a permeability barrier not present in a related capsid (metrizamide high density capsid II). Initially, some binding to either bacteriophage or metrizamide low density capsid II occurs too rapidly to quantify (phase 1, duration < 10 s). Subsequent binding (phase 2) occurs with first-order kinetics. Only the phase 1 binding occurs for metrizamide high density capsid II. These observations, together with both the kinetics of the quenching by ethidium of bound bis-ANS fluorescence and the nature of bis-ANS-induced protein alterations, are explained by the hypothesis that the phase 2 binding occurs at internal sites. The number of these internal sites increases as the density of the packaged DNA decreases. The accompanying change in structure is potentially the signal for initiating cleavage of a concatemer. Evidence for the following was also obtained: (a) a previously undetected packaging-associated change in the conformation of the major protein of the outer capsid shell and (b) partitioning by a permeability barrier of the interior of the T7 capsid. Images FIGURE 5 PMID:1477280

  4. The Feline Calicivirus Leader of the Capsid Protein Is Associated with Cytopathic Effect

    PubMed Central

    Abente, Eugenio J.; Sosnovtsev, Stanislav V.; Sandoval-Jaime, Carlos; Parra, Gabriel I.; Bok, Karin

    2013-01-01

    Open reading frame 2 (ORF2) of the feline calicivirus (FCV) genome encodes a capsid precursor that is posttranslationally processed to release the mature capsid protein (VP1) and a small protein of 124 amino acids, designated the leader of the capsid (LC). To investigate the role of the LC protein in the virus life cycle, mutations and deletions were introduced into the LC coding region of an infectious FCV cDNA clone. Three cysteine residues that are conserved among all vesivirus LC sequences were found to be critical for the recovery of FCV with a characteristic cytopathic effect in feline kidney cells. A cell-rounding phenotype associated with the transient expression of wild-type and mutagenized forms of the LC correlated with the cytopathic and growth properties of the corresponding engineered viruses. The host cellular protein annexin A2 was identified as a binding partner of the LC protein, consistent with a role for the LC in mediating host cell interactions that alter the integrity of the cell and enable virus spread. PMID:23269802

  5. Role of protein interactions in defining HIV-1 viral capsid shape and stability: a coarse-grained analysis.

    PubMed

    Krishna, Vinod; Ayton, Gary S; Voth, Gregory A

    2010-01-06

    Coarse-grained models of the HIV-1 CA dimer are constructed based on all-atom molecular dynamics simulations. Coarse-grained representations of the capsid shell, which is composed of approximately 1500 copies of CA proteins, are constructed and their stability is examined. A key interaction between carboxyl and hexameric amino terminal domains is shown to generate the curvature of the capsid shell. It is demonstrated that variation of the strength of this interaction for different subunits in the lattice can cause formation of asymmetric, conical-shaped closed capsid shells, and it is proposed that variations, in the structure of the additional carboxyl-amino terminal binding interface during self-assembly, are important aspects of capsid cone formation. These results are in agreement with recent structural studies of the capsid hexamer subunit, which suggest that variability in the binding interface is a cause of the differences in subunit environments that exist in a conical structure.

  6. Role of Protein Interactions in Defining HIV-1 Viral Capsid Shape and Stability: A Coarse-Grained Analysis

    PubMed Central

    Krishna, Vinod; Ayton, Gary S.; Voth, Gregory A.

    2010-01-01

    Abstract Coarse-grained models of the HIV-1 CA dimer are constructed based on all-atom molecular dynamics simulations. Coarse-grained representations of the capsid shell, which is composed of ∼1500 copies of CA proteins, are constructed and their stability is examined. A key interaction between carboxyl and hexameric amino terminal domains is shown to generate the curvature of the capsid shell. It is demonstrated that variation of the strength of this interaction for different subunits in the lattice can cause formation of asymmetric, conical-shaped closed capsid shells, and it is proposed that variations, in the structure of the additional carboxyl-amino terminal binding interface during self-assembly, are important aspects of capsid cone formation. These results are in agreement with recent structural studies of the capsid hexamer subunit, which suggest that variability in the binding interface is a cause of the differences in subunit environments that exist in a conical structure. PMID:20085716

  7. Decreasing disease severity in symptomatic, Smn(-/-);SMN2(+/+), spinal muscular atrophy mice following scAAV9-SMN delivery.

    PubMed

    Glascock, Jacqueline J; Osman, Erkan Y; Wetz, Mary J; Krogman, Megan M; Shababi, Monir; Lorson, Christian L

    2012-03-01

    Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disorder, is the leading genetic cause of infant mortality. SMA is caused by the homozygous loss of Survival Motor Neuron-1 (SMN1). In humans, a nearly identical copy gene is present, SMN2. SMN2 is retained in all SMA patients and encodes the same protein as SMN1. However, SMN1 and SMN2 differ by a silent C-to-T transition at the 5' end of exon 7, causing alternative splicing of SMN2 transcripts and low levels of full-length SMN. SMA is monogenic and therefore well suited for gene-replacement strategies. Recently, self-complementary adeno-associated virus (scAAV) vectors have been used to deliver the SMN cDNA to an animal model of disease, the SMNΔ7 mouse. In this study, we examine a severe model of SMA, Smn(-/-);SMN2(+/+), to determine whether gene replacement is viable in a model in which disease development begins in utero. Using two delivery paradigms, intracerebroventricular injections and intravenous injections, we delivered scAAV9-SMN and demonstrated a two to four fold increase in survival, in addition to improving many of the phenotypic parameters of the model. This represents the longest extension in survival for this severe model for any therapeutic intervention and suggests that postsymptomatic treatment of SMA may lead to significant improvement of disease severity.

  8. Rescue of a Mouse Model of Spinal Muscular Atrophy With Respiratory Distress Type 1 by AAV9-IGHMBP2 Is Dose Dependent.

    PubMed

    Shababi, Monir; Feng, Zhihua; Villalon, Eric; Sibigtroth, Christine M; Osman, Erkan Y; Miller, Madeline R; Williams-Simon, Patricka A; Lombardi, Abby; Sass, Thalia H; Atkinson, Arleigh K; Garcia, Michael L; Ko, Chien-Ping; Lorson, Christian L

    2016-05-01

    Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disease occurring during childhood. The gene responsible for disease development is a ubiquitously expressed protein, IGHMBP2. Mutations in IGHMBP2 result in the loss of α-motor neurons leading to muscle atrophy in the distal limbs accompanied by respiratory complications. Although genetically and clinically distinct, proximal SMA is also caused by the loss of a ubiquitously expressed gene (SMN). Significant preclinical success has been achieved in proximal SMA using viral-based gene replacement strategies. We leveraged the technologies employed in SMA to demonstrate gene replacement efficacy in an SMARD1 animal model. Intracerebroventricular (ICV) injection of single-stranded AAV9 expressing the full-length cDNA of IGHMBP2 in a low dose led to a significant level of rescue in treated SMARD1 animals. Consistent with drastically increased survival, weight gain, and strength, the rescued animals demonstrated a significant improvement in muscle, NMJ, motor neurons, and axonal pathology. In addition, increased levels of IGHMBP2 in lumbar motor neurons verified the efficacy of the virus to transduce the target tissues. Our results indicate that AAV9-based gene replacement is a viable strategy for SMARD1, although dosing effects and potential negative impacts of high dose and ICV injection should be thoroughly investigated.

  9. Antiviral agents targeted to interact with viral capsid proteins and a possible application to human immunodeficiency virus.

    PubMed Central

    Rossmann, M G

    1988-01-01

    The tertiary structure of most icosahedral viral capsid proteins consists of an eight-stranded antiparallel beta-barrel with a hydrophobic interior. In a group of picornaviruses, this hydrophobic pocket can be filled by suitable organic molecules, which thereby stop viral uncoating after attachment and penetration into the host cell. The antiviral activity of these agents is probably due to increased rigidity of the capsid protein, which inhibits disassembly. The hydrophobic pocket may be an essential functional component of the protein and, therefore, may have been conserved in the evolution of many viruses from a common precursor. Since eight-stranded anti-parallel beta-barrels, with a topology as in viral capsid proteins, are not generally found for other proteins involved in cell metabolism, this class of antiviral agents is likely to be more virus-specific and less cytotoxic. Furthermore, the greatest conservation of viral capsid proteins occurs within this pocket, whereas the least conserved part is the antigenic exterior. Thus, compounds that bind to such a pocket are likely to be effective against a broader group of serologically distinct viruses. Discovery of antiviral agents of this type will, therefore, depend on designing compounds that can enter and fit snugly into the hydrophobic pocket of a particular viral capsid protein. The major capsid protein, p24, of human immunodeficiency virus would be a likely suitable target. PMID:3133655

  10. Characterization of a nuclear localization signal of canine parvovirus capsid proteins.

    PubMed

    Vihinen-Ranta, M; Kakkola, L; Kalela, A; Vilja, P; Vuento, M

    1997-12-01

    We investigated the abilities of synthetic peptides mimicking the potential nuclear localization signal of canine parvovirus (CPV) capsid proteins to translocate a carrier protein to the nucleus following microinjection into the cytoplasm of A72 cells. Possible nuclear localization sequences were chosen for synthesis from CPV capsid protein sequences (VP1, VP2) on the basis of the presence of clustered basic residues, which is a common theme in most of the previously identified targeting peptides. Nuclear targeting activity was found within the N-terminal residues 4-13 (PAKRARRGYK) of the VP1 capsid protein. While replacement of Arg10 with glycine did not affect the activity, replacement of Lys6, Arg7, or Arg9 with glycine abolished it. The targeting activity was found to residue in a cluster of basic residues, Lys5, Arg7, and Arg9. Nuclear import was saturated by excess of unlabelled peptide conjugates (showing that it was a receptor-mediated process). Transport into the nucleus was an energy-dependent and temperature-dependent process actively mediated by the nuclear pores and inhibited by wheat germ agglutinin.

  11. Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification

    PubMed Central

    Nasir, Arshan; Caetano-Anollés, Gustavo

    2017-01-01

    The viral supergroup includes the entire collection of known and unknown viruses that roam our planet and infect life forms. The supergroup is remarkably diverse both in its genetics and morphology and has historically remained difficult to study and classify. The accumulation of protein structure data in the past few years now provides an excellent opportunity to re-examine the classification and evolution of viruses. Here we scan completely sequenced viral proteomes from all genome types and identify protein folds involved in the formation of viral capsids and virion architectures. Viruses encoding similar capsid/coat related folds were pooled into lineages, after benchmarking against published literature. Remarkably, the in silico exercise reproduced all previously described members of known structure-based viral lineages, along with several proposals for new additions, suggesting it could be a useful supplement to experimental approaches and to aid qualitative assessment of viral diversity in metagenome samples. PMID:28344575

  12. Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis

    SciTech Connect

    Sathish, Narayanan; Yuan Yan

    2010-11-25

    A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-{Delta}65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.

  13. Retrovirus Restriction by TRIM5 Proteins Requires Recognition of Only a Small Fraction of Viral Capsid Subunits

    PubMed Central

    Shi, Jiong; Friedman, David B.

    2013-01-01

    The host restriction factors TRIM5α and TRIMCyp potently inhibit retrovirus infection by binding to the incoming retrovirus capsid. TRIM5 proteins are dimeric, and their association with the viral capsid appears to be enhanced by avidity effects owing to formation of higher-order oligomeric complexes. We examined the stoichiometric requirement for TRIM5 functional recognition by quantifying the efficiencies of restriction of HIV-1 and murine leukemia virus (MLV) particles containing various proportions of restriction-sensitive and -insensitive CA subunits. Both TRIMCyp and TRIM5α inhibited infection of retrovirus particles containing as little as 25% of the restriction-sensitive CA protein. Accordingly, we also observed efficient binding of TRIMCyp in vitro to capsid assemblies containing as little as one-fourth wild-type CA protein. Paradoxically, the ability of HIV-1 particles to abrogate TRIMCyp restriction in trans was more strongly dependent on the fraction of wild-type CA than was restriction of infection. Collectively, our results indicate that TRIM5 restriction factors bind to retroviral capsids in a highly cooperative manner and suggest that TRIM5 can engage a capsid lattice containing a minimum of three or fewer recognizable subunits per hexamer. Our study supports a model in which localized binding of TRIM5 to the viral capsid nucleates rapid polymerization of a TRIM5 lattice on the capsid surface. PMID:23785198

  14. Long-Term Correction of Sandhoff Disease Following Intravenous Delivery of rAAV9 to Mouse Neonates

    PubMed Central

    Walia, Jagdeep S; Altaleb, Naderah; Bello, Alexander; Kruck, Christa; LaFave, Matthew C; Varshney, Gaurav K; Burgess, Shawn M; Chowdhury, Biswajit; Hurlbut, David; Hemming, Richard; Kobinger, Gary P; Triggs-Raine, Barbara

    2015-01-01

    GM2 gangliosidoses are severe neurodegenerative disorders resulting from a deficiency in β-hexosaminidase A activity and lacking effective therapies. Using a Sandhoff disease (SD) mouse model (Hexb−/−) of the GM2 gangliosidoses, we tested the potential of systemically delivered adeno-associated virus 9 (AAV9) expressing Hexb cDNA to correct the neurological phenotype. Neonatal or adult SD and normal mice were intravenously injected with AAV9-HexB or –LacZ and monitored for serum β-hexosaminidase activity, motor function, and survival. Brain GM2 ganglioside, β-hexosaminidase activity, and inflammation were assessed at experimental week 43, or an earlier humane end point. SD mice injected with AAV9-LacZ died by 17 weeks of age, whereas all neonatal AAV9-HexB–treated SD mice survived until 43 weeks (P < 0.0001) with only three exhibiting neurological dysfunction. SD mice treated as adults with AAV9-HexB died between 17 and 35 weeks. Neonatal SD-HexB–treated mice had a significant increase in brain β-hexosaminidase activity, and a reduction in GM2 ganglioside storage and neuroinflammation compared to adult SD-HexB– and SD-LacZ–treated groups. However, at 43 weeks, 8 of 10 neonatal-HexB injected control and SD mice exhibited liver or lung tumors. This study demonstrates the potential for long-term correction of SD and other GM2 gangliosidoses through early rAAV9 based systemic gene therapy. PMID:25515709

  15. Protease digestion of hepatitis A virus: disparate effects on capsid proteins, antigenicity, and infectivity.

    PubMed Central

    Lemon, S M; Amphlett, E; Sangar, D

    1991-01-01

    High concentrations of either trypsin or chymotrypsin caused nearly complete cleavage of capsid protein VP2 of hepatitis A virus but did not significantly reduce the infectivity, thermostability, or antigenicity of the virus. Chymotrypsin also had a lesser effect on VP1. These findings indicate the presence of a protease-accessible VP2 surface site which neither contributes significantly to the dominant antigenic site nor plays a role in the attachment of the virus to putative cell receptors. Images PMID:1654460

  16. Derivation of a triple mosaic adenovirus based on modification of the minor capsid protein IX

    SciTech Connect

    Tang Yizhe; Le, Long P.; Matthews, Qiana L.; Han Tie; Wu Hongju; Curiel, David T.

    2008-08-01

    Adenoviral capsid protein IX (pIX) has been shown to be a potential locale to insert targeting, imaging-related and therapeutic modalities by genetic modification. Recent evidences suggested that capsid protein mosaicism could be a promising strategy for improving the utility of Ad vector. In this study, we explored a method to genetically generate triple pIX mosaic Ad serotype 5 (Ad5) displaying three types of pIX on a single virion. pIXs were modified at their carboxy termini with a Flag sequence, a hexahistidine sequence (His{sub 6}) or a monomeric red fluorescent protein (mRFP1), respectively. Western blotting analysis and fluorescence microscopy of the purified recombinant viruses indicated that all three modified pIXs were incorporated into the viral particles. Immuno-gold electron microscopy (EM) further confirmed that three types of pIX indeed co-existed on an individual virion. These results firstly validated a triple mosaic capsid configuration on pIX, and demonstrated the possibility of further radical design.

  17. Bioinformatic analysis of non-VP1 capsid protein of coxsackievirus A6.

    PubMed

    Liu, Hong-Bo; Yang, Guang-Fei; Liang, Si-Jia; Lin, Jun

    2016-08-01

    This study bioinformatically analyzed the non-VP1 capsid proteins (VP2-VP4) of Coxasckievirus A6 (CVA6), with an attempt to predict their basic physicochemical properties, structural/functional features and linear B cell eiptopes. The online tools SubLoc, TargetP and the others from ExPASy Bioinformatics Resource Portal, and SWISS-MODEL (an online protein structure modeling server), were utilized to analyze the amino acid (AA) sequences of VP2-VP4 proteins of CVA6. Our results showed that the VP proteins of CVA6 were all of hydrophilic nature, contained phosphorylation and glycosylation sites and harbored no signal peptide sequences and acetylation sites. Except VP3, the other proteins did not have transmembrane helix structure and nuclear localization signal sequences. Random coils were the major conformation of the secondary structure of the capsid proteins. Analysis of the linear B cell epitopes by employing Bepipred showed that the average antigenic indices (AI) of individual VP proteins were all greater than 0 and the average AI of VP4 was substantially higher than that of VP2 and VP3. The VP proteins all contained a number of potential B cell epitopes and some eiptopes were located at the internal side of the viral capsid or were buried. We successfully predicted the fundamental physicochemical properties, structural/functional features and the linear B cell eiptopes and found that different VP proteins share some common features and each has its unique attributes. These findings will help us understand the pathogenicity of CVA6 and develop related vaccines and immunodiagnostic reagents.

  18. Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants.

    PubMed

    Benskey, Matthew J; Kuhn, Nathan C; Galligan, James J; Garcia, Joanna; Boye, Shannon E; Hauswirth, William W; Mueller, Christian; Boye, Sanford L; Manfredsson, Fredric P

    2015-03-01

    Recombinant adeno-associated virus (AAV) vectors are one of the most widely used gene transfer systems in research and clinical trials. AAV can transduce a wide range of biological tissues, however to date, there has been no investigation on targeted AAV transduction of the enteric nervous system (ENS). Here, we examined the efficiency, tropism, spread, and immunogenicity of AAV transduction in the ENS. Rats received direct injections of various AAV serotypes expressing green fluorescent protein (GFP) into the descending colon. AAV serotypes tested included; AAV 1, 2, 5, 6, 8, or 9 and the AAV2 and AAV8 capsid mutants, AAV2-Y444F, AAV2-tripleY-F, AAV2-tripleY-F+T-V, AAV8-Y733F, and AAV8-doubeY-F+T-V. Transduction, as determined by GFP-positive cells, occurred in neurons and enteric glia within the myenteric and submucosal plexuses of the ENS. AAV6 and AAV9 showed the highest levels of transduction within the ENS. Transduction efficiency scaled with titer and time, was translated to the murine ENS, and produced no vector-related immune response. A single injection of AAV into the colon covered an area of ~47 mm(2). AAV9 primarily transduced neurons, while AAV6 transduced enteric glia and neurons. This is the first report on targeted AAV transduction of neurons and glia in the ENS.

  19. Bacteriophage P23-77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage.

    PubMed

    Rissanen, Ilona; Grimes, Jonathan M; Pawlowski, Alice; Mäntynen, Sari; Harlos, Karl; Bamford, Jaana K H; Stuart, David I

    2013-05-07

    It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid architecture and viral assembly, quite different from previously published models. The structures of the capsid proteins and their mode of association to form the viral capsid suggest that the P23-77-like and adeno-PRD1 lineages of viruses share an extremely ancient common ancestor.

  20. Unique region of the minor capsid protein of human parvovirus B19 is exposed on the virion surface.

    PubMed Central

    Rosenfeld, S J; Yoshimoto, K; Kajigaya, S; Anderson, S; Young, N S; Field, A; Warrener, P; Bansal, G; Collett, M S

    1992-01-01

    Capsids of the B19 parvovirus are composed of major (VP2; 58 kD) and minor (VP1; 83 kD) structural proteins. These proteins are identical except for a unique 226 amino acid region at the amino terminus of VP1. Previous immunization studies with recombinant empty capsids have demonstrated that the presence of VP1 was required to elicit virus-neutralizing antibody activity. However, to date, neutralizing epitopes have been identified only on VP2. Crystallographic studies of a related parvovirus (canine parvovirus) suggested the unique amino-terminal portion of VP1 assumed an internal position within the viral capsid. To determine the position of VP1 in both empty capsids and virions, we expressed a fusion protein containing the unique region of VP1. Antisera raised to this protein recognized recombinant empty capsids containing VP1 and VP2, but not those containing VP2 alone, in an enzyme-linked immunosorbent assay. The antisera immunoprecipitated both recombinant empty capsids and human plasma-derived virions, and agglutinated the latter as shown by immune electron microscopy. The sera contained potent neutralizing activity for virus infectivity in vitro. These data indicate that a portion of the amino terminus of VP1 is located on the virion surface, and that this region contains intrinsic neutralizing determinants. The external location of the VP1-specific tail may provide a site for engineered heterologous epitope presentation in novel recombinant vaccines. Images PMID:1376332

  1. Location of the Bacteriophage P22 Coat Protein C-terminus Provides Opportunities for the Design of Capsid Based Materials

    PubMed Central

    Servid, Amy; Jordan, Paul; O’Neil, Alison; Prevelige, Peter; Douglas, Trevor

    2013-01-01

    Rational design of modifications to the interior and exterior surfaces of virus-like particles (VLPs) for future therapeutic and materials applications is based on structural information about the capsid. Existing cryo-electron microscopy based models suggest that the C-terminus of the bacteriophage P22 coat protein (CP) extends towards the capsid exterior. Our biochemical analysis through genetic manipulations of the C-terminus supports the model where the CP C-terminus is exposed on the exterior of the P22 capsid. Capsids displaying a 6xHis tag appended to the CP C-terminus bind to a Ni affinity column, and the addition of positively or negatively charged coiled coil peptides to the capsid results in association of these capsids upon mixing. Additionally, a single cysteine appended to the CP C-terminus results in the formation of intercapsid disulfide bonds and can serve as a site for chemical modifications. Thus, the C-terminus is a powerful location for multivalent display of peptides that facilitate nanoscale assembly and capsid modification. PMID:23957641

  2. Specific interaction of capsid protein and importin-{alpha}/{beta} influences West Nile virus production

    SciTech Connect

    Bhuvanakantham, Raghavan; Chong, Mun-Keat; Ng, Mah-Lee

    2009-11-06

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.

  3. Multiple origins of viral capsid proteins from cellular ancestors

    PubMed Central

    Koonin, Eugene V.

    2017-01-01

    Viruses are the most abundant biological entities on earth and show remarkable diversity of genome sequences, replication and expression strategies, and virion structures. Evolutionary genomics of viruses revealed many unexpected connections but the general scenario(s) for the evolution of the virosphere remains a matter of intense debate among proponents of the cellular regression, escaped genes, and primordial virus world hypotheses. A comprehensive sequence and structure analysis of major virion proteins indicates that they evolved on about 20 independent occasions, and in some of these cases likely ancestors are identifiable among the proteins of cellular organisms. Virus genomes typically consist of distinct structural and replication modules that recombine frequently and can have different evolutionary trajectories. The present analysis suggests that, although the replication modules of at least some classes of viruses might descend from primordial selfish genetic elements, bona fide viruses evolved on multiple, independent occasions throughout the course of evolution by the recruitment of diverse host proteins that became major virion components. PMID:28265094

  4. Phosphorylation of the budgerigar fledgling disease virus major capsid protein VP1

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The structural proteins of the budgerigar fledgling disease virus, the first known nonmammalian polyomavirus, were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major capsid protein VP1 was found to be composed of at least five distinct species having isoelectric points ranging from pH 6.45 to 5.85. By analogy with the murine polyomavirus, these species apparently result from different modifications of an initial translation product. Primary chicken embryo cells were infected in the presence of 32Pi to determine whether the virus structural proteins were modified by phosphorylation. SDS-PAGE of the purified virus structural proteins demonstrated that VP1 (along with both minor capsid proteins) was phosphorylated. Two-dimensional analysis of the radiolabeled virus showed phosphorylation of only the two most acidic isoelectric species of VP1, indicating that this posttranslational modification contributes to VP1 species heterogeneity. Phosphoamino acid analysis of 32P-labeled VP1 revealed that phosphoserine is the only phosphoamino acid present in the VP1 protein.

  5. A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3

    SciTech Connect

    Wang, Tianying; Yu, Bohai; Lin, Lexun; Zhai, Xia; Han, Yelu; Qin, Ying; Guo, Zhiwei; Wu, Shuo; Zhong, Xiaoyan; Wang, Yan; Tong, Lei; Zhang, Fengmin; Si, Xiaoning; Zhao, Wenran; Zhong, Zhaohua

    2012-11-25

    The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB. - Highlights: Black-Right-Pointing-Pointer The VP1 protein of coxsackievirus B3 can specifically localize in the nucleus. Black-Right-Pointing-Pointer The nuclear localization signal of coxsackievirus B3 VP1 protein locates near its C-terminal. Black-Right-Pointing-Pointer The VP1 nuclear localization of coxsackievirus B3 can deregulate cell cycle. Black-Right-Pointing-Pointer There is a domain in the VP1 that determines it dotted distributed in the cytoplasm.

  6. Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies

    SciTech Connect

    Han, Yun; Ahn, Jinwoo; Concel, Jason; Byeon, In-Ja L.; Gronenborn, Angela M.; Yang, Jun; Polenova, Tatyana E.

    2010-02-17

    In mature HIV-1 virions, the 26.6 kDa CA protein is assembled into a characteristic cone-shaped core (capsid) that encloses the RNA viral genome. The assembled capsid structure is best described by a fullerene cone model that is made up from a hexameric lattice containing a variable number of CA pentamers, thus allowing for closure of tubular or conical structures. In this paper, we present a solid-state NMR analysis of the wild-type HIV-1 CA protein, prepared as conical and spherical assemblies that are stable and are not affected by magic angle spinning of the samples at frequencies between 10 and 25 kHz. Multidimensional homo- and heteronuclear correlation spectra of CA assemblies of uniformly 13C,15Nlabeled CA exhibit narrow lines, indicative of the conformational homogeneity of the protein in these assemblies. For the conical assemblies, partial residue-specific resonance assignments were obtained. Analysis of the NMR spectra recorded for the conical and spherical assemblies indicates that the CA protein structure is not significantly different in the different morphologies. The present results demonstrate that the assemblies of CA protein are amenable to detailed structural analysis by solid-state NMR spectroscopy.

  7. Detection of Cryptosporidium parvum oocysts by dot-blotting using monoclonal antibodies to CPV40 capsid protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monoclonal antibodies (MAb) were prepared against the 40 kDa capsid protein of Cryptosporidium parvum virus (CPV) by immunizing mice with purified recombinant CPV40 protein. By immunoblotting analysis, one MAb, designated MAbCPV40-1, bound to a 40 kDa protein in extracts of C. parvum oocysts, which...

  8. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    SciTech Connect

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin; Sun, Ya-Ni; Gao, Ji-Ming; Xie, Zhi-Jing; Wang, Yu; Zhu, Yan-Li; Jiang, Shi-Jin

    2013-02-05

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  9. Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion

    PubMed Central

    Mathieu, Magali; Petitpas, Isabelle; Navaza, Jorge; Lepault, Jean; Kohli, Evelyne; Pothier, Pierre; Prasad, B.V.Venkataram; Cohen, Jean; Rey, Félix A.

    2001-01-01

    The structural protein VP6 of rotavirus, an important pathogen responsible for severe gastroenteritis in children, forms the middle layer in the triple-layered viral capsid. Here we present the crystal structure of VP6 determined to 2 Å resolution and describe its interactions with other capsid proteins by fitting the atomic model into electron cryomicroscopic reconstructions of viral particles. VP6, which forms a tight trimer, has two distinct domains: a distal β-barrel domain and a proximal α-helical domain, which interact with the outer and inner layer of the virion, respectively. The overall fold is similar to that of protein VP7 from bluetongue virus, with the subunits wrapping about a central 3-fold axis. A distinguishing feature of the VP6 trimer is a central Zn2+ ion located on the 3-fold molecular axis. The crude atomic model of the middle layer derived from the fit shows that quasi-equivalence is only partially obeyed by VP6 in the T = 13 middle layer and suggests a model for the assembly of the 260 VP6 trimers onto the T = 1 viral inner layer. PMID:11285213

  10. RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins.

    PubMed

    Yang, Zhu; Reeves, Michael; Ye, Jun; Trang, Phong; Zhu, Li; Sheng, Jingxue; Wang, Yu; Zen, Ke; Wu, Jianguo; Liu, Fenyong

    2015-06-24

    An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%-99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.

  11. Sequence analysis and location of capsid proteins within RNA 2 of strawberry latent ringspot virus.

    PubMed

    Kreiah, S; Strunk, G; Cooper, J I

    1994-09-01

    The nucleotide sequence of the RNA 2 of a strawberry isolate (H) of strawberry latent ringspot virus (SLRSV) comprised 3824 nucleotides and contained one long open reading frame with a theoretical coding capacity of 890 amino acids equivalent to a protein of 98.8K. The N-terminal amino acid sequences of virion-derived proteins were determined by Edman degradation allowing the capsid coding regions to be located and serine/glycine cleavage sites to be identified within the polyprotein. The amino acid sequence in the capsid coding region of an isolate of SLRSV from flowering cherry in New Zealand was 97% identical to that of SLRSV-H. Except in the 3' and 5' terminal non-coding sequences, computer-based alignment and comparison algorithms did not reveal any substantial homologies between RNA 2 of SLRSV-H and the equivalent genomic segments in the nepoviruses arabis mosaic, cherry leaf roll, grapevine fanleaf, raspberry ringspot, grapevine hungarian chrome mosaic, tomato blackring, tomato ringspot, tobacco ringspot, or in the comoviruses cowpea mosaic and red clover mottle. Despite the similarities in overall genome organization, data from RNA 2 remain insufficient for unambiguous positioning of SLRSV in relation to species/genera in the Comoviridae.

  12. High Cooperativity of the SV40 Major Capsid Protein VP1 in Virus Assembly

    PubMed Central

    Mukherjee, Santanu; Abd-El-Latif, Mahmoud; Bronstein, Michal; Ben-nun-Shaul, Orly; Kler, Stanislav; Oppenheim, Ariella

    2007-01-01

    SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome. However the steps leading to the formation of mature virus are poorly understood. Intermediates of the assembly reaction could not be isolated from cells infected with wt SV40. Here we have used recombinant VP1 produced in insect cells for in vitro assembly studies around supercoiled heterologous plasmid DNA carrying a reporter gene. This strategy yields infective nanoparticles, affording a simple quantitative transduction assay. We show that VP1 assembles under physiological conditions into uniform nanoparticles of the same shape, size and CsCl density as the wild type virus. The stoichiometry is one DNA molecule per capsid. VP1 deleted in the C-arm, which is unable to assemble but can bind DNA, was inactive indicating genuine assembly rather than non-specific DNA-binding. The reaction requires host enzymatic activities, consistent with the participation of chaperones, as recently shown. Our results demonstrate dramatic cooperativity of VP1, with a Hill coefficient of ∼6. These findings suggest that assembly may be a concerted reaction. We propose that concerted assembly is facilitated by simultaneous binding of multiple capsomers to a single DNA molecule, as we have recently reported, thus increasing their local concentration. Emerging principles of SV40 assembly may help understanding assembly of other complex systems. In addition, the SV40-based nanoparticles described here are potential gene therapy vectors that combine efficient gene delivery with safety and flexibility. PMID:17712413

  13. High cooperativity of the SV40 major capsid protein VP1 in virus assembly.

    PubMed

    Mukherjee, Santanu; Abd-El-Latif, Mahmoud; Bronstein, Michal; Ben-nun-Shaul, Orly; Kler, Stanislav; Oppenheim, Ariella

    2007-08-22

    SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome. However the steps leading to the formation of mature virus are poorly understood. Intermediates of the assembly reaction could not be isolated from cells infected with wt SV40. Here we have used recombinant VP1 produced in insect cells for in vitro assembly studies around supercoiled heterologous plasmid DNA carrying a reporter gene. This strategy yields infective nanoparticles, affording a simple quantitative transduction assay. We show that VP1 assembles under physiological conditions into uniform nanoparticles of the same shape, size and CsCl density as the wild type virus. The stoichiometry is one DNA molecule per capsid. VP1 deleted in the C-arm, which is unable to assemble but can bind DNA, was inactive indicating genuine assembly rather than non-specific DNA-binding. The reaction requires host enzymatic activities, consistent with the participation of chaperones, as recently shown. Our results demonstrate dramatic cooperativity of VP1, with a Hill coefficient of approximately 6. These findings suggest that assembly may be a concerted reaction. We propose that concerted assembly is facilitated by simultaneous binding of multiple capsomers to a single DNA molecule, as we have recently reported, thus increasing their local concentration. Emerging principles of SV40 assembly may help understanding assembly of other complex systems. In addition, the SV40-based nanoparticles described here are potential gene therapy vectors that combine efficient gene delivery with safety and flexibility.

  14. A Single Amino Acid Mutation in the Carnation Ringspot Virus Capsid Protein Allows Virion Formation but Prevents Systemic Infection

    PubMed Central

    Sit, Tim L.; Haikal, Patrick R.; Callaway, Anton S.; Lommel, Steven A.

    2001-01-01

    A Carnation ringspot virus (CRSV) variant (1.26) was identified that accumulates virions but is incapable of forming a systemic infection. The 1.26 capsid protein gene possesses a Ser→Pro mutation at amino acid 282. Conversion of 1.26 amino acid 282 to Ser restored systemic infection, while the reciprocal mutation in wild-type CRSV abolished systemic infection. Similar mutations introduced into the related Red clover necrotic mosaic virus capsid protein gene failed to induce the packaging but nonsystemic movement phenotype. These results provide additional support for the theory that virion formation is necessary but not sufficient for systemic movement with the dianthoviruses. PMID:11533217

  15. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan

    PubMed Central

    Weismann, Cara M.; Ferreira, Jennifer; Keeler, Allison M.; Su, Qin; Qui, Linghua; Shaffer, Scott A.; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-01-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal−/−) at 1 × 1011 or 3 × 1011 vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36–76% reduction in GM1-ganglioside content in the brain and 75–86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 1011 vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 1011 vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316–576 days) was significantly increased over controls (250–264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan. PMID:25964428

  16. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  17. Intrathecal Delivery of ssAAV9-DAO Extends Survival in SOD1(G93A) ALS Mice.

    PubMed

    Wang, Wan; Duan, Weisong; Wang, Ying; Wen, Di; Liu, Yakun; Li, Zhongyao; Hu, Haojie; Cui, Hongying; Cui, Can; Lin, Huiqian; Li, Chunyan

    2016-12-26

    Amyotrophic lateral sclerosis (ALS) is an adult-onset, irreversible neurodegenerative disease that leads to progressive paralysis and inevitable death 3-5 years after diagnosis. The mechanisms underlying this process remain unknown, but new evidence indicates that accumulating levels of D-serine result from the downregulation of D-amino acid oxidase (DAO) and that this is a novel mechanism that leads to motoneuronal death in ALS via N-methyl-D-aspartate receptor-mediated cell toxicity. Here, we explored a new therapeutic approach to ALS by overexpressing DAO in the lumbar region of the mouse spinal cord using a single stranded adeno-associated virus serotype 9 (ssAAV9) vector. A single intrathecal injection of ssAAV9-DAO was made in SOD1(G93A) mice, a well-established mouse model of ALS. Treatment resulted in moderate expression of exogenous DAO in motorneurons in the lumbar spinal cord, reduced immunoreactivity of D-serine, alleviated motoneuronal loss and glial activation, and extended survival. The potential mechanisms underlying these effects were associated with the down-regulation of NF-κB and the restoration of the phosphorylation of Akt. In conclusion, administering ssAAV9-DAO may be an effective complementary approach to gene therapy to extend lifespans in symptomatic ALS.

  18. Combined Paracrine and Endocrine AAV9 mediated Expression of Hepatocyte Growth Factor for the Treatment of Renal Fibrosis

    PubMed Central

    Schievenbusch, Stephanie; Strack, Ingo; Scheffler, Melanie; Nischt, Roswitha; Coutelle, Oliver; Hösel, Marianna; Hallek, Michael; Fries, Jochen WU; Dienes, Hans-Peter; Odenthal, Margarete; Büning, Hildegard

    2010-01-01

    In chronic renal disease, tubulointerstitial fibrosis is a leading cause of renal failure. Here, we made use of one of the most promising gene therapy vector platforms, the adeno-associated viral (AAV) vector system, and the COL4A3-deficient mice, a genetic mouse model of renal tubulointerstitial fibrosis, to develop a novel bidirectional treatment strategy to prevent renal fibrosis. By comparing different AAV serotypes in reporter studies, we identified AAV9 as the most suitable delivery vector to simultaneously target liver parenchyma for endocrine and renal tubular epithelium for paracrine therapeutic expression of the antifibrogenic cytokine human hepatocyte growth factor (hHGF). We used transcriptional targeting to drive hHGF expression from the newly developed CMV-enhancer-Ksp-cadherin-promoter (CMV-Ksp) in renal and hepatic tissue following tail vein injection of rAAV9-CMV-Ksp-hHGF into COL4A3-deficient mice. The therapeutic efficiency of our approach was demonstrated by a remarkable attenuation of tubulointerstitial fibrosis and repression of fibrotic markers such as collagen1α1 (Col1A1), platelet-derived growth factor receptor-β (PDGFR-β), and α-smooth muscle actin (SMA). Taken together, our results show the great potential of rAAV9 as an intravenously applicable vector for the combined paracrine and endocrine expression of antifibrogenic factors in the treatment of renal failure caused by tubulointerstitial fibrosis. PMID:20424598

  19. Detection, characterization and quantitation of coxsackievirus A16 using polyclonal antibodies against recombinant capsid subunit proteins.

    PubMed

    Liu, Qingwei; Ku, Zhiqiang; Cai, Yicun; Sun, Bing; Leng, Qibin; Huang, Zhong

    2011-04-01

    Coxsackievirus A16 (CVA16), together with enterovirus type 71 (EV71), is responsible for most cases of hand, foot and mouth disease (HFMD) worldwide. Recent findings suggest that the recombination between CVA16 and EV71, and co-circulation of these two viruses may have contributed to the increase of HFMD cases in China over the past few years. Thus, for CVA16, further understanding of its virology, epidemiology and development of diagnostic tests and vaccines are of importance. The present study aimed to develop reagents and protocols for the detection, characterization and quantitation of CVA16. Recombinant CVA16 capsid subunit proteins VP0, VP3 and truncated VP1, were produced in Escherichia coli and used to immunize guinea pigs to generate polyclonal antibodies. The resultant three antisera detected specifically CVA16 propagated in Vero cells by immunostaining, ELISA and Western blotting. The antisera was used to show that CVA16 capsids were composed of correctly processed VP0, VP1 and VP3 subunits, and were present in the form of efficiently assembled particles. A method for the quantitation of the yield of CVA16 in Vero cells was established based on a Western blotting protocol using the recombinant VP0 as a reference standard and anti-VP0 as the detection antibody. This study shows the development and validation of reagents and methods, for qualitative and quantitative determination of CVA16, which are essential for the development of vaccines.

  20. Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation.

    PubMed

    Fernández-Fernández, M Rosario; Martínez-Torrecuadrada, Jorge L; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-12-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.

  1. Nucleotide sequence of the capsid protein gene of two serotypes of San Miguel sea lion virus: identification of conserved and non-conserved amino acid sequences among calicivirus capsid proteins.

    PubMed

    Neill, J D

    1992-07-01

    The San Miguel sea lion viruses, members of the calicivirus family, are closely related to the vesicular disease of swine viruses which can cause severe disease in swine. In order to begin the molecular characterization of these viruses, the nucleotide sequence of the capsid protein gene of two San Miguel sea lion viruses (SMSV), serotypes 1 and 4, was determined. The coding sequences for the capsid precursor protein were located within the 3' terminal 2620 bases of the genomic RNAs of both viruses. The encoded capsid precursor proteins were 79,500 and 77,634 Da for SMSV 1 and SMSV 4, respectively. The SMSV 1 protein was 47.7% and SMSV 4 was 48.6% homologous to the feline calicivirus (FCV) capsid precursor protein while the two SMSV capsid precursors were 73% homologous to each other. Six distinct regions within the capsid precursors (denoted as regions A-F) were identified based on amino acid sequence alignment analysis of the two SMSV serotypes with FCV and the rabbit hemorrhagic disease virus (RHDV) capsid protein. Three regions showed similarity among all four viruses (regions B, D and F) and one region showed a very high degree of homology between the SMSV serotypes but only limited similarity with FCV (region A). RHDV contained only a truncated region A. A fifth region, consisting of approximately 100 residues, was not conserved among any of the viruses (region E) and, in SMSV, may contain the serotype-specific determinants. Another small region (region C) contained between 15 and 27 amino acids and showed little sequence conservation. Region B showed the highest degree of conservation among the four viruses and contained the residues which had homology to the picornavirus VP3 structural protein. An open reading frame, found in the 3' terminal 514 bases of the SMSV genomes, encoded small proteins (12,575 and 12,522 Da, respectively for SMSV 1 and SMSV 4) of which 32% of the conserved amino acids were basic residues, implying a possible nucleic acid

  2. Role of cucumovirus capsid protein in long-distance movement within the infected plant.

    PubMed Central

    Taliansky, M E; García-Arenal, F

    1995-01-01

    Direct evidence is presented for a host-specific role of the cucumovirus capsid protein in long-distance movement within infected plants. Cucumber (Cucumis sativus L.) is a systemic host for cucumber mosaic cucumovirus (CMV). Tomato aspermy cucumovirus, strain 1 (1-TAV), multiplied to the levels of CMV (i.e., replicated, moved from cell to cell, and formed infectious particles) in the inoculated leaves of cucumbers but was completely unable to spread systemically. The defective long-distance systemic movement of 1-TAV was complemented by CMV in mixed infections. Coinfection of cucumbers with 1-TAV RNA with various combinations of transcripts from full-length cDNA clones of CMV genomic RNA 1, RNA2, and RNA3 showed that CMV RNA3 alone complemented 1-TAV long-distance movement. We obtained mutants containing mutations in the two open reading frames in CMV RNA3 encoding the 3a protein and the capsid protein (CP), both of which are necessary for cell-to-cell movement of CMV. Complementation experiments with mutant CMV RNA3 showed that only 3a protein mutants, i.e., those with an intact CP, complemented the long-distance movement of 1-TAV in cucumbers. Since CMV and TAV have common systemic host plants, the results presented here are strong evidence for an active, host-specific function of the CPs of these two cucumoviruses for long-distance spread in the phloem. The results also suggest that the plasmodesmata in the vascular system and/or at the boundary between the mesophyll and the vascular system, involved in long-distance movement through the phloem, and those in the mesophyll, involved in cell-to-cell movement, differ functionally. PMID:7815560

  3. Protection of chickens against avian hepatitis E virus (avian HEV) infection by immunization with recombinant avian HEV capsid protein.

    PubMed

    Guo, H; Zhou, E M; Sun, Z F; Meng, X J

    2007-04-12

    Avian hepatitis E virus (avian HEV) is an emerging virus associated with hepatitis-splenomegaly syndrome in chickens in North America. Avian HEV is genetically and antigenically related to human HEV, the causative agent of hepatitis E in humans. In the lack of a practical animal model, avian HEV infection in chickens has been used as a model to study human HEV replication and pathogenesis. A 32 kDa recombinant ORF2 capsid protein of avian HEV expressed in Escherichia coli was found having similar antigenic structure as that of human HEV containing major neutralizing epitopes. To determine if the capsid protein of avian HEV can be used as a vaccine, 20 chickens were immunized with purified avian HEV recombinant protein with aluminum as adjuvant and another 20 chickens were mock immunized with KLH precipitated in aluminum as controls. Both groups of chickens were subsequently challenged with avian HEV. All the tested mock-immunized control chickens developed typical avian HEV infection characterized by viremia, fecal virus shedding and seroconversion to avian HEV antibodies. Gross hepatic lesions were also found in portion of these chickens. In contrast, none of the tested chickens immunized with avian HEV capsid protein had detectable viremia, fecal virus shedding or observable gross hepatitis lesions. The results from this study suggested that immunization of chickens with avian HEV recombinant ORF2 capsid protein with aluminum as adjuvant can induce protective immunity against avian HEV infection. Chickens are a useful small animal model to study anti-HEV immunity and pathogenesis.

  4. Mutations within potential glycosylation sites in the capsid protein of hepatitis E virus prevent the formation of infectious virus particles.

    PubMed

    Graff, Judith; Zhou, Yi-Hua; Torian, Udana; Nguyen, Hanh; St Claire, Marisa; Yu, Claro; Purcell, Robert H; Emerson, Suzanne U

    2008-02-01

    Hepatitis E virus is a nonenveloped RNA virus. However, the single capsid protein resembles a typical glycoprotein in that it contains a signal sequence and potential glycosylation sites that are utilized when recombinant capsid protein is overexpressed in cell culture. In order to determine whether these unexpected observations were biologically relevant or were artifacts of overexpression, we analyzed capsid protein produced during a normal viral replication cycle. In vitro transcripts from an infectious cDNA clone mutated to eliminate potential glycosylation sites were transfected into cultured Huh-7 cells and into the livers of rhesus macaques. The mutations did not detectably affect genome replication or capsid protein synthesis in cell culture. However, none of the mutants infected rhesus macaques. Velocity sedimentation analyses of transfected cell lysates revealed that mutation of the first two glycosylation sites prevented virion assembly, whereas mutation of the third site permitted particle formation and RNA encapsidation, but the particles were not infectious. However, conservative mutations that did not destroy glycosylation motifs also prevented infection. Overall, the data suggested that the mutations were lethal because they perturbed protein structure rather than because they eliminated glycosylation.

  5. Systemic elimination of de novo capsid protein synthesis from replication-competent AAV contamination in the liver.

    PubMed

    Lu, Hui; Qu, Guang; Yang, Xiao; Xu, Ruian; Xiao, Weidong

    2011-05-01

    The capsid protein synthesis in targeted tissues resulting from residual contaminating replication-competent adeno-associated virus particles (rcAAV) remains a concern for hazardous immune responses that shut down the factor IX expression in the hemophilia B clinical trial. To systematically reduce/eliminate the effects of potential contaminating rcAAV particles, we designed a novel adeno-associated virus (AAV) helper (pH22mir) with a microRNA binding cassette containing multiple copies of liver-specific (hsa-mir-122) and hematopoietic-specific (has-mir-142-3p) sequences to specifically control cap gene expression. In 293 cells, the rep and cap gene from pH22mir functioned similarly to that of conventional helper pH22. The vector yields and compositions from pH22mir and pH22 were indistinguishable. The performance of vector produced in this new system was comparable to that of similar vectors produced by conventional methods. In the human hepatic cell line, the capsid expression was reduced significantly from cap-mir cassette driven by a cytomegalovirus promoter. In the liver, 99.9% of capsid expression could be suppressed and no cap expression could be detected by western blot. In summary, we demonstrated a new concept in reducing de novo capsid synthesis in the targeted tissue. This strategy may not only help AAV vectors in controlling undesirable capsid gene expression, but can also be adopted for lentiviral or adenoviral vector production.

  6. Cell-Free Hepatitis B Virus Capsid Assembly Dependent on the Core Protein C-Terminal Domain and Regulated by Phosphorylation

    PubMed Central

    Ludgate, Laurie; Liu, Kuancheng; Luckenbaugh, Laurie; Streck, Nicholas; Eng, Stacey; Voitenleitner, Christian; Delaney, William E.

    2016-01-01

    ABSTRACT Multiple subunits of the hepatitis B virus (HBV) core protein (HBc) assemble into an icosahedral capsid that packages the viral pregenomic RNA (pgRNA). The N-terminal domain (NTD) of HBc is sufficient for capsid assembly, in the absence of pgRNA or any other viral or host factors, under conditions of high HBc and/or salt concentrations. The C-terminal domain (CTD) is deemed dispensable for capsid assembly although it is essential for pgRNA packaging. We report here that HBc expressed in a mammalian cell lysate, rabbit reticulocyte lysate (RRL), was able to assemble into capsids when (low-nanomolar) HBc concentrations mimicked those achieved under conditions of viral replication in vivo and were far below those used previously for capsid assembly in vitro. Furthermore, at physiologically low HBc concentrations in RRL, the NTD was insufficient for capsid assembly and the CTD was also required. The CTD likely facilitated assembly under these conditions via RNA binding and protein-protein interactions. Moreover, the CTD underwent phosphorylation and dephosphorylation events in RRL similar to those seen in vivo which regulated capsid assembly. Importantly, the NTD alone also failed to accumulate in mammalian cells, likely resulting from its failure to assemble efficiently. Coexpression of the full-length HBc rescued NTD assembly in RRL as well as NTD expression and assembly in mammalian cells, resulting in the formation of mosaic capsids containing both full-length HBc and the NTD. These results have important implications for HBV assembly during replication and provide a facile cell-free system to study capsid assembly under physiologically relevant conditions, including its modulation by host factors. IMPORTANCE Hepatitis B virus (HBV) is an important global human pathogen and the main cause of liver cancer worldwide. An essential component of HBV is the spherical capsid composed of multiple copies of a single protein, the core protein (HBc). We have

  7. Virions of Pariacoto virus contain a minor protein translated from the second AUG codon of the capsid protein open reading frame.

    PubMed

    Johnson, Karyn N; Ball, L Andrew

    2003-10-01

    Virions of the alphanodavirus Pariacoto virus (PaV) have T=3 icosahedral symmetry and are assembled from multiple copies of a precursor protein that is cleaved into two mature capsid proteins after assembly. The crystal structure of PaV shows that the N-terminal approximately 30 amino acid residues of the subunits surrounding the 5-fold axes interact extensively with icosahedrally ordered regions of the encapsidated positive-sense genomic RNAs. We found that wild-type PaV particles also contain a minor capsid protein that is truncated by 24 residues at its N terminus. Reverse genetic experiments showed that translation of this protein initiated at the second AUG of the capsid protein open reading frame. When either the longer or shorter version of the capsid protein was expressed independently of the other, it assembled into virus particles and underwent maturational cleavage. Virions that lacked the shorter capsid protein retained infectivity for cultured insect cells and Galleria mellonella larvae.

  8. The Autographa californica Multiple Nucleopolyhedrovirus ac54 Gene Is Crucial for Localization of the Major Capsid Protein VP39 at the Site of Nucleocapsid Assembly

    PubMed Central

    Guan, Zhanwen; Zhong, Ling; Li, Chunyan; Wu, Wenbi; Yuan, Meijin

    2016-01-01

    ABSTRACT Baculovirus DNAs are synthesized and inserted into preformed capsids to form nucleocapsids at a site in the infected cell nucleus, termed the virogenic stroma. Nucleocapsid assembly of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) requires the major capsid protein VP39 and nine minor capsid proteins, including VP1054. However, how VP1054 participates in nucleocapsid assembly remains elusive. In this study, the VP1054-encoding gene (ac54) was deleted to generate the ac54-knockout AcMNPV (vAc54KO). In vAc54KO-transfected cells, nucleocapsid assembly was disrupted, leading to the formation of abnormally elongated capsid structures. Interestingly, unlike cells transfected with AcMNPV mutants lacking other minor capsid proteins, in which capsid structures were distributed within the virogenic stroma, ac54 ablation resulted in a distinctive location of capsid structures and VP39 at the periphery of the nucleus. The altered distribution pattern of capsid structures was also observed in cells transfected with AcMNPV lacking BV/ODV-C42 or in cytochalasin d-treated AcMNPV-infected cells. BV/ODV-C42, along with PP78/83, has been shown to promote nuclear filamentous actin (F-actin) formation, which is another requisite for nucleocapsid assembly. Immunofluorescence using phalloidin indicated that the formation and distribution of nuclear F-actin were not affected by ac54 deletion. However, immunoelectron microscopy revealed that BV/ODV-C42, PP78/83, and 38K failed to integrate into capsid structures in the absence of VP1054, and immunoprecipitation further demonstrated that in transient expression assays, VP1054 interacted with BV/ODV-C42 and VP80 but not VP39. Our findings suggest that VP1054 plays an important role in the transport of capsid proteins to the nucleocapsid assembly site prior to the process of nucleocapsid assembly. IMPORTANCE Baculoviruses are large DNA viruses whose replication occurs within the host nucleus. The localization of

  9. Analysis of epitopes in the capsid protein of avian hepatitis E virus by using monoclonal antibodies.

    PubMed

    Dong, Shiwei; Zhao, Qin; Lu, Mingzhe; Sun, Peiming; Qiu, Hongkai; Zhang, Lu; Lv, Junhua; Zhou, En-Min

    2011-02-01

    Avian hepatitis E virus (HEV) is related genetically and antigenically to human and swine HEVs and capsid protein of avian HEV shares approximately 48-49% amino acid sequence identities with those of human and swine HEVs. Six monoclonal antibodies (MAbs) were produced and used to locate different epitopes in the ORF2 region of aa 339-570 of avian HEV Chinese isolate. The results showed that five epitopes were located in the aa 339-414 region and one in the aa 510-515 region. Two epitopes located in aa 339-355 and aa 384-414 regions are the immunodominant epitopes on the surface of the avian HEV particles as demonstrated by immune capture of viral particles and immunohistochemical detection of the ORF2 antigens with two MAbs.

  10. Multiple functions of capsid proteins in (+) stranded RNA viruses during plant-virus interactions.

    PubMed

    Weber, Philipp H; Bujarski, Jozef J

    2015-01-22

    In addition to providing a protective shell for genomic RNA(s), the coat (capsid) proteins (CPs) of plus-stranded RNA viruses play a variety of other functions that condition the plant-virus relationship. In this review we outline the extensive research progress that has been made within the last decade on those CP characteristics that relate to virus infectivity, pathogenicity, symptom expression, interactions with host factors, virus movement, vector transmission, host range, as well as those used to study virus evolution. By discussing the examples among a variety of plant RNA viruses we show that in addition to general features and pathways, the involvement of CPs may assume very distinct tasks that depend on the particular virus life style. Research perspectives and potential applications are discussed at the end.

  11. Nucleotide sequence of the capsid protein gene of papaya leaf-distortion mosaic potyvirus.

    PubMed

    Maoka, T; Kashiwazaki, S; Tsuda, S; Usugi, T; Hibino, H

    1996-01-01

    The DNA complementary to the 3'-terminal 1 404 nucleotides [excluding the poly(A) tail] of papaya leaf-distortion mosaic potyvirus (PLDMV) RNA was cloned and sequenced. The sequence starts within a long open reading frame (ORF) of 1 195 nucleotides and is followed by a 3' non-coding region of 209 nucleotides. Capsid protein (CP) is encoded at the 3' terminus of the ORF. The CP contains 293 residues and has a Mr of 33 277. The CP of PLDMV exhibits 49 to 59% sequence similarity at the amino acid level to the CPs of papaya ringspot potyvirus (PRSV) and other potyviruses. This result is consistent with the absence of a serological relationship between PLDMV and PRSV or other potyviruses. The results support the assignment of PLDMV as a distinct member of the genus Potyvirus.

  12. Genetic linkage of capsid protein-encoding RNA segments in group A equine rotaviruses.

    PubMed

    Miño, Samuel; Barrandeguy, María; Parreño, Viviana; Parra, Gabriel I

    2016-04-01

    Rotavirus virions are formed by three concentric protein layers that enclose the 11 dsRNA genome segments and the viral proteins VP1 and VP3. Interactions amongst the capsid proteins (VP2, VP6, VP7 and VP4) have been described to play a major role in viral fitness, whilst restricting the reassortment of the genomic segments during co-infection with different rotavirus strains. In this work we describe and characterize the linkage between VP6 and VP7 proteins based on structural and genomic analyses of group A rotavirus strains circulating in Argentinean horses. Strains with the VP7 genotype G3 showed a strong association with the VP6 genotype I6, whilst strains with G14 were associated with the I2 genotype. Most of the differences on the VP6 and VP7 proteins were observed in interactive regions between the two proteins, suggesting that VP6 : VP7 interactions may drive the co-evolution and co-segregation of their respective gene segments.

  13. An extensive thermodynamic characterization of the dimerization domain of the HIV-1 capsid protein.

    PubMed

    Lidón-Moya, María C; Barrera, Francisco N; Bueno, Marta; Pérez-Jiménez, Raúl; Sancho, Javier; Mateu, Mauricio G; Neira, José L

    2005-09-01

    The type 1 human immunodeficiency virus presents a conical capsid formed by several hundred units of the capsid protein, CA. Homodimerization of CA occurs via its C-terminal domain, CA-C. This self-association process, which is thought to be pH-dependent, seems to constitute a key step in virus assembly. CA-C isolated in solution is able to dimerize. An extensive thermodynamic characterization of the dimeric and monomeric species of CA-C at different pHs has been carried out by using fluorescence, circular dichroism (CD), absorbance, nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and size-exclusion chromatography (SEC). Thermal and chemical denaturation allowed the determination of the thermodynamic parameters describing the unfolding of both CA-C species. Three reversible thermal transitions were observed, depending on the technique employed. The first one was protein concentration-dependent; it was observed by FTIR and NMR, and consisted of a broad transition occurring between 290 and 315 K; this transition involves dimer dissociation. The second transition (Tm approximately 325 K) was observed by ANS-binding experiments, fluorescence anisotropy, and near-UV CD; it involves partial unfolding of the monomeric species. Finally, absorbance, far-UV CD, and NMR revealed a third transition occurring at Tm approximately 333 K, which involves global unfolding of the monomeric species. Thus, dimer dissociation and monomer unfolding were not coupled. At low pH, CA-C underwent a conformational transition, leading to a species displaying ANS binding, a low CD signal, a red-shifted fluorescence spectrum, and a change in compactness. These features are characteristic of molten globule-like conformations, and they resemble the properties of the second species observed in thermal unfolding.

  14. An extensive thermodynamic characterization of the dimerization domain of the HIV-1 capsid protein

    PubMed Central

    Lidón-Moya, María C.; Barrera, Francisco N.; Bueno, Marta; Pérez-Jiménez, Raúl; Sancho, Javier; Mateu, Mauricio G.; Neira, José L.

    2005-01-01

    The type 1 human immunodeficiency virus presents a conical capsid formed by several hundred units of the capsid protein, CA. Homodimerization of CA occurs via its C-terminal domain, CA-C. This self-association process, which is thought to be pH-dependent, seems to constitute a key step in virus assembly. CA-C isolated in solution is able to dimerize. An extensive thermodynamic characterization of the dimeric and monomeric species of CA-C at different pHs has been carried out by using fluorescence, circular dichroism (CD), absorbance, nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and size-exclusion chromatography (SEC). Thermal and chemical denaturation allowed the determination of the thermodynamic parameters describing the unfolding of both CA-C species. Three reversible thermal transitions were observed, depending on the technique employed. The first one was protein concentration-dependent; it was observed by FTIR and NMR, and consisted of a broad transition occurring between 290 and 315 K; this transition involves dimer dissociation. The second transition (Tm ~ 325 K) was observed by ANS-binding experiments, fluorescence anisotropy, and near-UV CD; it involves partial unfolding of the monomeric species. Finally, absorbance, far-UV CD, and NMR revealed a third transition occurring at Tm ~ 333 K, which involves global unfolding of the monomeric species. Thus, dimer dissociation and monomer unfolding were not coupled. At low pH, CA-C underwent a conformational transition, leading to a species displaying ANS binding, a low CD signal, a red-shifted fluorescence spectrum, and a change in compactness. These features are characteristic of molten globule-like conformations, and they resemble the properties of the second species observed in thermal unfolding. PMID:16131662

  15. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: A strategy for efficient display of large full-length proteins

    SciTech Connect

    Shivachandra, Sathish B.; Rao, Mangala; Janosi, Laszlo; Sathaliyawala, Taheri; Matyas, Gary R.; Alving, Carl R.; Leppla, Stephen H.; Rao, Venigalla B. . E-mail: rao@cua.edu

    2006-02-05

    An in vitro binding system is described to display large full-length proteins on bacteriophage T4 capsid surface at high density. The phage T4 icosahedral capsid features 155 copies of a nonessential highly antigenic outer capsid protein, Hoc, at the center of each major capsid protein hexon. Gene fusions were engineered to express the 83-kDa protective antigen (PA) from Bacillus anthracis fused to the N-terminus of Hoc and the 130-kDa PA-Hoc protein was expressed in Escherichia coli and purified. The purified PA-Hoc was assembled in vitro on hoc {sup -} phage particles. Binding was specific, stable, and of high affinity. This defined in vitro system allowed manipulation of the copy number of displayed PA and imposed no significant limitation on the size of the displayed antigen. In contrast to in vivo display systems, the in vitro approach allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein. The PA-T4 particles were immunogenic in mice in the absence of an adjuvant, eliciting strong PA-specific antibodies and anthrax lethal toxin neutralizing antibodies. The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases.

  16. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    SciTech Connect

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui; Zhang, Jun; Xia, Ning-Shao; Miao, Ji; Zhao, Qinjian

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  17. The Astrovirus Capsid: A Review

    PubMed Central

    Arias, Carlos F.; DuBois, Rebecca M.

    2017-01-01

    Astroviruses are enterically transmitted viruses that cause infections in mammalian and avian species. Astroviruses are nonenveloped, icosahedral viruses comprised of a capsid protein shell and a positive-sense, single-stranded RNA genome. The capsid protein undergoes dramatic proteolytic processing both inside and outside of the host cell, resulting in a coordinated maturation process that affects cellular localization, virus structure, and infectivity. After maturation, the capsid protein controls the initial phases of virus infection, including virus attachment, endocytosis, and genome release into the host cell. The astrovirus capsid is the target of host antibodies including virus-neutralizing antibodies. The capsid protein also mediates the binding of host complement proteins and inhibits complement activation. Here, we will review our knowledge on the astrovirus capsid protein (CP), with particular attention to the recent structural, biochemical, and virological studies that have advanced our understanding of the astrovirus life cycle. PMID:28106836

  18. Early stage P22 viral capsid self-assembly mediated by scaffolding protein: atom-resolved model and molecular dynamics simulation.

    PubMed

    Jiang, Jiajian; Yang, Jing; Sereda, Yuriy V; Ortoleva, Peter J

    2015-04-23

    Molecular dynamics simulation of an atom-resolved bacteriophage P22 capsid model is used to delineate the underlying mechanism of early stage P22 self-assembly. A dimer formed by the C-terminal fragment of scaffolding protein with a new conformation is demonstrated to catalyze capsomer (hexamer and pentamer) aggregation efficiently. Effects of scaffolding protein/coat protein binding patterns and scaffolding protein concentration on efficiency, fidelity, and capsid curvature of P22 self-assembly are identified.

  19. Identification of an immunodominant antigenic site involving the capsid protein VP3 of hepatitis A virus.

    PubMed Central

    Ping, L H; Jansen, R W; Stapleton, J T; Cohen, J I; Lemon, S M

    1988-01-01

    Hepatitis A virus, an hepatotropic picornavirus, is a common cause of acute hepatitis in man for which there is no available vaccine. Competitive binding studies carried out in solid phase suggest that neutralizing monoclonal antibodies to hepatitis A virus recognize a limited number of epitopes on the capsid surface, although the polypeptide locations of these epitopes are not well defined. Neutralization-escape mutants, selected for resistance to monoclonal antibodies, demonstrate broad cross-resistance to other monoclonal antibodies. Sequencing of virion RNA from several of these mutants demonstrated that replacement of aspartic acid residue 70 of capsid protein VP3 (residue 3070) with histidine or alanine confers resistance to neutralization by monoclonal antibody K2-4F2 and prevents binding of this antibody and other antibodies with similar solid-phase competition profiles. These results indicate that residue 3070 contributes to an immunodominant antigenic site. Mutation at residue 102 of VP1 (residue 1102) confers partial resistance against antibody B5-B3 and several other antibodies but does not prevent antibody attachment. Both VP3 and VP1 sites align closely in the linear peptide sequences with sites of neutralization-escape mutations in poliovirus and human rhinovirus, suggesting conservation of structure among these diverse picornaviruses. However, because partial neutralization resistance to several monoclonal antibodies (2D2, 3E1, and B5-B3) was associated with mutation at either residue 3070 or residue 1102, these sites appear more closely related functionally in hepatitis A virus than in these other picornaviruses. PMID:2460866

  20. Antigenic characteristics of the complete and truncated capsid protein VP1 of enterovirus 71.

    PubMed

    Zhang, Jianhua; Dong, Min; Jiang, Bingfu; Dai, Xing; Meng, Jihong

    2012-08-01

    The complete VP1 protein of enterovirus 71 (EV71) and a series of truncations were expressed in Escherichia coli and their antigenic characteristics were studied. Immunoblot analysis showed the major immunoreactive region of the VP1 protein was located in the N-terminal portion at position of amino acid (aa) 1-100. The complete VP1 possessed strong cross-reactivity with antisera against coxsackievirus A16 (CA16) and echovirus 6 (Echo6), while the truncated fragment at position 1-100 aa only had weak cross-reactivity. Moreover, an EV71-specific linear epitope at position 94-105 aa was identified using two EV71-specific mAbs (2B9 and 5B7) with indirect ELISA, but could not be recognized by antibodies against EV71 virus particles. The complete and all of truncated VP1 proteins except His-VP1(202-297) and GST-VP1(202-248) failed to elicit a significant neutralizing antibody response in mice. His-VP1(202-297) and GST-VP1(202-248) containing neutralizing epitope(s) could be recognized only by anti-EV71 mouse sera but not rabbit or human sera. These findings may contribute to a further understanding of antigenic characteristics of the capsid protein VP1 and may be helpful to the development of diagnostic reagents and vaccines.

  1. Epitope analysis of capsid and matrix proteins of North American ovine lentivirus field isolates.

    PubMed Central

    Marcom, K A; Pearson, L D; Chung, C S; Poulson, J M; DeMartini, J C

    1991-01-01

    Monoclonal antibodies (MAbs) directed against two phenotypically distinct ovine lentivirus (OvLV) strains were generated by fusion of BALB/c SP2/0-Ag 14 myeloma cells with spleen cells from mice immunized with purified OvLV. Hybridomas were selected by indirect enzyme-linked immunosorbent assay (ELISA) and analysis of reactivity on immunoblots. The majority (17 of 21) of the MAbs recognized the gag-encoded capsid protein, CA p27, of both strains. Four other MAbs recognized a smaller structural protein, presumably a matrix protein, MA p17. Three distinct epitopes on CA p27 and one on MA p17 were distinguished by the MAbs with competition ELISA. MAbs from each epitope group were able to recognize 17 North American field isolates of OvLV and the closely related caprine arthritis-encephalitis virus (CAEV). Analysis of the data indicated that these epitopes were highly conserved among naturally occurring isolates. A representative MAb from each epitope group of anti-CA p27 MAbs reacted with four field strains of OvLV and CAEV on immunoblots. An anti-MA p17 MAb recognized the same OvLV strains on immunoblots but failed to recognize CAEV. MAbs which recognize conserved epitopes of gag-encoded lentivirus proteins (CA p27 and MA p17) are valuable tools. These MAbs can be used to develop sensitive diagnostic assays and to study the pathogenesis of lentivirus infections in sheep and goats. Images PMID:1715884

  2. Several recombinant capsid proteins of equine rhinitis a virus show potential as diagnostic antigens.

    PubMed

    Li, Fan; Stevenson, Rachel A; Crabb, Brendan S; Studdert, Michael J; Hartley, Carol A

    2005-06-01

    Equine rhinitis A virus (ERAV) is a significant pathogen of horses and is also closely related to Foot-and-mouth disease virus (FMDV). Despite these facts, knowledge of the prevalence and importance of ERAV infections remains limited, largely due to the absence of a simple, robust diagnostic assay. In this study, we compared the antigenicities of recombinant full-length and fragmented ERAV capsid proteins expressed in Escherichia coli by using sera from experimentally infected and naturally exposed horses. We found that, from the range of antigens tested, recombinant proteins encompassing the C-terminal region of VP1, full-length VP2, and the N-terminal region of VP2 reacted specifically with antibodies present in sera from each of the five experimentally infected horses examined. Antibodies to epitopes on VP2 (both native and recombinant forms) persisted longer postinfection (>105 days) than antibodies specific for epitopes on other fragments. Our data also suggest that B-cell epitopes within the C terminus of VP1 and N terminus of VP2 contribute to a large proportion of the total reactivity of recombinant VP1 and VP2, respectively. Importantly, the reactivity of these VP1 and VP2 recombinant proteins in enzyme-linked immunosorbent assays (ELISAs) correlated well with the results from a range of native antigen-based serological assays using sera from 12 field horses. This study provides promising candidates for development of a diagnostic ERAV ELISA.

  3. Properties of African Cassava Mosaic Virus Capsid Protein Expressed in Fission Yeast

    PubMed Central

    Hipp, Katharina; Schäfer, Benjamin; Kepp, Gabi; Jeske, Holger

    2016-01-01

    The capsid proteins (CPs) of geminiviruses combine multiple functions for packaging the single-stranded viral genome, insect transmission and shuttling between the nucleus and the cytoplasm. African cassava mosaic virus (ACMV) CP was expressed in fission yeast, and purified by SDS gel electrophoresis. After tryptic digestion of this protein, mass spectrometry covered 85% of the amino acid sequence and detected three N-terminal phosphorylation sites (threonine 12, serines 25 and 62). Differential centrifugation of cell extracts separated the CP into two fractions, the supernatant and pellet. Upon isopycnic centrifugation of the supernatant, most of the CP accumulated at densities typical for free proteins, whereas the CP in the pellet fraction showed a partial binding to nucleic acids. Size-exclusion chromatography of the supernatant CP indicated high order complexes. In DNA binding assays, supernatant CP accelerated the migration of ssDNA in agarose gels, which is a first hint for particle formation. Correspondingly, CP shifted ssDNA to the expected densities of virus particles upon isopycnic centrifugation. Nevertheless, electron microscopy did not reveal any twin particles, which are characteristic for geminiviruses. PMID:27399762

  4. Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris

    PubMed Central

    Bazan, Silvia Boschi; de Alencar Muniz Chaves, Agtha; Aires, Karina Araújo; Cianciarullo, Aurora Marques; Garcea, Robert L.; Ho, Paulo Lee

    2013-01-01

    Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin–sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines. PMID:19756360

  5. Differential expression of two isolates of beak and feather disease virus capsid protein in Escherichia coli.

    PubMed

    Patterson, Edward I; Swarbrick, Crystall M D; Roman, Noelia; Forwood, Jade K; Raidal, Shane R

    2013-04-01

    Expression of recombinant beak and feather disease virus (BFDV) capsid-associated protein (Cap) has relied on inefficient techniques that typically produce low yields or use specialized expression systems, which greatly increase the cost and expertise required for mass production. An Escherichia coli system was used to express recombinant BFDV Cap derived from two isolates of BFDV, from a Long-billed Corella (Cacatua tenuirostris) and an Orange-bellied parrot (OBP; Neophema chrysogaster). Purification by affinity and size exclusion chromatography was optimized through an iterative process involving screening and modification of buffer constituents and pH. A buffer containing glycerol, β-mercaptoethanol, Triton X-100, and a high concentration of NaCl at pH 8 was used to increase solubility of the protein. The final concentration of the corella-isolated BFDV protein was fifteen- to twenty-fold greater than that produced in previous publications using E. coli expression systems. Immunoassays were used to confirm the specific antigenicity of recombinant Cap, verifying its validity for use in continued experimentation as a potential vaccine, a reagent in diagnostic assays, and as a concentrated sample for biological discoveries.

  6. Crystal Structure of the Avian Reovirus Inner Capsid Protein σA▿

    PubMed Central

    Guardado-Calvo, Pablo; Vazquez-Iglesias, Lorena; Martinez-Costas, José; Llamas-Saiz, Antonio L.; Schoehn, Guy; Fox, Gavin C.; Hermo-Parrado, X. Lois; Benavente, Javier; van Raaij, Mark J.

    2008-01-01

    Avian reovirus, an important avian pathogen, expresses eight structural and four nonstructural proteins. The structural σA protein is a major component of the inner capsid, clamping together λA building blocks. σA has also been implicated in the resistance of avian reovirus to the antiviral action of interferon by strongly binding double-stranded RNA in the host cell cytoplasm and thus inhibiting activation of the double-stranded RNA-dependent protein kinase. We have solved the structure of bacterially expressed σA by molecular replacement and refined it using data to 2.3-Å resolution. Twelve σA molecules are present in the P1 unit cell, arranged as two short double helical hexamers. A positively charged patch is apparent on the surface of σA on the inside of this helix and mutation of either of two key arginine residues (Arg155 and Arg273) within this patch abolishes double-stranded RNA binding. The structural data, together with gel shift assay, electron microscopy, and sedimentation velocity centrifugation results, provide evidence for cooperative binding of σA to double-stranded RNA. The minimal length of double-stranded RNA required for σA binding was observed to be 14 to 18 bp. PMID:18799570

  7. Rubella virus capsid protein modulation of viral genomic and subgenomic RNA synthesis

    SciTech Connect

    Tzeng, W.-P.; Frey, Teryl K. . E-mail: tfrey@gsu.edu

    2005-07-05

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis and showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA.

  8. Structural Basis for the Development of Avian Virus Capsids That Display Influenza Virus Proteins and Induce Protective Immunity

    PubMed Central

    Pascual, Elena; Mata, Carlos P.; Gómez-Blanco, Josué; Moreno, Noelia; Bárcena, Juan; Blanco, Esther; Rodríguez-Frandsen, Ariel; Nieto, Amelia

    2014-01-01

    ABSTRACT Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ∼70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an amphipathic α helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, 466-residue pVP2 intermediates bearing this α helix assemble into genuine VLPs only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for protein insertion, as they are large enough (cargo space, ∼78,000 nm3) and are assembled from a single protein. We explored HT-VP2-466-based chimeric capsids initially using enhanced green fluorescent protein (EGFP). The VLP assembly yield was efficient when we coexpressed EGFP-HT-VP2-466 and HT-VP2-466 from two recombinant baculoviruses. The native EGFP structure (∼240 copies/virion) was successfully inserted in a functional form, as VLPs were fluorescent, and three-dimensional cryo-electron microscopy showed that the EGFP molecules incorporated at the inner capsid surface. Immunization of mice with purified EGFP-VLPs elicited anti-EGFP antibodies. We also inserted hemagglutinin (HA) and matrix (M2) protein epitopes derived from the mouse-adapted A/PR/8/34 influenza virus and engineered several HA- and M2-derived chimeric capsids. Mice immunized with VLPs containing the HA stalk, an M2 fragment, or both antigens developed full protection against viral challenge. IMPORTANCE Virus-like particles (VLPs) are multimeric protein cages that mimic the infectious virus capsid and are potential candidates as nonliving vaccines that induce long-lasting protection. Chimeric VLPs can display

  9. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus.

    PubMed

    Nandhagopal, Narayanasamy; Simpson, Alan A; Gurnon, James R; Yan, Xiadong; Baker, Timothy S; Graves, Michael V; Van Etten, James L; Rossmann, Michael G

    2002-11-12

    Paramecium bursaria Chlorella virus type 1 (PBCV-1) is a very large, icosahedral virus containing an internal membrane enclosed within a glycoprotein coat consisting of pseudohexagonal arrays of trimeric capsomers. Each capsomer is composed of three molecules of the major capsid protein, Vp54, the 2.0-A resolution structure of which is reported here. Four N-linked and two O-linked glycosylation sites were identified. The N-linked sites are associated with nonstandard amino acid motifs as a result of glycosylation by virus-encoded enzymes. Each monomer of the trimeric structure consists of two eight-stranded, antiparallel beta-barrel, "jelly-roll" domains related by a pseudo-sixfold rotation. The fold of the monomer and the pseudo-sixfold symmetry of the capsomer resembles that of the major coat proteins in the double-stranded DNA bacteriophage PRD1 and the double-stranded DNA human adenoviruses, as well as the viral proteins VP2-VP3 of picornaviruses. The structural similarities among these diverse groups of viruses, whose hosts include bacteria, unicellular eukaryotes, plants, and mammals, make it probable that their capsid proteins have evolved from a common ancestor that had already acquired a pseudo-sixfold organization. The trimeric capsid protein structure was used to produce a quasi-atomic model of the 1,900-A diameter PBCV-1 outer shell, based on fitting of the Vp54 crystal structure into a three-dimensional cryoelectron microscopy image reconstruction of the virus.

  10. Identification of a nuclear localization sequence in the polyomavirus capsid protein VP2

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the C-terminal (Glu307-Glu-Asp-Gly-Pro-Gln-Lys-Lys-Lys-Arg-Arg-Leu318) amino acid sequence of the polyomavirus minor capsid protein VP2. The importance of this amino acid sequence for nuclear transport of newly synthesized VP2 was demonstrated by a genetic "subtractive" study using the constructs pSG5VP2 (expressing full-length VP2) and pSG5 delta 3VP2 (expressing truncated VP2, lacking amino acids Glu307-Leu318). These constructs were transfected into COS-7 cells, and the intracellular localization of the VP2 protein was determined by indirect immunofluorescence. These studies revealed that the full-length VP2 was localized in the nucleus, while the truncated VP2 protein was localized in the cytoplasm and not transported to the nucleus. A biochemical "additive" approach was also used to determine whether this sequence could target nonnuclear proteins to the nucleus. A synthetic peptide identical to VP2 amino acids Glu307-Leu318 was cross-linked to the nonnuclear proteins bovine serum albumin (BSA) or immunoglobulin G (IgG). The conjugates were then labeled with fluorescein isothiocyanate and microinjected into the cytoplasm of NIH 3T6 cells. Both conjugates localized in the nucleus of the microinjected cells, whereas unconjugated BSA and IgG remained in the cytoplasm. Taken together, these genetic subtractive and biochemical additive approaches have identified the C-terminal sequence of polyoma-virus VP2 (containing amino acids Glu307-Leu318) as the NLS of this protein.

  11. Synthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein

    PubMed Central

    Bugli, Francesca; Caprettini, Valeria; Cacaci, Margherita; Martini, Cecilia; Paroni Sterbini, Francesco; Torelli, Riccardo; Della Longa, Stefano; Papi, Massimiliano; Palmieri, Valentina; Giardina, Bruno; Posteraro, Brunella; Sanguinetti, Maurizio; Arcovito, Alessandro

    2014-01-01

    In order to deliver low-cost viral capsomeres from a large amount of soluble viral VP6 protein from human rotavirus, we developed and optimized a biotechnological platform in Escherichia coli. Specifically, three different expression protocols were compared, differing in their genetic constructs, ie, a simple native histidine-tagged VP6 sequence, VP6 fused to thioredoxin, and VP6 obtained with the newly described small ubiquitin-like modifier (SUMO) fusion system. Our results demonstrate that the histidine-tagged protein does not escape the accumulation in the inclusion bodies, and that SUMO is largely superior to the thioredoxin-fusion tag in enhancing the expression and solubility of VP6 protein. Moreover, the VP6 protein produced according to the SUMO fusion tag displays well-known assembly properties, as observed in both transmission electron microscopy and atomic force microscopy images, giving rise to either VP6 trimers, 60 nm spherical virus-like particles, or nanotubes a few microns long. This different quaternary organization of VP6 shows a higher level of immunogenicity for the elongated structures with respect to the spheres or the protein trimers. Therefore, the expression and purification strategy presented here – providing a large amount of the viral capsid protein in the native form with relatively simple, rapid, and economical procedures – opens a new route toward large-scale production of a more efficient antigenic compound to be used as a vaccination tool or as an adjuvant, and also represents a top-quality biomaterial to be further modified for biotechnological purposes. PMID:24936129

  12. Self-assembly in the carboxysome: a viral capsid-like protein shell in bacterial cells.

    PubMed

    Yeates, T O; Tsai, Y; Tanaka, S; Sawaya, M R; Kerfeld, C A

    2007-06-01

    Many proteins self-assemble to form large supramolecular complexes. Numerous examples of these structures have been characterized, ranging from spherical viruses to tubular protein assemblies. Some new kinds of supramolecular structures are just coming to light, while it is likely there are others that have not yet been discovered. The carboxysome is a subcellular structure that has been known for more than 40 years, but whose structural and functional details are just now emerging. This giant polyhedral body is constructed as a closed shell assembled from several thousand protein subunits. Within this protein shell, the carboxysome encapsulates the CO(2)-fixing enzymes, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and carbonic anhydrase; this arrangement enhances the efficiency of cellular CO(2) fixation. The carboxysome is present in many photosynthetic and chemoautotrophic bacteria, and so plays an important role in the global carbon cycle. It also serves as the prototypical member of what appears to be a large class of primitive protein-based organelles in bacteria. A series of crystal structures is beginning to reveal the secrets of how the carboxysome is assembled and how it enhances the efficiency of CO(2) fixation. Some of the assembly principles revealed in the carboxysome are reminiscent of those seen in icosahedral viral capsids. In addition, the shell appears to be perforated by pores for metabolite transport into and out of the carboxysome, suggesting comparisons to the pores through oligomeric transmembrane proteins, which serve to transport small molecules across the membrane bilayers of cells and eukaryotic organelles.

  13. Understanding dengue virus capsid protein disordered N-Terminus and pep14-23-based inhibition.

    PubMed

    Faustino, André F; Guerra, Gabriela M; Huber, Roland G; Hollmann, Axel; Domingues, Marco M; Barbosa, Glauce M; Enguita, Francisco J; Bond, Peter J; Castanho, Miguel A R B; Da Poian, Andrea T; Almeida, Fabio C L; Santos, Nuno C; Martins, Ivo C

    2015-02-20

    Dengue virus (DENV) infection affects millions of people and is becoming a major global disease for which there is no specific available treatment. pep14-23 is a recently designed peptide, based on a conserved segment of DENV capsid (C) protein. It inhibits the interaction of DENV C with host intracellular lipid droplets (LDs), which is crucial for viral replication. Combining bioinformatics and biophysics, here, we analyzed pep14-23 structure and ability to bind different phospholipids, relating that information with the full-length DENV C. We show that pep14-23 acquires α-helical conformation upon binding to negatively charged phospholipid membranes, displaying an asymmetric charge distribution structural arrangement. Structure prediction for the N-terminal segment reveals four viable homodimer orientations that alternatively shield or expose the DENV C hydrophobic pocket. Taken together, these findings suggest a new biological role for the disordered N-terminal region, which may function as an autoinhibitory domain mediating DENV C interaction with its biological targets. The results fit with our current understanding of DENV C and pep14-23 structure and function, paving the way for similar approaches to understanding disordered proteins and improved peptidomimetics drug development strategies against DENV and similar Flavivirus infections.

  14. Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli.

    PubMed

    Hammond, Rosemarie W; Hammond, John

    2010-02-01

    Maize rayado fino virus (MRFV; genus Marafivirus; family Tymoviridae) is an isometric plant virus of 30 nm containing two components: empty shells and complete virus particles (encapsidating the 6.3 kb genomic RNA). Both particles are composed of two serologically related, carboxy co-terminal, coat proteins (CP) of apparent molecular mass 21-22 kDa (CP2) and 24-28 kDa (CP1) in a molar ratio of 3:1, respectively; CP1 contains a 37 amino acid amino terminal extension of CP2. In our study, expression of CP1 or CP2 in Escherichia coli resulted in assembly of each capsid protein into virus-like particles (VLPs), appearing in electron microscopy as stain-permeable (CP2) or stain-impermeable particles (CP1). CP1 VLPs encapsidated bacterial 16S ribosomal RNA, but not CP mRNA, while CP2 VLPs encapsidated neither CP mRNA nor 16S ribosomal RNA. Expression of CP1 and CP2 in E. coli using a co-expression vector resulted in the assembly of VLPs which were stain-impermeable and encapsidated CP mRNA. These results suggest that the N-terminal 37 amino acid residues of CP1, although not required for particle formation, may be involved in the assembly of complete virions and that the presence of both CP1 and CP2 in the particle is required for specific encapsidation of MRFV CP mRNA.

  15. The T=1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication.

    PubMed

    Luque, Daniel; González, José M; Garriga, Damiá; Ghabrial, Said A; Havens, Wendy M; Trus, Benes; Verdaguer, Nuria; Carrascosa, José L; Castón, José R

    2010-07-01

    Penicillium chrysogenum virus (PcV), a member of the Chrysoviridae family, is a double-stranded RNA (dsRNA) fungal virus with a multipartite genome, with each RNA molecule encapsidated in a separate particle. Chrysoviruses lack an extracellular route and are transmitted during sporogenesis and cell fusion. The PcV capsid, based on a T=1 lattice containing 60 subunits of the 982-amino-acid capsid protein, remains structurally undisturbed throughout the viral cycle, participates in genome metabolism, and isolates the virus genome from host defense mechanisms. Using three-dimensional cryoelectron microscopy, we determined the structure of the PcV virion at 8.0 A resolution. The capsid protein has a high content of rod-like densities characteristic of alpha-helices, forming a repeated alpha-helical core indicative of gene duplication. Whereas the PcV capsid protein has two motifs with the same fold, most dsRNA virus capsid subunits consist of dimers of a single protein with similar folds. The spatial arrangement of the alpha-helical core resembles that found in the capsid protein of the L-A virus, a fungal totivirus with an undivided genome, suggesting a conserved basic fold. The encapsidated genome is organized in concentric shells; whereas the inner dsRNA shells are well defined, the outermost layer is dense due to numerous interactions with the inner capsid surface, specifically, six interacting areas per monomer. The outermost genome layer is arranged in an icosahedral cage, sufficiently well ordered to allow for modeling of an A-form dsRNA. The genome ordering might constitute a framework for dsRNA transcription at the capsid interior and/or have a structural role for capsid stability.

  16. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    SciTech Connect

    Poulin, Kathy L.; Tong, Grace; Vorobyova, Olga; Pool, Madeline; Kothary, Rashmi; Parks, Robin J.

    2011-11-25

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: > We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. > Cre/loxP recombination was used to modify the adenovirus genome. > A targeting ligand present on capsid protein IX was removed or replaced using recombination. > Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  17. Identification of an antigenic domain in the N-terminal region of avian hepatitis E virus (HEV) capsid protein that is not common to swine and human HEVs.

    PubMed

    Wang, Lizhen; Sun, Yani; Du, Taofeng; Wang, Chengbao; Xiao, Shuqi; Mu, Yang; Zhang, Gaiping; Liu, Lihong; Widén, Frederik; Hsu, Walter H; Zhao, Qin; Zhou, En-Min

    2014-12-01

    The antigenic domains located in the C-terminal 268 amino acid residues of avian hepatitis E virus (HEV) capsid protein have been characterized. This region shares common epitopes with swine and human HEVs. However, epitopes in the N-terminal 338 amino acid residues have never been reported. In this study, an antigenic domain located between amino acids 23 and 85 was identified by indirect ELISA using the truncated recombinant capsid proteins as coating antigens and anti-avian HEV chicken sera as primary antibodies. In addition, this domain did not react with anti-swine and human HEV sera. These results indicated that the N-terminal 338 amino acid residues of avian HEV capsid protein do not share common epitopes with swine and human HEVs. This finding is important for our understanding of the antigenicity of the avian HEV capsid protein. Furthermore, it has important implications in the selection of viral antigens for serological diagnosis.

  18. Human Papillomavirus E2 Regulates SRSF3 (SRp20) To Promote Capsid Protein Expression in Infected Differentiated Keratinocytes

    PubMed Central

    Klymenko, T.; Hernandez-Lopez, H.; MacDonald, A. I.; Bodily, J. M.

    2016-01-01

    ABSTRACT The human papillomavirus (HPV) life cycle is tightly linked to differentiation of the infected epithelial cell, suggesting a sophisticated interplay between host cell metabolism and virus replication. Previously, we demonstrated in differentiated keratinocytes in vitro and in vivo that HPV type 16 (HPV16) infection caused increased levels of the cellular SR splicing factors (SRSFs) SRSF1 (ASF/SF2), SRSF2 (SC35), and SRSF3 (SRp20). Moreover, the viral E2 transcription and replication factor that is expressed at high levels in differentiating keratinocytes could bind and control activity of the SRSF1 gene promoter. Here, we show that the E2 proteins of HPV16 and HPV31 control the expression of SRSFs 1, 2, and 3 in a differentiation-dependent manner. E2 has the greatest transactivation effect on expression of SRSF3. Small interfering RNA depletion experiments in two different models of the HPV16 life cycle (W12E and NIKS16) and one model of the HPV31 life cycle (CIN612-9E) revealed that only SRSF3 contributed significantly to regulation of late events in the virus life cycle. Increased levels of SRSF3 are required for L1 mRNA and capsid protein expression. Capsid protein expression was regulated specifically by SRSF3 and appeared independent of other SRSFs. Taken together, these data suggest a significant role of the HPV E2 protein in regulating late events in the HPV life cycle through transcriptional regulation of SRSF3 expression. IMPORTANCE Human papillomavirus replication is accomplished in concert with differentiation of the infected epithelium. Virus capsid protein expression is confined to the upper epithelial layers so as to avoid immune detection. In this study, we demonstrate that the viral E2 transcription factor activates the promoter of the cellular SRSF3 RNA processing factor. SRSF3 is required for expression of the E4^L1 mRNA and so controls expression of the HPV L1 capsid protein. Thus, we reveal a new dimension of virus-host interaction

  19. Detention of HPV L1 Capsid Protein and hTERC Gene in Screening of Cervical Cancer

    PubMed Central

    Bin, Huang; Ruifang, Wu; Ruizhen, Li; Yiheng, Liang; Zhihong, Liu; Juan, Li; Chun, Wang; Yanqiu, Zhou; Leiming, Weng

    2013-01-01

    Objective(s): To investigate the expression of human papilloma virus (HPV) L1 capsid protein, and human telomerase RNA component (hTERC) in cervical cancer and the role of detection of both genes in screening of cervical cancer. Materials and Methods: A total of 309 patients were recruited and cervical exfoliated cells were collected. Immunocytochemistry was employed to detect HPV L1 capsid protein, and fluorescent in situ hybridization (FISH) was performed to detect the hTERC. Results: The expression of HPV L1 capsid protein reduced with the increase of the histological grade of cervical cells and was negatively related to the grade of cervical lesions. However, the expression of hTERC increased with the increase of the histological grade and positively associated with the grade of cervical lesions. The proportion of patients with L1(-)/hTERC(+) was higher in patients with histological grade of CIN2 or higher than that in those with histological grade of CIN1. The L1(+)/hTERC(-) and L1(-)/hTERC(-) were negatively related to the grade of cervical lesions. L1(-)/hTERC(+) was positively associated with the grade of cervical lesions. The L1/hTERC ratio increased. The negative predictive value of both HPV L1 and hTERC was higher than that of HPV L1 or hTERC, but there was no marked difference in the screening efficacy of cervical cancer among HPV L1, hTERC and HPV L1+hTERC. Conclusion: HPV L1 capsid protein and hTERC gene may serve as markers for the early diagnosis and prediction of cervical lesions. The increase in L1/hTERC ratio reflects the progression of cervical lesions to a certain extent. PMID:23997907

  20. Analogs of LDL Receptor Ligand Motifs in Dengue Envelope and Capsid Proteins as Potential Codes for Cell Entry.

    PubMed

    Guevara, Juan; Romo, Jamie; McWhorter, Troy; Guevara, Natalia Valentinova

    It is established that cell entry of low density lipoprotein particles (LLPs) containing Apo B100 and Apo E is mediated by receptors and GAGs. Receptor ligand motifs, XBBBXXBX, XBBXBX, and ΨBΨXB, and mono- and bipartite NLS sequences are abundant in Apo E and Apo B100 as well as in envelope and capsid proteins of Dengue viruses 1-4 (DENV1-4). Synthetic, fluorescence-labeled peptides of sequences in DENV2 envelope protein, and DENV3 capsid that include these motifs were used to conduct a qualitative assessment of cell binding and entry capacity using HeLa cells. DENV2 envelope peptide, Dsp2EP, (0564)Gly-Gly(0595), was shown to bind and remain at the cell surface. In contrast, DENV3 capsid protein peptide, Dsp3CP, (0002)Asn-Gln(0028), readily enters HeLa cells and accumulates at discrete loci in the nucleus. FITC-labeled dengue synthetic peptides colocalize with Low Density Lipoprotein-CM-DiI and Apo E-CM-DiI to a degree that suggests that Dengue viruses may utilize cell entry pathways used by LLPs.

  1. Analogs of LDL Receptor Ligand Motifs in Dengue Envelope and Capsid Proteins as Potential Codes for Cell Entry

    PubMed Central

    Guevara, Juan; Romo, Jamie; McWhorter, Troy; Guevara, Natalia Valentinova

    2016-01-01

    It is established that cell entry of low density lipoprotein particles (LLPs) containing Apo B100 and Apo E is mediated by receptors and GAGs. Receptor ligand motifs, XBBBXXBX, XBBXBX, and ΨBΨXB, and mono- and bipartite NLS sequences are abundant in Apo E and Apo B100 as well as in envelope and capsid proteins of Dengue viruses 1–4 (DENV1–4). Synthetic, fluorescence-labeled peptides of sequences in DENV2 envelope protein, and DENV3 capsid that include these motifs were used to conduct a qualitative assessment of cell binding and entry capacity using HeLa cells. DENV2 envelope peptide, Dsp2EP, 0564Gly-Gly0595, was shown to bind and remain at the cell surface. In contrast, DENV3 capsid protein peptide, Dsp3CP, 0002Asn-Gln0028, readily enters HeLa cells and accumulates at discrete loci in the nucleus. FITC-labeled dengue synthetic peptides colocalize with Low Density Lipoprotein-CM-DiI and Apo E-CM-DiI to a degree that suggests that Dengue viruses may utilize cell entry pathways used by LLPs. PMID:27123468

  2. Systemic injection of AAV9-GDNF provides modest functional improvements in the SOD1(G93A) ALS rat but has adverse side effects.

    PubMed

    Thomsen, G M; Alkaslasi, M; Vit, J-P; Lawless, G; Godoy, M; Gowing, G; Shelest, O; Svendsen, C N

    2017-03-09

    Injecting proteins into the central nervous system that stimulate neuronal growth can lead to beneficial effects in animal models of disease. In particular, glial cell line-derived neurotrophic factor (GDNF) has shown promise in animal and cell models of Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis (ALS). Here, systemic AAV9-GDNF was delivered via tail vein injections to young rats to determine whether this could be a safe and functional strategy to treat the SOD1(G93A) rat model of ALS and, therefore, translated to a therapy for ALS patients. We found that GDNF administration in this manner resulted in modest functional improvement, whereby grip strength was maintained for longer and the onset of forelimb paralysis was delayed compared to non-treated rats. This did not, however, translate into an extension in survival. In addition, ALS rats receiving GDNF exhibited slower weight gain, reduced activity levels and decreased working memory. Collectively, these results confirm that caution should be applied when applying growth factors such as GDNF systemically to multiple tissues.Gene Therapy advance online publication, 9 March 2017; doi:10.1038/gt.2017.9.

  3. Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy.

    PubMed

    Armbruster, Nicole; Lattanzi, Annalisa; Jeavons, Matthieu; Van Wittenberghe, Laetitia; Gjata, Bernard; Marais, Thibaut; Martin, Samia; Vignaud, Alban; Voit, Thomas; Mavilio, Fulvio; Barkats, Martine; Buj-Bello, Ana

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery.

  4. Nuclear import strategies of high-risk HPV18 L2 minor capsid protein

    SciTech Connect

    Klucevsek, K.; Daley, J.; Darshan, M.S.; Bordeaux, J.; Moroianu, J. . E-mail: moroianu@bc.edu

    2006-08-15

    We have investigated the nuclear import strategies of high-risk HPV18 L2 minor capsid protein. HPV18 L2 interacts with Kap {alpha}{sub 2} adapter, and Kap {beta}{sub 2} and Kap {beta}{sub 3} nuclear import receptors. Moreover, binding of RanGTP to either Kap {beta}{sub 2} or Kap {beta}{sub 3} inhibits their interaction with L2, suggesting that these Kap {beta}/L2 complexes are import competent. Mapping studies show that HPV18 L2 contains two NLSs: in the N-terminus (nNLS) and in the C-terminus (cNLS), both of which can independently mediate nuclear import. Both nNLS and cNLS form a complex with Kap {alpha}{sub 2}{beta}{sub 1} heterodimer and mediate nuclear import via a classical pathway. The nNLS is also essential for the interaction of HPV18 L2 with Kap {beta}{sub 2} and Kap {beta}{sub 3}. Interestingly, both nNLS and cNLS interact with the viral DNA and this DNA binding occurs without nucleotide sequence specificity. Together, the data suggest that HPV18 L2 can interact via its NLSs with several Kaps and the viral DNA and may enter the nucleus via multiple import pathways mediated by Kap {alpha}{sub 2}{beta}{sub 1} heterodimers, Kap {beta}{sub 2} and Kap {beta}{sub 3}.

  5. Genetic identification of multiple biological roles associated with the capsid protein of satellite panicum mosaic virus.

    PubMed

    Qiu, W; Scholthof, K B

    2001-01-01

    Satellite panicum mosaic virus (SPMV), an 824-nucleotide, positive-sense, single-stranded RNA virus, depends on Panicum mosaic virus (PMV) for replication and spread in host plants. Compared with PMV infection alone, symptoms are intensified and develop faster on millet plants infected with SPMV and PMV. SPMV encodes a 157 amino acid capsid protein (CP) (17.5 kDa) to encapsidate SPMV RNA and form T = 1 satellite virions. The present study identifies additional biological activities of the SPMV CP, including the induction of severe chlorosis on proso millet plants (Panicum miliaceum cv. Sunup or Red Turghai). Initial deletion mutagenesis experiments mapped the chlorosis-inducing domain to amino acids 50 to 157 on the C-terminal portion of the SPMV CP. More defined analyses revealed that amino acids 124 to 135 comprised a critical domain associated with chlorosis induction and virion formation, whereas the extreme C-terminal residues 148 to 157 were not strictly essential for either role. The results also demonstrated that the absence of SPMV CP tended to stimulate the accumulation of defective RNAs. This suggests that the SPMV CP plays a significant role in maintaining the structural integrity of the full-length satellite virus RNA and harbors multiple functions associated with pathogenesis in SPMV-infected host plants.

  6. Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11.

    PubMed

    Earley, Lauriel F; Powers, John M; Adachi, Kei; Baumgart, Joshua T; Meyer, Nancy L; Xie, Qing; Chapman, Michael S; Nakai, Hiroyuki

    2017-02-01

    Adeno-associated virus (AAV) vectors have made great progress in their use for gene therapy; however, fundamental aspects of AAV's capsid assembly remain poorly characterized. In this regard, the discovery of assembly-activating protein (AAP) sheds new light on this crucial part of AAV biology and vector production. Previous studies have shown that AAP is essential for assembly; however, how its mechanistic roles in assembly might differ among AAV serotypes remains uncharacterized. Here, we show that biological properties of AAPs and capsid assembly processes are surprisingly distinct among AAV serotypes 1 to 12. In the study, we investigated subcellular localizations and assembly-promoting functions of AAP1 to -12 (i.e., AAPs derived from AAV1 to -12, respectively) and examined the AAP dependence of capsid assembly processes of these 12 serotypes using combinatorial approaches that involved immunofluorescence and transmission electron microscopy, barcode-Seq (i. e., a high-throughput quantitative method using DNA barcodes and a next-generation sequencing technology), and quantitative dot blot assays. This study revealed that AAP1 to -12 are all localized in the nucleus with serotype-specific differential patterns of nucleolar association; AAPs and assembled capsids do not necessarily colocalize; AAPs are promiscuous in promoting capsid assembly of other serotypes, with the exception of AAP4, -5, -11, and -12; assembled AAV5, -8, and -9 capsids are excluded from the nucleolus, in contrast to the nucleolar enrichment of assembled AAV2 capsids; and, surprisingly, AAV4, -5, and -11 capsids are not dependent on AAP for assembly. These observations highlight the serotype-dependent heterogeneity of the capsid assembly process and challenge current notions about the role of AAP and the nucleolus in capsid assembly.

  7. Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity.

    PubMed

    Yang, Su-Lin; Chou, Ying-Ting; Wu, Cheng-Nan; Ho, Mei-Shang

    2011-11-01

    Enterovirus type 71 (EV71) causes hand, foot, and mouth disease (HFMD), which is mostly self-limited but may be complicated with a severe to fatal neurological syndrome in some children. Understanding the molecular basis of virus-host interactions might help clarify the largely unknown neuropathogenic mechanisms of EV71. In this study, we showed that human annexin II (Anx2) protein could bind to the EV71 virion via the capsid protein VP1. Either pretreatment of EV71 with soluble recombinant Anx2 or pretreatment of host cells with an anti-Anx2 antibody could result in reduced viral attachment to the cell surface and a reduction of the subsequent virus yield in vitro. HepG2 cells, which do not express Anx2, remained permissive to EV71 infection, though the virus yield was lower than that for a cognate lineage expressing Anx2. Stable transfection of plasmids expressing Anx2 protein into HepG2 cells (HepG2-Anx2 cells) could enhance EV71 infectivity, with an increased virus yield, especially at a low infective dose, and the enhanced infectivity could be reversed by pretreating HepG2-Anx2 cells with an anti-Anx2 antibody. The Anx2-interacting domain was mapped by yeast two-hybrid analysis to VP1 amino acids 40 to 100, a region different from the known receptor binding domain on the surface of the picornavirus virion. Our data suggest that binding of EV71 to Anx2 on the cell surface can enhance viral entry and infectivity, especially at a low infective dose.

  8. Identification of two neutralization epitopes on the capsid protein of avian hepatitis E virus.

    PubMed

    Zhou, E-M; Guo, H; Huang, F F; Sun, Z F; Meng, X J

    2008-02-01

    Avian hepatitis E virus (avian HEV) is genetically and antigenically related to human HEV, the causative agent of hepatitis E. To identify the neutralizing epitopes on the capsid (ORF2) protein of avian HEV, four mAbs (7B2, 1E11, 10A2 and 5G10) against recombinant avian HEV ORF2 protein were generated. mAbs 7B2, 1E11 and 10A2 blocked each other for binding to avian HEV ORF2 protein in a competitive ELISA, whereas 5G10 did not block the other mAbs, suggesting that 7B2, 1E11 and 10A2 recognize the same or overlapping epitopes and 5G10 recognizes a different one. The epitopes recognized by 7B2, 1E11 and 10A2, and by 5G10 were mapped by Western blotting between aa 513 and 570, and between aa 476 and 513, respectively. mAbs 1E11, 10A2 and 5G10 were shown to bind to avian HEV particles in vitro, although only 5G10 reacted to viral antigens in transfected LMH cells. To assess the neutralizing activities of the mAbs, avian HEV was incubated in vitro with each mAb before inoculation into specific-pathogen-free chickens. Both viraemia and faecal virus shedding were delayed in chickens inoculated with the mixtures of avian HEV and 1E11, 10A2 or 5G10, suggesting that these three mAbs partially neutralize avian HEV.

  9. Engineering Bacterial Surface Displayed Human Norovirus Capsid Proteins: A Novel System to Explore Interaction Between Norovirus and Ligands

    PubMed Central

    Niu, Mengya; Yu, Qianqian; Tian, Peng; Gao, Zhiyong; Wang, Dapeng; Shi, Xianming

    2015-01-01

    Human noroviruses (HuNoVs) are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs) expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP) to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2) and the protruding domain (P domain) encoding gene (3′ terminal fragment of ORF2) of HuNoVs GI.1 and GII.4 were fused with 5′ terminal fragment of INP encoding gene (inaQn). The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an oral vaccine for HuNoVs. PMID

  10. A GLP-Compliant Toxicology and Biodistribution Study: Systemic Delivery of an rAAV9 Vector for the Treatment of Mucopolysaccharidosis IIIB

    PubMed Central

    Meadows, Aaron S.; Duncan, F. Jason; Camboni, Marybeth; Waligura, Kathryn; Montgomery, Chrystal; Zaraspe, Kimberly; Naughton, Bartholomew J.; Bremer, William G.; Shilling, Christopher; Walker, Christopher M.; Bolon, Brad; Flanigan, Kevin M.; McBride, Kim L.; McCarty, Douglas M.; Fu, Haiyan

    2015-01-01

    No treatment is currently available for mucopolysaccharidosis (MPS) IIIB, a neuropathic lysosomal storage disease due to defect in α-N-acetylglucosaminidase (NAGLU). In preparation for a clinical trial, we performed an IND-enabling GLP-toxicology study to assess systemic rAAV9-CMV-hNAGLU gene delivery in WT C57BL/6 mice at 1 × 1014 vg/kg and 2 × 1014 vg/kg (n = 30/group, M:F = 1:1), and non-GLP testing in MPS IIIB mice at 2 × 1014 vg/kg. Importantly, no adverse clinical signs or chronic toxicity were observed through the 6 month study duration. The rAAV9-mediated rNAGLU expression was rapid and persistent in virtually all tested CNS and somatic tissues. However, acute liver toxicity occurred in 33% (5/15) WT males in the 2 × 1014 vg/kg cohort, which was dose-dependent, sex-associated, and genotype-specific, likely due to hepatic rNAGLU overexpression. Interestingly, a significant dose response was observed only in the brain and spinal cord, whereas in the liver at 24 weeks postinfection (pi), NAGLU activity was reduced to endogenous levels in the high dose cohort but remained at supranormal levels in the low dose group. The possibility of rAAV9 germline transmission appears to be minimal. The vector delivery resulted in transient T-cell responses and characteristic acute antibody responses to both AAV9 and rNAGLU in all rAAV9-treated animals, with no detectable impacts on tissue transgene expression. This study demonstrates a generally safe and effective profile, and may have identified the upper dosing limit of rAAV9-CMV-hNAGLU via systemic delivery for the treatment of MPS IIIB. PMID:26684447

  11. Identification of the Neutralizing Epitopes of Merkel Cell Polyomavirus Major Capsid Protein within the BC and EF Surface Loops

    PubMed Central

    Fleury, Maxime J. J.; Nicol, Jérôme T. J.; Samimi, Mahtab; Arnold, Françoise; Cazal, Raphael; Ballaire, Raphaelle; Mercey, Olivier; Gonneville, Hélène; Combelas, Nicolas; Vautherot, Jean-Francois; Moreau, Thierry; Lorette, Gérard; Coursaget, Pierre; Touzé, Antoine

    2015-01-01

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus clearly associated with a human cancer, i.e. the Merkel cell carcinoma (MCC). Polyomaviruses are small naked DNA viruses that induce a robust polyclonal antibody response against the major capsid protein (VP1). However, the polyomavirus VP1 capsid protein epitopes have not been identified to date. The aim of this study was to identify the neutralizing epitopes of the MCPyV capsid. For this goal, four VP1 mutants were generated by insertional mutagenesis in the BC, DE, EF and HI loops between amino acids 88-89, 150-151, 189-190, and 296-297, respectively. The reactivity of these mutants and wild-type VLPs was then investigated with anti-VP1 monoclonal antibodies and anti-MCPyV positive human sera. The findings together suggest that immunodominant conformational neutralizing epitopes are present at the surface of the MCPyV VLPs and are clustered within BC and EF loops. PMID:25812141

  12. Piscine reovirus encodes a cytotoxic, non-fusogenic, integral membrane protein and previously unrecognized virion outer-capsid proteins.

    PubMed

    Key, Tim; Read, Jolene; Nibert, Max L; Duncan, Roy

    2013-05-01

    Piscine reovirus (PRV) is a tentative new member of the family Reoviridae and has been linked to heart and skeletal muscle inflammation in farmed Atlantic salmon (Salmo salar L.). Recent sequence-based evidence suggests that PRV is about equally related to members of the genera Orthoreovirus and Aquareovirus. Sequence similarities have also suggested that PRV might encode a fusion-associated small transmembrane (FAST) protein, which in turn suggests that PRV might be the prototype of a new genus with syncytium-inducing potential. In previous support of this designation has been the absence of identifiable PRV-encoded homologues of either the virion outer-clamp protein of ortho- and aquareoviruses or the virion outer-fibre protein of most orthoreoviruses. In the current report, we have provided experimental evidence that the putative p13 FAST protein of PRV lacks the defining feature of the FAST protein family - the ability to induce syncytium formation. Instead, p13 is the first example of a cytosolic, integral membrane protein encoded by ortho- or aquareoviruses, and induces cytotoxicity in the absence of cell-cell fusion. Sequence analysis also identified signature motifs of the outer-clamp and outer-fibre proteins of other reoviruses in two of the predicted PRV gene products. Based on these findings, we conclude that PRV does not encode a FAST protein and is therefore unlikely to be a new fusogenic reovirus. The presence of a novel integral membrane protein and two previously unrecognized, essential outer-capsid proteins has important implications for the biology, evolution and taxonomic classification of this virus.

  13. Monoclonal antibodies to reovirus reveal structure/function relationships between capsid proteins and genetics of susceptibility to antibody action.

    PubMed Central

    Virgin, H W; Mann, M A; Fields, B N; Tyler, K L

    1991-01-01

    Thirteen newly isolated monoclonal antibodies (MAbs) were used to study relationships between reovirus outer capsid proteins sigma 3, mu 1c, and lambda 2 (core spike) and the cell attachment protein sigma 1. We focused on sigma 1-associated properties of serotype specificity and hemagglutination (HA). Competition between MAbs revealed two surface epitopes on mu 1c that were highly conserved between reovirus serotype 1 Lang (T1L) and serotype 3 Dearing (T3D). There were several differences between T1L and T3D sigma 3 epitope maps. Studies using T1L x T3D reassortants showed that primary sequence differences between T1L and T3D sigma 3 proteins accounted for differences in sigma 3 epitope maps. Four of 12 non-sigma 1 MAbs showed a serotype-associated pattern of binding to 25 reovirus field isolates. Thus, for reovirus field isolates, different sigma 1 proteins are associated with preferred epitopes on other outer capsid proteins. Further evidence for a close structural and functional interrelationship between sigma 3/mu 1c and sigma 1 included (i) inhibition by sigma 3 and mu 1c MAbs of sigma 1-mediated HA, (ii) enhancement of sigma 1-mediated HA by proteolytic cleavage of sigma 3 and mu 1c, and (iii) genetic studies demonstrating that sigma 1 controlled the capacity of sigma 3 MAbs to inhibit HA. These data suggest that (i) epitopes on sigma 3 and mu 1c lie in close proximity to sigma 1 and that MAbs to these epitopes can modulate sigma 1-mediated functions, (ii) these spatial relationships have functional significance, since removal of sigma 3 and/or cleavage of mu 1c to delta can enhance sigma 1 function, (iii) in nature, the sigma 1 protein places selective constraints on the epitope structure of the other capsid proteins, and (iv) viral susceptibility to antibody action can be determined by genes other than that encoding an antibody's epitope. PMID:1719233

  14. Expression of viral polymerase and phosphorylation of core protein determine core and capsid localization of the human hepatitis B virus.

    PubMed

    Deroubaix, Aurélie; Osseman, Quentin; Cassany, Aurélia; Bégu, Dominique; Ragues, Jessica; Kassab, Somar; Lainé, Sébastien; Kann, Michael

    2015-01-01

    Biopsies from patients show that hepadnaviral core proteins and capsids - collectively called core - are found in the nucleus and cytoplasm of infected hepatocytes. In the majority of studies, cytoplasmic core localization is related to low viraemia while nuclear core localization is associated with high viral loads. In order to better understand the molecular interactions leading to core localization, we analysed transfected hepatoma cells using immune fluorescence microscopy. We observed that expression of core protein in the absence of other viral proteins led to nuclear localization of core protein and capsids, while expression of core in the context of the other viral proteins resulted in a predominantly cytoplasmic localization. Analysis of which viral partner was responsible for cytoplasmic retention indicated that the HBx, surface proteins and HBeAg had no impact but that the viral polymerase was the major determinant. Further analysis revealed that ϵ, an RNA structure to which the viral polymerase binds, was essential for cytoplasmic retention. Furthermore, we showed that core protein phosphorylation at Ser 164 was essential for the cytoplasmic core localization phenotype, which is likely to explain differences observed between individual cells.

  15. In Vitro Dynamic Visualization Analysis of Fluorescently Labeled Minor Capsid Protein IX and Core Protein V by Simultaneous Detection

    PubMed Central

    Ugai, Hideyo; Wang, Minghui; Le, Long P.; Matthews, David A.; Yamamoto, Masato; Curiel, David T.

    2009-01-01

    Oncolytic adenoviruses represent a promising therapeutic medicine for human cancer therapy, but successful translation to human clinical trials requires careful evaluation of these viral characteristics. While the function of the adenovirus proteins have been analyzed in detail, the dynamics of adenovirus infection remain largely unknown due to technological constraints which prevent adequate tracking of the adenovirus particles after infection. Fluorescent labeling of the adenoviral particles is one new strategy designed to directly analyze dynamic processes of viral infection in virus-host cell interactions. We hypothesized that the double labeling technique of adenovirus with fluorescent proteins would allow us to properly analyze intracellular viruses and the fate of viral proteins in live analysis of adenovirus as compared to a single labeling. Thus, we generated a fluorescently labeled adenovirus with both a red fluorescent minor capsid protein IX (pIX-mRFP1) and a green fluorescent minor core protein V (pV-EGFP), resulting in Ad5-IX-mRFP1-E3-V-EGFP. The fluorescent signals for pIX-mRFP1 and pV-EGFP were detected within 10 min in living cells. However, the growth curve analysis of Ad5-IX-mRFP1-E3-V-EGFP showed approximately 150-fold reduced production of the viral progeny at 48 hours post-infection (h.p.i.) as compared to Ad5. Interestingly, pIX-mRFP1 and pV-EGFP were initially localized in the cytoplasm and the nucleolus, respectively, at 18 h.p.i. These proteins were observed in the nucleus during the late stage of infection and the relocalization of the proteins was observed in an adenoviral replication-dependent manner. These results indicate that the simultaneous detection of adenovirus using dual-fluorescent proteins is suitable for real-time analysis, including identification of infected cells, and monitoring viral spread, which will be required for complete evaluation of oncolytic adenoviruses. PMID:19853616

  16. The SD1 Subdomain of Venezuelan Equine Encephalitis Virus Capsid Protein Plays a Critical Role in Nucleocapsid and Particle Assembly

    PubMed Central

    Reynaud, Josephine M.; Lulla, Valeria; Kim, Dal Young; Frolova, Elena I.

    2015-01-01

    ABSTRACT Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, for which no safe and efficient vaccines or therapeutic means have been developed. Viral particle assembly and budding processes represent potential targets for therapeutic intervention. However, our understanding of the mechanistic process of VEEV assembly, RNA encapsidation, and the roles of different capsid-specific domains in these events remain to be described. The results of this new study demonstrate that the very amino-terminal VEEV capsid-specific subdomain SD1 is a critical player in the particle assembly process. It functions in a virus-specific mode, and its deletion, mutation, or replacement by the same subdomain derived from other alphaviruses has strong negative effects on infectious virus release. VEEV variants with mutated SD1 accumulate adaptive mutations in both SD1 and SD2, which result in a more efficiently replicating phenotype. Moreover, efficient nucleocapsid and particle assembly proceeds only when the two subdomains, SD1 and SD2, are derived from the same alphavirus. These two subdomains together appear to form the central core of VEEV nucleocapsids, and their interaction is one of the driving forces of virion assembly and budding. The similar domain structures of alphavirus capsid proteins suggest that this new knowledge can be applied to other alphaviruses. IMPORTANCE Alphaviruses are a group of human and animal pathogens which cause periodic outbreaks of highly debilitating diseases. Despite significant progress made in understanding the overall structure of alphavirus and VEEV virions, and glycoprotein spikes in particular, the mechanistic process of nucleocapsid assembly, RNA encapsidation, and the roles of different capsid-specific domains in these processes remain to be described. Our new data demonstrate that the very amino-terminal subdomain of Venezuelan equine encephalitis virus capsid protein, SD1, plays a critical role in the

  17. Long-term Correction of Very Long-chain Acyl-CoA Dehydrogenase Deficiency in Mice Using AAV9 Gene Therapy

    PubMed Central

    Keeler, Allison M; Conlon, Thomas; Walter, Glenn; Zeng, Huadong; Shaffer, Scott A; Dungtao, Fu; Erger, Kirsten; Cossette, Travis; Tang, Qiushi; Mueller, Christian; Flotte, Terence R

    2012-01-01

    Very long-chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD-deficient mice and patients clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD-deficient mice were treated systemically with 1 × 1012 vector genomes of recombinant adeno-associated virus 9 (rAAV9)-VLCAD. Biochemical correction was observed in vector-treated mice beginning 2 weeks postinjection, as characterized by a significant drop in long-chain fatty acyl accumulates in whole blood after an overnight fast. Changes persisted through the termination point around 20 weeks postinjection. Magnetic resonance spectroscopy (MRS) and tandem mass spectrometry (MS/MS) revealed normalization of intramuscular lipids in treated animals. Correction was not observed in liver tissue extracts, but cardiac muscle extracts showed significant reduction of long-chain metabolites. Disease-specific phenotypes were characterized, including thermoregulation and maintenance of euglycemia after a fasting cold challenge. Internal body temperatures of untreated VLCAD−/− mice dropped below 20 °C and the mice became lethargic, requiring euthanasia. In contrast, all rAAV9-treated VLCAD−/− mice and the wild-type controls maintained body temperatures. rAAV9-treated VLCAD−/− mice maintained euglycemia, whereas untreated VLCAD−/− mice suffered hypoglycemia following a fasting cold challenge. These promising results suggest rAAV9 gene therapy as a potential treatment for VLCAD deficiency in humans. PMID:22395529

  18. Chirality of Viral Capsids

    NASA Astrophysics Data System (ADS)

    Dharmavaram, Sanjay; Xie, Fangming; Bruinsma, Robijn; Klug, William; Rudnick, Joseph

    Most icosahedral viruses are classified by their T-number which identifies their capsid in terms of the number of capsomers and their relative arrangement. Certain T-numbers (T = 7 for instance) are inherently chiral (with no reflection planes) while others (e.g. T = 1) are achiral. We present a Landau-Brazovskii (LB) theory for weak crystallization in which a scalar order parameter that measures density of capsid proteins successfully predicts the various observed T-numbers and their respective chiralities. We find that chiral capsids gain stability by spontaneously breaking symmetry from an unstable chiral state. The inherently achiral LB-free energy does not preferentially select a particular chiral state from its mirror reflection. Based on the physical observation that proteins are inherently chiral molecules with directional interactions, we propose a new chiral term to the LB energy as a possible selection mechanism for chirality.

  19. Conserved Tryptophan Motifs in the Large Tegument Protein pUL36 Are Required for Efficient Secondary Envelopment of Herpes Simplex Virus Capsids

    PubMed Central

    Ivanova, Lyudmila; Buch, Anna; Döhner, Katinka; Pohlmann, Anja; Binz, Anne; Prank, Ute; Sandbaumhüter, Malte

    2016-01-01

    ABSTRACT Herpes simplex virus (HSV) replicates in the skin and mucous membranes, and initiates lytic or latent infections in sensory neurons. Assembly of progeny virions depends on the essential large tegument protein pUL36 of 3,164 amino acid residues that links the capsids to the tegument proteins pUL37 and VP16. Of the 32 tryptophans of HSV-1-pUL36, the tryptophan-acidic motifs 1766WD1767 and 1862WE1863 are conserved in all HSV-1 and HSV-2 isolates. Here, we characterized the role of these motifs in the HSV life cycle since the rare tryptophans often have unique roles in protein function due to their large hydrophobic surface. The infectivity of the mutants HSV-1(17+)Lox-pUL36-WD/AA-WE/AA and HSV-1(17+)Lox-CheVP26-pUL36-WD/AA-WE/AA, in which the capsid has been tagged with the fluorescent protein Cherry, was significantly reduced. Quantitative electron microscopy shows that there were a larger number of cytosolic capsids and fewer enveloped virions compared to their respective parental strains, indicating a severe impairment in secondary capsid envelopment. The capsids of the mutant viruses accumulated in the perinuclear region around the microtubule-organizing center and were not dispersed to the cell periphery but still acquired the inner tegument proteins pUL36 and pUL37. Furthermore, cytoplasmic capsids colocalized with tegument protein VP16 and, to some extent, with tegument protein VP22 but not with the envelope glycoprotein gD. These results indicate that the unique conserved tryptophan-acidic motifs in the central region of pUL36 are required for efficient targeting of progeny capsids to the membranes of secondary capsid envelopment and for efficient virion assembly. IMPORTANCE Herpesvirus infections give rise to severe animal and human diseases, especially in young, immunocompromised, and elderly individuals. The structural hallmark of herpesvirus virions is the tegument, which contains evolutionarily conserved proteins that are essential for several

  20. Preferred transduction with AAV8 and AAV9 via thalamic administration in the MPS IIIB model: A comparison of four rAAV serotypes

    PubMed Central

    Gilkes, J.A.; Bloom, M.D.; Heldermon, C.D.

    2015-01-01

    Sanfilippo syndrome type B (MPS IIIB) is a lysosomal storage disease caused by a deficiency of N-acetyl-glucosaminidase (NAGLU) activity. Since early therapeutic intervention is likely to yield the most efficacious results, we sought to determine the possible therapeutic utility of rAAV in early gene therapy based interventions. Currently, the application of recombinant adeno-associated virus (AAV) vectors is one of the most widely used gene transfer systems, and represents a promising approach in the treatment of MPS IIIB. From a translational standpoint, a minimally invasive, yet highly efficient method of vector administration is ideal. The thalamus is thought to be the switchboard for signal relay in the central nervous system (CNS) and therefore represents an attractive target. To identify an optimal AAV vector for early therapeutic intervention, and establish whether thalamic administration represents a feasible therapeutic approach, we performed a comprehensive assessment of transduction and biodistribution profiles of four green fluorescent protein (GFP) bearing rAAV serotypes, -5, -8, -9 and -rh10, administered bilaterally into the thalamus. Of the four serotypes compared, AAV8 and -9 proved superior to AAV5 and -rh10 both in biodistribution and transduction efficiency profiles. Genotype differences in transduction efficiency and biodistribution patterns were also observed. Importantly, we conclude that AAV8 and to a lesser extent, AAV9 represent preferable candidates for early gene therapy based intervention in the treatment of MPS IIIB. We also highlight the feasibility of thalamic rAAV administration, and conclude that this method results in moderate rAAV biodistribution with limited treatment capacity, thus suggesting a need for alternate methods of vector delivery. PMID:27014573

  1. Molecular evolution of the major capsid protein VP1 of enterovirus 70.

    PubMed Central

    Takeda, N; Tanimura, M; Miyamura, K

    1994-01-01

    Nucleotide sequences of the genome RNA encoding capsid protein VP1 (918 nucleotides) of 18 enterovirus 70 (EV70) isolates collected from various parts of the world in 1971 to 1981 were determined, and nucleotide substitutions among them were studied. The genetic distances between isolates were calculated by the pairwise comparison of nucleotide difference. Regression analysis of the genetic distances against time of isolation of the strains showed that the synonymous substitution rate was very high at 21.53 x 10(-3) substitution per nucleotide per year, while the nonsynonymous rate was extremely low at 0.32 x 10(-3) substitution per nucleotide per year. The rate estimated by the average value of synonymous and nonsynonymous substitutions (W.-H. Li, C.-C. Wu, and C.-C. Luo, Mol. Biol. Evol. 2:150-174, 1985) was 5.00 x 10(-3) substitution per nucleotide per year. Taking the average value of synonymous and nonsynonymous substitutions as genetic distances between isolates, the phylogenetic tree was inferred by the unweighted pairwise grouping method of arithmetic average and by the neighbor-joining method. The tree indicated that the virus had evolved from one focal place, and the time of emergence was estimated to be August 1967 +/- 15 months, 2 years before first recognition of the pandemic of acute hemorrhagic conjunctivitis. By superimposing every nucleotide substitution on the branches of the phylogenetic tree, we analyzed nucleotide substitution patterns of EV70 genome RNA. In synonymous substitutions, the proportion of transitions, i.e., C<==>U and G<==>A, was found to be extremely frequent in comparison with that reported on other viruses or pseudogenes. In addition, parallel substitutions (independent substitutions at the same nucleotide position on different branches, i.e., different isolates, of the tree) were frequently found in both synonymous and nonsynonymous substitutions. These frequent parallel substitutions and the low nonsynonymous substitution rate

  2. Structure of the Dimerization Interface in the Mature HIV-1 Capsid Protein Lattice from Solid State NMR of Tubular Assemblies.

    PubMed

    Bayro, Marvin J; Tycko, Robert

    2016-07-13

    The HIV-1 capsid protein (CA) forms the capsid shell that encloses RNA within a mature HIV-1 virion. Previous studies by electron microscopy have shown that the capsid shell is primarily a triangular lattice of CA hexamers, with variable curvature that destroys the ideal symmetry of a planar lattice. The mature CA lattice depends on CA dimerization, which occurs through interactions between helix 9 segments of the C-terminal domain (CTD) of CA. Several high-resolution structures of the CTD-CTD dimerization interface have been reported, based on X-ray crystallography and multidimensional solution nuclear magnetic resonance (NMR), with significant differences in amino acid side chain conformations and helix 9-helix 9 orientations. In a structural model for tubular CA assemblies based on cryogenic electron microscopy (cryoEM) [Zhao et al. Nature, 2013, 497, 643-646], the dimerization interface is substantially disordered. The dimerization interface structure in noncrystalline CA assemblies and the extent to which this interface is structurally ordered within a curved lattice have therefore been unclear. Here we describe solid state NMR measurements on the dimerization interface in tubular CA assemblies, which contain the curved triangular lattice of a mature virion, including quantitative measurements of intermolecular and intramolecular distances using dipolar recoupling techniques, solid state NMR chemical shifts, and long-range side chain-side chain contacts. When combined with restraints on the distance and orientation between helix 9 segments from the cryoEM study, the solid state NMR data lead to a unique high-resolution structure for the dimerization interface in the noncrystalline lattice of CA tubes. These results demonstrate that CA lattice curvature is not dependent on disorder or variability in the dimerization interface. This work also demonstrates the feasibility of local structure determination within large noncrystalline assemblies formed by high

  3. A Molecular Dynamics Investigation of the Physical-Chemical Properties of Calicivirus Capsid Protein Adsorption to Fomites

    NASA Astrophysics Data System (ADS)

    Peeler, David; Matysiak, Silvina

    2013-03-01

    Any inanimate object with an exposed surface bears the possibility of hosting a virus and may therefore be labeled a fomite. This research hopes to distinguish which chemical-physical differences in fomite surface and virus capsid protein characteristics cause variations in virus adsorption through an alignment of in silico molecular dynamics simulations with in vitro measurements. The impact of surface chemistry on the adsorption of the human norovirus (HNV)-surrogate calicivirus capsid protein 2MS2 has been simulated for monomer and trimer structures and is reported in terms of protein-self assembled monolayer (SAM) binding free energy. The coarse-grained MARTINI forcefield was used to maximize spatial and temporal resolution while minimizing computational load. Future work will investigate the FCVF5 and SMSVS4 calicivirus trimers and will extend beyond hydrophobic and hydrophilic SAM surface chemistry to charged SAM surfaces in varying ionic concentrations. These results will be confirmed by quartz crystal microbalance experiments conducted by Dr. Wigginton at the University of Michigan. This should provide a novel method for predicting the transferability of viruses that cannot be studied in vitro such as dangerous foodborne and nosocomially-acquired viruses like HNV.

  4. Capsid size determination by Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of SaPI1 proteins into procapsids.

    PubMed

    Poliakov, Anton; Chang, Jenny R; Spilman, Michael S; Damle, Priyadarshan K; Christie, Gail E; Mobley, James A; Dokland, Terje

    2008-07-11

    The Staphylococcus aureus pathogenicity island SaPI1 carries the gene for the toxic shock syndrome toxin (TSST-1) and can be mobilized by infection with S. aureus helper phage 80alpha. SaPI1 depends on the helper phage for excision, replication and genome packaging. The SaPI1-transducing particles comprise proteins encoded by the helper phage, but have a smaller capsid commensurate with the smaller size of the SaPI1 genome. Previous studies identified only 80alpha-encoded proteins in mature SaPI1 virions, implying that the presumptive SaPI1 capsid size determination function(s) must act transiently during capsid assembly or maturation. In this study, 80alpha and SaPI1 procapsids were produced by induction of phage mutants lacking functional 80alpha or SaPI1 small terminase subunits. By cryo-electron microscopy, these procapsids were found to have a round shape and an internal scaffolding core. Mass spectrometry was used to identify all 80alpha-encoded structural proteins in 80alpha and SaPI1 procapsids, including several that had not previously been found in the mature capsids. In addition, SaPI1 procapsids contained at least one SaPI1-encoded protein that has been implicated genetically in capsid size determination. Mass spectrometry on full-length phage proteins showed that the major capsid protein and the scaffolding protein are N-terminally processed in both 80alpha and SaPI1 procapsids.

  5. Structure of the Three N-Terminal Immunoglobulin Domains of the Highly Immunogenic Outer Capsid Protein from a T4-Like Bacteriophage

    SciTech Connect

    Fokine, Andrei; Islam, Mohammad Z.; Zhang, Zhihong; Bowman, Valorie D.; Rao, Venigalla B.; Rossmann, Michael G.

    2011-09-16

    The head of bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein (Hoc). One Hoc molecule binds near the center of each hexameric capsomer. Hoc is dispensable for capsid assembly and has been used to display pathogenic antigens on the surface of T4. Here we report the crystal structure of a protein containing the first three of four domains of Hoc from bacteriophage RB49, a close relative of T4. The structure shows an approximately linear arrangement of the protein domains. Each of these domains has an immunoglobulin-like fold, frequently found in cell attachment molecules. In addition, we report biochemical data suggesting that Hoc can bind to Escherichia coli, supporting the hypothesis that Hoc could attach the phage capsids to bacterial surfaces and perhaps also to other organisms. The capacity for such reversible adhesion probably provides survival advantages to the bacteriophage.

  6. Role of a Nuclear Localization Signal on the Minor Capsid Proteins VP2 and VP3 in BKPyV Nuclear Entry

    PubMed Central

    Bennett, Shauna M.; Zhao, Linbo; Imperiale, Michael J.

    2014-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. PMID:25463609

  7. Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus).

    PubMed Central

    Booy, F P; Trus, B L; Newcomb, W W; Brown, J C; Conway, J F; Steven, A C

    1994-01-01

    Macromolecular complexes that consist of homopolymeric protein frameworks with additional proteins attached at strategic sites for a variety of structural and functional purposes are widespread in subcellular biology. One such complex is the capsid of herpes simplex virus type 1 whose basic framework consists of 960 copies of the viral protein, VP5 (149 kDa), arranged in an icosahedrally symmetric shell. This shell also contains major amounts of three other proteins, including VP26 (12 kDa), a small protein that is approximately equimolar with VP5 and accounts for approximately 6% of the capsid mass. With a view to inferring the role of VP26 in capsid assembly, we have localized it by quantitative difference imaging based on three-dimensional reconstructions calculated from cryo-electron micrographs. Purified capsids from which VP26 had been removed in vitro by treatment with guanidine hydrochloride were compared with preparations of the same depleted capsids to which purified VP26 had been rebound and with native (undepleted) capsids. The resulting three-dimensional density maps indicate that six VP26 subunits are distributed symmetrically around the outer tip of each hexon protrusion on VP26-containing capsids. Because VP26 may be readily dissociated from and reattached to the capsid, it does not appear to contribute significantly to structural stabilization. Rather, its exposed location suggests that VP26 may be involved in linking the capsid to the surrounding tegument and envelope at a later stage of viral assembly. Images PMID:8202543

  8. Total Chemical Synthesis of Dengue 2 Virus Capsid Protein via Native Chemical Ligation: Role of the Conserved Salt-bridge1

    PubMed Central

    Zhan, Changyou; Zhao, Le; Chen, Xishan; Lu, Wei-Yue; Lu, Wuyuan

    2013-01-01

    The dengue capsid protein C is a highly basic alpha-helical protein of ~100 amino acid residues that forms an emphipathic homodimer to encapsidate the viral genome and to interact with viral membranes. The solution structure of dengue 2 capsid protein C (DEN2C) has been determined by NMR spectroscopy, revealing a large dimer interface formed almost exclusively by hydrophobic residues. The only acidic residue (Glu87) conserved in the capsid proteins of all four serotypes of dengue virus forms a salt bridge with the side chains of Lys45 and Arg55′. To understand the structural and functional significance of this conserved salt bridge, we chemically synthesized an N-terminally truncated form of DEN2C (WTDEN2C) and its salt bridge-void analog E87ADEN2C using the native chemical ligation technique developed by Kent and colleagues. Comparative biochemical and biophysical studies of these two synthetic proteins using circular dichroism spectroscopy, fluorescence polarization, protein thermal denaturation, and proteolytic susceptibility assay demonstrated that the conserved salt bridge contributed to DEN2C dimerization and stability as well as its resistance to proteolytic degradation. Our work provided insight into the role of a fully conserved structural element of the dengue capsid protein C and paved the way for additional functional studies of this important viral protein. PMID:23673222

  9. Bacterial surface-displayed GII.4 human norovirus capsid proteins bound to surface of Romaine lettuce through HBGA-like molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human Noroviruses (HuNoVs) are the main cause of nonbacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein (INP) mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein (G...

  10. Characterization of the antibody response against EV71 capsid proteins in Chinese individuals by NEIBM-ELISA.

    PubMed

    Ding, Yingying; Chen, Xuguang; Qian, Baohua; Wu, Guorong; He, Ting; Feng, Jiaojiao; Gao, Caixia; Wang, Lili; Wang, Jinhong; Li, Xiangyu; Cao, Mingmei; Peng, Heng; Zhao, Chunyan; Pan, Wei

    2015-05-29

    Human enterovirus 71 (EV71) has become the major pathogen of hand, foot, and mouth disease (HFMD) worldwide, while the anti-EV71 antibody responses other than neutralizing epitopes have not been characterized. In this study, EV71 capsid proteins VP1, VP3, VP0 and various VP1 antigens were constructed to analyze anti-EV71 response in severe HFMD cases, non-HFMD outpatient children and normal adults using a novel evolved immunoglobulin-binding molecule (NEIBM)-based ELISA. The high prevalence of antibody responses against all three capsid proteins was demonstrated, and anti-EV71 VP1 showed the main antibody response. Anti-EV71 VP1 antibody response was found to predominantly target to epitopes based on the common enterovirus cross-reactive sequence. Moreover, inhibition pattern against anti-EV71 VP1 reactions in three groups was obviously different. Taken together, these results firstly characterized the anti-EV71 antibody responses which are predominantly against VP1 epitopes based on common enterovirus cross-reactive sequence. This finding could be helpful for the better understanding of anti-EV71 humoral immunity and useful for seroepidemiological surveillance.

  11. The lectin from Musa paradisiaca binds with the capsid protein of tobacco mosaic virus and prevents viral infection.

    PubMed

    Liu, Xiao-Yu; Li, Huan; Zhang, Wei

    2014-05-04

    It has been demonstrated that the lectin from Musa paradisiaca (BanLec-1) could inhibit the cellular entry of human immunodeficiency virus (HIV). In order to evaluate its effects on tobacco mosaic virus (TMV), the banlec-1 gene was cloned and transformed into Escherichia coli and tobacco, respectively. Recombinant BanLec-1 showed metal ions dependence, and higher thermal and pH stability. Overexpression of banlec-1 in tobacco resulted in decreased leaf size, and higher resistance to TMV infection, which includes reduced TMV cellular entry, more stable chlorophyll contents, and enhanced antioxidant enzymes. BanLec-1 was found to bind directly to the TMV capsid protein in vitro, and to inhibit TMV infection in a dose-dependent manner. In contrast to limited prevention in vivo, purified rBanLec-1 exhibited more significant effects on TMV infection in vitro. Taken together, our study indicated that BanLec-1 could prevent TMV infection in tobacco, probably through the interaction between BanLec-1 and TMV capsid protein.

  12. Preliminary crystallographic analysis of the major capsid protein P2 of the lipid-containing bacteriophage PM2

    SciTech Connect

    Abrescia, Nicola G. A.; Kivelä, Hanna M.; Grimes, Jonathan M.; Bamford, Jaana K. H.; Bamford, Dennis H.; Stuart, David I.

    2005-08-01

    The viral capsid protein P2 of bacteriophage PM2 has been crystallized. Preliminary X-ray analysis demonstrates the position and orientation of the two trimers in the asymmetric unit. PM2 (Corticoviridae) is a dsDNA bacteriophage which contains a lipid membrane beneath its icosahedral capsid. In this respect it resembles bacteriophage PRD1 (Tectiviridae), although it is not known whether the similarity extends to the detailed molecular architecture of the virus, for instance the fold of the major coat protein P2. Structural analysis of PM2 has been initiated and virus-derived P2 has been crystallized by sitting-nanodrop vapour diffusion. Crystals of P2 have been obtained in space group P2{sub 1}2{sub 1}2, with two trimers in the asymmetric unit and unit-cell parameters a = 171.1, b = 78.7, c = 130.1 Å. The crystals diffract to 4 Å resolution at the ESRF BM14 beamline (Grenoble, France) and the orientation of the non-crystallographic threefold axes, the spatial relationship between the two trimers and the packing of the trimers within the unit cell have been determined. The trimers form tightly packed layers consistent with the crystal morphology, possibly recapitulating aspects of the arrangement of subunits in the virus.

  13. Characterization of the antibody response against EV71 capsid proteins in Chinese individuals by NEIBM-ELISA

    PubMed Central

    Ding, Yingying; Chen, Xuguang; Qian, Baohua; Wu, Guorong; He, Ting; Feng, Jiaojiao; Gao, Caixia; Wang, Lili; Wang, Jinhong; Li, Xiangyu; Cao, Mingmei; Peng, Heng; Zhao, Chunyan; Pan, Wei

    2015-01-01

    Human enterovirus 71 (EV71) has become the major pathogen of hand, foot, and mouth disease (HFMD) worldwide, while the anti-EV71 antibody responses other than neutralizing epitopes have not been characterized. In this study, EV71 capsid proteins VP1, VP3, VP0 and various VP1 antigens were constructed to analyze anti-EV71 response in severe HFMD cases, non-HFMD outpatient children and normal adults using a novel evolved immunoglobulin-binding molecule (NEIBM)-based ELISA. The high prevalence of antibody responses against all three capsid proteins was demonstrated, and anti-EV71 VP1 showed the main antibody response. Anti-EV71 VP1 antibody response was found to predominantly target to epitopes based on the common enterovirus cross-reactive sequence. Moreover, inhibition pattern against anti-EV71 VP1 reactions in three groups was obviously different. Taken together, these results firstly characterized the anti-EV71 antibody responses which are predominantly against VP1 epitopes based on common enterovirus cross-reactive sequence. This finding could be helpful for the better understanding of anti-EV71 humoral immunity and useful for seroepidemiological surveillance. PMID:26023863

  14. Mechanical Properties of Viral Capsids

    NASA Astrophysics Data System (ADS)

    Zandi, Roya; Reguera, David

    2005-03-01

    Viral genomes, whether they involve RNA or DNA molecules, are invariably protected by a rigid, single-protein-thick, shell referred to as ``capsid.'' Viral capsids are known to tolerate wide ranges of pH and salt conditions and to withstand internal pressures as high as 100 atms. We study the mechanical properties of viral capsids, calling explicit attention to the inhomogeneity of the shells that is inherent in their being discrete/polyhedral rather than continuous/spherical. We analyze the distribution of stress in these capsids due to isotropic internal pressure (arising, for instance, from genome confinement and/or osmotic activity), and compare the results with appropriate generalizations of classical elasticity theory. We also examine the competing mechanisms for viral shell failure, e.g., in-plane crack formation vs radial bursting. The biological consequences of the special stabilities and stress distributions of viral capsids are also discussed.

  15. Nucleotide sequence of the capsid protein gene and 3' non-coding region of papaya mosaic virus RNA.

    PubMed

    Abouhaidar, M G

    1988-01-01

    The nucleotide sequences of cDNA clones corresponding to the 3' OH end of papaya mosaic virus RNA have been determined. The 3'-terminal sequence obtained was 900 nucleotides in length, excluding the poly(A) tail, and contained an open reading frame capable of giving rise to a protein of 214 amino acid residues with an Mr of 22930. This protein was identified as the viral capsid protein. The 3' non-coding region of PMV genome RNA was about 121 nucleotides long [excluding the poly(A) tail] and homologous to the complementary sequence of the non-coding region at the 5' end of PMV RNA. A long open reading frame was also found in the predicted 5' end region of the negative strand.

  16. Context-Dependent Cleavage of the Capsid Protein by the West Nile Virus Protease Modulates the Efficiency of Virus Assembly

    PubMed Central

    VanBlargan, Laura A.; Davis, Kaitlin A.; Dowd, Kimberly A.; Akey, David L.; Smith, Janet L.

    2015-01-01

    ABSTRACT The molecular mechanisms that define the specificity of flavivirus RNA encapsulation are poorly understood. Virions composed of the structural proteins of one flavivirus and the genomic RNA of a heterologous strain can be assembled and have been developed as live attenuated vaccine candidates for several flaviviruses. In this study, we discovered that not all combinations of flavivirus components are possible. While a West Nile virus (WNV) subgenomic RNA could readily be packaged by structural proteins of the DENV2 strain 16681, production of infectious virions with DENV2 strain New Guinea C (NGC) structural proteins was not possible, despite the very high amino acid identity between these viruses. Mutagenesis studies identified a single residue (position 101) of the DENV capsid (C) protein as the determinant for heterologous virus production. C101 is located at the P1′ position of the NS2B/3 protease cleavage site at the carboxy terminus of the C protein. WNV NS2B/3 cleavage of the DENV structural polyprotein was possible when a threonine (Thr101 in strain 16681) but not a serine (Ser101 in strain NGC) occupied the P1′ position, a finding not predicted by in vitro protease specificity studies. Critically, both serine and threonine were tolerated at the P1′ position of WNV capsid. More extensive mutagenesis revealed the importance of flanking residues within the polyprotein in defining the cleavage specificity of the WNV protease. A more detailed understanding of the context dependence of viral protease specificity may aid the development of new protease inhibitors and provide insight into associated patterns of drug resistance. IMPORTANCE West Nile virus (WNV) and dengue virus (DENV) are mosquito-borne flaviviruses that cause considerable morbidity and mortality in humans. No specific antiflavivirus therapeutics are available for treatment of infection. Proteolytic processing of the flavivirus polyprotein is an essential step in the replication

  17. Alphavirus-Specific Cytotoxic T Lymphocytes Recognize a Cross-Reactive Epitope from the Capsid Protein and Can Eliminate Virus from Persistently Infected Macrophages

    PubMed Central

    Linn, May La; Mateo, L.; Gardner, J.; Suhrbier, A.

    1998-01-01

    Persistent alphavirus infections in synovial and neural tissues are believed to be associated with chronic arthritis and encephalitis, respectively, and represent likely targets for CD8+ αβ cytotoxic T lymphocytes (CTL). Here we show that the capsid protein is a dominant target for alphavirus-specific CTL in BALB/c mice and that capsid-specific CTL from these mice recognize an H-2Kd restricted epitope, QYSGGRFTI. This epitope lies in the highly conserved region of the capsid protein, and QYSGGRFTI-specific CTL were cross reactive across a range of Old World alphaviruses. In vivo the acute primary viraemia of these highly cytopathic viruses was unaffected by QYSGGRFTI-specific CTL. However, in vitro these CTL were able to completely clear virus from macrophages persistently and productively infected with the arthrogenic alphavirus Ross River virus. PMID:9573286

  18. Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX.

    PubMed

    Poulin, Kathy L; Lanthier, Robert M; Smith, Adam C; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L; O'Meara, Ryan W; Kothary, Rashmi; Lorimer, Ian A; Parks, Robin J

    2010-10-01

    Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions.

  19. The impact of viral RNA on the association free energies of capsid protein assembly: bacteriophage MS2 as a case study.

    PubMed

    ElSawy, Karim M

    2017-02-01

    A large number of single-stranded RNA viruses assemble their capsid and their genomic material simultaneously. The RNA viral genome plays multiple roles in this process that are currently only partly understood. In this work, we investigated the thermodynamic basis of the role of viral RNA on the assembly of capsid proteins. The viral capsid of bacteriophage MS2 was considered as a case study. The MS2 virus capsid is composed of 60 AB and 30 CC protein dimers. We investigated the effect of RNA stem loop (the translational repressor TR) binding to the capsid dimers on the dimer-dimer relative association free energies. We found that TR binding results in destabilization of AB self-association compared with AB and CC association. This indicates that the association of the AB and CC dimers is the most likely assembly pathway for the MS2 virus, which explains the experimental observation of alternating patterns of AB and CC dimers in dominant assembly intermediates of the MS2 virus. The presence of viral RNA, therefore, dramatically channels virus assembly to a limited number of pathways, thereby enhancing the efficiency of virus self-assembly process. Interestingly, Thr59Ser and Thr45Ala mutations of the dimers, in the absence of RNA stem loops, lead to stabilization of AB self-association compared with the AB and CC associations, thereby channelling virus assembly towards a fivefold (AB)5 pentamer intermediate, providing a testable hypothesis of our thermodynamic arguments.

  20. Retargeting of Adenovirus Vectors through Genetic Fusion of a Single-Chain or Single-Domain Antibody to Capsid Protein IX ▿

    PubMed Central

    Poulin, Kathy L.; Lanthier, Robert M.; Smith, Adam C.; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L.; O'Meara, Ryan W.; Kothary, Rashmi; Lorimer, Ian A.; Parks, Robin J.

    2010-01-01

    Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions. PMID:20631131

  1. The capsid protein of satellite Panicum mosaic virus contributes to systemic invasion and interacts with its helper virus.

    PubMed

    Omarov, Rustem T; Qi, Dong; Scholthof, Karen-Beth G

    2005-08-01

    Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus (PMV) for replication and spread in host plants. The SPMV RNA encodes a 17-kDa capsid protein (CP) that is essential for formation of its 16-nm virions. The results of this study indicate that in addition to the expression of the full-length SPMV CP from the 5'-proximal AUG start codon, SPMV RNA also expresses a 9.4-kDa C-terminal protein from the third in-frame start codon. Differences in solubility between the full-length protein and its C-terminal product were observed. Subcellular fractionation of infected plant tissues showed that SPMV CP accumulates in the cytosol, cell wall-, and membrane-enriched fractions. However, the 9.4-kDa protein exclusively cofractionated with cell wall- and membrane-enriched fractions. Earlier studies revealed that the 5'-untranslated region (5'-UTR) from nucleotides 63 to 104 was associated with systemic infection in a host-specific manner in millet plants. This study shows that nucleotide deletions and insertions in the 5'-UTR plus simultaneous truncation of the N-terminal part of the CP impaired SPMV spread in foxtail millet, but not in proso millet plants. In contrast, the expression of the full-length version of SPMV CP efficiently compensated the negative effect of the 5'-UTR deletions in foxtail millet. Finally, immunoprecipitation assays revealed the presence of a specific interaction between the capsid proteins of SPMV and its helper virus (PMV). Our findings show that the SPMV CP has several biological functions, including facilitating efficient satellite virus infection and movement in millet plants.

  2. Tabulation as a high-resolution alternative to coarse-graining protein interactions: Initial application to virus capsid subunits

    NASA Astrophysics Data System (ADS)

    Spiriti, Justin; Zuckerman, Daniel M.

    2015-12-01

    Traditional coarse-graining based on a reduced number of interaction sites often entails a significant sacrifice of chemical accuracy. As an alternative, we present a method for simulating large systems composed of interacting macromolecules using an energy tabulation strategy previously devised for small rigid molecules or molecular fragments [S. Lettieri and D. M. Zuckerman, J. Comput. Chem. 33, 268-275 (2012); J. Spiriti and D. M. Zuckerman, J. Chem. Theory Comput. 10, 5161-5177 (2014)]. We treat proteins as rigid and construct distance and orientation-dependent tables of the interaction energy between them. Arbitrarily detailed interactions may be incorporated into the tables, but as a proof-of-principle, we tabulate a simple α-carbon Gō-like model for interactions between dimeric subunits of the hepatitis B viral capsid. This model is significantly more structurally realistic than previous models used in capsid assembly studies. We are able to increase the speed of Monte Carlo simulations by a factor of up to 6700 compared to simulations without tables, with only minimal further loss in accuracy. To obtain further enhancement of sampling, we combine tabulation with the weighted ensemble (WE) method, in which multiple parallel simulations are occasionally replicated or pruned in order to sample targeted regions of a reaction coordinate space. In the initial study reported here, WE is able to yield pathways of the final ˜25% of the assembly process.

  3. [Construction of the plant expression vector with hepatitis a capsid protein fusion gene and genetic transformation of Citrus. Sinensis Osbeck].

    PubMed

    Hu, Rong; Wei, Hong; Chen, Shan-Chun; He, Yong-Rui

    2004-07-01

    The use of edible plants for the production and delivery of vaccine proteins could provide an economical alternative to fermentation systems. The construction of the plant expression vector pBI121-A was reported, which contained a fusion gene encoding hepatitis A capsid proteins. The gene was located between the left and right Ti border sequences under the control of CaMV35S promoter. The vector was identified via PCR and restriction enzyme analysis and was introduced into Agrobacterium tumerifacience LBA4404. The transgenic Citrus plants were produced by Agrobacterium-mediated transformation of epicotyl segments.13 putatively transformed plants through the kanamycin selection were micrografted onto the seedlings. The presence and integration of the transgene had been verified by PCR analysis. The result showed that five transformants were integrated and the transformation efficiency was 4.1%.

  4. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k

    PubMed Central

    Condezo, Gabriela N.; Marabini, Roberto; Ayora, Silvia; Carazo, José M.; Alba, Raúl; Chillón, Miguel

    2015-01-01

    ABSTRACT Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in

  5. Expression, characterization, and immunoreactivities of a soluble hepatitis E virus putative capsid protein species expressed in insect cells.

    PubMed Central

    Zhang, Y; McAtee, P; Yarbough, P O; Tam, A W; Fuerst, T

    1997-01-01

    The hepatitis E virus (HEV) open reading frame-2 (ORF-2) is predicted to encode a 71-kDa putative capsid protein involved in virus particle formation. When insect Spodoptera frugiperda (Sf9) cells were infected with a recombinant baculovirus containing the entire ORF-2 sequence, two types of recombinant proteins were produced; an insoluble protein of 73 kDa and a soluble protein of 62 kDa. The 62-kDa species was shown to be a proteolytic cleavage product of the 73-kDa protein. N-terminal sequence analysis of the 62-kDa protein indicated that it lacked the first 111 amino acids that are present in the full-length 73-kDa protein. A soluble 62-kDa protein was produced without the proteolytic processing by inserting the coding sequence of amino acids 112 to 660 of ORF-2 in a baculovirus expression vector and using the corresponding virus to infect Sf9 cells. The two recombinant 62-kDa proteins made by different mechanisms displayed immunoreactivities very compatible to each other. The 62-kDa proteins obtained by both proteolytic processing and reengineering demonstrated much higher sensitivities in detecting anti-HEV antibodies in human sera than the antigens made from bacteria, as measured by enzyme-linked immunosorbent assay. The data suggest that the soluble 62-kDa protein made from insect cells contains additional epitopes not present in recombinant proteins made from bacteria. Therefore, the 62-kDa protein may be useful for HEV diagnostic improvement and vaccine development. The reengineered construct allows for the consistent large-scale production of the soluble 62-kDa protein without proteolytic processing. PMID:9220158

  6. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    PubMed Central

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino

    2017-01-01

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ‘procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of ‘Headful Packaging' is a DNA-dependent symmetrization of portal protein. PMID:28134243

  7. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    SciTech Connect

    Bennett, Shauna M.; Zhao, Linbo; Bosard, Catherine; Imperiale, Michael J.

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection.

  8. C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells.

    PubMed

    Zhang, Xinquan; Bilic, Ivana; Marek, Ana; Glösmann, Martin; Hess, Michael

    2016-01-01

    The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 - ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species.

  9. C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells

    PubMed Central

    Zhang, Xinquan; Bilic, Ivana; Marek, Ana; Glösmann, Martin; Hess, Michael

    2016-01-01

    The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 – ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species. PMID:27073893

  10. Blue native protein electrophoresis for studies of mouse polyomavirus morphogenesis and interactions between the major capsid protein VP1 and cellular proteins.

    PubMed

    Horníková, Lenka; Man, Petr; Forstová, Jitka

    2011-12-01

    Morphogenesis of the mouse polyomavirus virion is a complex and not yet well understood process. Nuclear lysates of infected cells and cells transiently producing the major capsid protein (VP1) of the mouse polyomavirus and whole-cell lysates were separated by blue native polyacrylamide gel electrophoresis (BN-PAGE) to characterize the participation of cellular proteins in virion precursor complexes. Several VP1-specific complexes were found by immunostaining with the anti-VP1 antibody. Some of these complexes contained proteins from the heat shock protein 70 family. The BN-PAGE was found to be a useful tool for the identification of protein complexes by immunostaining of separated cell lysates. However, whole-cell lysates and lysates of isolated nuclei of cells infected with polyomavirus appeared to be too complex for BN-PAGE separation followed by mass spectrometry. No distinct bands specific for cells infected with polyomavirus were detected by Coomassie blue stained gels, hence this method is not suitable for the discovery of new cellular proteins participating in virion assembly. Nevertheless, BN-PAGE can be valuable for the analyses of different types of complexes formed by proteins after their enrichment or isolation by affinity chromatography.

  11. Effect of capsid proteins to ICG mass ratio on fluorescent quantum yield of virus-resembling optical nano-materials

    NASA Astrophysics Data System (ADS)

    Gupta, Sharad; Ico, Gerardo; Matsumura, Paul; Rao, A. L. N.; Vullev, Valentine; Anvari, Bahman

    2012-03-01

    We recently reported construction of a new type of optical nano-construct composed of genome-depleted plant infecting brome mosaic virus (BMV) doped with Indocyanine green (ICG), an FDA-approved chromophore. We refer to these constructs as optical viral ghosts (OVGs) since only the capsid protein (CP) subunits of BMV remain to encapsulate ICG. To utilize OVGs as effective nano-probes in fluorescence imaging applications, their fluorescence quantum yield needs to be maximized. In this study, we investigate the effect of altering the CP to ICG mass ratio on the fluorescent quantum yield of OVGs. Results of this study provide the basis for construction of OVGs with optimal amounts of CP and ICG to yield maximal fluorescence quantum yield.

  12. Bacterial Surface-Displayed GII.4 Human Norovirus Capsid Proteins Bound to HBGA-Like Molecules in Romaine Lettuce

    PubMed Central

    Wang, Ming; Rong, Shaofeng; Tian, Peng; Zhou, Yue; Guan, Shimin; Li, Qianqian; Wang, Dapeng

    2017-01-01

    Human Noroviruses (HuNoVs) are the main cause of non-bacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein on bacterial surface and used it as a new strategy to explore interaction between HuNoV protein and receptor candidates from romaine lettuce. The surface-displayed HuNoV proteins were confirmed on the surface of the transformed bacteria by an immunofluorescence assay. The distribution patterns of the surface-displayed HuNoV proteins in romaine lettuce were identified through a confocal immunofluorescence assay. The surface-displayed HuNoV proteins could be found in the stomata, and the surfaces of vein and leaf of romaine lettuce. The surface-displayed HuNoV proteins could be captured by an ELISA assay utilizing extract from leaf (LE) or vein (VE). The binding of the surface-displayed HuNoV proteins to LE or VE could be competitively blocked by histo-blood group antigens from human saliva. In addition, the binding of the surface-displayed HuNoV proteins to LE or VE could also be attenuated by heat denaturation of lettuce proteins, and abolished by oxidation of lettuce carbohydrates. The results indicated that histo-blood group antigen-like molecules in LE or VE were involved in the binding of the surface-displayed HuNoV proteins to romaine lettuce. All data demonstrated that the surface-displayed HuNoV proteins could be utilized in a new and simple system for investigation of the interaction between the HuNoVs and their candidate ligands. PMID:28265267

  13. Bacterial Surface-Displayed GII.4 Human Norovirus Capsid Proteins Bound to HBGA-Like Molecules in Romaine Lettuce.

    PubMed

    Wang, Ming; Rong, Shaofeng; Tian, Peng; Zhou, Yue; Guan, Shimin; Li, Qianqian; Wang, Dapeng

    2017-01-01

    Human Noroviruses (HuNoVs) are the main cause of non-bacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein on bacterial surface and used it as a new strategy to explore interaction between HuNoV protein and receptor candidates from romaine lettuce. The surface-displayed HuNoV proteins were confirmed on the surface of the transformed bacteria by an immunofluorescence assay. The distribution patterns of the surface-displayed HuNoV proteins in romaine lettuce were identified through a confocal immunofluorescence assay. The surface-displayed HuNoV proteins could be found in the stomata, and the surfaces of vein and leaf of romaine lettuce. The surface-displayed HuNoV proteins could be captured by an ELISA assay utilizing extract from leaf (LE) or vein (VE). The binding of the surface-displayed HuNoV proteins to LE or VE could be competitively blocked by histo-blood group antigens from human saliva. In addition, the binding of the surface-displayed HuNoV proteins to LE or VE could also be attenuated by heat denaturation of lettuce proteins, and abolished by oxidation of lettuce carbohydrates. The results indicated that histo-blood group antigen-like molecules in LE or VE were involved in the binding of the surface-displayed HuNoV proteins to romaine lettuce. All data demonstrated that the surface-displayed HuNoV proteins could be utilized in a new and simple system for investigation of the interaction between the HuNoVs and their candidate ligands.

  14. Capsid protein genetic analysis and viral spread to the spinal cord in cats experimentally infected with feline calicivirus (FCV).

    PubMed

    Fujita, Y; Sato, Y; Ohe, K; Sakai, S; Fukuyama, M; Furuhata, K; Kishikawa, S; Yamamoto, S; Kiuchi, A; Hara, M; Ishikawa, Y; Taneno, A

    2005-08-01

    We investigated primitively the molecular basis of the neural spread of a feline calcivirus isolate (FCV-S) from the spinal cord of a cat that died after manifesting excitation. Experimental infections of cats with three clones from parent virus isolate FCV-S, isolated based on plaque size, were performed, and virus recovery from the spinal cord and the nucleotide and predicted amino acid sequences of the viral capsid protein region (ORF2) were compared. In the experimental infection with the one-time cloned virus (C1L1) isolated from a large plaque, the C1L1 was recovered from the spinal cord. In contrast, seven-times cloned C6L7 (from large plaque) and five-times cloned C5S2 (isolated from small plaque) were not recovered from the spinal cord. Genetic analysis of the capsid protein gene of the three viral clones revealed that four bases were different and two amino acids were different at positions 34 (Val in C6L7 and Ala in C1L1 and C5S2) and 46 (Leu in C6L7 and Pro in C1L1 and C5S2) between C6L7 (with large plaque) and C5S2 (with small plaque). The amino acid at position 434 of C1L1 was different from those of C6L7 and C5S2 (Gly in C1L1, D (Asp) in C6L7 and C5S2). From these results, the plaque size seemed not to be related to the spread of virus to the spinal cord. Clone C1L1, which spread to the spinal cord, had a difference of one amino acid from the other two clones, which may be related to the ability to spread to the spinal cord.

  15. Mechanisms leading to an oriented immobilization of recombinant proteins derived from the P24 capsid of HIV-1 onto copolymers.

    PubMed

    Allard, L; Cheynet, V; Oriol, G; Véron, L; Merlier, F; Scrémin, G; Mandrand, B; Delair, T; Mallet, F

    2001-01-01

    To investigate the mechanism leading to an oriented immobilization of recombinant proteins onto synthetic copolymers, five genetically modified HIV-1 p24 capsid proteins (RH24, RH24A4K2, RH24R6, RH24R4K2, and RH24K6) were tested for their efficiency to covalently bind to maleic anhydride-alt-methyl vinyl ether (MAMVE) and N-vinyl pyrrolidone-alt-maleic anhydride (NVPMA) copolymers. These proteins contain, at their C-termini, tags differing in cationic and/or reactive amino acids density. We demonstrated that an increase of the charge and amine density in the tag enhances the coupling yield, the most efficient tag being a six lysine one. The reactivity of the proteins depends directly on the reactivity of the tag, and this led us to conclude that the tag was the site where the covalent grafting with the polymer occurred. Thus, design of such tags provides a new efficient and versatile method allowing oriented immobilization of recombinant proteins onto copolymers.

  16. Encapsidation of poliovirus replicons encoding the complete human immunodeficiency virus type 1 gag gene by using a complementation system which provides the P1 capsid protein in trans.

    PubMed Central

    Porter, D C; Ansardi, D C; Morrow, C D

    1995-01-01

    Poliovirus genomes which contain small regions of the human immunodeficiency virus type 1 (HIV-1) gag, pol, and env genes substituted in frame for the P1 capsid region replicate and express HIV-1 proteins as fusion proteins with the P1 capsid precursor protein upon transfection into cells (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Since these genomes, referred to as replicons, do not express capsid proteins, a complementation system was developed to encapsidate the genomes by providing P1 capsid proteins in trans from a recombinant vaccinia virus, VV-P1. Virus stocks of encapsidated replicons were generated after serial passage of the replicon genomes into cells previously infected with VV-P1 (D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993). Using this system, we have further defined the role of the P1 region in viral protein expression and RNA encapsidation. In the present study, we constructed poliovirus replicons which contain the complete 1,492-bp gag gene of HIV-1 substituted for the entire P1 region of poliovirus. To investigate whether the VP4 coding region was required for the replication and encapsidation of poliovirus RNA, a second replicon in which the complete gag gene was substituted for the VP2, VP3, and VP1 capsid sequences was constructed. Transfection of replicon RNA with and without the VP4 coding region into cells resulted in similar levels of expression of the HIV-1 Gag protein and poliovirus 3CD protein, as indicated by immunoprecipitation using specific antibodies. Northern (RNA) blot analysis of RNA from transfected cells demonstrated comparable levels of RNA replication for each replicon. Transfection of the replicon genomes into cells infected with VV-P1 resulted in the encapsidation of the genomes; serial passage in the presence of VV-P1 resulted in the generation of virus stocks of encapsidated replicons. Analysis of the levels of protein expression and encapsidated

  17. The loss of outer capsid protein P2 results in nontransmissibility by the insect vector of rice dwarf phytoreovirus.

    PubMed Central

    Tomaru, M; Maruyama, W; Kikuchi, A; Yan, J; Zhu, Y; Suzuki, N; Isogai, M; Oguma, Y; Kimura, I; Omura, T

    1997-01-01

    A transmission-defective (TD) isolate of rice dwarf phytoreovirus lacked the ability to infect cells when derived from the virus-free insect vector Nephotettix cincticeps. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified virus showed that among six structural proteins, the P2 outer capsid protein (encoded by genome segment S2) was absent from the TD isolate, whereas all six proteins were present in the transmission-competent (TC) isolate. P2 was not detected on immunoblots of rice plants infected with the TD isolate. Genome segment S2 and its transcript were detected in both TD and TC isolates. Sequence analysis of the S2 segment of the TD isolate revealed the presence of a termination codon due to a point mutation in the open reading frame, which might explain the absence of P2 in the TD isolate. These results demonstrate that the P2 protein is one of the factors essential for infection by the virus of vector cells and, thus, influences transmissibility by vector insects. PMID:9311898

  18. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating

    NASA Astrophysics Data System (ADS)

    Valbuena, Alejandro; Mateu, Mauricio G.

    2015-09-01

    Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics (``breathing'') of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications

  19. Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography.

    PubMed

    Zaveckas, Mindaugas; Snipaitis, Simas; Pesliakas, Henrikas; Nainys, Juozas; Gedvilaite, Alma

    2015-06-01

    Diseases associated with porcine circovirus type 2 (PCV2) infection are having a severe economic impact on swine-producing countries. The PCV2 capsid (Cap) protein expressed in eukaryotic systems self-assemble into virus-like particles (VLPs) which can serve as antigens for diagnostics or/and as vaccine candidates. In this work, conventional adsorbents as well as a monolithic support with large pore sizes were examined for the chromatographic purification of PCV2 Cap VLPs from clarified yeast lysate. Q Sepharose XL was used for the initial separation of VLPs from residual host nucleic acids and some host cell proteins. For the further purification of PCV2 Cap VLPs, SP Sepharose XL, Heparin Sepharose CL-6B and CIMmultus SO3 monolith were tested. VLPs were not retained on SP Sepharose XL. The purity of VLPs after chromatography on Heparin Sepharose CL-6B was only 4-7% and the recovery of VLPs was 5-7%. Using ion-exchange chromatography on the CIMmultus SO3 monolith, PCV2 Cap VLPs with the purity of about 40% were obtained. The recovery of VLPs after chromatography on the CIMmultus SO3 monolith was 15-18%. The self-assembly of purified PCV2 Cap protein into VLPs was confirmed by electron microscopy. Two-step chromatographic purification procedure of PCV2 Cap VLPs from yeast lysate was developed using Q Sepharose XL and cation-exchange CIMmultus SO3 monolith.

  20. Functional Analysis of Adenovirus Protein IX Identifies Domains Involved in Capsid Stability, Transcriptional Activity, and Nuclear Reorganization

    PubMed Central

    Rosa-Calatrava, Manuel; Grave, Linda; Puvion-Dutilleul, Francine; Chatton, Bruno; Kedinger, Claude

    2001-01-01

    The product of adenovirus (Ad) type 5 gene IX (pIX) is known to actively participate in the stability of the viral icosahedron, acting as a capsid cement. We have previously demonstrated that pIX is also a transcriptional activator of several viral and cellular TATA-containing promoters, likely contributing to the transactivation of the Ad expression program. By extensive mutagenesis, we have now delineated the functional domains involved in each of the pIX properties: residues 22 to 26 of the highly conserved N-terminal domain are crucial for incorporation of the protein into the virion; specific residues of the C-terminal leucine repeat are responsible for pIX interactions with itself and possibly other proteins, a property that is critical for pIX transcriptional activity. We also show that pIX takes part in the virus-induced nuclear reorganization of late infected cells: the protein induces, most likely through self-assembly, the formation of specific nuclear structures which appear as dispersed nuclear globules by immunofluorescence staining and as clear amorphous spherical inclusions by electron microscopy. The integrity of the leucine repeat appears to be essential for the formation and nuclear retention of these inclusions. Together, our results demonstrate the multifunctional nature of pIX and provide new insights into Ad biology. PMID:11435594

  1. New Structural Insights into the Genome and Minor Capsid Proteins of BK Polyomavirus using Cryo-Electron Microscopy

    PubMed Central

    Hurdiss, Daniel L.; Morgan, Ethan L.; Thompson, Rebecca F.; Prescott, Emma L.; Panou, Margarita M.; Macdonald, Andrew; Ranson, Neil A.

    2016-01-01

    Summary BK polyomavirus is the causative agent of several diseases in transplant patients and the immunosuppressed. In order to better understand the structure and life cycle of BK, we produced infectious virions and VP1-only virus-like particles in cell culture, and determined their three-dimensional structures using cryo-electron microscopy (EM) and single-particle image processing. The resulting 7.6-Å resolution structure of BK and 9.1-Å resolution of the virus-like particles are the highest-resolution cryo-EM structures of any polyomavirus. These structures confirm that the architecture of the major structural protein components of these human polyomaviruses are similar to previous structures from other hosts, but give new insight into the location and role of the enigmatic minor structural proteins, VP2 and VP3. We also observe two shells of electron density, which we attribute to a structurally ordered part of the viral genome, and discrete contacts between this density and both VP1 and the minor capsid proteins. PMID:26996963

  2. Diversity of environmental single-stranded DNA phages revealed by PCR amplification of the partial major capsid protein.

    PubMed

    Hopkins, Max; Kailasan, Shweta; Cohen, Allison; Roux, Simon; Tucker, Kimberly Pause; Shevenell, Amelia; Agbandje-McKenna, Mavis; Breitbart, Mya

    2014-10-01

    The small single-stranded DNA (ssDNA) bacteriophages of the subfamily Gokushovirinae were traditionally perceived as narrowly targeted, niche-specific viruses infecting obligate parasitic bacteria, such as Chlamydia. The advent of metagenomics revealed gokushoviruses to be widespread in global environmental samples. This study expands knowledge of gokushovirus diversity in the environment by developing a degenerate PCR assay to amplify a portion of the major capsid protein (MCP) gene of gokushoviruses. Over 500 amplicons were sequenced from 10 environmental samples (sediments, sewage, seawater and freshwater), revealing the ubiquity and high diversity of this understudied phage group. Residue-level conservation data generated from multiple alignments was combined with a predicted 3D structure, revealing a tendency for structurally internal residues to be more highly conserved than surface-presenting protein-protein or viral-host interaction domains. Aggregating this data set into a phylogenetic framework, many gokushovirus MCP clades contained samples from multiple environments, although distinct clades dominated the different samples. Antarctic sediment samples contained the most diverse gokushovirus communities, whereas freshwater springs from Florida were the least diverse. Whether the observed diversity is being driven by environmental factors or host-binding interactions remains an open question. The high environmental diversity of this previously overlooked ssDNA viral group necessitates further research elucidating their natural hosts and exploring their ecological roles.

  3. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses

    PubMed Central

    2014-01-01

    Reviewers This article was reviewed by Lakshminarayan M. Iyer and I. King Jordan. For complete reviews, see the Reviewers’ Reports section. Polintons (also known as Mavericks) and Tlr elements of Tetrahymena thermophila represent two families of large DNA transposons widespread in eukaryotes. Here, we show that both Polintons and Tlr elements encode two key virion proteins, the major capsid protein with the double jelly-roll fold and the minor capsid protein, known as the penton, with the single jelly-roll topology. This observation along with the previously noted conservation of the genes for viral genome packaging ATPase and adenovirus-like protease strongly suggests that Polintons and Tlr elements combine features of bona fide viruses and transposons. We propose the name ‘Polintoviruses’ to denote these putative viruses that could have played a central role in the evolution of several groups of DNA viruses of eukaryotes. PMID:24773695

  4. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses.

    PubMed

    Krupovic, Mart; Bamford, Dennis H; Koonin, Eugene V

    2014-04-29

    Polintons (also known as Mavericks) and Tlr elements of Tetrahymena thermophila represent two families of large DNA transposons widespread in eukaryotes. Here, we show that both Polintons and Tlr elements encode two key virion proteins, the major capsid protein with the double jelly-roll fold and the minor capsid protein, known as the penton, with the single jelly-roll topology. This observation along with the previously noted conservation of the genes for viral genome packaging ATPase and adenovirus-like protease strongly suggests that Polintons and Tlr elements combine features of bona fide viruses and transposons. We propose the name 'Polintoviruses' to denote these putative viruses that could have played a central role in the evolution of several groups of DNA viruses of eukaryotes.

  5. Application of Mutated miR-206 Target Sites Enables Skeletal Muscle-specific Silencing of Transgene Expression of Cardiotropic AAV9 Vectors

    PubMed Central

    Geisler, Anja; Schön, Christian; Größl, Tobias; Pinkert, Sandra; Stein, Elisabeth A; Kurreck, Jens; Vetter, Roland; Fechner, Henry

    2013-01-01

    Insertion of completely complementary microRNA (miR) target sites (miRTS) into a transgene has been shown to be a valuable approach to specifically repress transgene expression in non-targeted tissues. miR-122TS have been successfully used to silence transgene expression in the liver following systemic application of cardiotropic adeno-associated virus (AAV) 9 vectors. For miR-206–mediated skeletal muscle-specific silencing of miR-206TS–bearing AAV9 vectors, however, we found this approach failed due to the expression of another member (miR-1) of the same miR family in heart tissue, the intended target. We introduced single-nucleotide substitutions into the miR-206TS and searched for those which prevented miR-1–mediated cardiac repression. Several mutated miR-206TS (m206TS), in particular m206TS-3G, were resistant to miR-1, but remained fully sensitive to miR-206. All these variants had mismatches in the seed region of the miR/m206TS duplex in common. Furthermore, we found that some m206TS, containing mismatches within the seed region or within the 3′ portion of the miR-206, even enhanced the miR-206– mediated transgene repression. In vivo expression of m206TS-3G– and miR-122TS–containing transgene of systemically applied AAV9 vectors was strongly repressed in both skeletal muscle and the liver but remained high in the heart. Thus, site-directed mutagenesis of miRTS provides a new strategy to differentiate transgene de-targeting of related miRs. PMID:23439498

  6. Stabilising the Herpes Simplex Virus capsid by DNA packaging

    NASA Astrophysics Data System (ADS)

    Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter

    2009-03-01

    Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.

  7. The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2.

    PubMed

    Tyagi, Shweta; Korkaya, Hasan; Zafrullah, Mohammad; Jameel, Shahid; Lal, Sunil K

    2002-06-21

    Hepatitis E virus (HEV) is a human RNA virus containing three open reading frames. Of these, ORF1 encodes the viral nonstructural polyprotein; ORF2 encodes the major capsid protein, which exists in a glycosylated and non-glycosylated form; and ORF3 codes for a phosphoprotein of undefined function. Using fluorescence-based colocalization, yeast two-hybrid experiments, transiently transfected COS-1 cell co-immunoprecipitation, and cell-free coupled transcription-translation techniques, we have shown that the ORF3 protein interacts with the ORF2 protein. The domains involved in this ORF2-ORF3 association have been identified and mapped. Our deletion analysis showed that a 25-amino acid region (residues 57-81) of the ORF3 protein is required for this interaction. Using a Mexican HEV isolate, site-directed mutagenesis of ORF3, and a phosphatase digestion assay, we showed that the ORF2-ORF3 interaction is dependent upon the phosphorylation at Ser(80) of ORF3. Finally, using COS-1 cell immunoprecipitation experiments, we found that the phosphorylated ORF3 protein preferentially interacts with the non-glycosylated ORF2 protein. These findings were confirmed using tunicamycin inhibition, point mutants, and deletion mutants expressing only non-glycosylated ORF2. ORF3 maps in the structural region of the HEV genome and now interacts with the major capsid protein, ORF2, in a post-translational modification-dependent manner. Such an interaction of ORF2 with ORF3 suggests a possible well regulated role for ORF3 in HEV structural assembly.

  8. Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations.

    PubMed

    Lai, Huafang; Chen, Qiang

    2012-03-01

    Despite the success in expressing a variety of subunit vaccine proteins in plants and the recent stride in improving vaccine accumulation levels by transient expression systems, there is still no plant-derived vaccine that has been licensed for human use. The lack of commercial success of plant-made vaccines lies in several technical and regulatory barriers that remain to be overcome. These challenges include the lack of scalable downstream processing procedures, the uncertainty of regulatory compliance of production processes, and the lack of demonstration of plant-derived products that meet the required standards of regulatory agencies in identity, purity, potency and safety. In this study, we addressed these remaining challenges and successfully demonstrate the ability of using plants to produce a pharmaceutical grade Norwalk virus (NV) vaccine under current Good Manufacture Practice (cGMP) guidelines at multiple gram scales. Our results demonstrate that an efficient and scalable extraction and purification scheme can be established for processing virus-like particles (VLPs) of NV capsid protein (NVCP). We successfully operated the upstream and downstream NVCP production processes under cGMP regulations. Furthermore, plant-derived NVCP VLP demonstrates the identity, purity, potency and safety that meet the preset release specifications. This material is being tested in a Phase I human clinical trial. This research provides the first report of producing a plant-derived vaccine at scale under cGMP regulations in an academic setting and an important step for plant-produced vaccines to become a commercial reality.

  9. Functional and Structural Characterization of Novel Type of Linker Connecting Capsid and Nucleocapsid Protein Domains in Murine Leukemia Virus.

    PubMed

    Doležal, Michal; Hadravová, Romana; Kožíšek, Milan; Bednárová, Lucie; Langerová, Hana; Ruml, Tomáš; Rumlová, Michaela

    2016-09-23

    The assembly of immature retroviral particles is initiated in the cytoplasm by the binding of the structural polyprotein precursor Gag with viral genomic RNA. The protein interactions necessary for assembly are mediated predominantly by the capsid (CA) and nucleocapsid (NC) domains, which have conserved structures. In contrast, the structural arrangement of the CA-NC connecting region differs between retroviral species. In HIV-1 and Rous sarcoma virus, this region forms a rod-like structure that separates the CA and NC domains, whereas in Mason-Pfizer monkey virus, this region is densely packed, thus holding the CA and NC domains in close proximity. Interestingly, the sequence connecting the CA and NC domains in gammaretroviruses, such as murine leukemia virus (MLV), is unique. The sequence is called a charged assembly helix (CAH) due to a high number of positively and negatively charged residues. Although both computational and deletion analyses suggested that the MLV CAH forms a helical conformation, no structural or biochemical data supporting this hypothesis have been published. Using an in vitro assembly assay, alanine scanning mutagenesis, and biophysical techniques (circular dichroism, NMR, microcalorimetry, and electrophoretic mobility shift assay), we have characterized the structure and function of the MLV CAH. We provide experimental evidence that the MLV CAH belongs to a group of charged, E(R/K)-rich, single α-helices. This is the first single α-helix motif identified in viral proteins.

  10. Using cryoEM Reconstruction and Phase Extension to Determine Crystal Structure of Bacteriophage ${\\Phi}$6 Major Capsid Protein

    SciTech Connect

    Nemecek, Daniel; Plevka, Pavel; Boura, Evzen

    2013-11-29

    Bacteriophage ${\\Phi}$6 is a double-stranded RNA virus that has been extensively studied as a model organism. In this paper we describe structure determination of ${\\Phi}$6 major capsid protein P1. The protein crystallized in base centered orthorhombic space group C2221. Matthews’s coefficient indicated that the crystals contain from four to seven P1 subunits in the crystallographic asymmetric unit. The self-rotation function had shown presence of fivefold axes of non-crystallographic symmetry in the crystals. Thus, electron density map corresponding to a P1 pentamer was excised from a previously determined cryoEM reconstruction of the ${\\Phi}$6 procapsid at 7 Å resolution and used as a model for molecular replacement. The phases for reflections at higher than 7 Å resolution were obtained by phase extension employing the fivefold non-crystallographic symmetry present in the crystal. Lastly, the averaged 3.6 Å-resolution electron density map was of sufficient quality to allow model building.

  11. Diversity of environmental single-stranded DNA phages revealed by PCR amplification of the partial major capsid protein

    PubMed Central

    Hopkins, Max; Kailasan, Shweta; Cohen, Allison; Roux, Simon; Tucker, Kimberly Pause; Shevenell, Amelia; Agbandje-McKenna, Mavis; Breitbart, Mya

    2014-01-01

    The small single-stranded DNA (ssDNA) bacteriophages of the subfamily Gokushovirinae were traditionally perceived as narrowly targeted, niche-specific viruses infecting obligate parasitic bacteria, such as Chlamydia. The advent of metagenomics revealed gokushoviruses to be widespread in global environmental samples. This study expands knowledge of gokushovirus diversity in the environment by developing a degenerate PCR assay to amplify a portion of the major capsid protein (MCP) gene of gokushoviruses. Over 500 amplicons were sequenced from 10 environmental samples (sediments, sewage, seawater and freshwater), revealing the ubiquity and high diversity of this understudied phage group. Residue-level conservation data generated from multiple alignments was combined with a predicted 3D structure, revealing a tendency for structurally internal residues to be more highly conserved than surface-presenting protein–protein or viral–host interaction domains. Aggregating this data set into a phylogenetic framework, many gokushovirus MCP clades contained samples from multiple environments, although distinct clades dominated the different samples. Antarctic sediment samples contained the most diverse gokushovirus communities, whereas freshwater springs from Florida were the least diverse. Whether the observed diversity is being driven by environmental factors or host-binding interactions remains an open question. The high environmental diversity of this previously overlooked ssDNA viral group necessitates further research elucidating their natural hosts and exploring their ecological roles. PMID:24694711

  12. The complex subcellular distribution of satellite panicum mosaic virus capsid protein reflects its multifunctional role during infection.

    PubMed

    Qi, Dong; Omarov, Rustem T; Scholthof, Karen-Beth G

    2008-06-20

    Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus for replication and movement in host plants. The positive-sense single-stranded genomic RNA of SPMV encodes a 17-kDa capsid protein (CP) to form 16-nm virions. We determined that SPMV CP accumulates in both cytosolic and non-cytosolic fractions, but cytosolic accumulation of SPMV CP is exclusively associated with virions. An N-terminal arginine-rich motif (N-ARM) on SPMV CP is used to bind its cognate RNA and to form virus particles. Intriguingly, virion formation is dispensable for successful systemic SPMV RNA accumulation, yet this process still depends on an intact N-ARM. In addition, a C-terminal domain on the SPMV CP is necessary for self-interaction. Biochemical fractionation and fluorescent microscopy of green fluorescent protein-tagged SPMV CP demonstrated that the non-cytosolic SPMV CP is associated with the cell wall, the nucleus and other membranous organelles. To our knowledge, this is the first report that a satellite virus CP not only accumulates exclusively as virions in the cytosol but also is directed to the nucleolus and membranes. That SPMV CP is found both in the nucleus and the cell wall suggests its involvement in viral nuclear import and cell-to-cell transport.

  13. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA

    PubMed Central

    Samuel, Glady Hazitha; Wiley, Michael R.; Badawi, Atif; Adelman, Zach N.; Myles, Kevin M.

    2016-01-01

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen’s ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito’s RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular “arms race” between vector and pathogen underlies the continued existence of flaviviruses in nature. PMID:27849599

  14. The presence of Chlamydia phage PhiCPG1 capsid protein VP1 genes and antibodies in patients infected with Chlamydia trachomatis.

    PubMed

    Ma, Jingyue; Liu, Yuan; Liu, Yuanjun; Li, Lingjie; Hou, Shuping; Gao, Xibo; Qi, Manli; Liu, Quanzhong

    2016-01-01

    Chlamydia phage PhiCPG1 has been found in Chlamydia caviae in a guinea pig model for inclusion conjunctivitis, raising the possibility that Chlamydia phage is also present in patients infected with C. trachomatis (Ct). In the present study, we assayed for presence of Chlamydia phage capsid protein VP1 genes and antibodies in 84 non-Ct controls and 206 Ct patients using an enzyme-linked immunoassay (ELISA), followed by verification with Western blot. None of the subjects were exposed to an antibiotic treatment or had a C. pneumoniae infection. The VP1 antibody test was positive in both, the ELISA and Western blot assay, in 4 Ct patients. PCR amplification experiments revealed presence of the VP1 gene in 5 Ct patients. The results suggest that Chlamydia phage capsid protein VP1 may exist in some Ct patients.

  15. Latex bead immobilisation in PDMS matrix for the detection of p53 gene point mutation and anti-HIV-1 capsid protein antibodies.

    PubMed

    Marquette, Christophe A; Degiuli, Agnès; Imbert-Laurenceau, Emmanuelle; Mallet, Francois; Chaix, Carole; Mandrand, Bernard; Blum, Loïc J

    2005-03-01

    Two diagnostic chemiluminescent biochips were developed for either the detection of p53 gene point mutation or the serological detection of anti-HIV-1 p24 capsid protein. Both biochips were composed of 24 microarrays of latex beads spots (4x4) (150 microm in diameter, 800 microm spacing) entrapped in a poly(dimethylsiloxane) elastomer (PDMS). The latex beads, bearing oligonucleotide sequences or capsid protein, were spotted with a conventional piezoelectric spotter and subsequently transferred at the PDMS interface. The electron microscopy observation of the biochips showed how homogeneous and well distributed the spots could be. Point mutation detection on the codon 273 of the p53 gene was performed on the basis of the melting temperature difference between the perfect match sequence and the one base pair mismatch sequence. The hybridisation of a 20-mer oligonucleotide form the codon 273 including a one base pair mutation in its sequence on a biochip arrayed with non-muted and the muted complementary sequences, enabled a clear discrimination at 56 degrees C between muted and wild sequences. Moreover, the quantitative measurement of the amount of muted sequence in a sample was possible in the range 0.4-4 pmol. Serological measurement of anti-HIV-1 p24 capsid protein on the biochip, prepared with 1-microm-diameter latex beads, enabled the detection of monoclonal antibodies in the range 1.55-775 ng mL(-1). Such a range could be lowered to 0.775 ng mL(-1) when using 50-nm-diameter beads, which generated a higher specific surface. The validation of the biochip for the detection of anti-HIV-1 capsid protein antibodies was performed in human sera from seropositive and seronegative patients. The positivity of the sera was easily discriminated at serum dilutions below 1:1,000.

  16. Egg yolk IgY against RHDV capsid protein VP60 promotes rabbit defense against RHDV infection.

    PubMed

    Li, Zai Xin; Hu, Wei Dong; Li, Bing Chao; Li, Tian You; Zhou, Xiao Yang; Zhang, Zhi

    2014-01-15

    VP60 capsid protein is the major structural and immunogenicity protein of RHDV (Rabbit hemorrhagic disease virus, RHDV), and has been implicated as a main protein antigen in RHDV diagnosis and vaccine design. In this report, egg yolk antibody (IgY) against N-terminal of VP60 was evaluated and developed as a new strategy for RHDV therapy. Briefly, N-terminal of VP60 (∼250aa) fragment was cloned and inserted into pET28a expression vector, and then the resultant plasmid, pET28a/VP60-N, was transformed into E. coli BL21(DE3) for recombinant VP60-N protein (rVP60-N) expression. Next, the rVP60-N was purified by Ni(+)-affinity purification chromatography and identified by Western blotting with RHDV antiserum. After immunizing the chickens with rVP60-N, the anti-rVP60-N IgY was isolated, and the activity and specificity of the IgY antibody were analyzed by ELISA and Western blotting. In our results, the rVP60-N could be expressed in E. coli as soluble fraction, and the isolated anti-rVP60-N IgY demonstrated a high specificity and titer (1:22,000) against rVP60-N antigen. For further evaluation of the IgY efficacy in vivo, rabbits were grouped randomly and challenged with RHDV, and the results showed that anti-rVP60-N IgY could significantly protect rabbits from virus infection and promote the host survival after a sustained treatment with anti-rVP60-N IgY for 5 days. Taken together, our study demonstrates evidence that production of IgY against VP60 could be as a novel strategy for the RHDV therapy.

  17. Functional correction of neurological and somatic disorders at later stages of disease in MPS IIIA mice by systemic scAAV9-hSGSH gene delivery

    PubMed Central

    Fu, Haiyan; Cataldi, Marcela P; Ware, Tierra A; Zaraspe, Kimberly; Meadows, Aaron S; Murrey, Darren A; McCarty, Douglas M

    2016-01-01

    The reversibility of neuropathic lysosomal storage diseases, including MPS IIIA, is a major goal in therapeutic development, due to typically late diagnoses and a large population of untreated patients. We used self-complementary adeno-associated virus (scAAV) serotype 9 vector expressing human N-sulfoglucosamine sulfohydrolase (SGSH) to test the efficacy of treatment at later stages of the disease. We treated MPS IIIA mice at 1, 2, 3, 6, and 9 months of age with an intravenous injection of scAAV9-U1a-hSGSH vector, leading to restoration of SGSH activity and reduction of glycosaminoglycans (GAG) throughout the central nervous system (CNS) and somatic tissues at a dose of 5E12 vg/kg. Treatment up to 3 months age improved learning ability in the Morris water maze at 7.5 months, and lifespan was normalized. In mice treated at 6 months age, behavioral performance was impaired at 7.5 months, but did not decline further when retested at 12 months, and lifespan was increased, but not normalized. Treatment at 9 months did not increase life-span, though the GAG storage pathology in the CNS was improved. The study suggests that there is potential for gene therapy intervention in MPS IIIA at intermediate stages of the disease, and extends the clinical relevance of our systemic scAAV9-hSGSH gene delivery approach. PMID:27331076

  18. Controlling viral capsid assembly with templating

    NASA Astrophysics Data System (ADS)

    Hagan, Michael F.

    2008-05-01

    We develop coarse-grained models that describe the dynamic encapsidation of functionalized nanoparticles by viral capsid proteins. We find that some forms of cooperative interactions between protein subunits and nanoparticles can dramatically enhance rates and robustness of assembly, as compared to the spontaneous assembly of subunits into empty capsids. For large core-subunit interactions, subunits adsorb onto core surfaces en masse in a disordered manner, and then undergo a cooperative rearrangement into an ordered capsid structure. These assembly pathways are unlike any identified for empty capsid formation. Our models can be directly applied to recent experiments in which viral capsid proteins assemble around functionalized inorganic nanoparticles [Sun , Proc. Natl. Acad. Sci. U.S.A. 104, 1354 (2007)]. In addition, we discuss broader implications for understanding the dynamic encapsidation of single-stranded genomic molecules during viral replication and for developing multicomponent nanostructured materials.

  19. Controlling Viral Capsid Assembly with Templating

    PubMed Central

    Hagan, Michael F.

    2009-01-01

    We develop coarse-grained models that describe the dynamic encapsidation of functionalized nanoparticles by viral capsid proteins. We find that some forms of cooperative interactions between protein subunits and nanoparticles can dramatically enhance rates and robustness of assembly, as compared to the spontaneous assembly of subunits into empty capsids. For large core-subunit interactions, subunits adsorb onto core surfaces en masse in a disordered manner, and then undergo a cooperative rearrangement into an ordered capsid structure. These assembly pathways are unlike any identified for empty capsid formation. Our models can be directly applied to recent experiments in which viral capsid proteins assemble around the functionalized inorganic nanoparticles [Sun et al., Proc. Natl. Acad. Sci (2007) 104, 1354]. In addition, we discuss broader implications for understanding the dynamic encapsidation of single-stranded genomic molecules during viral replication and for developing multicomponent nanostructured materials. PMID:18643099

  20. Identification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides.

    PubMed

    Foo, Damian Guang Wei; Alonso, Sylvie; Phoon, Meng Chee; Ramachandran, N P; Chow, Vincent Tak Kwong; Poh, Chit Laa

    2007-04-01

    Enterovirus 71 (EV71) is the main causative agent of Hand, foot and mouth disease (HFMD) and has been associated with severe neurological diseases resulting in high mortalities. Currently, there is no vaccine available and treatment is limited to palliative care. In this study, antisera were raised in mice against 95 overlapping synthetic peptides spanning the VP1 capsid protein of EV71. Two peptides, SP55 and SP70, containing amino acid 163-177 and 208-222 of VP1, respectively, are capable of eliciting neutralizing antibodies against EV71 in the in vitro microneutralization assay. SP70 was identified to be particularly potent in eliciting a neutralizing antibody titer comparable to that obtained with a whole virion-immune serum. Immunization of mice with either SP55 or SP70 triggered an EV71-specific IgG response as high as that obtained with the whole virion as immunogen. The IgG sub-typing revealed that the neutralizing antibodies elicited by both synthetic peptides are likely belonging to the IgG1 sub-type. Alignment with databases showed that the amino acid residues of SP70 are highly conserved amongst the VP1 sequences of EV71 strains from various sub-genogroups. Altogether, these data indicate that SP70 represents a promising candidate for an effective synthetic peptide-based vaccine against EV71.

  1. Characterization of a novel monoclonal antibody reactive against the N-terminal region of Enterovirus 71 VP1 capsid protein.

    PubMed

    Lim, Xiao Fang; Jia, Qiang; Chow, Vincent T K; Kwang, Jimmy

    2013-03-01

    Hand, foot and mouth disease (HFMD) is a viral infectious disease caused by human Enterovirus A, particularly Enterovirus 71 (EV71) and Coxsackievirus 16 (CA16) serotypes, with EV71 infection associated with severe neurological complications and mortality. Lots of attention has been placed on elucidating viral epitopes, which is useful for EV71 viral research. In this study, a murine monoclonal antibody (mAb 4) specific for EV71 was generated and mapped to target the N-terminal region of VP1 capsid protein, spanning amino acid residues 12-19 (IGDSVSRA). mAb 4 can cross-react with all the 11 representative EV71 subgenotypes (A, B1-5, C1-5), but not with the representative strain of CA16 as demonstrated by immunofluorescence assay (IFA). BLAST analyses of this epitope against all Enterovirus entries in Genbank also demonstrated that this epitope is unique in EV71, but not other Enterovirus such as CA16 It may be useful for structural study of VP1 morphogenesis during infection and also applications for identification of EV71 infection.

  2. Glucocorticoids Prevent Enterovirus 71 Capsid Protein VP1 Induced Calreticulin Surface Exposure by Alleviating Neuronal ER Stress.

    PubMed

    Hu, Dan-Dan; Mai, Jian-Ning; He, Li-Ya; Li, Pei-Qing; Chen, Wen-Xiong; Yan, Jian-Jiang; Zhu, Wei-Dong; Deng, Li; Wei, Dan; Liu, Di-Hui; Yang, Si-Da; Yao, Zhi-Bin

    2017-02-01

    Severe hand-foot-and-mouth disease (HFMD) caused by Enterovirus 71 (EV71) always accompanies with inflammation and neuronal damage in the central nervous system (CNS). During neuronal injuries, cell surface-exposed calreticulin (Ecto-CRT) is an important mediator for primary phagocytosis of viable neurons by microglia. Our data confirmed that brainstem neurons underwent neuronophagia by glia in EV71-induced death cases of HFMD. EV71 capsid proteins VP1, VP2, VP3, or VP4 did not induce apoptosis of brainstem neurons. Interestingly, we found VP1-activated endoplasmic reticulum (ER) stress and autophagy could promote Ecto-CRT upregulation, but ER stress or autophagy alone was not sufficient to induce CRT exposure. Furthermore, we demonstrated that VP1-induced autophagy activation was mediated by ER stress. Meaningfully, we found dexamethasone treatment could attenuate Ecto-CRT upregulation by alleviating VP1-induced ER stress. Altogether, these findings identify VP1-promoted Ecto-CRT upregulation as a novel mechanism of EV71-induced neuronal cell damage and highlight the potential of the use of glucocorticoids to treat severe HFMD patients with CNS complications.

  3. Capsid Protein VP4 of Human Rhinovirus Induces Membrane Permeability by the Formation of a Size-Selective Multimeric Pore

    PubMed Central

    Panjwani, Anusha; Strauss, Mike; Gold, Sarah; Wenham, Hannah; Jackson, Terry; Chou, James J.; Rowlands, David J.; Stonehouse, Nicola J.; Hogle, James M.; Tuthill, Tobias J.

    2014-01-01

    Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a novel antiviral target for the picornavirus family. PMID:25102288

  4. Electroaddressed immobilization of recombinant HIV-1 P24 capsid protein onto screen-printed arrays for serological testing.

    PubMed

    Marquette, Christophe A; Imbert-Laurenceau, Emmanuelle; Mallet, Francois; Chaix, Carole; Mandrand, Bernard; Blum, Loïc J

    2005-05-01

    A serological chemiluminescent biochip was designed based on screen-printed electrode arrays composed of nine 1-mm(2) electrodes. Arrays were shown to be produced with good batch-to-batch reproducibility (standard deviations of 4.4 and 12.0% for ferricyanide oxidation potential and current, respectively) and very good reproducibility within a particular array (2.0 and 7.5% standard deviations for the same controls). Electrode arrays were used to electroaddress various bioconjugate structures comprising a recombinant HIV-1 P24 capsid protein (RH24K) in polypyrrole film. Entrapment of RH24K preimmobilized onto maleic anhydride-alt-methyl vinyl ether copolymer was shown to be the more efficient immobilization procedure. This addressed sensing layer enabled the detection of anti-P24 antibodies at a concentration of 3.5 ng/ml through peroxidase-labeled anti-human immunoglobulin G reaction. The biochip was used to perform an HIV-1 serological test in human sera. HIV-1 seropositive and seronegative sera were easily discriminated using serum dilutions greater than 1/10,000.

  5. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal {beta}-hexamer structure

    SciTech Connect

    Wispelaere, Melissanne de; Chaturvedi, Sonali; Wilkens, Stephan; Rao, A.L.N.

    2011-10-10

    The first 45 amino acid region of brome mosaic virus (BMV) capsid protein (CP) contains RNA binding and structural domains that are implicated in the assembly of infectious virions. One such important structural domain encompassing amino acids {sup 28}QPVIV{sup 32}, highly conserved between BMV and cowpea chlorotic mottle virus (CCMV), exhibits a {beta}-hexamer structure. In this study we report that alteration of the {beta}-hexamer structure by mutating {sup 28}QPVIV{sup 32} to {sup 28}AAAAA{sup 32} had no effect either on symptom phenotype, local and systemic movement in Chenopodium quinoa and RNA profile of in vivo assembled virions. However, sensitivity to RNase and assembly phenotypes distinguished virions assembled with CP subunits having {beta}-hexamer from those of wild type. A comparison of 3-D models obtained by cryo electron microscopy revealed overall similar structural features for wild type and mutant virions, with small but significant differences near the 3-fold axes of symmetry.

  6. Chlamydiaphage φCPG1 Capsid Protein Vp1 Inhibits Chlamydia trachomatis Growth via the Mitogen-Activated Protein Kinase Pathway.

    PubMed

    Guo, Yuanli; Guo, Rui; Zhou, Quan; Sun, Changgui; Zhang, Xinmei; Liu, Yuanjun; Liu, Quanzhong

    2016-04-14

    Chlamydia trachomatis is the most common cause of curable bacterial sexually transmitted infections worldwide. Although the pathogen is well established, the pathogenic mechanisms remain unclear. Given the current challenges of antibiotic resistance and blocked processes of vaccine development, the use of a specific chlamydiaphage may be a new treatment solution. φCPG1 is a lytic phage specific for Chlamydia caviae, and shows over 90% nucleotide sequence identity with other chlamydiaphages. Vp1 is the major capsid protein of φCPG1. Purified Vp1 was previously confirmed to inhibit Chlamydia trachomatis growth. We here report the first attempt at exploring the relationship between Vp1-treated C. trachomatis and the protein and gene levels of the mitogen-activated/extracellular regulated protein kinase (MAPK/ERK) pathway by Western blotting and real-time PCR, respectively. Moreover, we evaluated the levels of pro-inflammatory cytokines interleukin (IL)-8 and IL-1 by enzyme-linked immunosorbent assay after Vp1 treatment. After 48 h of incubation, the p-ERK level of the Vp1-treated group decreased compared with that of the Chlamydia infection group. Accordingly, ERK1 and ERK2 mRNA expression levels of the Vp1-treated group also decreased compared with the Chlamydia infection group. IL-8 and IL-1 levels were also decreased after Vp1 treatment compared with the untreated group. Our results demonstrate that the inhibition effect of the chlamydiaphage φCPG1 capsid protein Vp1 on C. trachomatis is associated with the MAPK pathway, and inhibits production of the pro-inflammatory cytokines IL-8 and IL-1. The bacteriophages may provide insight into a new signaling transduction mechanism to influence their hosts, in addition to bacteriolysis.

  7. An efficient approach for recombinant expression and purification of the viral capsid protein from beak and feather disease virus (BFDV) in Escherichia coli.

    PubMed

    Sarker, Subir; Ghorashi, Seyed A; Swarbrick, Crystall M D; Khandokar, Yogesh B; Himiari, Zainab; Forwood, Jade K; Raidal, Shane R

    2015-04-01

    Structural insights into the biology of viruses such as beak and feather disease virus (BFDV) which do not replicate in cell cultures are increasingly reliant on recombinant methods for protein production and purification. Development of efficient methods for homogenous production of BFDV capsid protein is also essential for vaccine development and diagnostic purposes. In this study, two different plasmids (pMCSG21 and pMCSG24), three homologous BFDV capsid proteins, and two unique expression media (auto-induction and IPTG-induced expression) were trialled for over-expression of the BFDV in Escherichia coli. Over-expression was observed for all three recombinant targets of BFDV capsid protein using E. coli BL21 (DE3) Rosetta 2 cell lines under IPTG induction. These proteins could be purified using an optimized, two-step purification process using a buffer containing 20mM N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), 500 mM NaCl and supplemented with 200 mM L-arginine at pH 10.5, to yield a soluble and stable protein of greater than 95% purity. The final concentration of purified protein was approximately fourteen-to-eighteen fold greater than that reported previously. Initial crystallization and X-ray diffraction confirm that the protein is structured in a manner consistent with icosahedral symmetry. Antigenicity of recombinant Cap was confirmed by immunoassay, verifying its validity for use in continued experimentation as a potential DNA vaccine, a reagent in diagnostic assays, and purified concentrated protein for structural and functional biology.

  8. Cysteine residues in the major capsid protein, Vp1, of the JC virus are important for protein stability and oligomer formation.

    PubMed

    Kobayashi, Shintaro; Suzuki, Tadaki; Igarashi, Manabu; Orba, Yasuko; Ohtake, Noriko; Nagakawa, Keita; Niikura, Kenichi; Kimura, Takashi; Kasamatsu, Harumi; Sawa, Hirofumi

    2013-01-01

    The capsid of the human polyomavirus JC virus (JCV) consists of 72 pentameric capsomeres of a major structural protein, Vp1. The cysteine residues of the related Vp1 of SV40 are known to contribute to Vp1 folding, pentamer formation, pentamer-pentamer contacts, and capsid stabilization. In light of the presence of a slight structural difference between JCV Vp1 and SV40 counterpart, the way the former folds could be either different from or similar to the latter. We found a difference: an important contribution of Vp1 cysteines to the formation of infectious virions, unique in JCV and absent in SV40. Having introduced amino acid substitution at each of six cysteines (C42, C80, C97, C200, C247, and C260) in JCV Vp1, we found that, when expressed in HeLa cells, the Vp1 level was decreased in C80A and C247A mutants, and remained normal in the other mutants. Additionally, the C80A and C247A Vp1-expressing cell extracts did not show the hemagglutination activity characteristic of JCV particles. The C80A and C247A mutant Vp1s were found to be less stable than the wild-type Vp1 in HeLa cells. When produced in a reconstituted in vitro protein translation system, these two mutant proteins were stable, suggesting that some cellular factors were responsible for their degradation. As determined by their sucrose gradient sedimentation profiles, in vitro translated C247A Vp1 formed pentamers, but in vitro translated C80A Vp1 was entirely monomeric. When individually incorporated into the JCV genome, the C80A and C247A mutants, but not the other Vp1 cysteine residues mutants, interfered with JCV infectivity. Furthermore, the C80A, but not the C247A, mutation prevented the nuclear localization of Vp1 in JCV genome transfected cells. These findings suggest that C80 of JCV Vp1 is required for Vp1 stability and pentamer formation, and C247 is involved in capsid assembly in the nucleus.

  9. A novel finding for enterovirus virulence from the capsid protein VP1 of EV71 circulating in mainland China.

    PubMed

    Liu, Yongjuan; Fu, Chong; Wu, Suying; Chen, Xiong; Shi, Yingying; Zhou, Bingfei; Zhang, Lianglu; Zhang, Fengfeng; Wang, Zhihao; Zhang, Yingying; Fan, Chengpeng; Han, Song; Yin, Jun; Peng, Biwen; Liu, Wanhong; He, Xiaohua

    2014-04-01

    Enterovirus 71 (EV71) is a neurotropic virus that causes various clinical manifestations in young children, ranging from asymptomatic to fatal. Different pathotypes of EV71 notably differ in virulence. Several virulence determinants of EV71 have been predicted. However, these reported virulence determinants could not be used to identify the EV71 strains of subgenotype C4, which mainly circulate in China. In this study, VP1 sequences of 37 EV71 strains from severe cases (SC-EV71) and 192 EV71 strains from mild cases (MC-EV71) in mainland China were analyzed to determine the potential virulence determinants in the capsid protein VP1 of EV71. Although most SC-EV71 strains belonged to subgenotype C4a, no specific genetic lineages in C4a were correlated with EV71 virulence. Interestingly, amino acid substitutions at nine positions (H22Q, P27S, N31S/D, E98K, E145G/Q, D164E, T240A/S, V249I, and A289T) were detected by aligning the VP1 sequences of the SC-EV71 and MC-EV71 strains. Moreover, both the constituent ratios of the conservative or mutated residues in the MC-EV71 and SC-EV71 strains and the changes in the VP1 3D structure resulting from these mutations confirmed that the conservative residues (22H, 249V, and 289A) and the mutated residues (27S, 31S/D, 98K, 145G/Q, 164E, and 240A/S) might be potential virulence determinants in VP1 of EV71. Furthermore, these results led to the hypothesis that VP1 acts as a sandwich switch for viral particle stabilization and cellular receptors attachment, and specific mutations in this protein can convert mild cases into severe cases. These findings highlight new opportunities for diagnostic and therapeutic interventions.

  10. Preclinical refinements of a broadly protective VLP-based HPV vaccine targeting the minor capsid protein, L2.

    PubMed

    Tumban, Ebenezer; Muttil, Pavan; Escobar, Carolina Andrea A; Peabody, Julianne; Wafula, Denis; Peabody, David S; Chackerian, Bryce

    2015-06-26

    An ideal prophylactic human papillomavirus (HPV) vaccine would provide broadly protective and long-lasting immune responses against all high-risk HPV types, would be effective after a single dose, and would be formulated in such a manner to allow for long-term storage without the necessity for refrigeration. We have developed candidate HPV vaccines consisting of bacteriophage virus-like particles (VLPs) that display a broadly neutralizing epitope derived from the HPV16 minor capsid protein, L2. Immunization with 16L2 VLPs elicited high titer and broadly cross-reactive and cross-neutralizing antibodies against diverse HPV types. In this study we introduce two refinements for our candidate vaccines, with an eye towards enhancing efficacy and clinical applicability in the developing world. First, we assessed the role of antigen dose and boosting on immunogenicity. Mice immunized with 16L2-MS2 VLPs at doses ranging from 2 to 25 μg with or without alum were highly immunogenic at all doses; alum appeared to have an adjuvant effect at the lowest dose. Although boosting enhanced antibody titers, even a single immunization could elicit strong and long-lasting antibody responses. We also developed a method to enhance vaccine stability. Using a spray dry apparatus and a combination of sugars & an amino acid as protein stabilizers, we generated dry powder vaccine formulations of our L2 VLPs. Spray drying of our L2 VLPs did not affect the integrity or immunogenicity of VLPs upon reconstitution. Spray dried VLPs were stable at room temperature and at 37 °C for over one month and the VLPs were highly immunogenic. Taken together, these enhancements are designed to facilitate implementation of a next-generation VLP-based HPV vaccine which addresses U.S. and global disparities in vaccine affordability and access in rural/remote populations.

  11. Preclinical Refinements of a Broadly Protective VLP-based HPV Vaccine Targeting the Minor Capsid Protein, L2

    PubMed Central

    Tumban, Ebenezer; Muttil, Pavan; Escobar, Carolina Andrea A.; Peabody, Julianne; Wafula, Denis; Peabody, David S.; Chackerian, Bryce

    2015-01-01

    An ideal prophylactic human papillomavirus (HPV) vaccine would provide broadly protective and long-lasting immune responses against all high-risk HPV types, would be effective after a single dose, and would be formulated in such a manner to allow for long-term storage without the necessity for refrigeration. We have developed candidate HPV vaccines consisting of bacteriophage virus-like particles (VLPs) that display a broadly neutralizing epitope derived from the HPV16 minor capsid protein, L2. Immunization with 16L2 VLPs elicited high titer and broadly cross-reactive and cross-neutralizing antibodies against diverse HPV types. In this study we introduce two refinements for our candidate vaccines, with an eye towards enhancing efficacy and clinical applicability in the developing world. First, we assessed the role of antigen dose and boosting on immunogenicity. Mice immunized with 16L2-MS2 VLPs at doses ranging from 2–25 μg with or without alum were highly immunogenic at all doses; alum appeared to have an adjuvant effect at the lowest dose. Although boosting enhanced antibody titers, even a single immunization could elicit strong and long-lasting antibody responses. We also developed a method to enhance vaccine stability. Using a spray dry apparatus and a combination of sugars & an amino acid as protein stabilizers, we generated dry powder vaccine formulations of our L2 VLPs. Spray drying of our L2 VLPs did not affect the integrity or immunogenicity of VLPs upon reconstitution. Spray dried VLPs were stable at room temperature and at 37°C for over one month and the VLPs were highly immunogenic. Taken together, these enhancements are designed to facilitate implementation of a next-generation VLP-based HPV vaccine which addresses U.S. and global disparities in vaccine affordability and access in rural/remote populations. PMID:26003490

  12. Production of recombinant capsid protein of Macrobrachium rosenbergii nodavirus (r-MCP43) of giant freshwater prawn, M. rosenbergii (de Man) for immunological diagnostic methods.

    PubMed

    Farook, M A; Madan, N; Taju, G; Majeed, S Abdul; Nambi, K S N; Raj, N Sundar; Vimal, S; Hameed, A S Sahul

    2014-08-01

    White tail disease (WTD) caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) is a serious problem in prawn hatcheries. The gene for capsid protein of MrNV (MCP43) was cloned into pRSET B expression vector. The MCP43 protein was expressed as a protein with a 6-histidine tag in Escherichia coli GJ1158 with NaCl induction. This recombinant protein, which was used to raise the antiserum in rabbits, recognized capsid protein in different WTD-infected post-larvae and adult prawn. Various immunological methods such as Western blot, dot blot and ELISA techniques were employed to detect MrNV in infected samples using the antiserum raised against recombinant MCP43 of MrNV. The dot blot assay using anti-rMCP43 was found to be capable of detecting MrNV in WTD-infected post-larvae as early as at 24 h post-infection. The antiserum raised against r-MCP43 could detect the MrNV in the infected samples at the level of 100 pg of total protein. The capsid protein of MrNV estimated by ELISA using anti-rMCP43 and pure r-MCP43 as a standard was found to increase gradually during the course of infection from 24 h p.i. to moribund stage. The results of immunological diagnostic methods employed in this study were compared with that of RT-PCR to test the efficiency of antiserum raised against r-MCP43 for the detection of MrNV. The Western blot, dot blot and ELISA detected all MrNV-positive coded samples as detected by RT-PCR.

  13. A Siglec-like sialic-acid-binding motif revealed in an adenovirus capsid protein

    PubMed Central

    Rademacher, Christoph; Bru, Thierry; McBride, Ryan; Robison, Elizabeth; Nycholat, Corwin M; Kremer, Eric J; Paulson, James C

    2012-01-01

    Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are a family of transmembrane receptors that are well documented to play roles in regulation of innate and adaptive immune responses. To see whether the features that define the molecular recognition of sialic acid were found in other sialic-acid-binding proteins, we analyzed 127 structures with bound sialic acids found in the Protein Data Bank database. Of these, the canine adenovirus 2-fiber knob protein showed close local structural relationship to Siglecs despite low sequence similarity. The fiber knob harbors a noncanonical sialic-acid recognition site, which was then explored for detailed specificity using a custom glycan microarray comprising 58 diverse sialosides. It was found that the adenoviral protein preferentially recognizes the epitope Neu5Acα2-3[6S]Galβ1-4GlcNAc, a structure previously identified as the preferred ligand for Siglec-8 in humans and Siglec-F in mice. Comparison of the Siglec and fiber knob sialic-acid-binding sites reveal conserved structural elements that are not clearly identifiable from the primary amino acid sequence, suggesting a Siglec-like sialic-acid-binding motif that comprises the consensus features of these proteins in complex with sialic acid. PMID:22522600

  14. Protective immunity of a Pichia pastoris expressed recombinant iridovirus major capsid protein in the Chinese giant salamander, Andrias davidianus.

    PubMed

    Zhou, Yong; Fan, Yuding; LaPatra, Scott E; Ma, Jie; Xu, Jin; Meng, Yan; Jiang, Nan; Zeng, Lingbing

    2015-10-13

    The major capsid protein (MCP) is the main immunogenic protein of iridoviruses, that has been widely used as an immunogen in vaccination trials. In this study, the codon-optimized giant salamander iridovirus (GSIV) MCP gene (O-MCP) was synthesized and cloned into a pPICZα B vector for secretory expression in the methylotrophic yeast Pichia pastoris after methanol induction. The expression of the O-MCP protein was detected by the Bradford protein assay, SDS-PAGE, Western blotting and electron microscopy. The Bradford protein assay indicated that the concentration of the O-MCP expressed was about 40 μg/ml in culture supernatants. SDS-PAGE analysis revealed that the O-MCP had a molecular weight of about 66 kDa and reacted with a His-specific MAb that was confirmed by Western blotting. Electron microscopy observations revealed that the purified O-MCP could self-assemble into virus-like particles. Healthy giant salamanders were vaccinated by intramuscular injection with the O-MCP antigen at a dose of 20 μg/individual. The numbers of erythrocytes and leukocytes in the peripheral blood of immunized Chinese giant salamanders increased significantly at day 3 and reached a peak at day 5 post-immunization. Meanwhile, the differential leukocyte counts of monocytes and neutrophils increased significantly at day 5 post-immunization compared to that of the control group. The percentage of lymphocytes was 71.33 ± 3.57% at day 21 post-immunization. The neutralization assay showed that the serum neutralizing antibody titer reached 321 at day 21 post-immunization. The GSIV challenge test revealed that the relative percent survival of Chinese giant salamanders vaccinated with O-MCP was 78%. These results indicated that the O-MCP antigen expressed by the Pichia pastoris system elicited significant immune response in the Chinese giant salamander against GSIV and might represent a potential yeast-derived vaccine candidate that could be used for the control of disease caused by the

  15. Time-resolved spectroscopy of self-assembly of CCMV protein capsids

    NASA Astrophysics Data System (ADS)

    Moore, Jelyn; Aronzon, Dina; Manoharan, V. N.

    2008-10-01

    In order to gain a deeper understanding of the process a virus undergoes to assemble; the purpose of this study to time resolve the self-assembly of a virus. Cowpea Chlorotic Mottle virus (CCMV), an icosahedral type virus, can assemble without its genetic code (RNA) depending on its chemical and physical surroundings. The surface plasmon resonance (SPR) of colloidal gold particles is known to display a shift when the gold interacts with the proteins of a virus. Surface plasmon resonance is the free electron oscillation occurring at the surface of the gold particle resulting in a characteristic peak location at maximal absorbance and peak width. The shift results from the change in the refractive index of the particles as induced by the presence of the proteins. We hope to detect this shift through total internal reflection microscopy (TIRM). The accomplishments of this research are the completion of the TIR setup and the purification of the virus and its proteins.

  16. Non-capsid proteins to identify foot-and-mouth disease viral circulation in cattle irrespective of vaccination.

    PubMed

    Bergmann, I E; Malirat, V; Neitzert, E

    2005-12-01

    The ability of foot-and-mouth disease virus (FMDV) to establish subclinical and even persistent infection, the so called carrier state, imposes the need to reliably demonstrate absence of viral circulation, to monitor the progress of control measures, either during eradication programs or after reintroduction of virus in free areas. This demonstration becomes critical in immunized populations, because of the concern that silent viral circulation could be hidden by immunization. This concern originates from the fact that vaccination against foot-and-mouth disease (FMD) protects against clinical disease, but not necessarily against subclinical infection or establishment of the carrier state in cattle. A novel approach, developed and validated at PANAFTOSA during the 1990s, based on an immunoenzymatic system for detection of antibodies against non-capsid proteins (NCP) has proven valuable for monitoring viral circulation within and between herds, irrespective of the vaccination status. Antibodies against NCP are induced during infection but, in principle, not upon vaccination. The validation of this system led to its international recognition as the OIE index test. The fitness of this serosurvey tool to assess viral circulation in systematically vaccinated populations was demonstrated through its extensive application in most regions in South America. The experience attained in these regions supported the incorporation of the "free of FMD with vaccination" provisions into the OIE code. Likewise, it opened the way to alternatives to the "stamping out" policy. The results gave input to an old controversy related to the real epidemiological significance, if any, of carrier animals under the vaccination conditions in South America, and supported the development of recommendations and guidelines that are being implemented for serosurveys that go with control measures in vaccinated populations.

  17. Interaction between Simian Virus 40 Major Capsid Protein VP1 and Cell Surface Ganglioside GM1 Triggers Vacuole Formation

    PubMed Central

    Luo, Yong; Motamedi, Nasim; Magaldi, Thomas G.; Gee, Gretchen V.; Atwood, Walter J.

    2016-01-01

    ABSTRACT Simian virus 40 (SV40), a polyomavirus that has served as an important model to understand many aspects of biology, induces dramatic cytoplasmic vacuolization late during productive infection of monkey host cells. Although this activity led to the discovery of the virus in 1960, the mechanism of vacuolization is still not known. Pentamers of the major SV40 capsid protein VP1 bind to the ganglioside GM1, which serves as the cellular receptor for the virus. In this report, we show that binding of VP1 to cell surface GM1 plays a key role in SV40 infection-induced vacuolization. We previously showed that SV40 VP1 mutants defective for GM1 binding fail to induce vacuolization, even though they replicate efficiently. Here, we show that interfering with GM1-VP1 binding by knockdown of GM1 after infection is established abrogates vacuolization by wild-type SV40. Vacuole formation during permissive infection requires efficient virus release, and conditioned medium harvested late during SV40 infection rapidly induces vacuoles in a VP1- and GM1-dependent fashion. Furthermore, vacuolization can also be induced by a nonreplicating SV40 pseudovirus in a GM1-dependent manner, and a mutation in BK pseudovirus VP1 that generates GM1 binding confers vacuole-inducing activity. Vacuolization can also be triggered by purified pentamers of wild-type SV40 VP1, but not by GM1 binding-defective pentamers or by intracellular expression of VP1. These results demonstrate that SV40 infection-induced vacuolization is caused by the binding of released progeny viruses to GM1, thereby identifying the molecular trigger for the activity that led to the discovery of SV40. PMID:27006465

  18. Expression of enterovirus 71 capsid protein VP1 in Escherichia coli and its clinical application.

    PubMed

    Shi, Mei; Zhou, Yaping; Cao, Limin; Ding, Cuijun; Ji, Yun; Jiang, Qinbo; Liu, Xiping; Li, Xiang; Hou, Xueling; Peng, Hongjun; Shi, Weifeng

    2013-12-01

    The VPl gene of enterovirus 71 (EV71) was synthesized, construct a recombinant plasmid pET15b/VP1 and expressed in E. coli BL21. The recombinant VP1 protein could specifically react with EV71-infected patient sera without the cross-reaction with serum antibodies of coxsackievirus A16 (CA16), A4, A5, B3 and B5 as well as echovirus 6. In acute and convalescent phases, IgM and IgG antibodies of 182 serum samples were detected by ELISA with recombinant VP1 protein as a coated antigen. The results showed that the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of IgM antibodies in serum samples for the diagnosis of EV71 infection were 90.1, 98.4, 98.8 and 88.7%, respectively; similarly, those of IgG antibodies in serum samples were 82.4, 89.1, 91.5 and 78.1%, respectively. Five of 80 samples (6.25%) from CA16-infected patients were detected positive by ELISA with recombinant VP1 protein in which indicated the cross reactions and 0 of 5 samples from patients infected with other enteroviruses including CA4, CA5, CB3, CB5 and echovirus 6. Therefore, the recombinant VP1 protein of EV7l may provide a theoretical reference for establishing an effective antibody screening of IgM for EV71-infected patients with clinically suspected hand, foot, and mouth disease (HFMD).

  19. Expression of enterovirus 71 capsid protein VP1 in Escherichia coli and its clinical application

    PubMed Central

    Shi, Mei; Zhou, Yaping; Cao, Limin; Ding, Cuijun; Ji, Yun; Jiang, Qinbo; Liu, Xiping; Li, Xiang; Hou, Xueling; Peng, Hongjun; Shi, Weifeng

    2013-01-01

    The VPl gene of enterovirus 71 (EV71) was synthesized, construct a recombinant plasmid pET15b/VP1 and expressed in E. coli BL21. The recombinant VP1 protein could specifically react with EV71-infected patient sera without the cross-reaction with serum antibodies of coxsackievirus A16 (CA16), A4, A5, B3 and B5 as well as echovirus 6. In acute and convalescent phases, IgM and IgG antibodies of 182 serum samples were detected by ELISA with recombinant VP1 protein as a coated antigen. The results showed that the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of IgM antibodies in serum samples for the diagnosis of EV71 infection were 90.1, 98.4, 98.8 and 88.7%, respectively; similarly, those of IgG antibodies in serum samples were 82.4, 89.1, 91.5 and 78.1%, respectively. Five of 80 samples (6.25%) from CA16-infected patients were detected positive by ELISA with recombinant VP1 protein in which indicated the cross reactions and 0 of 5 samples from patients infected with other enteroviruses including CA4, CA5, CB3, CB5 and echovirus 6. Therefore, the recombinant VP1 protein of EV7l may provide a theoretical reference for establishing an effective antibody screening of IgM for EV71-infected patients with clinically suspected hand, foot, and mouth disease (HFMD). PMID:24688514

  20. Characterization of Mus musculus Papillomavirus 1 Infection In Situ Reveals an Unusual Pattern of Late Gene Expression and Capsid Protein Localization

    PubMed Central

    Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Buck, Christopher B.; Pang, Yuk-Ying S.; Lowy, Douglas R.

    2013-01-01

    Full-length genomic DNA of the recently identified laboratory mouse papillomavirus 1 (MusPV1) was synthesized in vitro and was used to establish and characterize a mouse model of papillomavirus pathobiology. MusPV1 DNA, whether naked or encapsidated by MusPV1 or human papillomavirus 16 (HPV 16) capsids, efficiently induced the outgrowth of papillomas as early as 3 weeks after application to abraded skin on the muzzles and tails of athymic NCr nude mice. High concentrations of virions were extracted from homogenized papillomatous tissues and were serially passaged for >10 generations. Neutralization by L1 antisera confirmed that infectious transmission was capsid mediated. Unexpectedly, the skin of the murine back was much less susceptible to virion-induced papillomas than the muzzle or tail. Although reporter pseudovirions readily transduced the skin of the back, infection with native MusPV1 resulted in less viral genome amplification and gene expression on the back, including reduced expression of the L1 protein and very low expression of the L2 protein, results that imply skin region-specific control of postentry aspects of the viral life cycle. Unexpectedly, L1 protein on the back was predominantly cytoplasmic, while on the tail the abundant L1 was cytoplasmic in the lower epithelial layers and nuclear in the upper layers. Nuclear localization of L1 occurred only in cells that coexpressed the minor capsid protein, L2. The pattern of L1 protein staining in the infected epithelium suggests that L1 expression occurs earlier in the MusPV1 life cycle than in the life cycle of high-risk HPV and that virion assembly is regulated by a previously undescribed mechanism. PMID:24067981

  1. A novel tetravalent formulation combining the four aggregated domain III-capsid proteins from dengue viruses induces a functional immune response in mice and monkeys.

    PubMed

    Suzarte, Edith; Gil, Lázaro; Valdés, Iris; Marcos, Ernesto; Lazo, Laura; Izquierdo, Alienys; García, Angélica; López, Lázaro; Álvarez, Maylin; Pérez, Yusleydis; Castro, Jorge; Romero, Yaremis; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2015-08-01

    Our group developed a subunit vaccine candidate against dengue virus based on two different viral regions: the domain III of the envelope protein and the capsid protein. The novel chimeric protein from dengue-2 virus [domain III-capsid (DIIIC-2)], when presented as aggregated incorporating oligodeoxynucleotides, induced anti-viral and neutralizing antibodies, a cellular immune response and conferred significant protection to mice and monkeys. The remaining constructs were already obtained and properly characterized. Based on this evidence, this work was aimed at assessing the immune response in mice of the chimeric proteins DIIIC of each serotype, as monovalent and tetravalent formulations. Here, we demonstrated the immunogenicity of each protein in terms of humoral and cell-mediated immunity, without antigen competition on the mixture forming the formulation tetra DIIIC. Accordingly, significant protection was afforded as measured by the limited viral load in the mouse encephalitis model. The assessment of the tetravalent formulation in non-human primates was also conducted. In this animal model, it was demonstrated that the formulation induced neutralizing antibodies and memory cell-mediated immune response with IFN-γ-secreting and cytotoxic capacity, regardless the route of immunization used. Taken together, we can assert that the tetravalent formulation of DIIIC proteins constitutes a promising vaccine candidate against dengue virus, and propose it for further efficacy experiments in monkeys or in the dengue human infection model, as it has been recently proposed.

  2. Human cytomegalovirus capsid assembly protein precursor (pUL80.5) interacts with itself and with the major capsid protein (pUL86) through two different domains.

    PubMed Central

    Wood, L J; Baxter, M K; Plafker, S M; Gibson, W

    1997-01-01

    We have used the yeast GAL4 two-hybrid system to examine interactions between the human cytomegalovirus (HCMV) major capsid protein (MCP, encoded by UL86) and the precursor assembly protein (pAP, encoded by UL80.5 and cleaved at its carboxyl end to yield AP) and found that (i) the pAP interacts with the MCP through residues located within the carboxy-terminal 21 amino acids of the pAP, called the carboxyl conserved domain (CCD); (ii) the pAP interacts with itself through a separate region, called the amino conserved domain (ACD), located between amino acids His34 and Arg52 near the amino end of the molecule; (iii) the simian CMV (SCMV) pAP and AP can interact with or replace their HCMV counterparts in these interactions, whereas the herpes simplex virus pAP and AP homologs cannot; and (iv) the HCMV and SCMV maturational proteinase precursors (ACpra, encoded by UL80a and APNG1, respectively) can interact with the pAP and MCP. The ACD and CCD amino acid sequences are highly conserved among members of the betaherpesvirus group and appear to have counterparts in the alpha- and gammaherpesvirus pAP homologs. Deleting the ACD from the HCMV pAP, or substituting Ala for a conserved Leu in the ACD, eliminated detectable pAP self-interaction and also substantially reduced MCP binding in the two-hybrid assay. This finding indicates that the pAP self-interaction influences the pAP-MCP interaction. Immunofluorescence studies corroborated the pAP-MCP interaction detected in the GAL4 two-hybrid experiments and showed that nuclear transport of the MCP was mediated by pAP but not AP. We conclude that the pAP interacts with the MCP, that this interaction is mediated by the CCD and is influenced by pAP self-interaction, and that one function of the pAP-MCP interaction may be to provide a controlled mechanism for transporting the MCP into the nucleus. PMID:8985337

  3. Magnetic Resonance Imaging Revealed Splenic Targeting of Canine Parvovirus Capsid Protein VP2.

    PubMed

    Ma, Yufei; Wang, Haiming; Yan, Dan; Wei, Yanquan; Cao, Yuhua; Yi, Peiwei; Zhang, Hailu; Deng, Zongwu; Dai, Jianwu; Liu, Xiangtao; Luo, Jianxun; Zhang, Zhijun; Sun, Shiqi; Guo, Huichen

    2016-03-21

    Canine parvovirus (CPV) is a highly contagious infectious virus, whose infectious mechanism remains unclear because of acute gastroenteritis and the lack of an efficient tool to visualize the virus in real time during virology research. In this study, we developed an iron oxide nanoparticle supported by graphene quantum dots (GQD), namely, FeGQD. In this composite material, GQD acts as a stabilizer; thus, vacancies are retained on the surface for further physical adsorption of the CPV VP2 protein. The FeGQD@VP2 nanocomposite product showed largely enhanced colloidal stability in comparison with bare FeGQD, as well as negligible toxicity both in vitro and in vivo. The composite displayed high uptake into transferrin receptor (TfR) positive cells, which are distinguishable from FeGQD or TfR negative cells. In addition, the composite developed a significant accumulation in spleen rather than in liver, where bare FeGQD or most iron oxide nanoparticles gather. As these evident targeting abilities of FeGQD@VP2 strongly suggested, the biological activity of CPV VP2 was retained in our study, and its biological functions might correspond to CPV when the rare splenic targeting ability is considered. This approach can be applied to numerous other biomedical studies that require a simple yet efficient approach to track proteins in vivo while retaining biological function and may facilitate virus-related research.

  4. Magnetic Resonance Imaging Revealed Splenic Targeting of Canine Parvovirus Capsid Protein VP2

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; Wang, Haiming; Yan, Dan; Wei, Yanquan; Cao, Yuhua; Yi, Peiwei; Zhang, Hailu; Deng, Zongwu; Dai, Jianwu; Liu, Xiangtao; Luo, Jianxun; Zhang, Zhijun; Sun, Shiqi; Guo, Huichen

    2016-03-01

    Canine parvovirus (CPV) is a highly contagious infectious virus, whose infectious mechanism remains unclear because of acute gastroenteritis and the lack of an efficient tool to visualize the virus in real time during virology research. In this study, we developed an iron oxide nanoparticle supported by graphene quantum dots (GQD), namely, FeGQD. In this composite material, GQD acts as a stabilizer; thus, vacancies are retained on the surface for further physical adsorption of the CPV VP2 protein. The FeGQD@VP2 nanocomposite product showed largely enhanced colloidal stability in comparison with bare FeGQD, as well as negligible toxicity both in vitro and in vivo. The composite displayed high uptake into transferrin receptor (TfR) positive cells, which are distinguishable from FeGQD or TfR negative cells. In addition, the composite developed a significant accumulation in spleen rather than in liver, where bare FeGQD or most iron oxide nanoparticles gather. As these evident targeting abilities of FeGQD@VP2 strongly suggested, the biological activity of CPV VP2 was retained in our study, and its biological functions might correspond to CPV when the rare splenic targeting ability is considered. This approach can be applied to numerous other biomedical studies that require a simple yet efficient approach to track proteins in vivo while retaining biological function and may facilitate virus-related research.

  5. Magnetic Resonance Imaging Revealed Splenic Targeting of Canine Parvovirus Capsid Protein VP2

    PubMed Central

    Ma, Yufei; Wang, Haiming; Yan, Dan; Wei, Yanquan; Cao, Yuhua; Yi, Peiwei; Zhang, Hailu; Deng, Zongwu; Dai, Jianwu; Liu, Xiangtao; Luo, Jianxun; Zhang, Zhijun; Sun, Shiqi; Guo, Huichen

    2016-01-01

    Canine parvovirus (CPV) is a highly contagious infectious virus, whose infectious mechanism remains unclear because of acute gastroenteritis and the lack of an efficient tool to visualize the virus in real time during virology research. In this study, we developed an iron oxide nanoparticle supported by graphene quantum dots (GQD), namely, FeGQD. In this composite material, GQD acts as a stabilizer; thus, vacancies are retained on the surface for further physical adsorption of the CPV VP2 protein. The FeGQD@VP2 nanocomposite product showed largely enhanced colloidal stability in comparison with bare FeGQD, as well as negligible toxicity both in vitro and in vivo. The composite displayed high uptake into transferrin receptor (TfR) positive cells, which are distinguishable from FeGQD or TfR negative cells. In addition, the composite developed a significant accumulation in spleen rather than in liver, where bare FeGQD or most iron oxide nanoparticles gather. As these evident targeting abilities of FeGQD@VP2 strongly suggested, the biological activity of CPV VP2 was retained in our study, and its biological functions might correspond to CPV when the rare splenic targeting ability is considered. This approach can be applied to numerous other biomedical studies that require a simple yet efficient approach to track proteins in vivo while retaining biological function and may facilitate virus-related research. PMID:26996514

  6. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice

    SciTech Connect

    Valdes, Iris; Bernardo, Lidice; Pavon, Alekis; Guzman, Maria G.

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4{sup +} and CD8{sup +} cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  7. The Chimeric Protein Domain III-Capsid of Dengue Virus Serotype 2 (DEN-2) Successfully Boosts Neutralizing Antibodies Generated in Monkeys upon Infection with DEN-2▿

    PubMed Central

    Valdés, Iris; Gil, Lázaro; Romero, Yaremis; Castro, Jorge; Puente, Pedro; Lazo, Laura; Marcos, Ernesto; Guzmán, María G.; Guillén, Gerardo; Hermida, Lisset

    2011-01-01

    Use of a heterologous prime-boost strategy based on a combination of nonreplicative immunogens and candidate attenuated virus vaccines against dengue virus in the same schedule is an attractive approach. These combinations may result in a condensed immunization regime for humans, thus reducing the number of doses with attenuated virus and the time spacing. The present work deals with the evaluation of the heterologous prime-boost strategy combining a novel chimeric protein (domain III-capsid) of dengue virus serotype 2 (DEN-2) and the infective homologous virus in the same immunization schedule in monkeys. Primed monkeys received one dose of infective DEN-2 and were then vaccinated with the recombinant protein. We found that animals developed a neutralizing antibody response after the infective dose and were notably boosted with a second dose of the chimeric protein 3 months later. The neutralizing antibodies induced were long lasting, and animals also showed the ability to induce a specific cellular response 6 months after the booster dose. As a conclusion, we can state that the domain III region, when it is properly presented as a fusion protein to the immune system, is able to recall the neutralizing antibody response elicited following homologous virus infection in monkeys. Further prime-boost approaches can be performed in a condensed regime combining the chimeric domain III-capsid protein and candidate live attenuated vaccines against DEN-2. PMID:21209159

  8. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice.

    PubMed

    Valdés, Iris; Bernardo, Lidice; Gil, Lázaro; Pavón, Alekis; Lazo, Laura; López, Carlos; Romero, Yaremis; Menendez, Ivón; Falcón, Viviana; Betancourt, Lázaro; Martín, Jorge; Chinea, Glay; Silva, Ricardo; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4(+) and CD8(+) cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  9. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2), consistently gained several positively charged amino acids...

  10. [Isolation of the capsid protein gene of maize dwarf mosaic virus and its transformation in maize].

    PubMed

    Liu, Xiao-Hong; Zhang, Hong-Wei; Liu, Xin; Liu, Xin-Jie; Tan, Zhen-Bo; Rong, Ting-Zhao

    2005-01-01

    The MDMV (Maize Dwarf Mosaic Virus, MDMV) CP (Coat Protein, CP) gene was cloned by RT-PCR method and introduced into the embryonic calli derived from immature embryos of elite inbred 18-599hong and 18-599bai via particle bombardment. Bombarded calli were selected on selection medium containing 5-10 mg/L (PPT) Bialaphos. From resistant calli, 79 plantlets were regenerated. 18 of 79 were grown and harvested. The results of Southern blotting and PCR analysis demonstrated that MDMV CP have been integrated into the genome of the transgenic plants. PCR-positive progeny plants were artificially inoculated with MDMV strain B, and the average chlorosis of the functional leaves of each plant was investigated. The typical symptoms were observed from the leaves of the control inbreds. while, the presence of the MDMV CP gene provided resistance to inoculation with MDMV strain B.

  11. Structural and Functional Analysis of Murine Polyomavirus Capsid Proteins Establish the Determinants of Ligand Recognition and Pathogenicity

    PubMed Central

    O’Hara, Samantha D.; Garcea, Robert L.; Neu, Ursula; Stehle, Thilo

    2015-01-01

    Murine polyomavirus (MuPyV) causes tumors of various origins in newborn mice and hamsters. Infection is initiated by attachment of the virus to ganglioside receptors at the cell surface. Single amino acid exchanges in the receptor-binding pocket of the major capsid protein VP1 are known to drastically alter tumorigenicity and spread in closely related MuPyV strains. The virus represents a rare example of differential receptor recognition directly influencing viral pathogenicity, although the factors underlying these differences remain unclear. We performed structural and functional analyses of three MuPyV strains with strikingly different pathogenicities: the low-tumorigenicity strain RA, the high-pathogenicity strain PTA, and the rapidly growing, lethal laboratory isolate strain LID. Using ganglioside deficient mouse embryo fibroblasts, we show that addition of specific gangliosides restores infectability for all strains, and we uncover a complex relationship between virus attachment and infection. We identify a new infectious ganglioside receptor that carries an additional linear [α-2,8]-linked sialic acid. Crystal structures of all three strains complexed with representative oligosaccharides from the three main pathways of ganglioside biosynthesis provide the molecular basis of receptor recognition. All strains bind to a range of sialylated glycans featuring the central [α-2,3]-linked sialic acid present in the established receptors GD1a and GT1b, but the presence of additional sialic acids modulates binding. An extra [α-2,8]-linked sialic acid engages a protein pocket that is conserved among the three strains, while another, [α-2,6]-linked branching sialic acid lies near the strain-defining amino acids but can be accommodated by all strains. By comparing electron density of the oligosaccharides within the binding pockets at various concentrations, we show that the [α-2,8]-linked sialic acid increases the strength of binding. Moreover, the amino acid

  12. Structural and Functional Analysis of Murine Polyomavirus Capsid Proteins Establish the Determinants of Ligand Recognition and Pathogenicity.

    PubMed

    Buch, Michael H C; Liaci, A Manuel; O'Hara, Samantha D; Garcea, Robert L; Neu, Ursula; Stehle, Thilo

    2015-10-01

    Murine polyomavirus (MuPyV) causes tumors of various origins in newborn mice and hamsters. Infection is initiated by attachment of the virus to ganglioside receptors at the cell surface. Single amino acid exchanges in the receptor-binding pocket of the major capsid protein VP1 are known to drastically alter tumorigenicity and spread in closely related MuPyV strains. The virus represents a rare example of differential receptor recognition directly influencing viral pathogenicity, although the factors underlying these differences remain unclear. We performed structural and functional analyses of three MuPyV strains with strikingly different pathogenicities: the low-tumorigenicity strain RA, the high-pathogenicity strain PTA, and the rapidly growing, lethal laboratory isolate strain LID. Using ganglioside deficient mouse embryo fibroblasts, we show that addition of specific gangliosides restores infectability for all strains, and we uncover a complex relationship between virus attachment and infection. We identify a new infectious ganglioside receptor that carries an additional linear [α-2,8]-linked sialic acid. Crystal structures of all three strains complexed with representative oligosaccharides from the three main pathways of ganglioside biosynthesis provide the molecular basis of receptor recognition. All strains bind to a range of sialylated glycans featuring the central [α-2,3]-linked sialic acid present in the established receptors GD1a and GT1b, but the presence of additional sialic acids modulates binding. An extra [α-2,8]-linked sialic acid engages a protein pocket that is conserved among the three strains, while another, [α-2,6]-linked branching sialic acid lies near the strain-defining amino acids but can be accommodated by all strains. By comparing electron density of the oligosaccharides within the binding pockets at various concentrations, we show that the [α-2,8]-linked sialic acid increases the strength of binding. Moreover, the amino acid

  13. Fibroblasts express OvHV-2 capsid protein in vasculitis lesions of American bison (Bison bison) with experimental sheep-associated malignant catarrhal fever.

    PubMed

    Nelson, Danielle D; Taus, Naomi S; Schneider, David A; Cunha, Cristina W; Davis, William C; Brown, Wendy C; Li, Hong; O'Toole, Donal; Oaks, J Lindsay

    2013-10-25

    American bison (Bison bison) are particularly susceptible to developing fatal sheep-associated malignant catarrhal fever (SA-MCF) caused by ovine herpesvirus-2 (OvHV-2), a γ-herpesvirus in the Macavirus genus. This generally fatal disease is characterized by lymphoproliferation, vasculitis, and mucosal ulceration in American bison, domestic cattle (Bos taurus), and other clinically susceptible species which are considered non-adapted, dead-end hosts. The pathogenesis and cellular tropism of OvHV-2 infection have not been fully defined. An earlier study detected OvHV-2 open reading frame 25 (ORF25) transcripts encoding the viral major capsid protein in tissues of bison with SA-MCF, and levels of viral transcript expression positively correlated with lesion severity. To further define the cellular tropism and replication of OvHV-2 infection in vascular lesions of bison, immunofluorescence studies were performed to identify cell type(s) expressing ORF25 protein within tissues. Cytoplasmic and not nuclear ORF25 protein was demonstrated in predominantly perivascular fibroblasts in six bison with experimentally-induced SA-MCF, and there was no evidence of immunoreactivity in vascular endothelium, smooth muscle, or infiltrating leukocytes. The cytoplasmic distribution of viral major capsid protein suggests that viral replication in perivascular fibroblasts may be abortive in this dead-end host. These findings provide a novel foundation for defining the pathogenesis of vasculitis in non-adapted hosts with SA-MCF.

  14. Amino acid substitutions in σ1 and μ1 outer capsid proteins are selected during mammalian reovirus adaptation to Vero cells.

    PubMed

    Jabre, Roland; Sandekian, Véronique; Lemay, Guy

    2013-09-01

    Establishment of viral persistence in cell culture has previously led to the selection of mammalian reovirus mutants, although very few of those have been characterized in details. In the present study, reovirus was adapted to Vero cells that, in contrast to classically-used L929 cells, are inefficient in supporting the early steps of reovirus uncoating and are also unable to produce interferon as an antiviral response once infection occurs. The Vero cell-adapted reovirus exhibits amino acids substitutions in both the σ1 and μ1 proteins. This contrasts with uncoating mutants from persistently infected L929 cells, and various other cell types, that generally harbor amino acids substitutions in the σ3 outer capsid protein. The Vero cell-adapted virus remained sensitive to an inhibitor of lysosomal proteases; furthermore, in the absence of selective pressure for its maintenance, the virus has partially lost its ability to resist interferon. The positions of the amino acids substitutions on the known protein structures suggest an effect on binding of the viral σ1 protein to the cell surface and on μ1 disassembly from the outer capsid.

  15. Detection of Cryptosporidium parvum oocysts by dot-blotting using monoclonal antibodies to Cryptosporidium parvum virus 40-kDa capsid protein.

    PubMed

    Jenkins, Mark C; O'Brien, Celia N; Trout, James M

    2008-02-01

    Monoclonal antibodies (MAb) were prepared against the 40-kDa capsid protein of Cryptosporidium parvum virus (CPV) by immunizing mice with purified recombinant CPV40 protein. In immunoblotting analysis, MAbCPV40-1 bound to a 40-kDa protein in extracts of C. parvum oocysts. This 40-kDa protein was localized in the sporozoite cytoplasm by immunofluorescence (IFA) staining with MAbCPV40-1. In a dot-blot assay, MAbCPV40-1 was capable of detecting 10(2) non-bleach-treated and 10(2)-10(3) bleach-treated C. parvum oocysts. MAbCPV40-1 was capable of detecting CPV40 antigen in both soluble and total C. parvum oocyst protein extracts, indicating a potential use for detecting this parasite in environmental samples.

  16. Virion-associated viral proteins of a Chinese giant salamander (Andrias davidianus) iridovirus (genus Ranavirus) and functional study of the major capsid protein (MCP).

    PubMed

    Li, Wei; Zhang, Xin; Weng, Shaoping; Zhao, Gaoxiang; He, Jianguo; Dong, Chuanfu

    2014-08-06

    Chinese giant salamander iridovirus (CGSIV) is the emerging causative agent to farmed Chinese giant salamanders in nationwide China. CGSIV is a member of the common midwife toad ranavirus (CMTV) subset of the amphibian-like ranavirus (ALRV) in the genus Ranavirus of Iridoviridae family. However, viral protein information on ALRV is lacking. In this first proteomic analysis of ALRV, 40 CGSIV viral proteins were detected from purified virus particles by liquid chromatography-tandem mass spectrometry analysis. The transcription products of all 40 identified virion proteins were confirmed by reverse transcription polymerase chain reaction analysis. Temporal expression pattern analysis combined with drug inhibition assay indicated that 37 transcripts of the 40 virion protein genes could be classified into three temporal kinetic classes, namely, 5 immediate early, 12 delayed early, and 20 late genes. The presence of major capsid proteins (MCP, ORF019L) and a proliferating cell nuclear antigen (ORF025L) was further confirmed by Western blot analysis. The functions of MCP were also determined by small interfering RNA (siRNA)-based knockdown assay and anti-recombinant MCP serum-based neutralization testing. At low dosages of CGSIV, siRNA-based knockdown of the MCP gene effectively inhibited CGSIV replication in fathead minnow cells. The antiviral effect observed in the anti-MCP serum-based neutralization test confirms the crucial function of the MCP gene in CGSIV replication. Taken together, detailed information on the virion-associated viral proteins of ALRV is presented for the first time. Our results also provide evidence that MCP is essential for CGSIV replication in vitro.

  17. Enteroviruses and the pathogenesis of type 1 diabetes revisited: cross-reactivity of enterovirus capsid protein (VP1) antibodies with human mitochondrial proteins.

    PubMed

    Hansson, Sara F; Korsgren, Stella; Pontén, Fredrik; Korsgren, Olle

    2013-04-01

    Current or recent enteroviral infections show an association with type 1 diabetes. However, evidence for this has mainly been generated using a particular mouse monoclonal antibody (clone 5-D8/1) which binds the viral capsid protein VP1. Difficulty in confirming these findings using other independent methods has led to the concern that this might be artefactual. To address this, we examined the potential cross-reactivity of clone 5-D8/1 with normal islet proteins. Western blotting, two-dimensional gel electrophoresis, and mass spectrometry were used to identify human islet proteins bound by the clone 5-D8/1. We found a distinct reactivity with two mitochondrial proteins, creatine kinase B-type and ATP synthase beta subunit. Immunohistochemistry using the clone 5-D8/1 revealed a granular cytoplasmic staining pattern in mitochondria-rich cells, ie hepatocytes, ductal epithelial cells, vascular endothelial cells, skeletal muscle cells, and the neoplastic salivary gland oncocytoma cells, whereas connective tissue and infiltrating immune cells were negative. Staining on islets of Langerhans from subjects with recent-onset type 1 diabetes, but not on isolated human islets infected in vitro with enteroviruses, could be blocked after mixing the clone 5-D8/1 with the mitochondrial proteins. Collectively, our data show that the clone 5-D8/1 detects two human mitochondrial enzymes in addition to enteroviral VP1. The notion that the previously reported VP1 positivity in islets of recent-onset type 1 diabetes patients could reflect cross-reactivity to native islet proteins and not the presence of EV is supported by difficulties in demonstrating EV infection by independent techniques such as PCR or in situ hybridization. These findings call for revisiting the presence of enteroviruses in pancreatic islets of patients with type 1 diabetes.

  18. An unexpected twist in viral capsid maturation

    SciTech Connect

    Gertsman, Ilya; Gan, Lu; Guttman, Miklos; Lee, Kelly; Speir, Jeffrey A.; Duda, Robert L.; Hendrix, Roger W.; Komives, Elizabeth A.; Johnson, John E.

    2009-04-14

    Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 {angstrom} resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 {angstrom}. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and -sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol{sup -1} of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic

  19. In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy.

    PubMed

    Choudhury, Sourav R; Fitzpatrick, Zachary; Harris, Anne F; Maitland, Stacy A; Ferreira, Jennifer S; Zhang, Yuanfan; Ma, Shan; Sharma, Rohit B; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Alonso, Laura C; Punzo, Claudio; Wagner, Kathryn R; Maguire, Casey A; Kotin, Robert M; Martin, Douglas R; Sena-Esteves, Miguel

    2016-08-01

    Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, β-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.

  20. Phylogenetic Analysis of Members of the Phycodnaviridae Virus Family, Using Amplified Fragments of the Major Capsid Protein Gene▿

    PubMed Central

    Larsen, J. B.; Larsen, A.; Bratbak, G.; Sandaa, R.-A.

    2008-01-01

    Algal viruses are considered ecologically important by affecting host population dynamics and nutrient flow in aquatic food webs. Members of the family Phycodnaviridae are also interesting due to their extraordinary genome size. Few algal viruses in the Phycodnaviridae family have been sequenced, and those that have been have few genes in common and low gene homology. It has hence been difficult to design general PCR primers that allow further studies of their ecology and diversity. In this study, we screened the nine type I core genes of the nucleocytoplasmic large DNA viruses for sequences suitable for designing a general set of primers. Sequence comparison between members of the Phycodnaviridae family, including three partly sequenced viruses infecting the prymnesiophyte Pyramimonas orientalis and the haptophytes Phaeocystis pouchetii and Chrysochromulina ericina (Pyramimonas orientalis virus 01B [PoV-01B], Phaeocystis pouchetii virus 01 [PpV-01], and Chrysochromulina ericina virus 01B [CeV-01B], respectively), revealed eight conserved regions in the major capsid protein (MCP). Two of these regions also showed conservation at the nucleotide level, and this allowed us to design degenerate PCR primers. The primers produced 347- to 518-bp amplicons when applied to lysates from algal viruses kept in culture and from natural viral communities. The aim of this work was to use the MCP as a proxy to infer phylogenetic relationships and genetic diversity among members of the Phycodnaviridae family and to determine the occurrence and diversity of this gene in natural viral communities. The results support the current legitimate genera in the Phycodnaviridae based on alga host species. However, while placing the mimivirus in close proximity to the type species, PBCV-1, of Phycodnaviridae along with the three new viruses assigned to the family (PoV-01B, PpV-01, and CeV-01B), the results also indicate that the coccolithoviruses and phaeoviruses are more diverged from this

  1. Amino acid sequence diversity of the major human papillomavirus capsid protein: Implications for current and next generation vaccines☆

    PubMed Central

    Ahmed, Amina I.; Bissett, Sara L.; Beddows, Simon

    2013-01-01

    Despite the fidelity of host cell polymerases, the human papillomavirus (HPV) displays a degree of genomic polymorphism resulting in distinct genotypes and intra-type variants. The current HPV vaccines target the most prevalent genotypes associated with cervical cancer (HPV16/18) and genital warts (HPV6/11). Although these vaccines confer some measure of cross-protection, a multivalent HPV vaccine is in the pipeline that aims to broaden vaccine protection against other cervical cancer-associated genotypes including HPV31, HPV33, HPV45, HPV52 and HPV58. Both current and next generation vaccines comprise virus-like particles, based upon the major capsid protein, L1, and vaccine-induced, type-specific protection is likely mediated by neutralizing antibodies targeting L1 surface-exposed domains. The aim of this study was to perform an in silico analysis of existing full length L1 sequences representing vaccine-relevant HPV genotypes in order to address the degree of naturally-occurring, intra-type polymorphisms. In total, 1281 sequences from the Americas, Africa, Asia and Europe were assembled. Intra-type entropy was low and/or limited to non-surface-exposed residues for HPV6, HPV11 and HPV52 suggesting a minimal effect on vaccine antibodies for these genotypes. For HPV16, intra-type entropy was high but the present analysis did not reveal any significant polymorphisms not previously identified. For HPV31, HPV33, HPV58, however, intra-type entropy was high, mostly mapped to surface-exposed domains and in some cases within known neutralizing antibody epitopes. For HPV18 and HPV45 there were too few sequences for a definitive analysis, but HPV45 displayed some degree of surface-exposed residue diversity. In most cases, the reference sequence for each genotype represented a minority variant and the consensus L1 sequences for HPV18, HPV31, HPV45 and HPV58 did not reflect the L1 sequence of the currently available HPV pseudoviruses. These data highlight a number of variant

  2. Alphavirus capsid proteins self-assemble into core-like particles in insect cells: A promising platform for nanoparticle vaccine development.

    PubMed

    Hikke, Mia C; Geertsema, Corinne; Wu, Vincen; Metz, Stefan W; van Lent, Jan W; Vlak, Just M; Pijlman, Gorben P

    2016-02-01

    The mosquito-borne chikungunya virus (CHIKV) causes arthritic diseases in humans, whereas the aquatic salmonid alphavirus (SAV) is associated with high mortality in aquaculture of salmon and trout. Using modern biotechnological approaches, promising vaccine candidates based upon highly immunogenic, enveloped virus-like particles (eVLPs) have been developed. However, the eVLP structure (core, lipid membrane, surface glycoproteins) is more complex than that of non-enveloped, protein-only VLPs, which are structurally and morphologically 'simple'. In order to develop an alternative to alphavirus eVLPs, in this paper we engineered recombinant baculovirus vectors to produce high levels of alphavirus core-like particles (CLPs) in insect cells by expression of the CHIKV and SAV capsid proteins. The CLPs localize in dense nuclear bodies within the infected cell nucleus and are purified through a rapid and scalable protocol involving cell lysis, sonication and low-speed centrifugation steps. Furthermore, an immunogenic epitope from the alphavirus E2 glycoprotein can be successfully fused to the N-terminus of the capsid protein without disrupting the CLP self-assembling properties. We propose that immunogenic epitope-tagged alphavirus CLPs produced in insect cells present a simple and perhaps more stable alternative to alphavirus eVLPs.

  3. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    PubMed

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-02

    Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation

  4. Mouse neurovirulence determinants of poliovirus type 1 strain LS-a map to the coding regions of capsid protein VP1 and proteinase 2Apro.

    PubMed Central

    Lu, H H; Yang, C F; Murdin, A D; Klein, M H; Harber, J J; Kew, O M; Wimmer, E

    1994-01-01

    Poliovirus type 1 strain LS-a [PV1(LS-a)] is a OV variant adapted to mice by multiple passages through mouse and monkey tissues. To investigate the molecular basis underlying mouse neurovirulence of PV1(LS-a), a cDNA of the viral genome containing nucleotides 112 to 7441 was cloned, and the nucleotide sequence was determined. Compared with that of the mouse avirulent progenitor PV1(Mahoney), 54 nucleotide changes were found in the genome of the PV1(LS-a) virus, resulting in 20 amino acid substitutions in the virus polyprotein. Whereas the nucleotide changes were scattered throughout the genome, the amino acid substitutions were largely clustered in the capsid proteins and, to a certain extent, in the virus proteinase 2Apro. By in vitro mutagenesis, PV1(LS-a)-specific capsid mutations were introduced into a cDNA clone of PV1(Mahoney). We show that neither the individual amino acid mutations nor combinations of mutations in the region encoding VP1 conferred to PV1(Mahoney) the mouse-adapted phenotype of PV1(LS-a). Chimeric cDNA studies demonstrated that a recombinant type 1 virus containing the PV1(LS-a) sequence from nucleotide 2470 to nucleotide 3625 displayed a neurovirulent phenotype in mice. Further dissection of this region revealed that mouse neurovirulence of PV1(LS-a) was determined by multiple mutations in regions encoding both viral proteinase 2Apro and capsid protein VP1. The mouse neurovirulent viruses, PV1(LS-a), W1-M/LS-Pf [nucleotides 496 to 3625 from PV1(LS-a)], and W1-M/LS-NP [nucleotides 2470 to 3625 from PV1(LS-a)], showed increased sensitivity to heat treatment at 45 degrees C for 1 h. Surprisingly, the thermolabile phenotype was also displayed by a recombinant of PV1(Mahoney) carrying a PV1(LS-a) DNA fragment encoding the N-terminal portion of 2Apro. This suggests that base substitutions in the region encoding 2Apro affected capsid stability, thereby contributing to the neurovirulence of the virus in mice. Images PMID:7933134

  5. Chemical modification of recombinant HIV-1 capsid protein p24 leads to the release of a hidden epitope prior to changes of the overall folding of the protein.

    PubMed

    Ehrhard, B; Misselwitz, R; Welfle, K; Hausdorf, G; Glaser, R W; Schneider-Mergener, J; Welfle, H

    1996-07-16

    It was found that the affinity of a monoclonal antibody directed against a recombinantly expressed HIV-1 capsid protein p24 (rp24) strongly increased after chemical modification of the Iysine residues of rp24 with different amounts of maleic anhydride. The extent and the sites of modification were analyzed by MALDI-TOF mass spectrometry. Unmodified rp24 and the differently modified rp24 samples were tested for binding the murine monoclonal antibody CB4-1 which recognizes the epitope GATPQDLNTML comprising residues 46-56 of rp24. An increase in the number of modified lysine residues led to enhanced binding affinity of CB4-1. Most pronounced effects were observed after substitution of the first amino groups: an average number of three modified residues per protein molecule increases the binding affinity by a factor of 23, but the substitution of the remaining nine residues increases the binding affinity only by a factor of 11. Fully modified rp24 variant proteins were bound by CB4-1 with Kd values comparable to that of the peptide epitope. Conformation and stability of the unmodified rp24, highly (rp24F, 9 residues; rp24G, 11 residues) modified, and fully modified protein (rp24I, 11 lysine residues and N-terminus) were analyzed by circular dichroism (CD) and fluorescence spectroscopy under different solvent conditions. Little difference in conformation and unfolding behavior was observed between the unmodified and highly modified rp24, which differ drastically in the antibody binding behavior. The fully modified sample, however, displayed a significant decrease in alpha-helical content. Thus, the epitope seems to be hidden (cryptotope) in the unmodified rp24 in a low-affinity binding conformation and becomes displayed at low levels of chemical modification which obviously induce subtle structural changes prior to changes of the overall folding observable by spectroscopic means.

  6. Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge.

    PubMed

    Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier

    2014-06-17

    African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field.

  7. A triclinic crystal structure of the carboxy-terminal domain of HIV-1 capsid protein with four molecules in the asymmetric unit reveals a novel packing interface.

    PubMed

    Lampel, Ayala; Yaniv, Oren; Berger, Or; Bacharach, Eran; Gazit, Ehud; Frolow, Felix

    2013-06-01

    The Gag precursor is the major structural protein of the virion of human immunodeficiency virus-1 (HIV-1). Capsid protein (CA), a cleavage product of Gag, plays an essential role in virus assembly both in Gag-precursor multimerization and in capsid core formation. The carboxy-terminal domain (CTD) of CA contains 20 residues that are highly conserved across retroviruses and constitute the major homology region (MHR). Genetic evidence implies a role for the MHR in interactions between Gag precursors during the assembly of the virus, but the structural basis for this role remains elusive. This paper describes a novel triclinic structure of the HIV-1 CA CTD at 1.6 Å resolution with two canonical dimers of CA CTD in the asymmetric unit. The canonical dimers form a newly identified packing interface where interactions of four conserved MHR residues take place. This is the first structural indication that these MHR residues participate in the putative CTD-CTD interactions. These findings suggest that the molecules forming this novel interface resemble an intermediate structure that participates in the early steps of HIV-1 assembly. This interface may therefore provide a novel target for antiviral drugs.

  8. Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies

    SciTech Connect

    Han, Yun; Hou, Guangjin; Suiter, Christopher L.; Ahn, Jinwoo; Byeon, In-Ja L.; Lipton, Andrew S.; Burton, Sarah D.; Hung, Ivan; Gorkov, Peter L.; Gan, Zhehong; Brey, William W.; Rice, David M.; Gronenborn, Angela M.; Polenova, Tatyana E.

    2013-11-27

    Maturation of HIV-1 virus into an infectious virion requires cleavage of the Gag polyprotein into its constituent domains and formation of a conical capsid core that encloses viral RNA and a small complement of proteins for replication. The final step of this process is the cleavage of the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into a conical capsid. The mechanism of this step, including the conformation of the SP1 peptide in CA-SP1, is under intense debate. In this report, we examine the tubular assemblies of CA and the CA-SP1 maturation intermediate using Magic Angle Spinning NMR spectroscopy. At the magnetic fields of 19.9 T and above, tubular CA and CA-SP1 assemblies yield outstanding-quality 2D and 3D MAS NMR spectra, which are amenable to resonance assignments and detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two sequence variants reveals that remarkably, the conformation of SP1 tail, of the functionally important CypA loop, and of the loop preceding helix 8 are sequence dependent and modulated by the residue variations at distal sites. These findings challenge the role of SP1 as a conformational switch in the maturation process and establish sequence-dependent conformational plasticity in CA.

  9. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein.

    PubMed

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K

    2015-10-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans.

  10. Immunogenicity of Newcastle Disease Virus Vectors Expressing Norwalk Virus Capsid Protein in the Presence or Absence of VP2 Protein

    PubMed Central

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y.; Samal, Siba K.

    2015-01-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirs-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. PMID:26099695

  11. Mutagenesis of Adeno-Associated Virus Type 2 Capsid Protein VP1 Uncovers New Roles for Basic Amino Acids in Trafficking and Cell-Specific Transduction▿ †

    PubMed Central

    Johnson, Jarrod S.; Li, Chengwen; DiPrimio, Nina; Weinberg, Marc S.; McCown, Thomas J.; Samulski, R. Jude

    2010-01-01

    The N termini of the capsid proteins VP1 and VP2 of adeno-associated virus (AAV) play important roles in subcellular steps of infection and contain motifs that are highly homologous to a phospholipase A2 (PLA2) domain and nuclear localization signals (NLSs). To more clearly understand how virion components influence infection, we have generated mutations in these regions and examined their effects on subcellular trafficking, capsid stability, transduction, and sensitivity to pharmacological enhancement. All mutants tested assembled into capsids; retained the correct ratio of VP1, VP2, and VP3; packaged DNA similarly to recombinant AAV2 (rAAV2); and displayed similar stability profiles when heat denatured. Confocal microscopy demonstrated that these mutants trafficked through a perinuclear region in the vicinity of the Golgi apparatus, with a subset of mutants displaying more-diffuse localization consistent with an NLS-deficient phenotype. When tested for viral transduction, two mutant classes emerged. Class I (BR1−, BR2−, and BR2+K) displayed partial transduction, whereas class II (VP3only, 75HD/AN, BR3−, and BR3+K) were severely defective. Surprisingly, one class II mutant (BR3+K) trafficked identically to rAAV2 and accumulated in the nucleolus, a step recently described by our laboratory that occurs with wild-type infection. The BR3+K mutant, containing an alanine-to-lysine substitution in the third basic region of VP1, was 10- to 100-fold-less infectious than rAAV2 in transformed cell lines (such as HEK-293, HeLa, and CV1-T cells), but in contrast, it was indistinguishable from rAAV2 in several nontransformed cell lines, as well as in tissues (liver, brain, and muscle) in vivo. Complementation studies with pharmacological adjuvants or adenovirus coinfection suggested that additional positive charges in NLS regions restrict mobilization in the nucleus and limit transduction in a transformed-cell-specific fashion. Remarkably, besides displaying cell

  12. Characterization of the banana streak virus capsid protein and mapping of the immunodominant continuous B-cell epitopes to the surface-exposed N terminus.

    PubMed

    Vo, Jenny N; Campbell, Paul R; Mahfuz, Nur N; Ramli, Ras; Pagendam, Daniel; Barnard, Ross; Geering, Andrew D W

    2016-12-01

    This study identified the structural proteins of two badnavirus species, Banana streak MY virus (BSMYV) and Banana streak OL virus (BSOLV), and mapped the distribution of continuous B-cell epitopes. Two different capsid protein (CP) isoforms of about 44 and 40 kDa (CP1 and CP2) and the virion-associated protein (VAP) were consistently associated with purified virions. For both viral species, the N terminus of CP2 was successfully sequenced by Edman degradation but that of CP1 was chemically blocked. De novo peptide sequencing of tryptic digests suggested that CP1 and CP2 derive from the same region of the P3 polyprotein but differ in the length of either the N or the C terminus. A three-dimensional model of the BSMYV-CP was constructed, which showed that the CP is a multi-domain structure, containing homologues of the retroviral capsid and nucleocapsid proteins, as well as a third, intrinsically disordered protein region at the N terminus, henceforth called the NID domain. Using the Pepscan approach, the immunodominant continuous epitopes were mapped to the NID domain for five different species of banana streak virus. Anti-peptide antibodies raised against these epitopes in BSMYV were successfully used for detection of native virions and denatured CPs in serological assays. Immunoelectron microscopy analysis of the virion surface using the anti-peptide antibodies confirmed that the NID domain is exposed on the surface of virions, and that the difference in mass of the two CP isoforms is due to variation in length of the NID domain.

  13. Recombinant subunit ORF2.1 antigen and induction of antibody against immunodominant epitopes in the hepatitis E virus capsid protein.

    PubMed

    Li, F; Riddell, M A; Seow, H F; Takeda, N; Miyamura, T; Anderson, D A

    2000-04-01

    A recombinant subunit antigen (ORF2.1), representing the carboxy-terminal 267 amino acids of the 660-amino-acid hepatitis E virus (HEV) capsid protein, was expressed in Escherichia coli and used for the immunisation of rats. Purified antigen formulated with either Aluminium Hydroxide Gel Adjuvant (Alum) or Titermax gave high and equivalent levels of antibody after three doses. Responses to two doses of 15, 75, or 150 microg antigen, formulated with Alum and given at 0 and 4 weeks, were also equivalent by 17 weeks after immunisation. Rats initially developed antibody to a wide range of linear epitopes in the ORF2.1 region, but by 27 weeks the predominant response detected by Western immunoblotting was restricted to the conformational epitope unique to ORF2.1 [Li et al. (1997) Journal of Medical Virology 52:289-300], a pattern that was also observed when comparing acute-phase patient serum samples with serum samples from convalescing patients. Antibody from immunised rats blocked the majority of patients' serum reactivity in enzyme-linked immunosorbent assay against both ORF2.1 (57-92% inhibition) and virus-like particles of HEV produced using the baculovirus system (74-97% inhibition). Together, these results suggest that the ORF2.1 subunit vaccine induces an antibody response against immunodominant, conformational epitopes in the viral capsid, which largely mimics that seen in convalescent patients, who are presumed to be immune to HEV infection.

  14. Evolution of the capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades.

    PubMed Central

    Martínez, M A; Dopazo, J; Hernández, J; Mateu, M G; Sobrino, F; Domingo, E; Knowles, N J

    1992-01-01

    The genetic diversification of foot-and-mouth disease virus (FMDV) of serotype C over a 6-decade period was studied by comparing nucleotide sequences of the capsid protein-coding regions of viruses isolated in Europe, South America, and The Philippines. Phylogenetic trees were derived for VP1 and P1 (VP1, VP2, VP3, and VP4) RNAs by using the least-squares method. Confidence intervals of the derived phylogeny (significance levels of nodes and standard deviations of branch lengths) were placed by application of the bootstrap resampling method. These procedures defined six highly significant major evolutionary lineages and a complex network of sublines for the isolates from South America. In contrast, European isolates are considerably more homogeneous, probably because of the vaccine origin of several of them. The phylogenetic analysis suggests that FMDV CGC Ger/26 (one of the earliest FMDV isolates available) belonged to an evolutionary line which is now apparently extinct. Attempts to date the origin (ancestor) of the FMDVs analyzed met with considerable uncertainty, mainly owing to the stasis noted in European viruses. Remarkably, the evolution of the capsid genes of FMDV was essentially associated with linear accumulation of silent mutations but continuous accumulation of amino acid substitutions was not observed. Thus, the antigenic variation attained by FMDV type C over 6 decades was due to fluctuations among limited combinations of amino acid residues without net accumulation of amino acid replacements over time. PMID:1316467

  15. Crystallization and X-ray analysis of the T = 4 particle of hepatitis B capsid protein with an N-terminal extension

    SciTech Connect

    Tan, Wen Siang; McNae, Iain W.; Ho, Kok Lian; Walkinshaw, Malcolm D.

    2007-08-01

    Hepatitis B virus capsids have significant potential as carriers for immunogenic peptides. The crystal structure of the T = 4 particle of hepatitis B core protein containing an N-terminal extension reveals that the fusion peptide is exposed on the exterior of the particle. Hepatitis B core (HBc) particles have been extensively exploited as carriers for foreign immunological epitopes in the development of multicomponent vaccines and diagnostic reagents. Crystals of the T = 4 HBc particle were grown in PEG 20 000, ammonium sulfate and various types of alcohols. A temperature jump from 277 or 283 to 290 K was found to enhance crystal growth. A crystal grown using MPD as a cryoprotectant diffracted X-rays to 7.7 Å resolution and data were collected to 99.6% completeness at 8.9 Å. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 352.3, b = 465.5, c = 645.0 Å. The electron-density map reveals a protrusion that is consistent with the N-terminus extending out from the surface of the capsid. The structure presented here supports the idea that N-terminal insertions can be exploited in the development of diagnostic reagents, multicomponent vaccines and delivery vehicles into mammalian cells.

  16. Recombinant influenza virus expressing HIV-1 p24 capsid protein induces mucosal HIV-specific CD8 T-cell responses.

    PubMed

    Tan, Hyon-Xhi; Gilbertson, Brad P; Jegaskanda, Sinthujan; Alcantara, Sheilajen; Amarasena, Thakshila; Stambas, John; McAuley, Julie L; Kent, Stephen J; De Rose, Robert

    2016-02-24

    Influenza viruses are promising mucosal vaccine vectors for HIV but their use has been limited by difficulties in engineering the expression of large amounts of foreign protein. We developed recombinant influenza viruses incorporating the HIV-1 p24 gag capsid into the NS-segment of PR8 (H1N1) and X31 (H3N2) influenza viruses with the use of multiple 2A ribosomal skip sequences. Despite the insertion of a sizable HIV-1 gene into the influenza genome, recombinant viruses were readily rescued to high titers. Intracellular expression of p24 capsid was confirmed by in vitro infection assays. The recombinant influenza viruses were subsequently tested as mucosal vaccines in BALB/c mice. Recombinant viruses were attenuated and safe in immunized mice. Systemic and mucosal HIV-specific CD8 T-cell responses were elicited in mice that were immunized via intranasal route with a prime-boost regimen. Isolated HIV-specific CD8 T-cells displayed polyfunctional cytokine and degranulation profiles. Mice boosted via intravaginal route induced recall responses from the distal lung mucosa and developed heightened HIV-specific CD8 T-cell responses in the vaginal mucosa. These findings demonstrate the potential utility of recombinant influenza viruses as vaccines for mucosal immunity against HIV-1 infection.

  17. Analysis of SAT Type Foot-And-Mouth Disease Virus Capsid Proteins and the Identification of Putative Amino Acid Residues Affecting Virus Stability

    PubMed Central

    Maree, Francois F.; Blignaut, Belinda; de Beer, Tjaart A. P.; Rieder, Elizabeth

    2013-01-01

    Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces. PMID:23717387

  18. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability.

    PubMed

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Rieder, Elizabeth

    2013-01-01

    Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces.

  19. A porcine circovirus-2 mutant isolated in Brazil contains low-frequency substitutions in regions of immunoprotective epitopes in the capsid protein.

    PubMed

    Salgado, Rafael Locatelli; Vidigal, Pedro Marcus Pereira; Gonzaga, Natalia F; de Souza, Luiz F L; Polêto, Marcelo D; Onofre, Thiago Souza; Eller, Monique R; Pereira, Carlos Eduardo Real; Fietto, Juliana L R; Bressan, Gustavo C; Guedes, Roberto M C; Almeida, Márcia R; Silva Júnior, Abelardo

    2015-11-01

    Porcine circovirus-2 (PCV2) is the etiologic agent of several diseases in pigs, including multi-systemic wasting syndrome (PMWS). In this work, a new mutant PCV2b was isolated from PMWS-affected pigs on a Brazilian farm. Its genome showed high sequence similarity (>99% identity) to those from a group of emerging mutants isolated from cases of PMWS outbreaks in vaccinated pigs in China, the USA and South Korea. Here, we show that these isolates share a combination of low-frequency substitutions (single amino acid polymorphisms with a frequency of ≤25%) in the viral capsid protein, mainly in regions of immunoprotective epitopes, and an additional lysine residue at position 234. These isolates were phylogenetically grouped in the PCV2b clade, reinforcing the idea of the emergence of a new group of mutants PCV2b associated with outbreaks worldwide. The identification of these polymorphisms in the viral capsid highlights the importance of considering these isolates for the development of more-effective vaccines.

  20. Successful attenuation of humoral immunity to viral capsid and transgenic protein following AAV-mediated gene transfer with a non-depleting CD4 antibody and cyclosporine.

    PubMed

    McIntosh, J H; Cochrane, M; Cobbold, S; Waldmann, H; Nathwani, S A; Davidoff, A M; Nathwani, A C

    2012-01-01

    The ability of transient immunosuppression with a combination of a non-depleting anti-CD4 (NDCD4) antibody and cyclosporine (CyA) to abrogate immune reactivity to both adeno-associated viral vector (AAV) and its transgene product was evaluated. This combination of immunosuppressants resulted in a 20-fold reduction in the resulting anti-AAV8 antibody titres, to levels in naïve mice, following intravenous administration of 2 × 10(12) AAV8 vector particles per kg to immunocompetent mice. This allowed efficient transduction upon secondary challenge with vector pseudotyped with the same capsid. Persistent tolerance did not result, however, as an anti-AAV8 antibody response was elicited upon rechallenge with AAV8 without immunosuppression. The route of vector administration, vector dose, AAV serotype or the concomitant administration of adenoviral vector appeared to have little impact on the ability of the NDCD4 antibody and CyA combination to moderate the primary humoral response to AAV capsid proteins. The combination of NDCD4 and CyA also abrogated the humoral response to the transgene product, that otherwise invariably would occur, following intramuscular injection of AAV5, leading to stable transgene expression. These observations could significantly improve the prospects of using rAAV vectors for chronic disorders by allowing for repeated vector administration and avoiding the development of antibodies to the transgene product.

  1. The Oligomerization Domain of VP3, the Scaffolding Protein of Infectious Bursal Disease Virus, Plays a Critical Role in Capsid Assembly

    PubMed Central

    Maraver, Antonio; Oña, Ana; Abaitua, Fernando; González, Dolores; Clemente, Roberto; Ruiz-Díaz, Jose A.; Castón, Jose R.; Pazos, Florencio; Rodriguez, Jose F.

    2003-01-01

    Infectious bursal disease virus (IBDV) capsids are formed by a single protein layer containing three polypeptides, pVP2, VP2, and VP3. Here, we show that the VP3 protein synthesized in insect cells, either after expression of the complete polyprotein or from a VP3 gene construct, is proteolytically degraded, leading to the accumulation of product lacking the 13 C-terminal residues. This finding led to identification of the VP3 oligomerization domain within a 24-amino-acid stretch near the C-terminal end of the polypeptide, partially overlapping the VP1 binding domain. Inactivation of the VP3 oligomerization domain, by either proteolysis or deletion of the polyprotein gene, abolishes viruslike particle formation. Formation of VP3-VP1 complexes in cells infected with a dual recombinant baculovirus simultaneously expressing the polyprotein and VP1 prevented VP3 proteolysis and led to efficient virus-like particle formation in insect cells. PMID:12743301

  2. Sulfolobus Spindle-Shaped Virus 1 Contains Glycosylated Capsid Proteins, a Cellular Chromatin Protein, and Host-Derived Lipids

    PubMed Central

    Quemin, Emmanuelle R. J.; Pietilä, Maija K.; Oksanen, Hanna M.; Forterre, Patrick; Rijpstra, W. Irene C.; Schouten, Stefan; Bamford, Dennis H.; Prangishvili, David

    2015-01-01

    ABSTRACT Geothermal and hypersaline environments are rich in virus-like particles, among which spindle-shaped morphotypes dominate. Currently, viruses with spindle- or lemon-shaped virions are exclusive to Archaea and belong to two distinct viral families. The larger of the two families, the Fuselloviridae, comprises tail-less, spindle-shaped viruses, which infect hosts from phylogenetically distant archaeal lineages. Sulfolobus spindle-shaped virus 1 (SSV1) is the best known member of the family and was one of the first hyperthermophilic archaeal viruses to be isolated. SSV1 is an attractive model for understanding virus-host interactions in Archaea; however, the constituents and architecture of SSV1 particles remain only partially characterized. Here, we have conducted an extensive biochemical characterization of highly purified SSV1 virions and identified four virus-encoded structural proteins, VP1 to VP4, as well as one DNA-binding protein of cellular origin. The virion proteins VP1, VP3, and VP4 undergo posttranslational modification by glycosylation, seemingly at multiple sites. VP1 is also proteolytically processed. In addition to the viral DNA-binding protein VP2, we show that viral particles contain the Sulfolobus solfataricus chromatin protein Sso7d. Finally, we provide evidence indicating that SSV1 virions contain glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, resolving a long-standing debate on the presence of lipids within SSV1 virions. A comparison of the contents of lipids isolated from the virus and its host cell suggests that GDGTs are acquired by the virus in a selective manner from the host cytoplasmic membrane, likely during progeny egress. IMPORTANCE Although spindle-shaped viruses represent one of the most prominent viral groups in Archaea, structural data on their virion constituents and architecture still are scarce. The comprehensive biochemical characterization of the hyperthermophilic virus SSV1 presented here brings novel and

  3. Expression of a truncated hepatitis E virus capsid protein in the protozoan organism Leishmania tarentolae and its application in a serological assay.

    PubMed

    Baechlein, C; Meemken, D; Pezzoni, G; Engemann, C; Grummer, B

    2013-10-01

    Zoonotic infections with hepatitis E virus (HEV) genotype 3 are presumably transmitted via contaminated pig meat products, which raises the necessity for enhanced serological surveillance of pig herds. The aim of the study was to set up a novel protein expression system to overcome the well-known problems in (HEV-) protein expression using the standard Escherichia coli tools such as inclusion body formation and loss of protein conformation. A recombinant strain of the protozoan organism Leishmania tarentolae (L. tarentolae) was therefore established. A fragment of HEV ORF2 coding for a truncated capsid protein of a porcine HEV strain was cloned and parts of the plasmid DNA were introduced into the Leishmania genome, resulting in stably transformed cells. Via a C-terminal His-tag the recombinant HEVΔORF2 protein could be purified and concentrated directly from the medium, resulting in a total protein amount of approximately 1.4 mg/l Leishmania culture. The recombinant protein was coated on ELISA plates and was proven to be highly reactive and well-suited to be applied in a serological assay. By investigating 144 porcine sera, the in-house assay detected specific antibodies in 43.1% of the samples and demonstrated a higher sensitivity than a commercially available antibody test. Taken together, it was shown that L. tarentolae exhibits a remarkable alternative expression strategy for viral antigens with considerable advantages of a eukaryotic protein expression host.

  4. Capsid protein: evidences about the partial protective role of neutralizing antibody-independent immunity against dengue in monkeys.

    PubMed

    Gil, Lázaro; Izquierdo, Alienys; Lazo, Laura; Valdés, Iris; Ambala, Peris; Ochola, Lucy; Marcos, Ernesto; Suzarte, Edith; Kariuki, Thomas; Guzmán, Guadalupe; Guillén, Gerardo; Hermida, Lisset

    2014-05-01

    The role of cellular immune response in dengue virus infection is not yet fully understood. Only few studies in murine models propose that CD8(+) T-cells are associated with protection from infection and disease. At the light of recent reports about the protective role of CD8(+) T-cells in humans and the no correlation between neutralizing antibodies and protection observed in several studies, a vaccine based on cell-mediated immunity constitute an attractive approach. Our group has developed a capsid-based vaccine as nucleocpasid-like particles from dengue-2 virus, which induced a protective CD4(+) and CD8(+) cell-mediated immunity in mice, without the contribution of neutralizing antibodies. Herein we evaluated the immunogenicity and protective efficacy of this molecule in monkeys. Neither IgG antibodies against the whole virus nor neutralizing antibodies were elicited after the antigen inoculation. However, animals developed a cell-mediated immunity, measured by gamma interferon secretion and cytotoxic capacity. Although only one out of three vaccinated animals was fully protected against viral challenge, a viral load reduction was observed in this group compared with the placebo one, suggesting that capsid could be the base on an attractive vaccine against dengue.

  5. Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice.

    PubMed

    Moda, Fabio; Vimercati, Chiara; Campagnani, Ilaria; Ruggerone, Margherita; Giaccone, Giorgio; Morbin, Michela; Zentilin, Lorena; Giacca, Mauro; Zucca, Ileana; Legname, Giuseppe; Tagliavini, Fabrizio

    2012-01-01

    Prion diseases are caused by a conformational modification of the cellular prion protein (PrP (C)) into disease-specific forms, termed PrP (Sc), that have the ability to interact with PrP (C) promoting its conversion to PrP (Sc). In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrP (C) region involved in the interaction with PrP (Sc) thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrP (Sc) in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.

  6. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    SciTech Connect

    Chaturvedi, Sonali; Rao, A.L.N.

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  7. Molecular characterization of double-stranded RNA segments encoding the major capsid proteins of a Palyam serogroup orbivirus that caused an epizootic of congenital abnormalities in cattle.

    PubMed

    Yamakawa, M; Furuuchi, S; Minobe, Y

    1999-01-01

    cDNA cloning of the double-stranded RNA genome of Chuzan virus, a member of the Palyam serogroup orbiviruses, was carried out and the complete nucleotide sequences of RNA segments 2, 3, 6 and 7, encoding the major capsid proteins VP2, VP3, VP5 and VP7, respectively, were determined. The individual segments had single open reading frames and short inverted repeats adjacent to the conserved terminal sequences. Comparative sequence analysis with other serogroups of the genus Orbivirus suggested that VP2 is the principal determinant of serotype specificity and the neutralizing antigen of the Palyam serogroup. VP5 is also considered to be associated with antigenic variability. Both VP3 and VP7 probably contain serogroup-specific epitopes. Phylogenetic profiles demonstrated that the Palyam serogroup virus is more closely related to African horsesickness virus than to bluetongue virus and epizootic haemorrhagic disease virus.

  8. Cloning of the Major Capsid Protein (MCP) of Grouper Iridovirus of Taiwan (TGIV) and Preliminary Evaluation of a Recombinant MCP Vaccine against TGIV

    PubMed Central

    Liu, Hsin-I; Chiou, Pinwen Peter; Gong, Hong-Yi; Chou, Hsin-Yiu

    2015-01-01

    Fish iridoviruses cause systemic diseases with high mortality in various species of wild and farm-raised fish, resulting in severe economic losses. In 1998, we isolated a new epizootic iridovirus in cultured grouper (Epinephelus sp.) in Taiwan, thus named as grouper iridovirus of Taiwan (TGIV). We report here the cloning of TGIV major capsid protein (MCP). Phylogenetic analysis of the iridoviral MCPs confirmed the classification of TGIV into the Megalocytivirus genus. Recombinant TGIV MCP and GIV MCP were then generated to produce polyclonal antibodies. Western blot analysis revealed that the two antisera were species-specific, indicating no common epitope shared by the MCPs of the two viruses. We further assayed the potency of a subunit vaccine containing recombinant TGIV MCP. The vaccine effectively protected grouper from TGIV infection. The result demonstrated that MCP is a suitable antigen for anti-TGIV vaccines. PMID:26633384

  9. The gene encoding the capsid protein P82 of the Choristoneura fumiferana multicapsid nucleopolyhedrovirus: sequencing, transcription and characterization by immunoblot analysis.

    PubMed

    Li, X; Pang, A; Lauzon, H A; Sohi, S S; Arif, B M

    1997-10-01

    A gene encoding a capsid-associated viral structural protein has been identified and sequenced in the genome of the Choristoneura fumiferana multicapsid nucleopolyhedrovirus (CfMNPV). The gene has a 1872 nucleotide open reading frame (ORF) encoding 624 amino acids with a predicted molecular mass of 71.4 kDa. Transcription, which appeared to be initiated from a conserved GTAAG motif of baculovirus late genes, was detected at 12 h, reached a maximum at 48 h and declined at 72 h post-infection (p.i.). Part of the ORF was cloned in frame into a prokaryotic expression vector, pMAL-c2, and the fusion protein was used to generate antibodies in rabbits. It was shown, with the aid of the polyclonal antiserum, that this viral protein was detectable at 24 h p.i. in infected cells. The protein appeared as an 82 kDa band in occlusion-derived virus and as an 82 kDa band and a 72 kDa band in budded virus. Amino acid sequence comparisons revealed that this ORF had high homology with the ORF p87 (77% similarity) of Orgyia pseudotsugata (Op) MNPV and the ORF p80 (60% similarity) of Autographa californica (Ac) MNPV. Immunoblots confirmed that the CfMNPV protein had antigenic similarities to the P87 protein of OpMNPV, but not to the P80 of AcMNPV.

  10. Baculovirus as a PRRSV and PCV2 bivalent vaccine vector: baculovirus virions displaying simultaneously GP5 glycoprotein of PRRSV and capsid protein of PCV2.

    PubMed

    Xu, Xin-Gang; Wang, Zhi-Sheng; Zhang, Qi; Li, Zhao-Cai; Ding, Li; Li, Wei; Wu, Hung-Yi; Chang, Ching-Dong; Lee, Long-Huw; Tong, De-Wen; Liu, Hung-Jen

    2012-02-01

    The GP5 glycoprotein of PRRSV is the main target for inducing neutralizing antibodies and protective immunity in the natural host. The capsid (Cap) protein is the major immunogenic protein and associated with the production of PCV2-specific neutralizing antibodies. In the present study, one genetic recombinant baculovirus BacSC-Dual-GP5-Cap was constructed. This virus displays simultaneously histidine-tagged GP5 and Cap proteins with the baculovirus glycoprotein gp64 TM and CTD on the virion surface as well as the surface of the virus-infected cells. After infection, the GP5 and Cap proteins were expressed and anchored simultaneously on the plasma membrane of Sf-9 cells, as revealed by Western blot and confocal microscopy. This report demonstrated first that both GP5 and Cap proteins were displayed successfully on the viral surface, revealed by immunogold electron microscopy. Vaccination of swine with recombinant baculovirus BacSC-Dual-GP5-Cap elicited significantly higher GP5 and Cap ELISA antibody titers in swine than the control groups. Virus neutralization test also showed that serum from the BacSC-Dual-GP5-Cap treated swine had significant levels of virus neutralization titers. Lymphocyte proliferation responses could be induced in swine immunized with BacSC-Dual-GP5-Cap than the control groups. These findings demonstrate that the BacSC-Dual-GP5-Cap bivalent subunit vaccine can be a potential vaccine against PRRSV and PCV2 infections.

  11. Amino Acids in the Capsid Protein of Tomato Yellow Leaf Curl Virus That Are Crucial for Systemic Infection, Particle Formation, and Insect Transmission

    PubMed Central

    Noris, E.; Vaira, A. M.; Caciagli, P.; Masenga, V.; Gronenborn, B.; Accotto, G. P.

    1998-01-01

    A functional capsid protein (CP) is essential for host plant infection and insect transmission in monopartite geminiviruses. We studied two defective genomic DNAs of tomato yellow leaf curl virus (TYLCV), Sic and SicRcv. Sic, cloned from a field-infected tomato, was not infectious, whereas SicRcv, which spontaneously originated from Sic, was infectious but not whitefly transmissible. A single amino acid change in the CP was found to be responsible for restoring infectivity. When the amino acid sequences of the CPs of Sic and SicRcv were compared with that of a closely related wild-type virus (TYLCV-Sar), differences were found in the following positions: 129 (P in Sic and SicRcv, Q in Sar), 134 (Q in Sic and Sar, H in SicRcv) and 152 (E in Sic and SicRcv, D in Sar). We constructed TYLCV-Sar variants containing the eight possible amino acid combinations in those three positions and tested them for infectivity and transmissibility. QQD, QQE, QHD, and QHE had a wild-type phenotype, whereas PHD and PHE were infectious but nontransmissible. PQD and PQE mutants were not infectious; however, they replicated and accumulated CP, but not virions, in Nicotiana benthamiana leaf discs. The Q129P replacement is a nonconservative change, which may drastically alter the secondary structure of the CP and affect its ability to form the capsid. The additional Q134H change, however, appeared to compensate for the structural modification. Sequence comparisons among whitefly-transmitted geminiviruses in terms of the CP region studied showed that combinations other than QQD are present in several cases, but never with a P129. PMID:9811744

  12. Structure of the HIV-1 Full-Length Capsid Protein in a Conformationally Trapped Unassembled State Induced by Small-Molecule Binding

    SciTech Connect

    Du, Shoucheng; Betts, Laurie; Yang, Ruifeng; Shi, Haibin; Concel, Jason; Ahn, Jinwoo; Aiken, Christopher; Zhang, Peijun; Yeh, Joanne I.

    2012-11-26

    The capsid (CA) protein plays crucial roles in HIV infection and replication, essential to viral maturation. The absence of high-resolution structural data on unassembled CA hinders the development of antivirals effective in inhibiting assembly. Unlike enzymes that have targetable, functional substrate-binding sites, the CA does not have a known site that affects catalytic or other innate activity, which can be more readily targeted in drug development efforts. We report the crystal structure of the HIV-1 CA, revealing the domain organization in the context of the wild-type full-length (FL) unassembled CA. The FL CA adopts an antiparallel dimer configuration, exhibiting a domain organization sterically incompatible with capsid assembly. A small compound, generated in situ during crystallization, is bound tightly at a hinge site ('H site'), indicating that binding at this interdomain region stabilizes the ADP conformation. Electron microscopy studies on nascent crystals reveal both dimeric and hexameric lattices coexisting within a single condition, in agreement with the interconvertibility of oligomeric forms and supporting the feasibility of promoting assembly-incompetent dimeric states. Solution characterization in the presence of the H-site ligand shows predominantly unassembled dimeric CA, even under conditions that promote assembly. Our structure elucidation of the HIV-1 FL CA and characterization of a potential allosteric binding site provides three-dimensional views of an assembly-defective conformation, a state targeted in, and thus directly relevant to, inhibitor development. Based on our findings, we propose an unprecedented means of preventing CA assembly, by 'conformationally trapping' CA in assembly-incompetent conformational states induced by H-site binding.

  13. Identification of the cleavage sites of the RNA2-encoded polyproteins for two members of the genus Torradovirus by N-terminal sequencing of the virion capsid proteins.

    PubMed

    Ferriol, I; Silva Junior, D M; Nigg, J C; Zamora-Macorra, E J; Falk, B W

    2016-11-01

    Torradoviruses, family Secoviridae, are emergent bipartite RNA plant viruses. RNA1 is ca. 7kb and has one open reading frame (ORF) encoding for the protease, helicase and RNA-dependent RNA polymerase (RdRp). RNA2 is ca. 5kb and has two ORFs. RNA2-ORF1 encodes for a putative protein with unknown function(s). RNA2-ORF2 encodes for a putative movement protein and three capsid proteins. Little is known about the replication and polyprotein processing strategies of torradoviruses. Here, the cleavage sites in the RNA2-ORF2-encoded polyproteins of two torradoviruses, Tomato marchitez virus isolate M (ToMarV-M) and tomato chocolate spot virus, were determined by N-terminal sequencing, revealing that the amino acid (aa) at the -1 position of the cleavage sites is a glutamine. Multiple aa sequence comparison confirmed that this glutamine is conserved among other torradoviruses. Finally, site-directed mutagenesis of conserved aas in the ToMarV-M RdRp and protease prevented substantial accumulation of viral coat proteins or RNAs.

  14. A mechanism of immunoreceptor tyrosine-based activation motif (ITAM)-like sequences in the capsid protein VP2 in viral growth and pathogenesis of Coxsackievirus B3.

    PubMed

    Kim, Dae-Sun; Park, Jung-Hyun; Kim, Joo-Young; Kim, Dokeun; Nam, Jae-Hwan

    2012-04-01

    Coxsackievirus B3 (CVB3) is an RNA virus that mainly causes myocarditis. We have reported previously that immunoreceptor tyrosine-based activation motif (ITAM)-like sequences are contained in the capsid protein VP2 of CVB3. The substitution of two tyrosines for phenylalanines in the ITAM-like region causes attenuation of CVB3, possibly via defective viral assembly. In this study, we found that Syk, a downstream molecule of ITAM, interacts with the wild-type (WT) CVB3 VP0 protein, but not with the mutant CVB3 VP0 (called YYFF), and that an inhibitor of Syk reduced the growth of CVB3. The WT CVB3 activated nuclear factor kappa B (NF-κB), a protein activated by ITAM, and eventually induced the production of interleukin-6 (IL-6)-one of the proinflammatory cytokines induced by NF-κB-in macrophages. However, the YYFF form did not. In addition, viral VP2 protein may be dependent on the phosphorylation of an ITAM-like region that affected the activation of NF-κB. Taken together, these results suggest that the ITAM-like sequences in CVB3 VP2 can not only affect viral structure but also act as signals in pathogenesis.

  15. Characterization and epitope mapping of monoclonal antibodies raised against rat hepatitis E virus capsid protein: An evaluation of their neutralizing activity in a cell culture system.

    PubMed

    Kobayashi, Tominari; Takahashi, Masaharu; Tanggis; Mulyanto; Jirintai, Suljid; Nagashima, Shigeo; Nishizawa, Tsutomu; Okamoto, Hiroaki

    2016-07-01

    Hepatitis E virus (HEV) is the causative agent of acute hepatitis. Rat HEV is a recently discovered virus related to, but distinct from, human HEV. Since laboratory rats can be reproducibly infected with rat HEV and a cell culture system has been established for rat HEV, this virus may be used as a surrogate virus for human HEV, enabling studies on virus replication and mechanism of infection. However, monoclonal antibodies (MAbs) against rat HEV capsid (ORF2) protein are not available. In this study, 12 murine MAbs were generated against a recombinant ORF2 protein of rat HEV (rRatHEV-ORF2: amino acids 101-644) and were classified into at least six distinct groups by epitope mapping and a cross-reactivity analysis with human HEV ORF2 proteins. Two non-cross-reactive MAbs recognizing the protruding (P) domain detected both non-denatured and denatured rRatHEV-ORF2 protein and efficiently captured cell culture-produced rat HEV particles that had been treated with deoxycholate and trypsin, but not those without prior treatment. In addition, these two MAbs were able to efficiently neutralize replication of cell culture-generated rat HEV particles without lipid membranes (but not those with lipid membranes) in a cell culture system, similar to human HEV.

  16. Production of rotavirus-like particles in tomato (Lycopersicon esculentum L.) fruit by expression of capsid proteins VP2 and VP6 and immunological studies.

    PubMed

    Saldaña, Sergio; Esquivel Guadarrama, Fernando; Olivera Flores, Teresa De Jesús; Arias, Nancy; López, Susana; Arias, Carlos; Ruiz-Medrano, Roberto; Mason, Hugh; Mor, Tsafrir; Richter, Liz; Arntzen, Charles J; Gómez Lim, Miguel A

    2006-01-01

    A number of different antigens have been successfully expressed in transgenic plants, and some are currently being evaluated as orally delivered vaccines. Here we report the successful expression of rotavirus capsid proteins VP2 and VP6 in fruits of transgenic tomato plants. By western blot analysis, using specific antibodies, we determined that the VP2 and VP6 produced in plants have molecular weights similar to those found in native rotavirus. The plant-synthesized VP6 protein retained the capacity to form trimers. We were able to recover rotavirus virus-like particles from tomato fruit (i.e., tomatoes) by centrifugation on a sucrose cushion and to visualize them by electron microscopy. This result indicated that VP2/VP6 can self-assemble into virus-like particles (VLPs) in plant cells, even though only a small proportion of VP2/VP6 assembled into VLPs. To investigate immunogenicity, adult mice were immunized intraperitoneally (i.p.) three times with a protein extract from a transgenic tomatoes in adjuvant. We found that the transgenic tomato extract induced detectable levels of anti-rotavirus antibodies in serum; however, we did not determine the contribution of either the free rotavirus proteins or the VLPs to the induction of the antibody response. These results suggest the potential of plant-based rotavirus VLPs for the development of a vaccine against rotavirus infection.

  17. Crosslinking in viral capsids via tiling theory.

    PubMed

    Twarock, R; Hendrix, R W

    2006-06-07

    A vital part of a virus is its protein shell, called the viral capsid, that encapsulates and hence protects the viral genome. It has been shown in Twarock [2004. A tiling approach to vius capsids assembly explaining a structural puzzle in virology. J. Theor. Biol. 226, 477-482] that the surface structures of viruses with icosahedrally symmetric capsids can be modelled in terms of tilings that encode the locations of the protein subunits. This theory is extended here to multi-level tilings in order to model crosslinking structures. The new framework is demonstrated for the case of bacteriophage HK97, and it is shown, how the theory can be used in general to decide if crosslinking, and what type of crosslinking, is compatible from a mathematical point of view with the geometrical surface structure of a virus.

  18. Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus Results in the Formation of Multiple Capsid Species: Isolation and Molecular Characterization of A, B, and C Capsids from a Gammaherpesvirus

    PubMed Central

    Nealon, K.; Newcomb, W. W.; Pray, T. R.; Craik, C. S.; Brown, J. C.; Kedes, D. H.

    2001-01-01

    Despite the discovery of Epstein-Barr virus more than 35 years ago, a thorough understanding of gammaherpesvirus capsid composition and structure has remained elusive. We approached this problem by purifying capsids from Kaposi's sarcoma-associated herpesvirus (KSHV), the only other known human gammaherpesvirus. The results from our biochemical and imaging analyses demonstrate that KSHV capsids possess a typical herpesvirus icosahedral capsid shell composed of four structural proteins. The hexameric and pentameric capsomers are composed of the major capsid protein (MCP) encoded by open reading frame 25. The heterotrimeric complexes, forming the capsid floor between the hexons and pentons, are each composed of one molecule of ORF62 and two molecules of ORF26. Each of these proteins has significant amino acid sequence homology to capsid proteins in alpha- and betaherpesviruses. In contrast, the fourth protein, ORF65, lacks significant sequence homology to its structural counterparts from the other subfamilies. Nevertheless, this small, basic, and highly antigenic protein decorates the surface of the capsids, as does, for example, the even smaller basic capsid protein VP26 of herpes simplex virus type 1. We have also found that, as with the alpha- and betaherpesviruses, lytic replication of KSHV leads to the formation of at least three capsid species, A, B, and C, with masses of approximately 200, 230, and 300 MDa, respectively. A capsids are empty, B capsids contain an inner array of a fifth structural protein, ORF17.5, and C capsids contain the viral genome. PMID:11222712

  19. Structure of the reovirus outer capsid and dsRNA-binding protein σ3 at 1.8 Å resolution

    PubMed Central

    Olland, Andrea M.; Jané-Valbuena, Judit; Schiff, Leslie A.; Nibert, Max L.; Harrison, Stephen C.

    2001-01-01

    The crystallographically determined structure of the reovirus outer capsid protein σ3 reveals a two-lobed structure organized around a long central helix. The smaller of the two lobes includes a CCHC zinc-binding site. Residues that vary between strains and serotypes lie mainly on one surface of the protein; residues on the opposite surface are conserved. From a fit of this model to a reconstruction of the whole virion from electron cryomicroscopy, we propose that each σ3 subunit is positioned with the small lobe anchoring it to the protein µ1 on the surface of the virion, and the large lobe, the site of initial cleavages during entry-related proteolytic disassembly, protruding outwards. The surface containing variable residues faces solvent. The crystallographic asymmetric unit contains two σ3 subunits, tightly associated as a dimer. One broad surface of the dimer has a positively charged surface patch, which extends across the dyad. In infected cells, σ3 binds dsRNA and inhibits the interferon response. The location and extent of the positively charged surface patch suggest that the dimer is the RNA-binding form of σ3. PMID:11230122

  20. Virucidal efficacy of glutaraldehyde against enteroviruses is related to the location of lysine residues in exposed structures of the VP1 capsid protein.

    PubMed

    Chambon, Martine; Archimbaud, Christine; Bailly, Jean-Luc; Gourgand, Jeanne-Marie; Charbonné, Françoise; Peigue-Lafeuille, Hélène

    2004-03-01

    Glutaraldehyde (GTA) is a potent virucidal disinfectant whose exact mode of action against enteroviruses is not understood. Earlier reports showed that GTA reacts preferentially with the VP1 capsid protein of echovirus 25 and poliovirus 1 and that GTA has affinity for exposed lysine residues on proteins. To investigate further the inactivation of enteroviruses by GTA, seven strains were selected on the basis of differences in their overall number and the positions of lysine residues in the amino acid sequences of the VP1 polypeptide. Inactivation kinetics experiments were performed with 0.10% GTA. The viruses grouped into three clusters and exhibited significantly different levels of sensitivity to GTA. The results were analyzed in the light of current knowledge of the three-dimensional structure of enteroviruses and the viral life cycle. The differences observed in sensitivity to GTA were related to the number of lysine residues and their locations in the VP1 protein. The overall findings suggest that the BC and DE loops, which cluster at the fivefold axis of symmetry and are the most exposed on the outer surface of the virions, are primary reactive sites for GTA.

  1. Capsid proteins from human immunodeficiency virus type 1 and simian immunodeficiency virus SIVmac can coassemble into mature cores of infectious viruses.

    PubMed

    Chen, Jianbo; Pathak, Vinay K; Peng, Weiqun; Hu, Wei-Shau

    2008-09-01

    We have recently shown that the Gag polyproteins from human immunodeficiency virus type 1 (HIV-1) and HIV-2 can coassemble and functionally complement each other. During virion maturation, the Gag polyproteins undergo proteolytic cleavage to release mature proteins including capsid (CA), which refolds and forms the outer shell of a cone-shaped mature core. Less than one-half of the CA proteins present within the HIV-1 virion are required to form the mature core. Therefore, it is unclear whether the mature core in virions containing both HIV-1 and HIV-2 Gag consists of CA proteins from a single virus or from both viruses. To determine whether CA proteins from two different viruses can coassemble into mature cores of infectious viruses, we exploited the specificity of the tripartite motif 5alpha protein from the rhesus monkey (rhTRIM5alpha) for cores containing HIV-1 CA (hCA) but not the simian immunodeficiency virus SIV(mac) CA protein (sCA). If hCA and sCA cannot coassemble into the same core when equal amounts of sCA and hCA are coexpressed, the infectivities of such virus preparations in cells should be inhibited less than twofold by rhTRIM5alpha. However, if hCA and sCA can coassemble into the same core structure to form a mixed core, rhTRIM5alpha would be able to recognize such cores and significantly restrict virus infectivity. We examined the restriction phenotypes of viruses containing both hCA and sCA. Our results indicate that hCA and sCA can coassemble into the same mature core to produce infectious virus. To our knowledge, this is the first demonstration of functional coassembly of heterologous CA protein into the retroviral core.

  2. Effect of a single amino acid substitution in the NLS domain of Tomato yellow leaf curl virus-Israel (TYLCV-IL) capsid protein (CP) on its activity and on the virus life cycle.

    PubMed

    Yaakov, Noga; Levy, Yael; Belausov, Eduard; Gaba, Victor; Lapidot, Moshe; Gafni, Yedidya

    2011-06-01

    The capsid protein (CP) of Tomato yellow leaf curl virus-Israel (TYLCV-IL), encoded by the v1 gene, is the only known component of the viral capsid. Three point mutations introduced into the conserved NLS region of the CP were investigated. One mutant, in which the Arg at position 19 was converted to Leu, had the most significant effect on the CP-CP homotypic interaction as well as on CP's interaction with its nuclear receptor karyopherin α1 and with the protein GroEL. The latter has been suggested to protect the virions in the insect vector hemolymph. These effects were first observed by yeast two-hybrid assay and then confirmed in tobacco protoplasts by measuring fluorescence resonance energy transfer (FRET) between YFP- and CFP-tagged proteins. Most importantly, when the point mutation converting Arg 19 to Leu was introduced into the full-length TYLCV genome, it disrupted its ability to cause symptoms.

  3. N-Terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles.

    PubMed

    Gross, I; Hohenberg, H; Huckhagel, C; Kräusslich, H G

    1998-06-01

    Expression of retroviral Gag polyproteins is sufficient for morphogenesis of virus-like particles with a spherical immature protein shell. Proteolytic cleavage of Gag into the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains (in the case of human immunodeficiency virus [HIV]) leads to condensation to the mature cone-shaped core. We have analyzed the formation of spherical or cylindrical particles on in vitro assembly of purified HIV proteins or inside Escherichia coli cells. CA protein alone yielded cylindrical particles, while all N-terminal extensions of CA abolished cylinder formation. Spherical particles with heterogeneous diameters or amorphous protein aggregates were observed instead. Extending CA by 5 amino acids was sufficient to convert the assembly phenotype to spherical particles. Sequences C-terminal of CA were not required for sphere formation. Proteolytic cleavage of N-terminally extended CA proteins prior to in vitro assembly led to the formation of cylindrical particles, while proteolysis of in vitro assembly products caused disruption of spheres but not formation of cylinders. In vitro assembly of CA and extended CA proteins in the presence of cyclophilin A (CypA) at a CA-to-CypA molar ratio of 10:1 yielded significantly longer cylinders and heterogeneous spheres, while higher concentrations of CypA completely disrupted particle formation. We conclude that the spherical shape of immature HIV particles is determined by the presence of an N-terminal extension on the CA domain and that core condensation during virion maturation requires the liberation of the N terminus of CA.

  4. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP/sub 1/ and the viral early proteins

    SciTech Connect

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-03-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP/sub 1/ protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP/sub 1/ protein stimulated (/sup 3/H)thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins.

  5. Detection of Foot-and-mouth Disease Virus RNA and Capsid Protein in Lymphoid Tissues of Convalescent Pigs Does Not Indicate Existence of a Carrier State.

    PubMed

    Stenfeldt, C; Pacheco, J M; Smoliga, G R; Bishop, E; Pauszek, S J; Hartwig, E J; Rodriguez, L L; Arzt, J

    2016-04-01

    A systematic study was performed to investigate the potential of pigs to establish and maintain persistent foot-and-mouth disease virus (FMDV) infection. Infectious virus could not be recovered from sera, oral, nasal or oropharyngeal fluids obtained after resolution of clinical infection with any of five FMDV strains within serotypes A, O and Asia-1. Furthermore, there was no isolation of live virus from tissue samples harvested at 28-100 days post-infection from convalescent pigs recovered from clinical or subclinical FMD. Despite lack of detection of infectious FMDV, there was a high prevalence of FMDV RNA detection in lymph nodes draining lesion sites harvested at 35 days post-infection, with the most frequent detection recorded in popliteal lymph nodes (positive detection in 88% of samples obtained from non-vaccinated pigs). Likewise, at 35 dpi, FMDV capsid antigen was localized within follicles of draining lymph nodes, but without concurrent detection of FMDV non-structural protein. There was a marked decline in the detection of FMDV RNA and antigen in tissue samples by 60 dpi, and no antigen or viral RNA could be detected in samples obtained at 100 dpi. The data presented herein provide the most extensive investigation of FMDV persistence in pigs. The overall conclusion is that domestic pigs are unlikely to be competent long-term carriers of infectious FMDV; however, transient persistence of FMDV protein and RNA in lymphoid tissues is common following clinical or subclinical infection.

  6. Self-assembly of virus-like particles of rabbit hemorrhagic disease virus capsid protein expressed in Escherichia coli and their immunogenicity in rabbits.

    PubMed

    Guo, Huimin; Zhu, Jie; Tan, Yonggui; Li, Chuanfeng; Chen, Zongyan; Sun, Shiqi; Liu, Guangqing

    2016-07-01

    In this study, virus-like particles (VLPs) derived from rabbit hemorrhagic disease virus (RHDV) were evaluated for the development of a vaccine against RHDV infection. The VP60 gene was cloned and inserted into a pSMK expression vector containing a small ubiquitin-like modifier (SUMO) tag that can promote the soluble expression of heterologous proteins in Escherichia coli cells. After expression and purification of His-SUMO-VP60 and cleavage of the SUMO tag, we found that the RHDV VP60 protein had self-assembled into VLPs with a similar shape and smaller size compared with authentic RHDV capsid. Next, the antigenicity and immunogenicity of the VLPs were examined. The results showed that RHDV-specific responses were clearly induced in rabbits and that all rabbits in the VLP group survived while those in the negative control group died within 72 h post-infection. These results suggest that VLP-based RHDV could be a promising RHDV vaccine candidate.

  7. Expression of codon optimized major capsid protein (L1) of human papillomavirus type 16 and 18 in Pichia pastoris; purification and characterization of the virus-like particles

    PubMed Central

    Rao, N. Hanumantha; Babu, P. Baji; Rajendra, L.; Sriraman, R.; Pang, Yuk-Ying S.; Schiller, John T.; Srinivasan, V.A.

    2012-01-01

    The major capsid protein (L1) of human papillomaviruses (HPV) expressed in heterologous systems assembles into virus-like particles (VLPs). We report cloning and expression of codon optimized HPV L1 genes of the two high-risk HPV types 16 and 18 in methylotropic yeast, Pichia pastoris. The VLPs produced in P. pastoris were subjected to three step purification method involving density gradient centrifugations and size exclusion chromatography. The enriched VLPs were characterized using conformation-specific monoclonal antibodies in ELISA and by transmission electron microscopy. Mice immunized with a bivalent HPV16 and HPV18 VLPs developed high serum antibody titers to both HPV types that persisted for 190 days post vaccination. Serum of mice immunized with the HPV-VLP preparations could neutralize homologous pseudoviruses in an in vitro assays. Our results demonstrate that the L1 proteins expressed in P. pastoris fold properly as evidenced by assembly into VLPs and induction of type-specific neutralizing antibody response in mice. This work constitutes a step towards developing an alternate production platform for generating an affordable HPV vaccine to meet the needs of developing countries. PMID:21803095

  8. Amino acids substitutions in σ1 and μ1 outer capsid proteins of a Vero cell-adapted mammalian orthoreovirus are required for optimal virus binding and disassembly.

    PubMed

    Sandekian, Véronique; Lemay, Guy

    2015-01-22

    In a recent study, the serotype 3 Dearing strain of mammalian orthoreovirus was adapted to Vero cells; cells that exhibit a limited ability to support the early steps of reovirus uncoating and are unable to produce interferon as an antiviral response upon infection. The Vero cell-adapted virus (VeroAV) exhibits amino acids substitutions in both the σ1 and μ1 outer capsid proteins but no changes in the σ3 protein. Accordingly, the virus was shown not to behave as a classical uncoating mutant. In the present study, an increased ability of the virus to bind at the Vero cell surface was observed and is likely associated with an increased ability to bind onto cell-surface sialic acid residues. In addition, the kinetics of μ1 disassembly from the virions appears to be altered. The plasmid-based reverse genetics approach confirmed the importance of σ1 amino acids substitutions in VeroAV's ability to efficiently infect Vero cells, although μ1 co-adaptation appears necessary to optimize viral infection. This approach of combining in vitro selection of reoviruses with reverse genetics to identify pertinent amino acids substitutions appears promising in the context of eventual reovirus modification to increase its potential as an oncolytic virus.

  9. Cleavage of the HPV16 Minor Capsid Protein L2 during Virion Morphogenesis Ablates the Requirement for Cellular Furin during De Novo Infection

    PubMed Central

    Cruz, Linda; Biryukov, Jennifer; Conway, Michael J.; Meyers, Craig

    2015-01-01

    Infections by high-risk human papillomaviruses (HPV) are the causative agents for the development of cervical cancer. As with other non-enveloped viruses, HPVs are taken up by the cell through endocytosis following primary attachment to the host cell. Through studies using recombinant pseudovirus particles (PsV), many host cellular proteins have been implicated in the process. The proprotein convertase furin has been demonstrated to cleave the minor capsid protein, L2, post-attachment to host cells and is required for infectious entry by HPV16 PsV. In contrast, using biochemical inhibition by a furin inhibitor and furin-negative cells, we show that tissue-derived HPV16 native virus (NV) initiates infection independent of cellular furin. We show that HPV16 L2 is cleaved during virion morphogenesis in differentiated tissue. In addition, HPV45 is also not dependent on cellular furin, but two other alpha papillomaviruses, HPV18 and HPV31, are dependent on the activity of cellular furin for infection. PMID:26569287

  10. Satellite panicum mosaic virus capsid protein elicits symptoms on a nonhost plant and interferes with a suppressor of virus-induced gene silencing.

    PubMed

    Qiu, Wenping; Scholthof, Karen-Beth G

    2004-03-01

    The capsid protein (CP) of satellite panicum mosaic virus (SPMV) has been implicated as a pathogenicity factor, inducing severe chlorosis on millet plants co-infected with SPMV and its helper virus, Panicum mosaic virus (PMV). In this study, we tested the effects of SPMV CP on Nicotiana benthamiana, a plant that does not support PMV+SPMV infections. SPMV CP expressed from a Potato virus X (PVX) gene vector elicited necrotic lesions on N. benthamiana. Pathogenicity factors often have the additional feature of acting as suppressors of gene silencing; therefore, several assays were developed to test if SPMV CP could act in such a capacity. The results showed that SPMV CP failed to act as a suppressor of posttranscriptional gene silencing when such tests were performed with transgenic N. benthamiana plants silenced for green fluorescent protein (GFP) expression by agroinfiltration or plant virus vectors. However SPMV CP expressed from the PVX gene vector did interfere with suppressor activity associated with PVX p25. This included a rebounded level of GFP silencing along the vascular tissues, including the veins on upper noninoculated leaves. Therefore, the roles of the SPMV CP now include encapsidation of the SPMV RNA, activity as a pathogenicity factor in both host and nonhost plants, and the enigmatic feature of interfering with suppression of gene silencing.

  11. Inhibition of iridovirus protein synthesis and virus replication by antisense morpholino oligonucleotides targeted to the major capsid protein, the 18 kDa immediate-early protein, and a viral homolog of RNA polymerase II

    SciTech Connect

    Sample, Robert; Bryan, Locke; Long, Scott; Majji, Sai; Hoskins, Glenn; Sinning, Allan; Olivier, Jake; Chinchar, V. Gregory . E-mail: vchinchar@microbio.umsmed.edu

    2007-02-20

    Frog virus 3 (FV3) is a large DNA virus that encodes {approx} 100 proteins. Although the general features of FV3 replication are known, the specific roles that most viral proteins play in the virus life cycle have not yet been elucidated. To address the question of viral gene function, antisense morpholino oligonucleotides (asMOs) were used to transiently knock-down expression of specific viral genes and thus infer their role in virus replication. We designed asMOs directed against the major capsid protein (MCP), an 18 kDa immediate-early protein (18K) that was thought to be a viral regulatory protein, and the viral homologue of the largest subunit of RNA polymerase II (vPol-II{alpha}). All three asMOs successfully inhibited translation of the targeted protein, and two of the three asMOs resulted in marked phenotypic changes. Knock-down of the MCP resulted in a marked reduction in viral titer without a corresponding drop in the synthesis of other late viral proteins. Transmission electron microscopy (TEM) showed that in cells treated with the anti-MCP MO assembly sites were devoid of viral particles and contained numerous aberrant structures. In contrast, inhibition of 18K synthesis did not block virion formation, suggesting that the 18K protein was not essential for replication of FV3 in fathead minnow (FHM) cells. Finally, consistent with the view that late viral gene expression is catalyzed by a virus-encoded or virus-modified Pol-II-like protein, knock-down of vPol-II{alpha} triggered a global decline in late gene expression and virus yields without affecting the synthesis of early viral genes. Collectively, these results demonstrate the utility of using asMOs to elucidate the function of FV3 proteins.

  12. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly

    PubMed Central

    Grime, John M. A.; Dama, James F.; Ganser-Pornillos, Barbie K.; Woodward, Cora L.; Jensen, Grant J.; Yeager, Mark; Voth, Gregory A.

    2016-01-01

    The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies. PMID:27174390

  13. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly

    NASA Astrophysics Data System (ADS)

    Grime, John M. A.; Dama, James F.; Ganser-Pornillos, Barbie K.; Woodward, Cora L.; Jensen, Grant J.; Yeager, Mark; Voth, Gregory A.

    2016-05-01

    The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies.

  14. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential

    PubMed Central

    Kolb, Philipp; Wallich, Reinhard; Nassal, Michael

    2015-01-01

    Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission. PMID:26352137

  15. Three-Dimensional Structure of the Human Herpesvirus 8 Capsid

    PubMed Central

    Wu, Lijun; Lo, Pierrette; Yu, Xuekui; Stoops, James K.; Forghani, B.; Zhou, Z. Hong

    2000-01-01

    Human herpesvirus 8 (HHV-8), or Kaposi's sarcoma-associated herpesvirus, is a gammaherpesvirus implicated in all forms of Kaposi's sarcoma and certain lymphomas. HHV-8 has been extensively characterized, both biochemically and immunologically, since its first description in 1994. However, its three-dimensional (3D) structure remained heretofore undetermined largely due to difficulties in viral purification. We have used log-phase cultures of body cavity-based lymphoma 1 cells induced with 12-O-tetradecanoylphorbol-13-acetate to obtain HHV-8 capsids for electron cryomicroscopy and computer reconstruction. The 3D structure of the HHV-8 capsids revealed a capsid shell composed of 12 pentons, 150 hexons, and 320 triplexes arranged on a T=16 icosahedral lattice. This structure is similar to those of herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV), which are prototypical members of alpha- and betaherpesviruses, respectively. The inner radius of the HHV-8 capsid is identical to that of the HSV-1 capsid but is smaller than that of the HCMV capsid, which is consistent with the relative sizes of the genomes they enclose. While the HHV-8 capsid exhibits many structural similarities to the HSV-1 capsid, our reconstruction shows two major differences: its hexons lack the “horn-shaped” VP26 densities bound to the HSV-1 hexon subunits, and the HHV-8 triplexes appear smaller and less elongated than those of HSV-1. These differences are in excellent agreement with our sequence comparisons of HHV-8 and HSV-1 capsid proteins. This gammaherpesvirus capsid structure complements previous structural studies on alpha- and betaherpesviruses in providing an account of structural similarities and differences among capsids representing all human herpesvirus subfamilies. PMID:11000237

  16. The use of additive and subtractive approaches to examine the nuclear localization sequence of the polyomavirus major capsid protein VP1

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the N-terminal (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) amino acid sequence of the polyomavirus major capsid protein VP1. The importance of this amino acid sequence for nuclear transport of VP1 protein was demonstrated by a genetic "subtractive" study using the constructs pSG5VP1 (full-length VP1) and pSG5 delta 5'VP1 (truncated VP1, lacking amino acids Ala1-Cys11). These constructs were used to transfect COS-7 cells, and expression and intracellular localization of the VP1 protein was visualized by indirect immunofluorescence. These studies revealed that the full-length VP1 was expressed and localized in the nucleus, while the truncated VP1 protein was localized in the cytoplasm and not transported to the nucleus. These findings were substantiated by an "additive" approach using FITC-labeled conjugates of synthetic peptides homologous to the NLS of VP1 cross-linked to bovine serum albumin or immunoglobulin G. Both conjugates localized in the nucleus after microinjection into the cytoplasm of 3T6 cells. The importance of individual amino acids found in the basic sequence (Lys3-Arg-Lys5) of the NLS was also investigated. This was accomplished by synthesizing three additional peptides in which lysine-3 was substituted with threonine, arginine-4 was substituted with threonine, or lysine-5 was substituted with threonine. It was found that lysine-3 was crucial for nuclear transport, since substitution of this amino acid with threonine prevented nuclear localization of the microinjected, FITC-labeled conjugate.

  17. Enhancement of the immunogenicity of a porcine circovirus type 2 DNA vaccine by a recombinant plasmid coexpressing capsid protein and porcine interleukin-6 in mice.

    PubMed

    Guo, Xiao-Qing; Wang, Lin-Qing; Qiao, Han; Yang, Xing-Wu; Yang, Ming-Fan; Chen, Hong-Ying

    2015-03-01

    The development of effective vaccines against porcine circovirus type 2 (PCV2) has been accepted as an important strategy in the prophylaxis of post-weaning multisystemic wasting syndrome; a DNA vaccine expressing the major immunogenic capsid (Cap) protein of PCV2 is considered to be a promising candidate. However, DNA vaccines usually induce weak immune responses. In this study, it was found that the efficacy of a DNA vaccine expressing Cap protein was improved by simultaneous expression of porcine IL-6. A plasmid (pIRES-ORF2/IL6) separately expressing both Cap protein and porcine IL-6 was constructed and compared with another plasmid (pIRES-ORF2) expressing Cap protein for its potential to induce PCV2-specific immune responses. Mice were vaccinated i.m. twice at 3 week intervals and the induced humoral and cellular responses evaluated. All animals vaccinated with pIRES-ORF2/IL6 and pIRES-ORF2 developed specific anti-PCV2 antibodies (according to enzyme-linked immunosorbent assay) and a T lymphocyte proliferation response. The percentages of CD3(+), CD3(+)CD8(+), and CD3(+)CD4(+) subgroups of peripheral blood T-lymphocytes were significantly higher in mice immunized with pIRES-ORF2/IL6 than in those that had received pIRES-ORF2. After challenge with the virulent PCV2 Wuzhi isolate, mice vaccinated with pIRES-ORF2/IL6 had significantly less viral replication than those vaccinated with pIRES-ORF2, suggesting that the protective immunity induced by pIRES-ORF2/IL6 is superior to that induced by pIRES-ORF2.

  18. Self-assembly of the recombinant capsid protein of a bovine norovirus (BoNV) into virus-like particles and evaluation of cross-reactivity of BoNV with human noroviruses.

    PubMed

    Han, M G; Wang, Q; Smiley, J R; Chang, K O; Saif, L J

    2005-02-01

    None of the enteric caliciviruses except Po/Sapo/GIII/Cowden/80/US replicates in cell culture, which complicates efforts to develop control strategies or to study viral replication. To develop serological assays for bovine noroviruses (BoNVs) and to determine the cross-reactivity of BoNV with human noroviruses, we generated two recombinant baculoviruses, rCV186-OH and rJNCV, to express the capsid genes of Bo/CV186-OH/00/US (Norovirus genogroup III [GIII], genotype 2 [GIII/2]). rCV186-OH expressed the expected 57-kDa capsid protein, but rJNCV expressed a truncated capsid protein of 35 kDa. Sequence analysis of rJNCV identified a single nucleotide deletion in the P domain of the capsid gene, which introduced a stop codon at amino acid 323. The recombinant capsid protein produced by rCV186-OH but not that produced by rJNCV self-assembled into virus-like particles (VLPs) similar to native BoNV. An antibody-capture enzyme-linked immunosorbent assay (ELISA) and antigen-capture ELISA (Ag-ELISA) detected serum antibody and antigen, respectively, from calves infected with Bo/CV186-OH/00/US but not antibodies or antigens to other enteric viruses. In other tests of the GIII/2 BoNV Ag-ELISA, no cross-reactivity was observed with VLPs from one GI and four GII human noroviruses and porcine sapovirus Cowden strain. Because, like human noroviruses, BoNVs do not grow in cell culture, the BoNV VLPs will be useful in the serological assays described for the detection of BoNV antibody and antigen. Consistent with the phylogenetic analysis of the capsid genes of bovine and human noroviruses (M. G. Han, J. R. Smiley, C. Thomas, and L. J. Saif, J. Clin. Microbiol. 42:5214-5224, 2004), the results suggest that GIII/2 BoNV does not share significant antigenic relationships with the five characterized human noroviruses tested.

  19. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    USGS Publications Warehouse

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  20. The DE and FG loops of the HPV major capsid protein contribute to the epitopes of vaccine-induced cross-neutralising antibodies

    PubMed Central

    Bissett, Sara L.; Godi, Anna; Beddows, Simon

    2016-01-01

    The human papillomavirus (HPV) vaccines consist of major capsid protein (L1) virus-like particles (VLP) and are highly efficacious against the development of cervical cancer precursors attributable to oncogenic genotypes, HPV16 and HPV18. A degree of vaccine-induced cross-protection has also been demonstrated against genetically-related genotypes in the Alpha-7 (HPV18-like) and Alpha-9 (HPV16-like) species groups which is coincident with the detection of L1 cross-neutralising antibodies. In this study the L1 domains recognised by inter-genotype cross-neutralising antibodies were delineated. L1 crystallographic homology models predicted a degree of structural diversity between the L1 loops of HPV16 and the non-vaccine Alpha-9 genotypes. These structural predictions informed the design of chimeric pseudovirions with inter-genotype loop swaps which demonstrated that the L1 domains recognised by inter-genotype cross-neutralising antibodies comprise residues within the DE loop and the late region of the FG loop. These data contribute to our understanding of the L1 domains recognised by vaccine-induced cross-neutralising antibodies. Such specificities may play a critical role in vaccine-induced cross-protection. PMID:28004837

  1. Functional analysis of the N-terminal basic motif of a eukaryotic satellite RNA virus capsid protein in replication and packaging

    PubMed Central

    Sivanandam, Venkatesh; Mathews, Deborah; Garmann, Rees; Erdemci-Tandogan, Gonca; Zandi, Roya; Rao, A. L. N.

    2016-01-01

    Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. We identified that the STMV CP-HV replicase interaction requires a positively charged residue at the third position (3R) in the N-terminal 13 amino acid (aa) motif. Far-Northwestern blotting showed that STMV CP promotes binding between HV-replicase and STMV RNA. An STMV CP variant having an arginine to alanine substitution at position 3 in the N-terminal 13aa motif abolished replicase-CP binding. The N-terminal 13aa motif of the CP bearing alanine substitutions for positively charged residues located at positions 5, 7, 10 and 11 are defective in packaging full-length STMV, but can package a truncated STMV RNA lacking the 3′ terminal 150 nt region. These findings provide insights into the mechanism underlying the regulation of STMV replication and packaging. PMID:27193742

  2. Infectious RNA transcripts derived from cloned cDNA of papaya mosaic virus: effect of mutations to the capsid and polymerase proteins.

    PubMed

    Sit, T L; AbouHaidar, M G

    1993-06-01

    Genomic length cDNAs of papaya mosaic virus (PMV) RNA were generated utilizing reverse transcriptase (RNase H-) for first strand synthesis, Sequenase for second strand synthesis and primers specific for the 5' and 3' termini of the viral genome. These cDNAs were cloned into plasmid pUC18 and infectious RNA transcripts were synthesized in vitro from a bacteriophage T7 RNA polymerase promoter incorporated into the 5' specific primer. The infectivity of transcripts was 16% that of native PMV RNA. Increasing the poly(A) tail length from A24 to A71 produced a 43% increase in infectivity. Transcripts synthesized with or without an m7GpppG cap structure were biologically active although uncapped transcripts were much less infectious. The addition of up to 2434 non-viral nucleotides at the 3' end of transcripts decreased but did not abolish infectivity. Insertions of two amino acid residues within the polymerase coding region inactivated viral transcripts. A single amino acid deletion within the capsid protein (CP) produced local lesions of a reduced size as compared to native PMV RNA. Viral particles could not be observed in crude extracts from lesions produced by this deletion mutant suggesting that it exists as a naked RNA species within the host. Mutations to the CP suggest that it is required not only for viral assembly but also for some other unidentified function(s) during the replication cycle.

  3. A comparison of PCR assays for beak and feather disease virus and high resolution melt (HRM) curve analysis of replicase associated protein and capsid genes.

    PubMed

    Das, Shubhagata; Sarker, Subir; Ghorashi, Seyed Ali; Forwood, Jade K; Raidal, Shane R

    2016-11-01

    Beak and feather disease virus (BFDV) threatens a wide range of endangered psittacine birds worldwide. In this study, we assessed a novel PCR assay and genetic screening method using high-resolution melt (HRM) curve analysis for BFDV targeting the capsid (Cap) gene (HRM-Cap) alongside conventional PCR detection as well as a PCR method that targets a much smaller fragment of the virus genome in the replicase initiator protein (Rep) gene (HRM-Rep). Limits of detection, sensitivity, specificity and discriminatory power for differentiating BFDV sequences were compared. HRM-Cap had a high positive predictive value and could readily differentiate between a reference genotype and 17 other diverse BFDV genomes with more discriminatory power (genotype confidence percentage) than HRM-Rep. Melt curve profiles generated by HRM-Cap correlated with unique DNA sequence profiles for each individual test genome. The limit of detection of HRM-Cap was lower (2×10(-5)ng/reaction or 48 viral copies) than that for both HRM-Rep and conventional BFDV PCR which had similar sensitivity (2×10(-6)ng or 13 viral copies/reaction). However, when used in a diagnostic setting with 348 clinical samples there was strong agreement between HRM-Cap and conventional PCR (kappa=0.87, P<0.01, 98% specificity) and HRM-Cap demonstrated higher specificity (99.9%) than HRM-Rep (80.3%).

  4. Computational studies on the interaction of ABO-active saccharides with the norovirus VA387 capsid protein can explain experimental binding data

    NASA Astrophysics Data System (ADS)

    Koppisetty, Chaitanya A. K.; Nasir, Waqas; Strino, Francesco; Rydell, Gustaf E.; Larson, Göran; Nyholm, Per-Georg

    2010-05-01

    Norovirus strains are known to cause recurring epidemics of winter vomiting disease. The crystal structure of the capsid protein of VA387, a representative of the clinically important GII.4 genocluster, was recently solved in complex with histo-blood group A- and B-trisaccharides. However, the VA387 strain is known to bind also to other natural carbohydrates for which detailed structural information of the complexes is not available. In this study we have computationally explored the fit of the VA387 with a set of naturally occurring carbohydrate ligands containing a terminal α1,2-linked fucose. MD simulations both with explicit and implicit solvent models indicate that type 1 and 3 extensions of the ABO-determinant including ALeb and BLeb pentasaccharides can be well accommodated in the site. Scoring with Glide XP indicates that the downstream extensions of the ABO-determinants give an increase in binding strength, although the α1,2-linked fucose is the single strongest interacting residue. An error was discovered in the geometry of the GalNAc-Gal moiety of the published crystal structure of the A-trisaccharide/VA387 complex. The present modeling of the complexes with histo-blood group A-active structures shows some contacts which provide insight into mutational data, explaining the involvement of I389 and Q331. Our results can be applicable in structure-based design of adhesion inhibitors of noroviruses.

  5. Phylogenetic Diversity of Marine Cyanophage Isolates and Natural Virus Communities as Revealed by Sequences of Viral Capsid Assembly Protein Gene g20†

    PubMed Central

    Zhong, Yan; Chen, Feng; Wilhelm, Steven W.; Poorvin, Leo; Hodson, Robert E.

    2002-01-01

    In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity. PMID:11916671

  6. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA.

    PubMed

    Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K

    2016-07-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  7. Neutralizing Antibodies Against Adeno-Associated Viral Capsids in Patients with mut Methylmalonic Acidemia.

    PubMed

    Harrington, Elizabeth A; Sloan, Jennifer L; Manoli, Irini; Chandler, Randy J; Schneider, Mark; McGuire, Peter J; Calcedo, Roberto; Wilson, James M; Venditti, Charles P

    2016-05-01

    Isolated methylmalonic acidemia (MMA), a group of autosomal recessive inborn errors of metabolism, is most commonly caused by complete (mut(0)) or partial (mut(-)) deficiency of the enzyme methylmalonyl-CoA mutase (MUT). The severe metabolic instability and increased mortality experienced by many affected individuals, especially those with mut(0) MMA, has led centers to use elective liver transplantation as a treatment for these patients. We have previously demonstrated the efficacy of systemic adeno-associated viral (AAV) gene delivery as a treatment for MMA in a murine model and therefore sought to survey AAV antibody titers against serotypes 2, 8, and 9 in a group of well-characterized MMA patients, accrued via a dedicated natural history study ( clinicaltrials.gov ID: NCT00078078). Plasma samples provided by 42 patients (8 mut(-) and 34 mut(0); 10 had received organ transplantation), who ranged in age between 2 and 31 years, were analyzed to examine AAV2 (n = 35), AAV8 (n = 41), and AAV9 (n = 42) antibody titers. In total, the seroprevalence of antibodies against AAV2, AAV8, or AAV9 was 20%, 22%, and 24%, respectively. We observed a lower-than-expected seropositivity rate (titers ≥1:20) in the pediatric MMA patients (2-18 years) for both AAV2 (p < 0.05) and AAV8 (p < 0.01) neutralizing antibodies (NAbs) compared with historical controls. Those with positive NAb titers were typically older than 18 years (p < 0.05 all serotypes) or had received solid organ transplantation (p < 0.01 AAV8, AAV9). The mut(0) patients who had not been transplanted (n = 24)-that is, the subset with the greatest need for improved treatments-represented the seronegative majority, with 21 out of 24 patients lacking Abs against all AAV capsids tested. The unexpected lack of NAbs against AAV in this patient population has encouraging implications for systemic gene delivery as a treatment for mut MMA.

  8. Protective immunity against Chlamydia trachomatis genital infection induced by a vaccine based on the major outer membrane multi-epitope human papillomavirus major capsid protein L1.

    PubMed

    Xu, Wen; Liu, Jianxiao; Gong, Wenci; Chen, Jun; Zhu, Shanli; Zhang, Lifang

    2011-03-24

    The administration of an efficacious vaccine is the most effective long-term measure to control the genital tract infection caused by Chlamydia trachomatis (Ct) in humans. The current challenge for Ct vaccine development is to develop an effective delivery vehicle for induction of a high level of mucosal T and complementary B cell responses. We evaluated the immunogenicity and efficacy of a candidate vaccine comprising the major outer membrane protein (MOMP) multiepitope of Ct delivered with the human papillomavirus (HPV) major capsid protein L1 as a vehicle with adjuvant properties, in a murine model of chlamydial genital infection. A recombinant plasmid pcDNA3.1(+) containing mammalian codon-optimization HPV6b L1 gene and Ct MOMP multiepitope was constructed. The Ct MOMP multiepitope containing T- and B-cell epitope-rich peptides was inserted into C-terminal of HPV6b L1-coding sequence. The constructed plasmid after verified by enzyme restriction assay and DNA sequencing was transfected into COS-7 cells. Expression of the chimeric gene in COS-7 cells was confirmed by RT-PCR, Western blot analysis and immunofluorescence assay. Results revealed successful expression of the chimeric HPV6b L1/Ct MOMP multiepitope gene both at the mRNA and protein levels in transfected COS-7 cells. Intramuscular (IM) administration in mice was able to elicit not only antibodies against Ct MOMP, but also Th1 and cytotoxic T lymphocyte activity against the Ct MOMP epitopes. In addition, recipients of IM immunization of HPV6b L1/Ct MOMP multiepitope were highly resistant to infection. Altogether, the results suggested that IM delivery of HPV6b L1-MOMP multiepitope may be a suitable vaccine regimen potentially capable of inducing protective mucosal immunity against Ct infection.

  9. Elasticity theory of the maturation of viral capsids

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi E.; Aggarwal, Ankush; Rudnick, Joseph; Bruinsma, Robijn; Klug, William S.

    2015-04-01

    Many viral capsids undergo a series of significant structural changes following assembly, a process known as maturation. The driving mechanisms for maturation usually are chemical reactions taking place inside the proteins that constitute the capsid ("subunits") that produce structural changes of the subunits. The resulting alterations of the subunits may be directly visible from the capsid structures, as observed by electron microscopy, in the form of a shear shape change and/or a rotation of groups of subunits. The existing thin shell elasticity theory for viral shells does not take account of the internal structure of the subunits and hence cannot describe displacement patterns of the capsid during maturation. Recently, it was proposed for the case of a particular virus (HK97) that thin shell elasticity theory could in fact be generalized to include transformations of the constituent proteins by including such a transformations as a change of the stress-free reference state for the deformation free energy. In this study, we adopt that approach and illustrate its validity in more generality by describing shape changes occurring during maturation across different T-numbers in terms of subunit shearing. Using phase diagrams, we determine the shear directions of the subunits that are most effective to produce capsid shape changes, such as transitions from spherical to facetted capsid shape. We further propose an equivalent stretching mechanism offering a unifying view under which capsid symmetry can be analyzed. We conclude by showing that hexamer shearing not only drives the shape change of the viral capsid during maturation but also is capable of lowering the capsid elastic energy in particular for chiral capsids (e.g., T = 7) and give rise to pre-shear patterns. These additional mechanisms may provide a driving force and an organizational principle for virus assembly.

  10. Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid.

    PubMed

    Vercauteren, Koen; Hoffman, Brad E; Zolotukhin, Irene; Keeler, Geoffrey D; Xiao, Jing W; Basner-Tschakarjan, Etiena; High, Katherine A; Ertl, Hildegund Cj; Rice, Charles M; Srivastava, Arun; de Jong, Ype P; Herzog, Roland W

    2016-06-01

    Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.

  11. Modeling global changes induced by local perturbations to the HIV-1 capsid.

    PubMed

    Bergman, Shana; Lezon, Timothy R

    2017-01-01

    The HIV-1 capsid is a conical protein shell made up of hexamers and pentamers of the capsid protein. The capsid houses the viral genome and replication machinery, and its opening, or uncoating, within the host cell marks a critical step in the HIV-1 lifecycle. Binding of host factors such as TRIM5α and cyclophilin A (CypA) can alter the capsid's stability, accelerating or delaying the onset of uncoating and disrupting infectivity. We employ coarse-grained computational modeling to investigate the effects of point mutations and host factor binding on HIV-1 capsid stability. We find that the largest fluctuations occur in the low-curvature regions of the capsid, and that its structural dynamics are affected by perturbations at the inter-hexamer interfaces and near the CypA binding loop, suggesting roles for these features in capsid stability. Our models show that linking capsid proteins across hexamers attenuates vibration in the low-curvature regions of the capsid, but that linking within hexamers does not. These results indicate a possible mechanism through which CypA binding alters capsid stability and highlight the utility of coarse-grained network modeling for understanding capsid mechanics.

  12. Virus-binding proteins recovered from bacterial culture derived from activated sludge by affinity chromatography assay using a viral capsid peptide.

    PubMed

    Sano, Daisuke; Matsuo, Takahiro; Omura, Tatsuo

    2004-06-01

    The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H(2)N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology

  13. All-Atom Molecular Dynamics of Virus Capsids as Drug Targets

    PubMed Central

    2016-01-01

    Virus capsids are protein shells that package the viral genome. Although their morphology and biological functions can vary markedly, capsids often play critical roles in regulating viral infection pathways. A detailed knowledge of virus capsids, including their dynamic structure, interactions with cellular factors, and the specific roles that they play in the replication cycle, is imperative for the development of antiviral therapeutics. The following Perspective introduces an emerging area of computational biology that focuses on the dynamics of virus capsids and capsid–protein assemblies, with particular emphasis on the effects of small-molecule drug binding on capsid structure, stability, and allosteric pathways. When performed at chemical detail, molecular dynamics simulations can reveal subtle changes in virus capsids induced by drug molecules a fraction of their size. Here, the current challenges of performing all-atom capsid–drug simulations are discussed, along with an outlook on the applicability of virus capsid simulations to reveal novel drug targets. PMID:27128262

  14. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    SciTech Connect

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S.; Fujimoto, K.; Nakagawa, A.; Nomoto, A.

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  15. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    NASA Astrophysics Data System (ADS)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.

    2014-10-01

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  16. A Sensitive Assay Using a Native Protein Substrate For Screening HIV-1 Maturation Inhibitors Targeting the Protease Cleavage Site between Matrix and Capsid

    PubMed Central

    Lee, Sook-Kyung; Cheng, Nancy; Hull-Ryde, Emily; Potempa, Marc; Schiffer, Celia A.; Janzen, William; Swanstrom, Ronald

    2013-01-01

    The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the current study, a sensitive assay based on fluorescence polarization is described that can monitor cleavage at the MA/CA site in the context of the folded protein substrate. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (Fluorescein Arsenical Hairpin) reagent which binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal domain of CA. By limiting the size of CA and increasing the size of MA (with an N-terminal GST fusion), significant differences in polarization values were measurable as a function of HIV-1 protease cleavage. The sensitivity of the assay was tested in the presence of increasing amounts of an HIV-1 PR inhibitor, which resulted in a gradual decrease in the FP values demonstrating that the assay is sensitive discerning changes in protease processing. The high-throughput screening assay validation in 384-well plates showed that the assay is reproducible and robust with an average Z'–value of 0.79 and average coefficient of variation values less than 3%. The robustness and reproducibility of the assay was further validated using the LOPAC1280 compound library, demonstrating that the assay provides a sensitive high-throughput screening platform that can be used with large compound libraries for identifying novel maturation inhibitors targeting the MA/CA site of the HIV-1 Gag polyprotein. PMID:23763575

  17. Structural insights into the assembly and regulation of distinct viral capsid complexes

    PubMed Central

    Sarker, Subir; Terrón, María C.; Khandokar, Yogesh; Aragão, David; Hardy, Joshua M.; Radjainia, Mazdak; Jiménez-Zaragoza, Manuel; de Pablo, Pedro J.; Coulibaly, Fasséli; Luque, Daniel; Raidal, Shane R.; Forwood, Jade K.

    2016-01-01

    The assembly and regulation of viral capsid proteins into highly ordered macromolecular complexes is essential for viral replication. Here, we utilize crystal structures of the capsid protein from the smallest and simplest known viruses capable of autonomously replicating in animal cells, circoviruses, to establish structural and mechanistic insights into capsid morphogenesis and regulation. The beak and feather disease virus, like many circoviruses, encode only two genes: a capsid protein and a replication initiation protein. The capsid protein forms distinct macromolecular assemblies during replication and here we elucidate these structures at high resolution, showing that these complexes reverse the exposure of the N-terminal arginine rich domain responsible for DNA binding and nuclear localization. We show that assembly of these complexes is regulated by single-stranded DNA (ssDNA), and provide a structural basis of capsid assembly around single-stranded DNA, highlighting novel binding interfaces distinct from the highly positively charged N-terminal ARM domain. PMID:27698405

  18. Statistical mechanical models of virus capsid assembly

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen Daniel

    Viruses have become an increasingly popular subject of physics investigation, particularly in the last decade. Advances in imaging of virus capsids---the protective protein shells---in a wide variety of stages of assembly have encouraged physical assembly models at a similarly wide variety of scales, while the apparent simplicity of the capsid system---typically, many identical units assembling spontaneously into an icosahedrally symmetric (rather than amorphous) shell---makes the problem particularly interesting. We take a look at the existing physical assembly models in light of the question of how a particular assembly target can be consistently achieved in the presence of so many possible incorrect results. This review leads us to pose our own model of fully irreversible virus assembly, which we study in depth using a large ensemble of simulated assembled capsids, generated under a variety of capsid shell elastic parameters. While this irreversible model (predictably) did not yield consistently symmetric results, we do glean some insight into the effect of elasticity on growth, as well as an understanding of common failure modes. In particular, we found that (i) capsid size depends strongly on the spontaneous curvature and weakly on the ratio of bending to stretching elastic stiffnesses, (ii) the probability of successful capsid completion decays exponentially with capsid size, and (iii) the degree of localization of Gaussian curvature depends heavily on the ratio of elastic stiffnesses. We then go on to consider more thoroughly the nature of the ensemble of symmetric and almost-symmetric capsids---ultimately computing a phase diagram of minimum-energy capsids as a function of the two above-mentioned elastic parameters---and also look at a number of modifications we can make to our irreversible model, finally putting forth a rather different type of model potentially appropriate for understanding immature HIV assembly, and concluding with a fit of this new

  19. Immunodominant epitopes mapped by synthetic peptides on the capsid protein of avian hepatitis E virus are non-protective.

    PubMed

    Guo, Hailong; Zhou, E M; Sun, Z F; Meng, X J

    2008-03-01

    Avian hepatitis E virus (avian HEV) was recently discovered in chickens with hepatitis-splenomegaly syndrome in the United States. The open reading frame 2 (ORF2) protein of avian HEV has been shown to cross-react with human and swine HEV ORF2 proteins, and immunodominant antigenic epitopes on avian HEV ORF2 protein were identified in the predicted antigenic domains by synthetic peptides. However, whether these epitopes are protective against avian HEV infection has not been investigated. In this study, groups of chickens were immunized with keyhole limpet hemocyanin (KLH)-conjugated peptides and recombinant avian HEV ORF2 antigen followed by challenge with avian HEV virus to assess the protective capacity of these peptides containing the epitopes. While avian HEV ORF2 protein showed complete protection against infection, viremia and fecal virus shedding were found in all peptide-immunized chickens. Using purified IgY from normal, anti-peptide, and anti-avian HEV ORF2 chicken sera, an in-vitro neutralization and in-vivo monitoring assay was performed to further evaluate the neutralizing ability of anti-peptide IgY. Results showed that none of the anti-peptide IgY can neutralize avian HEV in vitro, as viremia, fecal virus shedding, and seroconversion appeared similarly in chickens inoculated with avian HEV mixed with anti-peptide IgY and chickens inoculated with avian HEV mixed with normal IgY. As expected, chickens inoculated with the avian HEV and anti-avian HEV ORF2 IgY mixture did not show detectable avian HEV infection. Taken together, the results of this study demonstrated that immunodominant epitopes on avian HEV ORF2 protein identified by synthetic peptides are non-protective, suggesting protective neutralizing epitope on avian HEV ORF2 may not be linear as is human HEV.

  20. Molecular Evolution and Genetic Analysis of the Major Capsid Protein VP1 of Duck Hepatitis A Viruses: Implications for Antigenic Stability.

    PubMed

    Ma, Xiuli; Sheng, Zizhang; Huang, Bing; Qi, Lihong; Li, Yufeng; Yu, Kexiang; Liu, Cunxia; Qin, Zhuoming; Wang, Dan; Song, Minxun; Li, Feng

    2015-01-01

    The duck hepatitis A virus (DHAV), a member of the family Picornaviridae, is the major cause of outbreaks with high mortality rates in young ducklings. It has three distinctive serotypes and among them, serotypes 1 (DHAV-1) and 3 (DHAV-3) were recognized in China. To investigate evolutionary and antigenic properties of the major capsid protein VP1 of these two serotypes, a primary target of neutralizing antibodies, we determined the VP1 coding sequences of 19 DHAV-1 (spanning 2000-2012) and 11 DHAV-3 isolates (spanning 2008-2014) associated with disease outbreaks. By bioinformatics analysis of VP1 sequences of these isolates and other DHAV strains reported previously, we demonstrated that DHAV-1 viruses evolved into two genetic lineages, while DHAV-3 viruses exhibited three distinct lineages. The rate of nucleotide substitution for DHAV-1 VP1 genes was estimated to be 5.57 x 10(-4) per site per year, which was about one-third times slower than that for DHAV-3 VP1 genes. The population dynamics analysis showed an upward trend for infection of DHAV-1 viruses over time with little change observed for DHAV-3 viruses. Antigenic study of representative DHAV-1 and DHAV-3 strains covering all observed major lineages revealed no detectable changes in viral neutralization properties within the serotype, despite the lack of cross-neutralization between serotypes 1 and 3 strains. Structural analysis identified VP1 mutations in DHAV-1 and DHAV-3 viruses that underpin the observed antigenic phenotypes. Results of our experiments described here shall give novel insights into evolution and antigenicity of duck picornaviruses.

  1. Heparan Sulfate Proteoglycans Are Required for Cellular Binding of the Hepatitis E Virus ORF2 Capsid Protein and for Viral Infection▿ †

    PubMed Central

    Kalia, Manjula; Chandra, Vivek; Rahman, Sheikh Abdul; Sehgal, Deepak; Jameel, Shahid

    2009-01-01

    The hepatitis E virus (HEV), a nonenveloped RNA virus, is the causative agent of hepatitis E. The mode by which HEV attaches to and enters into target cells for productive infection remains unidentified. Open reading frame 2 (ORF2) of HEV encodes its major capsid protein, pORF2, which is likely to have the determinants for virus attachment and entry. Using an ∼56-kDa recombinant pORF2 that can self-assemble as virus-like particles, we demonstrated that cell surface heparan sulfate proteoglycans (HSPGs), specifically syndecans, play a crucial role in the binding of pORF2 to Huh-7 liver cells. Removal of cell surface heparan sulfate by enzymatic (heparinase) or chemical (sodium chlorate) treatment of cells or competition with heparin, heparan sulfate, and their oversulfated derivatives caused a marked reduction in pORF2 binding to the cells. Syndecan-1 is the most abundant proteoglycan present on these cells and, hence, plays a key role in pORF2 binding. Specificity is likely to be dictated by well-defined sulfation patterns on syndecans. We show that pORF2 binds syndecans predominantly via 6-O sulfation, indicating that binding is not entirely due to random electrostatic interactions. Using an in vitro infection system, we also showed a marked reduction in HEV infection of heparinase-treated cells. Our results indicate that, analogous to some enveloped viruses, a nonenveloped virus like HEV may have also evolved to use HSPGs as cellular attachment receptors. PMID:19812150

  2. Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of African horse sickness virus.

    PubMed

    Guthrie, Alan J; Quan, Melvyn; Lourens, Carina W; Audonnet, Jean-Christophe; Minke, Jules M; Yao, Jiansheng; He, Ling; Nordgren, Robert; Gardner, Ian A; Maclachlan, N James

    2009-07-16

    We describe the development and preliminary characterization of a recombinant canarypox virus vectored (ALVAC) vaccine for protective immunization of equids against African horse sickness virus (AHSV) infection. Horses (n=8) immunized with either of two concentrations of recombinant canarypox virus vector (ALVAC-AHSV) co-expressing synthetic genes encoding the outer capsid proteins (VP2 and VP5) of AHSV serotype 4 (AHSV-4) developed variable titres (<10-80) of virus-specific neutralizing antibodies and were completely resistant to challenge infection with a virulent strain of AHSV-4. In contrast, a horse immunized with a commercial recombinant canarypox virus vectored vaccine expressing the haemagglutinin genes of two equine influenza H3N8 viruses was seronegative to AHSV and following infection with virulent AHSV-4 developed pyrexia, thrombocytopenia and marked oedema of the supraorbital fossae typical of the "dikkop" or cardiac form of African horse sickness. AHSV was detected by virus isolation and quantitative reverse transcriptase polymerase chain reaction in the blood of the control horse from 8 days onwards after challenge infection whereas AHSV was not detected at any time in the blood of the ALVAC-AHSV vaccinated horses. The control horse seroconverted to AHSV by 2 weeks after challenge infection as determined by both virus neutralization and ELISA assays, whereas six of eight of the ALVAC-AHSV vaccinated horses did not seroconvert by either assay following challenge infection with virulent AHSV-4. These data confirm that the ALVAC-AHSV vaccine will be useful for the protective immunization of equids against African horse sickness, and avoids many of the problems inherent to live-attenuated AHSV vaccines.

  3. Epidemiological study of Norwalk virus infections in Japan and Southeast Asia by enzyme-linked immunosorbent assays with Norwalk virus capsid protein produced by the baculovirus expression system.

    PubMed Central

    Numata, K; Nakata, S; Jiang, X; Estes, M K; Chiba, S

    1994-01-01

    In this study, we investigated Norwalk virus (NV) antigen and antibody to recombinant NV (rNV) in human populations in Japan and Southeast Asia by enzyme-linked immunosorbent assays (ELISAs). Baculovirus-expressed recombinant NV (rNV) capsid protein was used for preparing antisera to rNV or used as an antigen for detecting antibody to rNV. The ELISAs were specific for NV and had sensitivities equivalent to or higher than those of the previously developed radioimmunoassays. In 159 stool samples obtained from children, mainly younger than 10 years old, with acute gastroenteritis due to small round structured viruses in Japan, only 1 was positive for NV antigen. The pattern of acquisition of antibody to rNV was quite different from those of antibodies to group A rotavirus and human calicivirus Sapporo (HuCV-Sa) strain. The prevalence of antibody to rNV remained at a low level throughout childhood and then showed a steep rise during school age and early adulthood in Japan. A high prevalence of antibody was observed in samples collected from healthy adults in Japan and Southeast Asia. These results suggested that NV infection is common in adults in Japan and Southeast Asia but may be rare in infants in Japan. The HuCV-Sa strain was negative by the ELISA, and no serological relationship between NV and the HuCV-Sa strain was found. NV may be quite different from the HuCV-Sa strain, although both viruses are classified in the family Caliciviridae. PMID:8126165

  4. Kinetics versus Thermodynamics in Virus Capsid Polymorphism.

    PubMed

    Moerman, Pepijn; van der Schoot, Paul; Kegel, Willem

    2016-07-07

    Virus coat proteins spontaneously self-assemble into empty shells in aqueous solution under the appropriate physicochemical conditions, driven by an interaction free energy per bond on the order of 2-5 times the thermal energy kBT. For this seemingly modest interaction strength, each protein building block nonetheless gains a very large binding free energy, between 10 and 20 kBT. Because of this, there is debate about whether the assembly process is reversible or irreversible. Here we discuss capsid polymorphism observed in in vitro experiments from the perspective of nucleation theory and of the thermodynamics of mass action. We specifically consider the potential contribution of a curvature free energy term to the effective interaction potential between the proteins. From these models, we propose experiments that may conclusively reveal whether virus capsid assembly into a mixture of polymorphs is a reversible or an irreversible process.

  5. Capsid, membrane and NS3 are the major viral proteins involved in autophagy induced by Japanese encephalitis virus.

    PubMed

    Wang, Xiujin; Hou, Lei; Du, Jige; Zhou, Lei; Ge, Xinna; Guo, Xin; Yang, Hanchun

    2015-08-05

    Japanese encephalitis virus (JEV) is an important zoonotic pathogen causing viral encephalitis in human and reproductive failure in pigs. In the present study, we first examined the autophagy induced by JEV infection in host cells, and then analyzed the JEV proteins involving in autophagy induction, and further investigated the relationship between viral protein and immunity-related GTPases M (IRGM). Our results showed that JEV infection could induce autophagy in host cells and autophagy promoted the replication of JEV in vitro; the cells transfected with individual plasmid that was expressing C, M and NS3 had a significantly higher conversion of LC3-I/II, and enhanced LC3 signals with the fluorescence punctuates accumulation which was completely co-localized with LC3 and increased number of autophagosomes-like vesicles, suggesting that C, M and NS3 are the major viral proteins involving in autophagy induction upon JEV infection; the virus titer in the cells treated by the siRNA specific for IRGM had a significant decrease, and the NS3 signals in the cells transfected with the plasmid that was expressing NS3 were completely co-localized with the IRGM signals, suggesting that the NS3 of JEV could target IRGM which may play a role in the replication of JEV. Our findings help to understand the role of autophagy in JEV and other flaviviruses infections.

  6. Periodic Table of Virus Capsids: Implications for Natural Selection and Design

    PubMed Central

    Mannige, Ranjan V.; Brooks, Charles L.

    2010-01-01

    Background For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive, even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient nano-assemblies. Principal Findings This report uncovers an unprecedented and species-independent evolutionary pressure on virus capsids, based on the the notion that the simplest capsid designs (or those capsids with the lowest “hexamer complexity”, ) are the fittest, which was shown to be true for all available virus capsids. The theories result in a physically meaningful periodic table of virus capsids that uncovers strong and overarching evolutionary pressures, while also offering geometric explanations to other capsid properties (rigidity, pleomorphy, auxiliary requirements, etc.) that were previously considered to be unrelatable properties of the individual virus. Significance Apart from describing a universal rule for virus capsid evolution, our work (especially the periodic table) provides a language with which highly diverse virus capsids, unified only by geometry, may be described and related to each other. Finally, the available virus structure databases and other published data reiterate the predicted geometry-derived rules, reinforcing the role of geometry in the natural selection and design of virus capsids. PMID:20209096

  7. Construction and characterization of recombinant human adenovirus type 5 expressing foot-and-mouth disease virus capsid proteins of Indian vaccine strain, O/IND/R2/75

    PubMed Central

    Kumar, Ramesh; Sreenivasa, B. P.; Tamilselvan, R. P.

    2015-01-01

    Aim: Generation of recombinant human adenovirus type 5 expressing foot-and-mouth disease virus (FMDV) capsid protein genes along with full-length 2B, 3B and 3Cpro and its characterization. Materials and Methods: FMD viral RNA isolation, cDNA synthesis, and polymerase chain reaction were performed to synthesize expression cassettes (P1-2AB3BCwt and P1-2AB3BCm) followed by cloning in pShuttle-CMV vector. Chemically competent BJ5183-AD-1 cells were transformed with the recombinant pShuttle-CMV to produce recombinant adenoviral plasmids. HEK-293 cells were transfected with the recombinant adenoviral plasmids to generate recombinant adenoviruses (hAd5/P1-2AB3BCwt and hAd5/P1-2AB3BCm). Expression of the target proteins was analyzed by sandwich ELISA and indirect immunofluorescence assay. The recombinant adenoviruses were purified and concentrated by CsCl density gradient ultracentrifugation. Growth kinetics and thermostability of the recombinant adenoviruses were compared with that of non-recombinant replication-defective adenovirus (dAd5). Results: The recombinant adenoviruses containing capsid protein genes of the FMDV O/IND/R2/75 were generated and amplified in HEK-293 cells. The titer of the recombinant adenoviruses was approximately 108, 109.5 and 1011 TCID50/ml in supernatant media, cell lysate and CsCl purified preparation, respectively. Expression of the FMDV capsid protein was detectable in sandwich ELISA and confirmed by immunofluorescence assay. Growth kinetics of the recombinant adenoviruses did not reveal a significant difference when compared with that of dAd5. A decrement of up to 10-fold at 4°C and 21-fold at 37°C was recorded in the virus titers during 60 h incubation period and found to be statistically significant (p<0.01). Conclusion: Recombinant adenoviruses expressing capsid proteins of the FMDV O/IND/R2/75 were constructed and produced in high titers. In vitro expression of the target proteins in the adenovirus vector system was detected by

  8. Packaging of Polyelectrolytes in Viral Capsids: The Interplay Between Polymer Length and Capsid Size

    NASA Astrophysics Data System (ADS)

    Knobler, Charles

    2008-03-01

    Each particle of the Cowpea Chlorotic Mottle Virus (CCMV) has a very small ``parts list,'' consisting of two components: a molecule of single-stranded RNA and a 190-residue protein that makes up the 28-nm diameter icosahedral capsid. When purified viral RNA and capsid protein are mixed in solution at an appropriate pH and ionic strength, infectious wild-type viruses form spontaneously. Virus-like particles (VLPs) are formed when the protein self assembles around other anionic polymers such as poly(styrene sulfonate) (PSS). Under different pH and ionic strength conditions the capsid protein can assemble by itself into empty capsids, multishell structures, tubes and sheets. To explore the effect on virion size of the competition between the preferred curvature of the protein and the size of the packaged cargo we have examined the formation of VLPs around PSS polymers with molecular weights ranging from 400 kDa to 3.4 MDa. Two distinct sizes are observed -- 22 nm for the lower molecular weights, jumping to 27 nm at 2 MDa. While under given conditions the size of PSS in solution is directly determined by its molecular weight, the self-complementarity of RNA makes its solution structure dependent on the nucleotide sequence as well. We have therefore employed Small-Angle X-ray Scattering and Fluorescence Correlation Spectroscopy to examine the sizes of viral and non-viral RNAs of identical lengths. A model for the assembly that includes both the self-interactions of the polyelectrolyte and the capsid proteins and the interactions between them provides insight into the experimental results.

  9. Genetic Diversity in the Major Capsid L1 Protein of HPV-16 and HPV-18 in the Netherlands

    PubMed Central

    King, Audrey J.; Sonsma, Jan A.; Vriend, Henrike J.; van der Sande, Marianne A. B.; Feltkamp, Mariet C.; Koopmans, Marion P. G.

    2016-01-01

    Objectives Intratypic molecular variants of human papillomavirus (HPV) type-16 and -18 exist. In the Netherlands, a bivalent vaccine, composed of recombinant L1 proteins from HPV-16 and -18, is used to prevent cervical cancer since 2009. Long-term vaccination could lead to changes in HPV-16 and -18 virus population, thereby hampering vaccination strategies. We determined the genetic diversity of the L1 gene in HPV-16 and -18 viral strains circulating in the Netherlands at the start of vaccination in order to understand the baseline genetic diversity in the Dutch population. Methods DNA sequences of the L1 gene were determined in HPV-16 (n = 241) and HPV-18 (n = 108) positive anogenital samples collected in 2009 and 2011 among Dutch 16- to 24-year old female and male attendees of the sexually transmitted infection (STI) clinics. Phylogenetic analysis was performed and sequences were compared to reference sequences HPV-16 (AF536179) and HPV-18 (X05015) using BioNumerics 7.1. Results For HPV-16, ninety-five single nucleotide polymorphism (SNPs) were identified, twenty–seven (28%) were non-synonymous variations. For HPV-18, seventy-one SNPs were identified, twenty-nine (41%) were non-synonymous. The majority of the non-silent variations were located in sequences encoding alpha helix, beta sheet or surface loops, in particular in the immunodominant FG loop, and may influence the protein secondary structure and immune recognition. Conclusions This study provides unique pre-vaccination/baseline data on the genetic L1 diversity of HPV-16 and -18 viruses circulating in the Netherlands among adolescents and young adults. PMID:27070907

  10. The high risk HPV16 L2 minor capsid protein has multiple transport signals that mediate its nucleocytoplasmic traffic

    SciTech Connect

    Mamoor, Shahan; Onder, Zeynep; Karanam, Balasubramanyam; Kwak, Kihyuck; Bordeaux, Jennifer; Crosby, Lauren; Roden, Richard B.S.; Moroianu, Junona

    2012-01-20

    In this study we examined the transport signals contributing to HPV16 L2 nucleocytoplasmic traffic using confocal microscopy analysis of enhanced green fluorescent protein-L2 (EGFP-L2) fusions expressed in HeLa cells. We confirmed that both nuclear localization signals (NLSs), the nNLS (1MRHKRSAKRTKR12) and cNLS (456RKRRKR461), previously characterized in vitro (Darshan et al., 2004), function independently in vivo. We discovered that a middle region rich in arginine residues (296SRRTGIRYSRIGNKQTLRTRS316) functions as a nuclear retention sequence (NRS), as mutagenesis of critical arginine residues within this NRS reduced the fraction of L2 in the nucleus despite the presence of both NLSs. Significantly, the infectivity of HPV16 pseudoviruses containing either RR297AA or RR297EE within the L2 NRS was strongly reduced both in HaCaT cells and in a murine challenge model. Experiments using Ratjadone A nuclear export inhibitor and mutation-localization analysis lead to the discovery of a leucine-rich nuclear export signal ({sub 462}LPYFFSDVSL) mediating 16L2 nuclear export. These data indicate that HPV16 L2 nucleocytoplasmic traffic is dependent on multiple functional transport signals.

  11. Herpes Simplex Virus Capsids Are Transported in Neuronal Axons without an Envelope Containing the Viral Glycoproteins▿ †

    PubMed Central

    Snyder, Aleksandra; Wisner, Todd W.; Johnson, David C.

    2006-01-01

    Electron micrographic studies of neuronal axons have produced contradictory conclusions on how alphaherpesviruses are transported from neuron cell bodies to axon termini. Some reports have described unenveloped capsids transported on axonal microtubules with separate transport of viral glycoproteins within membrane vesicles. Others have observed enveloped virions in proximal and distal axons. We characterized transport of herpes simplex virus (HSV) in human and rat neurons by staining permeabilized neurons with capsid- and glycoprotein-specific antibodies. Deconvolution microscopy was used to view 200-nm sections of axons. HSV glycoproteins were very rarely associated with capsids (3 to 5%) and vice versa. Instances of glycoprotein/capsid overlap frequently involved nonconcentric puncta and regions of axons with dense viral protein concentrations. Similarly, HSV capsids expressing a VP26-green fluorescent protein fusion protein (VP26/GFP) did not stain with antiglycoprotein antibodies. Live-cell imaging experiments with VP26/GFP-labeled capsids demonstrated that capsids moved in a saltatory fashion, and very few stalled for more than 1 to 2 min. To determine if capsids could be transported down axons without glycoproteins, neurons were treated with brefeldin A (BFA). However, BFA blocked both capsid and glycoprotein transport. Glycoproteins were transported into and down axons normally when neurons were infected with an HSV mutant that produces immature capsids that are retained in the nucleus. We concluded that HSV capsids are transported in axons without an envelope containing viral glycoproteins, with glycoproteins transported separately and assembling with capsids at axon termini. PMID:16971450

  12. Crystal structure of an antiviral ankyrin targeting the HIV-1 capsid and molecular modeling of the ankyrin-capsid complex.

    PubMed

    Praditwongwan, Warachai; Chuankhayan, Phimonphan; Saoin, Somphot; Wisitponchai, Tanchanok; Lee, Vannajan Sanghiran; Nangola, Sawitree; Hong, Saw See; Minard, Philippe; Boulanger, Pierre; Chen, Chun-Jung; Tayapiwatana, Chatchai

    2014-08-01

    Ankyrins are cellular repeat proteins, which can be genetically modified to randomize amino-acid residues located at defined positions in each repeat unit, and thus create a potential binding surface adaptable to macromolecular ligands. From a phage-display library of artificial ankyrins, we have isolated Ank(GAG)1D4, a trimodular ankyrin which binds to the HIV-1 capsid protein N-terminal domain (NTD(CA)) and has an antiviral effect at the late steps of the virus life cycle. In this study, the determinants of the Ank(GAG)1D4-NTD(CA) interaction were analyzed using peptide scanning in competition ELISA, capsid mutagenesis, ankyrin crystallography and molecular modeling. We determined the Ank(GAG)1D4 structure at 2.2 Å resolution, and used the crystal structure in molecular docking with a homology model of HIV-1 capsid. Our results indicated that NTD(CA) alpha-helices H1 and H7 could mediate the formation of the capsid-Ank(GAG)1D4 binary complex, but the interaction involving H7 was predicted to be more stable than with H1. Arginine-18 (R18) in H1, and R132 and R143 in H7 were found to be the key players of the Ank(GAG)1D4-NTD(CA) interaction. This was confirmed by R-to-A mutagenesis of NTD(CA), and by sequence analysis of trimodular ankyrins negative for capsid binding. In Ank(GAG)1D4, major interactors common to H1 and H7 were found to be S45, Y56, R89, K122 and K123. Collectively, our ankyrin-capsid binding analysis implied a significant degree of flexibility within the NTD(CA) domain of the HIV-1 capsid protein, and provided some clues for the design of new antivirals targeting the capsid protein and viral assembly.

  13. Crystal structure of an antiviral ankyrin targeting the HIV-1 capsid and molecular modeling of the ankyrin-capsid complex

    NASA Astrophysics Data System (ADS)

    Praditwongwan, Warachai; Chuankhayan, Phimonphan; Saoin, Somphot; Wisitponchai, Tanchanok; Lee, Vannajan Sanghiran; Nangola, Sawitree; Hong, Saw See; Minard, Philippe; Boulanger, Pierre; Chen, Chun-Jung; Tayapiwatana, Chatchai

    2014-08-01

    Ankyrins are cellular repeat proteins, which can be genetically modified to randomize amino-acid residues located at defined positions in each repeat unit, and thus create a potential binding surface adaptable to macromolecular ligands. From a phage-display library of artificial ankyrins, we have isolated AnkGAG1D4, a trimodular ankyrin which binds to the HIV-1 capsid protein N-terminal domain (NTDCA) and has an antiviral effect at the late steps of the virus life cycle. In this study, the determinants of the AnkGAG1D4-NTDCA interaction were analyzed using peptide scanning in competition ELISA, capsid mutagenesis, ankyrin crystallography and molecular modeling. We determined the AnkGAG1D4 structure at 2.2 Å resolution, and used the crystal structure in molecular docking with a homology model of HIV-1 capsid. Our results indicated that NTDCA alpha-helices H1 and H7 could mediate the formation of the capsid-AnkGAG1D4 binary complex, but the interaction involving H7 was predicted to be more stable than with H1. Arginine-18 (R18) in H1, and R132 and R143 in H7 were found to be the key players of the AnkGAG1D4-NTDCA interaction. This was confirmed by R-to-A mutagenesis of NTDCA, and by sequence analysis of trimodular ankyrins negative for capsid binding. In AnkGAG1D4, major interactors common to H1 and H7 were found to be S45, Y56, R89, K122 and K123. Collectively, our ankyrin-capsid binding analysis implied a significant degree of flexibility within the NTDCA domain of the HIV-1 capsid protein, and provided some clues for the design of new antivirals targeting the capsid protein and viral assembly.

  14. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics.

    PubMed

    Zhao, Gongpu; Perilla, Juan R; Yufenyuy, Ernest L; Meng, Xin; Chen, Bo; Ning, Jiying; Ahn, Jinwoo; Gronenborn, Angela M; Schulten, Klaus; Aiken, Christopher; Zhang, Peijun

    2013-05-30

    Retroviral capsid proteins are conserved structurally but assemble into different morphologies. The mature human immunodeficiency virus-1 (HIV-1) capsid is best described by a 'fullerene cone' model, in which hexamers of the capsid protein are linked to form a hexagonal surface lattice that is closed by incorporating 12 capsid-protein pentamers. HIV-1 capsid protein contains an amino-terminal domain (NTD) comprising seven α-helices and a β-hairpin, a carboxy-terminal domain (CTD) comprising four α-helices, and a flexible linker with a 310-helix connecting the two structural domains. Structures of the capsid-protein assembly units have been determined by X-ray crystallography; however, structural information regarding the assembled capsid and the contacts between the assembly units is incomplete. Here we report the cryo-electron microscopy structure of a tubular HIV-1 capsid-protein assembly at 8 Å resolution and the three-dimensional structure of a native HIV-1 core by cryo-electron tomography. The structure of the tubular assembly shows, at the three-fold interface, a three-helix bundle with critical hydrophobic interactions. Mutagenesis studies confirm that hydrophobic residues in the centre of the three-helix bundle are crucial for capsid assembly and stability, and for viral infectivity. The cryo-electron-microscopy structures enable modelling by large-scale molecular dynamics simulation, resulting in all-atom models for the hexamer-of-hexamer and pentamer-of-hexamer elements as well as for the entire capsid. Incorporation of pentamers results in closer trimer contacts and induces acute surface curvature. The complete atomic HIV-1 capsid model provides a platform for further studies of capsid function and for targeted pharmacological intervention.

  15. Identical strength of the T cell responses against E2, nsP1 and capsid CHIKV proteins in recovered and chronic patients after the epidemics of 2005-2006 in La Reunion Island.

    PubMed

    Hoarau, Jean-Jacques; Gay, Frederick; Pellé, Olivier; Samri, Assia; Jaffar-Bandjee, Marie-Christine; Gasque, Philippe; Autran, Brigitte

    2013-01-01

    To characterize the immunity developed by patients infected by chikungunya virus (CHIKV), we studied the intensity and specificity of CHIKV-specific T cells mediated responses in chronic and recovered patients at 12 to 24 months post-infection. T cells were challenged in vitro against CHIKV synthetic peptides covering the length of three viral proteins, capsid, E2 and nsP1 proteins as well as all inactivated virus particles. Cytokine production was assessed by ELISPOT and intracellular labeling. T cells producing IFN-γ were detected against CHIKV in 85% patient's cells either by direct ELISPOT assay (69% of patients) or after expansion of memory T cells allowing the detection of both CD4 and CD8 specific-T cells in 16% additional cases. The IFN-γ response was mainly engaged in response to nsP1 or E2 (52% and 46% cases, respectively) but in only 27% cases against the capsid. The anti-E2 response represented half the magnitude of the total CHIKV IFN-γ production and was mainly directed against the C-terminal half part of the protein. Almost all patients had conserved a T cell specific response against CHIKV with a clear hierarchy of T cell responses (CD8 > CD4) engaged against E2 > nsP1 > capsid. More importantly, the intensity of responses was not significantly different between recovered and chronic patients. These findings constitute key elements to a better understanding of patient T cell immunoreactivity against CHIKV and argue against a possible defect of T cell immunoresponse in the chronicity post-CHIKV infection.

  16. Parvovirus capsid disorders cholesterol-rich membranes.

    PubMed

    Pakkanen, Kirsi; Kirjavainen, Sanna; Mäkelä, Anna R; Rintanen, Nina; Oker-Blom, Christian; Jalonen, Tuula O; Vuento, Matti

    2009-02-06

    In this study canine parvovirus, CPV, was found to induce disorder in DPPC:cholesterol membranes in acidic conditions. This acidicity-induced fluidizing effect is suggested to originate from the N-terminus of the viral capsid protein VP1. In accordance with the model membrane studies, a fluidizing effect was seen also in the endosomal membranes during CPV infection implying an important functional role of the fluidization in the endocytic entry of the virus.

  17. Multiple sites in the N-terminal half of simian immunodeficiency virus capsid protein contribute to evasion from rhesus monkey TRIM5α-mediated restriction

    PubMed Central

    2010-01-01

    Background We previously reported that cynomolgus monkey (CM) TRIM5α could restrict human immunodeficiency virus type 2 (HIV-2) strains carrying a proline at the 120th position of the capsid protein (CA), but it failed to restrict those with a glutamine or an alanine. In contrast, rhesus monkey (Rh) TRIM5α could restrict all HIV-2 strains tested but not simian immunodeficiency virus isolated from macaque (SIVmac), despite its genetic similarity to HIV-2. Results We attempted to identify the viral determinant of SIVmac evasion from Rh TRIM5α-mediated restriction using chimeric viruses formed between SIVmac239 and HIV-2 GH123 strains. Consistent with a previous study, chimeric viruses carrying the loop between α-helices 4 and 5 (L4/5) (from the 82nd to 99th amino acid residues) of HIV-2 CA were efficiently restricted by Rh TRIM5α. However, the corresponding loop of SIVmac239 CA alone (from the 81st to 97th amino acid residues) was not sufficient to evade Rh TRIM5α restriction in the HIV-2 background. A single glutamine-to-proline substitution at the 118th amino acid of SIVmac239 CA, corresponding to the 120th amino acid of HIV-2 GH123, also increased susceptibility to Rh TRIM5α, indicating that glutamine at the 118th of SIVmac239 CA is necessary to evade Rh TRIM5α. In addition, the N-terminal portion (from the 5th to 12th amino acid residues) and the 107th and 109th amino acid residues in α-helix 6 of SIVmac CA are necessary for complete evasion from Rh TRIM5α-mediated restriction. A three-dimensional model of hexameric GH123 CA showed that these multiple regions are located on the CA surface, suggesting their direct interaction with TRIM5α. Conclusion We found that multiple regions of the SIVmac CA are necessary for complete evasion from Rh TRIM5α restriction. PMID:20825647

  18. Integrated Nanosystems Templated by Self-assembled Virus Capsids

    NASA Astrophysics Data System (ADS)

    Stephanopoulos, Nicholas

    This dissertation presents the synthesis and modeling of multicomponent nanosystems templated by self-assembled virus capsids. The design principles, synthesis, analysis, and future directions for these capsid-based materials are presented. Chapter 1 gives an overview of the literature on the application of virus capsids in constructing nanomaterials. The uses of capsids in three main areas are considered: (1) as templates for inorganic materials or nanoparticles; (2) as vehicles for biological applications like medical imaging and treatment; and (3) as scaffolds for catalytic materials. In light of this introduction, an overview of the material in this dissertation is described. Chapters 2-4 all describe integrated nanosystems templated by bacteriophage MS2, a spherical icosahedral virus capsid. MS2 possesses an interior and exterior surface that can be modified orthogonally using bioconjugation chemistry to create multivalent, multicomponent constructs with precise localization of components attached to the capsid proteins. Chapter 2 describes the use of MS2 to synthesize a photocatalytic construct by modifying the internal surface with sensitizing chromophores and the external surface with a photocatalytic porphyrin. The chromophores absorbed energy that the porphyrin could not, and transferred it to the porphyrin via FRET through the protein shell. The porphyrin was then able to utilize the energy to carry out photocatalysis at new wavelengths. In Chapter 3, porphyrins were installed on the interior surface of MS2 and DNA aptamers specific for Jurkat leukemia T cells on the exterior surface. The dual-modified capsids were able to bind to Jurkat cells, and upon illumination the porphyrins generated singlet oxygen to kill them selectively over non-targeted cells. Chapter 4 explores integrating MS2 with DNA origami in order to arrange the capsids at larger length scales. Capsids modified with fluorescent dyes inside and single-stranded DNA outside were able to

  19. Mechanical properties of icosahedral virus capsids

    NASA Astrophysics Data System (ADS)

    Vliegenthart, G. A.; Gompper, G.

    2007-12-01

    Virus capsids are self-assembled protein shells in the size range of 10 to 100 nanometers. The shells of DNA-viruses have to sustain large internal pressures while encapsulating and protecting the viral DNA. We employ computer simulations to study the mechanical properties of crystalline shells with icosahedral symmetry that serve as a model for virus capsids. The shells are positioned on a substrate and deformed by a uni-axial force excerted by a small bead. We predict the elastic response for small deformations, and the buckling transitions at large deformations. Both are found to depend strongly on the number N of elementary building blocks (capsomers), and the Föppl-von Kármán number γ which characterizes the relative importance of shear and bending elasticity.

  20. Building a viral capsid in the presence of genomic RNA

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Stockley, Peter G.; Twarock, Reidun

    2013-02-01

    Virus capsid assembly has traditionally been considered as a process that can be described primarily via self-assembly of the capsid proteins, neglecting interactions with other viral or cellular components. Our recent work on several ssRNA viruses, a major class of viral pathogens containing important human, animal, and plant viruses, has shown that this protein-centric view is too simplistic. Capsid assembly for these viruses relies strongly on a number of cooperative roles played by the genomic RNA. This realization requires a new theoretical framework for the modeling and prediction of the assembly behavior of these viruses. In a seminal paper Zlotnick [J. Mol. Biol.0022-283610.1006/jmbi.1994.1473 241, 59 (1994)] laid the foundations for the modeling of capsid assembly as a protein-only self-assembly process, illustrating his approach using the example of a dodecahedral study system. We describe here a generalized framework for modeling assembly that incorporates the regulatory functions provided by cognate protein-nucleic-acid interactions between capsid proteins and segments of the genomic RNA, called packaging signals, into the model. Using the same dodecahedron system we demonstrate, using a Gillespie-type algorithm to deal with the enhanced complexity of the problem instead of a master equation approach, that assembly kinetics and yield strongly depend on the distribution and nature of the packaging signals, highlighting the importance of the crucial roles of the RNA in this process.

  1. High capsid-genome correlation facilitates creation of AAV libraries for directed evolution.

    PubMed

    Nonnenmacher, Mathieu; van Bakel, Harm; Hajjar, Roger J; Weber, Thomas

    2015-04-01

    Directed evolution of adeno-associated virus (AAV) through successive rounds of phenotypic selection is a powerful method to isolate variants with improved properties from large libraries of capsid mutants. Importantly, AAV libraries used for directed evolution are based on the "natural" AAV genome organization where the capsid proteins are encoded in cis from replicating genomes. This is necessary to allow the recovery of the capsid DNA after each step of phenotypic selection. For directed evolution to be used successfully, it is essential to minimize the random mixing of capsomers and the encapsidation of nonmatching viral genomes during the production of the viral libraries. Here, we demonstrate that multiple AAV capsid variants expressed from Rep/Cap containing viral genomes result in near-homogeneous capsids that display an unexpectedly high capsid-DNA correlation. Next-generation sequencing of AAV progeny generated by bulk transfection of a semi-random peptide library showed a strong counter-selection of capsid variants encoding premature stop codons, which further supports a strong capsid-genome identity correlation. Overall, our observations demonstrate that production of "natural" AAVs results in low capsid mosaicism and high capsid-genome correlation. These unique properties allow the production of highly diverse AAV libraries in a one-step procedure with a minimal loss in phenotype-genotype correlation.

  2. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  3. Stepwise reversible nanomechanical buckling in a viral capsid.

    PubMed

    Vörös, Zsuzsanna; Csík, Gabriella; Herényi, Levente; Kellermayer, Miklós S Z

    2017-01-19

    Viruses are nanoscale infectious agents constructed of a proteinaceous capsid that protects the packaged genomic material. Nanoindentation experiments using atomic force microscopy have, in recent years, provided unprecedented insight into the elastic properties, structural stability and maturation-dependent mechanical changes in viruses. However, the dynamics of capsid behavior are still unresolved. Here we used high-resolution nanoindentation experiments on mature, DNA-filled T7 bacteriophage particles. The elastic regime of the nanoindentation force trace contained discrete, stepwise transitions that cause buckling of the T7 capsid with magnitudes that are integer multiples of ∼0.6 nm. Remarkably, the transitions are reversible and contribute to the rapid consolidation of the capsid structure against a force during cantilever retraction. The stepwise transitions were present even following the removal of the genomic DNA by heat treatment, indicating that they are related to the structure and dynamics of the capsomeric proteins. Dynamic force spectroscopy experiments revealed that the thermally activated consolidation step is ∼10(4) times faster than spontaneous buckling, suggesting that the capsid stability is under strong dynamic control. Capsid structural dynamics may play an important role in protecting the genomic material from harsh environmental impacts. The nanomechanics approach employed here may be used to investigate the structural dynamics of other viruses and nanoscale containers as well.

  4. Detecting Small Changes and Additional Peptides in the Canine Parvovirus Capsid Structure▿

    PubMed Central

    Nelson, Christian D. S.; Minkkinen, Eveliina; Bergkvist, Magnus; Hoelzer, Karin; Fisher, Mathew; Bothner, Brian; Parrish, Colin R.

    2008-01-01

    Parvovirus capsids are assembled from multiple forms of a single protein and are quite stable structurally. However, in order to infect cells, conformational plasticity of the capsid is required and this likely involves the exposure of structures that are buried within the structural models. The presence of functional asymmetry in the otherwise icosahedral capsid has also been proposed. Here we examined the protein composition of canine parvovirus capsids and evaluated their structural variation and permeability by protease sensitivity, spectrofluorometry, and negative staining electron microscopy. Additional protein forms identified included an apparent smaller variant of the virus protein 1 (VP1) and a small proportion of a cleaved form of VP2. Only a small percentage of the proteins in intact capsids were cleaved by any of the proteases tested. The capsid susceptibility to proteolysis varied with temperature but new cleavages were not revealed. No global change in the capsid structure was observed by analysis of Trp fluorescence when capsids were heated between 40°C and 60°C. However, increased polarity of empty capsids was indicated by bis-ANS binding, something not seen for DNA-containing capsids. Removal of calcium with EGTA or exposure to pHs as low as 5.0 had little effect on the structure, but at pH 4.0 changes were revealed by proteinase K digestion. Exposure of viral DNA to the external environment started above 50°C. Some negative stains showed increased permeability of empty capsids at higher temperatures, but no effects were seen after EGTA treatment. PMID:18701590

  5. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    SciTech Connect

    Lebrun, Marielle; Thelen, Nicolas; Thiry, Marc; Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia; Di Valentin, Emmanuel; Bontems, Sébastien; Sadzot-Delvaux, Catherine

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  6. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response.

    PubMed

    Moraes, Mauro Pires; Segundo, Fayna Diaz-San; Dias, Camila C; Pena, Lindomar; Grubman, Marvin J

    2011-11-28

    We previously demonstrated that an adenovirus-based foot-and-mouth disease virus (FMDV) serotype A24 capsid subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but in a similar approach using swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1C, the animals were only partially protected when challenged at 21 days post-vaccination (dpv). Recently, we demonstrated that inclusion of the complete coding region of nonstructural protein 2B in the Ad5-A24 vector resulted in improved immune responses in pigs. We also found that inclusion of a modified CMV promoter (pCI), Ad5-CI-A24-2B, enhanced the efficacy of the vector. To address the limited immunogenicity of Ad5-O1C, we have produced a new set of Ad5 vectors with the complete 2B coding region under the control of either the original or the modified version of the CMV promoter, Ad5-O1C-2B, or Ad5-CI-O1C-2B, respectively. To evaluate the potency and efficacy of the new vectors we performed 2 sets of experiments in cattle. In the first experiment we compared the original vector with vectors containing the pCI promoter and partial or full-length 2B. All groups were challenged, intradermally in the tongue, at 21 dpv with FMDV O1C. We found that in all vaccinated groups 2 of 4 animals were protected from clinical disease. In the second experiment we directly compared the efficacy of vectors with a partial or full-length 2B under the control of the original CMV promoter. While all animals in the control group developed clinical disease, 2 of 4 animals in the group receiving Ad5-O1C vaccine and 3 of 4 animals in the group receiving Ad5-O1C-2B vaccine were completely protected after challenge. We also observed a 100-fold reduction of virus shedding in Ad5-O1C vaccinated animals and the group receiving Ad5-O1C-2B had an additional 10-fold reduction compared with the Ad5-O1C vaccinated group. There was no difference

  7. Active cAMP-dependent protein kinase incorporated within highly purified HIV-1 particles is required for viral infectivity and interacts with viral capsid protein.

    PubMed

    Cartier, Christine; Hemonnot, Bénédicte; Gay, Bernard; Bardy, Martine; Sanchiz, Céline; Devaux, Christian; Briant, Laurence

    2003-09-12

    Host cell components, including protein kinases such as ERK-2/mitogen-activated protein kinase, incorporated within human immunodeficiency virus type 1 (HIV-1) virions play a pivotal role in the ability of HIV to infect and replicate in permissive cells. The present work provides evidence that the catalytic subunit of cAMP-dependent protein kinase (C-PKA) is packaged within HIV-1 virions as demonstrated using purified subtilisin-digested viral particles. Virus-associated C-PKA was shown to be enzymatically active and able to phosphorylate synthetic substrate in vitro. Suppression of virion-associated C-PKA activity by specific synthetic inhibitor had no apparent effect on viral precursor maturation and virus assembly. However, virus-associated C-PKA activity was demonstrated to regulate HIV-1 infectivity as assessed by single round infection assays performed by using viruses produced from cells expressing an inactive form of C-PKA. In addition, virus-associated C-PKA was found to co-precipitate with and to phosphorylate the CAp24gag protein. Altogether our results indicate that virus-associated C-PKA regulates HIV-1 infectivity, possibly by catalyzing phosphorylation of the viral CAp24gag protein.

  8. Role of electrostatic interactions in the assembly of empty spherical viral capsids

    NASA Astrophysics Data System (ADS)

    Šiber, Antonio; Podgornik, Rudolf

    2007-12-01

    We examine the role of electrostatic interactions in the assembly of empty spherical viral capsids. The charges on the protein subunits that make the viral capsid mutually interact and are expected to yield electrostatic repulsion acting against the assembly of capsids. Thus, attractive protein-protein interactions of nonelectrostatic origin must act to enable the capsid formation. We investigate whether the interplay of repulsive electrostatic and attractive interactions between the protein subunits can result in the formation of spherical viral capsids of a preferred radius. For this to be the case, we find that the attractive interactions must depend on the angle between the neighboring protein subunits (i.e., on the mean curvature of the viral capsid) so that a particular angle(s) is (are) preferred energywise. Our results for the electrostatic contributions to energetics of viral capsids nicely correlate with recent experimental determinations of the energetics of protein-protein contacts in the hepatitis B virus [P. Ceres A. Zlotnick, Biochemistry 41, 11525 (2002)].

  9. The tripartite capsid gene of Salmonella phage Gifsy-2 yields a capsid assembly pathway engaging features from HK97 and {lambda}

    SciTech Connect

    Effantin, Gregory; Figueroa-Bossi, Nara; Schoehn, Guy; Bossi, Lionello; Conway, James F.

    2010-07-05

    Phage Gifsy-2, a lambdoid phage infecting Salmonella, has an unusually large composite gene coding for its major capsid protein (mcp) at the C-terminal end, a ClpP-like protease at the N-terminus, and a {approx} 200 residue central domain of unknown function but which may have a scaffolding role. This combination of functions on a single coding region is more extensive than those observed in other phages such as HK97 (scaffold-capsid fusion) and {lambda} (protease-scaffold fusion). To study the structural phenotype of the unique Gifsy-2 capsid gene, we have purified Gifsy-2 particles and visualized capsids and procapsids by cryoelectron microscopy, determining structures to resolutions up to 12 A. The capsids have lambdoid T = 7 geometry and are well modeled with the atomic structures of HK97 mcp and phage {lambda} gpD decoration protein. Thus, the unique Gifsy-2 capsid protein gene yields a capsid maturation pathway engaging features from both phages HK97 and {lambda}.

  10. Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery

    PubMed Central

    Huet, Alexis; Makhov, Alexander M.; Huffman, Jamie B.; Vos, Matthijn; Homa, Fred L.; Conway, James F.

    2016-01-01

    The herpesvirus capsid is a complex protein assembly that includes hundreds of copies of four major subunits and lesser numbers of several minor proteins, all essential for infectivity. Cryo-electron microscopy is uniquely suited for studying interactions that govern the assembly and function of such large and functional complexes. Here we report two high quality capsid structures, from human herpes simplex virus type 1 (HSV-1) and the animal pseudorabies virus (PRV), imaged inside intact virions at ~7 Å resolution. From these we developed a complete model of subunit and domainal organization and identified extensive networks of subunit contacts that underpin capsid stability and form a pathway that may signal the completion of DNA packaging from the capsid interior to outer surface for initiating nuclear egress. Differences in folding and orientation of subunit domains between herpesvirus capsids suggest that common elements have been modified for specific functions. PMID:27111889

  11. Feline Calicivirus Can Tolerate Gross Changes of Its Minor Capsid Protein Expression Levels Induced by Changing Translation Reinitiation Frequency or Use of a Separate VP2-Coding mRNA

    PubMed Central

    Meyers, Gregor

    2014-01-01

    Caliciviruses use reinitiation of translation governed by a ‘termination upstream ribosomal binding site’ (TURBS) for expression of their minor capsid protein VP2. Mutation analysis allowed to identify sequences surrounding the translational start/stop site of the feline calicivirus (FCV) that fine tune reinitiation frequency. A selection of these changes was introduced into the infectious FCV cDNA clone to check the influence of altered VP2 levels on virus replication. In addition, full length constructs were established that displayed a conformation, in which VP2 expression occurred under control of a duplicated subgenomic promoter. Viable viruses recovered from such constructs revealed a rather broad range of VP2 expression levels but comparable growth kinetics showing that caliciviruses can tolerate gross changes of the VP2 expression level. PMID:25007260

  12. A quasi-atomic model of human adenovirus type 5 capsid

    PubMed Central

    Fabry, Céline M S; Rosa-Calatrava, Manuel; Conway, James F; Zubieta, Chloé; Cusack, Stephen; Ruigrok, Rob W H; Schoehn, Guy

    2005-01-01

    Adenoviruses infect a wide range of vertebrates including humans. Their icosahedral capsids are composed of three major proteins: the trimeric hexon forms the facets and the penton, a noncovalent complex of the pentameric penton base and trimeric fibre proteins, is located at the 12 capsid vertices. Several proteins (IIIa, VI, VIII and IX) stabilise the capsid. We have obtained a 10 Å resolution map of the human adenovirus 5 by image analysis from cryo-electron micrographs (cryoEMs). This map, in combination with the X-ray structures of the penton base and hexon, was used to build a quasi-atomic model of the arrangement of the two major capsid components and to analyse the hexon–hexon and hexon–penton interactions. The secondary proteins, notably VIII, were located by comparing cryoEM maps of native and pIX deletion mutant virions. Minor proteins IX and IIIa are located on the outside of the capsid, whereas protein VIII is organised with a T=2 lattice on the inner face of the capsid. The capsid organisation is compared with the known X-ray structure of bacteriophage PRD1. PMID:15861131

  13. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    PubMed Central

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  14. Landau theory of crystallization and the capsid structures of small icosahedral viruses

    NASA Astrophysics Data System (ADS)

    Lorman, V. L.; Rochal, S. B.

    2008-06-01

    A new approach to the capsid structures of small viruses with spherical topology and icosahedral symmetry is proposed. It generalizes Landau theory of crystallization to describe icosahedral viral shells self-assembled from identical asymmetric proteins. An explicit method which predicts the positions of centers of mass for the proteins constituting the shell is discussed in detail. The method is based on irreducible density distribution function which generates the protein positions. The universal form of the density distribution function which contains no fitting parameter permits to classify the capsids structures of small viruses. The theory describes in a uniform way both the structures satisfying the well-known Caspar and Klug geometrical model for capsid construction and those violating it. A group theory analysis of the Caspar and Klug model and of the “quasiequivalence” principle for protein environments in viral capsids is given. The molecular basis of difference in protein environments and peculiarities in the assembly thermodynamics are also discussed.

  15. Systemic Gene Transfer of a Hexosaminidase Variant Using an scAAV9.47 Vector Corrects GM2 Gangliosidosis in Sandhoff Mice.

    PubMed

    Osmon, Karlaina J L; Woodley, Evan; Thompson, Patrick; Ong, Katalina; Karumuthil-Melethil, Subha; Keimel, John G; Mark, Brian L; Mahuran, Don; Gray, Steven J; Walia, Jagdeep S

    2016-07-01

    GM2 gangliosidosis is a group of neurodegenerative diseases caused by β-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and β, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside. Mutations in either subunit or the activator can result in the accumulation of GM2 ganglioside within neurons throughout the central nervous system. The resulting neuronal cell death induces the primary symptoms of the disease: motor impairment, seizures, and sensory impairments. This study assesses the long-term effects of gene transfer in a Sandhoff (β-subunit knockout) mouse model. The study utilized a modified human β-hexosaminidase α-subunit (μ-subunit) that contains critical sequences from the β-subunit that enables formation of a stable homodimer (HexM) and interaction with GM2AP to hydrolyze GM2 ganglioside. We investigated a self-complementary adeno-associated viral (scAAV) vector expressing HexM, through intravenous injections of the neonatal mice. We monitored one cohort for 8 weeks and another cohort long-term for survival benefit, behavioral, biochemical, and molecular analyses. Untreated Sandhoff disease (SD) control mice reached a humane endpoint at approximately 15 weeks, whereas treated mice had a median survival age of 40 weeks, an approximate 2.5-fold survival advantage. On behavioral tests, the treated mice outperformed their knockout age-matched controls and perform similarly to the heterozygous controls. Through the enzymatic and GM2 ganglioside analyses, we observed a significant decrease in the GM2 ganglioside level, even though the enzyme levels were not significantly increased. Molecular analyses revealed a global distribution of the vector between brain and spinal cord regions. In conclusion, the neonatal delivery of a novel viral vector expressing the human HexM enzyme is effective in ameliorating the SD

  16. The cryo-electron microscopy structure of feline calicivirus bound to junctional adhesion molecule A at 9-angstrom resolution reveals receptor-induced flexibility and two distinct conformational changes in the capsid protein VP1.

    PubMed

    Bhella, David; Goodfellow, Ian G

    2011-11-01

    Caliciviridae are small icosahedral positive-sense RNA-containing viruses and include the human noroviruses, a leading cause of infectious acute gastroenteritis and feline calicivirus (FCV), which causes respiratory illness and stomatitis in cats. FCV attachment and entry is mediated by feline junctional adhesion molecule A (fJAM-A), which binds to the outer face of the capsomere, inducing a conformational change in the capsid that may be important for viral uncoating. Here we present the results of our structural investigation of the virus-receptor interaction and ensuing conformational changes. Cryo-electron microscopy and three-dimensional image reconstruction were used to solve the structure of the virus decorated with a soluble fragment of the receptor at subnanometer resolution. In initial reconstructions, the P domains of the capsid protein VP1 and fJAM-A were poorly resolved. Sorting experiments led to improved reconstructions of the FCV-fJAM-A complex both before and after the induced conformational change, as well as in three transition states. These data showed that the P domain becomes flexible following fJAM-A binding, leading to a loss of icosahedral symmetry. Furthermore, two distinct conformational changes were seen; an anticlockwise rotation of up to 15° of the P domain was observed in the AB dimers, while tilting of the P domain away from the icosahedral 2-fold axis was seen in the CC dimers. A list of putative contact residues was calculated by fitting high-resolution coordinates for fJAM-A and VP1 to the reconstructed density maps, highlighting regions in both virus and receptor important for virus attachment and entry.

  17. Modeling of the rotavirus group C capsid predicts a surface topology distinct from other rotavirus species.

    PubMed

    Eren, Elif; Zamuda, Kimberly; Patton, John T

    2016-01-01

    Rotavirus C (RVC) causes sporadic gastroenteritis in adults and is an established enteric pathogen of swine. Because RVC strains grow poorly in cell culture, which hinders generation of virion-derived RVC triple-layered-particle (TLP) structures, we used the known Rotavirus A (RVA) capsid structure to model the human RVC (Bristol) capsid. Comparative analysis of RVA and RVC capsid proteins showed major differences at the VP7 layer, an important target region for vaccine development due to its antigenic properties. Our model predicted the presence of a surface extended loop in RVC, which could form a major antigenic site on the capsid. We analyzed variations in the glycosylation patterns among RV capsids and identified group specific conserved sites. In addition, our results showed a smaller RVC VP4 foot, which protrudes toward the intermediate VP6 layer, in comparison to that of RVA. Finally, our results showed major structural differences at the VP8* glycan recognition sites.

  18. Thermodynamics of nanospheres encapsulated in virus capsids.

    PubMed

    Siber, Antonio; Zandi, Roya; Podgornik, Rudolf

    2010-05-01

    We investigate the thermodynamics of complexation of functionalized charged nanospheres with viral proteins. The physics of this problem is governed not only by electrostatic interaction between the proteins and the nanosphere cores (screened by salt ions), but also by configurational degrees of freedom of the charged protein N tails. We approach the problem by constructing an appropriate complexation free-energy functional. On the basis of both numerical and analytical studies of this functional we construct the phase diagram for the assembly which contains the information on the assembled structures that appear in the thermodynamical equilibrium, depending on the size and surface charge density of the nanosphere cores. We show that both the nanosphere core charge and its radius determine the size of the capsid that forms around the core.

  19. HIV-1 Capsid: The Multifaceted Key Player in HIV-1 infection

    PubMed Central

    Campbell, Edward M.; Hope, Thomas J.

    2016-01-01

    In a mature, infectious HIV-1 virion, the viral genome is housed within a conical capsid core comprised of the viral capsid (CA) protein. The CA protein, and the structure into which it assembles, facilitate virtually every step of infection through a series of interactions with multiple host cell factors. This review describes our understanding of the interactions between the viral capsid core and several cellular factors that enable efficient HIV-1 genome replication, timely core disassembly, nuclear import and the integration of the viral genome into the genome of the target cell. We then discuss how elucidating these interactions can reveal new targets for therapeutic interactions against HIV-1. PMID:26179359

  20. Interrogating viral capsid assembly with ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.

    2011-02-01

    Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.

  1. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement.

    PubMed

    Huang, Sheng-Wen; Wang, Ya-Fang; Yu, Chun-Keung; Su, Ih-Jen; Wang, Jen-Ren

    2012-01-05

    Enterovirus 71 (EV71) is a major cause of hand-foot-and-mouth disease. EV71 infection occasionally associates with severe neurological sequelae such as brainstem encephalitis or poliovirus-like paralysis. We demonstrated that mouse-adapted strain increases infectivity, resulting in higher cytotoxicity of neuron cells and mortality to neonatal mice than a non-adapted strain. Results pointed to EV71 capsid region determining viral infectivity and mouse lethality. Mutant virus with lysine to methionine substitution at VP2(149) (VP2(149M)) or glutamine to glutamic acid substitution at VP1(145) (VP1(145E)) showed greater viral titers and apoptosis. Synergistic effect of VP2(149M) and VP1(145E) double mutations enhanced viral binding and RNA accumulation in infected Neuro-2a cells. The dual substitution mutants markedly reduced value of 50% lethal dose in neonatal mice infection, indicating they raised mouse lethality in vivo. In sum, VP2(149M) and VP1(145E) mutations cooperatively promote viral binding and RNA accumulation of EV71, contributing to viral infectivity in vitro and mouse lethality in vivo.

  2. Viral genome structures, charge, and sequences are optimal for capsid assembly

    NASA Astrophysics Data System (ADS)

    Hagan, Michael

    2014-03-01

    For many viruses, the spontaneous assembly of a capsid shell around the nu-cleic acid (NA) genome is an essential step in the viral life cycle. Capsid formation is a multicomponent, out-of-equilibrium assembly process for which kinetic effects and thermodynamic constraints compete to determine the outcome. Understand-ing how viral components drive highly efficient assembly under these constraints could promote biomedical efforts to block viral propagation, and would elucidate the factors controlling assembly in a wide range of systems containing proteins and polyelectrolytes. This talk will describe coarse-grained models of capsid proteins and NAs with which we investigate the dynamics and thermodynamics of virus assembly. In con-trast to recent theoretical models, we find that capsids spontaneously `overcharge' that is, the NA length which is kinetically and thermodynamically optimal possess-es a negative charge greater than the positive charge of the capsid. When applied to specific virus capsids, the calculated optimal NA lengths closely correspond to the natural viral genome lengths. These results suggest that the features included in this model (i.e. electrostatics, excluded volume, and NA tertiary structure) play key roles in determining assembly thermodynamics and consequently exert selec-tive pressure on viral evolution. I will then discuss mechanisms by which se-quence-specific interactions between NAs and capsid proteins promote selective encapsidation of the viral genome. This work was supported by NIH R01GM108021 and the Brandeis MRSEC NSF-MRSEC-0820492.

  3. Highly efficient strategy for the heterologous expression and purification of soluble Cowpea chlorotic mottle virus capsid protein and in vitro pH-dependent assembly of virus-like particles.

    PubMed

    Díaz-Valle, Armando; García-Salcedo, Yardena M; Chávez-Calvillo, Gabriela; Silva-Rosales, Laura; Carrillo-Tripp, Mauricio

    2015-12-01

    Obtaining pure and soluble viral capsid proteins (CPs) has been a major challenge in the fields of science and technology in recent decades. In many cases, the CPs can self-assemble in the absence of a viral genome, resulting in non-infectious, empty virus-like particles (VLPs) which can be safely handled. The use of VLPs has found great potential in biotechnology and health purposes. In addition, VLPs are a good model system to study protein-protein interactions at the molecular level. In this work, an optimized strategy for the heterologous expression of the Cowpea chlorotic mottle virus (CCMV) CP based in Escherichia coli is described. The method is efficient, inexpensive and it consistently produces higher yields and greater purity levels than those reported so far. Additionally, one of the main advantages of this method is the prevention of the formation of inclusion bodies, thus allowing to directly obtain high amounts of the CP in a soluble and functionally active state with the capacity to readily form VLPs in vitro. The CCMV CP self-assembly pH dependence was also investigated, providing guidelines to easily modulate the process.

  4. Identification of a conserved JEV serocomplex B-cell epitope by screening a phage-display peptide library with a mAb generated against West Nile virus capsid protein

    PubMed Central

    2011-01-01

    Background The West Nile virus (WNV) capsid (C) protein is one of the three viral structural proteins, encapsidates the viral RNA to form the nucleocapsid, and is necessary for nuclear and nucleolar localization. The antigenic sites on C protein that are targeted by humoral immune responses have not been studied thoroughly, and well-defined B-cell epitopes on the WNV C protein have not been reported. Results In this study, we generated a WNV C protein-specific monoclonal antibody (mAb) and defined the linear epitope recognized by the mAb by screening a 12-mer peptide library using phage-display technology. The mAb, designated as 6D3, recognized the phages displaying a consensus motif consisting of the amino acid sequence KKPGGPG, which is identical to an amino acid sequence present in WNV C protein. Further fine mapping was conducted using truncated peptides expressed as MBP-fusion proteins. We found that the KKPGGPG motif is the minimal determinant of the linear epitope recognized by the mAb 6D3. Western blot (WB) analysis demonstrated that the KKPGGPG epitope could be recognized by antibodies contained in WNV- and Japanese encephalitis virus (JEV)-positive equine serum, but was not recognized by Dengue virus 1-4 (DENV1-4)-positive mice serum. Furthermore, we found that the epitope recognized by 6D3 is highly conserved among the JEV serocomplex of the Family Flaviviridae. Conclusion The KKPGGPG epitope is a JEV serocomplex-specific linear B-cell epitope recognized by the 6D3 mAb generated in this study. The 6D3 mAb may serve as a novel reagent in development of diagnostic tests for JEV serocomplex infection. Further, the identification of the B-cell epitope that is highly conserved among the JEV serocomplex may support the rationale design of vaccines against viruses of the JEV serocomplex. PMID:21375771

  5. Structure of the Triatoma virus capsid

    PubMed Central

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S.; Costabel, Marcelo D.; Marti, Gerardo A.; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M. A.; Rey, Felix A.

    2013-01-01

    The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed. PMID:23695247

  6. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    NASA Astrophysics Data System (ADS)

    Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F.

    2004-11-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  7. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly

    SciTech Connect

    Zheng, Yan Kielian, Margaret

    2015-10-15

    Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28 °C), subsequent incubation of the cells at the non-permissive temperature (37 °C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particles had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs. - Highlights: • We characterize an alphavirus capsid insertion mutation. • These capsid mutants are highly temperature sensitive for growth. • The insertion affects nucleocapsid stability. • Results suggest that the nucleocapsid is stabilized during virus budding.

  8. Cryo-EM Techniques to Resolve the Structure of HSV-1 Capsid-Associated Components

    PubMed Central

    Rochat, Ryan H.; Hecksel, Corey W.; Chiu, Wah

    2015-01-01

    Electron cryo-microscopy has become a routine technique to determine structure of biochemically purified herpes simplex virus capsid particles. This chapter describes the procedures of specimen preparation by cryopreservation; low dose and low temperature imaging in an electron cryo-microscope; and data processing for reconstruction. This methodology has yielded subnanometer resolution structures of the icosahedral capsid shell where alpha helices and beta sheets of individual subunits can be recognized. A relaxation of the symmetry in the reconstruction steps allows us to resolve the DNA packaging protein located at one of the 12 vertices in the capsid. PMID:24671690

  9. Electrostatics of capsid-induced viral RNA organization

    PubMed Central

    Forrey, Christopher; Muthukumar, M.

    2009-01-01

    We have addressed the role of electrostatics in the formation of genome structure in the Pariacoto virus, where substantial experimental data are available. We have used Langevin dynamics simulation of a coarse-grained model, based on the published crystal structure of the rigid portion of the Pariacoto capsid and including flexible N-terminal protein arms, attached to the rigid capsid at the appropriate locations. The inclusion of charged residues in our model was dictated solely by the location of charges inherent in the Pariacoto sequence itself. Although the viral genome and other exogenous RNA sequences used in experimental studies can assume secondary structures, we have intentionally used uniformly charged flexible polyelectrolyte lacking predetermined secondary structures as the substitute for the viral genome, in order to see whether the same final assembled genome structure emerges without invoking secondary RNA structures. The intent of our study was to investigate the internal environment presented by the capsid proteins of Pariacoto virus, specifically whether the topological features and electrostatic potential at the inner capsid surface can induce complexation of generic negatively charged polyelectrolyte into structures similar to those observed experimentally with packaged RNA. We find that the charge decoration on the interior of the capsid templates the assembly of the flexible polyelectrolyte, allowing hybridizationlike folding of similarly charged strands, and eventually organizing dodecahedral assembly of the polymer. Our results from a generic flexible polyelectrolyte for the assembled structure and bimodal monomer distribution are remarkably matched to that of the viral RNA found experimentally. Results of our work can be interpreted primarily as a consequence of electrostatics, as consideration of base-pairing has been omitted. We propose that our work supports the growing body of evidence that electrostatic interactions play a crucial

  10. Nonlinear finite-element analysis of nanoindentation of viral capsids

    NASA Astrophysics Data System (ADS)

    Gibbons, Melissa M.; Klug, William S.

    2007-03-01

    Recent atomic force microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick-shell models are proposed for two capsids: the spherical cowpea chlorotic mottle virus (CCMV), and the ellipsocylindrical bacteriophage ϕ29 . As analyzed by the finite-element method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimensions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is shown to be insensitive to constitutive particulars, and greatly influenced by geometric and kinematic details. Nonlinear stiffening and softening of the force response is dependent on the AFM tip dimensions and shell thickness. Fits of the models capture the roughly linear behavior observed in experimental measurements and result in estimates of Young’s moduli of ≈280-360MPa for CCMV and ≈4.5GPa for ϕ29 .

  11. Assembly of bacteriophage T7. Dimensions of the bacteriophage and its capsids.

    PubMed Central

    Stroud, R M; Serwer, P; Ross, M J

    1981-01-01

    The dimensions of bacteriophage T7 and T7 capsids have been investigated by small-angle x-ray scattering. Phage T7 behaves like a sphere of uniform density with an outer radius of 301 +/- 2 A (excluding the phage tail) and a calculated volume for protein plus nucleic acid of 1.14 +/- 0.05 x 10(-16) ml. The outer radius determined for T7 phage in solution is approximately 30% greater than the radius measured from electron micrographs, which indicates that considerable shrinkage occurs during preparation for electron microscopy. Capsids that have a phagelike envelope and do not contain DNA were obtained from lysates of T7-infected Escherichia coli (capsid II) and by separating the capsid component of T7 phage from the phage DNA by means of temperature shock (capsid IV). In both cases the peak protein density is at a radius of 275 A; the outer radius is 286 +/- 4 A, approximately 5% smaller than the envelope of T7 phage. The thickness of the envelope of capsid II is 22 +/- 4 A, consistent with the thickness of protein estimated to be 23 +/- 5 A in whole T7 phage, as seen on electron micrographs in which the internal DNA is positively stained. The volume in T7 phage available to package DNA is estimated to be 9.2 +/- 0.4 x 10(-17) ml. The packaged DNA adopts a regular packing with 23.6 A interplanar spacing between, DNA strands. The angular width of the 23.6 A reflection shows that the mean DNA-DNA spacing throughout the phage head is 27.5 +/- less than 2.2 A. A T7 precursor capsid (capsid I) expands when pelleted for x-ray scattering in the ultracentrifuge to essentially the same outer dimensions as for capsids II and IV. This expansion of capsid I can be prevented by fixing with glutaraldehyde; fixed capsid I has peak density at a radius of 247 A, 10% less than capsid II or IV. Images FIGURE 2 FIGURE 3 PMID:7326332

  12. Kinetic theory of virus capsid assembly.

    PubMed

    van der Schoot, Paul; Zandi, Roya

    2007-11-26

    A phenomenological theory is presented for the kinetics of the in vitro assembly and disassembly of icosahedral virus capsids in solutions of coat proteins. The focus is on conditions where nucleation-type processes can be ignored. We find that the kinetics of assembly is strongly concentration dependent and that the late-stage relaxation time varies as the inverse of the square of the concentration. These findings are corroborated by experimental observations on a number of viruses. Further, our theory shows that hysteresis observed in some experiments could be a direct effect of the kinetics of a high-order mass action law, not necessarily the result of a free energy barrier between assembled and disassembled states.

  13. Theory of a reconstructive structural transformation in capsids of icosahedral viruses

    NASA Astrophysics Data System (ADS)

    Rochal, S. B.; Lorman, V. L.

    2009-11-01

    A theory of a reconstructive structural transformation in icosahedral capsid shells is developed for a whole family of virulent human viruses. It is shown that the reversible rearrangement of proteins during the virus maturation transformation is driven by the variation in the wave number l associated with the protein density distribution function. The collective displacement field of protein centers from their positions in the initial (procapsid) and the final (capsid) two-dimensional icosahderal structures is derived. The amplitude of the displacement field is shown to be small and it minimizes the calculated free energy of the transformation. The theory allows us to propose a continuous thermodynamical mechanism of the reconstructive procapsid-to-capsid transformation. In the frame of the density-wave approach, we also propose to take an equivalent plane-wave vector as a common structural feature for different icosahedral capsid shells formed by the same proteins. Using these characteristics, we explain the relation between the radii of the procapsid and capsid shells and generalize it to the case of the viral capsid polymorphism.

  14. Visualization of Bacteriophage T3 Capsids with DNA Incompletely Packaged In Vivo

    PubMed Central

    Fang, Ping-An; Wright, Elena T.; Weintraub, Susan T.; Hakala, Kevin; Wu, Weimin; Serwer, Philip; Jiang, Wen

    2009-01-01

    The tightly packaged dsDNA genome in the mature particles of many tailed bacteriophages has been shown to form multiple concentric rings when reconstructed from cryo-electron micrographs. However, recent single-particle DNA packaging force measurements have suggested that incompletely packaged DNA (ipDNA) is less ordered when it is shorter than ∼25% of the full genome length. The study presented here initially achieves both the isolation and the ipDNA length-based fractionation of ipDNA-containing T3 phage capsids (ipDNA-capsids) produced by DNA packaging in vivo; some ipDNA has quantized lengths, as judged by high-resolution gel electrophoresis of expelled DNA. This is the first isolation of such particles among the tailed dsDNA bacteriophages. The ipDNA-capsids are a minor component (containing ∼10-4 of packaged DNA in all particles) and are initially detected by non-denaturing gel electrophoresis after partial purification by buoyant density centrifugation. The primary contaminants are aggregates of phage particles and empty capsids. This study then investigates ipDNA conformations by the first cryo-electron microscopy (cryo-EM) of ipDNA-capsids produced in vivo. The 3-D structures of DNA-free capsids, ipDNA-capsids with various lengths of ipDNA, and mature bacteriophage are reconstructed, which reveals the typical T=7l icosahedral shell of many tailed dsDNA bacteriophages. Though the icosahedral shell structures of these capsids are indistinguishable at the current resolution for the protein shell (∼15 Å), the conformations of the DNA inside the shell are drastically different. T3 ipDNA-capsids with 10.6 kb or shorter dsDNA (<28% of total genome) have an ipDNA conformation indistinguishable from random. However, T3 ipDNA-capsids with 22 kb DNA (58% of total genome) forms a single DNA ring next to the inner surface of the capsid shell. In contrast, dsDNA fully packaged (38.2 kb) in mature T3 phage particles forms multiple concentric rings like those seen

  15. Rational Engineering of Recombinant Picornavirus Capsids to Produce Safe, Protective Vaccine Antigen

    PubMed Central

    Burman, Alison; Jackson, Terry; Ren, Jingshan; Loureiro, Silvia; Jones, Ian M.; Fry, Elizabeth E.; Stuart, David I.; Charleston, Bryan

    2013-01-01

    Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals. PMID:23544011

  16. Human polyoma JC virus minor capsid proteins, VP2 and VP3, enhance large T antigen binding to the origin of viral DNA replication: evidence for their involvement in regulation of the viral DNA replication.

    PubMed

    Saribas, A Sami; Mun, Sarah; Johnson, Jaslyn; El-Hajmoussa, Mohammad; White, Martyn K; Safak, Mahmut

    2014-01-20

    JC virus (JCV) lytically infects the oligodendrocytes in the central nervous system in a subset of immunocompromized patients and causes the demyelinating disease, progressive multifocal leukoencephalopathy. JCV replicates and assembles into infectious virions in the nucleus. However, understanding the molecular mechanisms of its virion biogenesis remains elusive. In this report, we have attempted to shed more light on this process by investigating molecular interactions between large T antigen (LT-Ag), Hsp70 and minor capsid proteins, VP2/VP3. We demonstrated that Hsp70 interacts with VP2/VP3 and LT-Ag; and accumulates heavily in the nucleus of the infected cells. We also showed that VP2/VP3 associates with LT-Ag through their DNA binding domains resulting in enhancement in LT-Ag DNA binding to Ori and induction in viral DNA replication. Altogether, our results suggest that VP2/VP3 and Hsp70 actively participate in JCV DNA replication and may play critical roles in coupling of viral DNA replication to virion encapsidation.

  17. The Chikungunya Virus Capsid Protein Contains Linear B Cell Epitopes in the N- and C-Terminal Regions that are Dependent on an Intact C-Terminus for Antibody Recognition

    PubMed Central

    Goh, Lucas Y. H.; Hobson-Peters, Jody; Prow, Natalie A.; Baker, Kelly; Piyasena, Thisun B. H.; Taylor, Carmel T.; Rana, Ashok; Hastie, Marcus L.; Gorman, Jeff J.; Hall, Roy A.

    2015-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne agent that causes severe arthritic disease in humans and is considered a serious health threat in areas where competent mosquito vectors are prevalent. CHIKV has recently been responsible for several millions of cases of disease, involving over 40 countries. The recent re-emergence of CHIKV and its potential threat to human health has stimulated interest in better understanding of the biology and pathogenesis of the virus, and requirement for improved treatment, prevention and control measures. In this study, we mapped the binding sites of a panel of eleven monoclonal antibodies (mAbs) previously generated towards the capsid protein (CP) of CHIKV. Using N- and C-terminally truncated recombinant forms of the CHIKV CP, two putative binding regions, between residues 1–35 and 140–210, were identified. Competitive binding also revealed that five of the CP-specific mAbs recognized a series of overlapping epitopes in the latter domain. We also identified a smaller, N-terminally truncated product of native CP that may represent an alternative translation product of the CHIKV 26S RNA and have potential functional significance during CHIKV replication. Our data also provides evidence that the C-terminus of CP is required for authentic antigenic structure of CP. This study shows that these anti-CP mAbs will be valuable research tools for further investigating the structure and function of the CHIKV CP. PMID:26061335

  18. Envelope glycoprotein and CD4 independence of vpu-facilitated human immunodeficiency virus type 1 capsid export.

    PubMed Central

    Yao, X J; Göttlinger, H; Haseltine, W A; Cohen, E A

    1992-01-01

    The effect of vpu on the release of human immunodeficiency type 1 capsid proteins was examined in the presence or absence of virus-encoded envelope glycoproteins as well as in cells which constitutively express either the CD4 or CD8 protein. The results show that vpu-mediated facilitated export of capsid proteins from HeLa cells does not require expression of the envelope glycoprotein. The experiments also show that export of virus capsid proteins from HeLa cells facilitated by vpu is not affected by coexpression of either the CD4 or CD8 protein. The vpu protein acts in trans to facilitate export of virus capsid proteins from HeLa cells. Images PMID:1629967

  19. Evaluation of Trichodysplasia Spinulosa-Associated Polyomavirus Capsid Protein as a New Carrier for Construction of Chimeric Virus-Like Particles Harboring Foreign Epitopes

    PubMed Central

    Gedvilaite, Alma; Kucinskaite-Kodze, Indre; Lasickiene, Rita; Timinskas, Albertas; Vaitiekaite, Ausra; Ziogiene, Danguole; Zvirbliene, Aurelija

    2015-01-01

    Recombinant virus-like particles (VLPs) represent a promising tool for protein engineering. Recently, trichodysplasia spinulosa-associated polyomavirus (TSPyV) viral protein 1 (VP1) was efficiently produced in yeast expression system and shown to self-assemble to VLPs. In the current study, TSPyV VP1 protein was exploited as a carrier for construction of chimeric VLPs harboring selected B and T cell-specific epitopes and evaluated in comparison to hamster polyomavirus VP1 protein. Chimeric VLPs with inserted either hepatitis B virus preS1 epitope DPAFR or a universal T cell-specific epitope AKFVAAWTLKAAA were produced in yeast Saccharomyces cerevisiae. Target epitopes were incorporated either at the HI or BC loop of the VP1 protein. The insertion sites were selected based on molecular models of TSPyV VP1 protein. The surface exposure of the insert positions was confirmed using a collection of monoclonal antibodies raised against the intact TSPyV VP1 protein. All generated chimeric proteins were capable to self-assemble to VLPs, which induced a strong immune response in mice. The chimeric VLPs also activated dendritic cells and T cells as demonstrated by analysis of cell surface markers and cytokine production profiles in spleen cell cultures. In conclusion, TSPyV VP1 protein represents a new potential carrier for construction of chimeric VLPs harboring target epitopes. PMID:26230706

  20. Assembly of Recombinant Israeli Acute Paralysis Virus Capsids

    PubMed Central

    Ren, Junyuan; Cone, Abigail; Willmot, Rebecca; Jones, Ian M.

    2014-01-01

    The dicistrovirus Israeli Acute Paralysis Virus (IAPV) has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss. PMID:25153716

  1. Assembly of recombinant Israeli Acute Paralysis Virus capsids.

    PubMed

    Ren, Junyuan; Cone, Abigail; Willmot, Rebecca; Jones, Ian M

    2014-01-01

    The dicistrovirus Israeli Acute Paralysis Virus (IAPV) has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.

  2. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens

    PubMed Central

    Mahairas, Gregory G.; Shaw, Carolyn E.; Huang, Meei-Li; Koelle, David M.; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M.

    2015-01-01

    ABSTRACT We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4+ and CD8+ T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. IMPORTANCE HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of

  3. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6

    DOE PAGES

    Bhattacharya, Akash; Alam, Steven L.; Fricke, Thomas; ...

    2014-12-17

    Upon infection of susceptible cells by HIV-1, the conical capsid formed by ~250 hexamers and 12 pentamers of the CA protein is delivered to the cytoplasm. In this study, the capsid shields the RNA genome and proteins required for reverse transcription. In addition, the surface of the capsid mediates numerous host–virus interactions, which either promote infection or enable viral restriction by innate immune responses. In the intact capsid, there is an intermolecular interface between the N-terminal domain (NTD) of one subunit and the C-terminal domain (CTD) of the adjacent subunit within the same hexameric ring. The NTD–CTD interface is criticalmore » for capsid assembly, both as an architectural element of the CA hexamer and pentamer and as a mechanistic element for generating lattice curvature. Here we report biochemical experiments showing that PF-3450074 (PF74), a drug that inhibits HIV-1 infection, as well as host proteins cleavage and polyadenylation specific factor 6 (CPSF6) and nucleoporin 153 kDa (NUP153), bind to the CA hexamer with at least 10-fold higher affinities compared with nonassembled CA or isolated CA domains. The crystal structure of PF74 in complex with the CA hexamer reveals that PF74 binds in a preformed pocket encompassing the NTD–CTD interface, suggesting that the principal inhibitory target of PF74 is the assembled capsid. Likewise, CPSF6 binds in the same pocket. Given that the NTD–CTD interface is a specific molecular signature of assembled hexamers in the capsid, binding of NUP153 at this site suggests that key features of capsid architecture remain intact upon delivery of the preintegration complex to the nucleus.« less

  4. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6

    SciTech Connect

    Bhattacharya, Akash; Alam, Steven L.; Fricke, Thomas; Zadrozny, Kaneil; Sedzicki, Jaroslaw; Taylor, Alexander B.; Demeler, Borries; Pornillos, Owen; Ganser-Pornillos, Barbie K.; Diaz-Griffero, Felipe; Ivanov, Dmitri N.; Yeager, Mark

    2014-12-17

    Upon infection of susceptible cells by HIV-1, the conical capsid formed by ~250 hexamers and 12 pentamers of the CA protein is delivered to the cytoplasm. In this study, the capsid shields the RNA genome and proteins required for reverse transcription. In addition, the surface of the capsid mediates numerous host–virus interactions, which either promote infection or enable viral restriction by innate immune responses. In the intact capsid, there is an intermolecular interface between the N-terminal domain (NTD) of one subunit and the C-terminal domain (CTD) of the adjacent subunit within the same hexameric ring. The NTD–CTD interface is critical for capsid assembly, both as an architectural element of the CA hexamer and pentamer and as a mechanistic element for generating lattice curvature. Here we report biochemical experiments showing that PF-3450074 (PF74), a drug that inhibits HIV-1 infection, as well as host proteins cleavage and polyadenylation specific factor 6 (CPSF6) and nucleoporin 153 kDa (NUP153), bind to the CA hexamer with at least 10-fold higher affinities compared with nonassembled CA or isolated CA domains. The crystal structure of PF74 in complex with the CA hexamer reveals that PF74 binds in a preformed pocket encompassing the NTD–CTD interface, suggesting that the principal inhibitory target of PF74 is the assembled capsid. Likewise, CPSF6 binds in the same pocket. Given that the NTD–CTD interface is a specific molecular signature of assembled hexamers in the capsid, binding of NUP153 at this site suggests that key features of capsid architecture remain intact upon delivery of the preintegration complex to the nucleus.

  5. Structural Transitions and Energy Landscape for Cowpea Chlorotic Mottle Virus Capsid Mechanics from Nanomanipulation in Vitro and in Silico

    NASA Astrophysics Data System (ADS)

    Kononova, Olga; Snijder, Joost; Brasch, Melanie; Cornelissen, Jeroen; Dima, Ruxandra I.; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2013-10-01

    Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Virus shells can have applications as nanocontainers and delivery vehicles in biotechnology and medicine. Combined AFM experiments and computational modeling on sub-second timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus (CCMV) capsid show that the capsid's physical properties are dynamic and local characteristics of the structure, which depend on the magnitude and geometry of mechanical input. Surprisingly, under large deformations the CCMV capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state dH = 11.5 - 12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending, and the entropy change TdS = 5.1 - 5.8 MJ/mol is mostly due to coherent in-plane rearrangements of protein chains, which result in the capsid stiffening. Dynamic coupling of these modes defines the extent of elasticity and reversibility of capsid mechanical deformation. This emerging picture illuminates how unique physico-chemical properties of protein nanoshells help define their structure and morphology, and determine their viruses' biological function.

  6. Structure of the Triatoma virus capsid

    SciTech Connect

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S.; Costabel, Marcelo D.; Marti, Gerardo A.; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M. A.; Rey, Felix A.

    2013-06-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  7. Magic-angle spinning NMR of intact bacteriophages: insights into the capsid, DNA and their interface.

    PubMed

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  8. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    NASA Astrophysics Data System (ADS)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  9. Giardiavirus double-stranded RNA genome encodes a capsid polypeptide and a gag-pol-like fusion protein by a translation frameshift.

    PubMed Central

    Wang, A L; Yang, H M; Shen, K A; Wang, C C

    1993-01-01

    Giardiavirus is a small, nonenveloped virus comprising a monopartite double-stranded RNA genome, a major protein of 100 kDa, and a less abundant polypeptide of 190 kDa. It can be isolated from the culture supernatant of Giardia lamblia, a parasitic flagellate in human and other mammals, and efficiently infects other virus-free G. lamblia. A single-stranded copy of the viral RNA can be electroporated into uninfected G. lamblia cells to complete the viral replication cycle. Giardiavirus genomic cDNA of 6100 nt was constructed and its sequence revealed the presence of two large open reading frames that are separated by a -1 frameshift and share an overlap of 220 nt. The 3' open reading frame contains all consensus RNA-dependent RNA polymerase sequence motifs. A heptamer-pseudoknot structure similar to those found at ribosomal slippage sites in retroviruses and yeast killer virus was identified within this overlap. Immunostudies using antisera against synthesized peptides from four regions in the two open reading frames indicated that the 100- and 190-kDa viral proteins share a common domain in the amino-terminal region. But the 190-kDa protein makes a -1 switch of its reading frame beyond the presumed slippage heptamer and is therefore a -1 frameshift fusion protein similar to the gag-pol fusion protein found in retroviruses. Images Fig. 4 Fig. 5 PMID:8378334

  10. Nanoindentation of virus capsids in a molecular model

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Robbins, Mark O.

    2010-01-01

    A molecular-level model is used to study the mechanical response of empty cowpea chlorotic mottle virus (CCMV) and cowpea mosaic virus (CPMV) capsids. The model is based on the native structure of the proteins that constitute the capsids and is described in terms of the Cα atoms. Nanoindentation by a large tip is modeled as compression between parallel plates. Plots of the compressive force versus plate separation for CCMV are qualitatively consistent with continuum models and experiments, showing an elastic region followed by an irreversible drop in force. The mechanical response of CPMV has not been studied, but the molecular model predicts an order of magnitude higher stiffness and a much shorter elastic region than for CCMV. These large changes result from small structural changes that increase the number of bonds by only 30% and would be difficult to capture in continuum models. Direct comparison of local deformations in continuum and molecular models of CCMV shows that the molecular model undergoes a gradual symmetry breaking rotation and accommodates more strain near the walls than the continuum model. The irreversible drop in force at small separations is associated with rupturing nearly all of the bonds between capsid proteins in the molecular model, while a buckling transition is observed in continuum models.

  11. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    PubMed Central

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  12. Hepatitis B Virus Capsids Have Diverse Structural Responses to Small-Molecule Ligands Bound to the Heteroaryldihydropyrimidine Pocket

    PubMed Central

    Venkatakrishnan, Balasubramanian; Katen, Sarah P.; Francis, Samson; Chirapu, Srinivas; Finn, M. G.

    2016-01-01

    ABSTRACT Though the hepatitis B virus (HBV) core protein is an important participant in many aspects of the viral life cycle, its best-characterized activity is self-assembly into 240-monomer capsids. Small molecules that target core protein (core protein allosteric modulators [CpAMs]) represent a promising antiviral strategy. To better understand the structural basis of the CpAM mechanism, we determined the crystal structure of the HBV capsid in complex with HAP18. HAP18 accelerates assembly, increases protein-protein association more than 100-fold, and induces assembly of nonicosahedral macrostructures. In a preformed capsid, HAP18 is found at quasiequivalent subunit-subunit interfaces. In a detailed comparison to the two other extant CpAM structures, we find that the HAP18-capsid structure presents a paradox. Whereas the two other structures expanded the capsid diameter by up to 10 Å, HAP18 caused only minor changes in quaternary structure and actually decreased the capsid diameter by ∼3 Å. These results indicate that CpAMs do not have a single allosteric effect on capsid structure. We suggest that HBV capsids present an ensemble of states that can be trapped by CpAMs, indicating a more complex basis for antiviral drug design. IMPORTANCE Hepatitis B virus core protein has multiple roles in the viral life cycle—assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions—making it an attractive antiviral target. Core protein allosteric modulators (CpAMs) are an experimental class of antivirals that bind core protein. The most recognized CpAM activity is that they accelerate core protein assembly and strengthen interactions between subunits. In this study, we observe that the CpAM-binding pocket has multiple conformations. We compare structures of capsids cocrystallized with different CpAMs and find that they also affect quaternary structure in different ways. These results suggest that the capsid “breathes” and is

  13. Hidden symmetry of small spherical viruses and organization principles in "anomalous" and double-shelled capsid nanoassemblies.

    PubMed

    Rochal, S B; Konevtsova, O V; Myasnikova, A E; Lorman, V L

    2016-09-29

    We propose the principles of structural organization in spherical nanoassemblies with icosahedral symmetry constituted by asymmetric protein molecules. The approach modifies the paradigmatic geometrical Caspar and Klug (CK) model of icosahedral viral capsids and demonstrates the common origin of both the "anomalous" and conventional capsid structures. In contrast to all previous models of "anomalous" viral capsids the proposed modified model conserves the basic structural principles of the CK approach and reveals the common hidden symmetry underlying all small viral shells. We demonstrate the common genesis of the "anomalous" and conventional capsids and explain their structures in the same frame. The organization principles are derived from the group theory analysis of the positional order on the spherical surface. The relationship between the modified CK geometrical model and the theory of two-dimensional spherical crystallization is discussed. We also apply the proposed approach to complex double-shelled capsids and capsids with protruding knob-like proteins. The introduced notion of commensurability for the concentric nanoshells explains the peculiarities of their organization and helps to predict analogous, but yet undiscovered, double-shelled viral capsid nanostructures.

  14. Dynamics of polymer ejection from capsid

    NASA Astrophysics Data System (ADS)

    Linna, R. P.; Moisio, J. E.; Suhonen, P. M.; Kaski, K.

    2014-05-01

    Polymer ejection from a capsid through a nanoscale pore is an important biological process with relevance to modern biotechnology. Here, we study generic capsid ejection using Langevin dynamics. We show that even when the ejection takes place within the drift-dominated region there is a very high probability for the ejection process not to be completed. Introducing a small aligning force at the pore entrance enhances ejection dramatically. Such a pore asymmetry is a candidate for a mechanism by which viral ejection is completed. By detailed high-resolution simulations we show that such capsid ejection is an out-of-equilibrium process that shares many common features with the much studied driven polymer translocation through a pore in a wall or a membrane. We find that the ejection times scale with polymer length, τ ˜Nα. We show that for the pore without the asymmetry the previous predictions corroborated by Monte Carlo simulations do not hold. For the pore with the asymmetry the scaling exponent varies with the initial monomer density (monomers per capsid volume) ρ inside the capsid. For very low densities ρ ≤0.002 the polymer is only weakly confined by the capsid, and we measure α =1.33, which is close to α =1.4 obtained for polymer translocation. At intermediate densities the scaling exponents α =1.25 and 1.21 for ρ =0.01 and 0.02, respectively. These scalings are in accord with a crude derivation for the lower limit α =1.2. For the asymmetrical pore precise scaling breaks down, when the density exceeds the value for complete confinement by the capsid, ρ ⪆0.25. The high-resolution data show that the capsid ejection for both pores, analogously to polymer translocation, can be characterized as a multiplicative stochastic process that is dominated by small-scale transitions.

  15. Exploring the Balance between DNA Pressure and Capsid Stability in Herpesviruses and Phages

    PubMed Central

    Bauer, D. W.; Li, D.; Huffman, J.; Homa, F. L.; Wilson, K.; Leavitt, J. C.; Casjens, S. R.; Baines, J.

    2015-01-01

    ABSTRACT We have recently shown in both herpesviruses and phages that packaged viral DNA creates a pressure of tens of atmospheres pushing against the interior capsid wall. For the first time, using differential scanning microcalorimetry, we directly measured the energy powering the release of pressurized DNA from the capsid. Furthermore, using a new calorimetric assay to accurately determine the temperature inducing DNA release, we found a direct influence of internal DNA pressure on the stability of the viral particle. We show that the balance of forces between the DNA pressure and capsid strength, required for DNA retention between rounds of infection, is conserved between evolutionarily diverse bacterial viruses (phages λ and P22), as well as a eukaryotic virus, human herpes simplex 1 (HSV-1). Our data also suggest that the portal vertex in these viruses is the weakest point in the overall capsid structure and presents the Achilles heel of the virus's stability. Comparison between these viral systems shows that viruses with higher DNA packing density (resulting in higher capsid pressure) have inherently stronger capsid structures, preventing spontaneous genome release prior to infection. This force balance is of key importance for viral survival and replication. Investigating the ways to disrupt this balance can lead to development of new mutation-resistant antivirals. IMPORTANCE A virus can generally be described as a nucleic acid genome contained within a protective protein shell, called the capsid. For many double-stranded DNA viruses, confinement of the large DNA molecule within the small protein capsid results in an energetically stressed DNA state exerting tens of atmospheres of pressures on the inner capsid wall. We show that stability of viral particles (which directly relates to infectivity) is strongly influenced by the state of the packaged genome. Using scanning calorimetry on a bacterial virus (phage λ) as an experimental model system, we

  16. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    SciTech Connect

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  17. Characterization of Monoclonal Antibodies Specific for the Merkel Cell Polyomavirus Capsid

    PubMed Central

    Pastrana, Diana V.; Pumphrey, Katherine A.; Çuburu, Nicolas; Schowalter, Rachel M.; Buck, Christopher B.

    2010-01-01

    Merkel cell polyomavirus (MCV) has been implicated as a causative agent in Merkel cell carcinoma. Robust polyclonal antibody responses against MCV have been documented in human subjects, but monoclonal antibodies (mAbs) specific for the VP1 capsid protein have not yet been characterized. We generated 12 mAbs capable of binding recombinant MCV virus-like particles. The use of a short immunogenic priming schedule was important for production of the mAbs. Ten of the 12 mAbs were highly effective for immunofluorescent staining of cells expressing capsid proteins. An overlapping set of 10 mAbs were able to neutralize the infectivity of MCV-based reporter vectors, with 50% effective doses in the low picomolar range. Three mAbs interfered with the binding of MCV virus-like particles to cells. This panel of anti-capsid antibodies should provide a useful set of tools for the study of MCV. PMID:20598728

  18. Competing hydrophobic and screened-coulomb interactions in hepatitis B virus capsid assembly.

    PubMed

    Kegel, Willem K; Schoot Pv, Paul van der

    2004-06-01

    Recent experiments show that, in the range from approximately 15 to 45 degrees C, an increase in the temperature promotes the spontaneous assembly into capsids of the Escherichia coli-expressed coat proteins of hepatitis B virus. Within that temperature interval, an increase in ionic strength up to five times that of standard physiological conditions also acts to promote capsid assembly. To explain both observations we propose an interaction of mean force between the protein subunits that is the sum of an attractive hydrophobic interaction, driving the self-assembly, and a repulsive electrostatic interaction, opposing the self-assembly. We find that the binding strength of the capsid subunits increases with temperature virtually independently of the ionic strength, and that, at fixed temperature, the binding strength increases with the square root of ionic strength. Both predictions are in quantitative agreement with experiment. We point out the similarities of capsid assembly in general and the micellization of surfactants. Finally we make plausible that electrostatic repulsion between the native core subunits of a large class of virus suppresses the formation in vivo of empty virus capsids, that is, without the presence of the charge-neutralizing nucleic acid.

  19. Selective Inhibitor of Nuclear Export (SINE) Compounds Alter New World Alphavirus Capsid Localization and Reduce Viral Replication in Mammalian Cells

    PubMed Central

    Lundberg, Lindsay; Pinkham, Chelsea; de la Fuente, Cynthia; Brahms, Ashwini; Shafagati, Nazly; Wagstaff, Kylie M.; Jans, David A.; Tamir, Sharon; Kehn-Hall, Kylene

    2016-01-01

    The capsid structural protein of the New World alphavirus, Venezuelan equine encephalitis virus (VEEV), interacts with the host nuclear transport proteins importin α/β1 and CRM1. Novel selective inhibitor of nuclear export (SINE) compounds, KPT-185, KPT-335 (verdinexor), and KPT-350, target the host’s primary nuclear export protein, CRM1, in a manner similar to the archetypical inhibitor Leptomycin B. One major limitation of Leptomycin B is its irreversible binding to CRM1; which SINE compounds alleviate because they are slowly reversible. Chemically inhibiting CRM1 with these compounds enhanced capsid localization to the nucleus compared to the inactive compound KPT-301, as indicated by immunofluorescent confocal microscopy. Differences in extracellular versus intracellular viral RNA, as well as decreased capsid in cell free supernatants, indicated the inhibitors affected viral assembly, which led to a decrease in viral titers. The decrease in viral replication was confirmed using a luciferase-tagged virus and through plaque assays. SINE compounds had no effect on VEEV TC83_Cm, which encodes a mutated form of capsid that is unable to enter the nucleus. Serially passaging VEEV in the presence of KPT-185 resulted in mutations within the nuclear localization and nuclear export signals of capsid. Finally, SINE compound treatment also reduced the viral titers of the related eastern and western equine encephalitis viruses, suggesting that CRM1 maintains a common interaction with capsid proteins across the New World alphavirus genus. PMID:27902702

  20. Selective Inhibitor of Nuclear Export (SINE) Compounds Alter New World Alphavirus Capsid Localization and Reduce Viral Replication in Mammalian Cells.

    PubMed

    Lundberg, Lindsay; Pinkham, Chelsea; de la Fuente, Cynthia; Brahms, Ashwini; Shafagati, Nazly; Wagstaff, Kylie M; Jans, David A; Tamir, Sharon; Kehn-Hall, Kylene

    2016-11-01

    The capsid structural protein of the New World alphavirus, Venezuelan equine encephalitis virus (VEEV), interacts with the host nuclear transport proteins importin α/β1 and CRM1. Novel selective inhibitor of nuclear export (SINE) compounds, KPT-185, KPT-335 (verdinexor), and KPT-350, target the host's primary nuclear export protein, CRM1, in a manner similar to the archetypical inhibitor Leptomycin B. One major limitation of Leptomycin B is its irreversible binding to CRM1; which SINE compounds alleviate because they are slowly reversible. Chemically inhibiting CRM1 with these compounds enhanced capsid localization to the nucleus compared to the inactive compound KPT-301, as indicated by immunofluorescent confocal microscopy. Differences in extracellular versus intracellular viral RNA, as well as decreased capsid in cell free supernatants, indicated the inhibitors affected viral assembly, which led to a decrease in viral titers. The decrease in viral replication was confirmed using a luciferase-tagged virus and through plaque assays. SINE compounds had no effect on VEEV TC83_Cm, which encodes a mutated form of capsid that is unable to enter the nucleus. Serially passaging VEEV in the presence of KPT-185 resulted in mutations within the nuclear localization and nuclear export signals of capsid. Finally, SINE compound treatment also reduced the viral titers of the related eastern and western equine encephalitis viruses, suggesting that CRM1 maintains a common interaction with capsid proteins across the New World alphavirus genus.

  1. Breaking a virus: Identifying molecular level failure modes of a viral capsid by multiscale modeling

    NASA Astrophysics Data System (ADS)

    Krishnamani, V.; Globisch, C.; Peter, C.; Deserno, M.

    2016-10-01

    We use coarse-grained (CG) simulations to study the deformation of empty Cowpea Chlorotic Mottle Virus (CCMV) capsids under uniaxial compression, from the initial elastic response up to capsid breakage. Our CG model is based on the MARTINI force field and has been amended by a stabilizing elastic network, acting only within individual proteins, that was tuned to capture the fluctuation spectrum of capsid protein dimers, obtained from all atom simulations. We have previously shown that this model predicts force-compression curves that match AFM indentation experiments on empty CCMV capsids. Here we investigate details of the actual breaking events when the CCMV capsid finally fails. We present a symmetry classification of all relevant protein contacts and show that they differ significantly in terms of stability. Specifically, we show that interfaces which break readily are precisely those which are believed to form last during assembly, even though some of them might share the same contacts as other non-breaking interfaces. In particular, the interfaces that form pentamers of dimers never break, while the virtually identical interfaces within hexamers of dimers readily do. Since these units differ in the large-scale geometry and, most noticeably, the cone-angle at the center of the 5- or 6-fold vertex, we propose that the hexameric unit fails because it is pre-stressed. This not only suggests that hexamers of dimers form less frequently during the early stages of assembly; it also offers a natural explanation for the well-known β-barrel motif at the hexameric center as a post-aggregation stabilization mechanism. Finally, we identify those amino acid contacts within all key protein interfaces that are most persistent during compressive deformation of the capsid, thereby providing potential targets for mutation studies aiming to elucidate the key contacts upon which overall stability rests.

  2. Structure of a Human Astrovirus Capsid-Antibody Complex and Mechanistic Insights into Virus Neutralization

    SciTech Connect

    Bogdanoff, Walter A.; Campos, Jocelyn; Perez, Edmundo I.; Yin, Lu; Alexander, David L.; DuBois, Rebecca M.; López, Susana

    2016-11-02

    ABSTRACT

    Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.

  3. Dynamic and Kinetic Assembly Studies of an Icosahedral Virus Capsid

    NASA Astrophysics Data System (ADS)

    Lee, Kelly

    2011-03-01

    Hepatitis B virus has an icosahedrally symmetrical core particle (capsid), composed of either 90 or 120 copies of a dimeric protein building block. We are using time-resolved, solution small-angle X-ray scattering and single-molecule fluorescence microscopy to probe the core particle assembly reaction at the ensemble and individual assembly levels. Our experiments to date reveal the assembly process to be highly cooperative with minimal population of stable intermediate species. Solution conditions, particularly salt concentration, appears to influence the partitioning of assembly products into the two sizes of shells. Funding from NIH R00-GM080352 and University of Washington.

  4. Stochastic modeling of virus capsid assembly pathways

    NASA Astrophysics Data System (ADS)

    Schwartz, Russell

    2009-03-01

    Virus capsids have become a key model system for understanding self-assembly due to their high complexity, robust and efficient assembly processes, and experimental tractability. Our ability to directly examine and manipulate capsid assembly kinetics in detail nonetheless remains limited, creating a need for computer models that can infer experimentally inaccessible features of the assembly process and explore the effects of hypothetical manipulations on assembly trajectories. We have developed novel algorithms for stochastic simulation of capsid assembly [1,2] that allow us to model capsid assembly over broad parameter spaces [3]. We apply these methods to study the nature of assembly pathway control in virus capsids as well as their sensitivity to assembly conditions and possible experimental interventions. [4pt] [1] F. Jamalyaria, R. Rohlfs, and R. Schwartz. J Comp Phys 204, 100 (2005). [0pt] [2] N. Misra and R. Schwartz. J Chem Phys 129, in press (2008). [0pt] [3] B. Sweeney, T. Zhang, and R. Schwartz. Biophys J 94, 772 (2008).

  5. Characterization of the in vitro HIV-1 capsid assembly pathway.

    PubMed

    Barklis, Eric; Alfadhli, Ayna; McQuaw, Carolyn; Yalamuri, Suraj; Still, Amelia; Barklis, Robin Lid; Kukull, Ben; López, Claudia S

    2009-03-27

    During the morphogenesis of mature human immunodeficiency virus-1 cores, viral capsid proteins assemble conical or tubular shells around viral ribonucleoprotein complexes. This assembly step is mimicked in vitro through reactions in which capsid proteins oligomerize to form long tubes, and this process can be modeled as consisting of a slow nucleation period, followed by a rapid phase of tube growth. We have developed a novel fluorescence microscopy approach to monitor in vitro assembly reactions and have employed it, along with electron microscopy analysis, to characterize the assembly process. Our results indicate that temperature, salt concentration, and pH changes have differential effects on tube nucleation and growth steps. We also demonstrate that assembly can be unidirectional or bidirectional, that growth can be capped, and that proteins can assemble onto the surfaces of tubes, yielding multiwalled or nested structures. Finally, experiments show that a peptide inhibitor of in vitro assembly also can dismantle preexisting tubes, suggesting that such reagents may possess antiviral effects against both viral assembly and uncoating. Our investigations help establish a basis for understanding the mechanism of mature human immunodeficiency virus-1 core assembly and avenues for antiviral inhibition.

  6. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-03-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.