Science.gov

Sample records for ab diblock copolymers

  1. Self-oscillating AB diblock copolymer developed by post modification strategy

    SciTech Connect

    Ueki, Takeshi, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp; Onoda, Michika; Tamate, Ryota

    We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2′-bipyridine) (Ru(bpy){sub 3}), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy){sub 3} was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy){sub 3} vinyl monomer and (ii) post modification (PM) of Ru(bpy){sub 3} with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔT{sub m}), where the block copolymer self-assembles into micelle atmore » reduced Ru(bpy){sub 3}{sup 2+} state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy){sub 3}{sup 3+} state, monotonically extends as the composition of the Ru(bpy){sub 3} increases. The ΔT{sub m} of the block copolymer prepared by PM is larger than that by DP. The difference in ΔT{sub m} is rationalized from the statistical analysis of the arrangement of the Ru(bpy){sub 3} moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔT{sub m} (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.« less

  2. Formation of integral asymmetric membranes of AB diblock and ABC triblock copolymers by phase inversion.

    PubMed

    Jung, Adina; Filiz, Volkan; Rangou, Sofia; Buhr, Kristian; Merten, Petra; Hahn, Janina; Clodt, Juliana; Abetz, Clarissa; Abetz, Volker

    2013-04-12

    The formation of integral asymmetric membranes from ABC triblock terpolymers by non-solvent-induced phase separation is shown. They are compared with the AB diblock copolymer precursors. Triblock terpolymers of polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two compositions are investigated. The third block supports the formation of a membrane in a case, where the corresponding diblock copolymer does not form a good membrane. In addition, the hydrophilicity is increased by the third block and due to the hydroxyl group the possibility of post-functionalization is given. The morphologies are imaged by scanning electron microscopy. The influence of the PEO on the membrane properties is analyzed by water flux, retention, and dynamic contact angle measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Beyond Simple AB Diblock Copolymers: Application of Bifunctional and Trifunctional RAFT Agents to PISA in Water.

    PubMed

    Mellot, Gaëlle; Beaunier, Patricia; Guigner, Jean-Michel; Bouteiller, Laurent; Rieger, Jutta; Stoffelbach, François

    2018-06-20

    The influence of the macromolecular reversible addition-fragmentation chain transfer (macro-RAFT) agent architecture on the morphology of the self-assemblies obtained by aqueous RAFT dispersion polymerization in polymerization-induced self-assembly (PISA) is studied by comparing amphiphilic AB diblock, (AB) 2 triblock, and triarm star-shaped (AB) 3 copolymers, constituted of N,N-dimethylacrylamide (DMAc = A) and diacetone acrylamide (DAAm = B). Symmetrical triarm (AB) 3 copolymers could be synthesized for the first time in a PISA process. Spheres and higher order morphologies, such as worms or vesicles, could be obtained for all types of architectures and the parameters that determine their formation have been studied. In particular, we found that the total DP n of the PDMAc and the PDAAm segments, i.e., the same overall molar mass, at the same M n (PDMAc)/M n (PDAAm) ratio, rather than the individual length of the arms determined the morphologies for the linear (AB) 2 and star shaped (AB) 3 copolymers obtained by using the bi- and trifunctional macro-RAFT agents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fluctuation effects in blends of A + B homopolymers with AB diblock copolymer

    NASA Astrophysics Data System (ADS)

    Spencer, Russell K. W.; Matsen, Mark W.

    2018-05-01

    Field-theoretic simulations (FTSs) are performed on ternary blends of A- and B-type homopolymers of polymerization Nh and symmetric AB diblock copolymers of polymerization Nc. Unlike previous studies, our FTSs are conducted in three-dimensional space, with the help of two new semi-grand canonical ensembles. Motivated by the first experiment to discover bicontinuous microemulsion (BμE) in the polyethylene-polyethylene propylene system, we consider molecules of high molecular weight with size ratios of α ≡ Nh/Nc = 0.1, 0.2, and 0.4. Our focus is on the A + B coexistence between the two homopolymer-rich phases in the low-copolymer region of the phase diagram. The Scott line, at which the A + B phases mix to form a disordered melt with increasing temperature (or decreasing χ), is accurately determined using finite-size scaling techniques. We also examine how the copolymer affects the interface between the A + B phases, reducing the interfacial tension toward zero. Although comparisons with self-consistent field theory (SCFT) illustrate that fluctuation effects are relatively small, fluctuations do nevertheless produce the observed BμE that is absent in the SCFT phase diagram. Furthermore, we find evidence of three-phase A + B + BμE coexistence, which may have been missed in the original as well as subsequent experiments.

  5. Study of structural morphologies of thermoresponsive diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-03-01

    Structural morphologies of diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene) in aqueous environment have been investigated by dissipative particle dynamics (DPD). In triblock copolymers insoluble PS blocks contract while soluble pNIPAM blocks stay at the periphery forming looped chains as corona. As the temperature is increased there is a continuous morphological transition and micelles form ellipsoidal structures with segregated polymer zones. The phase transition of looped pNIPAM chains occurs at lower temperature than for linear chains and within broader temperature range. It is discussed how the chain topology of pNIPAM affects the phase transition.

  6. Gyroid Structures at Highly Asymmetric Volume Fractions by Blending of ABC Triblock Terpolymer and AB Diblock Copolymer

    DOE PAGES

    Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; ...

    2017-11-08

    Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less

  7. Gyroid Structures at Highly Asymmetric Volume Fractions by Blending of ABC Triblock Terpolymer and AB Diblock Copolymer

    SciTech Connect

    Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong

    Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less

  8. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  9. Surface dynamics of micellar diblock copolymer films

    NASA Astrophysics Data System (ADS)

    Song, Sanghoon; Cha, Wonsuk; Kim, Hyunjung; Jiang, Zhang; Narayanan, Suresh

    2011-03-01

    We studied the structure and surface dynamics of poly(styrene)-b-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer films with micellar PDMS surrounded by PS shells. By `in-situ' high resolution synchrotron x-ray reflectivity and diffuse scattering, we obtained exact thickness, electron density and surface tension. A segregation layer near the top surface was appeared with increasing temperature Surface dynamics were measured as a function of film thickness and temperature by x-ray photon correlation spectroscopy. The best fit to relaxation time constants as a function of in-plane wavevectors were analyzed with a theory based on capillary waves with hydrodynamics with bilayer model Finally the viscosities for the top segregated layer as well as for the bottom layer are obtained at given temperatures This work was supported by National Research Foundation of Korea (R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).

  10. Stabilizing Various Bicontinuous Morphologies via Polydispersity of Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Lai, Chi To; Shi, An-Chang

    Diblock copolymers are macromolecules composed of two chemically distinct homopolymers covalently bound end-to-end. The ability to self-assembly into a wide variety of ordered periodic structures, as means of minimizing the free energy, is their most well-studied property. There are many factors affecting the observed equilibrium morphology, one of which is polydispersity. The phase behaviour of polydispersed diblock copolymers is more rich, and diverse when compared to their monodispersed counterpart. The rich behaviour of polydispersed diblock copolymers provides an opportunity to engineer novel morphologies which are not available in monodispersed systems. Using the self-consistent field theory (SCFT), we explore the possibility of exploiting polydispersity of diblock copolymers in binary mixtures to stabilize the various bicontinuous phases, such as the double-diamond morphology. Specifically, solutions of the SCFT equations corresponding to different bicontinuous phases are obtained numerically for binary mixtures of diblock copolymers. The relative stability of the different ordered phases is examined by comparing their free energy. From the study, we determine optimal sets of parameters that stabilize the double-diamond or other exotic morphologies.

  11. Thin Films of Novel Linear-Dendritic Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Iyer, Jyotsna; Hammond, Paula

    1998-03-01

    A series of diblock copolymers with one linear block and one dendrimeric block have been synthesized with the objective of forming ultrathin film nanoporous membranes. Polyethyleneoxide serves as the linear hydrophilic portion of the diblock copolymer. The hyperbranched dendrimeric block consists of polyamidoamine with functional end groups. Thin films of these materials made by spin casting and the Langmuir-Blodgett techniques are being studied. The effect of the polyethylene oxide block size and the number and chemical nature of the dendrimer end group on the nature and stability of the films formed willbe discussed.

  12. Dynamics and order-disorder transitions in bidisperse diblock copolymer blends

    NASA Astrophysics Data System (ADS)

    Wang, Yueqiang; Li, Xuan; Tang, Ping; Yang, Yuliang

    2011-03-01

    We employ the dynamic extension of self-consistent field theory (DSCFT) to study dynamics and order-disorder transitions (ODT) in AB diblock copolymer binary mixtures of two different monodisperse chain lengths by imitating the dynamic storage modulus G‧ corresponding to any given morphology in the oscillatory shear measurements. The different polydispersity index (PDI) is introduced by binary blending AB diblock copolymers with variations in chain lengths and chain number fractions. The simulation results show that the increase of polydispersity in the minority or symmetric block introduces a decrease in the segregation strength at the ODT, ( χN) ODT, whereas the increase of polydispersity in the majority block results in a decrease, then increase and final decrease again in ( χN) ODT. To the best of our knowledge, our DSCFT simulations, for the first time, predict an increase in ( χN) ODT with the PDI in the majority block, which produces the experimental results. The simulations by previous SCFT, which generally speaking, is capable of describing equilibrium morphologies, however, contradict the experimental data. The polydispersity acquired by properly tuning the chain lengths and number fractions of binary diblock copolymer blends should be a convenient and efficient way to control the microphase separation strength at the ODT.

  13. Non-Surface Activity of Cationic Amphiphilic Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Ranjan Nayak, Rati; Yamada, Tasuku; Matsuoka, Hideki

    2011-09-01

    Cationic amphiphilic diblock copolymers containing quaternized poly (2-vinylpyridine) chain as a hydrophilic segment (PIp-b-PNMe2VP) were synthesized by living anionic polymerization. By IR measurement, we confirmed the quaternization of the polymer (PIp-b-PNMe2VP), and determined the degree of quaternization by conductometric titration. The surface tension experiment showed that the polymers are non-surface active in nature. The foam formation of the polymer solutions was also investigated with or without added salt. Almost no foam formation behavior was observed without added salt, while a little foam was observed in the presence of 1M NaCl. The critical micelle concentration (cmc) of the diblock copolymers with 3 different chain lengths was measured by the static light scattering method. The cmc values obtained in this study were much lower than the values obtained for anionic non-surface active diblock polymers studied previously. The hydrodynamic radii of the polymer micelle increased slightly in the presence of 1 M NaCl. The transmission electron microscopic images revealed spherical micelles in pure water. In the presence of salt, the cmc values increased as was the case for anionic polymers, which is unlike conventional surfactant systems but consistent with non-surface active anionic block copolymers. The microviscosity of the micelle core was evaluated using Coumarin-153 as a fluorescent anisotropy probe using steady-sate fluorescence depolarization. Non-surface activity has been proved to be universal for ionic amphiphilic block copolymers both for anionic and cationic. Hence, the origin of non-surface activity is not the charged state of water surface itself, but should be an image charge repulsion at the air/water interface.

  14. Crafting threads of diblock copolymer micelles via flow-enabled self-assembly.

    PubMed

    Li, Bo; Han, Wei; Jiang, Beibei; Lin, Zhiqun

    2014-03-25

    Hierarchically assembled amphiphilic diblock copolymer micelles were exquisitely crafted over large areas by capitalizing on two concurrent self-assembling processes at different length scales, namely, the periodic threads composed of a monolayer or a bilayer of diblock copolymer micelles precisely positioned by flow-enabled self-assembly (FESA) on the microscopic scale and the self-assembly of amphiphilic diblock copolymer micelles into ordered arrays within an individual thread on the nanometer scale. A minimum spacing between two adjacent threads λmin was observed. A model was proposed to rationalize the relationship between the thread width and λmin. Such FESA of diblock copolymer micelles is remarkably controllable and easy to implement. It opens up possibilities for lithography-free positioning and patterning of diblock copolymer micelles for various applications in template fabrication of periodic inorganic nanostructures, nanoelectronics, optoelectronics, magnetic devices, and biotechnology.

  15. Gyroid nickel nanostructures from diblock copolymer supramolecules.

    PubMed

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S D; Vukovic, Zorica; de Hosson, Jeff Th M; ten Brinke, Gerrit; Loos, Katja

    2014-04-28

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology.

  16. Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

    PubMed Central

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  17. Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Schulze, Morgan W.; Lewis, Ronald M.; Lettow, James H.; Hickey, Robert J.; Gillard, Timothy M.; Hillmyer, Marc A.; Bates, Frank S.

    2017-05-01

    Small angle x-ray scattering experiments on three model low molar mass diblock copolymer systems containing minority polylactide and majority hydrocarbon blocks demonstrate that conformational asymmetry stabilizes the Frank-Kasper σ phase. Differences in block flexibility compete with space filling at constant density inducing the formation of polyhedral shaped particles that assemble into this low symmetry ordered state with local tetrahedral coordination. These results confirm predictions from self-consistent field theory that establish the origins of symmetry breaking in the ordering of block polymer melts subjected to compositional and conformational asymmetry.

  18. Observation of chain stretching in Langmuir diblock copolymer monolayers

    SciTech Connect

    Factor, B.J.; Lee, L.; Kent, M.S.

    1993-10-01

    We report observations of chain stretching in diblock copolymer monolayers on the surface of a selective solvent. Using neutron reflectivity, we have studied the concentration profile of the submerged block over a large range of surface density [sigma] (chains per area) for two different molecular weights. The observed increase in the layer thickness is weaker than the [sigma][sup 1/3] prediction of mean-field and scaling theories for the limiting behavior, but is in agreement with recent numerical self-consistent-field calculations by Whitmore and Noolandi [Macromolecules 23, 3321 (1990)].

  19. Directed Assembly of Quantum Dots in Diblock Copolymer Matrix

    DTIC Science & Technology

    2007-08-01

    behavior of a diblock copolymer, PS - b -poly(2-vinylpyridene) ( PS - b - P2VP ). Addition of 2.5-nm-diameter gold nanoparticles, functionalized with short...dispersion of variations in the relative surface coverage by short thiol-terminated PS ligands (3400 g/mol), also in a PS - b - P2VP matrix. As a result of...film of PS - b - P2VP . In that case, the particles were stabilized with tri-n-octylphosphine oxide (TOPO) ligands. When thin films were prepared from

  20. Striped, Ellipsoidal Particles by Controlled Assembly of Diblock Copolymers

    DTIC Science & Technology

    2013-04-17

    morphology to a disordered bicontinuous morphology can be achieved.15,16,26−28 For poly(styrene- b -2-vinylpyridine) ( PS - b - P2VP ) materials, precise control of an...of SNPs, slow evaporation of chloroform from emulsion droplets containing PS - b - P2VP diblock copolymers resulted in solid particles with a spherical...lamellae of PS - b - P2VP and SNP necklaces decorating the outer surface could be obtained. The role of interfacially active SNPs in the morphology

  1. Accurate diblock copolymer phase boundaries at strong segregations

    NASA Astrophysics Data System (ADS)

    Matsen, M. W.; Whitmore, M. D.

    1996-12-01

    We examine the lamellar/cylinder and cylinder/sphere phase boundaries for strongly segregated diblock copolymer melts using self-consistent-field theory (SCFT) and the standard Gaussian chain model. Calculations are performed with and without the conventional unit-cell approximation (UCA). We find that for strongly segregated melts, the UCA simply produces a small constant shift in each of the phase boundaries. Furthermore, the boundaries are found to be linear at strong segregations when plotted versus (χN)-1, which allows for accurate extrapolations to χN=∞. Our calculations using the UCA allow direct comparisons to strong-segregation theory (SST), which is accepted as the χN=∞ limit of SCFT. A significant discrepancy between the SST and SCFT results indicate otherwise, suggesting that the present formulation of SST is incomplete.

  2. Thermal processing of diblock copolymer melts mimics metallurgy

    NASA Astrophysics Data System (ADS)

    Kim, Kyungtae; Schulze, Morgan W.; Arora, Akash; Lewis, Ronald M.; Hillmyer, Marc A.; Dorfman, Kevin D.; Bates, Frank S.

    2017-05-01

    Small-angle x-ray scattering experiments conducted with compositionally asymmetric low molar mass poly(isoprene)-b-poly(lactide) diblock copolymers reveal an extraordinary thermal history dependence. The development of distinct periodic crystalline or aperiodic quasicrystalline states depends on how specimens are cooled from the disordered state to temperatures below the order-disorder transition temperature. Whereas direct cooling leads to the formation of documented morphologies, rapidly quenched samples that are then heated from low temperature form the hexagonal C14 and cubic C15 Laves phases commonly found in metal alloys. Self-consistent mean-field theory calculations show that these, and other associated Frank-Kasper phases, have nearly degenerate free energies, suggesting that processing history drives the material into long-lived metastable states defined by self-assembled particles with discrete populations of volumes and polyhedral shapes.

  3. Investigation of Universal Behavior in Symmetric Diblock Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Medapuram, Pavani

    Coarse-grained theories of dense polymer liquids such as block copolymer melts predict a universal dependence of equilibrium properties on a few dimensionless parameters. For symmetric diblock copolymer melts, such theories predict a universal dependence on only chieN and N¯, where chie is an effective interaction parameter, N is the degree of polymerization, and N¯ is a measure of overlap. This thesis focuses on testing the universal behavior hypothesis by comparing results for various properties obtained from different coarse-grained simulation models to each other. Specifically, results from pairs of simulations of different models that have been designed to have matched values of N¯ are compared over a range of values of chiN. The use of vastly different simulation models allows us to cover a vast range of chi eN ≃ 200 - 8000 that includes most of the experimentally relevant range. Properties studied here include collective and single-chain correlations in the disordered phase, block and chain radii of gyration in the disordered phase, the value of chieN at the order-disorder transition (ODT), the free energy per chain, the latent heat of transition, the layer spacing, the composition profile, and compression modulus in the ordered phase. All results strongly support the universal scaling hypothesis, even for rather short chains, confirming that it is indeed possible to give an accurate universal description of simulation models that differ in many details. The underlying universality becomes apparent, however, only if data are analyzed using an adequate estimate of chie, which we obtained by fitting the structure factor S( q) in the disordered state to predictions of the recently developed renormalized one-loop (ROL) theory. The ROL theory is shown to provide an excellent description of the dependence of S(q on chain length and thermodynamic conditions for all models, even for very short chains, if we allow for the existence of a nonlinear dependence of

  4. Dynamics of Disordered PI-PtBS Diblock Copolymer

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi

    2009-03-01

    Viscoelastic (G^*) and dielectric (ɛ'') data were examined for a LCST-type diblock copolymer composed of polyisoprene (PI; M = 53K) and poly(p-tert- butyl styrene) (PtBS; M = 42K) blocks disordered at T <=120 C^o. Only PI had the type-A dipole parallel along the chain backbone. Thus, the ɛ'' data reflected the global motion of the PI block, while the G^* data detected the motion of the copolymer chain as a whole. Comparison of these data indicated that the PI block relaxed much faster than the PtBS block at low T and the dynamic heterogeneity due to PtBS was effectively quenched to give a frictional nonuniformity for the PI block relaxation. The ɛ'' data were thermo-rheologically complex at low T, partly due to this nonuniformity. However, the block connectivity could have also led to the complexity. For testing this effect, the ɛ'' data were reduced at the iso- frictional state defined with respect to bulk PI. In this state, the ɛ'' data of the copolymer at low and high T, respectively, were close to the data for the star-branched and linear bulk PI. Thus, the PI block appeared to be effectively tethered in space at low T thereby behaving similarly to the star arm while the PI block tended to move cooperatively with the PtBS block at high T to behave similarly to the linear PI, which led to the complexity of the ɛ'' data. The PtBS block also exhibited the complexity (noted from the G^* data), which was well correlated with the complexity of the PI block.

  5. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  6. Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes

    SciTech Connect

    Gustafson, Kyle T.

    2016-09-08

    Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm 2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperaturemore » (T g ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below T g. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).« less

  7. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    SciTech Connect

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  8. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    DOE PAGES

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; ...

    2015-02-03

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  9. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    SciTech Connect

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this work, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate-monomer and monomer-monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals thatmore » in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. Finally, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  10. Dodecagonal quasicrystalline order in a diblock copolymer melt.

    PubMed

    Gillard, Timothy M; Lee, Sangwoo; Bates, Frank S

    2016-05-10

    We report the discovery of a dodecagonal quasicrystalline state (DDQC) in a sphere (micelle) forming poly(isoprene-b-lactide) (IL) diblock copolymer melt, investigated as a function of time following rapid cooling from above the order-disorder transition temperature (TODT = 66 °C) using small-angle X-ray scattering (SAXS) measurements. Between TODT and the order-order transition temperature TOOT = 42 °C, an equilibrium body-centered cubic (BCC) structure forms, whereas below TOOT the Frank-Kasper σ phase is the stable morphology. At T < 40 °C the supercooled disordered state evolves into a metastable DDQC that transforms with time to the σ phase. The times required to form the DDQC and σ phases are strongly temperature dependent, requiring several hours and about 2 d at 35 °C and more than 10 and 200 d at 25 °C, respectively. Remarkably, the DDQC forms only from the supercooled disordered state, whereas the σ phase grows directly when the BCC phase is cooled below TOOT and vice versa upon heating. A transition in the rapidly supercooled disordered material, from an ergodic liquid-like arrangement of particles to a nonergodic soft glassy-like solid, occurs below ∼40 °C, coincident with the temperature associated with the formation of the DDQC. We speculate that this stiffening reflects the development of particle clusters with local tetrahedral or icosahedral symmetry that seed growth of the temporally transient DDQC state. This work highlights extraordinary opportunities to uncover the origins and stability of aperiodic order in condensed matter using model block polymers.

  11. Kinetics of pattern formation in symmetric diblock copolymer melts

    NASA Astrophysics Data System (ADS)

    Ren, Yongzhi; Müller, Marcus

    2018-05-01

    In equilibrium, copolymers self-assemble into spatially modulated phases with long-range order. When the system is quenched far below the order-disorder transition temperature, however, such an idealized, defect-free structure is difficult to obtain in experiments and simulations, instead a fingerprint-like structure forms. The relaxation toward long-range order is very protracted because it involves numerous thermally activated processes, and the rugged free-energy landscape has been likened to that of glass-forming systems. Using large-scale particle-based simulations of high-aspect-ratio, quasi-two-dimensional systems with periodic boundary condition, we study the kinetics of structure formation in symmetric, lamella-forming diblock copolymers after a quench from the disordered state. We characterize the ordering process by the correlation length of the lamellar structure and its Euler characteristic and observe that the growth of the correlation length and the rate of change of the Euler characteristic significantly slow down in the range of incompatibilities, 15 ≤ χN ≤ 20, studied. The increase of the time scale of ordering is, however, gradual. The density fields of snapshots of the particle-based simulations are used as starting values for self-consistent field theory (SCFT) calculations. The latter converge to the local, metastable minimum of the free-energy basin. This combination of particle-based simulations and SCFT calculations allows us to relate an instantaneous configuration of the particle-based model to a corresponding metastable free-energy minimum of SCFT—the inherent morphology—and we typically observe that a change of a free-energy basin is associated with a change of the Euler characteristic of the particle-based morphology, i.e., changes of free-energy basins are correlated to changes of the domain topology. Subsequently, we employ the string method in conjunction with SCFT to study the minimum free-energy paths (MFEPs) of changes

  12. Biocompatible Polysiloxane-Containing Diblock Copolymer PEO-b-PγMPS for Coating Magnetic Nanoparticles

    PubMed Central

    Chen, Hongwei; Wu, Xinying; Duan, Hongwei; Wang, Y. Andrew; Wang, Liya; Zhang, Minming; Mao, Hui

    2009-01-01

    We report a biocompatible polysiloxane containing amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS), for coating and stabilizing nanoparticles for biomedical applications. Such amphiphilic diblock copolymer which comprises both a hydrophobic segment with “surface anchoring moiety” (silane group) and a hydrophilic segment with PEO (Mn=5000 g/mol) was obtained by the reversible addition fragmentation chain transfer (RAFT) polymerization using the PEO macromolecular chain transfer agent. When used for coating paramagnetic iron oxide nanoparticles (IONPs), copolymers were mixed with hydrophobic oleic acid coated core size uniformed IONPs (D=13 nm) in co-solvent tetrahydrofuran. After being aged over a period of time, resulting monodispersed IONPs can be transferred into aqueous medium. With proper PγMPS block length (Mn=10,000 g/mol), polysiloxane containing diblock copolymers formed a thin layer of coating (~3 nm) around monocrystalline nanoparticles as measured by transmission electron microscopy (TEM). Magnetic resonance imaging (MRI) experiments showed excellent T2 weighted contrast effect from coated IONPs with a transverse relaxivity r2=98.6 mM−1s−1 (at 1.5 Tesla). Such thin coating layer has little effect on the relaxivity when compared to that of IONPs coated with conventional amphiphilic copolymer. Polysiloxane containing diblock copolymer coated IONPs are stable without aggregation or binding to proteins in serum when incubated for 24 h in culture medium containing 10% serum. Furthermore, much lower level of intracellular uptake by macrophage cells was observed with polysiloxane containing diblock copolymers coated IONPs, suggesting the reduction of non-specific cell uptakes and antibiofouling effect. PMID:20161520

  13. Synthesis and Characterization of Fluorescently Labeled Diblock Copolymers for Location-Specific Measurements of The Glass Transition Temperature

    NASA Astrophysics Data System (ADS)

    Christie, Dane; Register, Richard; Priestley, Rodney

    Interfaces play a determinant role in the size dependence of the glass transition temperature (Tg) of polymers confined to nanometric length scales. Interfaces are intrinsic in diblock copolymers, which, depending on their molecular weight and composition, are periodically nanostructured in the bulk. As a result diblock copolymers are model systems for characterizing the effect of interfaces on Tg in bulk nanostructured materials. Investigating the effect of intrinsic interfaces on Tg in diblock copolymers has remained unexplored due to their small periodic length scale. By selectively incorporating trace amounts of a fluorescent probe into a diblock copolymer, Tg can be characterized relative to the diblock copolymer's intrinsic interface using fluorescence spectroscopy. Here, pyrene is selectively incorporated into the poly(methyl methacrylate) (PMMA) block of lamellar forming diblock copolymers of poly(butyl- b-methyl methacrylate) (PBMA-PMMA). Preliminary results show a correlation of Tg as measured by fluorescence with the onset of Tg as measured by calorimetry in labeled homopolymers of PMMA. This result is consistent with previous characterizations of Tg using fluorescence spectroscopy. In selectively labeled diblock copolymers Tg is found to vary systematically depending on the distance of the probe from the PBMA-PMMA interface. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF Grant DMR 1420541.

  14. Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm

    NASA Astrophysics Data System (ADS)

    Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas

    2012-02-01

    Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.

  15. Long Range In-Plane Order of Oriented Diblock Copolymer Thin Films by Graphoepitaxy

    NASA Astrophysics Data System (ADS)

    Fontana, Scott; Dadmun, Mark; Lowndes, Douglas

    2003-03-01

    Previous work by Russell and coworkers has demonstrated that controlling the interfacial energies and wetting behavior of an asymmetric diblock copolymer enables the control of the orientation of its microphases. In particular the cylindrical phase can be readily aligned perpendicular to a substrate when it is placed on a surface that is neutral to both components of the copolymer. The minor phase, PMMA may then be removed using UV radiation leaving a nanoporous template. In this work, we will report long range, in-plane ordering of the hexagonally packed nanopores that is achieved using graphoepitaxy. The long range ordered and vertically aligned diblock copolymer film can be used to produce arrays of catalytic nickel dots, which grow vertically aligned carbon nano-fibers (VACNF), resulting in a well ordered array of VACNFs.

  16. Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates

    NASA Astrophysics Data System (ADS)

    Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P.

    2000-12-01

    We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 × 1011 wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

  17. Self-consistent field theory and numerical scheme for calculating the phase diagram of wormlike diblock copolymers

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Chen, Jeff Z. Y.

    2013-10-01

    This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper.

  18. Morphological transformations of diblock copolymers in binary solvents: A simulation study

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Yin, Yuhua; Jiang, Run; Li, Baohui

    2017-12-01

    Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer-solvent interactions ɛ ij ( i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ɛ AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ɛ BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ɛ AS2.

  19. Square and Rectangular Arrays from Directed Assembly of Sphere-forming Diblock Copolymers in Thin Films

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    Patterns of square and rectangular arrays with nanoscale dimensions are scientifically and technologically important. Fabrication of square array patterns in thin films has been demonstrated by directed assembly of cylinder-forming diblock copolymers on chemically patterned substrates, supramolecular assembly of diblock copolymers, and self-assembly of triblock terpolymers. However, a macroscopic area of square array patterns with long-range order has not been achieved, and the fabrication of rectangular arrays has not been reported so far. Here we report a facile approach for fabricating patterns of square and rectangular arrays by directing the assembly of sphere-forming diblock copolymers on chemically patterned substrates. On stripe patterns, a square arrangement of half spheres, corresponding to the (100) plane of the body-centred cubic (BCC) lattice, formed on film surfaces. When the underlying pattern periods mismatched with the copolymer period, the square pattern could be stretched (up to ˜60%) or compressed (˜15%) to form rectangular arrays. Monte Carlo simulations have been further used to verify the experimental results and the 3-dimensional arrangements of spheres.

  20. The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double-Comb Diblock Copolymers.

    PubMed

    Hofman, Anton H; Reza, Mehedi; Ruokolainen, Janne; Ten Brinke, Gerrit; Loos, Katja

    2017-09-01

    Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Schizophrenic Diblock-Copolymer-Functionalized Nanoparticles as Temperature-Responsive Pickering Emulsifiers.

    PubMed

    Ranka, Mikhil; Katepalli, Hari; Blankschtein, Daniel; Hatton, T Alan

    2017-11-21

    Stimuli-responsive pickering emulsions have received considerable attention in recent years, and the utilization of temperature as a stimulus has been of particular interest. Previous efforts have led to responsive systems that enable the formation of stable emulsions at room temperature, which can subsequently be triggered to destabilize with an increase in temperature. The development of a thermoresponsive system that exhibits the opposite response, however, i.e., one that can be triggered to form stable emulsions at elevated temperatures and subsequently be induced to phase separate at lower temperatures, has so far been lacking. Here, we describe a system that accomplishes this goal by leveraging a schizophrenic diblock copolymer that exhibits both an upper and a lower critical solution temperature. The diblock copolymer was conjugated to 20 nm silica nanoparticles, which were subsequently demonstrated to stabilize O/W emulsions at 65 °C and trigger phase separation upon cooling to 25 °C. The effects of particle concentration, electrolyte concentration, and polymer architecture were investigated, and facile control of emulsion stability was demonstrated for multiple oil types. Our approach is likely to be broadly adaptable to other schizophrenic diblock copolymers and find significant utility in applications such as enhanced oil recovery and liquid-phase heterogeneous catalysis, where stable emulsions are desired only at elevated temperatures.

  2. Simulations of the gyroid phase in diblock copolymers with the Gaussian disphere model

    NASA Astrophysics Data System (ADS)

    Karatchentsev, A.; Sommer, J.-U.

    2010-12-01

    Pure melts of asymmetric diblock copolymers are studied by means of the off-lattice Gaussian disphere model with Monte-Carlo kinetics. In this model, a diblock copolymer chain is mapped onto two soft repulsive spheres with fluctuating radii of gyration and distance between centers of mass of the spheres. Microscopic input quantities of the model such as the combined probability distribution for the radii of gyration and the distance between the spheres as well as conditional monomer number densities assigned to each block were derived in the previous work of F. Eurich and P. Maass [J. Chem. Phys. 114, 7655 (2001)] within an underlying Gaussian chain model. The polymerization degree of the whole chain as well as those of the individual blocks are freely tunable parameters thus enabling a precise determination of the regions of stability of various phases. The model neglects entanglement effects which are irrelevant for the formation of ordered structures in diblock copolymers and which would otherwise unnecessarily increase the equilibration time of the system. The gyroid phase was reproduced in between the cylindrical and lamellar phases in systems with box sizes being commensurate with the size of the unit cell of the gyroid morphology. The region of stability of the gyroid phase was studied in detail and found to be consistent with the prediction of the mean-field theory. Packing frustration was observed in the form of increased radii of gyration of both blocks of the chains located close to the gyroid nodes.

  3. Silacyclobutane-based diblock copolymers with vinylferrocene, ferrocenylmethyl methacrylate, and [1]dimethylsilaferrocenophane.

    PubMed

    Gallei, Markus; Tockner, Stefan; Klein, Roland; Rehahn, Matthias

    2010-05-12

    Well-defined diblock copolymers have been prepared in which three different ferrocene-based monomers are combined with 1,1-dimethylsilacyclobutane (DMSB) and 1-methylsilacyclobutane, respectively, as their carbosilane counterparts. Optimized procedures are reported for the living anionic chain growth following sequential monomer addition protocols, ensuring narrow polydispersities and high blocking efficiencies. The DMSB-containing copolymers show phase segregation in the bulk state, leading to micromorphologies composed of crystalline DMSB phases and amorphous polymetallocene phases. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structure–Conductivity Relationships in Ordered and Disordered Salt-Doped Diblock Copolymer/Homopolymer Blends

    SciTech Connect

    Irwin, Matthew T.; Hickey, Robert J.; Xie, Shuyi

    2016-11-21

    We examine the relationship between structure and ionic conductivity in salt-containing ternary polymer blends that exhibit various microstructured morphologies, including lamellae, a hexagonal phase, and a bicontinuous microemulsion, as well as the disordered phase. These blends consist of polystyrene (PS, M n ≈ 600 g/mol) and poly(ethylene oxide) (PEO, M n ≈ 400 g/mol) homopolymers, a nearly symmetric PS–PEO block copolymer (M n ≈ 4700 g/mol), and lithium bis(trifluoromethane)sulfonamide (LiTFSI). These pseudoternary blends exhibit phase behavior that parallels that of well-studied ternary polymer blends consisting of A and B homopolymers compatibilized by an AB diblock copolymer. The utility of thismore » framework is that all blends have nominally the same number of ethylene oxide, styrene, Li +, and TFSI– units, yet can exhibit a variety of microstructures depending on the relative ratio of the homopolymers to the block copolymer. For the systems studied, the ratio r = [Li +]/[EO] is maintained at 0.06, and the volume fraction of PS homopolymer is kept equal to that of PEO homopolymer plus salt. The total volume fraction of homopolymer is varied from 0 to 0.70. When heated through the order–disorder transition, all blends exhibit an abrupt increase in conductivity. However, analysis of small-angle X-ray scattering data indicates significant structure even in the disordered state for several blend compositions. By comparing the nature and structure of the disordered states with their corresponding ordered states, we find that this increase in conductivity through the order–disorder transition is most likely due to the elimination of grain boundaries. In either disordered or ordered states, the conductivity decreases as the total amount of homopolymer is increased, an unanticipated observation. This trend with increasing homopolymer loading is hypothesized to result from an increased density of “dead ends” in the conducting channel due to

  5. Preparation and properties of immobilized pectinase onto the amphiphilic PS-b-PAA diblock copolymers.

    PubMed

    Lei, Zhongli; Bi, Shuxian

    2007-01-30

    Well-defined amphiphilic block copolymers poly(styrene-b-acrylic acid) (PS-b-PAA) with controlled block length were synthesized using atom transfer radical polymerization (ATRP). Pectinase enzyme was immobilized on the well-defined amphiphilic block copolymers PS-b-PAA. The carboxyl groups on the amphiphilic PS-b-PAA diblock copolymers present a very simple, mild, and time-saving process for enzyme immobilization. Various characteristics of immobilized pectinase such as the pH and temperature stability, thermal stability, and storage stability were valuated. Among them the pH optimum and temperature optimum of free and immobilized pectinase were found to be pH 6.0 and 65 degrees C.

  6. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates.

    PubMed

    Thurn-Albrecht, T; Schotter, J; Kästle, G A; Emley, N; Shibauchi, T; Krusin-Elbaum, L; Guarini, K; Black, C T; Tuominen, M T; Russell, T P

    2000-12-15

    We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

  7. Ordering transition in salt-doped diblock copolymers

    DOE PAGES

    Qin, Jian; de Pablo, Juan J.

    2016-04-26

    Lithium salt-doped block copolymers offer promise for applications as solid electrolytes in lithium ion batteries. Control of the conductivity and mechanical properties of these materials, for membrane applications relies critically on the ability to predict and manipulate their microphase separation temperature. Past attempts to predict the so-called "order-disorder transition temperature" of copolymer electrolytes have relied on approximate treatments of electrostatic interactions. In this work, we introduce a coarse-grained simulation model that treats Coulomb interactions explicitly, and we use it to investigate the ordering transition of charged block copolymers. The order-disorder transition temperature is determined from the ordering free energy, whichmore » we calculate with a high level of precision using a density-of-states approach. Our calculations allow us to discern a delicate competition between two physical effects: ion association, which raises the transition temperature, and solvent dilution, which lowers the transition temperature. Lastly, in the intermediate salt concentration regime, our results predict that the order-disorder transition temperature increases with salt content, in agreement with available experimental data.« less

  8. Directing self-assembly of gold nanoparticles in diblock copolymer scaffold

    NASA Astrophysics Data System (ADS)

    Li, Qifang; He, Jinbo; Glogowski, Elizabeth; Emrick, Todd; Russell, Thomas

    2007-03-01

    A versatile hierarchical approach for directing self -assembly of gold nanostructures with size 2-3nm in diblock copolymer scaffolds is found. Diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) is used to form a regular scaffold of highly anisotropic, stripe-like domains, and controlled differential wetting by dichloromethane and thermal annealing guides gold nanoparticles with half hydrophilic ligand to aggregate selectively along the scaffold, producing highly organized metal nanostructures. In as-cast block-copolymer and gold nanoparticles thin films, micelle structure and gold nanoparticles random distribution on scaffold are typically observed. However, samples annealed in dichloromethane exhibit well-defined short-range ordered nanostructure with gold nanoparticles located at the interface of PS and P2VP nanoscale domain. After annealing at 170 C, the gold nanoparticles at interface migrated into the middle of P2VP phase and exhibited long-range ordered hierarchical structures. Synergistic interactions between the gold nanoparticles and the PS-b-P2VP caused an orientation of the microdomains normal to the film surface.

  9. Multiple patterns of diblock copolymer confined in irregular geometries with soft surface

    NASA Astrophysics Data System (ADS)

    Li, Ying; Sun, Min-Na; Zhang, Jin-Jun; Pan, Jun-Xing; Guo, Yu-Qi; Wang, Bao-Feng; Wu, Hai-Shun

    2015-12-01

    The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.

  10. Patterned Diblock Co-Polymer Thin Films as Templates for Advanced Anisotropic Metal Nanostructures.

    PubMed

    Roth, Stephan V; Santoro, Gonzalo; Risch, Johannes F H; Yu, Shun; Schwartzkopf, Matthias; Boese, Torsten; Döhrmann, Ralph; Zhang, Peng; Besner, Bastian; Bremer, Philipp; Rukser, Dieter; Rübhausen, Michael A; Terrill, Nick J; Staniec, Paul A; Yao, Yuan; Metwalli, Ezzeldin; Müller-Buschbaum, Peter

    2015-06-17

    We demonstrate glancing-angle deposition of gold on a nanostructured diblock copolymer, namely polystyrene-block-poly(methyl methacrylate) thin film. Exploiting the selective wetting of gold on the polystyrene block, we are able to fabricate directional hierarchical structures. We prove the asymmetric growth of the gold nanoparticles and are able to extract the different growth laws by in situ scattering methods. The optical anisotropy of these hierarchical hybrid materials is further probed by angular resolved spectroscopic methods. This approach enables us to tailor functional hierarchical layers in nanodevices, such as nanoantennae arrays, organic photovoltaics, and sensor electronics.

  11. Thermally Stable Gold Nanoparticles with a Crosslinked Diblock Copolymer Shell

    NASA Astrophysics Data System (ADS)

    Jang, Se Gyu; Khan, Anzar; Hawker, Craig J.; Kramer, Edward J.

    2010-03-01

    The use of polymer-coated Au nanoparticles prepared using oligomeric- or polymeric-ligands tethered by Au-S bonds for incorporation into block copolymer templates under thermal processing has been limited due to dissociation of the Au-S bond at T > 100^oC where compromises their colloidal stability. We report a simple route to prepare sub-5nm gold nanoparticles with a thermally stable polymeric shell. An end-functional thiol ligand consisting of poly(styrene-b-1,2&3,4-isoprene-SH) is synthesized by anionic polymerization. After a standard thiol ligand synthesis of Au nanoparticles, the inner PI block is cross-linked through reaction with 1,1,3,3-tetramethyldisiloxane. Gold nanoparticles with the cross-linked shell are stable in organic solvents at 160^oC as well as in block copolymer films of PS-b-P2VP annealed in vacuum at 170^oC for several days. These nanoparticles can be designed to strongly segregate to the PS-P2VP interface resulting in very large Au nanoparticle volume fractions φp without macrophase separation as well as transitions between lamellar and bicontinuous morphologies as φp increases.

  12. Location-Specific Measurements of The Glass Transition Temperature in Fluorescently Labeled Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Christie, Dane; Register, Richard; Priestley, Rodney

    Block copolymers can self-assemble into periodic structures containing a high internal surface area, nanoscale domain periods, and periodically varying composition profiles. Depending on their components, block copolymers may also exhibit variations in their dynamic properties e.g., glass transition temperature (Tg) across the domain period. Measuring the variation of Tg across the domain period of block copolymers has remained a significant challenge due to the nanometer length scale of the domain period. Here we use fluorescence spectroscopy and the selective incorporation of a pyrene-containing methacrylate monomer at various positions along the chain to characterize the distribution of glass transition temperatures across the domain period of an amorphous block copolymer. The pyrene-containing monomer location is determined from the monomer segment distribution calculated using self-consistent field theory. Our model system is a lamella-forming diblock copolymer of poly(butyl methacrylate - b- methyl methacrylate). We show that Tg is asymmetrically distributed across the interface; as the interface is approached, larger gradients in Tg exist in the hard PMMA-rich domain than in the soft PBMA-rich domain. By characterizing Tg of PBMA or PMMA interfacial segments, we show that polymer dynamics at the interface are heterogeneous; there is a 15 K difference in Tg measured between PBMA interfacial segments and PMMA interfacial segments.

  13. Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations

    SciTech Connect

    Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.

    Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less

  14. Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations

    DOE PAGES

    Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.; ...

    2018-04-10

    Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less

  15. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations.

    PubMed

    Gädt, Torben; Ieong, Nga Sze; Cambridge, Graeme; Winnik, Mitchell A; Manners, Ian

    2009-02-01

    Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core-corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder-cylinder and platelet-cylinder connections, respectively, that involve different core-forming metalloblocks.

  16. Temperature-dependent optical properties of gold nanoparticles coated with a charged diblock copolymer and an uncharged triblock copolymer.

    PubMed

    Volden, Sondre; Kjøniksen, Anna-Lena; Zhu, Kaizheng; Genzer, Jan; Nyström, Bo; Glomm, Wilhelm R

    2010-02-23

    We demonstrate that the optical properties of gold nanoparticles can be used to detect and follow stimuli-induced changes in adsorbed macromolecules. Specifically, we investigate thermal response of anionic diblock and uncharged triblock copolymers based on poly(N-isopropylacrylamide) (PNIPAAM) blocks adsorbed onto gold nanoparticles and planar gold surfaces in a temperature range between 25 and 60 degrees C. By employing a palette of analytical probes, including UV-visible spectroscopy, dynamic light scattering, fluorescence, and quartz crystal microbalance with dissipation monitoring, we establish that while the anionic copolymer forms monolayers at both low and high temperature, the neutral copolymer adsorbs as a monolayer at low temperatures and forms multilayers above the cloud point (T(C)). Raising the temperature above T(C) severely affects the optical properties of the gold particle/polymer composites, expelling associated water and altering the immediate surroundings of the gold nanoparticles. This effect, stronger for the uncharged polymer, is related to the amount of polymer adsorbed on the surface, where a denser shell influences the surface plasmon band to a greater degree. This is corroborated with light scattering experiments, which reveal that flocculation of the neutral polymer-coated particles occurs at high temperatures. The flocculation behavior of the neutral copolymer on planar gold surfaces results in multilayer formation. The observed effects are discussed within the framework of the Mie-Drude theory.

  17. Effect of diblock copolymer properties on the photophysical properties of dendrimer silicon phthalocyanine nanoconjugates

    NASA Astrophysics Data System (ADS)

    Chen, Kuizhi; Pan, Sujuan; Zhuang, Xuemei; Lv, Hafei; Que, Shoulin; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-07-01

    1-2 generation poly(benzyl aryl ether) dendrimer silicon phthalocyanines with axially disubstituted cyano terminal functionalities (G n -DSiPc(CN)4 n , (G n = n-generation dendrimer, n = 1-2)) were synthesized. Their structures were characterized by elemental analysis, IR, 1H NMR, and ESI-MS. Polymeric nanoparticles (G n -DSiPc(CN)4 n /m) were formed through encapsulating G n -DSiPc(CN)4 n into three monomethoxyl poly(ethylene glycol)-poly(ɛ-caprolactone) diblock copolymers (MPEG-PCL) with different hydrophilic/hydrophobic proportion, respectively. The effect of dendritic generation and the hydrophilic/hydrophobic proportion of diblock copolymers on the UV/Vis and fluorescence spectra of G n -DSiPc(CN)4 n and G n -DSiPc(CN)4 n /m were studied. The photophysical properties of polymeric nanoparticles exhibited dendritic generation and hydrophilic/hydrophobic proportion dependence. The fluorescence intensities and lifetimes of G n -DSiPc(CN)4 n /m were lower than the corresponding free dendrimer phthalocyanines. G n -DSiPc(CN)4 n encapsulated into MPEG-PCL with hydrophilic/hydrophobic molecular weight ratio 2000:4000 exhibited excellent photophysical property. The mean diameter of MPEG2000-PCL2000 micelles was about 70 nm, which decreased when loaded with G n -DSiPc(CN)4 n .

  18. Real-space evidence of the equilibrium ordered bicontinuous double diamond structure of a diblock copolymer.

    PubMed

    Chu, C Y; Jiang, X; Jinnai, H; Pei, R Y; Lin, W F; Tsai, J C; Chen, H L

    2015-03-14

    The ordered bicontinuous double diamond (OBDD) structure has long been believed to be an unstable ordered network nanostructure, which is relative to the ordered bicontinuous double gyroid (OBDG) structure for diblock copolymers. Using electron tomography, we present the first real-space observation of the thermodynamically stable OBDD structure in a diblock copolymer composed of a stereoregular block, syndiotactic polypropylene-block-polystyrene (sPP-b-PS), in which the sPP tetrapods are interconnected via a bicontinuous network with Pn3̄m symmetry. The OBDD structure underwent a thermally reversible order-order transition (OOT) to OBDG upon heating, and the transition was accompanied with a slight reduction of domain spacing, as demonstrated both experimentally and theoretically. The thermodynamic stability of the OBDD structure was attributed to the ability of the configurationally regular sPP block to form helical segments, even above its melting point, as the reduction of internal energy associated with the helix formation may effectively compensate the greater packing frustration in OBDD relative to that in the tripods of OBDG.

  19. Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.

  20. Molecular Dynamics Study of Polystyrene-b-poly(ethylene oxide) Asymmetric Diblock Copolymer Systems.

    PubMed

    Dobies, M; Makrocka-Rydzyk, M; Jenczyk, J; Jarek, M; Spontak, R J; Jurga, S

    2017-09-12

    Two polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers differing in molecular mass (49 and 78 kDa) but possessing the same PEO cylindrical morphology are examined to elucidate their molecular dynamics. Of particular interest here is the molecular motion of the PEO blocks involved in the rigid amorphous fraction (RAF). An analysis of complementary thermal calorimetry and X-ray scattering data confirms the presence of microphase-separated morphology as well as semicrystalline structure in each copolymer. Molecular motion within the copolymer systems is monitored by dielectric and nuclear magnetic resonance spectroscopies. The results reported herein reveal the existence of two local Arrhenius-type processes attributed to the noncooperative local motion of PEO segments involved in fully amorphous and rigid amorphous PEO microphases. In both systems, two structural relaxations governed by glass-transition phenomena are identified and assigned to cooperative segmental motion in the fully amorphous phase (the α process) and the RAF (the α c process). We measure the temperature dependence of the dynamics associated with all of the processes mentioned above and propose that these local processes are associated with corresponding cooperative segmental motion in both copolymer systems. In marked contrast to the thermal activation of the α process as discerned in both copolymers, the α c process appears to be a sensitive probe of the copolymer nanostructure. That is, the copolymer with shorter PEO blocks exhibits more highly restricted cooperative dynamics of PEO segments in the RAF, which can be explained in terms of the greater constraint imposed by the glassy PS matrix on the PEO blocks comprising smaller cylindrical microdomains.

  1. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles.

    PubMed

    Barouti, Ghislaine; Khalil, Ali; Orione, Clement; Jarnouen, Kathleen; Cammas-Marion, Sandrine; Loyer, Pascal; Guillaume, Sophie M

    2016-02-18

    Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    SciTech Connect

    Simone, Peter M.; Lodge, Timothy P.

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior ofmore » the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].« less

  3. Coupling of microphase separation and dewetting in weakly segregated diblock co-polymer ultrathin films.

    PubMed

    Yan, Derong; Huang, Haiying; He, Tianbai; Zhang, Fajun

    2011-10-04

    We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ∼ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ∼ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films. © 2011 American Chemical Society

  4. Phase Behavior of Binary Blends of High Molecular Weight Diblock Copolymers with a Low Molecular Weight Triblock

    SciTech Connect

    Mickiewicz, Rafal A.; Ntoukas, Eleftherios; Avgeropoulos, Apostolos

    2009-08-26

    Binary blends of four different high molecular weight poly(styrene-b-isoprene) (SI) diblock copolymers with a lower molecular weight poly(styrene-b-isoprene-b-styrene) (SIS) triblock copolymer were prepared, and their morphology was characterized by transmission electron microscopy and ultra-small-angle X-ray scattering. All the neat block copolymers have nearly symmetric composition and exhibit the lamellar morphology. The SI diblock copolymers had number-average molecular weights, Mn, in the range 4.4 x 10{sup 5}--1.3 x 10{sup 6} g/mol and volume fractions of poly(styrene), {Phi}{sub PS}, in the range 0.43--0.49, and the SIS triblock had a molecular weight of Mn 6.2 x 10{sup 4} g/mol with {Phi}{sub PS} =more » 0.41. The high molecular weight diblock copolymers are very strongly segregating, with interaction parameter values, {chi}N, in the range 470--1410. A morphological phase diagram in the parameter space of molecular weight ratio (R = M{sub n}{sup diblock}/1/2M{sub n}{sup triblock}) and blend composition was constructed, with R values in the range between 14 and 43, which are higher than previously reported. The phase diagram revealed a large miscibility gap for the blends, with macrophase separation into two distinct types of microphase-separated domains for weight fractions of SI, w{sub SI} < 0.9, implying virtually no solubility of the much higher molecular weight diblocks in the lower molecular weight triblock. For certain blend compositions, above R 30, morphological transitions from the lamellar to cylindrical and bicontinuous structures were also observed.« less

  5. Synthesis and characterization of arginine-glycine-aspartic peptides conjugated poly(lactic acid-co-L-lysine) diblock copolymer.

    PubMed

    Yu, Hui; Guo, Xiaojuan; Qi, Xueliang; Liu, Peifeng; Shen, Xinyuan; Duan, Yourong

    2008-03-01

    A biodegradable Copolymer of poly(lactic acid-co-lysine)(PLA-PLL) was synthesized by a modified method and novel Arginine-Glycine-Aspartic (RGD) peptides were chemical conjugated to the primary epsilon-amine groups of lysine components in four steps: I to prepare the monomer of 3-(Nepsilon-benzoxycarbonyl-L-lysine)-6-L-methyl-2,5-morpholinedione; II to prepare diblock copolymer poly(lactic acid-co-(Z)-L-lysine) (PLA-PLL(Z)) by ring-opening polymerization of monomer and L,L-lactide with stannous octoate as initiator; III to prepare diblock copolymer PLA-PLL by deprotected the copolymer PLA-PLL(Z) in HBr/HoAc solution; IV the reaction between RGD and the primary epsilon-amine groups of the PLA-PLL. The structure of PLA-PLL-RGD and its precursors were conformed by FTIR-Raman and 1H NMR. Low weight average molecular weight (9,200 g/mol) of the PLA-PLL was obtained and its PDI is 1.33 determined by GPC. The PLA-PLL contained 2.1 mol% lysine groups as determined by 1H NMR using the lysine protecting group's phenyl protons. Therefore, the novel RGD-grafted diblock copolymer is expected to find application in drug carriers for tumor therapy or non-viral DNA carriers for gene therapy.

  6. Conformation and structural changes of diblock copolymers with octopus-like micelle formation in the presence of external stimuli

    NASA Astrophysics Data System (ADS)

    Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.

    2014-04-01

    External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.

  7. Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model

    NASA Astrophysics Data System (ADS)

    Cheng, Qing; Yang, Xiaofeng; Shen, Jie

    2017-07-01

    In this paper, we consider numerical approximations of a hydro-dynamically coupled phase field diblock copolymer model, in which the free energy contains a kinetic potential, a gradient entropy, a Ginzburg-Landau double well potential, and a long range nonlocal type potential. We develop a set of second order time marching schemes for this system using the "Invariant Energy Quadratization" approach for the double well potential, the projection method for the Navier-Stokes equation, and a subtle implicit-explicit treatment for the stress and convective term. The resulting schemes are linear and lead to symmetric positive definite systems at each time step, thus they can be efficiently solved. We further prove that these schemes are unconditionally energy stable. Various numerical experiments are performed to validate the accuracy and energy stability of the proposed schemes.

  8. Crystallization in diblock copolymer thin films at different degrees of supercooling

    NASA Astrophysics Data System (ADS)

    Darko, C.; Botiz, I.; Reiter, G.; Breiby, D. W.; Andreasen, J. W.; Roth, S. V.; Smilgies, D.-M.; Metwalli, E.; Papadakis, C. M.

    2009-04-01

    The crystalline structures in thin films of polystyrene- b -poly(ethylene oxide) (PS- b -PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low and intermediate degrees of supercooling, but of submicrometer size for strong supercooling. Using grazing-incidence wide-angle x-ray scattering, we could determine the grain orientation distribution function which shows that the chain stems are perpendicular to the lamellae at low supercooling, but tilted at intermediate and strong supercooling. These results suggest that, at intermediate and strong supercooling, the crystalline PEO lamellae do not grow homogeneously, but by the formation of small crystallites at the growth front.

  9. Amphiphilic, cross-linkable diblock copolymers for multifunctionalized nanoparticles as biological probes

    NASA Astrophysics Data System (ADS)

    Schmidtke, Christian; Pöselt, Elmar; Ostermann, Johannes; Pietsch, Andrea; Kloust, Hauke; Tran, Huong; Schotten, Theo; Bastús, Neus G.; Eggers, Robin; Weller, Horst

    2013-07-01

    Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium.Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging

  10. Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide

    NASA Astrophysics Data System (ADS)

    Ning, Y.; Fielding, L. A.; Andrews, T. S.; Growney, D. J.; Armes, S. P.

    2015-04-01

    Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source.Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel

  11. Interactions of poly(tert-butyl acrylate)-poly(styrene) diblock copolymers with lipids at the air-water interface.

    PubMed

    Mudgil, Poonam; Dennis, Gary R; Millar, Thomas J

    2006-08-29

    Diblock copolymers with hydrophilic poly(tert-butyl acrylate) (PtBA) and hydrophobic poly(styrene) (PS) blocks were synthesized with a view to use them as a surfactant in tear film for increasing the ocular comfort in dry eye syndrome. Interactions of six PtBA-PS copolymers with four important lipids found in the tear film, namely cholesterol, cholesteryl palmitate, dipalmitoyl phosphatidylcholine, and phosphatidylinositol, were studied at the air-water interface using a Langmuir trough. Thermodynamics of mixing of the copolymers and the lipids in the mixed monolayers was determined by calculating excess free energy of mixing. The diblock copolymers showed repulsive interactions with cholesteol and cholesteryl palmitate, near neutral interactions with dipalmitoyl phosphatidylcholine, and attractive interactions with phosphatidylinositol. The lipids interacted with the PS component of the copolymer. The results indicate that a copolymer with a small hydrophilic group and a big hydrophobic group can be a likely candidate for forming stable interactions with the lipids present in the tear film and hence increase the ocular comfort.

  12. Renormalization of the one-loop theory of fluctuations in polymer blends and diblock copolymer melts.

    PubMed

    Grzywacz, Piotr; Qin, Jian; Morse, David C

    2007-12-01

    Attempts to use coarse-grained molecular theories to calculate corrections to the random-phase approximation (RPA) for correlations in polymer mixtures have been plagued by an unwanted sensitivity to the value of an arbitrary cutoff length, i.e., by an ultraviolet (UV) divergence. We analyze the UV divergence of the inverse structure factor S(-1)(k) predicted by a "one-loop" approximation similar to that used in several previous studies. We consider both miscible homopolymer blends and disordered diblock copolymer melts. We show, in both cases, that all UV divergent contributions can be absorbed into a renormalization of the values of the phenomenological parameters of a generalized self-consistent field theory (SCFT). This observation allows the construction of an UV convergent theory of corrections to SCFT phenomenology. The UV-divergent one-loop contribution to S(-1)(k) is shown to be the sum of (i) a k -independent contribution that arises from a renormalization of the effective chi parameter, (ii) a k-dependent contribution that arises from a renormalization of monomer statistical segment lengths, (iii) a contribution proportional to k(2) that arises from a square-gradient contribution to the one-loop fluctuation free energy, and (iv) a k-dependent contribution that is inversely proportional to the degree of polymerization, which arises from local perturbations in fluid structure near chain ends and near junctions between blocks in block copolymers.

  13. Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Majewski, Pawel; Larson, Steven; Yager, Kevin; Gopalan, Padma; Avgeropoulos, Apostolos; Chan, Edwin; Osuji, Chinedum

    Magnetic fields can control alignment of self-assembled soft materials such as block copolymers provided there is a suitably large magnetic susceptibility anisotropy present in the system. Recent results have highlighted the existence of a non-trivial intrinsic anisotropy in coil-coil diblock copolymers, specifically in lamellar-forming PS-b-P4VP, which enables alignment at field strengths of a few tesla in systems lacking mesogenic components. Alignment is predicated on correlation in the orientation of end-end vectors implied by the localization of block junctions at the microdomain interface and is observed on cooling across the order-disorder transition in the presence of the field. For appropriate combinations of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly of many non-mesogenic systems, including other coil-coil BCPs like PS-b-PDMS and PS-b-PMMA, blends of BCPs of disparate morphologies and MWs, and blends of BCPs with homopolymers. This is noteworthy as blends of PS-b-P4VP with PEO provide a route to form functional materials such as nanoporous films by dissolution of PEO, or aligned ion conduction materials. We survey these various systems using TEM and in-situ X-ray scattering to study the phase behavior and temperature-, time- and field- dependent dynamics of alignment.

  14. Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.

    PubMed

    Zhao, Junnan; Sakellariou, Georgios; Green, Peter F

    2016-05-07

    We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.

  15. Directed Self-Assembly of Diblock Copolymer Thin Films on Prepatterned Metal Nanoarrays.

    PubMed

    Chang, Tongxin; Huang, Haiying; He, Tianbai

    2016-01-01

    The sequential layer by layer self-assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large-scale highly ordered metal nano-arrays prepared from solvent annealed thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle-substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self-assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle-substrate interaction and nanoparticle-polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nanoparticle Encapsulation in Diblock Copolymer/Homopolymer Blend Thin Film Mixtures

    NASA Astrophysics Data System (ADS)

    Zhao, Junnan; Chen, Xi; Green, Peter

    2014-03-01

    We investigated the organization of low concentrations of poly (2-vinylpyridine) (P2VP) grafted gold nanoparticles within a diblock copolymer polystyrene-b-poly (2-vinylpyridine) (PS-b-P2VP)/homopolymer polystyrene (PS) blend thin film. The PS-b-P2VP copolymers formed micelles, composed of inner cores of P2VP block and outer coronae of PS blocks, throughout the homopolymer PS. All nanoparticles were encapsulated within micelle cores and each micelle contained one or no nanoparticle, on average. When the host PS chains are much longer than corona chains, micelles tended to self-organize at the interfaces. Otherwise, they were dispersed throughout the PS host. In comparison to the neat PS-b-P2VP/PS blend, the nanoparticles/PS-b-P2VP/PS system had a higher density of smaller micelles, influenced largely by the number of nanoparticles in the system. The behavior of this system is understood in terms of the maximization of the nanoparticle/micelle core interactions and of the translational entropies of the micelles and the nanoparticles.

  17. Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)-block-polystyrene Diblock Copolymer Thin Film

    PubMed Central

    Huang, Xiaohua

    2013-01-01

    The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862

  18. Diblock copolymers of polystyrene- b-poly(1,3-cyclohexadiene) exhibiting unique three-phase microdomain morphologies

    DOE PAGES

    Misichronis, Konstantinos; Chen, Jihua; Kahk, Jong K.; ...

    2016-03-29

    Here, the synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS- b-PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ Φ PS ≤ 0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)–shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strongmore » dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS- b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1564–1572« less

  19. Influence of composition fluctuations on the linear viscoelastic properties of symmetric diblock copolymers near the order-disorder transition

    SciTech Connect

    Hickey, Robert J.; Gillard, Timothy M.; Lodge, Timothy P.

    2015-08-28

    Rheological evidence of composition fluctuations in disordered diblock copolymers near the order disorder transition (ODT) has been documented in the literature over the past three decades, characterized by a failure of time–temperature superposition (tTS) to reduce linear dynamic mechanical spectroscopy (DMS) data in the terminal viscoelastic regime to a temperature-independent form. However, for some materials, most notably poly(styrene-b-isoprene) (PS–PI), no signature of these rheological features has been found. We present small-angle X-ray scattering (SAXS) results on symmetric poly(cyclohexylethylene-b-ethylene) (PCHE–PE) diblock copolymers that confirm the presence of fluctuations in the disordered state and DMS measurements that also show no sign ofmore » the features ascribed to composition fluctuations. Assessment of DMS results published on five different diblock copolymer systems leads us to conclude that the effects of composition fluctuations can be masked by highly asymmetric block dynamics, thereby resolving a long-standing disagreement in the literature and reinforcing the importance of mechanical contrast in understanding the dynamics of ordered and disordered block polymers.« less

  20. Probing the Effect of Molecular Nonuniformity in Directed Self-Assembly of Diblock Copolymers in Nanoconfined Space.

    PubMed

    Pitet, Louis M; Alexander-Moonen, Els; Peeters, Emiel; Druzhinina, Tamara S; Wuister, Sander F; Lynd, Nathaniel A; Meijer, E W

    2015-10-27

    Various complex self-assembled morphologies of lamellar- and cylinder-forming block copolymers comprising poly(dimethylsiloxane)-b-polylactide (PDMS-b-PLA) confined in cylindrical channels were generated. Combining top-down lithography with bottom-up block copolymer self-assembly grants access to morphologies that are otherwise inaccessible with the bulk materials. Channel diameter (D) was systematically varied with four diblock copolymers having different compositions and bulk domain spacing (L0), corresponding to a range of frustration ratios (D/L0 from 2 to 4). Excessive packing frustration imposed by the channels leads to contorted domains. The resulting morphologies depend strongly on both D/L0 and copolymer composition. Under several circumstances, mixtures of complex morphologies were observed, which hypothetically arise from the severe sensitivity to D/L0 combined with the inherent compositional/molar mass dispersities associated with the nonuniform synthetic materials and silicon templates. Stochastic calculations offer compelling support for the hypothesis, and tractable pathways toward solving this apparent conundrum are proposed. The materials hold great promise for next-generation nanofabrication to address several emerging technologies, offering significantly enhanced versatility to basic diblock copolymers as templates for fabricating complex nanoscale objects.

  1. Dynamical self-arrest in symmetric and asymmetric diblock copolymer melts using a replica approach within a local theory.

    PubMed

    Wu, Sangwook

    2009-03-01

    We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.

  2. On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation

    NASA Astrophysics Data System (ADS)

    Sandhu, Paramvir; Zong, Jing; Yang, Delian; Wang, Qiang

    2013-05-01

    To highlight the importance of quantitative and parameter-fitting-free comparisons among different models/methods, we revisited the comparisons made by Groot and Madden [J. Chem. Phys. 108, 8713 (1998), 10.1063/1.476300] and Chen et al. [J. Chem. Phys. 122, 104907 (2005), 10.1063/1.1860351] between their dissipative particle dynamics (DPD) simulations of the DPD model and the self-consistent field (SCF) calculations of the "standard" model done by Matsen and Bates [Macromolecules 29, 1091 (1996), 10.1021/ma951138i] for diblock copolymer (DBC) A-B melts. The small values of the invariant degree of polymerization used in the DPD simulations do not justify the use of the fluctuation theory of Fredrickson and Helfand [J. Chem. Phys. 87, 697 (1987), 10.1063/1.453566] by Groot and Madden, and their fitting between the DPD interaction parameters and the Flory-Huggins χ parameter in the "standard" model also has no rigorous basis. Even with their use of the fluctuation theory and the parameter-fitting, we do not find the "quantitative match" for the order-disorder transition of symmetric DBC claimed by Groot and Madden. For lamellar and cylindrical structures, we find that the system fluctuations/correlations decrease the bulk period and greatly suppress the large depletion of the total segmental density at the A-B interfaces as well as its oscillations in A- and B-domains predicted by our SCF calculations of the DPD model. At all values of the A-block volume fractions in the copolymer f (which are integer multiples of 0.1), our SCF calculations give the same sequence of phase transitions with varying χN as the "standard" model, where N denotes the number of segments on each DBC chain. All phase boundaries, however, are shifted to higher χN due to the finite interaction range in the DPD model, except at f = 0.1 (and 0.9), where χN at the transition between the disordered phase and the spheres arranged on a body-centered cubic lattice is lower due to N = 10 in the DPD

  3. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    An, Hyosung; Mike, Jared; Smith, Kendall; Swank, Lisa; Lin, Yen-Hao; Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie

    Structural energy storage materials combining load-bearing mechanical properties and high energy storage performance are desired for applications in wearable devices or flexible displays. Vanadium pentoxide (V2O5) is a promising cathode material for possible use in flexible battery electrodes, but it remains limited by low Li+ diffusion coefficient and electronic conductivity, severe volumetric changes upon cycling, and limited mechanical flexibility. Here, we demonstrate a route to address these challenges by blending a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT- b-PEO), with V2O5 to form a mechanically flexible, electro-mechanically stable hybrid electrode. V2O5 layers were arranged parallel in brick-and-mortar-like fashion held together by the P3HT- b-PEO binder. This unique structure significantly enhances mechanical flexibility, toughness and cyclability without sacrificing capacity. Electrodes comprised of 10 wt% polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes.

  4. A comparison of plasmid DNA delivery efficiency and cytotoxicity of two cationic diblock polyoxazoline copolymers

    NASA Astrophysics Data System (ADS)

    Lehner, Roman; Liu, Kegang; Wang, Xueya; Wolf, Marc; Hunziker, Patrick

    2017-04-01

    Cationic polymers as non-viral gene delivery carriers are widely used because of their strong condensing properties and long-term safety, but acute cytotoxicity is a persistent challenge. In this study, two types of polyplexes were prepared by co-formulating plasmid DNA and two cationic diblock copolymers PABOXA5-b-PMOXA33-PA (primary amine) and PABOXA5-b-PMOXA33-TA (tertiary amine) to check their transfection efficacies in HeLa cells and HEK293T cells, respectively. The plasmid DNA/PABOXA5-b-PMOXA33-PA polyplex showed higher transfection efficacy compared to the plasmid DNA/PABOXA5-b-PMOXA33-TA polyplex under an N/P ratio of 40. Both polymers exhibited low toxicity, attributed to the shielding effect of a hydrophilic, noncharged block. Mechanistic insight into differential transfection efficiencies of the polymers were gained by visualization and comparison of the condensates via transmission electron and atomic force microscopy. The results provide information suited for further structure optimization of polymers that are aimed for targeted gene delivery.

  5. High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates.

    PubMed

    Li, Xue; Lau, King Hang Aaron; Kim, Dong Ha; Knoll, Wolfgang

    2005-05-24

    Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.

  6. Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films

    SciTech Connect

    Dehghan, Ashkan; Shi, An-Chang; Schick, M.

    We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates.more » In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.« less

  7. Disorder-to-order transitions induced by alkyne/azide click chemistry in diblock copolymer thin films.

    SciTech Connect

    Wei, X.; Gu, W.; Chen, W.

    2012-01-01

    We investigated thin film morphologies of binary blends of alkyne-functionalized diblock copolymer poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) and Rhodamine B azide, where the thermal alkyne/azide click reaction between the two components induced a disorder-to-order transition (DOT) of the copolymer. By controlling the composition of the neat copolymers and the mole ratio between the alkyne and azide groups, different microphase separated morphologies were achieved. At higher azide loading ratios, a perpendicular orientation of the microdomains was observed with wide accessible film thickness window. As less azide was incorporated, the microdomains have a stronger tendency to be parallel to the substrate, andmore » the film thickness window for perpendicular orientation also became narrower.« less

  8. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    SciTech Connect

    Zhang, Bo; Edwards, Brian J., E-mail: bje@utk.edu

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated withmore » the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.« less

  9. Supramolecular Assembly of Gold Nanoparticles in PS-b-P2VP Diblock Copolymers via Hydrogen Bonding

    NASA Astrophysics Data System (ADS)

    Jang, Se Gyu; Hawker, Craig J.; Kramer, Edward J.

    2011-03-01

    We report a simple route to control the spatial distribution of Au nanoparticles (Au-NPs) in PS- b -P2VP diblock copolymers using hydrogen bonding between P2VP and the hydroxyl-containing (PI-OH) units in PS- b -PIOH thiol-terminated ligands on Au-NP. End-functional thiol ligands of poly(styrene- b -1,2&3,4-isoprene-SH) are synthesized by anionic polymerization. After synthesis of Au-NPs, the inner PI block is hydroxylated by hydroboration and the resulting micelle-like Au-NPs consist of a hydrophobic PS outer brush and a hydrophilic inner PI-OH block. The influence of the hydroxyl groups is significant with strong segregation being observed to the PS/P2VP interface and then to the P2VP domain of lamellar-forming PS-b-P2VP diblock copolymers as the length of the PI-OH block is increased. The strong hydrogen bonding between nanoparticle block copolymer ligands and the P2VP block allows the Au-NPs to be incorporated within the P2VP domain to high Au--NP volume fractions ϕp without macrophase separation, driving transitions from lamellar to bicontinuous morphologies as ϕp increases.

  10. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    PubMed

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  11. Ordering of anisotropic nanoparticles in diblock copolymer lamellae: Simulations with dissipative particle dynamics and a molecular theory.

    PubMed

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V; Gorkunov, Maxim V; Osipov, Mikhail A

    2017-04-14

    Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.

  12. Ordering of anisotropic nanoparticles in diblock copolymer lamellae: Simulations with dissipative particle dynamics and a molecular theory

    NASA Astrophysics Data System (ADS)

    Berezkin, Anatoly V.; Kudryavtsev, Yaroslav V.; Gorkunov, Maxim V.; Osipov, Mikhail A.

    2017-04-01

    Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.

  13. Diblock Copolymer Micelles and Supported Films with Noncovalently Incorporated Chromophores: A Modular Platform for Efficient Energy Transfer

    DOE PAGES

    Adams, Peter G.; Collins, Aaron M.; Sahin, Tuba; ...

    2015-04-08

    Here we report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. Ultimately, this study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

  14. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    PubMed Central

    An, Hyosung; Mike, Jared; Smith, Kendall A.; Swank, Lisa; Lin, Yen-Hao; L. Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie L.

    2015-01-01

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued together with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects. PMID:26391053

  15. Highly Flexible Self-Assembled V 2O 5 Cathodes Enabled by Conducting Diblock Copolymers

    DOE PAGES

    An, Hyosung; Mike, Jared; Smith, Kendall A.; ...

    2015-09-22

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V 2O 5 to form a flexible, tough, carbon-free hybrid battery cathode. V 2O 5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlockingmore » V 2O 5 layers glued together with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V 2O 5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m 3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V 2O 5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects.« less

  16. Porous Diblock Copolymer Thin Films in High-Performance Semiconductor Microelectronics

    SciTech Connect

    Black, C.T.

    2011-02-01

    The engine fueling more than 40 years of performance improvements in semiconductor integrated circuits (ICs) has been industry's ability to pattern circuit elements at ever-higher resolution and with ever-greater precision. Steady advances in photolithography - the process wherein ultraviolet light chemically changes a photosensitive polymer resist material in order to create a latent image - have resulted in scaling of minimum printed feature sizes from tens of microns during the 1980s to sub-50 nanometer transistor gate lengths in today's state-of-the-art ICs. The history of semiconductor technology scaling as well as future technology requirements is documented in the International Technology Roadmapmore » for Semiconductors (ITRS). The progression of the semiconductor industry to the realm of nanometer-scale sizes has brought enormous challenges to device and circuit fabrication, rendering performance improvements by conventional scaling alone increasingly difficult. Most often this discussion is couched in terms of field effect transistor (FET) feature sizes such as the gate length or gate oxide thickness, however these challenges extend to many other aspects of the IC, including interconnect dimensions and pitch, device packing density, power consumption, and heat dissipation. The ITRS Technology Roadmap forecasts a difficult set of scientific and engineering challenges with no presently-known solutions. The primary focus of this chapter is the research performed at IBM on diblock copolymer films composed of polystyrene (PS) and poly(methyl-methacrylate) (PMMA) (PS-b-PMMA) with total molecular weights M{sub n} in the range of {approx}60K (g/mol) and polydispersities (PD) of {approx}1.1. These materials self assemble to form patterns having feature sizes in the range of 15-20nm. PS-b-PMMA was selected as a self-assembling patterning material due to its compatibility with the semiconductor microelectronics manufacturing infrastructure, as well as the

  17. Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer.

    PubMed

    Yi, Fangping; Zheng, Sixun; Liu, Tianxi

    2009-02-19

    Poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) (PTFEA-b-PEO) amphiphilic diblock copolymer was synthesized via the reversible addition-fragmentation transfer polymerization of 2,2,2-triffluroethyl acrylate with dithiobenzoyl-terminated poly(ethylene oxide) as a chain-transfer agent. The amphiphilic diblock copolymer was incorporated into epoxy resin to prepare the nanostructured epoxy thermosets. The nanostructures were investigated by means of atomic force microscopy, small-angle X-ray scattering, and dynamic mechanical analysis. In terms of the miscibility of the subchains of the block copolymer with epoxy after and before curing reaction, it is judged that the formation of the nanostructures follows the mechanism of self-assembly. The static contact angle measurements indicate that the nanostructured thermosets containing PTFEA-b-PEO diblock copolymer displayed a significant enhancement in surface hydrophobicity as well as a reduction in surface free energy. The improvement in surface properties was ascribed to the enrichment of the fluorine-containing subchain (i.e., PTFEA block) of the amphiphilic diblock copolymer on the surface of the nanostructured thermosets, which was evidenced by surface atomic force microscopy and energy-dispersive X-ray spectroscopy.

  18. Control over self-assembly of diblock copolymers on hexagonal and square templates for high area density circuit boards.

    PubMed

    Feng, Jie; Cavicchi, Kevin A; Heinz, Hendrik

    2011-12-27

    Self-assembled diblock copolymer melts on patterned substrates can induce a smaller characteristic domain spacing compared to predefined lithographic patterns and enable the manufacture of circuit boards with a high area density of computing and storage units. Monte Carlo simulation using coarse-grain models of polystyrene-b-polydimethylsiloxane shows that the generation of high-density hexagonal and square patterns is controlled by the ratio N(D) of the surface area per post and the surface area per spherical domain of neat block copolymer. N(D) represents the preferred number of block copolymer domains per post. Selected integer numbers support the formation of ordered structures on hexagonal (1, 3, 4, 7, 9) and square (1, 2, 5, 7) templates. On square templates, only smaller numbers of block copolymer domains per post support the formation of ordered arrays with significant stabilization energies relative to hexagonal morphology. Deviation from suitable integer numbers N(D) increases the likelihood of transitional morphologies between square and hexagonal. Upon increasing the spacing of posts on the substrate, square arrays, nested square arrays, and disordered hexagonal morphologies with multiple coordination numbers were identified, accompanied by a decrease in stabilization energy. Control over the main design parameter N(D) may allow an up to 7-fold increase in density of spherical block copolymer domains per surface area in comparison to the density of square posts and provide access to a wide range of high-density nanostructures to pattern electronic devices.

  19. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene- block-isoprene) diblock copolymer melts

    DOE PAGES

    Jang, Woo -Sik; Koo, Peter; Bryson, Kyle; ...

    2015-12-20

    Here, the static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron micro- scopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene- block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from themore » relationship between the characteristic relaxation time and the wavevector.« less

  20. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene- block-isoprene) diblock copolymer melts

    SciTech Connect

    Jang, Woo -Sik; Koo, Peter; Bryson, Kyle

    Here, the static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron micro- scopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene- block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from themore » relationship between the characteristic relaxation time and the wavevector.« less

  1. Temperature-dependent micellar structures in poly(styrene-b-isoprene) diblock copolymer solutions near the critical micelle temperature

    NASA Astrophysics Data System (ADS)

    Bang, Joona; Viswanathan, Karthik; Lodge, Timothy P.; Park, Moon Jeong; Char, Kookheon

    2004-12-01

    The temperature dependence of the micelle structures formed by poly(styrene-b-isoprene) (SI) diblock copolymers in the selective solvents diethyl phthalate (DEP) and tetradecane (C14), which are selective for the PS and PI blocks, respectively, have been investigated by small angle neutron scattering (SANS). Two nearly symmetric SI diblock copolymers, one with a perdeuterated PS block and the other with a perdeuterated PI block, were examined in both DEP and C14. The SANS scattering length density of the solvent was matched closely to either the core or the corona block. The resulting core and corona contrast data were fitted with a detailed model developed by Pedersen and co-workers. The fits provide quantitative information on micellar characteristics such as aggregation number, core size, overall size, solvent fraction in the core, and corona thickness. As temperature increases, the solvent selectivity decreases, leading to substantial solvent swelling of the core and a decrease in the aggregation number and core size. Both core and corona chains are able to relax their conformations near the critical micelle temperature due to a decrease in the interfacial tension, even though the corona chains are always under good solvent conditions.

  2. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    NASA Astrophysics Data System (ADS)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  3. Unique Pressure Dependence of the Order-Disorder Transition Temperature of a Series of PEP-PDMS Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Mortensen, K.; Almdal, K.; Schwahn, D.; Frielinghaus, H.

    1997-03-01

    Studies of the phase behavior of polymer systems has proven that the sensitivity to fluctuations is much more distinct than originally anticipated based on theoretical arguments. In blends of homo-polymers, studies have revealed that fluctuations give rise to significant re-normalized critical behavior. It has been argued that the free volume causes an entropic contribution to the Flory-Huggins interaction parameter, \\chi, and is thereby responsible for the re-normalized behavior. In block copolymers fluctuations have even more pronounced effects, as it changes the second order critical point at f=0.5 to first order and additional complex phases are stabilized. Measurements of the structure factor S(q) of PEP-PDMS diblock copolymers have revealed unique character in the phase-diagram with re-entrant ordered structure. Moreover, an unexpected singularity in the conformational compressibility, as identified from the peak-position, q, is observed. In contrary to binary polymer blends, pressure does not affect the Ginzburg number.

  4. Sub-10 nm Silicon Nanopillar Fabrication Using Fast and Brushless Thermal Assembly of PS-b-PDMS Diblock Copolymer.

    PubMed

    Garnier, Jérôme; Arias-Zapata, Javier; Marconot, Olivier; Arnaud, Sandrine; Böhme, Sophie; Girardot, Cécile; Buttard, Denis; Zelsmann, Marc

    2016-04-20

    A new approach to obtaining spherical nanodomains using polystyrene-block-polydimethylsiloxane (PS-b-PDMS) is proposed. To reduce drastically the process time, we blended a copolymer with cylindrical morphology with a PS homopolymer. Adding PS homopolymer into a low-molar-mass cylindrical morphology PS-b-PDMS system drives it toward a spherical morphology. Besides, by controlling the as-spun state, spherical PDMS nanodomains could be kept and thermally arranged. This PS-homopolymer addition allows not only an efficient, purely thermal arrangement process of spheres but also the ability to work directly on nontreated silicon substrates. Indeed, as shown by STEM measurements, no PS brush surface treatment was necessary in our study to avoid a PDMS wetting layer at the interface with the Si substrate. Our approach was compared to a sphere-forming diblock copolymer, which needs a longer thermal annealing. Furthermore, GISAXS measurements provided complete information on PDMS sphere features. Excellent long-range order spherical microdomains were therefore produced on flat surfaces and inside graphoepitaxy trenches with a period of 21 nm, as were in-plane spheres with a diameter of 8 nm with a 15 min thermal annealing. Finally, direct plasma-etching transfer into the silicon substrate was demonstrated, and 20 nm high silicon nanopillars were obtained, which are very promising results for various nanopatterning applications.

  5. Preparations, Properties, and Applications of Periodic Nano Arrays using Anodized Aluminum Oxide and Di-block Copolymer

    NASA Astrophysics Data System (ADS)

    Noh, Kunbae

    2011-12-01

    Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique

  6. Phase Behavior of Binary Blends of AB+AC Block Copolymers with compatible B and C blocks

    NASA Astrophysics Data System (ADS)

    Pryamitsyn, Victor; Ganesan, Venkat

    2012-02-01

    Recently the experimental studies of phase behavior of binary blends of PS-b-P2VP and PS-b-PHS demonstrated an interesting effect: blends of symmetric PS-b-P2VP and shorter symmetric (PS-b-PHS) formed cylindrical HEX and spherical BCC phases, while each pure component formed lamellas. The miscibility of P2VP and PHS is caused by the hydrogen bonding between P2VP and PHS,which can be described as a negative Flory ?-parameter between P2VP and PHS. We developed a theory of the microphase segregation of AB+AC blends of diblock copolymers based on strong stretching theory. The main result of our theory is that in the copolymer brush-like layer formed by longer B chain and shorter C chains, the attraction between B and shorter C chains causes relative stretching of short C chains and compression of longer B chains. The latter manifests in an excessive bending force towards the grafting surface (BC|AA interface). Such bending force causes a transition from a symmetric lamella phase to a HEX cylinder or BCC spherical phases with the BC phase being a ``matrix'' component. In a blend of asymmetric BCC sphere forming copolymers (where B and C segments are the minor components), such bending force may unfold BCC spherical phase to a HEX cylinder phase, or even highly uneven lamella phases.

  7. Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor.

    PubMed

    Tang, Jing; Wang, Jie; Shrestha, Lok Kumar; Hossain, Md Shahriar A; Alothman, Zeid Abdullah; Yamauchi, Yusuke; Ariga, Katsuhiko

    2017-06-07

    A series of porous carbon spheres with precisely adjustable mesopores (4-16 nm), high specific surface area (SSA, ∼2000 m 2 g -1 ), and submicrometer particle size (∼300 nm) was synthesized through a facile coassembly of diblock polymer micelles with a nontoxic dopamine source and a common postactivation process. The mesopore size can be controlled by the diblock polymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO) templates, and has an almost linear dependence on the square root of the degree of polymerization of the PS blocks. These advantageous structural properties make the product a promising electrode material for electrochemical capacitors. The electrochemical capacitive performance was studied carefully by using symmetrical cells in a typical organic electrolyte of 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEA BF 4 /AN) or in an ionic liquid electrolyte of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF 4 ), displaying a high specific capacitance of 111 and 170 F g -1 at 1 A g -1 , respectively. The impacts of pore size distribution on the capacitance performance were thoroughly investigated. It was revealed that large mesopores and a relatively low ratio of micropores are ideal for realizing high SSA-normalized capacitance. These results provide us with a simple and reliable way to screen future porous carbon materials for electrochemical capacitors and encourage researchers to design porous carbon with high specific surface area, large mesopores, and a moderate proportion of micropores.

  8. RAFT Aqueous Dispersion Polymerization Yields Poly(ethylene glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies

    PubMed Central

    2013-01-01

    A poly(ethylene glycol) (PEG) macromolecular chain transfer agent (macro-CTA) is prepared in high yield (>95%) with 97% dithiobenzoate chain-end functionality in a three-step synthesis starting from a monohydroxy PEG113 precursor. This PEG113-dithiobenzoate is then used for the reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). Polymerizations conducted under optimized conditions at 50 °C led to high conversions as judged by 1H NMR spectroscopy and relatively low diblock copolymer polydispersities (Mw/Mn < 1.25) as judged by GPC. The latter technique also indicated good blocking efficiencies, since there was minimal PEG113 macro-CTA contamination. Systematic variation of the mean degree of polymerization of the core-forming PHPMA block allowed PEG113-PHPMAx diblock copolymer spheres, worms, or vesicles to be prepared at up to 17.5% w/w solids, as judged by dynamic light scattering and transmission electron microscopy studies. Small-angle X-ray scattering (SAXS) analysis revealed that more exotic oligolamellar vesicles were observed at 20% w/w solids when targeting highly asymmetric diblock compositions. Detailed analysis of SAXS curves indicated that the mean number of membranes per oligolamellar vesicle is approximately three. A PEG113-PHPMAx phase diagram was constructed to enable the reproducible targeting of pure phases, as opposed to mixed morphologies (e.g., spheres plus worms or worms plus vesicles). This new RAFT PISA formulation is expected to be important for the rational and efficient synthesis of a wide range of biocompatible, thermo-responsive PEGylated diblock copolymer nano-objects for various biomedical applications. PMID:24400622

  9. Aqueous self-assembly of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Ghoroghchian, P. Peter; Li, Guizhi; Hammer, Daniel A.; Therien, Michael J.

    2013-10-01

    Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant

  10. Synthesis of Diblock copolymer poly-3-hydroxybutyrate -block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442.

    PubMed

    Tripathi, Lakshmi; Wu, Lin-Ping; Chen, Jinchun; Chen, Guo-Qiang

    2012-04-05

    Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB) block covalently bonded with poly-3-hydroxyhexanoate (PHHx) block were for the first time produced successfully by a recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. The chloroform extracted polymers were characterized by nuclear magnetic resonance (NMR), thermo- and mechanical analysis. NMR confirmed the existence of diblock copolymers consisting of 58 mol% PHB as the short chain length block with 42 mol% PHHx as the medium chain length block. The block copolymers had two glass transition temperatures (Tg) at 2.7°C and -16.4°C, one melting temperature (Tm) at 172.1°C and one cool crystallization temperature (Tc) at 69.1°C as revealed by differential scanning calorimetry (DSC), respectively. This is the first microbial short-chain-length (scl) and medium-chain-length (mcl) PHA block copolymer reported. It is possible to produce PHA block copolymers of various kinds using the recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. In comparison to a random copolymer poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P(HB-co-HHx)) and a blend sample of PHB and PHHx, the PHB-b-PHHx showed improved structural related mechanical properties.

  11. Hydrogen bonding strength of diblock copolymers affects the self-assembled structures with octa-functionalized phenol POSS nanoparticles.

    PubMed

    Lu, Yi-Syuan; Yu, Chia-Yu; Lin, Yung-Chih; Kuo, Shiao-Wei

    2016-02-28

    In this study, the influence of the functional groups by the diblock copolymers of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP), poly(styrene-b-2-vinylpyridine) (PS-b-P2VP), and poly(styrene-b-methyl methacrylate) (PS-b-PMMA) on their blends with octa-functionalized phenol polyhedral oligomeric silsesquioxane (OP-POSS) nanoparticles (NPs) was investigated. The relative hydrogen bonding strengths in these blends follow the order PS-b-P4VP/OP-POSS > PS-b-P2VP/OP-POSS > PS-b-PMMA/OP-POSS based on the Kwei equation from differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopic analyses. Small-angle X-ray scattering and transmission electron microscopic analyses show that the morphologies of the self-assembly structures are strongly dependent on the hydrogen bonding strength at relatively higher OP-POSS content. The PS-b-P4VP/OP-POSS hybrid complex system with the strongest hydrogen bonds shows the order-order transition from lamellae to cylinders and finally to body-centered cubic spheres upon increasing OP-POSS content. However, PS-b-P2VP/OP-POSS and PS-b-PMMA/OP-POSS hybrid complex systems, having relatively weaker hydrogen bonds, transformed from lamellae to cylinder structures at lower OP-POSS content (<50 wt%), but formed disordered structures at relatively high OP-POSS contents (>50 wt%).

  12. Readily available titania nanostructuring routines based on mobility and polarity controlled phase separation of an amphiphilic diblock copolymer.

    PubMed

    Hohn, Nuri; Schlosser, Steffen J; Bießmann, Lorenz; Grott, Sebastian; Xia, Senlin; Wang, Kun; Schwartzkopf, Matthias; Roth, Stephan V; Müller-Buschbaum, Peter

    2018-03-15

    The amphiphilic diblock copolymer polystyrene-block-polyethylene oxide is combined with sol-gel chemistry to control the structure formation of blade-coated foam-like titania thin films. The influence of evaporation time before immersion into a poor solvent bath and polarity of the poor solvent bath are studied. Resulting morphological changes are quantified by scanning electron microscopy (SEM) and grazing incidence small angle X-ray scattering (GISAXS) measurements. SEM images surface structures while GISAXS accesses inner film structures. Due to the correlation of evaporation time and mobility of the polymer template during the phase separation process, a decrease in the distances of neighboring titania nanostructures from 50 nm to 22 nm is achieved. Furthermore, through an increase of polarity of an immersion bath the energetic incompatibility of the hydrophobic block and the solvent can be enhanced, leading to an increase of titania nanostructure distances from 35 nm to 55 nm. Thus, a simple approach is presented to control titania nanostructure in foam-like films prepared via blade coating, which enables an easy upscaling of film preparation.

  13. Functionalization of Cellulose Nanocrystals with PEG-Metal-Chelating Diblock Copolymers via Controlled Conjugation in Aqueous Medium

    NASA Astrophysics Data System (ADS)

    Guo, Melinda

    The surface of cellulose nanocrystals (CNCs) was successfully functionalized with metal chelating diblock copolymers via HyNic-4FB conjugation. Two types of PEG-metal-chelating block polymers with hydrazinonicotinate acetone hydrazine (HyNic) end groups were synthesized: mPEG-PGlu(DTPA) 18-HyNic and mPEG-PGlu(DTPA)25-HyNic. These two polymers both had a methoxy PEG (M ˜ 2000 Da) block that differed in the mean degree of polymerization of the metal-chelating block. They were characterized by 1H NMR spectroscopy and gel-permeation chromatography (GPC). 4-Formylbenzamide (4FB) groups were introduced onto the surface of CNCs and quantified through their reaction with 2-hydrazinopyridine. The polymers were grafted onto the surface of CNCs via bis-aryl hydrazone bond formation, and the kinetics of this reaction was explored by UV/Vis spectroscopy. The CNCs were also labeled with rhodamine and Alexa FluorRTM 488 dyes. Students in our collaborator's group in Pharmacy are examining applications of these materials as radiotherapeutic agents for cancer treatment.

  14. Occlusion of Sulfate-Based Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the Surface Density of Anionic Stabilizer Chains.

    PubMed

    Ning, Yin; Fielding, Lee A; Ratcliffe, Liam P D; Wang, Yun-Wei; Meldrum, Fiona C; Armes, Steven P

    2016-09-14

    Polymerization-induced self-assembly (PISA) offers a highly versatile and efficient route to a wide range of organic nanoparticles. In this article, we demonstrate for the first time that poly(ammonium 2-sulfatoethyl methacrylate)-poly(benzyl methacrylate) [PSEM-PBzMA] diblock copolymer nanoparticles can be prepared with either a high or low PSEM stabilizer surface density using either RAFT dispersion polymerization in a 2:1 v/v ethanol/water mixture or RAFT aqueous emulsion polymerization, respectively. We then use these model nanoparticles to gain new insight into a key topic in materials chemistry: the occlusion of organic additives into inorganic crystals. Substantial differences are observed for the extent of occlusion of these two types of anionic nanoparticles into calcite (CaCO3), which serves as a suitable model host crystal. A low PSEM stabilizer surface density leads to uniform nanoparticle occlusion within calcite at up to 7.5% w/w (16% v/v), while minimal occlusion occurs when using nanoparticles with a high PSEM stabilizer surface density. This counter-intuitive observation suggests that an optimum anionic surface density is required for efficient occlusion, which provides a hitherto unexpected design rule for the incorporation of nanoparticles within crystals.

  15. Biodegradable mucus-penetrating nanoparticles composed of diblock copolymers of polyethylene glycol and poly(lactic-co-glycolic acid)

    PubMed Central

    Yu, Tao; Wang, Ying-Ying; Yang, Ming; Schneider, Craig; Zhong, Weixi; Pulicare, Sarah; Choi, Woo-Jin; Mert, Olcay; Fu, Jie; Lai, Samuel K.; Hanes, Justin

    2013-01-01

    Mucus secretions coating entry points to the human body that are not covered by skin efficiently trap and clear conventional drug carriers, limiting controlled drug delivery at mucosal surfaces. To overcome this challenge, we recently engineered nanoparticles that readily penetrate a variety of human mucus secretions, which we termed mucus-penetrating particles (MPP). Here, we report a new biodegradable MPP formulation based on diblock copolymers of poly(lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA-PEG). PLGA-PEG nanoparticles prepared by a solvent diffusion method rapidly diffused through fresh, undiluted human cervicovaginal mucus (CVM) with an average speed only eightfold lower than their theoretical speed in water. In contrast, PLGA nanoparticles were slowed more than 12,000-fold in the same CVM secretions. Based on the measured diffusivities, as much as 75% of the PLGA-PEG nanoparticles are expected to penetrate a 10-μm-thick mucus layer within 30 min, whereas virtually no PLGA nanoparticles are expected to do so over the same duration. These results encourage further development of PLGA-PEG nanoparticles as mucus-penetrating drug carriers for improved drug and gene delivery to mucosal surfaces. PMID:24205449

  16. Oxygen K edge scattering from bulk comb diblock copolymer reveals extended, ordered backbones above lamellar order-disorder transition

    DOE PAGES

    Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; ...

    2016-12-14

    The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc 12-b-pNte 21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODTmore » corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less

  17. One-step route to the fabrication of highly porous polyaniline nanofiber films by using PS-b-PVP diblock copolymers as templates.

    PubMed

    Li, Xue; Tian, Shengjun; Ping, Yang; Kim, Dong Ha; Knoll, Wolfgang

    2005-10-11

    We report a new method to control both the nucleation and growth of highly porous polyaniline (PANI) nanofiber films using porous poly(styrene-block-2-vinylpyridine) diblock copolymer (PS-b-P2VP) films as templates. A micellar thin film composed of P2VP spheres within a PS matrix is prepared by spin coating a PS-b-P2VP micellar solution onto substrates. The P2VP domains are swollen in a selective solvent of acetic acid, which results in the formation of pores in the block copolymer film. PANI is then deposited onto the substrates modified with such a porous film using electrochemical methods. During the deposition, the nucleation and growth of PANI occur only at the pores of the block copolymer film. After the continued growth of PANI by the electrochemical deposition, a porous PANI nanofiber film is obtained.

  18. One-step synthesis of titania nanoparticles from PS-P4VP diblock copolymer solution

    NASA Astrophysics Data System (ADS)

    Song, Lixin; Lam, Yeng Ming; Boothroyd, Chris; Teo, Puat Wen

    2007-04-01

    Polymeric films containing titania nanoparticles have potential as dielectric films for flexible electronic applications. For this purpose, the nanoparticles must be homogeneously distributed. Self-assembly is emerging as a neat, elegant method for fabricating such nanostructured hybrid materials with well-distributed nanoparticles. In this work, we report a micellar solution approach for the assembly of copolymer-titanium precursor nanostructures in which titania nanoparticles were synthesized. The ratio of the amount of titanium precursor, titanium isopropoxide, to the blocks forming the micellar core, poly(4-vinylpyridine), was found to play a key role in controlling film morphology. A sphere-to-ribbon transition was observed when the amount of titanium isopropoxide was increased. The thin film morphology can be tuned using the precursor-copolymer interaction rather than just the polymer-polymer interaction or the polymer-solution interaction. This method provides yet another way to control the morphology of nanostructures.

  19. Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer

    PubMed Central

    Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.

    2014-01-01

    Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653

  20. Morphology and Surface Energy of a Si Containing Semifluorinated Di-block Copolymer Thin Films.

    NASA Astrophysics Data System (ADS)

    Shrestha, Umesh; Clarson, Stephen; Perahia, Dvora

    2013-03-01

    The structure and composition of an interface influence stability, adhesiveness and response to external stimuli of thin polymeric films. Incorporation of fluorine affects interfacial energy as well as thermal and chemical stability of the layers. The incompatibility between the fluorinated and non-fluorinated blocks induces segregation that leads to long range correlations where the tendency of the fluorine to migrate to interfaces impacts the surface tension of the films. Concurrently Si in a polymeric backbone enhances the flexibility of polymeric chains. Our previous studies of poly trifluoro propyl methyl siloxane-polystyrene thin films with SiF fraction 0.03-0.5 as a function of temperature have shown that the SiF block drives layering parallel to the surface of the diblock. Here in we report the structure and interfacial energies of SiF-PS in the plane of the films, as a function of the volume fraction of the SiF block obtained from Atomic Force microscopy and contact angle measurement studies. This work is supported by NSF DMR - 0907390

  1. Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding.

    PubMed

    Jang, Se Gyu; Kramer, Edward J; Hawker, Craig J

    2011-10-26

    We report a facile strategy to synthesize amphiphilic gold (Au) nanoparticles functionalized with a multilayer, micelle-like structure consisting of a Au core, an inner hydroxylated polyisoprene (PIOH) layer, and an outer polystyrene shell (PS). Careful control of enthalpic interactions via a systematic variation of structural parameters, such as number of hydroxyl groups per ligand (N(OH)) and styrene repeating units (N(PS)) as well as areal chain density of ligands on the Au-core surface (Σ), enables precise control of the spatial distribution of these nanoparticles. This control was demonstrated in a lamellae-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) diblock copolymer matrix, where the favorable hydrogen-bonding interaction between hydroxyl groups in the PIOH inner shell and P2VP chains in the PS-b-P2VP diblock copolymer matrix, driving the nanoparticles to be segregated in P2VP domains, could be counter balanced by the enthalphic penalty of mixing of the PS outer brush with the P2VP domains. By varying N(OH), N(PS), and Σ, the nanoparticles could be positioned in the PS or P2VP domains or at the PS/P2VP interface. In addition, the effect of additives interfering with the hydrogen-bond formation between hydroxyl groups on Au nanoparticles and P2VP chains in a diblock copolymer matrix was investigated, and an interesting pea-pod-like segregation of Au nanoparticles in PS domains was observed.

  2. Shear-induced Long Range Order in Diblock Copolymer Thin Films

    NASA Astrophysics Data System (ADS)

    Ding, Xuan; Russell, Thomas

    2007-03-01

    Shear is a well-established means of aligning block copolymer micro-domains in bulk; cylinder-forming block copolymers respond by orienting cylinder axes parallel to the flow direction, and macroscopic specimens with near-single-crystal texture can be obtained. A stepper motor is a brushless, synchronous electric motor that can divide a full rotation into a large number of steps. With the combination of a stepper motor and several gear boxes in our experiment, we can control the rotating resolution to be as small as 1 x10-4 degree/step. Also, with the help of a customized computer program we can control the motor speed in a very systematical way. By changing parameters such as the weight (or the uniform pressure) and the lateral force we can carry on experiment to examine the effect of lateral shear on different polymer systems such as PS-b-PEO (large χ) and PS-b-P2VP (small χ).

  3. Self-assembly Morphology and Crystallinity Control of Di-block Copolymer Inspired by Spider Silk

    NASA Astrophysics Data System (ADS)

    Huang, Wenwen; Krishnaji, Sreevidhya; Kaplan, David; Cebe, Peggy

    2012-02-01

    To obtain a fuller understanding of the origin of self-assembly behavior, and thus be able to control the morphology of biomaterials with well defined amino acid sequences for tissue regeneration and drug delivery, we created a family of synthetic silk-based block copolymers inspired by the genetic sequences found in spider dragline, HABn and HBAn (n=1,2,3,6), where B = hydrophilic block, A = hydrophobic block, and H is a histidine tag. We assessed the secondary structure of water cast films by Fourier transform infrared spectroscopy (FTIR). The crystallinity was determined by Fourier self-deconvolution of amide I spectra and confirmed by wide angle X-ray diffraction (WAXD). Results indicate that we can control the self-assembled morphology and the crystallinity by varying the block length, and a minimum of 3 A-blocks are required to form beta sheet crystalline regions in water-cast spider silk block copolymers. The morphology and crystallinity can also be tuned by annealing. Thermal properties of water cast films and films annealed at 120 C were determined by differential scanning calorimetry and thermogravimetry. The sample films were also treated with 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) to obtain wholly amorphous samples, and crystallized by exposure to methanol. Using scanning and transmission electron microscopies, we observe that fibrillar networks and hollow micelles are formed in water cast and methanol cast samples, but not in samples cast from HFIP.

  4. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging.

    PubMed

    Tähkä, Sari; Laiho, Ari; Kostiainen, Mauri A

    2014-03-03

    Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as efficient transverse relaxivity (T2 ) contrast agents in magnetic resonance imaging (MRI). Organizing small (D<10 nm) SPIONs into large assemblies can considerably enhance their relaxivity. However, this assembly process is difficult to control and can easily result in unwanted aggregation and precipitation, which might further lead to lower contrast agent performance. Herein, we present highly stable protein-polymer double-stabilized SPIONs for improving contrast in MRI. We used a cationic-neutral double hydrophilic poly(N-methyl-2-vinyl pyridinium iodide-block-poly(ethylene oxide) diblock copolymer (P2QVP-b-PEO) to mediate the self-assembly of protein-cage-encapsulated iron oxide (γ-Fe2 O3 ) nanoparticles (magnetoferritin) into stable PEO-coated clusters. This approach relies on electrostatic interactions between the cationic N-methyl-2-vinylpyridinium iodide block and magnetoferritin protein cage surface (pI≈4.5) to form a dense core, whereas the neutral ethylene oxide block provides a stabilizing biocompatible shell. Formation of the complexes was studied in aqueous solvent medium with dynamic light scattering (DLS) and cryogenic transmission electron microcopy (cryo-TEM). DLS results indicated that the hydrodynamic diameter (Dh ) of the clusters is approximately 200 nm, and cryo-TEM showed that the clusters have an anisotropic stringlike morphology. MRI studies showed that in the clusters the longitudinal relaxivity (r1 ) is decreased and the transverse relaxivity (r2 ) is increased relative to free magnetoferritin (MF), thus indicating that clusters can provide considerable contrast enhancement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Directed self-assembly of diblock copolymers in cylindrical confinement: effect of underfilling and air-polymer interactions on configurations

    NASA Astrophysics Data System (ADS)

    Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.

    2015-03-01

    Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with air-polymer interactions. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and air) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of air), air-polymer surface interaction and polymer-side wall/substrate interactions on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad process windows and ease of manufacturing.

  6. Self-assembled microstructures of confined rod-coil diblock copolymers by self-consistent field theory.

    PubMed

    Yang, Guang; Tang, Ping; Yang, Yuliang; Wang, Qiang

    2010-11-25

    We employ the self-consistent field theory (SCFT) incorporating Maier-Saupe orientational interactions between rods to investigate the self-assembly of rod-coil diblock copolymers (RC DBC) in bulk and especially confined into two flat surfaces in 2D space. A unit vector defined on a spherical surface for describing the orientation of rigid blocks in 3D Euclidean space is discretized with an icosahedron triangular mesh to numerically integrate over rod orientation, which is confirmed to have numerical accuracy and stability higher than that of the normal Gaussian quadrature. For the hockey puck-shaped phases in bulk, geometrical confinement, i.e., the film thickness, plays an important role in the self-assembled structures' transitions for the neutral walls. However, for the lamellar phase (monolayer smectic-C) in bulk, the perpendicular lamellae are always stable, less dependent on the film thicknesses because they can relax to the bulk spacing with less-paid coil-stretching in thin films. In particular, a very thin rod layer near the surfaces is formed even in a very thin film. When the walls prefer rods, parallel lamellae are obtained, strongly dependent on the competition between the degree of the surface fields and film geometrical confinement, and the effect of surface field on lamellar structure as a function of film thickness is investigated. Our simulation results provide a guide to understanding the self-assembly of the rod-coil films with desirable application prospects in the fabrication of organic light emitting devices.

  7. Controlled Growth of CdS Quantum Dot in an Amphiphilic Diblock Copolymer Poly(2-Vinyl Pyridine)-b-Poly(n-Hexyl Isocyanate) Reversed Micelle Nanoreactor.

    PubMed

    Samal, Monica; Mohapatra, Priya Ranjan; Yun, Kyu Sik

    2015-09-01

    A diblock copolymer poly(2-vinyl pyridine)-b-poly(n-hexyl isocyanate) (P2VP-b-PHIC) is used for the present study. It has two blocks; a rod-shaped PHIC block that adopts a helical conformation, and a coil shaped P2VP block. In a polar solvent such as THF both PHIC and P2VP blocks are soluble. In mixtures of two solvents, such as THF and methanol, while the solubility of P2VP component is augmented that of PHIC is decreased leading to formation of reversed micelles. The pyridine nitrogen in P2VP block is a reactive site. It forms complexes with a suitable metal ion, such as Cd2+. The micelle is employed as a nanoreactor for synthesis of CdS quantum dot (QD). In this paper, the micellization behaviour of the copolymer and the use of the micelles for synthesis and controlled growth of CdS nanocrystals are demonstrated.

  8. Sphere-to-rod transition of non-surface-active amphiphilic diblock copolymer micelles: a small-angle neutron scattering study.

    PubMed

    Kaewsaiha, Ploysai; Matsumoto, Kozo; Matsuoka, Hideki

    2007-08-28

    Micellization behavior of amphiphilic diblock copolymers with strong acid groups, poly(hydrogenated isoprene)-block-poly(styrenesulfonate), was investigated by small-angle neutron scattering (SANS). We have reported previously (Kaewsaiha, P.; Matsumoto, K.; Matsuoka, H. Langmuir 2005, 21, 9938) that this strongly ionic amphiphilic diblock copolymer shows almost no surface activity but forms micelles in water. In this study, the size, shape, and internal structures of the micelles formed by these unique copolymers in aqueous solution were duly investigated. The SANS data were well described by the theoretical form factor of a core-shell model and the Pedersen core-corona model. The micellar shape strongly depends on the hydrophobic chain length of the block copolymer. The polymer with the shortest hydrophobic chain was suggested to form spherical micelles, whereas the scattering curves of the longer hydrophobic chain polymers showed a q-1 dependence, reflecting the formation of rodlike micelles. Furthermore, the addition of salt at high concentration also induced the sphere-to-rod transition in micellar shape as a result of the shielding effect of electrostatic repulsion. The corona thickness was almost constant up to the critical salt concentration (around 0.2 M) and then decreased with further increases in salt concentration, which is in qualitatively agreement with existing theories. The spherical/rodlike micelle ratio was also constant up to the critical salt concentration and then decreased. The micelle size and shape of this unique polymer could be described by the common concept of the packing parameter, but the anomalously stable nature of the micelle (up to 1 M NaCl) is a special characteristic.

  9. Mechanical properties of drug loaded diblock copolymer bilayers: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Grillo, Damián A.; Albano, Juan M. R.; Mocskos, Esteban E.; Facelli, Julio C.; Pickholz, Mónica; Ferraro, Marta B.

    2018-06-01

    In this work, we present results of coarse-grained simulations to study the encapsulation of prilocaine (PLC), both neutral and protonated, on copolymer bilayers through molecular dynamics simulations. Using a previously validated membrane model, we have simulated loaded bilayers at different drug concentrations and at low (protonated PLC) and high (neutral PLC) pH levels. We have characterized key structural parameters of the loaded bilayers in order to understand the effects of encapsulation of PLC on the bilayer structure and mechanical properties. Neutral PLC was encapsulated in the hydrophobic region leading to a thickness increase, while the protonated species partitioned between the water phase and the poly(ethylene oxide)-poly(butadiene) (PBD) interface, relaxing the PBD region and leading to a decrease in the thickness. The tangential pressures of the studied systems were calculated, and their components were decomposed in order to gain insights on their compensation. In all cases, it is observed that the loading of the membrane does not significantly decrease the stability of the bilayer, indicating that the system could be used for drug delivery.

  10. Molecular Dynamics Simulations of Ion-Doped Microphase Separated Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Seo, Youngmi; Brown, Jonathan R.; Hall, Lisa M.

    The effects of ion doping on microphase separated block copolymers are crucial to understand for transport applications such as battery electrolytes or fuel cell membranes. Prior experiments and theories have observed interesting trends, e.g. ions generally increase effective χ, broaden the domain interface at high loadings, and significantly change the order-to-disorder transition point. To provide a molecular level understanding of these trends and further information about ion dynamics, in this study, we perform molecular dynamics (MD) simulations using a generic coarse-grained model. We capture the selective ion solvation in one polymer microphase by adding an 1/r4 term to the intermolecular potential to account for the charge induced dipole effect between cations and A monomers. The model was validated by comparing with experimental domain spacing and density profile results. We find that as ions are added, the lamellar interface becomes sharper at first, then broadens with further ion loading, and finally forms a cylindrical morphology. We also observe that the interfacial broadening is retarded as the associative interaction between cations and A monomers or the ion-ion interaction strength is increased. These observations are compared to the results from fluids density functional theory (fDFT) which uses a similar model. We analyze ion dynamics in the model systems and discuss the impacts of ion selectivity and other variables on transport. This material is based upon work supported by the National Science Foundation under Grant 1454343.

  11. Structural Transformation of Diblock Copolymer/Homopolymer Assemblies by Tuning Cylindrical Confinement and Interfacial Interactions.

    PubMed

    Xu, Jiangping; Wang, Ke; Liang, Ruijing; Yang, Yi; Zhou, Huamin; Xie, Xiaolin; Zhu, Jintao

    2015-11-17

    In this study, we report the controllable structural transformation of block copolymer/homopolymer binary blends in cylindrical nanopores. Polystyrene-b-poly(4-vinylpyridine)/homopolystyrene (SVP/hPS) nanorods (NRs) can be fabricated by pouring the polymers into an anodic aluminum oxide (AAO) channel and isolated by selective removal of the AAO membrane. In this two-dimensional (2D) confinement, SVP self-assembles into NRs with concentric lamellar structure, and the internal structure can be tailored with the addition of hPS. We show that the weight fraction and molecular weight of hPS and the diameter of the channels can significantly affect the internal structure of the NRs. Moreover, mesoporous materials with tunable pore shape, size, and packing style can be prepared by selective solvent swelling of the structured NRs. In addition, these NRs can transform into spherical structures through solvent-absorption annealing, triggering the conversion from 2D to 3D confinement. More importantly, the transformation dynamics can be tuned by varying the preference property of surfactant to the polymers. It is proven that the shape and internal structure of the polymer particles are dominated by the interfacial interactions governed by the surfactants.

  12. Mechanical properties of drug loaded diblock copolymer bilayers: A molecular dynamics study.

    PubMed

    Grillo, Damián A; Albano, Juan M R; Mocskos, Esteban E; Facelli, Julio C; Pickholz, Mónica; Ferraro, Marta B

    2018-06-07

    In this work, we present results of coarse-grained simulations to study the encapsulation of prilocaine (PLC), both neutral and protonated, on copolymer bilayers through molecular dynamics simulations. Using a previously validated membrane model, we have simulated loaded bilayers at different drug concentrations and at low (protonated PLC) and high (neutral PLC) pH levels. We have characterized key structural parameters of the loaded bilayers in order to understand the effects of encapsulation of PLC on the bilayer structure and mechanical properties. Neutral PLC was encapsulated in the hydrophobic region leading to a thickness increase, while the protonated species partitioned between the water phase and the poly(ethylene oxide)-poly(butadiene) (PBD) interface, relaxing the PBD region and leading to a decrease in the thickness. The tangential pressures of the studied systems were calculated, and their components were decomposed in order to gain insights on their compensation. In all cases, it is observed that the loading of the membrane does not significantly decrease the stability of the bilayer, indicating that the system could be used for drug delivery.

  13. Broadband pH-Sensing Organic Transistors with Polymeric Sensing Layers Featuring Liquid Crystal Microdomains Encapsulated by Di-Block Copolymer Chains.

    PubMed

    Seo, Jooyeok; Song, Myeonghun; Jeong, Jaehoon; Nam, Sungho; Heo, Inseok; Park, Soo-Young; Kang, Inn-Kyu; Lee, Joon-Hyung; Kim, Hwajeong; Kim, Youngkyoo

    2016-09-14

    We report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (<5 μm) encapsulated by the PAA-b-PCBOA polymer chains. The resulting LC-integrated-OFETs (PDLC-i-OFETs) can detect precisely and reproducibly a wide range of pH with only small amounts (10-40 μL) of analyte solutions in both static and dynamic perfusion modes. The positive drain current change is measured for acidic solutions (pH < 7), whereas basic solutions (pH > 7) result in the negative change of drain current. The drain current trend in the present PDLC-i-OFET devices is explained by the shrinking-expanding mechanism of the PAA chains in the diblock copolymer layers.

  14. Synthesis of amphiphilic tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization directly initiating from cyclic precursors and their application as drug nanocarriers.

    PubMed

    Wan, Xuejuan; Liu, Tao; Liu, Shiyong

    2011-04-11

    We report on the facile synthesis of well-defined amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization (ROP) directly initiating from cyclic precursors, their self-assembling behavior in aqueous solution, and the application of micellar assemblies as controlled release drug nanocarriers. Starting from a trifunctional core molecule containing alkynyl, hydroxyl, and bromine moieties, alkynyl-(OH)-Br, macrocyclic poly(N-isopropylacrylamide) (c-PNIPAM) bearing a single hydroxyl functionality was prepared by atom transfer radical polymerization (ATRP), the subsequent end group transformation into azide functionality, and finally the intramacromolecular ring closure reaction via click chemistry. The target amphiphilic tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, was then synthesized via the ROP of ε-caprolactone (CL) by directly initiating from the cyclic precursor. In aqueous solution at 20 °C, (c-PNIPAM)-b-PCL self-assembles into spherical micelles consisting of hydrophobic PCL cores and well-solvated coronas of cyclic PNIPAM segments. For comparison, linear diblock copolymer with comparable molecular weight and composition, (l-PNIPAM)-b-PCL, was also synthesized. It was found that the thermoresponsive coronas of micelles self-assembled from (c-PNIPAM)-b-PCL exhibit thermoinduced collapse and aggregation at a lower critical thermal phase transition temperature (T(c)) compared with those of (l-PNIPAM)-b-PCL. Temperature-dependent drug release profiles from the two types of micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL loaded with doxorubicin (Dox) were measured, and the underlying mechanism for the observed difference in releasing properties was proposed. Moreover, MTT assays revealed that micelles of (c-PNIPAM)-b-PCL are almost noncytotoxic up to a concentration of 1.0 g/L, whereas at the same polymer concentration, micelles loaded with Dox lead to ∼60% cell death. Overall, chain

  15. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    NASA Astrophysics Data System (ADS)

    Phuong Tuyen Dao, Thi; Hoai Nguyen, To; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Chien Dang, Mau

    2014-09-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100-300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix.

  16. Nanoformulation of D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for breast cancer therapy.

    PubMed

    Huang, Laiqiang; Chen, Hongbo; Zheng, Yi; Song, Xiaosong; Liu, Ranyi; Liu, Kexin; Zeng, Xiaowei; Mei, Lin

    2011-10-01

    The purpose of this research was to develop formulation of docetaxel-loaded biodegradable TPGS-b-(PCL-ran-PGA) nanoparticles for breast cancer chemotherapy. A novel diblock copolymer, d-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) [TPGS-b-(PCL-ran-PGA)], was synthesized from ε-caprolactone, glycolide and d-α-tocopheryl polyethylene glycol 1000 succinate by ring-opening polymerization using stannous octoate as catalyst. The obtained copolymers were characterized by (1)H NMR, GPC and TGA. The docetaxel-loaded TPGS-b-(PCL-ran-PGA) nanoparticles were prepared and characterized. The data showed that the fluorescence TPGS-b-(PCL-ran-PGA) nanoparticles could be internalized by MCF-7 cells. The TPGS-b-(PCL-ran-PGA) nanoparticles achieved significantly higher level of cytotoxicity than commercial Taxotere®. MCF-7 xenograft tumor model on SCID mice showed that docetaxel formulated in the TPGS-b-(PCL-ran-PGA) nanoparticles could effectively inhibit the growth of tumor over a longer period of time than Taxotere® at the same dose. In conclusion, the TPGS-b-(PCL-ran-PGA) copolymer could be acted as a novel and potential biologically active polymeric material for nanoformulation in breast cancer chemotherapy. This journal is © The Royal Society of Chemistry 2011

  17. Single-molecule tracking studies of flow-induced microdomain alignment in cylinder-forming polystyrene-poly(ethylene oxide) diblock copolymer films.

    PubMed

    Tran-Ba, Khanh-Hoa; Higgins, Daniel A; Ito, Takashi

    2014-09-25

    Flow-based approaches are promising routes to preparation of aligned block copolymer microdomains within confined spaces. An in-depth characterization of such nanoscale morphologies within macroscopically nonuniform materials under ambient conditions is, however, often challenging. In this study, single-molecule tracking (SMT) methods were employed to probe the flow-induced alignment of cylindrical microdomains (ca. 22 nm in diameter) in polystyrene-poly(ethylene oxide) diblock copolymer (PS-b-PEO) films. Films of micrometer-scale thicknesses were prepared by overlaying a benzene solution droplet on a glass coverslip with a rectangular glass plate, followed by solvent evaporation under a nitrogen atmosphere. The microdomain alignment was quantitatively assessed from SMT data exhibiting the diffusional motions of individual sulforhodamine B fluorescent probes that preferentially partitioned into cylindrical PEO microdomains. Better overall microdomain orientation along the flow direction was observed near the substrate interface in films prepared at a higher flow rate, suggesting that the microdomain alignment was primarily induced by shear flow. The SMT data also revealed the presence of micrometer-scale grains consisting of highly ordered microdomains with coherent orientation. The results of this study provide insights into shear-based preparation of aligned cylindrical microdomains in block copolymer films from solutions within confined spaces.

  18. Structural and rectifying junction properties of self-assembled ZnO nanoparticles in polystyrene diblock copolymers on (1 0 0)Si substrates

    NASA Astrophysics Data System (ADS)

    Ali, H. A.; Iliadis, A. A.; Martinez-Miranda, L. J.; Lee, U.

    2006-06-01

    The structural and electronic transport properties of self-assembled ZnO nanoparticles in polystyrene-acrylic acid, [PS] m/[PAA] n, diblock copolymer on p-type (1 0 0)Si substrates are reported for the first time. Four different block repeat unit ratios ( m/ n) of 159/63, 139/17,106/17, and 106/4, were examined in order to correlate the physical parameters (size, density) of the nanoparticles with the copolymer block lengths m and n. We established that the self-assembled ZnO nanoparticle average size increased linearly with minority block length n, while the average density decreased exponentially with majority block length m. Average size varied from 20 nm to 250 nm and average density from 3.5 × 10 7 cm -2 to 1 × 10 10 cm -2, depending on copolymer parameters. X-ray diffraction studies showed the particles to have a wurtzite crystal structure with the (1 0 0) being the dominant orientation. Room temperature current-voltage characteristics measured for an Al/ZnO-nanocomposite/Si structure exhibited rectifying junction properties and indicated the formation of Al/ZnO-nanocomposite Schottky type junction with a barrier height of 0.7 V.

  19. InAs nanowires grown by metal-organic vapor-phase epitaxy (MOVPE) employing PS/PMMA diblock copolymer nanopatterning.

    PubMed

    Huang, Yinggang; Kim, Tae Wan; Xiong, Shisheng; Mawst, Luke J; Kuech, Thomas F; Nealey, Paul F; Dai, Yushuai; Wang, Zihao; Guo, Wei; Forbes, David; Hubbard, Seth M; Nesnidal, Michael

    2013-01-01

    Dense arrays of indium arsenide (InAs) nanowire materials have been grown by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) using polystyrene-b-poly(methyl methacrylate) (PS/PMMA) diblock copolymer (DBC) nanopatterning technique, which is a catalyst-free approach. Nanoscale openings were defined in a thin (~10 nm) SiNx layer deposited on a (111)B-oriented GaAs substrate using the DBC process and CF4 reactive ion etching (RIE), which served as a hard mask for the nanowire growth. InAs nanowires with diameters down to ~ 20 nm and micrometer-scale lengths were achieved with a density of ~ 5 × 10(10) cm(2). The nanowire structures were characterized by scanning electron microscopy and transmission electron microscopy, which indicate twin defects in a primary zincblende crystal structure and the absence of threading dislocation within the imaged regions.

  20. PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Qi, Xian Rong; Maitani, Yoshie; Nagai, Tsuneji

    2009-02-01

    The purpose of this study was to characterize the properties in vitro, i.e. release, degradation, hemolytic potential and anticancer activity, and in vivo disposition of all-trans-retinoic acid (ATRA) in rats after administration of ATRA-loaded micelle-like nanoparticles. The amphiphilic block copolymers consisted of a micellar shell-forming mPEG block and a core-forming PLA block. The mPEG-PLA nanoparticles prepared by an acetone volatilization dialysis procedure were identified as having core-shell structure by 1H NMR spectroscopy. Critical association concentration, drug contents, loading efficiency, particle size and ξ potential were evaluated. The release of ATRA from the nanoparticles and the degradation of PLA were found to be mostly associated with the compositions of the nanoparticles. ATRA release was faster at smaller molecular weight of copolymer and lower drug contents. In vitro, the incorporation of ATRA in mPEG-PLA nanoparticles reduced the hemolytic potential of ATRA. Furthermore, anticancer activity of ATRA against HepG2 cell was increased by encapsulation, which showed an enhancement of tumor treatment of ATRA. In vivo, after intravenous injection to rats, the levels of ATRA in the blood stream and the bioavailability were higher for ATRA-loaded mPEG-PLA nanoparticles than those for ATRA solution. In conclusion, the structure of the mPEG-PLA diblock copolymer could be modulated to fit the demand of in vitro and in vivo characterizations of nanoparticles. The mPEG-PLA nanoparticles' loading ATRA have a promising future for injection administration.

  1. Self-assembly of model graft copolymers of agarose and weak polyelectrolyte-based amphiphilic diblock copolymers: controlled drug release and degradation.

    PubMed

    Muppalla, Ravikumar; Jewrajka, Suresh K; Prasad, Kamalesh

    2013-06-01

    Polysaccharide-based copolymers are promising biomaterials due to their biocompatibility and biodegradability. For potential biomedical applications the copolymer as a whole and all the degraded species must be biocompatible and easily removable from the system. In this regards, new model pH-responsive seaweed agarose (Agr) grafted with weak polyelectrolyte-based well-defined amphiphilic block copolymers ca. poly[(methyl methacrylate)-b-(2-dimethylamino)ethyl methacrylate)] (PMMA-b-PDMA) were designed and synthesized to study the self-assembly, degradation, and in vitro hydrophobic/hydrophilic drug release behavior. The graft copolymer solutions display extremely low critical micelle concentration (CMC) and form pH responsive stable micelles. The degradation study of the graft copolymer reveals that the entire degraded components are well soluble/dispersible in water due to formation of mixed micelles. The micelles are also strongly adsorbed on the mica surface owing to electrostatic interaction. One application of the graft copolymer micelles is that it can entrap both hydrophilic and poorly water soluble hydrophobic drugs effectively and exhibit slow release kinetics. The release kinetics of both the hydrophilic and poorly water soluble hydrophobic drugs change with pH as well as with the composition of the graft copolymer. Copyright © 2012 Wiley Periodicals, Inc.

  2. The ordering of symmetric diblock copolymers: A comparison of self-consistent-field and density functional approaches

    NASA Astrophysics Data System (ADS)

    Nath, Shyamal K.; McCoy, John D.; Curro, John G.; Saunders, Randall S.

    1997-02-01

    Polymer reference interaction site model (PRISM) based density functional (DF) theory is used to evaluate the structure and thermodynamics of structurally symmetric, freely jointed, diblock chains with 0.50 volume fraction. These results are compared to the results of self-consistent-field (SCF) theory. Agreement between the predictions of the SCF and DF theories is found for the lamella spacing well above the order-disorder transition (ODT) and for the qualitative behavior of the interfacial thickness as a function of both chain length and Flory-Huggins χ parameter. Disagreement is found for the magnitude of the interfacial thickness where DF theory indicates that the thickness is 1.7±0.2 times larger than that predicted by SCF theory. It appears that behavior on the monomer length scale is sensitive to system specific details which are neglected by SCF theory.

  3. Sequential pH-dependent adsorption of ionic amphiphilic diblock copolymer micelles and choline oxidase onto conductive substrates: toward the design of biosensors.

    PubMed

    Sigolaeva, Larisa V; Günther, Ulrike; Pergushov, Dmitry V; Gladyr, Snezhana Yu; Kurochkin, Ilya N; Schacher, Felix H

    2014-07-01

    This work examines the fabrication regime and the properties of polymer-enzyme thin-films adsorbed onto conductive substrates (graphite or gold). The films are formed via two-steps, sequential adsorption of poly(n-butylmethacrylate)-block-poly(N,N-dimethylaminoethyl methacrylate) (PnBMA-b-PDMAEMA) diblock copolymer micelles (1st step of adsorption), followed by the enzyme choline oxidase (ChO) (2nd step of adsorption). The solution properties of both adsorbed components are studied and the pH-dependent step-by-step fabrication of polymer-enzyme biosensor coatings reveals rather drastic differences in their enzymatic activities in dependence on the pH of both adsorption steps. The resulting hybrid thin-films represent highly active biosensors for choline with a low detection limit of 30 nM and a good linearity in a range between 30 nM and 100 μM. The sensitivity is found to be 175 μA mM(-1) cm(-2) and the operational stability of the polymer-enzyme thin-films can be additionally improved via enzyme-to-enzyme crosslinking with glutaraldehyde. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tailored Design of Bicontinuous Gyroid Mesoporous Carbon and Nitrogen-Doped Carbon from Poly(ethylene oxide-b-caprolactone) Diblock Copolymers.

    PubMed

    Chu, Wei-Cheng; Bastakoti, Bishnu Prasad; Kaneti, Yusuf Valentino; Li, Jheng-Guang; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Kuo, Shiao-Wei

    2017-10-04

    Highly ordered mesoporous resol-type phenolic resin and the corresponding mesoporous carbon materials were synthesized by using poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) diblock copolymer as a soft template. The self-assembled mesoporous phenolic resin was found to form only in a specific resol concentration range of 40-70 wt % due to an intriguing balance of hydrogen-bonding interactions in the resol/PEO-b-PCL mixtures. Furthermore, morphological transitions of the mesostructures from disordered to gyroid to cylindrical and finally to disordered micelle structure were observed with increasing resol concentration. By calcination under nitrogen atmosphere at 800 °C, the bicontinuous mesostructured gyroid phenolic resin could be converted to mesoporous carbon with large pore size without collapse of the original mesostructure. Furthermore, post-treatment of the mesoporous gyroid phenolic resin with melamine gave rise to N-doped mesoporous carbon with unique electronic properties for realizing high CO 2 adsorption capacity (6.72 mmol g -1 at 0 °C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation and evaluation of diblock copolymer-grafted silica by sequential surface initiated-atom transfer radical polymerization for reverse-phase/ion-exchange mixed-mode chromatography.

    PubMed

    Bo, Chun Miao; Wang, Chaozhan; Wei, Yin Mao

    2017-12-01

    A novel approach that involved the grafting of diblock copolymer with two types of monomer onto substrate by sequential surface initiated-atom transfer radical polymerization was proposed to prepare a mixed-mode chromatographic stationary phase. The distinguishing feature of this method is that it can be applied in the preparation of various mixed-mode stationary phases. In this study, a new reverse-phase/ion-exchange stationary phase was prepared by grafting hydrophobic styrene and cationic sodium 4-styrenesulfonate by the proposed approach onto silica surface. The chromatographic properties of the prepared stationary phase were evaluated by the separation of benzene derivatives, anilines, and β-agonists, and by the effect of pH values and acetonitrile content on the retention. Compared with typical RP columns, the prepared stationary phase achieved the better resolution and higher selectivity at a shorter separation time and lower organic content. Moreover, the application of the prepared column was proved by separating widely distributed polar and charged compounds simultaneously. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Relationship between morphological change and crystalline phase transitions of polyethylene-poly(ethylene oxide) diblock copolymers, revealed by the temperature-dependent synchrotron WAXD/SAXS and infrared/Raman spectral measurements.

    PubMed

    Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki

    2009-02-26

    The phase transition behaviors of low-molecular-weight polyethylene-poly(ethylene oxide) (PE-b-PEO) diblock copolymers with the monomeric units of PE/PEO = 17/40 and 39/86 have been successfully investigated through the temperature-dependent measurements of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), infrared and Raman spectra, as well as thermal analysis. These diblock copolymers had been believed to show only order-to-disorder transition of lamellar morphology in a wide temperature region, but it has been found here for the first time that this copolymer clearly exhibits the three stages of transitions among lamella, gyroid, cylinder, and spherical phases in the heating and cooling processes. The WAXD and IR/Raman spectral measurements allowed us to relate these morphological changes to the microscopic changes in the aggregation states of PEO and PE segments. In the low-temperature region the PEO segments form the monoclinic crystal of (7/2) helical chain conformation and the PE segments of planar-zigzag form take the orthorhombic crystalline phase. These crystalline lamellae of PEO and PE segments are alternately stacked with the long period of 165 Angstroms. In a higher temperature region, where the PEO crystalline parts are on the way of melting but the PE parts are still in the orthorhombic phase, the gyroid morphology is detected in the SAXS data. By heating further, the gyroid morphology changes to the hexagonally packed cylindrical morphology, where the orthorhombic phase of PE segments is gradually disordered because of thermally activated molecular motion and finally transforms to the pseudohexagonal or rotator phase. Once the PE segments are perfectly melted, the higher-order structure changes from the cylinder to the spherical morphology. These morphological transitions might relate to the thermally activated motions of two short chain segments of the diblock copolymer, although the details of the transition mechanism are

  7. Preparation and Cross-Linking of All-Acrylamide Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly in Aqueous Solution

    PubMed Central

    2017-01-01

    Various carboxylic acid-functionalized poly(N,N-dimethylacrylamide) (PDMAC) macromolecular chain transfer agents (macro-CTAs) were chain-extended with diacetone acrylamide (DAAM) by reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization at 70 °C and 20% w/w solids to produce a series of PDMAC–PDAAM diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). TEM studies indicate that a PDMAC macro-CTA with a mean degree of polymerization (DP) of 68 or higher results in the formation of well-defined spherical nanoparticles with mean diameters ranging from 40 to 150 nm. In contrast, either highly anisotropic worms or polydisperse vesicles are formed when relatively short macro-CTAs (DP = 40–58) are used. A phase diagram was constructed to enable accurate targeting of pure copolymer morphologies. Dynamic light scattering (DLS) and aqueous electrophoresis studies indicated that in most cases these PDMAC–PDAAM nano-objects are surprisingly resistant to changes in either solution pH or temperature. However, PDMAC40–PDAAM99 worms do undergo partial dissociation to form a mixture of relatively short worms and spheres on adjusting the solution pH from pH 2–3 to around pH 9 at 20 °C. Moreover, a change in copolymer morphology from worms to a mixture of short worms and vesicles was observed by DLS and TEM on heating this worm dispersion to 50 °C. Postpolymerization cross-linking of concentrated aqueous dispersions of PDMAC–PDAAM spheres, worms, or vesicles was performed at ambient temperature using adipic acid dihydrazide (ADH), which reacts with the hydrophobic ketone-functionalized PDAAM chains. The formation of hydrazone groups was monitored by FT-IR spectroscopy and afforded covalently stabilized nano-objects that remained intact on exposure to methanol, which is a good solvent for both blocks. Rheological studies indicated that the cross-linked worms formed a stronger gel compared to linear precursor

  8. Antibacterial activity, thermal stability and ab initio study of copolymer containing sulfobetaine and carboxybetaine groups

    NASA Astrophysics Data System (ADS)

    Tarannum, Nazia; Singh, Meenakshi; Yadav, Anil K.

    2017-10-01

    Here, we have explored the antibacterial activity, thermal stability and theoretical study of two copolymers that contain sulfobetaine and carboetaine moiety. Copolymers were synthesized based on Schiff base chemistry with generation of zwitterionic centres by nucleophilic addition of sultone/lactone. To predict and confirm the molecular structure of zwitterionic polyelectrolyte molecule, the theoretical study of structural features and other thermodynamic characteristics of copolymer constituents was obtained by ab initio calculations. Various parameters such as geometry optimization, energy calculations, frequency calculations and intrinsic reaction coefficient (IRC) are simulated using Hartree Fock (HF) method. The geometry optimizations are analyzed at HF/3-21 G default level of theory. The vibrational frequency is calculated via density functional theory (DFT)/B3LYP 6-31G*(d) level whose values are in accord with the experimental observed frequency. Both copolymers have been successfully assessed for antibacterial activity against Staphylococcus aureus and Pseudomonas aeuroginosa bacterial strains by disc diffusion method. The antibacterial study helped in evaluating zone of inhibition, minimum inhibitory concentration and minimum bactericidal concentration. Sulfobetaine copolymer is found to be more effective in curtailing the infection caused by bacteria as compared to carbobetaine.

  9. Linker-based control of electron propagation through ferrocene moieties covalently anchored onto insulator-based nanopores derived from a polystyrene-poly(methylmethacrylate) diblock copolymer.

    PubMed

    Li, Feng; Pandey, Bipin; Ito, Takashi

    2012-12-04

    This paper reports the effects of linker length on electron propagation through ferrocene moieties covalently anchored onto insulator-based cylindrical nanopores derived from a cylinder-forming polystyrene-poly(methylmethacrylate) diblock copolymer. These nanopores (24 nm in diameter, 30 nm long) aligned perpendicular to an underlying gold electrode were modified via esterification of their surface COOH groups with OH-terminated ferrocene derivatives having different alkyl linkers (FcCO(CH(2))(n)OH; n = 2, 5, 15). Cyclic voltammograms were measured in 0.1 M NaBF(4) at different scan rates to assess the efficiency of electron propagation through the ferrocene moieties. The redox peaks of the anchored ferrocenes were observed at nanoporous films decorated with FcCO(CH(2))(15)OH and FcCO(CH(2))(5)OH, but not at those with FcCO(CH(2))(2)OH. Importantly, the higher electron propagation efficiency was observed in the use of the longer linker, as shown by the apparent diffusion coefficients (ca. 10(-12) cm(2)/s for n = 15; ca. 10(-13) cm(2)/s for n = 5; no electron propagation for n = 2). The observed electron propagation resulted from electron hopping across relatively large spacing that was controlled by the motion of anchored redox sites (bounded diffusion). The longer linker led to the larger physical displacement range of anchored ferrocene moieties, facilitating the approach of the adjacent ferrocene moieties within a distance required for electron self-exchange reaction. The linker-based control of redox-involved electron propagation on nanostructured, insulating surfaces will provide a means for designing novel molecular electronics and electrochemical sensors.

  10. Elaboration of thermoresponsive supramolecular diblock copolymers in water from complementary CBPQT4+ and TTF end-functionalized polymers.

    PubMed

    Sambe, Léna; Stoffelbach, François; Poltorak, Katarzyna; Lyskawa, Joël; Malfait, Aurélie; Bria, Marc; Cooke, Graeme; Woisel, Patrice

    2014-02-01

    A well-defined poly(N-isopropyl acrylamide) 1 incorporating at one termini a cyclobis(paraquat-p-phenylene) (CBPQT(4+)) recognition unit is prepared via a RAFT polymerization followed by a copper-catalyzed azide-alkyne cycloaddition (CuAAC). (1)H NMR (1D, DOSY), UV-vis and ITC experiments reveal that polymer 1 is able of forming effective host-guest complexes with tetrathiafulvalene (TTF) end-functionalized polymers in water, thereby leading to the formation of non-covalently-linked double-hydrophilic block copolymers. The effect of the temperature on both the LCST phase transition of 1 and its complexes and on CBPQT(4+)/TTF host-guest interactions is investigated. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Effect of Small Molecule Additives on the Self-Assembly and Functionality of Protein-Polymer Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Thomas, Carla; Xu, Liza; Olsen, Bradley

    2013-03-01

    Self-assembly of globular protein-polymer block copolymers into well-defined nanostructures provides a route towards the manufacture of protein-based materials which maintains protein fold and function. The model material mCherry-b-poly(N-isopropyl acrylamide) forms self-assembled nanostructures from aqueous solutions via solvent evaporation. To improve retention of protein functionality when dehydrated, small molecules such as trehalose and glycerol are added in solution prior to solvent removal. With as little as 10 wt% additive, improvements in retained functionality of 20-60% are observed in the solid-state as compared to samples in which no additive is present. Higher additive levels (up to 50%) continue to show improvement until approximately 100% of the protein function is retained. These large gains are hypothesized to originate from the ability of the additives to replace hydrogen bonds normally fulfilled by water. The addition of trehalose in the bulk material also improves the thermal stability of the protein by 15-20 °C, while glycerol decreases the thermal stability. Materials containing up to 50% additives remain microphase separated, and, upon incorporation of additives, nanostructure domain spacing tends to increase, accompanied by order-order transitions.

  12. Gyroid structure via highly asymmetric ABC and AB blends

    NASA Astrophysics Data System (ADS)

    Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; Kim, Jin Kon

    Gyroid structures are very important because of their co-continuous and network structures. However, a block copolymer shows gyroid structures only at 35 % volume fraction of one block. In this study, we designed ABC/AB blend system. B (polystyrene (PS)) is the matrix, while A (polyisoprene (PI)) and C (poly(2-vinyl pridine (P2VP)) are the core part. This blend shows gyroid structures at 20 % volume fraction, that is smaller than that observed at diblock copolymer. Morphologies of neat block copolymers and blends were characterized by TEM and small angle X-ray scattering.

  13. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    PubMed

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (<15 °C) to a clear, free-standing gel (15-46 °C) to a clear, free-flowing hot liquid (47-56 °C), and a cloudy mixture (≥57 °C). With the increase of pH, the sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary

  14. Comparing blends and blocks: Synthesis of partially fluorinated diblock polythiophene copolymers to investigate the thermal stability of optical and morphological properties

    PubMed Central

    Boufflet, Pierre; Wood, Sebastian; Wade, Jessica; Fei, Zhuping; Kim, Ji-Seon

    2016-01-01

    Summary The microstructure of the active blend layer has been shown to be a critically important factor in the performance of organic solar devices. Block copolymers provide a potentially interesting avenue for controlling this active layer microstructure in solar cell blends. Here we explore the impact of backbone fluorination in block copolymers of poly(3-octyl-4-fluorothiophene)s and poly(3-octylthiophene) (F-P3OT-b-P3OT). Two block co-polymers with varying block lengths were prepared via sequential monomer addition under Kumada catalyst transfer polymerisation (KCTP) conditions. We compare the behavior of the block copolymer to that of the corresponding homopolymer blends. In both types of system, we find the fluorinated segments tend to dominate the UV–visible absorption and molecular vibrational spectral features, as well as the thermal behavior. In the block copolymer case, non-fluorinated segments appear to slightly frustrate the aggregation of the more fluorinated block. However, in situ temperature dependent Raman spectroscopy shows that the intramolecular order is more thermally stable in the block copolymer than in the corresponding blend, suggesting that such materials may be interesting for enhanced thermal stability of organic photovoltaic active layers based on similar systems. PMID:27829922

  15. Passive targeting of thermosensitive diblock copolymer micelles to the lungs: synthesis and characterization of poly(N-isopropylacrylamide)-block-poly(ε-caprolactone).

    PubMed

    Lee, Ren-Shen; Lin, Chih-Hung; Aljuffali, Ibrahim A; Hu, Kai-Yin; Fang, Jia-You

    2015-06-18

    Amphiphilic poly(N-isopropylacrylamide)-block-poly(ε-caprolactone) (PNiPAAm-b-PCL) copolymers were synthesized by ring-opening polymerization to form thermosensitive micelles as nanocarriers for bioimaging and carboplatin delivery. The critical micelle concentration increased from 1.8 to 3.5 mg/l following the decrease of the PNiPAAm chain length. The copolymers revealed a lower critical solution temperature (LCST) between 33 and 40°C. The copolymers self-assembled to form spherical particles of 146-199 nm in diameter. Carboplatin in micelles exhibited a slower release at 37°C relative to that at 25°C due to the gel layer formation on the micellar shell above the LCST. The micelles containing dye or carboplatin were intravenously injected into the rats for in vivo bioimaging and drug biodistribution. The bioimaging profiles showed a significant accumulation of micelles in the lungs. The micelles could minimize the reticuloendothelial system (RES) recognition of the dye. In vivo biodistribution demonstrated an improved pulmonary accumulation of carboplatin from 2.5 to 3.4 μg/mg by the micelles as compared to the control solution. Carboplatin accumulation in the heart and kidneys was reduced after encapsulation by the micelles. This study supports the potential of PNiPAAm-b-PCL micelles to passively target the lungs and attenuate RES uptake and possible side effects.

  16. pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye.

    PubMed

    Maiti, Chiranjit; Banerjee, Rakesh; Maiti, Saikat; Dhara, Dibakar

    2015-01-01

    The ability to regulate the formation of nanostructures through self-assembly of amphiphilic block copolymers is of immense significance in the field of biology and medicine. In this work, a new block copolymer synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization technique from poly(ethylene glycol) monomethyl ether acrylate (PEGMA) and Boc-l-tryptophan acryloyloxyethyl ester (Boc-l-trp-HEA) was found to spontaneously form pH-responsive water-soluble nanostructures after removal of the Boc group. While polymer vesicles or polymerosomes were formed at physiological pH, the micelles were formed at acidic pH (< 5.2), and this facilitated a pH-induced reversible vesicle-to-micelle transition. Formation of these nanostructures was confirmed by different characterization techniques, viz. transmission electron microscopy, dynamic light scattering, and steady-state fluorescence measurements. Further, these vesicles were successfully utilized to reduce HAuCl4 and stabilize the resulting gold nanoparticles (AuNPs). These AuNPs, confined within the hydrophobic shell of the vesicles, could participate in energy transfer process with fluorescent dye molecules encapsulated in the core of the vesicles, thus forming a nanometal surface energy transfer (NSET) pair. Subsequently, following the efficiency of energy transfer between this pair, it was possible to monitor the process of transition from vesicles to micelles. Thus, in this work, we have successfully demonstrated that NSET can be used to follow the transition between nanostructures formed by amphiphilic block copolymers.

  17. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture.

    PubMed

    Sano, Masami; Shan, Feng; Hara, Mitsuo; Nagano, Shusaku; Shinohara, Yuya; Amemiya, Yoshiyuki; Seki, Takahiro

    2015-08-07

    A series of block copolymers composed of an amorphous poly(butyl methacrylate) (PBMA) block connected with an azobenzene (Az)-containing liquid crystalline (PAz) block were synthesized by changing the chain length and polymer architecture. With these block copolymer films, the dynamic realignment process of microphase separated (MPS) cylinder arrays of PBMA in the PAz matrix induced by irradiation with linearly polarized light was studied by UV-visible absorption spectroscopy, and time-resolved grazing incidence small angle X-ray scattering (GI-SAXS) measurements using a synchrotron beam. Unexpectedly, the change in the chain length hardly affected the realignment rate. In contrast, the architecture of the AB-type diblock or the ABA-type triblock essentially altered the realignment feature. The strongly cooperative motion with an induction period before realignment was characteristic only for the diblock copolymer series, and the LPL-induced alignment change immediately started for triblock copolymers and the PAz homopolymer. Additionally, a marked acceleration in the photoinduced dynamic motions was unveiled in comparison with a thermal randomization process.

  18. Biocompatible Stimuli-Responsive W/O/W Multiple Emulsions Prepared by One-Step Mixing with a Single Diblock Copolymer Emulsifier.

    PubMed

    Protat, Marine; Bodin, Noémie; Gobeaux, Frédéric; Malloggi, Florent; Daillant, Jean; Pantoustier, Nadège; Guenoun, Patrick; Perrin, Patrick

    2016-09-22

    Multiple water-in-oil-in-water (W/O/W) emulsions are promising materials in designing carriers of hydrophilic molecules or drug delivery systems, provided stability issues are solved and biocompatible chemicals can be used. In this work, we designed a biocompatible amphiphilic copolymer, poly(dimethylsiloxane)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMS-b-PDMAEMA), that can stabilize emulsions made with various biocompatible oils. The hydrophilic/hydrophobic properties of the copolymer can be adjusted using both pH and ionic strength stimuli. Consequently, the making of O/W (oil in water), W/O (water in oil), and W/O/W emulsions can be achieved by sweeping the pH and ionic strength. Of importance, W/O/W emulsions are formulated over a large pH and ionic strength domain in a one-step emulsification process via transitional phase inversion and are stable for several months. Cryo-TEM and interfacial tension studies show that the formation of these W/O/W emulsions is likely to be correlated to the interfacial film curvature and microemulsion morphology.

  19. Communication: Molecular-level insights into asymmetric triblock copolymers: Network and phase development

    NASA Astrophysics Data System (ADS)

    Tallury, Syamal S.; Mineart, Kenneth P.; Woloszczuk, Sebastian; Williams, David N.; Thompson, Russell B.; Pasquinelli, Melissa A.; Banaszak, Michal; Spontak, Richard J.

    2014-09-01

    Molecularly asymmetric triblock copolymers progressively grown from a parent diblock copolymer can be used to elucidate the phase and property transformation from diblock to network-forming triblock copolymer. In this study, we use several theoretical formalisms and simulation methods to examine the molecular-level characteristics accompanying this transformation, and show that reported macroscopic-level transitions correspond to the onset of an equilibrium network. Midblock conformational fractions and copolymer morphologies are provided as functions of copolymer composition and temperature.

  20. Structural transition with thickness in films of poly-(styrene-b-2vinylpyridine) (PS-b-P2VP) diblock copolymer/homopolymer blends

    NASA Astrophysics Data System (ADS)

    Mishra, Vindhya; Kramer, Edward; Hur, Su-Mi; Fredrickson, Glenn; Sprung, Michael

    2009-03-01

    In multilayer thin films of spherical morphology block copolymers, the surface layers prefer hexagonal symmetry while the inner layers prefer BCC. Thin films with spherical morphology of PS-b-P2VP blends with short homopolymer polystyrene (hPS) chains have an HCP structure up to a thickness n* at which there is a transition to a face centered orthorhombic structure. Using grazing incidence small angle X-ray scattering and transmission electron microscopy we show that that n* increases from 5 to 9 with increase in hPS from 0 to 12 vol%. For thicknesses just below n* the HCP and FCO structures coexist, but on long annealing HCP prevails. We hypothesize that the PS segregates to the interstices in the HCP structure reducing the stretching of the PS blocks and the free energy penalty of HCP versus BCC inner layers. Self consistent field theoretic simulations are being carried out to see if this idea is correct.

  1. Mesoscale simulation of the formation and dynamics of lipid-structured poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers.

    PubMed

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2015-05-21

    Twelve poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers with lipid-like structures were designed and investigated by MesoDyn simulation. Spherical and worm-like micelles as well as bicontinuous, lamellar and defected lamellar phases were obtained. A special structure, designated B2412, with two lipid structures connected by their heads, was found to undergo four stages prior to forming a spherical micelle phase. Two possible assembly mechanisms were found via thermodynamic and dynamic process analyses; namely, the fusion and fission of micelles in dynamic equilibrium during the adjustment stage. Water can be encapsulated into these micelles, which can affect their size, particularly in low concentration aqueous solutions. The assignment of weak negative charges to the hydrophilic EO blocks resulted in a clear effect on micelle size. Surprisingly, the largest effect was observed with EO blocks with -0.5 e, wherein an ordered perfect hexagonal phase was formed. The obtained results can be applied in numerous fields of study, including adsorption, catalysis, controlled release and drug delivery.

  2. A novel diblock of copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells

    PubMed Central

    Erfani-Moghadam, Vahid; Nomani, Alireza; Zamani, Mina; Yazdani, Yaghoub; Najafi, Farhood; Sadeghizadeh, Majid

    2014-01-01

    Curcumin is a potent natural anticancer agent, but its effectiveness is limited by properties such as very low solubility, high rate of degradation, and low rate of absorption of its hydrophobic molecules in vivo. To date, various nanocarriers have been used to improve the bioavailability of this hydrophobic biomaterial. This study investigates the encapsulation of curcumin in a novel nanostructure of monomethoxy poly(ethylene glycol)-oleate (mPEG-OA) and its anticancer effect. Tests were done to determine the critical micelle concentration (CMC), encapsulation efficiency, drug-loading efficiency, and cytotoxicity (against U87MG brain carcinoma cells and HFSF-PI3 cells as normal human fibroblasts) of some nanodevice preparations. The results of fluorescence microscopy and cell-cycle analyses indicated that the in vitro bioavailability of the encapsulated curcumin was significantly greater than that of free curcumin. Cytotoxicity evaluations showed that half maximal inhibitory concentrations of free curcumin and curcumin-loaded mPEG-OA for the U87MG cancer cell line were 48 μM and 24 μM, respectively. The Annexin-V-FLUOS assay was used to quantify the apoptotic effect of the prepared nanostructures. Apoptosis induction was observed in a dose-dependent manner after curcumin-loaded mPEG-OA treatments. Two common self-assembling structures, micelles and polymersomes, were observed by atomic force microscopy and dynamic light scattering, and the abundance of each structure was dependent on the concentration of the diblock copolymer. The mPEG-OA micelles had a very low CMC (13.24 μM or 0.03 g/L). Moreover, atomic force microscopy and dynamic light scattering showed that the curcumin-loaded mPEG-OA polymersomes had very stable structures, and at concentrations 1,000 times less than the CMC, at which the micelles disappear, polymersomes were the dominant structures in the dispersion with a reduced size distribution below 150 nm. Overall, the results from these tests

  3. Theoretical study of the self-assembly of Janus Bottlebrush Polymers from A-Branch-B Diblock Macromonomers

    NASA Astrophysics Data System (ADS)

    Gadelrab, Karim; Alexander-Katz, Alfredo; LaboratoryTheoretical Soft Materials Team

    The self-assembly of block copolymers BCP has provided an impressive control over the nanoscale structure of soft matter. While the main focus of the research in the field has been directed towards simple linear diblocks, the development of advanced polymer architecture provided improved performance and access to new structures. In particular, bottlebrush BCPs (BBCPs) have interesting characteristics due to their dense functionality, high molecular weight, low levels of entanglement, and tendency to efficiently undergo rapid bulk phase separation. In this work, we are interested in theoretically studying the self-assembly of Janus-type ``A-branch-B'' BBCPs where A and B blocks can phase separate with the bottlebrush polymer backbone serving as the interface between the two blocks. Hence, the polymer backbone adds an extra constraint on the equilibrium spacing between neighboring linear diblock chains. In this regard, the segment length of the backbone separating the AB junctions has a direct effect of the observed domain spacing and effective segregation strength of the AB blocks. We employ self-consistent field theoretic SCFT simulations to capture the effect of volume fraction of different constituents and construct a phase diagram of the accessible morphologies of these BBCPs.

  4. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  5. RAFT polymerization of temperature- and salt-responsive block copolymers as reversible hydrogels.

    PubMed

    Hemp, Sean T; Smith, Adam E; Bunyard, W Clayton; Rubinstein, Michael H; Long, Timothy E

    2014-05-13

    Reversible-addition fragmentation chain transfer (RAFT) polymerization enabled the synthesis of novel, stimuli-responsive, AB and ABA block copolymers. The B block contained oligo(ethylene glycol) methyl ether methacrylate (OEG) and was permanently hydrophilic in the conditions examined. The A block consisted of diethylene glycol methyl ether methacrylate (DEG) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMA). The A block displayed both salt- and temperature-response with lower critical solution temperatures (LCSTs) dependent on the molar content of TMA and the presence of salt. Higher TMA content in the AB diblock copolymers increased the critical micelle temperatures (CMT) in HPLC-grade water due to an increased hydrophilicity of the A block. Upon addition of 0.9 wt% NaCl, the CMTs of poly(OEG- b -DEG 95 TMA 5 ) decreased from 50 °C to 36 °C due to screening of electrostatic repulsion between the TMA units. ABA triblock copolymers displayed excellent hydrogel properties with salt- and temperature-dependent gel points. TMA incorporation in the A block increased the gel points for all triblock copolymers, and salt-response increased with higher TMA composition in the A block. For example, poly(DEG 98 TMA 2 - b -OEG- b -DEG 98 TMA 2 ) formed a hydrogel at 40 °C in HPLC-grade water and 26 °C in 0.9 wt% NaCl aqueous solution. These salt- and temperature-responsive AB diblock and ABA triblock copolymers find applications as drug delivery vehicles, adhesives, and hydrogels.

  6. The individual and cumulative effect of brominated flame retardant and polyvinylchloride (PVC) on thermal degradation of acrylonitrile-butadiene-styrene (ABS) copolymer.

    PubMed

    Brebu, Mihai; Bhaskar, Thallada; Murai, Kazuya; Muto, Akinori; Sakata, Yusaku; Uddin, Md Azhar

    2004-08-01

    Acrylonitrile-butadiene-styrene (ABS) copolymers without and with a polybrominated epoxy type flame retardant were thermally degraded at 450 degrees C alone (10 g) and mixed with polyvinylchloride (PVC) (8 g/2 g). Gaseous and liquid products of degradation were analysed by various gas chromatographic methods (GC with TCD, FID, AED, MSD) in order to determine the individual and cumulative effect of bromine and chlorine on the quality and quantity of degradation compounds. It was found that nitrogen, chlorine, bromine and oxygen are present as organic compounds in liquid products, their quantity depends on the pyrolysed polymer or polymer mixture. Bromophenol and dibromophenols were the main brominated compounds that come from the flame retardant. 1-Chloroethylbenzene was the main chlorine compound observed in liquid products. It was also determined that interactions appear at high temperatures during decomposition between the flame retardant, PVC and the ABS copolymer.

  7. Facile preparation of well-defined AB2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry.

    PubMed

    Rao, Jingyi; Zhang, Yanfeng; Zhang, Jingyan; Liu, Shiyong

    2008-10-01

    Well-defined AB2 Y-shaped miktoarm star polypeptide copolymer, PZLL-b-(PBLG)2, was synthesized via a combination of ring-opening polymerization (ROP) of alpha-amino acid N-carboxyanhydride (NCA) and click chemistry, where PZLL is poly(epsilon-benzyloxycarbonyl-L-lysine) and PBLG is poly(gamma-benzyl-L-glutamate). First, two types of primary-amine-containing initiators, N-aminoethyl 3,5-bis(propargyloxyl)-benzamide and 3-azidopropylamine, were synthesized and employed for the ROP of NCA, leading to the formation of dialkynyl-terminated PZLL and azide-terminated PBLG, dialkynyl-PZLL and PBLG-N3, respectively. The subsequent copper(I)-catalyzed cycloaddition reaction between dialkynyl-PZLL and slightly excess PBLG-N3 led to facile preparation of PZLL-b-(PBLG)2 Y-shaped miktoarm star polypeptide copolymer. The excess PBLG-N3 was scavenged off by reacting with alkynyl-functionalized Wang resin. The obtained Y-shaped miktoarm star polypeptide copolymer was characterized by gel permeation chromatograph (GPC), Fourier transform-infrared spectroscopy (FT-IR), and (1)H NMR. Moreover, after the hydrolysis of protecting benzyl and benzyloxycarbonyl groups of PZLL-b-(PBLG)2, water-soluble pH-responsive Y-shaped miktoarm star polypeptide copolymer, PLL-b-(PLGA)2, was obtained, where PLL is poly(L-lysine) and PLGA is poly(L-glutamic acid). It can self-assemble into PLGA-core micelles at acidic pH and PLL-core micelles at alkaline pH, accompanied with the coil-to-helix transition of PLGA and PLL sequences, respectively. The spontaneous pH-responsive supramolecular assembly of PLL-b-(PLGA)2 miktoarm star polypeptide copolymer has been investigated via a combination of (1)H NMR, laser light scattering (LLS), transmission electron microscopy (TEM), and circular dichroism (CD) spectroscopy.

  8. Resonant soft x-ray GISAXS on block copolymer films

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Araki, T.; Watts, B.; Ade, H.; Hexemer, A.; Park, S.; Russell, T. P.; Schlotter, W. F.; Stein, G. E.; Tang, C.; Kramer, E. J.

    2008-03-01

    Ordered block copolymer thin films may have important applications in modern device fabrication. Current characterization methods such as conventional GISAXS have fixed electron density contrast that can be overwhelmed by surface scattering. However, soft x-rays have longer wavelength, energy dependent contrast and tunable penetration, making resonant GISAXS a very promising tool for probing nanostructured polymer thin films. Our preliminary investigation was performed using PS-b-P2VP block copolymer films on beam-line 5-2 SSRL, and beam-line 6.3.2 at ALS, LBNL. The contrast/sensitivity of the scattering pattern varies significantly with photon energy close to the C K-edge (˜290 eV). Also, higher order peaks are readily observed, indicating hexagonal packing structure in the sample. Comparing to the hard x-ray GISAXS data of the same system, it is clear that resonant GISAXS has richer data and better resolution. Beyond the results on the A-B diblock copolymers, results on ABC block copolymers are especially interesting.

  9. Inhomogeneity of block copolymers at the interface of an immiscible polymer blend

    NASA Astrophysics Data System (ADS)

    Ryu, Ji Ho; Kim, YongJoo; Lee, Won Bo

    2018-04-01

    We present the effects of structure and stiffness of block copolymers on the interfacial properties of an immiscible homopolymer blend. Diblock and two-arm grafted copolymers with variation in stiffness are modeled using coarse-grained molecular dynamics to compare the compatibilization efficiency, i.e., reduction of interfacial tension. Overall, grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, an increase in the stiffness for one of the blocks of the diblock copolymers causes unusual inhomogeneous interfacial coverage due to bundle formation. However, an increase in the stiffness for one of blocks of the grafted copolymers prevents the bundle formation due to the branched chain. As a result, homogeneous interfacial coverage of homopolymer blends is realized with significant reduction of interfacial tension which makes grafted copolymer a better candidate for the compatibilizer of immiscible homopolymer blend.

  10. Confinement effects on the miscibility of block copolymer blends.

    PubMed

    Spencer, Russell K W; Matsen, Mark W

    2016-04-01

    Thin films of long and short symmetric AB diblock copolymers are examined using self-consistent field theory (SCFT). We focus on hard confining walls with a preference for the A component, such that the lamellar domains orient parallel to the film with an even number ν of monolayers. For neat melts, confinement causes the lamellar period, D, to deviate from its bulk value, Db, in order to be commensurate with the film thickness, i.e., L = νD/2. For blends, however, the melt also has the option of macrophase separating into ν(l) large and ν((s)) small monolayers so as to provide a better fit, where L = ν(l)D(l)/2 + ν(s)D((s))/2. In addition to performing full SCFT calculations of the entire film, we develop a semi-analytical calculation for the coexistence of thick and thin monolayers that helps explain the complicated interplay between miscibility and commensurability.

  11. Rich Variety of Three-Dimensional Nanostructures Enabled by Geometrically Constraining Star-like Block Copolymers.

    PubMed

    Wang, Chao; Xu, Yuci; Li, Weihua; Lin, Zhiqun

    2016-08-09

    The influence of star-like architecture on phase behavior of star-like block copolymer under cylindrical confinement differs largely from the bulk (i.e., nonconfinement). A set of intriguing self-assembled morphologies and the corresponding phase diagrams of star-like (AB)f diblock copolymers with different numbers of arms f (i.e., f = 3, 9, 15, and 21) in four scenarios (ϕA = 0.3 and V0 > 0; ϕA = 0.3 and V0 < 0; ϕA = 0.7 and V0 > 0; and ϕA = 0.7 and V0 < 0 (where ϕA is the volume fraction of A block) and V0 < 0 and V0 > 0 represent that the pore wall of cylindrical confinement prefers the inner A block (i.e., A-preferential) and B block (i.e., B-preferential), respectively) were for the first time scrutinized by employing the pseudospectral method of self-consistent mean-field theory. Surprisingly, a new nanoscopic phase, that is, perforated-lamellae-on-cylinder (denoted PC), was observed in star-like (AB)3 diblock copolymer at ϕA = 0.3 and V0 > 0. With a further increase in f, a single lamellae (denoted L1) was found to possess a larger phase region. Under the confinement of A-preferential wall (i.e., V0 < 0) at ϕA = 0.3, PC phase became metastable and its free energy increased as f increased. Quite intriguingly, when ϕA = 0.7 and V0 > 0, where an inverted cylinder was formed in bulk, the PC phase became stable, and its free energy decreased as f increased, suggesting the propensity to form PC phase under this condition. Moreover, in stark contrast to the phase transition of C1 → L1 → PC (C1, a single cylindrical microdmain) at ϕA = 0.3 and V0 > 0, when subjected to the A-preferential wall (ϕA = 0.7), a different phase transition sequence (i.e., C1 → PC → L1) was identified due to the formation of a double-layer structure. On the basis of our calculations, the influence of star-like architecture on (AB)f diblock copolymer under the imposed cylindrical confinement, particularly the shift of the phase boundaries as a function of f, was thoroughly

  12. Non-Classical Order in Sphere Forming ABAC Tetrablock Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwen; Sides, Scott; Bates, Frank

    2013-03-01

    AB diblock and ABC triblock copolymers have been studied thoroughly. ABAC tetrablock copolymers, representing the simplest variation from ABC triblock by breaking the molecular symmetry via inserting some of the A block in between B and C blocks, have been studied systematically in this research. The model system is poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) (SISO) tetrablock terpolymers and the resulting morphologies were characterized by nuclear magnetic resonance, gel permeation chromatography, small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry and dynamic mechanical spectroscopy. Two novel phases are first discovered in a single component block copolymers: hexagonally ordered spherical phase and tentatively identified dodecagonal quasicrystalline (QC) phase. In particular, the discovery of QC phase bridges the world of soft matters to that of metals. These unusual sets of morphologies will be discussed in the context of segregation under the constraints associated with the tetrablock molecular architecture. Theoretical calculations based on the assumption of Gaussian chain statistics provide valuable insights into the molecular configurations associated with these morphologies. the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under contract number DEAC05-00OR22725 with UT-Battelle LLC at Oak Ridge National Lab.

  13. Mechanistic insights for block copolymer morphologies: how do worms form vesicles?

    PubMed

    Blanazs, Adam; Madsen, Jeppe; Battaglia, Giuseppe; Ryan, Anthony J; Armes, Steven P

    2011-10-19

    Amphiphilic diblock copolymers composed of two covalently linked, chemically distinct chains can be considered to be biological mimics of cell membrane-forming lipid molecules, but with typically more than an order of magnitude increase in molecular weight. These macromolecular amphiphiles are known to form a wide range of nanostructures (spheres, worms, vesicles, etc.) in solvents that are selective for one of the blocks. However, such self-assembly is usually limited to dilute copolymer solutions (<1%), which is a significant disadvantage for potential commercial applications such as drug delivery and coatings. In principle, this problem can be circumvented by polymerization-induced block copolymer self-assembly. Here we detail the synthesis and subsequent in situ self-assembly of amphiphilic AB diblock copolymers in a one pot concentrated aqueous dispersion polymerization formulation. We show that spherical micelles, wormlike micelles, and vesicles can be predictably and efficiently obtained (within 2 h of polymerization, >99% monomer conversion) at relatively high solids in purely aqueous solution. Furthermore, careful monitoring of the in situ polymerization by transmission electron microscopy reveals various novel intermediate structures (including branched worms, partially coalesced worms, nascent bilayers, "octopi", "jellyfish", and finally pure vesicles) that provide important mechanistic insights regarding the evolution of the particle morphology during the sphere-to-worm and worm-to-vesicle transitions. This environmentally benign approach (which involves no toxic solvents, is conducted at relatively high solids, and requires no additional processing) is readily amenable to industrial scale-up, since it is based on commercially available starting materials.

  14. A systematic coarse-graining strategy for semi-dilute copolymer solutions: from monomers to micelles.

    PubMed

    Capone, Barbara; Coluzza, Ivan; Hansen, Jean-Pierre

    2011-05-18

    A systematic coarse-graining procedure is proposed for the description and simulation of AB diblock copolymers in selective solvents. Each block is represented by a small number, n(A) or n(B), of effective segments or blobs, containing a large number of microscopic monomers. n(A) and n(B) are unequivocally determined by imposing that blobs do not, on average, overlap, even if complete copolymer coils interpenetrate (semi-dilute regime). Ultra-soft effective interactions between blobs are determined by a rigorous inversion procedure in the low concentration limit. The methodology is applied to an athermal copolymer model where A blocks are ideal (theta solvent), B blocks self-avoiding (good solvent), while A and B blocks are mutually avoiding. The model leads to aggregation into polydisperse spherical micelles beyond a critical micellar concentration determined by Monte Carlo simulations for several size ratios f of the two blocks. The simulations also provide accurate estimates of the osmotic pressure and of the free energy of the copolymer solutions over a wide range of concentrations. The mean micellar aggregation numbers are found to be significantly lower than those predicted by an earlier, minimal two-blob representation (Capone et al 2009 J. Phys. Chem. B 113 3629).

  15. Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block.

    PubMed

    Fan, Bin; Liu, Lei; Li, Jun-Huan; Ke, Xi-Xian; Xu, Jun-Ting; Du, Bin-Yang; Fan, Zhi-Qiang

    2016-01-07

    Crystallization-driven self-assembly of polyethylene-b-poly(tert-butylacrylate) (PE-b-PtBA) block copolymers (BCPs) in N,N-dimethyl formamide (DMF) was studied. It is found that all three PE-b-PtBA BCPs used in this work can self-assemble into one-dimensional crystalline cylindrical micelles. When the BCP solution is cooled to crystallization temperature (Tc) from 130 °C, the seed micelles may be produced via two competitive processes in the initial period: stepwise micellization/crystallization and simultaneous crystallization/micellization. Subsequently, the seed micelles can undergo growth driven by the epitaxial crystallization of the unimers. The lengths of both the seed micelles and the grown micelles are longer for the BCP with a longer PtBA block at a higher Tc. Quasi-living growth of the PE-b-PtBA crystalline cylindrical micelles is achieved at a higher Tc. A longer PtBA block evidently retards the attachment of unimers to the crystalline micelles, leading to a slower growth rate.

  16. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  17. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  18. Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva.

    PubMed

    Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C

    2009-04-13

    Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.

  19. Mechanically tunable elastomeric hydrogels made from melt-fabricated photoreactive block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Huq, Nabila; Bailey, Travis

    Recently, our group has developed a range of novel elastomeric hydrogels using thermoplastic elastomer design concepts. These have been traditionally formed using two-component blends of AB diblock and ABA triblock copolymer designed to self-assemble into micelle-like domains in the melt. Vitrification of the micelle cores (A blocks) followed by swelling in aqueous media leads to an elastic network of spheres tethered by the population of bridging ABA chains in the blend. The concentration of ABA used has a strong influence on the mechanical properties exhibited by the hydrogels. We have built on this by replacing the traditional AB with a photoreactive AB-p. This construct provides flexibility to install specific concentrations of ABA tethering molecules at any point in the fabrication process as well as at any location simply through intensity-controlled, spatially directed irradiation with UV light. Increasing UV exposure time results in greater ABA concentrations, reinforcing the area of exposure. In this presentation we explore the influence of patterned ABA installation on shape, surface topography, and mechanical properties of the resulting hydrogels.

  20. Ion Conduction in Perfectly Aligned Block Copolymer-Ionic Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Elabd, Yossef A.; Winey, Karen I.

    2011-03-01

    Our earlier work to correlate the transport measurements in diblock copolymer-ionic liquid mixtures was limited by our bulk samples that have only partial alignment. Here, thin films with perfect alignment of lamellar microdomains from mixtures of a poly(methyl methacrylate- b -styrene) diblock copolymer and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, have been studied. The morphologies will be characterized by cross-sectional transmission electron microscopy. Ion conduction will be presented within and through the thin film.

  1. Bicomponent Block Copolymers Derived from One or More Random Copolymers as an Alternative Route to Controllable Phase Behavior

    SciTech Connect

    Ashraf, Arman R.; Ryan, Justin J.; Satkowski, Michael M.

    Block copolymers have been extensively studied due to their ability to spontaneously self-organize into a wide variety of morphologies that are valuable in energy-, medical- and conservation-related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, we demonstrate that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks is a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms ofmore » the order-disorder transition (ODT), has been investigated. Our results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase-separate. We also report that the predicted ODT can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence-controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random-copolymer midblock.« less

  2. Rapid Ordering in “Wet Brush” Block Copolymer/Homopolymer Ternary Blends

    SciTech Connect

    Doerk, Gregory S.; Yager, Kevin G.

    The ubiquitous presence of thermodynamically unfavored but kinetically trapped topological defects in nanopatterns formed via self-assembly of block copolymer thin films may prevent their use for many envisioned applications. Here, we demonstrate that lamellae patterns formed by symmetric polystyrene-block-poly(methyl methacrylate) diblock copolymers self-assemble and order extremely rapidly when the diblock copolymers are blended with low molecular weight homopolymers of the constituent blocks. Being in the “wet brush” regime, the homopolymers uniformly distribute within their respective self-assembled microdomains, preventing increases in domain widths. An order-of-magnitude increase in topological grain size in blends over the neat (unblended) diblock copolymer is achieved withinmore » minutes of thermal annealing as a result of the significantly higher power law exponent for ordering kinetics in the blends. Moreover, the blends are demonstrated to be capable of rapid and robust domain alignment within micrometer-scale trenches, in contrast to the corresponding neat diblock copolymer. Furthermore, these results can be attributed to the lowering of energy barriers associated with domain boundaries by bringing the system closer to an order–disorder transition through low molecular weight homopolymer blending.« less

  3. Rapid Ordering in "Wet Brush" Block Copolymer/Homopolymer Ternary Blends.

    PubMed

    Doerk, Gregory S; Yager, Kevin G

    2017-12-26

    The ubiquitous presence of thermodynamically unfavored but kinetically trapped topological defects in nanopatterns formed via self-assembly of block copolymer thin films may prevent their use for many envisioned applications. Here, we demonstrate that lamellae patterns formed by symmetric polystyrene-block-poly(methyl methacrylate) diblock copolymers self-assemble and order extremely rapidly when the diblock copolymers are blended with low molecular weight homopolymers of the constituent blocks. Being in the "wet brush" regime, the homopolymers uniformly distribute within their respective self-assembled microdomains, preventing increases in domain widths. An order-of-magnitude increase in topological grain size in blends over the neat (unblended) diblock copolymer is achieved within minutes of thermal annealing as a result of the significantly higher power law exponent for ordering kinetics in the blends. Moreover, the blends are demonstrated to be capable of rapid and robust domain alignment within micrometer-scale trenches, in contrast to the corresponding neat diblock copolymer. These results can be attributed to the lowering of energy barriers associated with domain boundaries by bringing the system closer to an order-disorder transition through low molecular weight homopolymer blending.

  4. Rapid Ordering in “Wet Brush” Block Copolymer/Homopolymer Ternary Blends

    DOE PAGES

    Doerk, Gregory S.; Yager, Kevin G.

    2017-12-01

    The ubiquitous presence of thermodynamically unfavored but kinetically trapped topological defects in nanopatterns formed via self-assembly of block copolymer thin films may prevent their use for many envisioned applications. Here, we demonstrate that lamellae patterns formed by symmetric polystyrene-block-poly(methyl methacrylate) diblock copolymers self-assemble and order extremely rapidly when the diblock copolymers are blended with low molecular weight homopolymers of the constituent blocks. Being in the “wet brush” regime, the homopolymers uniformly distribute within their respective self-assembled microdomains, preventing increases in domain widths. An order-of-magnitude increase in topological grain size in blends over the neat (unblended) diblock copolymer is achieved withinmore » minutes of thermal annealing as a result of the significantly higher power law exponent for ordering kinetics in the blends. Moreover, the blends are demonstrated to be capable of rapid and robust domain alignment within micrometer-scale trenches, in contrast to the corresponding neat diblock copolymer. Furthermore, these results can be attributed to the lowering of energy barriers associated with domain boundaries by bringing the system closer to an order–disorder transition through low molecular weight homopolymer blending.« less

  5. Light-emitting block copolymers composition, process and use

    DOEpatents

    Ferraris, John P.; Gutierrez, Jose J.

    2006-11-14

    Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.

  6. Implications of grain size variation in magnetic field alignment of block copolymer blends

    DOE PAGES

    Rokhlenko, Yekaterina; Majewski, Pawel W.; Larson, Steven R.; ...

    2017-03-28

    Recent experiments have highlighted the intrinsic magnetic anisotropy in coil–coil diblock copolymers, specifically in poly(styrene- block-4-vinylpyridine) (PS- b-P4VP), that enables magnetic field alignment at field strengths of a few tesla. We consider here the alignment response of two low molecular weight (MW) lamallae-forming PS- b-P4VP systems. Cooling across the disorder–order transition temperature (T odt) results in strong alignment for the higher MW sample (5.5K), whereas little alignment is discernible for the lower MW system (3.6K). This disparity under otherwise identical conditions of field strength and cooling rate suggests that different average grain sizes are produced during slow cooling of thesemore » materials, with larger grains formed in the higher MW material. Blending the block copolymers results in homogeneous samples which display T odt, d-spacings, and grain sizes that are intermediate between the two neat diblocks. Similarly, the alignment quality displays a smooth variation with the concentration of the higher MW diblock in the blends, and the size of grains likewise interpolates between limits set by the neat diblocks, with a factor of 3.5× difference in the grain size observed in high vs low MW neat diblocks. Finally, these results highlight the importance of grain growth kinetics in dictating the field response in block copolymers and suggests an unconventional route for the manipulation of such kinetics.« less

  7. Implications of grain size variation in magnetic field alignment of block copolymer blends

    SciTech Connect

    Rokhlenko, Yekaterina; Majewski, Pawel W.; Larson, Steven R.

    Recent experiments have highlighted the intrinsic magnetic anisotropy in coil–coil diblock copolymers, specifically in poly(styrene- block-4-vinylpyridine) (PS- b-P4VP), that enables magnetic field alignment at field strengths of a few tesla. We consider here the alignment response of two low molecular weight (MW) lamallae-forming PS- b-P4VP systems. Cooling across the disorder–order transition temperature (T odt) results in strong alignment for the higher MW sample (5.5K), whereas little alignment is discernible for the lower MW system (3.6K). This disparity under otherwise identical conditions of field strength and cooling rate suggests that different average grain sizes are produced during slow cooling of thesemore » materials, with larger grains formed in the higher MW material. Blending the block copolymers results in homogeneous samples which display T odt, d-spacings, and grain sizes that are intermediate between the two neat diblocks. Similarly, the alignment quality displays a smooth variation with the concentration of the higher MW diblock in the blends, and the size of grains likewise interpolates between limits set by the neat diblocks, with a factor of 3.5× difference in the grain size observed in high vs low MW neat diblocks. Finally, these results highlight the importance of grain growth kinetics in dictating the field response in block copolymers and suggests an unconventional route for the manipulation of such kinetics.« less

  8. Self-Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets.

    PubMed

    Steinhaus, Andrea; Pelras, Théophile; Chakroun, Ramzi; Gröschel, André H; Müllner, Markus

    2018-05-02

    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilized oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Testing strong-segregation theory against self-consistent-field theory for block copolymer melts

    NASA Astrophysics Data System (ADS)

    Matsen, M. W.

    2001-06-01

    We introduce a highly efficient self-consistent-field theory (SCFT) method for examining the cylindrical and spherical block copolymer morphologies using a standard unit cell approximation (UCA). The method is used to calculate the classical diblock copolymer phase boundaries deep into the strong-segregation regime, where they can be compared with recent improvements to strong-segregation theory (SST). The comparison suggests a significant discrepancy between the two theories indicating that our understanding of strongly stretched polymer brushes is still incomplete.

  10. Dynamics of interacting edge defects in copolymer lamellae

    NASA Astrophysics Data System (ADS)

    Dalnoki-Veress, Kari; McGraw, Joshua D.; Rowe, Ian D. W.

    2011-03-01

    It is known that terraces at the interface of lamella forming diblock copolymers do not make discontinuous jumps in height. Rather, their profiles are smoothly varying. The width of the transition region between two lamellar heights is typically several hundreds of nanometres, resulting from a balance between surface tension, chain stretching penalties, and the enthalpy of mixing. What is less well known in these systems is what happens when two transition regions approach one another. In this study, we show that time dependent experimental data of interacting copolymer lamellar edges is consistent with a model that assumes a repulsion between adjacent edges. The range of the interaction between edge defects is consistent with the profile width of noninteracting diblock terraces. Financial support from NSERC of Canada is gratefully acknowledged.

  11. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gavrilov, Alexey A.; Kudryavtsev, Yaroslav V.; Chertovich, Alexander V.

    2013-12-01

    Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multiblock copolymer melt are constructed using dissipative particle dynamics simulations. A thorough visual analysis and calculation of the static structure factor in several hundreds of points at each of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks can be precisely located by a spike in the dependence of the mean square pressure fluctuation on χN, where χ is the Flory-Huggins parameter and N is the chain length. For two other copolymer types, the continuous ODTs are observed. Large polydispersity of both blocks obeying the Flory distribution in length does not shift the ODT curve but considerably narrows the domains of the cylindrical and lamellar phases partially replacing them with the wormlike micelle and perforated lamellar phases, respectively. Instead of the pure 3d-bicontinuous phase in monodisperse diblocks, which could be identified as the gyroid, a coexistence of the 3d phase and cylindrical micelles is detected in polydisperse diblocks. The lamellar domain spacing D in monodisperse diblocks follows the strong-segregation theory prediction, D/N1/2 ˜ (χN)1/6, whereas in polydisperse diblocks it is almost independent of χN at χN < 100. Completely random multiblock copolymers cannot form ordered microstructures other than lamellas at any composition.

  12. Controlling sub-microdomain structure in microphase-ordered block copolymers and their nanocomposites

    NASA Astrophysics Data System (ADS)

    Bowman, Michelle Kathleen

    Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a

  13. Rapid transitions between defect configurations in a block copolymer melt.

    PubMed

    Tsarkova, Larisa; Knoll, Armin; Magerle, Robert

    2006-07-01

    With in situ scanning force microscopy, we image the ordering of cylindrical microdomains in a thin film of a diblock copolymer melt. Tracking the evolution of individual defects reveals elementary steps of defect motion via interfacial undulations and repetitive transitions between distinct defect configurations on a time scale of tens of seconds. The velocity of these transitions suggests a cooperative movement of clusters of chains. The activation energy for the opening/closing of a connection between two cylinders is estimated.

  14. Thermoresponsive hydrogel of diblock methylcellulose: formation of ribbonlike supramolecular nanostructures by self-assembly.

    PubMed

    Nakagawa, Atsushi; Steiniger, Frank; Richter, Walter; Koschella, Andreas; Heinze, Thomas; Kamitakahara, Hiroshi

    2012-08-28

    This article provides detailed insight into the thermoresponsive gelation mechanism of industrially produced methylcellulose (MC), highlighting the importance of diblock structure with a hydrophobic sequence of 2,3,6-tri-O-methyl-glucopyranosyl units for this physicochemical property. We show herein, for the first time, that well-defined diblock MC self-assembles thermoresponsively into ribbonlike nanostructures in water. A cryogenic transmission electron microscopy (cryo-TEM) technique was used to detect the ribbonlike nanostructures formed by the diblock copolymers consisting of hydrophilic glucosyl or cellobiosyl and hydrophobic 2,3,6-tri-O-methyl-cellulosyl blocks, methyl β-D-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-celluloside 1 (G-236MC, DP(n) = 10.7, DS = 2.65), and methyl β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-celluloside 2 (GG-236MC, DP(n) = 28.2, DS = 2.75). Rheological measurements revealed that the gel strength of a dispersion of GG-236MC (2, 2.0 wt %) in water at 70 °C was 3.0 times stronger than that of commercial MC SM-8000, although the molecular weight of GG-236MC (2) having M(w) = 8 × 10(3) g/mol was 50 times smaller than that of SM-8000 having M(w) = 4 × 10(5) g/mol. Cryo-TEM observation suggested that the hydrogel formation of the diblock copolymers could be attributed to the entanglement of ribbonlike nanostructures self-assembled by the diblock copolymers in water. The cryo-TEM micrograph of GG-236MC (2) at 5 °C showed rectangularly shaped nanostructures having a thickness from 11 to 24 nm, although G-236MC (1) at 20 °C showed no distinct self-assembled nanostructures. The ribbonlike nanostructures of GG-236MC (2) having a length ranging from 91 to 864 nm and a thickness from 8.5 to 27.1 nm were detected above 20 °C. Small-angle X-ray scattering measurements suggested that the ribbonlike nanostructures of GG-236MC (2) consisted of a bilayer structure with a width of ca. 40 nm. It was likely that GG

  15. Organisation and shape of micellar solutions of block copolymers

    NASA Astrophysics Data System (ADS)

    Gaspard, J. P.; Creutz, S.; Bouchat, Ph.; Jérôme, R.; Cohen Stuart, M.

    1997-02-01

    Diblock copolymers of polymethacrylic acid sodium salt, forming the hair, and styrene derivatives have been studied in aqueous solutions by SANS and SAXS. The influence of both the chemical nature and the length of the hydrophobic bloxk on the size and shape of micelles have been investigated. The micellar core size is in agreement with the theoretical evaluation for copolymers with a short hydrophobic sequence. In contrast, in case of larger hydrophobic blocks, the measured size is incompatible with a star-like model. Various hypotheses are presented for the latter.

  16. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies.

    PubMed

    Wang, Lei; Zhang, Chongyin; Cong, Houluo; Li, Lei; Zheng, Sixun; Li, Xiuhong; Wang, Jie

    2013-07-11

    In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).

  17. Achieving Continuous Anion Transport Domains Using Block Copolymers Containing Phosphonium Cations

    DOE PAGES

    Zhang, Wenxu; Liu, Ye; Jackson, Aaron C.; ...

    2016-06-22

    Triblock and diblock copolymers based on isoprene (Ip) and chloromethylstyrene (CMS) were synthesized in this paper by sequential polymerization using reversible addition–fragmentation chain transfer radical polymerization (RAFT). The block copolymers were quaternized with tris(2,4,6-trimethoxyphenyl)phosphine (Ar 3P) to prepare soluble ionomers. The ionomers were cast from chloroform to form anion exchange membranes (AEMs) with highly ordered morphologies. At low volume fractions of ionic blocks, the ionomers formed lamellar morphologies, while at moderate volume fractions (≥30% for triblock and ≥22% for diblock copolymers) hexagonal phases with an ionic matrix were observed. Ion conductivities were higher through the hexagonal phase matrix than inmore » the lamellar phases. Finally, promising chloride conductivities (20 mS/cm) were achieved at elevated temperatures and humidified conditions.« less

  18. Simulation of free energies of bicontinuous morphologies formed through block copolymer/homopolymer self-assembly

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Poornima; Martinez-Veracoechea, Francisco; Escobedo, Fernando

    Different types of bicontinuous phases can be formed from A-B diblock copolymers by the addition of A-type homopolymers over a range of compositions and relative chain lengths. Particle-based molecular simulations were used to study three bicontinuous phases - double gyroid (G), double diamond (D) and plumber's nightmare (P) - near their triple point of coexistence. For 3-D ordered phases, the stability of the morphology formed in simulation is highly sensitive to box size whose exact size is unknown a-priori. Accurate free energy estimates are required to ascertain the stable phase, particularly when multiple competing phases spontaneously form at the conditions of interest. A variant of thermodynamic integration was implemented to obtain free energies and hence identify the stable phases and their optimal box sizes by tracing a reversible path that connects the ordered and disordered phases. Clear evidence was found of D-G and D-P phase coexistence, consistent with previous predictions for the same blend using Self-consistent field theory. Our simulations also allowed us to examine the microscopic details of these coexisting bicontinuous phases and detect key differences between the microstructure of their nodes and struts.

  19. Sulfonated amphiphilic block copolymers : synthesis, self-assembly in water, and application as stabilizer in emulsion polymerization

    Treesearch

    Jiguang Zhang; Matthew R. Dubay; Carl J. Houtman; Steven J. Severtson

    2009-01-01

    Described is the synthesis of diblock copolymers generated via sequential atom transfer radical polymerization (ATRP) of poly(n-butyl acrylate) (PnBA) followed by chain augmentation with either sulfonated poly(2-hydroxyethyl methacrylate) (PHEMA) or poly(2-hydroxyethyl acrylate) (PHEA) blocks. ATRP of PHEMA or PHEA from PnBA macroinitiator was conducted in acetone/...

  20. Chain exchange in triblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  1. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles

    DOE PAGES

    Sun, Jing; Jiang, Xi; Lund, Reidar; ...

    2016-03-28

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less

  2. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles

    SciTech Connect

    Sun, Jing; Jiang, Xi; Lund, Reidar

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less

  3. Phase Structure and Properties of a Biodegradable Block Copolymer Coalesced from It's Crystalline Inclusion Compound Formed with alpha-Cyclodextrin

    NASA Astrophysics Data System (ADS)

    Shuai, Xintao; Wei, Min; Probeni, Francis; Bullions, Todd A.; Shin, I. Daniel; Tonelli, Alan E.

    2002-03-01

    A well-defined biodegradable block copolymer of poly(epsilon caprolactone) (PCL) and poly(L-lactic acid) (PLLA) was synthesized and characterized and then included as a guest in an inclusion compound (IC) formed with the host alpha-cyclodextrin (CD). The PCL-b-PLLA block copolymer was subsequently coalesced from it's CD-IC crystals by either treatment with hot water (50 C) or an aqueous amylase solution at 25 C. The coalesced PCL-b-PLLA was examined by FTIR, DSC, TGA, and WAXD and was found to be much more homogeneosly organized, with much less segregation and crystallinity of the PCL and PLLA microphases. The morpholgy, crystallization kinetics, thermal behavior, and biodegradability of the coalesced PCL-b-PLLA block copolymer was studied by comparison to similar observations made on as-synthesized PCL-b-PLLA, PCL and PLLA homopolymers, and their solution-cast blend. The PCL and PLLA blocks are found to be more intimately mixed, with less phase segregation, in the coalesced diblock copolymer, and this leads to homogeneous bulk crystallization, which is not observed for the as-synthesized diblock copolymer. The coalesced PCL-b-PLLA was also found to be more quickly biodegraded (lipase from Rhizopus arrhizus)than the as-synthesized PCL-b-PLLA or the physical blend of PCL and PLLA homopolymers. Overall, the coalescence of the inherently phase segregated diblock copolymer PCL-b-PLLA results in a small amount of compact, chain-extended PCL and PLLA crystals embedded in an amorphous phase, largely consisting of well-mixed PCL and PLLA blocks. Thus, we have demonstrated that it is possible to control the morpholgy of a biodegradable diblock copolymer, thereby significantly modifying it's properties, by coalescence from it's CD-IC crystals.

  4. Aggregate morphologies of amphiphilic ABC triblock copolymer in dilute solution using self-consistent field theory.

    PubMed

    Wang, Rong; Tang, Ping; Qiu, Feng; Yang, Yuliang

    2005-09-15

    The complex microstructures of amphiphilic ABC linear triblock copolymers in which one of the end blocks is relatively short and hydrophilic, and the other two blocks B and C are hydrophobic in a dilute solution, have been investigated by the real-space implementation of self-consistent field theory (SCFT) in two dimensions (2D). In contrast to diblock copolymers in solution, the aggregation of triblock copolymers are more complicated due to the presence of the second hydrophobic blocks and, hence, big ranges of parameter space controlling the morphology. By tailoring the hydrophobic degree and its difference between the blocks B and C, the various shapes of vesicles, circlelike and linelike micelles possibly corresponding to spherelike, and rodlike micelles in 3D, and especially, peanutlike micelles not found in diblock copolymers are observed. The transition from vesicles to circlelike micelles occurs with increasing the hydrophobicity of the blocks B and C, while the transition from circlelike micelles to linelike micelles or from the mixture of micelles and vesicles to the long linelike micelles takes place when the repulsive interaction of the end hydrophobic block C is stronger than that of the middle hydrophobic block B. Furthermore, it is favorable for dispersion of the block copolymer in the solvent into aggregates when the repulsion of the solvent to the end hydrophobic block is larger than that of the solvent to the middle hydrophobic block. Especially when the bulk block copolymers are in a weak segregation regime, the competition between the microphase separation and macrophase separation exists and the large compound micelle-like aggregates are found due to the macrophase separation with increasing the hydrophobic degree of blocks B and C, which is absent in diblock copolymer solution. The simulation results successfully reproduce the existing experimental ones.

  5. Solvent-Vapor-Mitigation of Electrostatics in 3D Cyclopropenium Diblock Copolyelectrolyte Network

    NASA Astrophysics Data System (ADS)

    Russell, Sebastian; Kumar, Sanat; Campos, Luis

    Photolithography is progressively becoming an obsolete manufacturing technique in the microelectronic industry as block copolymer (BCP) nanoassembles approach sub 10-nm features sizes. Thermodynamically, the morphology and limiting feature size, for BCP, are determined by the relative volume fraction and magnitude of the incompatibility (χN) between each block. Therefore, to achieve smaller dimensions, it is imperative to devise copolymer systems that are strongly segregating (χN >>10) by utilizing high monomer incompatibility, large χ. For synthetic cylinder forming BCPs, achieving sub-10 nm features with a high degree of lateral ordering still remains a challenge. Covalently bound ions could potentially be a route towards enhancing the segmental incompatibility and this presentation will focus on the self-assembly of post-polymerization functionalized cyclopropenium-ion diblock copolyelectrolytes (DBCPE) through solvent vapor annealing. By varying the BCPE's total degree of polymerization and charge fraction we have mapped the kinetic phase-space. This control over morphology has opened the door to sub-10nm features with tunable densities by varying the length of the neutral and polyelectrolyte block, respectively. Chemical Engineering Department.

  6. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  7. Metallocene-Containing Homopolymers and Heterobimetallic Block Copolymers via Photoinduced RAFT Polymerization

    PubMed Central

    Yang, Peng; Pageni, Parasmani; Kabir, Mohammad Pabel; Zhu, Tianyu; Tang, Chuanbing

    2017-01-01

    We report the synthesis of cationic cobaltocenium and neutral ferrocene containing homopolymers mediated by photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization with a photocatalyst fac-[Ir(ppy)3]. The homopolymers were further used as macromolecular chain transfer agents to synthesize diblock copolymers via chain extension. Controlled/“living” feature of photoinduced RAFT polymerization was confirmed by kinetic studies even without prior deoxygenation. A light switch between ON and OFF provided a spatiotemporal control of polymerization. PMID:29276651

  8. Prediction of the solubility of cucurbitacin drugs in self-associating poly(ethylene oxide)-b-poly(alpha-benzyl carboxylate epsilon-caprolactone) block copolymer with different tacticities using molecular dynamics simulation.

    PubMed

    Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip

    2010-01-01

    Molecular dynamics (MD) simulation was used to investigate the solubility of two hydrophobic drugs Cucurbitacin B (CuB) and Cucurbitacin I (CuI) in poly(ethylene oxide)-b-poly(alpha-benzyl carboxylate epsilon-caprolactone) (PEO-b-PBCL) block copolymers with different tacticities. In particular, di-block copolymer with three different tacticities viz. PEO-b-iPBCL, PEO-b-sPBCL, and PEO-b-aPBCL were used. The solubility was quantified by calculating the corresponding Flory-Huggins interaction parameters (chi) using random binary mixture models with 10wt% of drug. The tacticity of the di-block copolymer was found to influence significantly the solubility of two drugs in it. In particular, based on MD simulation results, only PEO-b-sPBCL exhibited solubility while the other two did not. Given the fact that the drugs were shown to be soluble in PEO-b-PBCL experimentally, it is predicted that the tacticity of the di-block copolymer synthesized in experiment is syndiotactic. This predication matches well with the dominant ring opening polymerization of cyclic lactones to syndiotactic polymers by stannous octoate as catalyst used to prepare PEO-b-PBCL block copolymers in our previous experiments. The simulation results showed that the solubility of the drugs in PEO-b-sPBCL is attributed to the favorable intra-molecular interaction of the di-block copolymer and favorable intermolecular interaction between the di-block copolymer and the drugs. Radial distribution function analysis provides useful insights into the nature and type of the intermolecular interactions.

  9. Ion Correlation Effects in Salt-Doped Block Copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Seo, Youngmi; Hall, Lisa M.

    2018-03-01

    We apply classical density functional theory to study how salt changes the microphase morphology of diblock copolymers. Polymers are freely jointed and one monomer type favorably interacts with ions, to account for the selective solvation that arises from different dielectric constants of the microphases. By including correlations from liquid state theory of an unbound reference fluid, the theory can treat chain behavior, microphase separation, ion correlations, and preferential solvation, at the same coarse-grained level. We show good agreement with molecular dynamics simulations.

  10. Stretch or contraction induced inversion of rectification in diblock molecular junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ping; Hu, Gui-Chao; Song, Yang; Xie, Zhen; Wang, Chuan-Kui

    2013-09-01

    Based on ab initio theory and nonequilibrium Green's function method, the effect of stretch or contraction on the rectification in diblock co-oligomer molecular diodes is investigated theoretically. Interestingly, an inversion of rectifying direction induced by stretching or contracting the molecular junctions, which is closely related to the number of the pyrimidinyl-phenyl units, is proposed. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals as well as transmission coefficients under external biases gives an inside view of the observed results. It reveals that the asymmetric molecular level shift and asymmetric evolution of orbital wave functions under biases are competitive mechanisms for rectification. The stretching or contracting induced inversion of the rectification is due to the conversion of the dominant mechanism. This work suggests a feasible technique to manipulate the rectification performance in molecular diodes by use of the mechanically controllable method.

  11. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution.

    PubMed

    Sugihara, Shinji; Blanazs, Adam; Armes, Steven P; Ryan, Anthony J; Lewis, Andrew L

    2011-10-05

    Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution.

  12. Let there be light: photo-cross-linked block copolymer nanoparticles.

    PubMed

    Roy, Debashish; Sumerlin, Brent S

    2014-01-01

    Polymeric nanoparticles are prepared by selectively cross-linking a photo-sensitive dimethylmaleimide-containing block of a diblock copolymer via UV irradiation. A well-defined photo-cross-linkable block copolymer is prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of a dimethylmaleimide-functional acrylamido monomer containing photoreactive pendant groups with a poly(N,N-dimethylacrylamide) (PDMA) macro-chain transfer agent. The resulting amphiphilic block copolymers form micelles in water with a hydrophilic PDMA shell and a hydrophobic photo-cross-linkable dimethylmaleimide-containing core. UV irradiation results in photodimerization of the dimethylmaleimide groups within the micelle cores to yield core-cross-linked aggregates. Alternatively, UV irradiation of homogeneous solutions of the block copolymer in a non-selective solvent leads to in situ nanoparticle formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Diblock Terpolymers Are Tunable and pH Responsive Vehicles To Increase Hydrophobic Drug Solubility for Oral Administration.

    PubMed

    Tale, Swapnil; Purchel, Anatolii A; Dalsin, Molly C; Reineke, Theresa M

    2017-11-06

    Synthetic polymers offer tunable platforms to create new oral drug delivery vehicles (excipients) to increase solubility, supersaturation maintenance, and bioavailability of poorly aqueous soluble pharmaceutical candidates. Five well-defined diblock terpolymers were synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT) and consist of a first block of either poly(ethylene-alt-propylene) (PEP), poly(N-isopropylacrylamide) (PNIPAm), or poly(N,N-diethylaminoethyl methacrylate) (PDEAEMA) and a second hydrophilic block consisting of a gradient copolymer of N,N-dimethylacrylamide (DMA) and 2-methacrylamidotrehalose (MAT). This family of diblock terpolymers offers hydrophobic, hydrophilic, or H-bonding functionalities to serve as noncovalent sites of drug binding. Drug-polymer spray dried dispersions (SDDs) were created with a model drug, probucol, and characterized by differential scanning calorimetry (DSC). These studies revealed that probucol crystallinity decreased with increasing H-bonding sites available in the polymer. The PNIPAm-b-P(DMA-grad-MAT) systems revealed the best performance at pH 6.5, where immediate probucol release and effective maintenance of 100% supersaturation was found, which is important for facilitating drug solubility in more neutral conditions (intestinal environment). However, the PDEAEMA-b-P(DMA-grad-MAT) system revealed poor probucol dissolution at pH 6.5 and 5.1. Alternatively, at an acidic pH of 3.1, a rapid and high dissolution profile and effective supersaturation maintenance of up to 90% of the drug was found, which could be useful for triggering drug release in acidic environments (stomach). The PEP-b-P(DMA-grad-MAT) system showed poor performance (only ∼20% of drug solubility at pH 6.5), which was attributed to the low solubility of the polymers in the dissolution media. This work demonstrates the utility of diblock terpolymers as a potential new excipient platform to optimize design parameters for

  14. Heat Capacity of Spider Silk-like Block Copolymers

    PubMed Central

    Huang, Wenwen; Krishnaji, Sreevidhya; Hu, Xiao; Kaplan, David; Cebe, Peggy

    2012-01-01

    We synthesized and characterized a new family of di-block copolymers based on the amino acid sequences of Nephila clavipes major ampulate dragline spider silk, having the form HABn and HBAn (n=1–3), comprising an alanine-rich hydrophobic block, A, a glycine-rich hydrophilic block, B, and a histidine tag, H. The reversing heat capacities, Cp(T), for temperatures below and above the glass transition, Tg, were measured by temperature modulated differential scanning calorimetry. For the solid state, we then calculated the heat capacities of our novel block copolymers based on the vibrational motions of the constituent poly(amino acid)s, whose heat capacities are known or can be estimated from the ATHAS Data Bank. For the liquid state, the heat capacity was estimated by using the rotational and translational motions in the polymer chain. Excellent agreement was found between the measured and calculated values of the heat capacity, showing that this method can serve as a standard by which to assess the Cp for other biologically inspired block copolymers. The fraction of beta sheet crystallinity of spider silk block copolymers was also determined by using the predicted Cp, and was verified by wide angle X-ray diffraction and Fourier transform infrared spectroscopy. The glass transition temperatures of spider silk block copolymer were fitted by Kwei’s equation and the results indicate that attractive interaction exists between the A-block and B-block. PMID:23869111

  15. Molecular diodes based on conjugated diblock co-oligomers.

    PubMed

    Ng, Man-Kit; Lee, Dong-Chan; Yu, Luping

    2002-10-09

    This report describes synthesis and characterization of a molecular diode based upon a diblock conjugated oligomer system. This system consists of two conjugated blocks with opposite electronic demand. The molecular structure exhibits a built-in electronic asymmetry, much like a semiconductor p-n junction. Electrical measurements by scanning tunneling spectroscopy (STS) clearly revealed a pronounced rectifying effect. Definitive proof for the molecular nature of the rectifying effect in this conjugated diblock molecule is provided by control experiments with a structurally similar reference compound.

  16. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles

    PubMed Central

    Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.

    2011-01-01

    In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373

  17. Molecular Dynamics Simulations of Star Polymeric Molecules with Diblock Arms, a Comparative Study.

    PubMed

    Swope, William C; Carr, Amber C; Parker, Amanda J; Sly, Joseph; Miller, Robert D; Rice, Julia E

    2012-10-09

    We have performed all atom explicit solvent molecular dynamics simulations of three different star polymeric systems in water, each star molecule consisting of 16 diblock copolymer arms bound to a small adamantane core. The arms of each system consist of an inner "hydrophobic" block (either polylactide, polyvalerolactone, or polyethylene) and an outer hydrophilic block (polyethylene oxide, PEO). These models exhibit unusual structure very close to the core (clearly an artifact of our model) but which we believe becomes "normal" or bulk-like at relatively short distances from this core. We report on a number of temperature-dependent thermodynamic (structural/energetic) properties as well as kinetic properties. Our observations suggest that under physiological conditions, the hydrophobic regions of these systems may be solid and glassy, with only rare and shallow penetration by water, and that a sharp boundary exists between the hydrophobic cores and either the PEO or water. The PEO in these models is seen to be fully water-solvated at low temperatures but tends to phase separate from water as the temperature is increased, reminiscent of a lower critical solution temperature exhibited by PEO-water mixtures. Water penetration concentration and depth is composition and temperature dependent with greater water penetration for the most ester-rich star polymer.

  18. A versatile semi-permanent sequential bilayer/diblock polymer coating for capillary isoelectric focusing.

    PubMed

    Bahnasy, Mahmoud F; Lucy, Charles A

    2012-12-07

    A sequential surfactant bilayer/diblock copolymer coating was previously developed for the separation of proteins. The coating is formed by flushing the capillary with the cationic surfactant dioctadecyldimethylammonium bromide (DODAB) followed by the neutral polymer poly-oxyethylene (POE) stearate. Herein we show the method development and optimization for capillary isoelectric focusing (cIEF) separations based on the developed sequential coating. Electroosmotic flow can be tuned by varying the POE chain length which allows optimization of resolution and analysis time. DODAB/POE 40 stearate can be used to perform single-step cIEF, while both DODAB/POE 40 and DODAB/POE 100 stearate allow performing two-step cIEF methodologies. A set of peptide markers is used to assess the coating performance. The sequential coating has been applied successfully to cIEF separations using different capillary lengths and inner diameters. A linear pH gradient is established only in two-step CIEF methodology using 3-10 pH 2.5% (v/v) carrier ampholyte. Hemoglobin A(0) and S variants are successfully resolved on DODAB/POE 40 stearate sequentially coated capillaries. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Discovery of a Frank-Kasper [sigma] Phase in Sphere-Forming Block Copolymer Melts

    SciTech Connect

    Lee, Sangwoo; Bluemle, Michael J.; Bates, Frank S.

    Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma ({sigma}) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the {sigma} phase in undiluted linear block copolymers (and certain branchedmore » dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.« less

  20. Direct quantification of molar masses of copolymers by online liquid chromatography under critical conditions-nuclear magnetic resonance and size exclusion chromatography-nuclear magnetic resonance.

    PubMed

    Hehn, Mathias; Wagner, Thomas; Hiller, Wolf

    2014-01-07

    Online LCCC-NMR and SEC-NMR are compared regarding the determination of molar masses of block copolymers. Two different direct referencing methods are particularly demonstrated in LCCC-NMR for a detailed characterization of diblock copolymers and their co-monomers. First, an intramolecular reference group was used for the direct determination of block lengths and molar masses. For the first time, it was shown that LCCC-NMR can be used for an accurate determination of Mw and Mn of copolymers. These data were in perfect agreement with SEC-NMR measurements using the same intramolecular referencing method. In contrast, the determination of molar masses with common relative methods based on calibrations with homopolymers delivered inaccurate results for all investigated diblock copolymers due to different hydrodynamic volumes of the diblock copolymer compared to their homopolymers. The intramolecular referencing method provided detailed insights in the co-monomer behavior during the chromatographic separation of LCCC. Especially, accurate chain lengths and chemical compositions of the "invisible" and "visible" blocks were quantified during the elution under critical conditions and provided new aspects to the concept of critical conditions. Second, an external reference NMR signal was used to directly determine concentrations and molar masses of the block copolymers from the chromatographic elution profile. Consequently, the intensity axes of the resulting chromatograms were converted to molar amounts and masses, allowing for determination of the amount of polymer chains with respect to elution volume, the evaluation of the limiting magnitude of concentration for LCCC-NMR, and determination of the molar masses of copolymers.

  1. Dynamics of Block Copolymer Nanocomposites

    SciTech Connect

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We alsomore » carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.« less

  2. Biological materials: Part A. tuning LCST of raft copolymers and gold/copolymer hybrid nanoparticles and Part B. Biobased nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Ning

    The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery "wastes": lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization (≤ 5-10 μm), but it was concluded that cellulose was not a suitable binder. Cellulose lignin fibers before carbonization showed up to 90% decrease in moisture uptake compared to pure cellulose. Peptidoglycan (a bacterial cell wall

  3. Amphiphilic Diblock Terpolymer PMAgala-b-P(MAA-co-MAChol)s with Attached Galactose and Cholesterol Grafts and Their Intracellular pH-Responsive Doxorubicin Delivery.

    PubMed

    Wang, Zhao; Luo, Ting; Sheng, Ruilong; Li, Hui; Sun, Jingjing; Cao, Amin

    2016-01-11

    In this work, a series of diblock terpolymer poly(6-O-methacryloyl-D-galactopyranose)-b-poly(methacrylic acid-co-6-cholesteryloxy hexyl methacrylate) amphiphiles bearing attached galactose and cholesterol grafts denoted as the PMAgala-b-P(MAA-co-MAChol)s were designed and prepared, and these terpolymer amphiphiles were further exploited as a platform for intracellular doxorubicin (DOX) delivery. First, employing a sequential RAFT strategy with preliminarily synthesized poly(6-O-methacryloyl-1,2:3,4-di-O-isopropylidene-d-galactopyranose) (PMAIpGP) macro-RAFT initiator and a successive trifluoroacetic acid (TFA)-mediated deprotection, a series of amphiphilic diblock terpolymer PMAgala-b-P(MAA-co-MAChol)s were prepared, and were further characterized by NMR, Fourier transform infrared spectrometer (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and a dynamic contact angle testing instrument (DCAT). In aqueous media, spontaneous micellization of the synthesized diblock terpolymer amphiphiles were continuously examined by critical micellization concentration assay, dynamic light scattering (DLS), and transmission electron microscopy (TEM), and the efficacies of DOX loading by these copolymer micelles were investigated along with the complexed nanoparticle stability. Furthermore, in vitro DOX release of the drug-loaded terpolymer micelles were studied at 37 °C in buffer under various pH conditions, and cell toxicities of as-synthesized diblock amphiphiles were examined by MTT assay. Finally, with H1299 cells, intracellular DOX delivery and localization by the block amphiphile vectors were investigated by invert fluorescence microscopy. As a result, it was revealed that the random copolymerization of MAA and MAChol comonomers in the second block limited the formation of cholesterol liquid-crystal phase and enhanced DOX loading efficiency and complex nanoparticle stability, that ionic interactions between the DOX and MAA comonomer

  4. Blends of Crystallizable Polybutadiene Isomers: Compatibilization by Addition of Amorphous Diblock Copolymer

    DTIC Science & Technology

    1991-07-24

    Fourth International Meeting. 2, 898, A. Mangini, ed., Pergamon Press, England, 1962. Morero, D., E. Mantica, and L. Porni , Nuovo Cimento. Sup~pl. 15. 10...311, 1969. Natta G., and P. Corradini, Journal of Polymer Science, 20, 251, 1956. Natta, G., L. Porni , A. Carbonaro, and G. Lugli, Makromolekulare

  5. Tailor-made dimensions of diblock copolymer truncated micelles on a solid by UV irradiation.

    PubMed

    Liou, Jiun-You; Sun, Ya-Sen

    2015-09-28

    We investigated the structural evolution of truncated micelles in ultrathin films of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, of monolayer thickness on bare silicon substrates (SiOx/Si) upon UV irradiation in air- (UVIA) and nitrogen-rich (UVIN) environments. The structural evolution of micelles upon UV irradiation was monitored using GISAXS measurements in situ, while the surface morphology was probed using atomic force microscopy ex situ and the chemical composition using X-ray photoelectron spectroscopy (XPS). This work provides clear evidence for the interpretation of the relationship between the structural evolution and photochemical reactions in PS-b-P2VP truncated micelles upon UVIA and UVIN. Under UVIA treatment, photolysis and cross-linking reactions coexisted within the micelles; photolysis occurred mainly at the top of the micelles, whereas cross-linking occurred preferentially at the bottom. The shape and size of UVIA-treated truncated micelles were controlled predominantly by oxidative photolysis reactions, which depended on the concentration gradient of free radicals and oxygen along the micelle height. Because of an interplay between photolysis and photo-crosslinking, the scattering length densities (SLD) of PS and P2VP remained constant. In contrast, UVIN treatments enhanced the contrast in SLD between the PS shell and the P2VP core as cross-linking dominated over photolysis in the presence of nitrogen. The enhancement of the SLD contrast was due to the various degrees of cross-linking under UVIN for the PS and P2VP blocks.

  6. Patterned carbon nanotubes fabricated by the combination of microcontact printing and diblock copolymer micelles.

    PubMed

    Xu, Peng; Ji, Xin; Qi, Junlei; Yang, Hongmin; Zheng, Weitao; Abetz, Volker; Jiang, Shimei; Shen, Jiacong

    2010-01-01

    A convenient approach to synthesize patterned carbon nanotubes (CNTs) of three morphologies on printed substrates by combination of microcontact printing (microCP) and a plasma-enhanced chemical vapor deposition (PECVD) process is presented. Micelles of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) in toluene were used as nanoreactors to fabricate FeCl3 in the core domains, and the complex solution was used as an ink to print films with polydimethylsiloxane (PDMS) stamps, different morphologies (porous, dots and stripes patterns) of the FeCl3-loaded micellar films were left onto silicon substrates after printed. After removing the polymer by thermal decomposition, the left iron oxide cluster arrays on the substrate were used as catalysts for the growth of CNTs by the process of PECVD, where the CNTs uniformly distributed on the substrates according to the morphologies of patterned catalysts arrays.

  7. STRUCTURE OF DIBLOCK COPOLYMERS IN SUPERCRITICAL CARBON DIOXIDE AND CRITICAL MICELLIZATION PRESSURE. (R826115)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. NEUTRON REFLECTIVITY OF LINEAR-DENDRITIC DIBLOCK COPOLYMER MONOLAYERS. (R825224)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods

    NASA Astrophysics Data System (ADS)

    Geng, Xiao-bo; Pan, Jun-xing; Zhang, Jin-jun; Sun, Min-na; Cen, Jian-yong

    2018-05-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 21373131), the Provincial Natural Science Foundation of Shanxi, China (Grant No. 2015011004), and the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China.

  10. Enhancing curcumin anticancer efficacy through di-block copolymer micelle encapsulation.

    PubMed

    Lv, Li; Shen, Yuanyuan; Liu, Jieying; Wang, Feihu; Li, Min; Li, Min; Guo, Aijie; Wang, Yun; Zhou, Dejian; Guo, Shengrong

    2014-02-01

    We report herein the development of a novel aqueous formulation and improved antitumor activity for curcumin by encapsulating it into a biocompatible and biodegradable poly(L-lactic acid) based poly(anhydride-ester)-b-poly(ethylene glycol) (PAE-b-PEG) micelle. The resulting curcumin loaded micelles were completely water-dispersible, overcoming the problem of poor water solubility that limited its efficacy and bioavailability. In vitro cellular studies revealed that the curcumin-loaded micelles were taken up mainly via endocytosis route and exhibited higher cytotoxicities toward model cancer cell lines (HeLa and EMT6) than free curcumin. An in vivo biodistribution study revealed that the curcumin-loaded micelles displayed significantly enhanced accumulation inside the tumor of EMT6 breast tumor-bearing mice. More impressively, the curcumin-loaded micelles showed stronger antitumor activity, higher anti-angiogenesis effects and induced apoptosis on the EMT6 breast tumor model bearing mice than free curcumin. Furthermore, the curcumin-loaded micelles showed no significant toxicity towards hemotological system, major organs or tissues in mice. Combined with a high antitumor activity and low toxic side-effects, the curcumin-loaded micelles developed here thus appear to be a highly attractive nanomedicine for effective, targeted cancer therapy.

  11. Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery

    PubMed Central

    Alami-Milani, Mitra; Zakeri-Milani, Parvin; Valizadeh, Hadi; Salehi, Roya; Salatin, Sara; Naderinia, Ali; Jelvehgari, Mitra

    2017-01-01

    Many studies have focused on how drugs are formulated in the sol state at room temperature leading to the formation of in situ gel at eye temperature to provide a controlled drug release. Stimuli-responsive block copolymer hydrogels possess several advantages including uncomplicated drug formulation and ease of application, no organic solvent, protective environment for drugs, site-specificity, prolonged and localized drug delivery, lower systemic toxicity, and capability to deliver both hydrophobic and hydrophilic drugs. Self-assembling block copolymers (such as diblock, triblock, and pentablock copolymers) with large solubility variation between hydrophilic and hydrophobic segments are capable of making temperature-dependent micellar assembles, and with further increase in the temperature, of jellifying due to micellar aggregation. In general, molecular weight, hydrophobicity, and block arrangement have a significant effect on polymer crystallinity, micelle size, and in vitro drug release profile. The limitations of creature triblock copolymers as initial burst release can be largely avoided using micelles made of pentablock copolymers. Moreover, formulations based on pentablock copolymers can sustain drug release for a longer time. The present study aims to provide a concise overview of the initial and recent progresses in the design of hydrogel-based ocular drug delivery systems. PMID:28507933

  12. The effect of copolymers on the interfaces in incompatible homopolymers blend: Molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ryu, Jiho; Lee, Won Bo

    2015-03-01

    Using molecular dynamics simulations the effect of copolymers as compatibilizer for reducing interfacial tension and enhancement of interfacial adhesion at the interface of thermodynamic unfavorable homopolymers blend is studied with block- and graft-copolymers. We have calculated local pressure tensor of system along the axis perpendicular to interface, varying bending potential energy of one part, which consist of just one kind of beads, of copolymer chain to examine the effect of stiffness of surfactin molecules. Here we consider symmetric diblock copolymer (f =1/2) having 1/2 N make of beads of type A and the other part made of beads of type B, and graft copolymer having backbone linear chain consist of 1/2 N beads of type of A and branched with two side-chain consist of 1/4 N beads of type B. All simulations were performed under the constant NPT ensemble at T* =1, ρ* ~0.85. Also we studied changes of effect of copolymers with increasing pairwise repulsive interaction potential between two beads of types A and B while homopolymers chain length are fixed, N =30. Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.

  13. Photoinitiated Polymerization-Induced Self-Assembly of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nano-Objects.

    PubMed

    Tan, Jianbo; Liu, Dongdong; Huang, Chundong; Li, Xueliang; He, Jun; Xu, Qin; Zhang, Li

    2017-08-01

    Herein, a novel photoinitiated polymerization-induced self-assembly formulation via photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of glycidyl methacrylate (PGMA) in ethanol-water at room temperature is reported. It is demonstrated that conducting polymerization-induced self-assembly (PISA) at low temperatures is crucial for obtaining colloidal stable PGMA-based diblock copolymer nano-objects. Good control is maintained during the photo-PISA process with a high rate of polymerization. The polymerization can be switched between "ON" and "OFF" in response to visible light. A phase diagram is constructed by varying monomer concentration and degree of polymerization. The PGMA-based diblock copolymer nano-objects can be further cross-linked by using a bifunctional primary amine reagent. Finally, silver nanoparticles are loaded within cross-linked vesicles via in situ reduction, exhibiting good catalytic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structure of block copolymer micelles in the presence of co-solvents

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Wang, Shu; Le, Kim Mai; Piemonte, Rachele; Madsen, Louis

    2015-03-01

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using scattering experiments and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  15. Influencing the structure of block copolymer micelles with small molecule additives

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Singh, Avantika; Cooksey, Tyler; Kidd, Bryce; Piemonte, Rachele; Wang, Shu; Mai Le, Kim; Madsen, Louis

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using small-angle scattering and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  16. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    PubMed

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene-b-1,3-cyclohexadiene) Copolymers

    DOE PAGES

    Misichronis, Konstantinos; Chen, Jihua; Imel, Adam; ...

    2017-03-15

    A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined in this paper by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (T ODT), for the first time formore » PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χ eff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. Finally, these copolymers exhibit well-ordered structures even at high temperatures (~260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.« less

  18. Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers

    DOE PAGES

    Sun, Jing; Jiang, Xi; Siegmund, Aaron; ...

    2016-04-04

    Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this study, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (Φ Npm) values ranging from 0.13 to 0.44 and dispersity (¯D) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Drymore » samples with Φ Npm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. Finally, we demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers.« less

  19. Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers

    PubMed Central

    2016-01-01

    Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this paper, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (ϕNpm) values ranging from 0.13 to 0.44 and dispersity (Đ) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Dry samples with ϕNpm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. We demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers. PMID:27134312

  20. High-frequency ultrasound-responsive block copolymer micelle.

    PubMed

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  1. Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes.

    PubMed

    de Hoog, Hans-Peter M; Lin JieRong, Esther M; Banerjee, Sourabh; Décaillot, Fabien M; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4.

  2. Conformational Antibody Binding to a Native, Cell-Free Expressed GPCR in Block Copolymer Membranes

    PubMed Central

    de Hoog, Hans-Peter M.; Lin JieRong, Esther M.; Banerjee, Sourabh; Décaillot, Fabien M.; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4. PMID:25329156

  3. Synthesis and characterization of poly(L-alanine)-block-poly(ethylene glycol) monomethyl ether as amphiphilic biodegradable co-polymers.

    PubMed

    Zhang, Guolin; Ma, Jianbiao; Li, Yanhong; Wang, Yinong

    2003-01-01

    Di-block co-polymers of poly(L-alanine) with poly(ethylene glycol) monomethyl ether (MPEG) were synthesized as amphiphilic biodegradable co-polymers. The ring-opening polymerization of N-carboxy-L-alanine anhydride (NCA) in dichloromethane was initiated by amino-terminated poly(ethylene glycol) monomethyl ether (MPEG-NH2, M(n) = 2000) to afford poly(L-alanine)-block-MPEG. The weight ratio of two blocks in the co-polymers could be altered by adjusting the feeding ratio of NCA to MPEG-NH2. Their chemical structures were characterized on the basis of infrared spectrometry and nuclear magnetic resonance. According to circular dichroism measurement, the poly(L-alanine) chain on the co-polymers in an aqueous medium had a alpha-helix conformation. Two melting points from MPEG block and poly(L-alanine), respectively, could be observed in differential scanning calorimetry curves of the co-polymers, suggesting that a micro-domain phase separation appeared in their bulky states. The co-polymers could take up some water and the capacity was dependent on the ratio of poly(L-alanine) block to MPEG. Such co-polymers might be useful in drug-delivery systems and other biomedical applications.

  4. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  5. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers.

    PubMed

    Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves

    2006-02-14

    Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.

  6. Block copolymer modified surfaces for conjugation of biomacromolecules with control of quantity and activity.

    PubMed

    Li, Xin; Wang, Mengmeng; Wang, Lei; Shi, Xiujuan; Xu, Yajun; Song, Bo; Chen, Hong

    2013-01-29

    Polymer brush layers based on block copolymers of poly(oligo(ethylene glycol) methacrylate) (POEGMA) and poly(glycidyl methacrylate) (PGMA) were formed on silicon wafers by activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). Different types of biomolecule can be conjugated to these brush layers by reaction of PGMA epoxide groups with amino groups in the biomolecule, while POEGMA, which resists nonspecific protein adsorption, provides an antifouling environment. Surfaces were characterized by water contact angle, ellipsometry, and Fourier transform infrared spectroscopy (FTIR) to confirm the modification reactions. Phase segregation of the copolymer blocks in the layers was observed by AFM. The effect of surface properties on protein conjugation was investigated using radiolabeling methods. It was shown that surfaces with POEGMA layers were protein resistant, while the quantity of protein conjugated to the diblock copolymer modified surfaces increased with increasing PGMA layer thickness. The activity of lysozyme conjugated on the surface could also be controlled by varying the thickness of the copolymer layer. When biotin was conjugated to the block copolymer grafts, the surface remained resistant to nonspecific protein adsorption but showed specific binding of avidin. These properties, that is, well-controlled quantity and activity of conjugated biomolecules and specificity of interaction with target biomolecules may be exploited for the improvement of signal-to-noise ratio in sensor applications. More generally, such surfaces may be useful as biological recognition elements of high specificity for functional biomaterials.

  7. New Polytetrahydrofuran Graft Copolymers.

    DTIC Science & Technology

    1979-03-15

    chioroprene) , chiorobutyl - ~~~~~ rubber , bromobutyl rubber , chlorinated EPDM , chlorinated poly(buta— diene) and chlorinated butadiene styrene copolymer...bromobutyl rubber , which after dehalogenation is unstable with respect to conjugated dienes, the yields of graft copolymer are low. With poly(chloroprerte

  8. Thermoresponsive complex amphiphilic block copolymer micelles investigated by laser light scattering.

    PubMed

    Zhao, Fang; Xie, Dinghai; Zhang, Guangzhao; Pispas, Stergios

    2008-05-22

    Poly(isoprene)-block-poly(ethylene oxide) (PI-b-PEO) diblock copolymers form micelles in water. The introduction of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) triblock copolymer leads to the formation of mixed micelles through hydrophobic interaction. The dimension of the mixed micelles varies with the weight ratio (r) of PEO-b-PPO-b-PEO to PI-b-PEO. By use of laser light scattering, we have investigated the temperature dependence of the structural evolution of the micelles at different r. At r<10, the size of the mixed micelles decreases with temperature. At r>10, due to the excessive PEO-b-PPO-b-PEO chains in solution, as temperature increases, the mixed micelles aggregate into larger micelle clusters.

  9. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.

    PubMed

    Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C

    2007-02-13

    Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.

  10. Connecting Molecular Dynamics Simulations and Fluids Density Functional Theory of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hall, Lisa

    Increased understanding and precise control over the nanoscale structure and dynamics of microphase separated block copolymers would advance development of mechanically robust but conductive materials for battery electrolytes, among other applications. Both coarse-grained molecular dynamics (MD) simulations and fluids (classical) density functional theory (fDFT) can capture the microphase separation of block copolymers, using similar monomer-based chain models and including local packing effects. Equilibrium free energies of various microphases are readily accessible from fDFT, which allows us to efficiently determine the equilibrium nanostructure over a large parameter space. Meanwhile, MD allows us to visualize specific polymer conformations in 3D over time and to calculate dynamic properties. The fDFT density profiles are used to initialize the MD simulations; this ensures the MD proceeds in the appropriate microphase separated state rather than in a metastable structure (useful especially for nonlamellar structures). The simulations equilibrate more quickly than simulations initialized with a random state, which is significant especially for long chains. We apply these methods to study the interfacial behavior and microphase separated structure of diblock and tapered block copolymers. Tapered copolymers consist of pure A and B monomer blocks on the ends separated by a tapered region that smoothly varies from A to B (or from B to A for an inverse taper). Intuitively, tapering increases the segregation strength required for the material to microphase separate and increases the width of the interfacial region. Increasing normal taper length yields a lower domain spacing and increased polymer mobility, while larger inverse tapers correspond to even lower domain spacing but decreased mobility. Thus the changes in dynamics with tapering cannot be explained by mapping to a diblock system at an adjusted effective segregation strength. This material is based upon work

  11. Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents

    PubMed Central

    Chavis, Michelle A.; Smilgies, Detlef-M.; Wiesner, Ulrich B.; Ober, Christopher K.

    2015-01-01

    Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, we investigated solvent vapor annealing in supported thin films of poly(2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate) [PHEMA-b-PMMA] by means of grazing incidence small angle X–ray scattering (GISAXS). A spin-coated thin film of lamellar block copolymer was solvent vapor annealed to induce microphase separation and improve the long-range order of the self-assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents (methanol, MeOH, and tetrahydrofuran, THF), which are chosen to be preferential for each block, enabled selective formation of ordered lamellae, gyroid, hexagonal or spherical morphologies from a single block copolymer with a fixed volume fraction. The selected microstructure was then kinetically trapped in the dry film by rapid drying. To our knowledge, this paper describes the first reported case where in-situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram. PMID:26819574

  12. Phase behavior of block copolymers in compressed carbon dioxide and as single domain-layer, nanolithographic etch resists for sub-10 nm pattern transfer

    NASA Astrophysics Data System (ADS)

    Chandler, Curran Matthew

    Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts -- the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including polystyrene and polyisoprene, as measured by high pressure ellipsometry at elevated temperatures and pressures. The ellipsometric technique was modified to produce accurate data at these conditions through a custom pressure vessel design. The order-disorder transition (ODT) temperatures of several poly(styrene-bisoprene) diblock copolymers were also investigated by static birefringence when dilated with compressed CO2. Sorption of CO2 in each copolymer resulted in significant depressions of the ODT temperature as a function of fluid pressure, and the data above was used to estimate the quantitative amount of solvent in each of the diblock copolymers. These depressions were not shown to follow dilution approximation, and showed interesting, exaggerated scaling of the ODT at near-bulk polymer concentrations. The phase behavior of block copolymer surfactants was studied when blended with polymer or small molecule additives capable of selective hydrogen bonds. This work used small angle X-ray scattering (SAXS) to identify several low molecular weight systems with strong phase separation and ordered domains as small as 2--3 nanometers upon blending. One blend of a commercially-available surfactant with a small molecule additive was further developed and showed promise as a thin-film pattern

  13. Approaching a flat boundary with a block copolymer coated emulsion drop: late stage drainage dynamics

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew

    Understanding the dynamics of the formation and drainage of the thin fluid film that becomes trapped by a deformable droplet as it approaches another object is crucial to the advancement of many industrial and biomedical applications. Adding amphiphilic diblock copolymers, which are becoming more commonly used in drug delivery and oil recovery, only add to the complexity. Despite their increased use, little is known about how long polymer chains fill an emulsion drop's interface or how the molecules influence hydrodynamic processes. We study the drainage dynamics of a thin water film trapped between mica and a diblock copolymer saturated oil droplet. Specifically, we examine several different polystyrene-b-poly(ethylene oxide) (PS-PEO) molecules self-assembled at a toluene-water interface using laser scanning confocal microscopy. Our experiments reveal that the molecular details of the polymer chains deeply influence the drainage times, indicating that they are not acting as a 'simple' surfactant. The presence of the chains creates a much slower dynamic as fluid is forced to drain through an effective polymer brush, the brush itself determined by chain packing at the interface. We present a simple model which accounts for the basic physics of the interface.

  14. Spontaneous Evolution of Nanostructure in Composite Films Consisting of Mixtures of Two Different Block Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Kim, Sehee; Char, Kookheon; Sohn, Byeong-Hyeok

    2010-03-01

    Diblock copolymers consisting of two immiscible polymer blocks covalently bonded together form various self-assembled nanostructures such as spheres, cylinders, and lamellae in bulk phase. In a selective solvent, however, they assemble into micelles with soluble corona brushes and immiscible cores. Both polystyrene-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymers form micelles with PS coronas and P4VP or P2VP cores in a PS selective solvent (toluene). By varying the mixture ratio between PS-b-P4VP and PS-b-P2VP, composite films based on the micellar mixtures of PS-b-P4VP and PS-b-P2VP were obtained by spin-coating, followed by the solvent annealing with tetrahydrofuran (THF) vapor. Since THF is a solvent for both PS and P2VP blocks and, at the same time, a non-solvent for the P4VP block, PS-P2VP micelles transformed to lamellar multilayers while PS-P4VP micelles remained intact during the THF annealing. The spontaneous evolution of nanostructure in composite films consisting of lamellae layers with BCP micelles were investigated in detail by cross-sectional TEM and AFM.

  15. Hydrogen-bonded side chain liquid crystalline block copolymer: Molecular design, synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Chao, Chi-Yang

    Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer

  16. Structure-directing star-shaped block copolymers: supramolecular vesicles for the delivery of anticancer drugs.

    PubMed

    Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan

    2015-06-28

    Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant

  17. Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks.

    PubMed

    Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian

    2007-05-14

    A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.

  18. Photoconductivity enhancement and charge transport properties in ruthenium-containing block copolymer/carbon nanotube hybrids.

    PubMed

    Lo, Kin Cheung; Hau, King In; Chan, Wai Kin

    2018-04-05

    Functional polymer/carbon nanotube (CNT) hybrid materials can serve as a good model for light harvesting systems based on CNTs. This paper presents the synthesis of block copolymer/CNT hybrids and the characterization of their photocurrent responses by both experimental and computational approaches. A series of functional diblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerizations for the dispersion and functionalization of CNTs. The block copolymers contain photosensitizing ruthenium complexes and modified pyrene-based anchoring units. The photocurrent responses of the polymer/CNT hybrids were measured by photoconductive atomic force microscopy (PCAFM), from which the experimental data were analyzed by vigorous statistical models. The difference in photocurrent response among different hybrids was correlated to the conformations of the hybrids, which were elucidated by molecular dynamics simulations, and the electronic properties of polymers. The photoresponse of the block copolymer/CNT hybrids can be enhanced by introducing an electron-accepting block between the photosensitizing block and the CNT. We have demonstrated that the application of a rigorous statistical methodology can unravel the charge transport properties of these hybrid materials and provide general guidelines for the design of molecular light harvesting systems.

  19. Morphology, directed self-assembly and pattern transfer from a high molecular weight polystyrene-block-poly(dimethylsiloxane) block copolymer film

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Chen; Bai, Wubin; Fernandez Martin, Eduardo; Tu, Kun-Hua; Ntetsikas, Konstantinos; Liontos, George; Avgeropoulos, Apostolos; Ross, C. A.

    2017-04-01

    The self-assembly of block copolymers with large feature sizes is inherently challenging as the large kinetic barrier arising from chain entanglement of high molecular weight (MW) polymers limits the extent over which long-range ordered microdomains can be achieved. Here, we illustrate the evolution of thin film morphology from a diblock copolymer of polystyrene-block-poly(dimethylsiloxane) exhibiting total number average MW of 123 kg mol-1, and demonstrate the formation of layers of well-ordered cylindrical microdomains under appropriate conditions of binary solvent mix ratio, commensurate film thickness, and solvent vapor annealing time. Directed self-assembly of the block copolymer within lithographically patterned trenches occurs with alignment of cylinders parallel to the sidewalls. Fabrication of ordered cobalt nanowire arrays by pattern transfer was also implemented, and their magnetic properties and domain wall behavior were characterized.

  20. Formation of nanoscale networks: selectively swelling amphiphilic block copolymers with CO2-expanded liquids

    NASA Astrophysics Data System (ADS)

    Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun

    2013-01-01

    Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a

  1. Adsorption of Poly(ethylene oxide)-Poly(lactide) Copolymers. Effects of Composition and Degradation.

    PubMed

    Muller, Dries; Carlsson, Fredrik; Malmsten, Martin

    2001-04-01

    The effect of chemical degradation of two diblock copolymers of poly(ethylene oxide) (E) and poly(lactide) (L), E(39)L(5) and E(39)L(20), on their adsorption at silica and methylated silica was investigated with in situ ellipsometry. Steric stablization of polystyrene dispersions was investigated in relation to degradation. Hydrolysis of the poly(lactide) block of the copolymers was followed at different temperatures and pH by using HPLC to measure the occurrence of lactic acid in solution. The block copolymers were quite stable in pH-unadjusted solution at low temperature, whereas degradation was facilitated by increasing temperature or lowering of the pH. Lower degradation rates of E(39)L(20) where observed at low temperature in comparison with those of E(39)L(5), whereas the degradation rates of the copolymers were quantitatively similar at high temperature. The adsorption of the copolymers at methylated silica substrates decreased with increasing degree of degradation due to the reduction in the ability of hydrophobic block to anchor the copolymer layer at the surface. At silica the adsorption initially increased with increasing degradation, particularly for E(39)L(20) due to deposition of aggregates onto the surface. After extensive degradation the adsorption of the copolymers at both silica and methylated silica resembled that of the corresponding poly(ethylene oxide) homopolymer. Overall, it was found that the eventual reduction in adsorption occurred at a lower degree of degradation for E(39)L(5) than for E(39)L(20). Mean-field calculations showed a reduced anchoring for the block copolymers with decreasing poly(lactide) block length at hydrophobic surfaces. In accordance with this finding, it was observed that polystyrene dispersions were stabilized by E(39)L(20) or E(39)L(5) in a way that depended on both the lactide block length and the degree of degradation. Upon degradation of the hydrophobic block, stabilization of the polystyrene dispersions was

  2. Polymer brushes on nanoparticles: their positioning in and influence on block copolymer morphology.

    NASA Astrophysics Data System (ADS)

    Kim, Bumjoon

    2007-03-01

    Polymers brushes grafted to the nanoparticle surface enable the precise positioning of particles within a block copolymer matrix by determining the compatibility of nanoparticles within a polymeric matrix and modifying the interfacial properties between polymers and inorganic nanoparticle. Short thiol terminated polystyrene (PS-SH), poly(2-vinylpyridine) (P2VP-SH) and PS-r-P2VP with the molecular weight (Mn) of 3 kg/mol were used to control the location of Au nanoparticles over PS-b-P2VP diblock copolymer template. We will discuss further the approach of varying the areal chain density (σ) of PS-SH brushes on the PS coated particles, which utilizes the preferential wetting of one block of a copolymer (P2VP) on the Au substrate. Such favorable interaction provides the strong binding of Au particles to the PS/P2VP interface as σ of PS chains on the Au particle decreases. We find that at σ above a certain value, the nanoparticles are segregated to the center of the PS domains while below this value they are segregated to the interface. The transition σ for PS-SH chains (Mn = 3.4 kg/mol) is 1.3 chains/nm^2 but unexpectedly scales as Mn-0.55 as Mn is varied from 1.5 to 13 kg/mol. In addition, we will discuss changes in block copolymer morphology that occur as the nanoparticle volume fraction (φ) is increased for nanoparticles that segregate to the domain center as well as those that segregate to the interface, the latter behaving as nanoparticle surfactants. Small φ of such surfactants added to lamellar diblock copolymers lead initially to a decrease in lamellar thickness, a consequence of decreasing interfacial tension, up to a critical value of φ beyond which the block copolymer adopts a bicontinuous morphology. I thank my collaborators G. H. Fredrickson, J. Bang, C. J. Hawker, and E. J. Kramer as well as funding by the MRL as UCSB from the NSF-MRSEC-Program Award DMR05-20418.

  3. Synthesis of Cis, syndiotactic A -alt-B Copolymers from Two Enantiomerically Pure Trans -2,3-Disubstituted-5,6-Norbornenes

    DOE PAGES

    Jang, Eun Sil; John, Jeremy M.; Schrock, Richard R.

    2016-09-06

    Cis,syndiotactic A-alt-B copolymers, where A and B are two enantiomerically pure trans-2,3-disubstituted-5,6-norbornenes with “opposite” chiralities, can be prepared with stereogenic-at-metal initiators of the type M(NR)(CHR')(OR”)(pyrrolide). Formation of a high percentage of alternating AB copolymer linkages relies on an inversion of chirality at the metal with each propagating step and a relatively fast formation of an AB sequence as a consequence of a preferred diastereomeric relationship between the chirality at the metal and the chirality of the monomer. Finally, this approach to formation of an alternating AB copolymer contrasts dramatically with the principle of forming AB copolymers from achiral monomers andmore » catalysts.« less

  4. Block copolymers for alkaline fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  5. Adsorption of non-ionic ABC triblock copolymers: Surface modification of TiO2 suspensions in aqueous and non-aqueous medium

    NASA Astrophysics Data System (ADS)

    Lerch, Jean-Philippe; Atanase, Leonard Ionut; Riess, Gérard

    2017-10-01

    A series of non-ionic ABC triblock copolymers, such as poly(butadiene)-b-poly(2-vinylpyrridine)-b-poly(ethylene oxide) (PB-P2VP-PEO) were synthesized by sequential anionic polymerizations. For these copolymers comprising an organo-soluble PB and a water-soluble PEO block, their P2VP middle block has been selected for its anchoring capacity on solid surfaces. The adsorption isotherms on TiO2 were obtained in heptane and in aqueous medium, as selective solvents. In both of these cases, the P2VP middle block provides the surface anchoring, whereas PB and PEO sequences are acting as stabilizing moieties in heptane and water respectively. By extension to ABC triblock copolymers of the scaling theory developed for diblock copolymers, the density of adsorbed chains could be correlated with the molecular characteristics of the PB-P2VP-PEO triblock copolymers. From a practical point a view, it could be demonstrated that these copolymers are efficient dispersing agents for the TiO2 pigments in both aqueous and non-aqueous medium.

  6. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  7. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  8. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  9. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  10. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    PubMed

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  11. Creating surfactant nanoparticles for block copolymer composites through surface chemistry.

    PubMed

    Kim, Bumjoon J; Bang, Joona; Hawker, Craig J; Chiu, Julia J; Pine, David J; Jang, Se Gyu; Yang, Seung-Man; Kramer, Edward J

    2007-12-04

    A simple strategy to tailor the surface of nanoparticles for their specific adsorption to and localization at block copolymer interfaces was explored. Gold nanoparticles coated by a mixture of low molecular weight thiol end-functional polystyrene (PS-SH) (Mn = 1.5 and 3.4 kg/mol) and poly(2-vinylpyridine) homopolymers (P2VP-SH) (Mn = 1.5 and 3.0 kg/mol) were incorporated into a lamellar poly(styrene-b-2-vinylpyridine) diblock copolymer (PS-b-P2VP) (Mn = 196 kg/mol). A library of nanoparticles with varying PS and P2VP surface compositions (FPS) and high polymer ligand areal chain densities was synthesized. The location of the nanoparticles in the PS-b-P2VP block copolymer was determined by transmission electron microscopy. Sharp transitions in particle location from the PS domain to the PS/P2VP interface, and subsequently to the P2VP domain, were observed at FPS = 0.9 and 0.1, respectively. This extremely wide window of FPS values where the polymer-coated gold nanoparticles adsorb to the interface suggests a redistribution of PS and P2VP polymers on the Au surface, inducing the formation of amphiphilic nanoparticles at the PS/P2VP interface. In a second and synthetically more challenging approach, gold nanoparticles were covered with a thiol terminated random copolymer of styrene and 2-vinylpyridine synthesized by RAFT polymerization. Two different random copolymers were considered, where the molecular weight was fixed at 3.5 kg/mol and the relative incorporation of styrene and 2-vinylpyridine repeat units varied (FPS = 0.52 and 0.40). The areal chain density of these random copolymers on Au is unfortunately not high enough to preclude any contact between the P2VP block of the block copolymer and the Au surface. Interestingly, gold nanoparticles coated by the random copolymer with FPS = 0.4 were dispersed in the P2VP domain, while those with FPS = 0.52 were located at the interface. A simple calculation for the adsorption energy to the interface of the nanoparticles

  12. Thermo-Responsive Amphiphilic Block Copolymers Stablilized Gold Nanoparticles: Synthesis and High Catalytic Properties.

    PubMed

    Lü, Jianhua; Yang, Yu; Gao, Junfang; Duan, Haichao; Lü, Changli

    2018-06-19

    A series of novel well-defined 8-hydroxyquinoline (HQ)-containing thermo-responsive amphiphilic diblock copolymers poly(styrene-co-5-(2-methacryloylethyloxy- methyl)-8-quinolinol)-b-poly(N-isopropylacrylamide) P(St-co-MQ)-b-PNIPAm (P1,2), P(NIPAm- co-MQ)-b-PSt (P3,4) and triblock copolymer poly(N-isopropylacrylamide)-b-poly(methyl- methacrylate-co-5-(2-methacryloylethyloxymethyl)-8-quinolinol)-b-polystyrene PNIPAm-b- P(MMA-co-MQ)-b-PSt (P5) were prepared by reversible addition fragmentation chain transfer (RAFT) polymerization, and their self-assembly behaviors were studied. The block copolymers P1-P5 stabilized gold nanoparticles (Au@P1-Au@P5) with small size and narrow distribution were obtained through in situ reduction of gold precursors in aqueous solution of polymer micelles with HQ as the coordination groups. The resulting Au@P nanohybrids possessed excellent catalytic activities for the reduction of nitrophenols using NaBH4. The size, morphology and surface chemistry of Au NPs could be controlled by adjusting the structure of block polymers with HQ in different block positions, which plays an important role in the catalytic properties. It was found that longer chain length of hydrophilic or hydrophobic segments of block copolymers were beneficial to elevate the catalytic activity of Au NPs for the reduction of nitrophenols, and the spherical nanoparticles (Au@P5) stabilized with triblock copolymer exhibit higher catalytic performance. Surprisingly, the gold nanowires (Au@P4) produced with P4 have a highest catalytic activity due to large abundance of grain boundaries. Excellent thermo-responsive behaviors for catalytic reaction make the as-prepared Au@P hybrids become an environmentally responsive nano-catalytic materials.

  13. Photodegradable neutral-cationic brush block copolymers for nonviral gene delivery.

    PubMed

    Hu, Xianglong; Li, Yang; Liu, Tao; Zhang, Guoying; Liu, Shiyong

    2014-08-01

    We report on the fabrication of a photodegradable gene-delivery vector based on PEO-b-P(GMA-g-PDMAEMA) neutral-cationic brush block copolymers that possess cationic poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brushes for DNA compaction, poly(ethylene oxide) (PEO) as a hydrophilic block, and poly(glycidyl methacrylate) (PGMA) as the backbone. The PEO-b-P(GMA-g-PDMAEMA) copolymers were synthesized through the combination of reversible addition-fragmentation transfer (RAFT) polymerization and postmodification. A photocleavable PEO-based macroRAFT agent was first synthesized; next, the PEO-b-PGMA block copolymer was prepared by RAFT polymerization of GMA; this was followed by a click reaction to introduce the RAFT initiators on the side chains of the PGMA block; then, RAFT polymerization of DMAEMA afforded the PEO-b-P(GMA-g-PDMAEMA) copolymer. The obtained neutral-cationic brush block copolymer could effectively complex plasmid DNA (pDNA) into nanoparticles at an N/P ratio (i.e., the number of nitrogen residues per DNA phosphate) of 4. Upon UV irradiation, pDNA could be released owing to cleavage of the pDNA-binding cationic PDMAEMA side chains as well as the nitrobenzyl ester linkages at the diblock junction point. In addition, in vitro gene transfection results demonstrated that the polyplexes could be effectively internalized by cells with good transfection efficiency, and the UV irradiation protocol could considerably enhance the efficiency of gene transfection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Non-surface activity and micellization behavior of cationic amphiphilic block copolymer synthesized by reversible addition-fragmentation chain transfer process.

    PubMed

    Ghosh, Arjun; Yusa, Shin-ichi; Matsuoka, Hideki; Saruwatari, Yoshiyuki

    2011-08-02

    Cationic amphiphilic diblock copolymers of poly(n-butylacrylate)-b-poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PBA-b-PMAPTAC) with various hydrophobic and hydrophilic chain lengths were synthesized by a reversible addition-fragmentation chain transfer (RAFT) process. Their molecular characteristics such as surface activity/nonactivity were investigated by surface tension measurements and foam formation observation. Their micelle formation behavior and micelle structure were investigated by fluorescence probe technique, static and dynamic light scattering (SLS and DLS), etc., as a function of hydrophilic and hydrophobic chain lengths. The block copolymers were found to be non-surface active because the surface tension of the aqueous solutions did not change with increasing polymer concentration. Critical micelle concentration (cmc) of the polymers could be determined by fluorescence and SLS measurements, which means that these polymers form micelles in bulk solution, although they were non-surface active. Above the cmc, the large blue shift of the emission maximum of N-phenyl-1-naphthylamine (NPN) probe and the low micropolarity value of the pyrene probe in polymer solution indicate the core of the micelle is nonpolar in nature. Also, the high value of the relative intensity of the NPN probe and the fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene (DPH) probe indicated that the core of the micelle is highly viscous in nature. DLS was used to measure the average hydrodynamic radii and size distribution of the copolymer micelles. The copolymer with the longest PBA block had the poorest water solubility and consequently formed micelles with larger size while having a lower cmc. The "non-surface activity" was confirmed for cationic amphiphilic diblock copolymers in addition to anionic ones studied previously, indicating the universality of non-surface activity nature.

  15. Interfacial fluctuations of block copolymers: a coarse-grain molecular dynamics simulation study.

    PubMed

    Srinivas, Goundla; Swope, William C; Pitera, Jed W

    2007-12-13

    The lamellar and cylindrical phases of block copolymers have a number of technological applications, particularly when they occur in supported thin films. One such application is block copolymer lithography, the use of these materials to subdivide or enhance submicrometer patterns defined by optical or electron beam methods. A key parameter of all lithographic methods is the line edge roughness (LER), because the electronic or optical activities of interest are sensitive to small pattern variations. While mean-field models provide a partial picture of the LER and interfacial width expected for the block interface in a diblock copolymer, these models lack chemical detail. To complement mean-field approaches, we have carried out coarse-grain molecular dynamics simulations on model poly(ethyleneoxide)-poly(ethylethylene) (PEO-PEE) lamellae, exploring the influence of chain length and hypothetical chemical modifications on the observed line edge roughness. As expected, our simulations show that increasing chi (the Flory-Huggins parameter) is the most direct route to decreased roughness, although the addition of strong specific interactions at the block interface can also produce smoother patterns.

  16. Mixed micellization between natural and synthetic block copolymers: β-casein and Lutrol F-127.

    PubMed

    Portnaya, Irina; Khalfin, Rafail; Kesselman, Ellina; Ramon, Ory; Cogan, Uri; Danino, Dganit

    2011-02-28

    Amphiphilic block copolymers and mixtures of amphiphiles find broad applications in numerous technologies, including pharma, food, cosmetic and detergency. Here we report on the interactions between a biological charged diblock copolymer, β-casein, and a synthetic uncharged triblock copolymer, Lutrol F-127 (EO(101)PO(56)EO(101)), on their mixed micellization characteristics and the micelles' structure and morphology. Isothermal titration calorimetry (ITC) experiments indicate that mixed micelles form when Lutrol is added to monomeric as well as to assembled β-casein. The main driving force for the mixed micellization is the hydrophobic interactions. Above β-casein CMC, strong perturbations caused by penetration of the hydrophobic oxypropylene sections of Lutrol into the protein micellar core lead to disintegration of the micelles and reformation of mixed Lutrol/β-casein micelles. The negative enthalpy of micelle formation (ΔH) and cooperativity increase with raising β-casein concentration in solution. ζ-potential measurements show that Lutrol interacts with the protein micelles to form mixed micelles even below its critical micellization temperature (CMT). They further indicate that Lutrol effectively masks the protein charges, probably by forming a coating layer of the ethyleneoxide rich chains. Small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM) indicate relatively small changes in the oblate micellar shape, but do show swelling along the small axis of β-casein micelles in the presence of Lutrol, thereby confirming the formation of mixed micelles.

  17. Rapid Production of Internally Structured Colloids by Flash Nanoprecipitation of Block Copolymer Blends.

    PubMed

    Grundy, Lorena S; Lee, Victoria E; Li, Nannan; Sosa, Chris; Mulhearn, William D; Liu, Rui; Register, Richard A; Nikoubashman, Arash; Prud'homme, Robert K; Panagiotopoulos, Athanassios Z; Priestley, Rodney D

    2018-05-08

    Colloids with internally structured geometries have shown great promise in applications ranging from biosensors to optics to drug delivery, where the internal particle structure is paramount to performance. The growing demand for such nanomaterials necessitates the development of a scalable processing platform for their production. Flash nanoprecipitation (FNP), a rapid and inherently scalable colloid precipitation technology, is used to prepare internally structured colloids from blends of block copolymers and homopolymers. As revealed by a combination of experiments and simulations, colloids prepared from different molecular weight diblock copolymers adopt either an ordered lamellar morphology consisting of concentric shells or a disordered lamellar morphology when chain dynamics are sufficiently slow to prevent defect annealing during solvent exchange. Blends of homopolymer and block copolymer in the feed stream generate more complex internally structured colloids, such as those with hierarchically structured Janus and patchy morphologies, due to additional phase separation and kinetic trapping effects. The ability of the FNP process to generate such a wide range of morphologies using a simple and scalable setup provides a pathway to manufacturing internally structured colloids on an industrial scale.

  18. Tuning Structural Properties of Biocompatible Block Copolymer Micelles by Varying Solvent Composition

    NASA Astrophysics Data System (ADS)

    Cooksey, Tyler; Singh, Avantika; Mai Le, Kim; Wang, Shu; Kelley, Elizabeth; He, Lilin; Vajjala Kesava, Sameer; Gomez, Enrique; Kidd, Bryce; Madsen, Louis; Robertson, Megan

    The self-assembly of block copolymers into micelles when introduced to selective solvents enables a wide array of applications, ranging from drug delivery to personal care products to nanoreactors. In order to probe the assembly and dynamics of micellar systems, the structural properties and solvent uptake of biocompatible poly(ethylene oxide-b- ɛ-caprolactone) (PEO-PCL) diblock copolymers in deuterated water (D2O) / tetrahydrofuran (THFd8) mixtures were investigated using small-angle neutron scattering in combination with nuclear magnetic resonance. PEO-PCL block copolymers, of varying molecular weight yet constant block ratio, formed spherical micelles through a wide range of solvent compositions. Varying the composition from 10 to 60 % by volume THFd8\\ in D2O / THFd8 mixtures was a means of varying the core-corona interfacial tension in the micelle system. An increase in THFd8 content in the bulk solvent increased the solvent uptake within the micelle core, which was comparable for the two series, irrespective of the polymer molecular weight. Differences in the behaviors of the micelle size parameters as the solvent composition varied originated from the differing trends in aggregation number for the two micelle series. Incorporation of the known unimer content determined from NMR allowed refinement of extracted micelle parameters.

  19. Organization of Gold Nanorods in Cylinder-Forming Block Copolymer Films

    NASA Astrophysics Data System (ADS)

    Jian, Guoquian; Riggleman, Robert; Composto, Russell

    2012-02-01

    The addition of gold nanorods (AuNRs) to copolymer films can impart unique optical and electrical properties. To take full advantage of this system, the AuNRs must be dispersed in a self-organizing copolymer that directs the orientation of the anisotropic particle. In the present work, AuNRs with aspect ratio 3.6 (8 nm x 29 nm) are grafted with poly(2-vinyl pyridine) (P2VP) brushes and dispersed in a cylindrical forming diblock copolymer of polystyrene-b-P2VP (180K-b-77K, 29.6 wt% P2VP). Films are spun cast and solvent annealed in chloroform to produce a perpendicular cylindrical morphology at the surface. Using TEM and UV-ozone etching combined with AFM, the AuNRs are well dispersed and co-locate (top down view) with the P2VP cylinders, ˜50nm diameter. However, the AuNRs mainly lie parallel to the surface indicating that they likely locate at the junction created at the intersection between P2VP cylinders and P2VP brush layer adjacent to the silicon oxide surface. Self-consistent field calculations of the Au:PS-b-P2VP morphology as well as the effect of adding P2VP homopolymer to the nanocomposite will be discussed.

  20. Investigation of a new thermosensitive block copolymer micelle: hydrolysis, disruption, and release.

    PubMed

    Pelletier, Maxime; Babin, Jérôme; Tremblay, Luc; Zhao, Yue

    2008-11-04

    Thermosensitive polymer micelles are generally obtained with block copolymers in which one block exhibits a lower critical solution temperature in aqueous solution. We investigate a different design that is based on the use of one block bearing a thermally labile side group, whose hydrolysis upon heating shifts the hydrophilic-hydrophobic balance toward the destabilization of block copolymer micelles. Atom transfer radical polymerization was utilized to synthesize a series of diblock copolymers composed of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(2-tetrahydropyranyl methacrylate) (PTHPMA). We show that micelles of PEO-b-PTHPMA in aqueous solution can be destabilized as a result of the thermosensitive hydrolytic cleavage of tetrahydropyranyl (THP) groups that transforms PTHPMA into hydrophilic poly(methacrylic acid). The three related processes occurring in aqueous solution, namely, hydrolytic cleavage of THP, destabilization of micelles, and release of loaded Nile Red (NR), were investigated simultaneously using 1H NMR, dynamic light scattering, and fluorescence spectroscopy, respectively. At 80 degrees C, the results suggest that the three events proceed with a similar kinetics. Although slower than at elevated temperatures, the disruption of PEO-b-PTHPMA micelles can take place at the body temperature (approximately 37 degrees C), and the release kinetics of NR can be adjusted by changing the relative lengths of the two blocks or the pH of the solution.

  1. High-concentration graphene dispersion stabilized by block copolymers in ethanol.

    PubMed

    Perumal, Suguna; Lee, Hyang Moo; Cheong, In Woo

    2017-07-01

    This article describes a comprehensive study for the preparation of graphene dispersions by liquid-phase exfoliation using amphiphilic diblock copolymers; poly(ethylene oxide)-block-poly(styrene) (PEO-b-PS), poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO-b-PVP), and poly(ethylene oxide)-block-poly(pyrenemethyl methacrylate) (PEO-b-PPy) with similar block lengths. Block copolymers were prepared from PEO using the Steglich coupling reaction followed by reversible addition-fragmentation chain transfer (RAFT) polymerization. Graphite platelets (G) and reduced graphene oxide (rGO) were used as graphene sources. The dispersion stability of graphene in ethanol was comparatively investigated by on-line turbidity, and the graphene concentration in the dispersions was determined gravimetrically. Our results revealed that the graphene dispersions with PEO-b-PVP were much more stable and included graphene with fewer defects than that with PEO-b-PS or PEO-b-PPy, as confirmed by turbidity and Raman analyses. Gravimetry confirmed that graphene concentrations up to 1.7 and 1.8mg/mL could be obtained from G and rGO dispersions, respectively, using PEO-b-PVP after one week. Distinctions in adhesion forces of PS, VP, PPy block units with graphene surface and the variation in solubility of the block copolymers in ethanol medium significantly affected the stability of the graphene dispersion. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Two-dimensional phase separated structures of block copolymers on solids

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Ribbe, Alexander

    The fundamental, yet unsolved question in block copolymer (BCP) thin films is the self-organization process of BCPs at the solid-polymer melt interface. We here focus on the self-organization processes of cylinder-forming polystyrene-block-poly (4-vinylpyridine) diblock copolymer and lamellar-forming poly (styrene-block-butadiene-block-styrene) triblock copolymer on Si substrates as model systems. In order to reveal the buried interfacial structures, the following experimental protocols were utilized: the BCP monolayer films were annealed under vacuum at T>Tg of the blocks (to equilibrate the melts); vitrification of the annealed BCP films via rapid quench to room temperature; subsequent intensive solvent leaching (to remove unadsorbed chains) with chloroform, a non-selective good solvent for the blocks. The strongly bound BCP layers were then characterized by using atomic force microscopy, scanning electron microscopy, grazing incidence small angle X-ray scattering, and X-ray reflectivity. The results showed that both blocks lie flat on the substrate, forming the two-dimensional, randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. Acknowledgement of financial support from NSF Grant (CMMI -1332499).

  3. Improving proton conduction pathways in di- and triblock copolymer membranes: Branched versus linear side chains

    NASA Astrophysics Data System (ADS)

    Dorenbos, G.

    2017-06-01

    Phase separation within a series of polymer membranes in the presence of water is studied by dissipative particle dynamics. Each polymer contains hydrophobic A beads and hydrophilic C beads. Three parent architectures are constructed from a backbone composed of connected hydrophobic A beads to which short ([C]), long ([A3C]), or symmetrically branched A5[AC][AC] side chains spring off. Three di-block copolymer derivatives are constructed by covalently bonding an A30 block to each parent architecture. Also three tri-blocks with A15 blocks attached to both ends of each parent architecture are modeled. Monte Carlo tracer diffusion calculations through the water containing pores for 1226 morphologies reveal that water diffusion for parent architectures is slowest and diffusion through the di-blocks is fastest. Furthermore, diffusion increases with side chain length and is highest for branched side chains. This is explained by the increase of water pore size with , which is the average number of bonds that A beads are separated from a nearest C bead. Optimization of within the amphiphilic parent architecture is expected to be essential in improving proton conduction in polymer electrolyte membranes.

  4. Fluids density functional theory and initializing molecular dynamics simulations of block copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.

    2016-03-01

    Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.

  5. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  6. Rational synthesis of low-polydispersity block copolymer vesicles in concentrated solution via polymerization-induced self-assembly.

    PubMed

    Gonzato, Carlo; Semsarilar, Mona; Jones, Elizabeth R; Li, Feng; Krooshof, Gerard J P; Wyman, Paul; Mykhaylyk, Oleksandr O; Tuinier, Remco; Armes, Steven P

    2014-08-06

    Block copolymer self-assembly is normally conducted via post-polymerization processing at high dilution. In the case of block copolymer vesicles (or "polymersomes"), this approach normally leads to relatively broad size distributions, which is problematic for many potential applications. Herein we report the rational synthesis of low-polydispersity diblock copolymer vesicles in concentrated solution via polymerization-induced self-assembly using reversible addition-fragmentation chain transfer (RAFT) polymerization of benzyl methacrylate. Our strategy utilizes a binary mixture of a relatively long and a relatively short poly(methacrylic acid) stabilizer block, which become preferentially expressed at the outer and inner poly(benzyl methacrylate) membrane surface, respectively. Dynamic light scattering was utilized to construct phase diagrams to identify suitable conditions for the synthesis of relatively small, low-polydispersity vesicles. Small-angle X-ray scattering (SAXS) was used to verify that this binary mixture approach produced vesicles with significantly narrower size distributions compared to conventional vesicles prepared using a single (short) stabilizer block. Calculations performed using self-consistent mean field theory (SCMFT) account for the preferred self-assembled structures of the block copolymer binary mixtures and are in reasonable agreement with experiment. Finally, both SAXS and SCMFT indicate a significant degree of solvent plasticization for the membrane-forming poly(benzyl methacrylate) chains.

  7. Block copolymer battery separator

    DOEpatents

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  8. Interaction chromatography for characterization and large-scale fractionation of chemically heterogeneous copolymers

    NASA Astrophysics Data System (ADS)

    Han, Junwon

    The remarkable development of polymer synthesis techniques to make complex polymers with controlled chain architectures has inevitably demanded the advancement of polymer characterization tools to analyze the molecular dispersity in polymeric materials beyond size exclusion chromatography (SEC). In particular, man-made synthetic copolymers that consist of more than one monomer type are disperse mixtures of polymer chains that have distributions in terms of both chemical heterogeneity and chain length (molar mass). While the molecular weight distribution has been quite reliably estimated by the SEC, it is still challenging to properly characterize the chemical composition distribution in the copolymers. Here, I have developed and applied adsorption-based interaction chromatography (IC) techniques as a promising tool to characterize and fractionate polystyrene-based block, random and branched copolymers in terms of their chemical heterogeneity. The first part of this thesis is focused on the adsorption-desorption based purification of PS-b-PMMA diblock copolymers using nanoporous silica. The liquid chromatography analysis and large scale purification are discussed for the PS-b-PMMA block copolymers that have been synthesized by sequential anionic polymerization. SEC and IC are compared to critically analyze the contents of PS homopolymers in the as-synthesized block copolymers. In addition, I have developed an IC technique to provide faster and more reliable information on the chemical heterogeneity in the as-synthesized block copolymers. Finally, a large scale (multi-gram) separation technique is developed to obtain "homopolymer-free" block copolymers via a simple chromatographic filtration technique. By taking advantage of the large specific surface area of nanoporous silica (≈300m 2/g), large scale purification of neat PS-b-PMMA has successfully been achieved by controlling adsorption and desorption of the block copolymers on the silica gel surface using a

  9. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution.

    PubMed

    Raschke, Markus B; Molina, Leopoldo; Elsaesser, Thomas; Kim, Dong Ha; Knoll, Wolfgang; Hinrichs, Karsten

    2005-10-14

    Nanodomains formed by microphase separation in thin films of the diblock copolymers poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) and poly(styrene-b-ethyleneoxide) (PS-b-PEO) were imaged by means of infrared scattering-type near-field microscopy. When probing at 3.39 mum (2950 cm(-1)), contrast is obtained due to spectral differences between the C--H stretching vibrational resonances of the respective polymer constituents. An all-optical spatial resolution better than 10 nm was achieved, which corresponds to a sensitivity of just several thousand C--H groups facilitated by the local-field enhancement at the sharp metallic probe tips. The results demonstrate that infrared spectroscopy with access to intramolecular dimensions is within reach.

  10. Facile phase transfer of gold nanorods and nanospheres stabilized with block copolymers

    PubMed Central

    Derikov, Yaroslav I; Shandryuk, Georgiy A; Talroze, Raisa V; Ezhov, Alexander A

    2018-01-01

    A fast route to transfer Au nanoparticles from aqueous to organic media is proposed based on the use of a high molecular mass diblock copolymer of styrene and 2-vinylpyridine for ligand exchange at the nanoparticle surface. The method enables the preparation of stable sols of Au nanorods with sizes of up to tens of nanometers or Au nanospheres in various organic solvents. By comparing the optical absorbance spectra of Au hydro- and organosols with the data of numerical simulations of the surface plasmon resonance, we find that nanoparticles do not aggregate and confirm the transmission electron microscopy data regarding their shape and size. The proposed approach can be effective in preparing hybrid composites without the use of strong thiol and amine surfactants. PMID:29527437

  11. Effect of rod length on the morphology of block copolymer/magnetic nanorod composites.

    PubMed

    Lo, Chieh-Tsung; Lin, Wei-Ting

    2013-05-02

    The organization of magnetic nanorods in microphase-separated diblock copolymers composed of poly(styrene-b-2-vinylpyridine) (PS-PVP) as a function of rod length and rod concentration was investigated using both transmission electron microscopy and small-angle X-ray scattering. Our results reveal that the nanorods were sequestered into the PVP domains, which is attributed to the preferential interaction between pyridine-tethered nanorods and PVP. Meanwhile, the addition of nanorods in PS-PVP caused chain stretching. To minimize the energy penalty, nanorods tended to align parallel to the interface between PS and PVP to increase the conformational entropy. As the length of nanorods increased, the increasing van der Waals interaction and magnetic interaction caused extensive rod aggregation, which suppressed the domain size of PVP and amplified the local compositional fluctuations. This creates conditions to induce disorder in the polymer morphology and nanorods undergo macrophase separation.

  12. Intradomain phase transitions in flexible block copolymers with self-aligning segments.

    PubMed

    Burke, Christopher J; Grason, Gregory M

    2018-05-07

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ε). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ε needed to induce this intra-domain phase transition.

  13. Intradomain phase transitions in flexible block copolymers with self-aligning segments

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.; Grason, Gregory M.

    2018-05-01

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ɛ). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ɛ needed to induce this intra-domain phase transition.

  14. Fabrication of size-controlled nanoring arrays by selective incorporation of ionic liquids in diblock copolymer micellar cores

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Soo; Kang, Donghwi; Sohn, Byeong-Hyeok

    2017-06-01

    We report the synthesis of arrayed nanorings with tunable physical dimensions from thin films of polystyrene-block-poly(4-vinylpyridine) (PS-P4VP) micelles. For accurate control of the inner and outer diameters of the nanorings, we added imidazolium-based ionic liquids (ILs) into the micellar solution, which were eventually incorporated into the micellar cores. We observed the structural changes of the micellar cores coated on a substrate due to the presence of ILs. The spin-coated micellar cores were treated with an acidic precursor solution and generated toroid nanostructures, of which size depended on the amount of IL loaded into the micelles. We then treated the transformed micellar films with oxygen plasma to produce arrays of various metal and oxide nanorings on a substrate. The spacings and diameters of nanorings were governed by the molecular weight of the PS-P4VP and the amount of IL used. We also demonstrated that arrayed Pt nanorings enabled the fabrication of reduced graphene oxide anti-nanoring arrays via a catalytic tailoring process.

  15. Durability and Performance of Polystyrene-b-Poly(vinylbenzyl trimethylammonium) Diblock Copolymer and Equivalent Blend Anion Exchange Membranes

    DTIC Science & Technology

    2015-01-01

    requiring circulation of the electrolyte to filter out the carbonate solids. The superior power density of proton exchange membrane fuel cells ( PEMFC ...without requir- ing a CO2 free oxidant stream, prevented commercial develop- ment of the liquid AFC, allowing PEMFCs to dominate low temperature fuel...cell research and development. PEMFCs employ a solid acidic polymer to transport protons from anode to cathode. PEMs have been researched heavily the

  16. LIGHT SCATTERING STUDY OF DIBLOCK COPOLYMERS IN SUPERCRITICAL CARBON DIOXIDE CO2 DENSITY-INDUCED MICELLIZATION TRANSITION. (R826115)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Electrochemical Characterization and Catalytic Application of Gold-Supported Ferrocene-Containing Diblock Copolymer Thin Films in Ethanol Solution

    DOE PAGES

    Ghimire, Govinda; Coceancigh, Herman; Yi, Yi; ...

    2017-01-25

    This study reports the electrochemical behavior and catalytic property of electrode-supported thin films of polystyrene- block-poly(2-(acryloyloxy)ethyl ferrocenecarboxylate) (PS- b-PAEFc) in an ethanol (EtOH) solution. The electrochemical properties of PS- b-PAEFc films with different PAEFc volume fractions (f PAEFc = 0.47, 0.30, and 0.17) in 0.1 M ethanolic sodium hexafluorophosphate were compared with those in an acetonitrile (MeCN) solution of 0.1 M tetrabutylammonium hexafluorophosphate. Pristine PS- b-PAEFc films did not afford significant faradaic currents in the EtOH solution because EtOH is a nonsolvent for both PS and PAEFc. However, the films could be rendered redox-active in the EtOH solution by applyingmore » potentials in the MeCN solution to induce the redox-associated incorporation of the supporting electrolytes into the films. Atomic force microscopy images verified the stability of PAEFc microdomains upon electrochemical measurements in these solutions. Cyclic voltammograms measured in the EtOH solution for PS- b-PAEFc with the larger f PAEFc were diffusion-controlled regardless of ellipsometric film thickness (23 – 152 nm) at relatively slow scan rates, in contrast to those in the MeCN solution that were controlled by surface-confined redox species. The electron propagation efficiency in the EtOH solution was significantly lower than that in the MeCN solution due to the poorer swelling of the films, which limited the migration of counter ions and the collisional motions of the ferrocene moieties. PS- b-PAEFc films were applied as electrochemically-responsive heterogeneous catalysts based on the ferrocenium moieties for Michael addition reaction between methyl vinyl ketone and ethyl 2-oxocyclopentanecarboxylate (E2OC) in 0.1 M NaPF 6/EtOH. The catalytic activities of thin films were similar regardless of f PAEFc, suggesting that the catalytic reaction took place for the reactants that could penetrate through the film and reach PAEFc microdomains communicable with the underlying electrode. Interestingly, the permeability of PS-b-PAEFc films provided a means to control the reaction selectivity, as suggested by negligible reaction of E2OC with trans-4-phenyl-3-buten-2-one.« less

  18. Investigating Block-Copolymer Micelle Dynamics for Tunable Cargo Delivery

    NASA Astrophysics Data System (ADS)

    Li, Xiuli; Kidd, Bryce; Cooksey, Tyler; Robertson, Megan; Madsen, Louis

    Block-copolymer micelles (BCPMs) can carry molecular cargo in a nanoscopic package that is tunable using polymer structure in combination with cargo properties, as well as with external stimuli such as temperature or pH. For example, BCPMs can be used in targeted anticancer drug delivery due to their biocompatibility, in vivo degradability and prolonged circulation time. We are using NMR spectroscopy and diffusometry as well as SANS to investigate BCPMs. Here we study a diblock poly(ethylene oxide)-b-(caprolactone) (PEO-PCL) that forms spherical micelles at 1% (w/v) in the mixed solvent D2O/THF-d8. We quantify the populations and diffusion coefficients of coexisting micelles and free unimers over a range of temperatures and solvent compositions. We use temperature as a stimulus to enhance unimer exchange and hence trigger cargo release, in some cases at a few degrees above body temperature. We present evidence for dominance of the insertion-expulsion mechanism of unimer exchange in these systems, and we map phase diagrams versus temperature and solvent composition. This study sheds light on how intermolecular interactions fundamentally affect cargo release, unimer exchange, and overall micelle tunability.

  19. Cooperation of Amphiphilicity and Crystallization for Regulating the Self-Assembly of Poly(ethylene glycol)-block-poly(lactic acid) Copolymers.

    PubMed

    Wang, Zhen; Cao, Yuanyuan; Song, Jiaqi; Xie, Zhigang; Wang, Yapei

    2016-09-20

    Tuning the amphiphilicity of block copolymers has been extensively exploited to manipulate the morphological transition of aggregates. The introduction of crystallizable moieties into the amphiphilic copolymers also offers increasing possibilities for regulating self-assembled structures. In this work, we demonstrate a detailed investigation of the self-assembly behavior of amphiphilic poly(ethylene glycol)-block-poly(l-lactic acid) (PEG-b-PLLA) diblock copolymers with the assistance of a common solvent in aqueous solution. With a given length of the PEG block, the molecular weight of the PLA block has great effect on the morphologies of self-assembled nanoaggregates as a result of varying molecular amphiphilicity and polymer crystallization. Common solvents including N,N-dimethylformamide, dioxane, and tetrahydrofuran involved in the early stage of self-assembly led to the change in chain configuration, which further influences the self-assembly of block copolymers. This study expanded the scope of PLA-based copolymers and proposed a possible mechanism of the sphere-to-lozenge and platelet-to-cylinder morphological transitions.

  20. Well-defined block copolymers for gene delivery to dendritic cells: probing the effect of polycation chain-length.

    PubMed

    Tang, Rupei; Palumbo, R Noelle; Nagarajan, Lakshmi; Krogstad, Emily; Wang, Chun

    2010-03-03

    The development of safe and efficient polymer carriers for DNA vaccine delivery requires mechanistic understanding of structure-function relationship of the polymer carriers and their interaction with antigen-presenting cells. Here we have synthesized a series of diblock copolymers with well-defined chain-length using atom transfer radical polymerization and characterized the influence of polycation chain-length on the physico-chemical properties of the polymer/DNA complexes as well as the interaction with dendritic cells. The copolymers consist of a hydrophilic poly(ethylene glycol) block and a cationic poly(aminoethyl methacrylate) (PAEM) block. The average degree of polymerization (DP) of the PAEM block was varied among 19, 39, and 75, with nearly uniform distribution. With increasing PAEM chain-length, polyplexes formed by the diblock copolymers and plasmid DNA had smaller average particle size and showed higher stability against electrostatic destabilization by salt and heparin. The polymers were not toxic to mouse dendritic cells (DCs) and only displayed chain-length-dependent toxicity at a high concentration (1mg/mL). In vitro gene transfection efficiency and polyplex uptake in DCs were also found to correlate with chain-length of the PAEM block with the longer polymer chain favoring transfection and cellular uptake. The polyplexes induced a modest up-regulation of surface markers for DC maturation that was not significantly dependent on PAEM chain-length. Finally, the polyplex prepared from the longest PAEM block (DP of 75) achieved an average of 20% enhancement over non-condensed anionic dextran in terms of uptake by DCs in the draining lymph nodes 24h after subcutaneous injection into mice. Insights gained from studying such structurally well-defined polymer carriers and their interaction with dendritic cells may contribute to improved design of practically useful DNA vaccine delivery systems. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Study of the air-water interfacial properties of biodegradable polyesters and their block copolymers with poly(ethylene glycol).

    PubMed

    Park, Hae-Woong; Choi, Je; Ohn, Kimberly; Lee, Hyunsuk; Kim, Jin Woong; Won, You-Yeon

    2012-08-07

    It has been reported that the surface pressure-area isotherm of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) at the air-water interface exhibits several interesting features: (1) a plateau at intermediate compression levels, (2) a sharp rise in surface pressure upon further compression, and (3) marked surface pressure-area hysteresis during compression-expansion cycles. To investigate the molecular origin of this behavior, we conducted an extensive set of surface pressure and AFM imaging measurements with PLGA materials having several different molecular weights and also a poly(D,L-lactic acid-ran-glycolic acid-ran-caprolactone) (PLGACL) material in which the caprolactone monomers were incorporated as a plasticizing component. The results suggest that (i) the plateau in the surface pressure-area isotherm of PLGA (or PLGACL) occurs because of the formation (and collapse) of a continuous monolayer of the polymer under continuous compression; (ii) the PLGA monolayer becomes significantly resistant to compression at high compression because under that condition the collapsed domains become large enough to become glassy (such behavior was not observed in the nonglassy PLGACL sample); and (iii) the isotherm hysteresis is due to a coarsening of the collapsed domains that occurs under high-compression conditions. We also investigated the monolayer properties of PEG-PLGA and PEG-PLGACL diblock copolymers. The results demonstrate that the tendency of PLGA (or PLGACL) to spread on water allows the polymer to be used as an anchoring block to form a smooth biodegradable monolayer of block copolymers at the air-water interface. These diblock copolymer monolayers exhibit protein resistance.

  2. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  3. A One-Step Route to CO2 -Based Block Copolymers by Simultaneous ROCOP of CO2 /Epoxides and RAFT Polymerization of Vinyl Monomers.

    PubMed

    Wang, Yong; Zhao, Yajun; Ye, Yunsheng; Peng, Haiyan; Zhou, Xingping; Xie, Xiaolin; Wang, Xianhong; Wang, Fosong

    2018-03-26

    The one-step synthesis of well-defined CO 2 -based diblock copolymers was achieved by simultaneous ring-opening copolymerization (ROCOP) of CO 2 /epoxides and RAFT polymerization of vinyl monomers using a trithiocarbonate compound bearing a carboxylic group (TTC-COOH) as the bifunctional chain transfer agent (CTA). The double chain-transfer effect allows for independent and precise control over the molecular weight of the two blocks and ensures narrow polydispersities of the resultant block copolymers (1.09-1.14). Notably, an unusual axial group exchange reaction between the aluminum porphyrin catalyst and TTC-COOH impedes the formation of homopolycarbonates. By taking advantage of the RAFT technique, it is able to meet the stringent demand for functionality control to well expand the application scopes of CO 2 -based polycarbonates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Utilization of Network-Forming Block Copolymers and Ionomers in the Development of Novel Nanostructures and Responsive Media

    NASA Astrophysics Data System (ADS)

    Mineart, Kenneth

    Network forming block copolymers, i.e. thermoplastic elastomers (TPEs), are one of the highest commodity forms of block copolymers due to their competitive elasticity and extendability as well as their ability to be melt and solution processed. TPEs owe many of their advantages to a combination of hard and soft blocks. The soft blocks, which must be covalently bound at both ends to hard blocks, connect adjacent hard domains resulting in physically cross-linked systems. Herein, simulations and theory are used to provide a molecular-level depiction of the evolution from diblock copolymers, which do not contain the ability to form physical cross-links, to network forming triblock copolymers. In addition, systems with high interblock incompatibility that are within the diblock-to-triblock transition (i.e. having high molecular asymmetry) are identified to form three component (ABC triblock copolymer) phases from copolymer containing only two chemically distinct blocks. Following this work, which emphasizes the fundamental principle of TPEs, the dissertation shifts focus to physically- and chemically-modified triblock and pentablock copolymer TPEs. Recent progress has sought to broaden TPEs to include properties that are above and beyond their inherent mechanical benefits, including responsiveness to external stimuli. The first examples presented here consist of TPEs prepared in combination with amorphous hydrocarbon additives to yield TPE gels (TPEGs). The resulting TPEGs, which maintain the beneficial processing properties of TPEs, are subsequently molded into 1- and 2-D arrays of microchannels that are filled with liquid metal. The final devices exhibit strain-sensitive electrical conductivity to at least 600% strain, have tunable compliance (ease of stretching), and are fully recyclable. The substitution of the amorphous hydrocarbon component for crystalline analogues with melting points <100 °C yield TPE composites (TPECs). The TPECs gain the added capability of

  5. Flash NanoPrecipitation of organic actives via confined micromixing and block copolymer stabilization

    NASA Astrophysics Data System (ADS)

    Johnson, Brian K.

    to quantify the induction time through knowledge of the mixing lifetime. Copolymer aggregation without an organic active to kinetically frozen nanoparticles occurs by a "fusion only" mechanism. By analogy to classical precipitation kinetics, the interfacial free energy of a diblock copolymer nanoparticle is determined for the first time. The composite dissertation provides a clear picture of Flash NanoPrecipitation for future research and applications.

  6. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release.

    PubMed

    Qiao, Zeng-Ying; Ji, Ran; Huang, Xiao-Nan; Du, Fu-Sheng; Zhang, Rui; Liang, De-Hai; Li, Zi-Chen

    2013-05-13

    A series of well-defined thermoresponsive diblock copolymers (PEO45-b-PtNEAn, n=22, 44, 63, 91, 172) were prepared by the atom transfer radical polymerization of trans-N-(2-ethoxy-1,3-dioxan-5-yl) acrylamide (tNEA) using a poly(ethylene oxide) (PEO45) macroinitiator. All copolymers are water-soluble at low temperature, but upon quickly heating to 37 °C, laser light scattering (LLS) and transmission electron microscopy (TEM) characterizations indicate that these copolymers self-assemble into aggregates with different morphologies depending on the chain length of PtNEA and the polymer concentration; the morphologies gradually evolved from spherical solid nanoparticles to a polymersome as the degree of polymerization ("n") of PtNEA block increased from 22 to 172, with the formation of clusters with rod-like structure at the intermediate PtNEA length. Both the spherical nanoparticle and the polymersome are stable at physiological pH but susceptible to the mildly acidic medium. Acid-triggered hydrolysis behaviors of the aggregates were investigated by LLS, Nile red fluorescence, TEM, and (1)H NMR spectroscopy. The results revealed that the spherical nanoparticles formed from PEO45-b-PtNEA44 dissociated faster than the polymersomes of PEO45-b-PtNEA172, and both aggregates showed an enhanced hydrolysis under acidic conditions. Both the spherical nanoparticle and polymersome are able to efficiently load the hydrophobic doxorubicin (DOX), and water-soluble fluorescein isothiocyanate-lysozyme (FITC-Lys) can be conveniently encapsulated into the polymersome without using any organic solvent. Moreover, FITC-Lys and DOX could be coloaded in the polymersome. The drugs loaded either in the polymersome or in the spherical nanoparticle could be released by acid triggering. Finally, the DOX-loaded assemblies display concentration-dependent cytotoxicity to HepG2 cells, while the copolymers themselves are nontoxic.

  7. Effect of PEG-PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex Formation with Heparin.

    PubMed

    Välimäki, Salla; Khakalo, Alexey; Ora, Ari; Johansson, Leena-Sisko; Rojas, Orlando J; Kostiainen, Mauri A

    2016-09-12

    Heparin is a naturally occurring polyelectrolyte consisting of a sulfated polysaccharide backbone. It is widely used as an anticoagulant during major surgical operations. However, the associated bleeding risks require rapid neutralization after the operation. The only clinically approved antidote for heparin is protamine sulfate, which is, however, ineffective against low molecular weight heparin and can cause severe adverse reactions in patients. In this study, the facile synthesis of cationic-neutral diblock copolymers and their effective heparin binding is presented. Poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) (PEG-PDMAEMA) block copolymers were synthesized in two steps via atom-transfer radical polymerization (ATRP) using PEG as a macroinitiator. Solution state binding between heparin and a range of PEG-PDMAEMA block copolymers and one homopolymer was studied with dynamic light scattering and methylene blue displacement assay. Also in vitro binding in plasma was studied by utilizing a chromogenic heparin anti-Xa assay. Additionally, quartz crystal microbalance and multiparametric surface plasmon resonance were used to study the surface adsorption kinetics of the polymers on a heparin layer. It was shown that the block copolymers and heparin form electrostatically bound complexes with varying colloidal properties, where the block lengths play a key role in controlling the heparin binding affinity, polyelectrolyte complex size and surface charge. With the optimized polymers (PEG114PDMAEMA52 and PEG114PDMAEMA100), heparin could be neutralized in a dose-dependent manner, and bound efficiently into small neutral complexes, with a hydrodynamic radius less than 100 nm. These complexes had only a limited effect on cell viability. Based on these studies, our approach paves the way for the development of new polymeric heparin binding agents.

  8. Customization of copolymers to optimize selectivity and yield in polymer-driven antibody purification processes.

    PubMed

    Capito, Florian; Skudas, Romas; Stanislawski, Bernd; Kolmar, Harald

    2013-01-01

    This manuscript describes customization of copolymers to be used for polymer-driven protein purification in bioprocessing. To understand how copolymer customization can be used for fine-tuning, precipitation behavior was analyzed for five target antibodies (mAbs) and BSA as model impurity protein, at ionic strength similar to undiluted cell culture fluid. In contrast to the use of standardized homopolymers, customized copolymers, composed of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and 4-(acryloylamino)benzoic acid (ABZ), exhibited antibody precipitation yields exceeding 90%. Additionally, copolymer average molecular weight (Mw ) was varied and its influence on precipitation yield and contaminant coprecipitation was investigated. Results revealed copolymer composition as the major driving force for precipitation selectivity, which was also dependent on protein hydrophobicity. By adjusting ABZ content and Mw of the precipitant for each of the mAbs, conditions were found that allowed for high precipitation yield and selectivity. These findings may open up new avenues for using polymers in antibody purification processes. © 2013 American Institute of Chemical Engineers.

  9. A new class of dual responsive self-healable hydrogels based on a core crosslinked ionic block copolymer micelle prepared via RAFT polymerization and Diels-Alder "click" chemistry.

    PubMed

    Banerjee, Sovan Lal; Singha, Nikhil K

    2017-12-06

    Amphiphilic diblock copolymers of poly(furfuryl methacrylate) (PFMA) with cationic poly(2-(methacryloyloxy)ethyltrimethyl ammonium chloride) (PFMA-b-PMTAC) and anionic poly(sodium 4-vinylbenzenesulfonate) (PFMA-b-PSS) were prepared via reversible addition fragmentation chain-transfer (RAFT) polymerization by using PFMA as a macro-RAFT agent. The formation of the block copolymer was confirmed by FTIR and 1 H NMR analyses. In water, the amphiphilic diblock copolymers, (PFMA-b-PMTAC) and (PFMA-b-PSS), formed micelles with PFMA in the core and the rest of the hydrophilic polymers like PMTAC and PSS in the corona. The PFMA core was crosslinked by using Diels-Alder (DA) "Click" chemistry in water at 60 °C where bismaleimide acted as a crosslinker. Afterwards, both the core crosslinked micelles were mixed at an almost equal charge ratio which was determined by zeta potential analysis to prepare the self-assembled hydrogel. The de-crosslinking of the hydrophobic PFMA core in the self-assembled hydrogel via rDA reaction took place at 165 °C as determined from DSC analysis. This hydrogel showed self-healing behavior using ionic interaction (in the presence of water) and DA chemistry (in the presence of heat).

  10. Differences in the adsorption behaviour of poly(ethylene oxide) copolymers onto model polystyrene nanoparticles assessed by isothermal titration microcalorimetry correspond to the biological differences.

    PubMed

    Stolnik, S; Heald, C R; Garnett, M G; Illum, L; Davis, S S

    2005-01-01

    The adsorption behaviour of a tetrafunctional copolymer of poly (ethylene oxide)-poly (propylene oxide) ethylene diamine (commercially available as Poloxamine 908) and a diblock copolymer of poly (lactic acid)-poly (ethylene oxide) (PLA/PEG 2:5) onto a model colloidal drug carrier (156 nm sized polystyrene latex) is described. The adsorption isotherm, hydrodynamic thickness of the adsorbed layers and enthalpy of the adsorption were assessed. The close similarity in the conformation of the poly (ethylene oxide) (PEO) chains (molecular weight 5,000 Da) in the adsorbed layers of these two copolymers was demonstrated by combining the adsorption data with the adsorbed layer thickness data. In contrast, the results from isothermal titration microcalorimetry indicated a distinct difference in the interaction of the copolymers with the polystyrene colloid surface. Poloxamine 908 adsorption to polystyrene nanoparticles is dominated by an endothermic heat effect, whereas, PLA/PEG 2:5 adsorption is entirely an exothermic process. This difference in adsorption behaviour could provide an explanation for differences in the biodistribution of Poloxamine 908 and PLA/PEG 2:5 coated polystyrene nanoparticles observed in previous studies. A comparison with the interaction enthalpy for several other PEO-containing copolymers onto the same polystyrene colloid was made. The results demonstrate the importance of the nature of the anchoring moiety on the interaction of the adsorbing copolymer with the colloid surface. An endothermic contribution is found when an adsorbing molecule contains a poly (propylene oxide) (PPO) moiety (e.g. Poloxamine 908), whilst the adsorption is exothermic (i.e. enthalpy driven) for PEO copolymers with polylactide (PLA/PEG 2:5) or alkyl moieties.

  11. Thermo-reversible supramolecular hydrogels of trehalose-type diblock methylcellulose analogues.

    PubMed

    Yamagami, Mao; Kamitakahara, Hiroshi; Yoshinaga, Arata; Takano, Toshiyuki

    2018-03-01

    This paper describes the design and synthesis of new trehalose-type diblock methylcellulose analogues with nonionic, cationic, and anionic cellobiosyl segments, namely 1-(tri-O-methyl-cellulosyl)-4-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (1), 1-(tri-O-methyl-cellulosyl)-4-[(6-amino-6-deoxy-β-d-glucopyranosyl)-(1→4)- 6-amino-6-deoxy-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (2), and 4-(tri-O-methyl-cellulosyloxymethyl)-1-[β-d-glucopyranuronosyl-(1→4)-β-d-glucopyranuronosyl]-1H-1,2,3-triazole (3), respectively. Aqueous solutions of all of the 1,2,3-triazole-linked diblock methylcellulose analogues possessed higher surface activities than that of industrially produced methylcellulose and exhibited lower critical solution temperatures, that allowed the formation of thermoresponsive supramolecular hydrogels at close to human body temperature. Supramolecular structures of thermo-reversible hydrogels based on compounds 1, 2, and 3 were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Detailed structure-property-function relationships of compounds 1, 2, and 3 were discussed. Not only nonionic hydrophilic segment but also ionic hydrophilic segments of diblock methylcellulose analogues were valid for the formation of thermo-reversible supramolecular hydrogels based on end-functionalized methylcellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Phthalimide Copolymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson

    2010-03-01

    Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.

  13. One-step formation of w/o/w multiple emulsions stabilized by single amphiphilic block copolymers.

    PubMed

    Hong, Liangzhi; Sun, Guanqing; Cai, Jinge; Ngai, To

    2012-02-07

    Multiple emulsions are complex polydispersed systems in which both oil-in-water (O/W) and water-in-oil (W/O) emulsion exists simultaneously. They are often prepared accroding to a two-step process and commonly stabilized using a combination of hydrophilic and hydrophobic surfactants. Recently, some reports have shown that multiple emulsions can also be produced through one-step method with simultaneous occurrence of catastrophic and transitional phase inversions. However, these reported multiple emulsions need surfactant blends and are usually described as transitory or temporary systems. Herein, we report a one-step phase inversion process to produce water-in-oil-in-water (W/O/W) multiple emulsions stabilized solely by a synthetic diblock copolymer. Unlike the use of small molecule surfactant combinations, block copolymer stabilized multiple emulsions are remarkably stable and show the ability to separately encapsulate both polar and nonpolar cargos. The importance of the conformation of the copolymer surfactant at the interfaces with regards to the stability of the multiple emulsions using the one-step method is discussed.

  14. Effect of Monomer Solubility on the Evolution of Copolymer Morphology during Polymerization-Induced Self-Assembly in Aqueous Solution

    PubMed Central

    2017-01-01

    Polymerization-induced self-assembly (PISA) has become a widely used technique for the rational design of diblock copolymer nano-objects in concentrated aqueous solution. Depending on the specific PISA formulation, reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization typically provides straightforward access to either spheres, worms, or vesicles. In contrast, RAFT aqueous emulsion polymerization formulations often lead to just kinetically-trapped spheres. This limitation is currently not understood, and only a few empirical exceptions have been reported in the literature. In the present work, the effect of monomer solubility on copolymer morphology is explored for an aqueous PISA formulation. Using 2-hydroxybutyl methacrylate (aqueous solubility = 20 g dm–3 at 70 °C) instead of benzyl methacrylate (0.40 g dm–3 at 70 °C) for the core-forming block allows access to an unusual “monkey nut” copolymer morphology over a relatively narrow range of target degrees of polymerization when using a poly(methacrylic acid) RAFT agent at pH 5. These new anisotropic nanoparticles have been characterized by transmission electron microscopy, dynamic light scattering, aqueous electrophoresis, shear-induced polarized light imaging (SIPLI), and small-angle X-ray scattering. PMID:28216792

  15. Phase behavior and orientational ordering in block copolymers doped with anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Osipov, M. A.; Gorkunov, M. V.; Berezkin, A. V.; Kudryavtsev, Y. V.

    2018-04-01

    A molecular field theory and coarse-grained computer simulations with dissipative particle dynamics have been used to study the spontaneous orientational ordering of anisotropic nanoparticles in the lamellar and hexagonal phases of diblock copolymers and the effect of nanoparticles on the phase behavior of these systems. Both the molecular theory and computer simulations indicate that strongly anisotropic nanoparticles are ordered orientationally mainly in the boundary region between the domains and the nematic order parameter possesses opposite signs in adjacent domains. The orientational order is induced by the boundary and by the interaction between nanoparticles and the monomer units in different domains. In simulations, sufficiently long and strongly selective nanoparticles are ordered also inside the domains. The nematic order parameter and local concentration profiles of nanoparticles have been calculated numerically using the model of a nanoparticle with two interaction centers and also determined using the results of computer simulations. A number of phase diagrams have been obtained which illustrate the effect of nanoparticle selectivity and molar fraction of the stability ranges of various phases. Different morphologies have been identified by analyzing the static structure factor and a phase diagram has been constructed in coordinates' nanoparticle concentration-copolymer composition. Orientational ordering of even a small fraction of nanoparticles may result in a significant increase of the dielectric anisotropy of a polymer nanocomposite, which is important for various applications.

  16. Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization.

    PubMed

    Kulak, Alex N; Iddon, Peter; Li, Yuting; Armes, Steven P; Cölfen, Helmut; Paris, Oskar; Wilson, Rory M; Meldrum, Fiona C

    2007-03-28

    Two double-hydrophilic block copolymers, each comprising a nonionic block and an anionic block comprising pendent aromatic sulfonate groups, were used as additives to modify the crystallization of CaCO3. Marked morphological changes in the CaCO3 particles were observed depending on the reaction conditions used. A poly(ethylene oxide)-b-poly(sodium 4-styrenesulfonate) diblock copolymer was particularly versatile in effecting a morphological change in calcite particles, and a continuous structural transition in the product particles from polycrystalline to mesocrystal to single crystal was observed with variation in the calcium concentration. The existence of this structural sequence provides unique insight into the mechanism of polymer-mediated crystallization. We propose that it reflects continuity in the crystallization mechanism itself, spanning the limits from nonoriented aggregation of nanoparticles to classical ion-by-ion growth. The various pathways to polycrystalline, mesocrystal, and single-crystal particles, which had previously been considered to be distinct, therefore all form part of a unifying crystallization framework based on the aggregation of precursor subunits.

  17. Merging Bottom-Up with Top-Down: Continuous Lamellar Networks and Block Copolymer Lithography

    NASA Astrophysics Data System (ADS)

    Campbell, Ian Patrick

    Block copolymer lithography is an emerging nanopatterning technology with capabilities that may complement and eventually replace those provided by existing optical lithography techniques. This bottom-up process relies on the parallel self-assembly of macromolecules composed of covalently linked, chemically distinct blocks to generate periodic nanostructures. Among the myriad potential morphologies, lamellar structures formed by diblock copolymers with symmetric volume fractions have attracted the most interest as a patterning tool. When confined to thin films and directed to assemble with interfaces perpendicular to the substrate, two-dimensional domains are formed between the free surface and the substrate, and selective removal of a single block creates a nanostructured polymeric template. The substrate exposed between the polymeric features can subsequently be modified through standard top-down microfabrication processes to generate novel nanostructured materials. Despite tremendous progress in our understanding of block copolymer self-assembly, continuous two-dimensional materials have not yet been fabricated via this robust technique, which may enable nanostructured material combinations that cannot be fabricated through bottom-up methods. This thesis aims to study the effects of block copolymer composition and processing on the lamellar network morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) and utilize this knowledge to fabricate continuous two-dimensional materials through top-down methods. First, block copolymer composition was varied through homopolymer blending to explore the physical phenomena surrounding lamellar network continuity. After establishing a framework for tuning the continuity, the effects of various processing parameters were explored to engineer the network connectivity via defect annihilation processes. Precisely controlling the connectivity and continuity of lamellar networks through defect engineering and

  18. Memories of AB

    NASA Astrophysics Data System (ADS)

    Vaks, V. G.

    2013-06-01

    I had the good fortune to be a student of A. B. Migdal - AB, as we called him in person or in his absence - and to work in the sector he headed at the Kurchatov Institute, along with his other students and my friends, including Vitya Galitsky, Spartak Belyayev and Tolya Larkin. I was especially close with AB in the second half of the 1950s, the years most important for my formation, and AB's contribution to this formation was very great. To this day, I've often quoted AB on various occasions, as it's hard to put things better or more precisely than he did; I tell friends stories heard from AB, because these stories enhance life as AB himself enhanced it; my daughter is named Tanya after AB's wife Tatyana Lvovna, and so on. In what follows, I'll recount a few episodes in my life in which AB played an important or decisive role, and then will share some other memories of AB...

  19. Ultrafast Self-Assembly of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing.

    PubMed

    Jiang, Jing; Jacobs, Alan G; Wenning, Brandon; Liedel, Clemens; Thompson, Michael O; Ober, Christopher K

    2017-09-20

    Laser spike annealing was applied to PS-b-PDMS diblock copolymers to induce short-time (millisecond time scale), high-temperature (300 to 700 °C) microphase segregation and directed self-assembly of sub-10 nm features. Conditions were identified that enabled uniform microphase separation in the time frame of tens of milliseconds. Microphase ordering improved with increased temperature and annealing time, whereas phase separation contrast was lost for very short annealing times at high temperature. PMMA brush underlayers aided ordering under otherwise identical laser annealing conditions. Good long-range order for sub-10 nm cylinder morphology was achieved using graphoepitaxy coupled with a 20 ms dwell laser spike anneal above 440 °C.

  20. Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface

    NASA Astrophysics Data System (ADS)

    Molla, Mijanur Rahaman; Rangadurai, Poornima; Antony, Lucas; Swaminathan, Subramani; de Pablo, Juan J.; Thayumanavan, S.

    2018-06-01

    Nature has engineered exquisitely responsive systems where molecular-scale information is transferred across an interface and propagated over long length scales. Such systems rely on multiple interacting, signalling and adaptable molecular and supramolecular networks that are built on dynamic, non-equilibrium structures. Comparable synthetic systems are still in their infancy. Here, we demonstrate that the light-induced actuation of a molecularly thin interfacial layer, assembled from a hydrophilic- azobenzene -hydrophobic diblock copolymer, can result in a reversible, long-lived perturbation of a robust glassy membrane across a range of over 500 chemical bonds. We show that the out-of-equilibrium actuation is caused by the photochemical trans-cis isomerization of the azo group, a single chemical functionality, in the middle of the interfacial layer. The principles proposed here are implemented in water-dispersed nanocapsules, and have implications for on-demand release of embedded cargo molecules.

  1. [Complex formation between alpha-chymotrypsin and block copolymers based on ethylene and propylene oxide, induced by high pressure].

    PubMed

    Topchieva, I N; Sorokina, E M; Kurganov, B I; Zhulin, V M; Makarova, Z G

    1996-06-01

    A new method of formation of non-covalent adducts based on an amphiphilic diblock copolymer of ethylene and propylene oxides with molecular mass of 2 kDa and alpha-chymotrypsin (ChT) under high pressure, has been developed. The composition of the complexes corresponds to seven polymer molecules per one ChT molecule in the pressure range of 1.1 to 400 MPa. The complexes fully retain the catalytic activity. Kinetic constants (Km and kcat) for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester catalyzed by the complexes are identical with the corresponding values for native ChT. Analysis of kinetics of thermal inactivation of the complexes revealed that the constant of the rate of the slow inactivation step is markedly lower than for ChT.

  2. Templated Sub-100-nm-Thick Double-Gyroid Structure from Si-Containing Block Copolymer Thin Films.

    PubMed

    Aissou, Karim; Mumtaz, Muhammad; Portale, Giuseppe; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges

    2017-05-01

    The directed self-assembly of diblock copolymer chains (poly(1,1-dimethyl silacyclobutane)-block-polystyrene, PDMSB-b-PS) into a thin film double gyroid structure is described. A decrease of the kinetics of a typical double-wave pattern formation is reported within the 3D-nanostructure when the film thickness on mesas is lower than the gyroid unit cell. However, optimization of the solvent-vapor annealing process results in very large grains (over 10 µm²) with specific orientation (i.e., parallel to the air substrate) and direction (i.e., along the groove direction) of the characteristic (211) plane, demonstrated by templating sub-100-nm-thick PDMSB-b-PS films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Morphological and physical characterization of poly(styrene-isobutylene-styrene) block copolymers and ionomers thereof

    NASA Astrophysics Data System (ADS)

    Baugh, Daniel Webster, III

    Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence

  4. Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles

    PubMed Central

    2017-01-01

    Silica-loaded poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). As the concentration of silica nanoparticles present during the PISA synthesis is increased up to 35% w/w, higher degrees of encapsulation of this component within the vesicles can be achieved. After centrifugal purification to remove excess non-encapsulated silica nanoparticles, SAXS, DCP, and TGA analysis indicates encapsulation of up to hundreds of silica nanoparticles per vesicle. In the present study, the thermally triggered release of these encapsulated silica nanoparticles is examined by cooling to 0 °C for 30 min, which causes in situ vesicle dissociation. Transmission electron microscopy studies confirm the change in diblock copolymer morphology and also enable direct visualization of the released silica nanoparticles. Time-resolved small-angle X-ray scattering is used to quantify the extent of silica release over time. For an initial silica concentration of 5% w/w, cooling induces a vesicle-to-sphere transition with subsequent nanoparticle release. For higher silica concentrations (20 or 30% w/w) cooling only leads to perforation of the vesicle membranes, but silica nanoparticles are nevertheless released through the pores. For vesicles prepared in the presence of 30% w/w silica, the purified silica-loaded vesicles were cooled to 0 °C for 30 min, and SAXS patterns were collected every 15 s. A new SAXS model has been developed to determine both the mean volume fraction of encapsulated silica within the vesicles and the scattering length density. Satisfactory data fits to the experimental SAXS patterns were obtained using this model. PMID:28626247

  5. Distinct Adsorption Configurations and Self-Assembly Characteristics of Fibrinogen on Chemically Uniform and Alternating Surfaces including Block Copolymer Nanodomains

    PubMed Central

    2015-01-01

    Understanding protein–surface interactions is crucial to solid-state biomedical applications whose functionality is directly correlated with the precise control of the adsorption configuration, surface packing, loading density, and bioactivity of protein molecules. Because of the small dimensions and highly amphiphilic nature of proteins, investigation of protein adsorption performed on nanoscale topology can shed light on subprotein-level interaction preferences. In this study, we examine the adsorption and assembly behavior of a highly elongated protein, fibrinogen, on both chemically uniform (as-is and buffered HF-treated SiO2/Si, and homopolymers of polystyrene and poly(methyl methacrylate)) and varying (polystyrene-block-poly(methyl methacrylate)) surfaces. By focusing on high-resolution imaging of individual protein molecules whose configurations are influenced by protein–surface rather than protein–protein interactions, fibrinogen conformations characteristic to each surface are identified and statistically analyzed for structural similarities/differences in key protein domains. By exploiting block copolymer nanodomains whose repeat distance is commensurate with the length of the individual protein, we determine that fibrinogen exhibits a more neutral tendency for interaction with both polystyrene and poly(methyl methacrylate) blocks relative to the case of common globular proteins. Factors affecting fibrinogen–polymer interactions are discussed in terms of hydrophobic and electrostatic interactions. In addition, assembly and packing attributes of fibrinogen are determined at different loading conditions. Primary orientations of fibrinogen and its rearrangements with respect to the underlying diblock nanodomains associated with different surface coverage are explained by pertinent protein interaction mechanisms. On the basis of two-dimensional stacking behavior, a protein assembly model is proposed for the formation of an extended fibrinogen network

  6. pH-sensitive multi-PEGylated block copolymer as a bioresponsive pDNA delivery vector.

    PubMed

    Lai, Tsz Chung; Bae, Younsoo; Yoshida, Takayuki; Kataoka, Kazunori; Kwon, Glen S

    2010-11-01

    A reversibly-PEGylated diblock copolymer, poly(aspartate-hydrazide-poly(ethylene glycol))-block-poly(aspartate-diaminoethane) (p[Asp(Hyd-PEG)]-b-p[Asp(DET)]) was reported here for enhanced gene transfection and colloidal stability. The diblock copolymer possessed a unique architecture based on a poly(aspartamide) backbone. The first block, p[Asp(Hyd)], was used for multi-PEG conjugations, and the second block, p[Asp(DET)], was used for DNA condensation and endosomal escape. p[Asp(Hyd-PEG)]-b-p[Asp(DET)] was synthesized and characterized by (1)H-NMR. Polyplexes were formed by mixing the synthesized polymers and pDNA. The polyplex size, ζ-potential, and in vitro transfection efficiency were determined by dynamic light scattering, ζ-potential measurements, and luciferase assays, respectively. pH-dependent release of PEG from the polymer was monitored by cationic-exchange chromatography. The polyplexes were 70-90 nm in size, and the surface charge was effectively shielded by a PEG layer. The transfection efficiency of the reversibly PEGylated polyplexes was confirmed to be comparable to that of the non-PEGylated counterparts and 1,000 times higher than that of the irreversibly PEGylated polyplexes. PEG release was demonstrated to be pH-sensitive. Fifty percent of the PEG was released within 30 min at pH 5, while the polymer incubated at pH 7.4 could still maintain 50% of PEG after 8 h. The reversibly PEGylated polyplexes were shown to maintain polyplex stability without compromising transfection efficiency.

  7. Lignin poly(lactic acid) copolymers

    DOEpatents

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  8. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization.

    PubMed

    Dai, Shiyao; Li, Zhi

    2008-07-01

    Enzymatic modification of a microbial polyester was achieved by the ring-opening polymerization of epsilon-caprolactone (CL) with low-molecular weight telechelic hydroxylated poly[( R)-3-hydroxybutyrate] (PHB-diol) as initiator and Novozym 435 (immobilized Candida antarctica Lipase B) as catalyst in anhydrous 1,4-dioxane or toluene. The ring-opening polymerization was investigated at different conditions with two different types of PHB-diols: PHB-diol(P), containing a primary OH and a secondary OH end groups, and PHB-diol(M), consisting of 91% PHB-diol(P) and 9% PHB-diol containing two secondary OH end groups. The reactions were followed by GPC analyses of the resulting polymers at different time points, and the optimal conditions were established to be 70 degrees C at a weight ratio of CL/enzyme/solvent of 8:1:24. The ring-opening polymerization of CL with PHB-diol(M) (Mn of 2380, NMR) at the molar ratio of 50:1 under the optimal conditions in 1,4-dioxane gave the corresponding poly[HB(56 wt %)-co-CL(44 wt %)] with Mn (NMR) of 3900 in 66% yield. Polymerization of CL and PHB-diol(P) ( Mn of 2010, NMR) at the same condition in toluene gave the corresponding poly[HB(28 wt %)-co-CL(72 wt %)] with Mn (NMR) of 7100 in 86% yield. Both polymers were characterized by (1)H and (13)C NMR and IR analyses as di-block copolyesters containing a PHB block with a secondary OH end group and a poly(epsilon-caprolactone) (PCL) block with a primary OH end group. NMR analyses and control experiments suggested no formation of random copolymers and no change of the PHB block during the reaction. The enzymatic ring-opening polymerization was selectively initiated by the primary OH group of PHB-diol, whereas the secondary OH group remained as an end group in the final polymers. The thermal properties of the di-block poly(HB-co-CL)s were analyzed by DSC, with excellent T g values for the elastomer domain: poly[HB(56 wt %)- co-CL(44 wt %)] with M n (NMR) of 3900 demonstrated a T g of -57

  9. Inorganic Nanoparticle Induced Morphological Transition for Confined Self-Assembly of Block Copolymers within Emulsion Droplets.

    PubMed

    Zhang, Yan; He, Yun; Yan, Nan; Zhu, Yutian; Hu, Yuexin

    2017-09-07

    Recently, it has been reported that the incorporation of functional inorganic nanoparticles (NPs) into the three-dimensional (3D) confined self-assembly of block copolymers (BCPs) creates the unique nanostructured hybrid composites, which can not only introduce new functions to BCPs but also induce some interesting morphological transitions of BCPs. In the current study, we systematically investigate the cooperative self-assembly of a series of size-controlled and surface chemistry-tunable gold nanoparticles (AuNPs) and polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer within the emulsion droplets. The influences of the size, content, and surface chemistry of the AuNPs on the coassembled nanostructures as well as the spatial distribution of AuNPs in the hybrid particles are examined. It is found that the size and content of the AuNPs are related to the entropic interaction, while the surface chemistry of AuNPs is related to the enthalpic interaction, which can be utilized to tailor the self-assembled morphologies of block copolymer confined in the emulsion droplets. As the content of PS-coated AuNPs increases, the morphology of the resulting AuNPs/PS-b-P2VP hybrid particles changes from the pupa-like particles to the bud-like particles and then to the onion-like particles. However, a unique morphological transition from the pupa-like particles to the mushroom-like particles is observed as the content of P4VP-coated AuNPs increases. More interestingly, it is observed that the large AuNPs are expelled to the surface of the BCP particles to reduce the loss in the conformational entropy of the block segment, which can arrange into the strings of necklaces on the surfaces of the hybrid particles.

  10. Radiolytic Synthesis of Pt-Particle/ABS Catalysts for H₂O₂ Decomposition in Contact Lens Cleaning.

    PubMed

    Ohkubo, Yuji; Aoki, Tomonori; Seino, Satoshi; Mori, Osamu; Ito, Issaku; Endo, Katsuyoshi; Yamamura, Kazuya

    2017-08-23

    A container used in contact lens cleaning requires a Pt plating weight of 1.5 mg for H₂O₂ decomposition although Pt is an expensive material. Techniques that decrease the amount of Pt are therefore needed. In this study, Pt nanoparticles instead of Pt plating film were supported on a substrate of acrylonitrile-butadiene-styrene copolymer (ABS). This was achieved by the reduction of Pt ions in an aqueous solution containing the ABS substrate using high-energy electron-beam irradiation. Pt nanoparticles supported on the ABS substrate (Pt-particle/ABS) had a size of 4-10 nm. The amount of Pt required for Pt-particle/ABS was 250 times less than that required for an ABS substrate covered with Pt plating film (Pt-film/ABS). The catalytic activity for H₂O₂ decomposition was estimated by measuring the residual H₂O₂ concentration after immersing the catalyst for 360 min. The Pt-particle/ABS catalyst had a considerably higher specific catalytic activity for H₂O₂ decomposition than the Pt-film/ABS catalyst. In addition, sterilization performance was estimated from the initial rate of H₂O₂ decomposition over 60 min. The Pt-particle/ABS catalyst demonstrated a better sterilization performance than the Pt-film/ABS catalyst. The difference between Pt-particle/ABS and Pt-film/ABS was shown to reflect the size of the O₂ bubbles formed during H₂O₂ decomposition.

  11. Molecular dynamics study of the encapsulation capability of a PCL-PEO based block copolymer for hydrophobic drugs with different spatial distributions of hydrogen bond donors and acceptors.

    PubMed

    Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip

    2010-03-01

    Molecular dynamics simulation was used to study the potential of using a block copolymer containing three poly(epsilon-caprolactone) (PCL) blocks of equal length connected to one end of a poly(ethylene oxide) (PEO) block, designated as PEO-b-3PCL, to encapsulate two classes of hydrophobic drugs with distinctively different molecular structures. In particular, the first class of drugs consisted of two cucurbitacin drugs (CuB and CuI) that contain multiple hydrogen bond donors and acceptors evenly distributed on their molecules while the other class of drugs (fenofibrate and nimodipine) contain essentially only clustered hydrogen bond acceptors. In the case of cucurbitacin drugs, the results showed that PEO-b-3PCL lowered the Flory-Huggins interaction parameters (chi) considerably (i.e., increased the drug solubility) compared to the linear di-block copolymer PEO-b-PCL with the same PCL/PEO (w/w) ratio of 1.0. However, the opposite effect was observed for fenofibrate and nimodipine. Analysis of the intermolecular interactions indicates that the number of hydrogen bonds formed between the three PCL blocks and cucurbitacin drugs is significantly higher than that of the linear di-block copolymer. On the other hand, owing to the absence of hydrogen bond donors and the clustering of the hydrogen bond acceptors on the fenofibrate and nimodipine molecules, this significantly reduces the number of hydrogen bonds formed in the multi-PCL block environment, leading to unfavourable chi values. The findings of the present work suggest that multi-hydrophobic block architecture could potentially increase the drug loading for hydrophobic drugs with structures containing evenly distributed multiple hydrogen bond donors and acceptors. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Detection of prostate specific antigen (PSA) in human saliva using an ultra-sensitive nanocomposite of graphene nanoplatelets with diblock-co-polymers and Au electrodes.

    PubMed

    Khan, M S; Dighe, K; Wang, Z; Srivastava, I; Daza, E; Schwartz-Dual, A S; Ghannam, J; Misra, S K; Pan, D

    2018-02-26

    Prostate-specific antigen (PSA) is a commonly used biomarker for the detection of prostate cancer (PCa) and there are numerous data available for its invasive detection in the serum and whole blood. In this work, an electrochemical sensing method was devised to detect traces of PSA in human saliva using a hybrid nanocomposite of graphene nanoplatelets with diblock co-polymers and Au electrodes (GRP-PS 67 -b-PAA 27 -Au). The pure graphitic composition on filter paper provides significantly high electrical and thermal conductivity while PS 67 -b-PAA 27 makes an amphiphilic bridge between GRP units. The sensor utilizes the binding of an anti-PSA antibody with an antigen-PSA to act as a resistor in a circuit providing an impedance change that in turn allows for the detection and quantification of PSA in saliva samples. A miniaturized electrical impedance analyzer was interfaced with a sensor chip and the data were recorded in real-time using a Bluetooth-enabled module. This fully integrated and optimized sensing device exhibited a wide PSA range of detection from 0.1 pg mL -1 to 100 ng mL -1 (R 2 = 0.963) with a lower limit of detection of 40 fg mL -1 . The performance of the biosensor chip was validated with an enzyme-linked immunosorbent assay technique with a regression coefficient as high as 0.940. The advantages of the newly developed saliva-PSA electrical biosensor over previously reported serum-PSA electrochemical biosensors include a faster response time (3-5 min) to achieve a stable electrical signal for PSA detection, high selectivity, improved sensitivity, no additional requirement of a redox electrolyte for electron exchange and excellent shelf life. The presented sensor is aimed for clinical commercialization to detect PSA in human saliva.

  13. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared

  14. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  15. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.

    PubMed

    Angelopoulou, A; Voulgari, E; Diamanti, E K; Gournis, D; Avgoustakis, K

    2015-06-01

    To investigate the application of water-dispersible poly(lactide)-poly(ethylene glycol) (PLA-PEG) copolymers for the stabilization of graphene oxide (GO) aqueous dispersions and the feasibility of using the PLA-PEG stabilized GO as a delivery system for the potent anticancer agent paclitaxel. A modified Staudenmaier method was applied to synthesize graphene oxide (GO). Diblock PLA-PEG copolymers were synthesized by ring-opening polymerization of dl-lactide in the presence of monomethoxy-poly(ethylene glycol) (mPEG). Probe sonication in the presence of PLA-PEG copolymers was applied in order to reduce the hydrodynamic diameter of GO to the nano-size range according to dynamic light scattering (DLS) and obtain nano-graphene oxide (NGO) composites with PLA-PEG. The composites were characterized by atomic force microscopy (AFM), thermogravimetric analysis (TGA), and DLS. The colloidal stability of the composites was evaluated by recording the size of the composite particles with time and the resistance of composites to aggregation induced by increasing concentrations of NaCl. The composites were loaded with paclitaxel and the in vitro release profile was determined. The cytotoxicity of composites against A549 human lung cancer cells in culture was evaluated by flow cytometry. The uptake of FITC-labeled NGO/PLA-PEG by A549 cells was also estimated with flow cytometry and visualized with fluorescence microscopy. The average hydrodynamic diameter of NGO/PLA-PEG according to DLS ranged between 455 and 534 nm, depending on the molecular weight and proportion of PLA-PEG in the composites. NGO/PLA-PEG exhibited high colloidal stability on storage and in the presence of high concentrations of NaCl (far exceeding physiological concentrations). Paclitaxel was effectively loaded in the composites and released by a highly sustained fashion. Drug release could be regulated by the molecular weight of the PLA-PEG copolymer and its proportion in the composite. The paclitaxel

  16. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  17. Main-chain supramolecular block copolymers.

    PubMed

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  18. FTA-ABS test

    MedlinePlus

    ... rule out a possible false-negative result. Normal Results A negative or nonreactive result means that you ... meaning of your specific test results. What Abnormal Results Mean A positive FTA-ABS is often a ...

  19. Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles

    PubMed Central

    2017-01-01

    Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require

  20. mAbs

    PubMed Central

    2009-01-01

    The twenty two monoclonal antibodies (mAbs) currently marketed in the U.S. have captured almost half of the top-20 U.S. therapeutic biotechnology sales for 2007. Eight of these products have annual sales each of more than $1 B, were developed in the relatively short average period of six years, qualified for FDA programs designed to accelerate drug approval, and their cost has been reimbursed liberally by payers. With growth of the product class driven primarily by advancements in protein engineering and the low probability of generic threats, mAbs are now the largest class of biological therapies under development. The high cost of these drugs and the lack of generic competition conflict with a financially stressed health system, setting reimbursement by payers as the major limiting factor to growth. Advances in mAb engineering are likely to result in more effective mAb drugs and an expansion of the therapeutic indications covered by the class. The parallel development of biomarkers for identifying the patient subpopulations most likely to respond to treatment may lead to a more cost-effective use of these drugs. To achieve the success of the current top-tier mAbs, companies developing new mAb products must adapt to a significantly more challenging commercial environment. PMID:20061824

  1. Beyond native block copolymer morphologies

    SciTech Connect

    Doerk, Gregory S.; Yager, Kevin G.

    Block copolymers self-assemble into a range of canonical morphologies. Here, we review a broad range of techniques for inducing these materials to form structures beyond the ‘native’ morphologies seen in the bulk equilibrium phase diagram. Methods that exploit intrinsic encoding (molecular design) and external enforcement (directed assembly) are compared.

  2. Beyond native block copolymer morphologies

    DOE PAGES

    Doerk, Gregory S.; Yager, Kevin G.

    2017-09-20

    Block copolymers self-assemble into a range of canonical morphologies. Here, we review a broad range of techniques for inducing these materials to form structures beyond the ‘native’ morphologies seen in the bulk equilibrium phase diagram. Methods that exploit intrinsic encoding (molecular design) and external enforcement (directed assembly) are compared.

  3. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  4. Electrochemical Deposition Of Conductive Copolymers

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Distefano, Salvador; Liang, Ranty H.

    1991-01-01

    Experiments show electrically conductive films are deposited on glassy carbon or indium tin oxide substrates by electrochemical polymerization of N-{(3-trimethoxy silyl) propyl} pyrrole or copolymerization with pyrrole. Copolymers of monomer I and pyrrole exhibit desired electrical conductivity as well as desired adhesion and other mechanical properties. When fully developed, new copolymerization process useful in making surface films of selectable conductivity.

  5. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface

    SciTech Connect

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar

    Air–water interfacial monolayers of poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure–area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air–water monolayers formed by a PLGA–PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((d,l-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL–PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA filmmore » and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA–PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA–PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the “n-cluster” effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the “n-cluster” effects.« less

  6. Self-assembled micellar aggregates based monomethoxyl poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(aminoethyl methacrylate) triblock copolymers as efficient gene delivery vectors.

    PubMed

    Ma, Ming; Li, Feng; Liu, Xiu-hong; Yuan, Zhe-fan; Chen, Fu-jie; Zhuo, Ren-xi

    2010-10-01

    Amphiphilic triblock copolymers monomethoxyl poly(ethylene glycol) (mPEG)-b-poly(ε-caprolactone) (PCL)-b-poly(aminoethyl methacrylate)s (PAMAs) (mPECAs) were synthesized as gene delivery vectors. They exhibited lower cytotoxicity and higher transfection efficiency in COS-7 cells in presence of serum compared to 25 kDa bPEI. The influence of mPEG and PCL segments in mPECAs was evaluated by comparing with corresponding diblock copolymers. The studies showed the incorporation of the hydrophobic PCL segment in triblock copolymers affected the binding capability to pDNA and surface charges of complexes due to the formation of micelles increasing the local charges. The presence of mPEG segment in gene vector decreased the surface charges of the complexes and increased the stability of the complexes in serum because of the steric hindrance effect. It was also found that the combination of PEG and PCL segments into one macromolecule might lead to synergistic effect for better transfection efficiency in serum.

  7. Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure.

    PubMed

    Cui, Qianling; Wu, Feipeng; Wang, Erjian

    2011-05-19

    Stimuli-responsive, well-defined diblock copolymers (PEG-b-PADMO) comprising poly(ethylene glycol) (PEG, DP (degree of polymerization)=45) as the hydrophilic and temperature-sensitive part and poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine) (PADMO, DP=18-47) as the hydrophobic and acid-labile part self-assembled in water into spherical micelles with high aggregation number. The micellar structures and thermally induced phase transitions of the copolymers were investigated with (1)H NMR spectroscopy, light scattering, microscopy, turbidimetry, and fluorescence techniques. Thermoresponsive phase transitions of the copolymers in water were controlled via formation of core-shell-type micelles with densely compact PEG corona. Their lower critical solution temperatures (LCSTs) were modulated within the range 40-72 °C by varying PADMO block length. This unusually low LCST was attributed to the densely packed PEG structure in the polymer micelles, which resulted in strong n-clustering attractive interactions and insufficient hydration of PEG chains in the shell and greatly enhanced the thermosensitivity. The LCST behavior can also be modulated by partial acid hydrolysis of PADMO segments through the resulting change of hydrophobicity. © 2011 American Chemical Society

  8. Effect of Areal Density of Polymer Chains on Gold Nanoparticles on Nanoparticle Location in a Block Copolymer Template

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Bang, J.; Hawker, C. J.; Kramer, E. J.

    2006-03-01

    It is well established that one block of a copolymer can interact preferentially with an inorganic substrate to produce wetting and domain orientation. We take advantage of this preferential interaction to control the location of 2.5 nm diameter Au nanoparticles coated with short thiol-terminated polystyrene (Mn=3.4 kg/mol) chains (PS-SH) in a symmetric poly(styrene-b-2 vinyl-pyridine) (PS-b-P2VP) diblock copolymer (Mn=196 kg/mol) by changing the areal density σ of the PS-SH on the Au. If σ >= 1.6 chains/nm^2, the preferential interaction between the P2VP of the PS-b-P2VP and the Au surface is screened and the Au localizes in the center of the PS domains. If σ <= 1.4 chains/nm^2 , the Au particles are localized at the PS-P2VP interface. Au nanoparticles coated with thiol terminated P2VP (Mn=3 kg/mol) localize in the center of the P2VP domain of the PS-P2VP over the entire range of σ, demonstrating the localization of the PS coated Au nanoparticles at the interface at low values of σ is due to the unscreened Au-P2VP interaction.

  9. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  10. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    SciTech Connect

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying

    2017-08-31

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. Themore » structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.« less

  11. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    SciTech Connect

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying

    2017-08-16

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. Themore » structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.« less

  12. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.

    PubMed

    Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-01

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  13. ABC Triblock Copolymer Worms: Synthesis, Characterization, and Evaluation as Pickering Emulsifiers for Millimeter-Sized Droplets

    PubMed Central

    2016-01-01

    Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition–fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via “seeded” RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks—instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA–PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions. PMID:27795581

  14. Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors

    DOE PAGES

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; ...

    2016-03-04

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less

  15. Blending of diblock and triblock copolypeptide amphiphiles yields cell penetrating vesicles with low toxicity.

    PubMed

    Rodriguez, April R; Choe, Uh-Joo; Kamei, Daniel T; Deming, Timothy J

    2015-01-01

    We prepared dual hydrophilic triblock copolypeptide vesicles that form both micron and nanometer scale vesicles in aqueous media. The incorporation of terminal homoarginine segments into methionine sulfoxide-based vesicles was found to significantly enhance their cellular uptake compared to a non-ionic control. We also demonstrated that diblock and triblock copolypeptides with similar hydrophobic domains were found to mix well and form vesicle populations with uniform compositions. Blending of amphiphiles in vesicle nanocarriers was found to impart these materials with many advantageous properties, including good cellular uptake while maintaining minimal toxicity, as well as biological responsiveness to promote vesicle disruption and release of encapsulated cargos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Conformation-Directed Formation of Self-Healing Diblock Copolypeptide Hydrogels via Polyion Complexation.

    PubMed

    Sun, Yintao; Wollenberg, Alexander L; O'Shea, Timothy Mark; Cui, Yanxiang; Zhou, Z Hong; Sofroniew, Michael V; Deming, Timothy J

    2017-10-25

    Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form β-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the β-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.

  17. Self-Assembly and Responsiveness of Polypeptide-Based Star and Triblock Copolymers

    NASA Astrophysics Data System (ADS)

    Savin, Daniel

    This study involves the bottom-up design and tunability of responsive, peptide-based block polymers. The self-assembly of amphiphilic block polymers is dictated primarily by the balance between the hydrophobic core volume and the hydrophilic corona. In these studies, amphiphilic triblock and star copolymers containing poly(lysine) (PK), poly(leucine) (PL) and poly(glutamic acid) (PE) were synthesized and their solution properties studied using dynamic light scattering, circular dichroism spectroscopy and transmission electron microscopy. The peptide block in these structures can serve to introduce pH responsiveness (in the case of PK and PE), or can facilitate the formation of elongated or kinetically-trapped structures (in the case of PL.) This talk will present some recent studies in solution morphology transitions that occur in these materials under varying solution conditions. As the topological complexity of the polymers increases from diblock to linear triblock or star polymers, the solution morphology and response becomes much more complex. We present a systematic series of structures, with increasing complexity, that have applications as passive and active delivery vehicles, hydrogels, and responsive viscosity modifiers. NSF CHE-1539347.

  18. Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems.

    PubMed

    Jelezova, Ivelina; Drakalska, Elena; Momekova, Denitsa; Shalimova, Natalia; Momekov, Georgi; Konstantinov, Spiro; Rangelov, Stanislav; Pispas, Stergios

    2015-10-12

    Curcumin is a perspective drug candidate with pleiotropic antineoplastic activity, whose exceptionally low aqueous solubility and poor pharmacokinetic properties have hampered its development beyond the preclinical level. A possible approach to overcome these limitations is the encapsulation of curcumin into nano-carriers, incl. liposomes. The present contribution is focused on feasibility of using hybrid pH-sensitive liposomes, whereby curcumin is entrapped as a free drug and as a water soluble inclusion complex with PEGylated tert-butylcalix[4]arene, which allows the drug to occupy both the phospholipid membranes and the aqueous core of liposomes. The inclusion complexes were encapsulated in dipalmithoylphosphathydilcholine:cholesterol liposomes, whose membranes were grafted with a poly(isoprene-b-acrylic acid) diblock copolymer to confer pH-sensitivity. The liposomes were characterized by DLS, ζ-potential measurements, cryo-TEM, curcumin encapsulation efficacy, loading capacity, and in vitro release as a function of pH. Free and formulated curcumin were further investigated for cytotoxicity, apoptosis-induction and caspase-8, and 9 activation in chemosensitive HL-60 and its resistant sublines HL-60/Dox and HL-60/CDDP. Formulated curcumin was superior cytotoxic and apoptogenic agent vs. the free drug. The mechanistic assay demonstrated that the potent proapoptotic effects of pH-sensitive liposomal curcumin presumably mediated via recruitment of both extrinsic and intrinsic apoptotic pathways in both HL-60 and HL-60/CDDP cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Synthesis of Well-defined Amphiphilic Block Copolymers by Organotellurium-Mediated Living Radical Polymerization (TERP).

    PubMed

    Kumar, Santosh; Changez, Mohammad; Murthy, C N; Yamago, Shigeru; Lee, Jae-Suk

    2011-10-04

    Low-molecular weight amphiphilic diblock copolymers, polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), and (P2VP-b-PS) with different block ratios were synthesized for the first time via organotellurium-mediated living radical polymerization (TERP). For both the homo- and block copolymerizations, good agreement between the theoretical, and experimental molecular weights was found with nearly 100% yield in every case. The molecular weight distribution for all the samples ranged between 1.10 and 1.24, which is well below the theoretical lower limit of 1.50 for a conventional free radical polymerization. Furthermore, a very simple approach to producing highly dense arrays of titania nanoparticles (TiO2 ) is presented using a site-selective reaction of titanium tetraisopropoxide within the P2VP domains of micellar film of P2VP-b-PS in toluene through the sol-gel method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Adjustable bridge blocks make huge difference to the self-assembly of multiblock copolymers

    NASA Astrophysics Data System (ADS)

    Li, Weihua

    We present theoretical studies on two types of multiblock copolymers, whose self-assemblies lead to a lot of novel ordered nanostructures. The first example is BABCB multiblock terpolymer, where A- and C-blocks separately aggregate into isolated domains and the three B-blocks with adjustable lengths form the matrix. As a result, the middle B-block forms a natural bridge connecting A- and C-domains. In contrast to ABC, the BABCB can form many binary spherical and cylindrical phases with tunable coordination numbers. In addition, the ABCB solution can form a lot of planet-satellite micellar superstructures with tunable number of satellites that varies from 3 to 20. The another system is AB-type multiblock copolymers. In contrast to the above system, there is no natural bridge. Accordingly, we introduce multiple arms into the architecture which tend to partition themselves into different domains to maximize their configurational entropy, thus forming effective bridges. Furthermore, each arm is devised as BAB triblock to enable adjustable length of bridges. With this copolymer, we predict a few non-classical ordered phases, including a square array cylinder. Our study opens the possibilities of fabricating desired nanostructures using designed block copolymers. National Natural Science Foundation of China (No. 21322407, 21574026).

  1. Entropic effects, shape, and size of mixed micelles formed by copolymers with complex architectures.

    PubMed

    Kalogirou, Andreas; Gergidis, Leonidas N; Moultos, Othonas; Vlahos, Costas

    2015-11-01

    The entropic effects in the comicellization behavior of amphiphilic AB copolymers differing in the chain size of solvophilic A parts were studied by means of molecular dynamics simulations. In particular, mixtures of miktoarm star copolymers differing in the molecular weight of solvophilic arms were investigated. We found that the critical micelle concentration values show a positive deviation from the analytical predictions of the molecular theory of comicellization for chemically identical copolymers. This can be attributed to the effective interactions between copolymers originated from the arm size asymmetry. The effective interactions induce a very small decrease in the aggregation number of preferential micelles triggering the nonrandom mixing between the solvophilic moieties in the corona. Additionally, in order to specify how the chain architecture affects the size distribution and the shape of mixed micelles we studied star-shaped, H-shaped, and homo-linked-rings-linear mixtures. In the first case the individual constituents form micelles with preferential and wide aggregation numbers and in the latter case the individual constituents form wormlike and spherical micelles.

  2. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    PubMed

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  3. Self-assembly in poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer template directed synthesis of Linde type A zeolite.

    PubMed

    Bonaccorsi, Lucio; Calandra, Pietro; Kiselev, Mikhail A; Amenitsch, Heinz; Proverbio, Edoardo; Lombardo, Domenico

    2013-06-11

    We describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.8 nm with a core-shell morphology. During this period, restricted to an initial time of 1-3 h, the core-shell structure of the particles does not show significant changes, while a subsequent aggregation process among these primary units takes place. A shape transition of the SAXS profile at the late stage of the synthesis has been connected with an aggregation process among primary units that leads to the formation of large clusters with fractal characteristics. The formation of large supramolecular assemblies was finally verified by scanning electron microscopy, which evidenced the presence of submicrometer aggregates with size ranging between 100 and 300 nm, while X-ray diffraction confirmed the presence of crystalline zeolite LTA. The main finding of our results gives novel insight into the mechanism of formation of organic-inorganic mesoporous materials based on the use of a soft interacting nanotemplate as well as stimulates the investigation of alternative protocols for the synthesis of novel hybrid materials with new characteristics and properties.

  4. Block copolymer micelles with acid-labile ortho ester side-chains: Synthesis, characterization, and enhanced drug delivery to human glioma cells.

    PubMed

    Tang, Rupei; Ji, Weihang; Panus, David; Palumbo, R Noelle; Wang, Chun

    2011-04-10

    A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at a much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC(50) values of the Dox-loaded micelles were approximately ten-times (by 24h) and three-times (by 48h) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These results

  5. Understanding and controlling morphology formation in Langmuir-Blodgett block copolymer films using PS-P4VP and PS-P4VP/PDP.

    PubMed

    Perepichka, Iryna I; Lu, Qing; Badia, Antonella; Bazuin, C Geraldine

    2013-04-09

    This contribution offers a comprehensive understanding of the factors that govern the morphologies of Langmuir-Blodgett (LB) monolayers of amphiphilic diblock copolymers (BCs). This is achieved by a detailed investigation of a wide range of polystyrene-poly(4-vinyl pyridine) (PS-P4VP) block copolymers, in contrast to much more limited ranges in previous studies. Parameters that are varied include the block ratios (mainly for similar total molecular weights, occasionally other total molecular weights), the presence or not of 3-n-pentadecylphenol (PDP, usually equimolar with VP, with which it hydrogen bonds), the spreading solution concentration ("low" and "high"), and the LB technique (standard vs "solvent-assisted"). Our observations are compared with previously published results on other amphiphilic diblock copolymers, which had given rise to contradictory interpretations of morphology formation. Based on the accumulated results, we re-establish early literature conclusions that three main categories of LB block copolymer morphologies are obtained depending on the block ratio, termed planar, strand, and dot regimes. The block composition boundaries in terms of mol % block content are shown to be similar for all BCs having alkyl chain substituents on the hydrophilic block (such as PS-P4VP/PDP) and are shifted to higher values for BCs with no alkyl chain substituents (such as PS-P4VP). This is attributed to the higher surface area per repeat unit of the hydrophilic block monolayer on the water surface for the former, as supported by the onset and limiting areas of the Langmuir isotherms for the BCs in the dot regime. 2D phase diagrams are discussed in terms of relative effective surface areas of the two blocks. We identify and discuss how kinetic effects on morphology formation, which have been highlighted in more recent literature, are superposed on the compositional effects. The kinetic effects are shown to depend on the morphology regime, most strongly

  6. Imide/arylene ether block copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.

  7. Highly Conductive Anion Exchange Block Copolymers

    DTIC Science & Technology

    We are developing a comprehensive fundamental understanding of the interplay between transport and morphology in newly synthesized hydroxide...conducting block copolymers. We are synthesizing hydroxide conducting block copolymers of various (1) morphology types, (2) ionic concentrations, and (3...ionic domain sizes. We are carefully characterizing the morphology and transport properties using both conventional and new advanced in situ techniques

  8. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  9. Impact property enhancement of poly (lactic acid) with different flexible copolymers

    NASA Astrophysics Data System (ADS)

    Likittanaprasong, N.; Seadan, M.; Suttiruengwong, S.

    2015-07-01

    The objective of this work was to improve the impact property of Poly (lactic acid) (PLA) by blending with different copolymers. Six flexible copolymers, namely, acrylonitrile butadiene styrene (ABS) powder, Biomax, polybutyrate adipate co-terephthalate (PBAT), polyether block amide (PEBAX), ethylene-vinyl acetate (EVA) and ethylene acrylic elastomer (EAE), with loading less than 20wt% were used and compared. The rheological, mechanical and morphological properties of samples were investigated by melt flow index, tensile testing, impact testing and scanning electron microscope (SEM), respectively. It was found that PLA added 20wt% EAE showed the highest impact strength (59.5 kJ/m2), which was 22 times higher than neat PLA. The elongation at break was also increased by 12 folds compared to neat PLA. The SEM images showed good interface and distribution for PLA containing 20wt% EAE, 15 phr Biomax and 20 wt% PEBAX.

  10. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate...

  11. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

    PubMed

    Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung

    2014-06-01

    Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling

  12. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  13. Motion of single wandering diblock-macromolecules directed by a PTFE nano-fence: real time SFM observations.

    PubMed

    Gallyamov, Marat O; Qin, Shuhui; Matyjaszewski, Krzysztof; Khokhlov, Alexei; Möller, Martin

    2009-07-21

    Using SFM we have observed a peculiar twisting motion of diblock macromolecules pre-collapsed in ethanol vapour during their subsequent spreading in water vapour. The intrinsic asymmetry of the diblock macromolecules has been considered to be the reason for such twisting. Further, friction-deposited PTFE nano-stripes have been employed as nano-trails with the purpose of inducing lateral directed motion of the asymmetric diblock macromolecules under cyclic impact from the changing vapour surroundings. Indeed, some of the macromolecules have demonstrated a certain tendency to orient along the PTFE stripes, and some of the oriented ones have moved occasionally in a directed manner along the trail. However, it has been difficult to reliably record such directed motion at the single molecule level due to some mobility of the PTFE nano-trails themselves in the changing vapour environment. In vapours, the PTFE stripes have demonstrated a distinct tendency towards conjunction. This tendency has manifested itself in efficient expelling of groups of the mobile brush-like molecules from the areas between two PTFE stripes joining in a zip-fastener manner. This different kind of vapour-induced cooperative macromolecular motion has been reliably observed as being directed. The PTFE nano-frame experiences some deformation when constraining the spreading macromolecules. We have estimated the possible force causing such deformation of the PTFE fence. The force has been found to be a few pN as calculated by a partial contribution from every single molecule of the constrained group.

  14. Microphase separation in random multiblock copolymers

    NASA Astrophysics Data System (ADS)

    Govorun, E. N.; Chertovich, A. V.

    2017-01-01

    Microphase separation in random multiblock copolymers is studied with the mean-field theory assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to penetrate into "alien" domains and exchange between the domains and interfacial layer. A bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer play an important role in the microphase separation. First, their penetration into the "alien" domains leads to the formation of joint long blocks in their own domains. Second, short blocks localized at the interface considerably change the interfacial tension. The possibility of penetration of short blocks into the "alien" domains is controlled by the product χ Nsh (χ is the Flory-Huggins interaction parameter and Nsh is the short block length). At not very large χ Nsh , the domain size is larger than that for a regular copolymer consisting of the same long blocks as in the considered random copolymer. At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the rate of the growth being dependent of the more detailed parameters of the block size distribution.

  15. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    NASA Astrophysics Data System (ADS)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  16. Block Copolymer Membranes for Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Evren Ozcam, Ali; Balsara, Nitash

    2012-02-01

    Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.

  17. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  18. The Influence of Charged Species on the Phase Behavior, Self-Assembly, and Electrochemical Performance of Block Copolymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Thelen, Jacob Lloyd

    lithium metal anode. The increase in the specific energy of a battery upon replacing a graphite anode with lithium metal can offset the losses in performance due to the poor ion conduction of SPEs. However, BCEs that enable the use of a lithium anode and have improved performance would represent a major breakthrough for the development of high capacity batteries. The electrochemical performance of BCEs has a complex relationship with the nature of the microphase separated domains, which is not well-understood. The objective of this dissertation is to provide fundamental insight into the nature of microphase separation and self-assembly of block copolymer electrolytes. Specifically, I will focus on how the ion-polymer interactions within a diverse set of BCEs dictate nanostructure. Combining such insight with knowledge of how nanostructure influences ion motion will enable the rational design of new BCEs with enhanced performance and functionality. In order to facilitate the study of BCE nanostructure, synchrotron-based X-ray scattering techniques were used to study samples over a wide range of length-scales under conditions relevant to the battery environment. The development of the experimental aspects of the X-ray scattering techniques, as well as an improved treatment of scattering data, played a pivotal role in the success of this work. The dissemination of those developments will be the focus of the first section. The thermodynamic impact of adding salt to a neutral diblock copolymer was studied in a model BCE composed of a low molecular weight SEO diblock copolymer mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), a common salt used in lithium batteries. In neutral block copolymers (BCPs), self-assembly is a thermodynamically driven process governed by a balance between unfavorable monomer contacts and the entropy of mixing. When the enthalpic and entropic contributions to free energy are similar in magnitude, a block copolymer can undergo a thermally

  19. Microphase separation of comb copolymers with two different lengths of side chains

    NASA Astrophysics Data System (ADS)

    Aliev, M. A.; Kuzminyh, N. Yu.

    2009-10-01

    The phase behavior of the monodisperse AB comb copolymer melt contained the macromolecules of special architecture is discussed. Each macromolecule is assumed to be composed of two comb blocks which differ in numbers of side chains and numbers of monomer units in these chains. It is shown (by analysis of the structure factor of the melt) that microphase separation at two different length scales in the melt is possible. The large and small length scales correspond to separation between comb blocks and separation between monomer units in repeating fragments of blocks, respectively. The classification diagrams indicated which length scale is favored for a given parameters of chemical structure of macromolecules are constructed.

  20. Macromolecular Colloids of Diblock Poly(amino acids) That Bind Insulin.

    PubMed

    Constancis; Meyrueix; Bryson; Huille; Grosselin; Gulik-Krzywicki; Soula

    1999-09-15

    The diblock polymer poly(l-leucine-block-l-glutamate), bLE, was synthesized by acid hydrolysis of the ester poly(l-leucine-block-l-methyl glutamate). During the hydrolysis reaction the leucine block precipitates from the reaction mixture, forming nanosized particulate structures. These particles can be purified and further suspended in water or in 0.15 M phosphate saline buffer (PBS) to give stable, colloidal dispersions. TEM analysis shows the predominant particle form to be that of platelets with a diameter of 200 nm. Smaller cylindrical or spherical particles form a relatively minor fraction of the sample. After fractionation, analysis shows the platelets to be compositionally rich in leucine, while the spheres are glutamate-rich. (1)H NMR, CD, and X-ray diffraction indicate that the core of the platelets is composed of crystalline, helical leucine segments. The poly(l-glutamate) polyelectrolyte brush extending out from the two faces of the disk stabilizes individual particles from flocculation. At pH 7.4, the nanoparticles (platelets and cylinders) spontaneously adsorb proteins, such as insulin, directly from solution. Partial desorption of the protein in its native configuration can be induced by simple dilution. The reversibility of the insulin-nanoparticle complex is the basis for a potential new delivery system. Copyright 1999 Academic Press.

  1. Block Copolymers: Synthesis and Applications in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Lou, Qin

    This study is focused on the synthesis and study of (block) copolymers using reversible deactivation radical polymerizations (RDRPs), including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, two primary areas of study are undertaken: (1) a proof-of-concept application of lithographic block copolymers, and (2) the mechanistic study of the deposition of titania into block copolymer templates for the production of well-ordered titania nanostructures. Block copolymers have the ability to undergo microphase separation, with an average size of each microphase ranging from tens to hundreds of nanometers. As such, block copolymers have been widely considered for nanotechnological applications over the past two decades. The development of materials for various nanotechnologies has become an increasingly studied area as improvements in many applications, such as those found in the semiconductor and photovoltaic industries are constantly being sought. Significant growth in developments of new synthetic methods ( i.e. RDRPs) has allowed the production of block copolymers with molecular (and sometimes atomic) definition. In turn, this has greatly expanded the use of block copolymers in nanotechnology. Herein, we describe the synthesis of statistical and block copolymers of 193 nm photolithography methacrylate and acrylate resist monomers with norbornyl and adamantyl moieties using RAFT polymerization.. For these resist (block) copolymers, the phase separation behaviors were examined by atomic force microscopy (AFM). End groups were removed from the polymers to avoid complications during the photolithography since RAFT end groups absorb visible light. Poly(glycidyl methacrylate-block-polystyrene) (PGMA-b-PS) was synthesize by ATRP and demonstrated that this block copolymer acts as both a lithographic UV (365 nm) photoresist and a self-assembly material. The PGMA segments can undergo cationic

  2. Camptothecin prodrug nanomicelle based on a boronate ester-linked diblock copolymer as the carrier of doxorubicin with enhanced cellular uptake.

    PubMed

    Gao, Ya; Xiao, Yi; Liu, Shiyuan; Yu, Jiahui

    2018-02-01

    A novel pH-sensitive polymeric prodrug of camptothecin (CPT) by polymerizing γ-camptothecin-glutamate N-carboxyanhydride (Glu (CPT)-NCA) on boronate ester-linked poly (ethyleneglycol) (PEG) directly via the amine-initiated ring open polymerization (ROP) has been developed. The resulting amphiphilic prodrug (mPEG-BC-PGluCPT) could self-assemble into nanoparticles and encapsulate doxorubicin (Dox) simultaneously in aqueous solution for dual-drug delivery. The formation of polymeric prodrug micelles (mPEG-BC@PGluCPT) was confirmed by the measurements of critical aggregation concentration (CAC), particle size, and morphology observations. The mPEG-BC@PGluCPT micelles were colloidally stable in solutions for two weeks. Polymeric prodrug micelles mPEG-BC@PGluCPT and Dox-loaded micelles mPEG-BC@PGluCPT⋅Dox showed sustained drug release profiles over 48 h. As expected, drug release was accelerated by the decreasement of pH value from 7.4 to 6.0, which demonstrated pH-dependent manner of drug release. Additionally, it was found that cellular uptake of mPEG-BC@PGluCPT⋅Dox micelles on HepG2 cells was higher than that on HL-7702 cells, especially in culture medium at pH 6.0. The enhanced cellular uptake of mPEG-BC@PGluCPT⋅Dox micelles under acidic condition on HepG2 cells resulted in the higher cytotoxicity of mPEG-BC@PGluCPT⋅Dox micelles at acidic pH than that at pH 7.4.

  3. Responsive Copolymers for Enhanced Petroleum Recovery

    SciTech Connect

    McCormick, C.; Hester, R.

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  4. Method for making block siloxane copolymers

    DOEpatents

    Butler, Nora; Jessop, Edward S.; Kolb, John R.

    1982-01-01

    A method for synthesizing block polysiloxane copolymers. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  5. Method for making block siloxane copolymers

    DOEpatents

    Butler, N.L.; Jessop, E.S.; Kolb, J.R.

    1981-02-25

    A method for synthesizing block polysiloxane copolymers is disclosed. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  6. Association behaviors of dodecyltrimethylammonium bromide with double hydrophilic block co-polymer poly(ethylene glycol)-block-poly(glutamate sodium).

    PubMed

    Han, Yuchun; Xia, Lin; Zhu, Linyi; Zhang, Shusheng; Li, Zhibo; Wang, Yilin

    2012-10-30

    The association behaviors of single-chain surfactant dodecyltrimethylammonium bromide (DTAB) with double hydrophilic block co-polymers poly(ethylene glycol)-b-poly(sodium glutamate) (PEG(113)-PGlu(50) or PEG(113)-PGlu(100)) were investigated using isothermal titration microcalorimetry, cryogenic transmission electron microscopy, circular dichroism, ζ potential, and particle size measurements. The electrostatic interaction between DTAB and the oppositely charged carboxylate groups of PEG-PGlu induces the formation of super-amphiphiles, which further self-assemble into ordered aggregates. Dependent upon the charge ratios between DTAB and the glutamic acid residue of the co-polymer, the mixture solutions can change from transparent to opalescent without precipitation. Dependent upon the chain length of the PGlu block, the mixture of DTAB and PEG-PGlu diblocks can form two different aggregates at their corresponding electroneutral point. Spherical and rod-like aggregates are formed in the PEG(113)-PGlu(50)/DTAB mixture, while the vesicular aggregates are observed in the PEG(113)-PGlu(100)/DTAB mixture solution. Because the PEG(113)-PGlu(100)/DTAB super-amphiphile has more hydrophobic components than that of the PEG(113)-PGlu(50)/DTAB super-amphiphile, the former prefers forming the ordered aggregates with higher curvature, such as spherical and rod aggregates, but the latter prefers forming vesicular aggregates with lower curvature.

  7. Recyclable magnetic nanocluster crosslinked with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) copolymer for adsorption with antibody.

    PubMed

    Prai-In, Yingrak; Boonthip, Chatchai; Rutnakornpituk, Boonjira; Wichai, Uthai; Montembault, Véronique; Pascual, Sagrario; Fontaine, Laurent; Rutnakornpituk, Metha

    2016-10-01

    Surface modification of magnetic nanoparticle (MNP) with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) diblock copolymers and its application as recyclable magnetic nano-support for adsorption with antibody were reported herein. PEO-b-PVDM copolymers were first synthesized via a reversible addition-fragmentation chain-transfer (RAFT) polymerization using poly(ethylene oxide) chain-transfer agent as a macromolecular chain transfer agent to mediate the RAFT polymerization of VDM. They were then grafted on amino-functionalized MNP by coupling with some azlactone rings of the PVDM block to form magnetic nanoclusters with tunable cluster size. The nanocluster size could be tuned by adjusting the chain length of the PVDM block. The nanoclusters were successfully used as efficient and recyclable nano-supports for adsorption with anti-rabbit IgG antibody. They retained higher than 95% adsorption of the antibody during eight adsorption-separation-desorption cycles, indicating the potential feasibility in using this novel hybrid nanocluster as recyclable support in cell separation applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Efficient encapsulation of proteins with random copolymers.

    PubMed

    Nguyen, Trung Dac; Qiao, Baofu; Olvera de la Cruz, Monica

    2018-06-12

    Membraneless organelles are aggregates of disordered proteins that form spontaneously to promote specific cellular functions in vivo. The possibility of synthesizing membraneless organelles out of cells will therefore enable fabrication of protein-based materials with functions inherent to biological matter. Since random copolymers contain various compositions and sequences of solvophobic and solvophilic groups, they are expected to function in nonbiological media similarly to a set of disordered proteins in membraneless organelles. Interestingly, the internal environment of these organelles has been noted to behave more like an organic solvent than like water. Therefore, an adsorbed layer of random copolymers that mimics the function of disordered proteins could, in principle, protect and enhance the proteins' enzymatic activity even in organic solvents, which are ideal when the products and/or the reactants have limited solubility in aqueous media. Here, we demonstrate via multiscale simulations that random copolymers efficiently incorporate proteins into different solvents with the potential to optimize their enzymatic activity. We investigate the key factors that govern the ability of random copolymers to encapsulate proteins, including the adsorption energy, copolymer average composition, and solvent selectivity. The adsorbed polymer chains have remarkably similar sequences, indicating that the proteins are able to select certain sequences that best reduce their exposure to the solvent. We also find that the protein surface coverage decreases when the fluctuation in the average distance between the protein adsorption sites increases. The results herein set the stage for computational design of random copolymers for stabilizing and delivering proteins across multiple media.

  9. Diffusion of copolymers composed of monomers with drastically different friction factors in copolymer/homopolymer blends

    DOE PAGES

    Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark

    2017-02-07

    Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less

  10. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy.

    PubMed

    Parida, Sheetal; Maiti, Chiranjit; Rajesh, Y; Dey, Kaushik K; Pal, Ipsita; Parekh, Aditya; Patra, Rusha; Dhara, Dibakar; Dutta, Pranab Kumar; Mandal, Mahitosh

    2017-01-01

    Gold nanorods, by virtue of surface plasmon resonance, convert incident light energy (NIR) into heat energy which induces hyperthermia. We designed unique, multifunctional, gold nanorod embedded block copolymer micelle loaded with GW627368X for targeted drug delivery and photothermal therapy. Glutathione responsive diblock co-polymer was synthesized by RAFT process forming self-assembled micelle on gold nanorods prepared by seed mediated method and GW627368X was loaded on to the reduction responsive gold nanorod embedded micelle. Photothermal therapy was administered using cwNIR laser (808nm; 4W/cm 2 ). Efficacy of nanoformulated GW627368X, photothermal therapy and combination of both were evaluated in vitro and in vivo. In response to photothermal treatment, cells undergo regulated, patterned cell death by necroptosis. Combining GW627368X with photothermal treatment using single nanoparticle enhanced therapeutic outcome. In addition, these nanoparticles are effective X-ray CT contrast agents, thus, can help in monitoring treatment. Reduction responsive nanorod embedded micelle containing folic acid and lipoic acid when treated on cervical cancer cells or tumour bearing mice, aggregate in and around cancer cells. Due to high glutathione concentration, micelles degrade releasing drug which binds surface receptors inducing apoptosis. When incident with 808nm cwNIR lasers, gold nanorods bring about photothermal effect leading to hyperthermic cell death by necroptosis. Combination of the two modalities enhances therapeutic efficacy by inducing both forms of cell death. Our proposed treatment strategy achieves photothermal therapy and targeted drug delivery simultaneously. It can prove useful in overcoming general toxicities associated with chemotherapeutics and intrinsic/acquired resistance to chemo and radiotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Directed Self-Assembly of Triblock Copolymer on Chemical Patterns for Sub-10-nm Nanofabrication via Solvent Annealing.

    PubMed

    Xiong, Shisheng; Wan, Lei; Ishida, Yoshihito; Chapuis, Yves-Andre; Craig, Gordon S W; Ruiz, Ricardo; Nealey, Paul F

    2016-08-23

    Directed self-assembly (DSA) of block copolymers (BCPs) is a leading strategy to pattern at sublithographic resolution in the technology roadmap for semiconductors and is the only known solution to fabricate nanoimprint templates for the production of bit pattern media. While great progress has been made to implement block copolymer lithography with features in the range of 10-20 nm, patterning solutions below 10 nm are still not mature. Many BCP systems self-assemble at this length scale, but challenges remain in simultaneously tuning the interfacial energy atop the film to control the orientation of BCP domains, designing materials, templates, and processes for ultra-high-density DSA, and establishing a robust pattern transfer strategy. Among the various solutions to achieve domains that are perpendicular to the substrate, solvent annealing is advantageous because it is a versatile method that can be applied to a diversity of materials. Here we report a DSA process based on chemical contrast templates and solvent annealing to fabricate 8 nm features on a 16 nm pitch. To make this possible, a number of innovations were brought in concert with a common platform: (1) assembling the BCP in the phase-separated, solvated state, (2) identifying a larger process window for solvated triblock vs diblock BCPs as a function of solvent volume fraction, (3) employing templates for sub-10-nm BCP systems accessible by lithography, and (4) integrating a robust pattern transfer strategy by vapor infiltration of organometallic precursors for selective metal oxide synthesis to prepare an inorganic hard mask.

  12. Outburst in Mira AB?

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2003-09-01

    The nearby system Mira AB composed of an aging AGB star (Mira A) and a WD companion (Mira B) offers a unique laboratory for studying wind accretion processes, a poorly understood phenomenon in many sources. Recent Chandra ACIS-S Obs.(70ks on 12/6/03; PI.M.Karovska) resolved for the first time the components (~0.6") in X-rays, and detected a new bright soft source (< 0.7 keV) in addition to the harder (1-4 keV) emission from Mira B. The new source is spatially and spectrally separated from Mira B and likely associated with Mira A. This is the first detection of X-rays from an AGB star. This source was not detected by ROSAT in 1993 or recently by XMM 8/03 (AAS/03,J.Kastner), and could be a transient phenomenon. Model fitting shows that the soft X-ray emission is likely several emission lines, rather then a continuum; with ACIS spectral resolution we cannot resolve or identify these lines. We propose a 40ks LETG+HRC-S obs. to identify the lines and determine the emission mechanism.

  13. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .../acrylic copolymers are copolymers obtained by reaction of substances permitted by § 177.1010(a) (1), (2... solvent or solvents characterizing the type of food and under the conditions of time and temperature...

  14. Polyamide copolymers having 2,5-furan dicarboxamide units

    DOEpatents

    Chisholm, Bret Ja; Samanta, Satyabrata

    2017-09-19

    Polyamide copolymers, and methods of making and using polyamide copolymers, having 2,5-furan dicarboxamide units are disclosed herein. Such polymers can be useful for engineering thermoplastics having advantageous physical and/or chemical properties.

  15. Hydrogen-bonded aggregates in precise acid copolymers

    SciTech Connect

    Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J., E-mail: msteve@sandia.gov

    2014-02-07

    We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length butmore » not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.« less

  16. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes

    SciTech Connect

    Han, Liang; Wang, Meijing; Jia, Xiangmeng

    Two-dimensional (2-D) micro- and nano- architectures are attractive because of their unique properties caused by their ultrathin and flat morphologies. However, the formation of 2-D supramolecular highly symmetrical structures with considerable control is still a major challenge. Here, we presented a simple approach for the preparation of regular and homogeneous 2-D fluorescent square noncrystallization micelles with conjugated diblock copolymers PPV12-b-P2VPn through a process of dissolving-cooling-aging. The scale of the formed micelles could be controlled by the ratio of PPV/P2VP blocks and the concentration of the solution. The forming process of the platelet square micelles was analyzed by UV-Vis, DLS andmore » SLS, while the molecular arrangement was characterized by GIXD. The results revealed that the micelles of PPV12-b-P2VPn initially form 1-D structures and then grow into 2-D structures in solution, and the growth is driven by intermolecular π-π interactions with the PPV12 blocks. The formation of 2-D square micelles is induced by herringbone arrangement of the molecules, which is closely related to the presence of the branched alkyl chains attached to conjugated PPV12 cores.« less

  17. Ab Interno Trabeculectomy

    PubMed Central

    Pantcheva, Mina B.; Kahook, Malik Y.

    2010-01-01

    Anterior chamber drainage angle surgery, namely trabeculotomy and goniotomy, has been commonly utilized in children for many years. Its’ reported success has ranged between 68% and 100% in infants and young children with congenital glaucoma. However, the long-term success of these procedures has been limited in adults presumably due to the formation of anterior synechiae (AS) in the postoperative phase. Recently, ab interno trabeculectomy with the Trabectome™ has emerged as a novel surgical approach to effectively and selectively remove and ablate the trabecular meshwork and the inner wall of the Schlemm’s canal in an attempt to avoid AS formation or other forms of wound healing with resultant closure of the cleft. This procedure seems to have an appealing safety profile with respect to early hypotony or infection if compared to trabeculectomy or glaucoma drainage device implantation. This might be advantageous in some of the impoverish regions of the Middle East and Africa where patients experience difficulties keeping up with their postoperative visits. It is important to note that no randomized trial comparing the Trabectome to other glaucoma procedures appears to have been published to date. Trabectome surgery is not a panacea, however, and it is associated with early postoperative intraocular pressure spikes that may require additional glaucoma surgery as well as a high incidence of hyphema. Reported results show that postoperative intraocular pressure (IOP) remains, at best, in the mid-teen range making it undesirable in patients with low-target IOP goals. A major advantage of Trabectome surgery is that it does not preclude further glaucoma surgery involving the conjunctiva, such as a trabeculectomy or drainage device implantation. As prospective randomized long-term clinical data become available, we will be better positioned to elucidate the exact role of this technique in the glaucoma surgical armamentarium. PMID:21180426

  18. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether polyester copolymer... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this section...

  19. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as articles...

  20. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate...

  1. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate...

  2. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  3. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  4. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be safely...

  5. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...

  6. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  7. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  8. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...

  9. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...

  10. 40 CFR 721.10519 - Perfluoroalkyl acrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as perfluoroalkyl acrylate copolymer (PMN P-11-63) is subject to reporting under this section for the... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkyl acrylate copolymer... Specific Chemical Substances § 721.10519 Perfluoroalkyl acrylate copolymer (generic). (a) Chemical...

  11. 40 CFR 721.10519 - Perfluoroalkyl acrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as perfluoroalkyl acrylate copolymer (PMN P-11-63) is subject to reporting under this section for the... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkyl acrylate copolymer... Specific Chemical Substances § 721.10519 Perfluoroalkyl acrylate copolymer (generic). (a) Chemical...

  12. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...

  13. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...

  14. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...

  15. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...

  16. Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers.

    PubMed

    Ray, Subhasree; Kalia, Vipin Chandra

    2017-03-01

    Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydroxybutyrate (PHB), as a storage material. The biochemical characteristics of PHB such as brittleness, low strength, low elasticity, etc. make these unsuitable for commercial applications. Co-polymers of PHA, have high commercial value as they overcome the limitations of PHBs. Co-polymers can be produced by supplementing the feed with volatile fatty acids or through hydrolysates of different biowastes. In this review, we have listed the potential bacterial candidates and the substrates, which can be co-metabolized to produce PHA co-polymers.

  17. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  18. Co-polymer films for sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2010-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  19. Co-polymer Films for Sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Jewell, April D. (Inventor); Taylor, Charles (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Manatt, Kenneth S. (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor); Homer, Margie L. (Inventor); Shevade, Abhijit V. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  20. Ab initio vel ex eventu

    NASA Astrophysics Data System (ADS)

    Thiessen, P. A.; Treder, H.-J.

    Der gegenwärtige Stand der physikalischen Erkenntnis, in Sonderheit die Atomistik und die Quantentheorie, ermöglicht (in wohldefinierten Energie-Bereichen) eine ab initio-Berechnung aller physikalischen und chemischen Prozesse und Strukturen. Die Schrödinger-Gleichung erlaubt zusammen mit den Prinzipien der Quantenstatistik (Pauli-Prinzip) aus dem Planckschen Wirkungsquantum h und den atomischen Konstanten die Berechnung aller Energieumsätze, Zeitabläufe etc., die insbesondere die chemische Physik bestimmen. Die Rechenresultate gelten auch quantitativ bis auf die unvermeidliche Stochastik.Die ab initio-Berechnungen korrespondieren einerseits und sind andererseits komplementär zu den auf den Methoden der theoretischen Chemie und der klassischen Thermodynamik beruhenden Ergebnissen ex eventu. Die theoretische Behandlung ab initio führt zu mathematischen Experimenten, die die Laboratoriums-Experimente ergänzen oder auch substituieren.Translated AbstractAb initio vel ex eventuThe present state of physical knowledge, in peculiar atomistic and quantum theory, makes an ab initio calculation of all physical and chemical processes and structures possible (in well defined reaches of energy). The Schrödinger equation together with the principles of quantum statistics (Pauli principle) permits from the Planck and atomistic constants to calculate all exchanges of energy, courses of time, etc. which govern chemical physics. The calculated results are valid even quantitatively apart from the unavoidable stochastics.These ab initio calculations on the one hand correspond and are on the other complimentary to results ex eventu based on the methods of theoretical chemistry and classical thermodynamics. Theoretical treatment ab initio leads to mathematical experiments which add to or even substitute experiments in the laboratory.

  1. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2002-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  2. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2004-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  3. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2003-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  4. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... paragraph (a) of this section may contain optional adjuvant substances required in its production. The quantity of any optional adjuvant substance employed in the production of the copolymer does not exceed the... (3,5-di-tert-butyl-4-hydroxyhydrocinnamate)] methane. (2) Lubricant: N,N′Distearoylethyl-enediamine...

  5. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... extraction for finished food-contact articles, determined by a method of analysis titled “Gas-Solid... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylonitrile copolymers. 180.22 Section 180.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  6. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylonitrile copolymers. 180.22 Section 180.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at...

  7. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylonitrile copolymers. 180.22 Section 180.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at...

  8. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylonitrile copolymers. 180.22 Section 180.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at...

  9. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile copolymers. 180.22 Section 180.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at...

  10. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties.

    PubMed

    Gao, Qiang; Yu, Meng; Su, Yajuan; Xie, Meihua; Zhao, Xin; Li, Peng; Ma, Peter X

    2017-03-15

    Numerous antimicrobial coatings have been developed for biomedical devices/implants, but few can simultaneously fulfill the requirements for antimicrobial and antifouling ability and biocompatibility. In this study, to develop an antimicrobial and antibiofilm surface coating, diblock amphiphilic molecules with antimicrobial and antifouling segments in a single chain were rationally designed and synthesized. Cationic antimicrobial polypeptides (AMP) were first synthesized by N-carboxyanhydride ring-opening polymerization (NCA-ROP). Heterofunctionalized poly(ethylene glycol) with different lengths (methacrylate-PEG n -tosyl, n=10/45/90) was synthesized and site-specifically conjugated with polypeptides to form diblock amphiphiles. Along with increased PEG chain length, hemolytic activity was considerably improved, and broad-spectrum antimicrobial activity is retained. Three MA-PEG n -b-AMP copolymers were further grafted onto the surface of silicone rubber (a commonly used catheter material) via plasma/UV-induced surface polymerizations to form a bottlebrush-like coating with excellent antimicrobial activity against several pathogenic bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus), and effectively prevent biofilm formation. This bottlebrush coating also greatly reduced protein adsorption and platelet adhesion, indicating its excellent antifouling ability. An in vitro cytotoxicity study also demonstrated that this coating is biocompatible with mammalian cells. After subcutaneous implantation of the materials in rats, we demonstrated that the g-PEG 45 -b-AMP bottlebrush coating exhibits significant anti-infective activity in vivo. Thus, this facilely synthesized PEGylated AMP bottlebrush coating is a feasible method to prevent biomedical devices-associated infections. Current antimicrobial coatings are often associated with concerns such as antibiotic resistance, environmental pollution, short-time antimicrobial activity, biofouling

  11. RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers

    PubMed Central

    2016-01-01

    RAFT solution polymerization of N-(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA63–PNMEPx diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in Mn with increasing PNMEP DP. A gradual increase in Mw/Mn was also observed when targeting higher DPs. However, this problem could be minimized (Mw/Mn < 1.50) by utilizing a higher purity grade of NMEP (98% vs 96%). This suggests that the broader molecular weight distributions observed at higher DPs are simply the result of a dimethacrylate impurity causing light branching, rather than an intrinsic side reaction such as chain transfer to polymer. Kinetic studies confirmed that the RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both 1H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA63–PNMEPx particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer in a rather

  12. RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers.

    PubMed

    Cunningham, Victoria J; Derry, Matthew J; Fielding, Lee A; Musa, Osama M; Armes, Steven P

    2016-06-28

    RAFT solution polymerization of N -(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA 63 -PNMEP x diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in M n with increasing PNMEP DP. A gradual increase in M w / M n was also observed when targeting higher DPs. However, this problem could be minimized ( M w / M n < 1.50) by utilizing a higher purity grade of NMEP (98% vs 96%). This suggests that the broader molecular weight distributions observed at higher DPs are simply the result of a dimethacrylate impurity causing light branching, rather than an intrinsic side reaction such as chain transfer to polymer. Kinetic studies confirmed that the RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both 1 H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA 63 -PNMEP x particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer

  13. AB 1725: A Comprehensive Analysis.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Board of Governors.

    A summary and analysis is provided of California Assembly Bill (AB) 1725, a reform bill that provides new direction and support for the state's community colleges. The analysis addresses each of the eight sections of the bill: (1) mission, highlighting reforms related to mission statements, transfer core curriculum, remedial limits, articulation…

  14. Phase behavior of model ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  15. Registration of nine sorghum seed parent (A/B) lines

    USDA-ARS?s Scientific Manuscript database

    Nine sorghum [Sorghum bicolor (L.) Moench] A1 cyto plasmic-genic male sterile seed parent (A) and their maintainer (B) lines [KS 133A/B, KS 134A/B, KS 135A/B, KS 136A/B, KS 137A/B, KS 138A/B, KS 139A/B, KS 140A/B and KS 141A/B] were released by the Kansas State University, Agricultural Research Cent...

  16. Amphiphilic block copolymer membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Sylvia, James M.; Jacob, Monsy M.; Peramunage, Dharmasena

    2013-11-01

    An amphiphilic block copolymer comprised of hydrophobic polyaryletherketone (PAEK) and hydrophilic sulfonated polyaryletherketone (SPAEK) blocks has been synthesized and characterized. A membrane prepared from the block copolymer is used as the separator in a single cell vanadium redox flow battery (VRB). The proton conductivity, mechanical property, VO2+ permeability and single VRB cell performance of this block copolymer membrane are investigated and compared to Nafion™ 117. The block copolymer membrane showed significantly improved vanadium ion selectivity, higher mechanical strength and lower conductivity than Nafion™ 117. The VRB containing the block copolymer membrane exhibits higher coulombic efficiency and similar energy efficiency compared to a VRB using Nafion™ 117. The better vanadium ion selectivity of the block copolymer membrane has led to a much smaller capacity loss during 50 charge-discharge cycles for the VRB.

  17. Oxygen plasma resistant phosphine oxide containing imide/arylene copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1993-01-01

    A series of oxygen plasma resistant imide/arylene ether copolymers were prepared by reacting anhydride-terminated poly(amide acids) and amine-terminated polyarylene ethers containing phosphine oxide units. Inherent viscosities for these copolymers ranged from 0.42 to 0.80 dL/g. After curing, the resulting copolymers had glass transition temperatures ranging from 224 C to 228 C. Solution cast films of the block copolymers were tough and flexible with tensile strength, tensile moduli, and elongation at break up to 16.1 ksi, 439 ksi, and 23 percent, respectively at 25 C and 9.1 ksi, 308 ksi and 97 percent, respectively at 150 C. The copolymers show a significant improvement in resistance to oxygen plasma when compared to the commercial polyimide Kapton. The imide/arylene ether copolymers containing phosphine oxide units are suitable as coatings, films, adhesives, and composite matrices.

  18. Phase Behavior of Neat Triblock Copolymers and Copolymer/Homopolymer Blends Near Network Phase Windows

    SciTech Connect

    M Tureau; L Rong; B Hsiao

    The phase behavior of poly(isoprene-b-styrene-b-methyl methacrylate) (ISM) copolymers near the styrene-rich network phase window was examined through the use of neat triblock copolymers and copolymer/homopolymer blends. Both end-block and middle-block blending protocols were employed using poly(isoprene) (PI), poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) homopolymers. Blended specimens exhibited phase transformations to well-ordered nanostructures (at homopolymer loadings up to 26 vol % of the total blend volume). Morphological consistency between neat and blended specimens was established at various locations in the ISM phase space. Copolymer/homopolymer blending permitted the refinement of lamellar, hexagonally packed cylinder, and disordered melt phase boundaries as well asmore » the identification of double gyroid (Q{sup 230}), alternating gyroid (Q{sup 214}), and orthorhombic (O{sup 70}) network regimes. Additionally, the experimental phase diagram exhibited similar trends to those found in a theoretical ABC triblock copolymer phase diagram with symmetric interactions and statistical segments lengths generated by Tyler et al.« less

  19. Reversible geling co-polymer and method of making

    DOEpatents

    Gutowska, Anna

    2005-12-27

    The present invention is a thereapeutic agent carrier having a thermally reversible gel or geling copolymer that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum geling molecular weight cutoff and a therapeutic agent.

  20. Rapid ordering of block copolymer thin films

    DOE PAGES

    Majewski, Pawel W.; Yager, Kevin G.

    2016-08-18

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. Here, wemore » also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.« less

  1. Rapid ordering of block copolymer thin films

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel W.; Yager, Kevin G.

    2016-10-01

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.

  2. ``Sequence space soup'' of proteins and copolymers

    NASA Astrophysics Data System (ADS)

    Chan, Hue Sun; Dill, Ken A.

    1991-09-01

    To study the protein folding problem, we use exhaustive computer enumeration to explore ``sequence space soup,'' an imaginary solution containing the ``native'' conformations (i.e., of lowest free energy) under folding conditions, of every possible copolymer sequence. The model is of short self-avoiding chains of hydrophobic (H) and polar (P) monomers configured on the two-dimensional square lattice. By exhaustive enumeration, we identify all native structures for every possible sequence. We find that random sequences of H/P copolymers will bear striking resemblance to known proteins: Most sequences under folding conditions will be approximately as compact as known proteins, will have considerable amounts of secondary structure, and it is most probable that an arbitrary sequence will fold to a number of lowest free energy conformations that is of order one. In these respects, this simple model shows that proteinlike behavior should arise simply in copolymers in which one monomer type is highly solvent averse. It suggests that the structures and uniquenesses of native proteins are not consequences of having 20 different monomer types, or of unique properties of amino acid monomers with regard to special packing or interactions, and thus that simple copolymers might be designable to collapse to proteinlike structures and properties. A good strategy for designing a sequence to have a minimum possible number of native states is to strategically insert many P monomers. Thus known proteins may be marginally stable due to a balance: More H residues stabilize the desired native state, but more P residues prevent simultaneous stabilization of undesired native states.

  3. Highly Selective Ionic Block Copolymer Membranes

    DTIC Science & Technology

    2010-11-10

    Multicomponent Diffusion and Sorption in an Ionic Polymer Membrane We recently measured the diffusion and sorption of methanol/water mixtures in Nafion (most...methanol feed concentration (17 M). Figure 1 shows one experiment where hydrated Nafion was exposed to a 2 M methanol/water liquid mixture resulting...copolymer membranes revealed several surprising results. Contrary to what has been observed in most ionic polymer membranes (e.g., Nafion ), the proton

  4. Engineering topochemical polymerizations using block copolymer templates.

    PubMed

    Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M

    2014-09-24

    With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials.

  5. Rheological Design of Sustainable Block Copolymers

    NASA Astrophysics Data System (ADS)

    Mannion, Alexander M.

    Block copolymers are extremely versatile materials that microphase separate to give rise to a rich array of complex behavior, making them the ideal platform for the development of rheologically sophisticated soft matter. In line with growing environmental concerns of conventional plastics from petroleum feedstocks, this work focuses on the rheological design of sustainable block copolymers--those derived from renewable sources and are degradable--based on poly(lactide). Although commercially viable, poly(lactide) has a number of inherent deficiencies that result in a host of challenges that require both creative and practical solutions that are cost-effective and amenable to large-scale production. Specifically, this dissertation looks at applications in which both shear and extensional rheology dictate performance attributes, namely chewing gum, pressure-sensitive adhesives, and polymers for blown film extrusion. Structure-property relationships in the context of block polymer architecture, polymer composition, morphology, and branching are explored in depth. The basic principles and fundamental findings presented in this thesis are applicable to a broader range of substances that incorporate block copolymers for which rheology plays a pivotal role.

  6. Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery.

    PubMed

    Nieto-Orellana, Alejandro; Coghlan, David; Rothery, Malcolm; Falcone, Franco H; Bosquillon, Cynthia; Childerhouse, Nick; Mantovani, Giuseppe; Stolnik, Snow

    2018-04-05

    Pulmonary delivery of protein therapeutics has considerable clinical potential for treating both local and systemic diseases. However, poor protein conformational stability, immunogenicity and protein degradation by proteolytic enzymes in the lung are major challenges to overcome for the development of effective therapeutics. To address these, a family of structurally related copolymers comprising polyethylene glycol, mPEG 2k , and poly(glutamic acid) with linear A-B (mPEG 2k -lin-GA) and miktoarm A-B 3 (mPEG 2k -mik-(GA) 3 ) macromolecular architectures was investigated as potential protein stabilisers. These copolymers form non-covalent nanocomplexes with a model protein (lysozyme) which can be formulated into dry powders by spray-drying using common aerosol excipients (mannitol, trehalose and leucine). Powder formulations with excellent aerodynamic properties (fine particle fraction of up to 68%) were obtained with particle size (D 50 ) in the 2.5 µm range, low moisture content (<5%), and high glass transitions temperatures, i.e. formulation attributes all suitable for inhalation application. In aqueous medium, dry powders rapidly disintegrated into the original polymer-protein nanocomplexes which provided protection towards proteolytic degradation. Taken together, the present study shows that dry powders based on (mPEG 2k -polyGA)-protein nanocomplexes possess potentials as an inhalation delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Drug-polymer interactions at water-crystal interfaces and implications for crystallization inhibition: molecular dynamics simulations of amphiphilic block copolymer interactions with tolazamide crystals.

    PubMed

    Gao, Yi; Olsen, Kenneth W

    2015-07-01

    A diblock copolymer, poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA), modulates the crystal growth of tolazamide (TLZ), resulting in a crystal morphology change from needles to plates in aqueous media. To understand this crystal surface drug-polymer interaction, we conducted molecular dynamics simulations on crystal surfaces of TLZ in water containing PEG-b-PLA. A 130-ns simulation of the polymer in a large water box was run before initiating 50 ns simulations with each of the crystal surfaces. The simulations demonstrated differentiated drug-polymer interactions that are consistent with experimental studies. Interaction of PEG-b-PLA with the (001) face occurred more rapidly (≤10 ns) and strongly (total interaction energy of -121.1 kJ/mol/monomer) than that with the (010) face (∼35 ns, -85.4 kJ/mol/monomer). There was little interaction with the (100) face. Hydrophobic and van der Waals (VDW) interactions were the dominant forces, accounting for more than 90% of total interaction energies. It suggests that polymers capable of forming strong hydrophobic and VDW interactions might be more effective in inhibiting crystallization of poorly water-soluble and hydrophobic drugs in aqueous media (such as gastrointestinal fluid) than those with hydrogen-bonding capacities. Such in-depth analysis and understanding facilitate the rational selection of polymers in designing supersaturation-based enabling formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Photoinduced PEG deshielding from ROS-sensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery.

    PubMed

    Li, Jie; Sun, Chunyang; Tao, Wei; Cao, Ziyang; Qian, Haisheng; Yang, Xianzhu; Wang, Jun

    2018-07-01

    Controlling poly(ethylene glycol) (PEG) shielding/deshielding at the desired site of action exhibits great advantages for nanocarrier-based on-demand drug delivery in vivo. However, the current PEG deshielding strategies were mainly designed for anticancer drug delivery; even so, their applications are also limited by tumor heterogeneity. As a proof-of-concept, we explored a photoinduced PEG deshielding nanocarrier TK-NP Ce6&PTX to circumvent the aforementioned challenge. The TK-NP Ce6&PTX encapsulating chlorin e6 (Ce6) and paclitaxel (PTX) was self-assembled from an innovative thioketal (TK) linkage-bridged diblock copolymer of PEG with poly(d,l-lactic acid) (PEG-TK-PLA). We demonstrated that the high PEGylation of TK-NP Ce6&PTX in blood helps the nanocarrier efficiently avoid rapid clearance and consequently prolongs its circulation time. At the desired site (tumor), 660-nm red light irradiation led to ROS generation in situ, which readily cleaved the TK linkage, resulting in PEG deshielding. Such photoinduced PEG deshielding at the desired site significantly enhances the cellular uptake of the nanocarriers, achieving on-demand drug delivery and superior therapeutic efficacy. More importantly, this strategy of photoinducing PEG deshielding of nanocarriers could potentially extend to a variety of therapeutic agents beyond anticancer drugs for on-demand delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Conformation of single block copolymer chain in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    PubMed

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-05-21

    The localization and orientation of the symmetric diblock copolymer chain in a quasi-two-dimensional microphase-separated structure were studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(isobutyl methacrylate)-block-poly(octadecyl methacrylate) (PiBMA-b-PODMA), the individual PiBMA subchains were directly observed by SNOM, and the center of mass (CM) and orientational angle relative to the phase interface were examined at the single chain level. It was found that the position of the CM and the orientation of the PiBMA subchain in the lamellar structure were dependent on the curvature of the PiBMA/PODMA interface. As the interface was bent toward the objective chain, the block chain preferred the CM position closer to the domain center, and the conformation was strongly oriented perpendicularly to the domain interface. With increase of the curvature, the steric hindrance among the block chain increases, resulting in the stretched conformation.

  10. Analysis of acrylonitrile, 1,3-butadiene, and related compounds in acrylonitrile-butadiene-styrene copolymers for kitchen utensils and children's toys by headspace gas chromatography/mass spectrometry.

    PubMed

    Ohno, Hiroyuki; Kawamura, Yoko

    2010-01-01

    A headspace gas chromatography/mass spectrometry method was developed for the simultaneous determination of the residual levels of acrylonitrile (AN), 1,3-butadiene (1,3-BD), and their related compounds containing propionitrile (PN) and 4-vinyl-1-cyclohexene (4-VC) in acrylonitrile-butadiene-styrene (ABS) copolymers for kitchen utensils and children's toys. A sample was cut into small pieces, then N,N-dimethylacetamide and an internal standard were added in a sealed headspace vial. The vial was incubated for 1 h at 90 degrees C and the headspace gas was analyzed by gas chromatography/mass spectrometry. The recovery rates of the analytes were 93.3-101.8% and the coefficients of variation were 0.3-6.5%. In ABS copolymers, the levels were 0.3-50.4 microg/g for AN, ND-4.5 microg/g for PN, 0.06-1.58 microg/g for 1,3-BD, and 1.1-295 microg/g for 4-VC. The highest level was found for 4-VC, which is a dimer of 1,3-BD, and the next highest was for AN, which is one of the monomers of the ABS copolymer. Furthermore, the method was also applied to acrylonitrile-styrene (AS) copolymers and polystyrenes (PS) for kitchen utensils, and nitrile-butadiene rubber (NBR) gloves. In AS copolymers, AN and PN were detected at 16.8-54.5 and 0.8-6.9 microg/g, respectively. On the other hand, the levels in PS and NBR samples were all low.

  11. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives complying with § 175.105 of... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  12. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  13. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  14. Characteristics of immobilized aminoacylase from Aspergillus oryzae on macroporous copolymers.

    PubMed

    He, B L; Jiang, P; Qiu, Y B

    1990-01-01

    Aminoacylase from Aspergillus oryzae was adsorbed on functionallized macroporous copolymers where the enzyme showed excellent catalyzing activity and operation stability. Various factors which effect the activity of the immobilized aminoacylase such as temperature, pH and ionic strength were investigated. The continuous operation of the enzyme immobilized on macroporous copolymers was compared with that of the enzyme immobilized on DEAE-Sephadex.

  15. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  16. Molecular Design of Sulfonated Triblock Copolymer Permselective Membranes

    DTIC Science & Technology

    2008-07-03

    factors governing sorption and permeability ofphosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower olefins by means...membrane morphology at environmental conditions, and the membrane sorption and transport properties with respect to water and nerve gas simulant...and chemical factors governing sorption and permeability of phosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower

  17. Imide/arylene ether copolymers with pendent trifluoromethyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Havens, Stephen J.

    1992-01-01

    A series of imide/arylene ether block copolymers were prepared using an arylene ether block containing a hexafluoroisopropylidene group and an imide block containing a hexafluoroisopropylidene and a trifluoromethyl group in the polymer backbone. The copolymers were characterized and mechanical properties were determined and compared to the homopolymers.

  18. 40 CFR 721.10527 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-646) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10527 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  19. 40 CFR 721.10527 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-646) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10527 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  20. 40 CFR 721.10619 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-653) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10619 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  1. 40 CFR 721.10619 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-653) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10619 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  2. Fabrication routes for one-dimensional nanostructures via block copolymers

    NASA Astrophysics Data System (ADS)

    Tharmavaram, Maithri; Rawtani, Deepak; Pandey, Gaurav

    2017-05-01

    Nanotechnology is the field which deals with fabrication of materials with dimensions in the nanometer range by manipulating atoms and molecules. Various synthesis routes exist for the one, two and three dimensional nanostructures. Recent advancements in nanotechnology have enabled the usage of block copolymers for the synthesis of such nanostructures. Block copolymers are versatile polymers with unique properties and come in many types and shapes. Their properties are highly dependent on the blocks of the copolymers, thus allowing easy tunability of its properties. This review briefly focusses on the use of block copolymers for synthesizing one-dimensional nanostructures especially nanowires, nanorods, nanoribbons and nanofibers. Template based, lithographic, and solution based approaches are common approaches in the synthesis of nanowires, nanorods, nanoribbons, and nanofibers. Synthesis of metal, metal oxides, metal oxalates, polymer, and graphene one dimensional nanostructures using block copolymers have been discussed as well.

  3. Orientation and Order in Shear-Aligned Thin Films of Cylinder-Forming Block Copolymers

    NASA Astrophysics Data System (ADS)

    Register, Richard

    The regularity and tunability of the nanoscale structure in block copolymers makes their thin films attractive as nanolithographic templates; however, in the absence of a guiding field, self-assembly produces a polygrain structure with no particular orientation and a high density of defects. As demonstrated in the elegant studies of Ed Kramer and coworkers, graphoepitaxy can provide local control over domain orientation, with a dramatic reduction in defect density. Alternatively, cylindrical microdomains lying in the plane of the film can be aligned over macroscopic areas by applying shear stress at the film surface. In non-sheared films of polystyrene-poly(n-hexylmethacrylate) diblocks, PS-PHMA, the PS cylinder axis orientation relative to the surface switches from parallel to perpendicular as a function of film thickness; this oscillation is damped out as the fraction of the PS block increases, away from the sphere-cylinder phase boundary. In aligned films, thicknesses which possess the highest coverage of parallel cylinders prior to shear show the highest quality of alignment post-shear, as measured by the in-plane orientational order parameter. In well-aligned samples of optimal thickness, the quality of alignment is limited by isolated dislocations, whose density is highest at high PS contents, and by undulations in the cylinders' trajectories, whose impact is most severe at low PS contents; consequently, polymers whose compositions lie in the middle of the cylinder-forming region exhibit the highest quality of alignment. The dynamics of the alignment process are also investigated, and fit to a melting-recrystallization model which allows for the determination of two key alignment parameters: the critical stress needed for alignment, and an orientation rate constant. For films containing a monolayer of cylindrical domains, as PS weight fraction or overall molecular weight increases, the critical stress increases moderately, while the rate of alignment

  4. Timing of AB And eclipses

    NASA Astrophysics Data System (ADS)

    Kozyreva, V. S.; Ibrahimov, M. A.; Gaynullina, E. R.; Karimov, R. G.; Hafizov, B. M.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Yu. G.; Bogomazov, A. I.; Irsmambetova, T. R.; Tutukov, A. V.

    2018-01-01

    This study aims timing the eclipses of the short period low mass binary star AB And. The times of minima are taken from the literature and from our observations in October 2013 (22 times of minima) and in August 2014 (23 times of minima). We find and discuss an inaccuracy in the determination of the types of minima in the previous investigation by Li et al. (2014). We study the secular evolution of the central binary's orbital period and the possibility of the existence of third and fourth companions in the system.

  5. Materials Design for Block Copolymer Lithography

    NASA Astrophysics Data System (ADS)

    Sweat, Daniel Patrick

    Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up

  6. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly-1-butene resins and butene/ethylene copolymers... resins and butene/ethylene copolymers. The poly-1-butene resins and butene/ethylene copolymers identified... the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by...

  7. Small domain-size multiblock copolymer electrolytes

    SciTech Connect

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  8. Multidimensional chromatographic techniques for hydrophilic copolymers II. Analysis of poly(ethylene glycol)-poly(vinyl acetate) graft copolymers.

    PubMed

    Knecht, Daniela; Rittig, Frank; Lange, Ronald F M; Pasch, Harald

    2006-10-13

    A large variety of hydrophilic copolymers is applied in different fields of chemical industry including bio, pharma and pharmaceutical applications. For example, poly(ethylene glycol)-poly(vinyl alcohol) graft copolymers that are used as tablet coatings are responsible for the controlled release of the active compounds. These copolymers are produced by grafting of vinyl acetate onto polyethylene glycol (PEG) and subsequent hydrolysis of the poly(ethylene glycol)-poly(vinyl acetate) graft copolymers. The poly(ethylene glycol)-poly(vinyl acetate) copolymers are distributed with regard to molar mass and chemical composition. In addition, they frequently contain the homopolymers polyethylene glycol and polyvinyl acetate. The comprehensive analysis of such complex systems requires hyphenated analytical techniques, including two-dimensional liquid chromatography and combined LC and nuclear magnetic resonance spectroscopy. The development and application of these techniques are discussed in the present paper.

  9. Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system

    PubMed Central

    Zhang, Shanshan; Anderson, Mark A.; Ao, Yan; Khakh, Baljit S.; Fan, Jessica; Deming, Timothy J.; Sofroniew, Michael V.

    2014-01-01

    Many hydrophobic small molecules are available to regulate gene expression and other cellular functions. Locally restricted application of such molecules in the central nervous system (CNS) would be desirable in many experimental and therapeutic settings, but is limited by a lack of innocuous vehicles able to load and easily deliver hydrophobic cargo. Here, we tested the potential for diblock copolypeptide hydrogels (DCH) to serve as such vehicles. In vitro tests on loading and release were conducted with cholesterol and the anti-cancer agent, temozolomide (TMZ). Loading of hydrophobic cargo modified DCH physical properties such as stiffness and viscosity, but these could readily be tuned to desired ranges by modifying DCH concentration, amino acid composition or chain lengths. Different DCH formulations exhibited different loading capacities and different rates of release. For example, comparison of different DCH with increasing alanine contents showed corresponding increases in both cargo loading capacity and time for cargo release. In vivo tests were conducted with tamoxifen, a small synthetic hydrophobic molecule widely used to regulate transgene expression. Tamoxifen released from DCH depots injected into healthy or injured CNS efficiently activated reporter gene expression in a locally restricted manner in transgenic mice. These findings demonstrate the facile and predictable tunability of DCH to achieve a wide range of loading capacities and release profiles of hydrophobic cargos while retaining CNS compatible physical properties. In addition, the findings show that DCH depots injected into the CNS can efficiently deliver small hydrophobic molecules that regulate gene expression in local cells. PMID:24314556

  10. Anomalous Micellization of Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  11. Responsive linear-dendritic block copolymers.

    PubMed

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tribological Behavior of Aqueous Copolymer Lubricant in Mixed Lubrication Regime.

    PubMed

    Ta, Thi D; Tieu, A Kiet; Zhu, Hongtao; Zhu, Qiang; Kosasih, Prabouno B; Zhang, Jie; Deng, Guanyu

    2016-03-02

    Although a number of experiments have been attempted to investigate the lubrication of aqueous copolymer lubricant, which is applied widely in metalworking operations, a comprehensive theoretical investigation at atomistic level is still lacking. This study addresses the influence of loading pressure and copolymer concentration on the structural properties and tribological performance of aqueous copolymer solution of poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEO-PPO) at mixed lubrication using a molecular dynamic (MD) simulation. An effective interfacial potential, which has been derived from density functional theory (DFT) calculations, was employed for the interactions between the fluid's molecules and iron surface. The simulation results have indicated that the triblock copolymer is physisorption on iron surface. Under confinement by iron surfaces, the copolymer molecules form lamellar structure in aqueous solution and behave differently from its bulk state. The lubrication performance of aqueous copolymer lubricant increases with concentration, but the friction reduction is insignificant at high loading pressure. Additionally, the plastic deformation of asperity is dependent on both copolymer concentration and loading pressure, and the wear behavior shows a linear dependence of friction force on the number of transferred atoms between contacting asperities.

  13. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymermore » was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.« less

  14. Electrically conductive doped block copolymer of polyacetylene and polyisoprene

    DOEpatents

    Aldissi, Mahmoud

    1985-01-01

    An electrically conductive block copolymer of polyisoprene and polyacetyl and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I.sub.2 to give it an electrical conductivity in the metallic regime.

  15. Directed self assembly of block copolymers using chemical patterns with sidewall guiding lines, backfilled with random copolymer brushes.

    PubMed

    Pandav, Gunja; Durand, William J; Ellison, Christopher J; Willson, C Grant; Ganesan, Venkat

    2015-12-21

    Recently, alignment of block copolymer domains has been achieved using a topographically patterned substrate with a sidewall preferential to one of the blocks. This strategy has been suggested as an option to overcome the patterning resolution challenges facing chemoepitaxy strategies, which utilize chemical stripes with a width of about half the period of block copolymer to orient the equilibrium morphologies. In this work, single chain in mean field simulation methodology was used to study the self assembly of symmetric block copolymers on topographically patterned substrates with sidewall interactions. Random copolymer brushes grafted to the background region (space between patterns) were modeled explicitly. The effects of changes in pattern width, film thicknesses and strength of sidewall interaction on the resulting morphologies were examined and the conditions which led to perpendicular morphologies required for lithographic applications were identified. A number of density multiplication schemes were studied in order to gauge the efficiency with which the sidewall pattern can guide the self assembly of block copolymers. The results indicate that such a patterning technique can potentially utilize pattern widths of the order of one-two times the period of block copolymer and still be able to guide ordering of the block copolymer domains up to 8X density multiplication.

  16. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    PubMed

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  17. Solvent (acetone-butanol: ab) production

    USDA-ARS?s Scientific Manuscript database

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities, such as corn and molasses, was an important historical fermentation. Unfortunately,...

  18. Morphology Formation in PC/ABS Blends during Thermal Processing and the Effect of the Viscosity Ratio of Blend Partners

    PubMed Central

    Bärwinkel, Stefanie; Seidel, Andreas; Hobeika, Sven; Hufen, Ralf; Mörl, Michaela; Altstädt, Volker

    2016-01-01

    Morphology formation during compounding, as well as injection molding of blends containing 60 wt % polycarbonate (PC) and 40 wt % polybutadiene rubber-modified styrene-acrylonitrile copolymers (ABS), has been investigated by transmission electron microscopy (TEM). Profiles of the blend morphology have been recorded in injection-molded specimens and significant morphology gradients observed between their skin and core. A <10 µm thick surface layer with strongly dispersed and elongated nano-scale (streak-like) styrene acrylonitrile (SAN) phases and well-dispersed, isolated SAN-grafted polybutadiene rubber particles is followed by a 50–150 µm thick skin layer in which polymer morphology is characterized by lamellar SAN/ABS phases. Thickness of these lamellae increases with the distance from the specimen’s surface. In the core of the specimens the SAN-grafted polybutadiene rubber particles are exclusively present within the SAN phases, which exhibit a much coarser and less oriented, dispersed morphology compared to the skin. The effects of the viscosity of the SAN in the PC/ABS blends on phase morphologies and correlations with fracture mechanics in tensile and impact tests were investigated, including scanning electron microscopy (SEM) assessment of the fracture surfaces. A model explaining the mechanisms of morphology formation during injection molding of PC/ABS blends is discussed. PMID:28773780

  19. HPMA copolymers: Origins, early developments, present, and future☆

    PubMed Central

    Kopeček, Jindřich; Kopečková, Pavla

    2010-01-01

    The overview covers the discovery of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, initial studies on their synthesis, evaluation of biological properties, and explorations of their potential as carriers of biologically active compounds in general and anticancer drugs in particular. The focus is on the research in the authors’ laboratory – the development of macromolecular therapeutics for the treatment of cancer and musculoskeletal diseases. In addition, the evaluation of HPMA (co)polymers as building blocks of mod and new biomaterials is presented: the utilization of semitelechelic poly(HPMA) and HPMA copolymers for the modification of biomaterial and protein surfaces and the design of hybrid block and graft HPMA copolymers that self-assemble into smart hydrogels. Finally, suggestions for the design of second-generation macromolecular therapeutics are portrayed. PMID:19919846

  20. Synthesis and Characterization of Itaconic Anhydride and Stearyl Methacrylate Copolymers

    SciTech Connect

    Shang, S.; Huang, S; Weiss, R

    The free-radical copolymerization and the properties of comb-like copolymers derived from renewable resources, itaconic anhydride (ITA) and stearyl methacrylate (SM), are described. The ITA-SM copolymers were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The melting point (Tm) of the side-chains and the crystallinity decreased with increasing ITA concentration. The crystalline side-chains suppressed molecular motion of the main chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > Tm. The softening point and modulusmore » of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased.« less

  1. Insensitive explosive composition of halogenated copolymer and triaminotrinitrobenzene

    DOEpatents

    Benziger, Theodore M.

    1976-01-01

    A highly insensitive and heat resistant plastic-bonded explosive containing 90 wt % triaminotrinitrobenzene and 10 wt % of a fully saturated copolymer of chlorotrifluoroethylene and vinylidene fluoride is readily manufactured by the slurry process.

  2. 21 CFR 177.1980 - Vinyl chloride-propylene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... grams of granular sodium peroxide, 0.1 gram of powdered starch, and 0.02 gram potassium nitrate; and the... provisions of this section are not applicable to vinyl chloride-propylene copolymers used in food-packaging...

  3. Nanopatterned articles produced using reconstructed block copolymer films

    SciTech Connect

    Russell, Thomas P.; Park, Soojin; Wang;, Jia-Yu

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred tomore » the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.« less

  4. Nanopatterned articles produced using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  5. Radiation resistance of acetal copolymers (in German)

    SciTech Connect

    Wolters, E.; Roesinger, S.

    1973-01-01

    For the radiation sterilization of equipment and containers made from plastic material, a dose of 2.5 x 10/sup 4/ J/kg (2.5 Mrad) is normally used. Experiments are described which show the influence of the sterilization doses applied in practice on the physical properties of the acetal copolymer Hostaform. Although a certain destruction and simultaneously a reduction in viscous properties are observed as a result of irradiations with gamma rays up to 2.5 x 10/sup 4/ J/kg, the tensile strength remains practically unchanged. Hence gamma -ray sterilization can be applied if there are no special requirements as to the mechanical propertiesmore » of the sterile equipment. (GE)« less

  6. Characterization of multiblock copolymers by chromatographic techniques.

    PubMed

    N'Goma, Patrick Yoba; Radke, Wolfgang; Malz, Frank; Ziegler, Hans Jörg; Zierke, Michael; Behl, Marc; Lendlein, Andreas

    2011-02-01

    Multiblock copolymers (MBC) composed of blocks of poly(1,4-dioxanone) (PPDO) and poly(e-caprolactone) (PCL) were investigated in order to gain information on the extend of chemical heterogeneity of the samples. A gradient chromatographic method was established allowing separation of purely PPDO- from purely PCL-containing chains. Application of the gradient to MBC made of PPDO- and PCL-diols connected by trimethylhexamethylene diisocyanate (TMDI) resulted in two well separated peaks which were analyzed by means of FTIR, 1H-NMR and pyrolysis GC-MS. It was shown that the first peak was composed to a large extent of PPDO and only lower amounts of PCL were incorporated. Conversely, the second peak consisted predominantly of PCL with only a minor fraction of PPDO. Thus, the MBCs having PPDO and PCL segments show an unexpected broad chemical heterogeneity.

  7. Melt structure and self-nucleation of ethylene copolymers

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina G.

    A strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. These studies have been carried out by DSC, x-ray, TEM and optical microscopy on a large number of model, narrow, and broad copolymers with different comonomer types and contents. Melt memory is correlated with self-seeds that increase the crystallization rate of ethylene copolymers. The seeds are associated with molten ethylene sequences from the initial crystals that remain in close proximity and lower the nucleation barrier. Diffusion of all sequences to a randomized melt state is a slow process, restricted by topological chain constraints (loops, knots, and other entanglements) that build in the intercrystalline region during crystallization. Self-seeds dissolve above a critical melt temperature that demarcates homogeneity of the copolymer melt. There is a critical threshold level of crystallinity to observe the effect of melt memory on crystallization rate, thus supporting the correlation between melt memory and the change in melt structure during copolymer crystallization. Unlike binary blends, commercial ethylene-1-alkene copolymers with a range in inter-chain comonomer composition between 1 and about 15 mol % display an inversion of the crystallization rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. With decreasing the initial melt temperature, broadly distributed copolymers show enhanced crystallization followed by a decrease of crystallization rate. The inversion demarcates the onset of liquid-liquid phase separation (LLPS) and a reduction of self-nuclei due to the strong thermodynamic drive for molecular segregation inside the binodal. The strong effect of melt memory on crystallization rate can be used to identify liquid-liquid phase separation in broadly distributed copolymers, and offers strategies to control the state of copolymer melts in ways of

  8. Multicompartmental Microcapsules from Star Copolymer Micelles

    SciTech Connect

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into themore » LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and

  9. Counit Inclusion in Hydrogenated Polynorbornene Copolymer Crystals

    NASA Astrophysics Data System (ADS)

    Burns, Adam; Showak, Michael; Stella, Andrew; Register, Richard

    2014-03-01

    Crystallization in poly(A-co-B) random copolymers, where homopolymer A is crystalline but B is not, is dictated by the degree to which crystals of A can include B units. Typically, B units are strongly excluded from the A crystals, drastically reducing the degree of crystallinity wc and crystal thickness tc even at modest comonomer contents. However, in some cases, B units can be incorporated into the crystals as defects, significantly diminishing the counits' impact on wc and tc. The extent and consequences of counit inclusion have been investigated in hydrogenated polynorbornene (hPN) with alkylnorbornene counits, synthesized by living ring-opening metathesis polymerization followed by hydrogenation. In the case of 5-hexylnorbornene (HxN) counits, a steep decline in wc and tc with counit content is found, indicative of strong exclusion. In contrast, when the counits are 5-methylnorbornene (MeN), extensive inclusion of MeN units into the crystals is observed. hP(N-co-MeN) copolymers maintain appreciable crystallinity above 30 mol% MeN, and the dependence of the melting point Tm on tc tracks that of the hPN homopolymer. Four times as much MeN as HxN (molar basis) is required to produce a comparable drop in wc. Therefore, copolymerization with MeN can be used to tune Tm without drastically reducing wc. Additionally, hPN exhibits a polymorphic transition to a rotationally disordered (RD) crystal at temperature Tcc

  10. Thin Film Assembly of Spider Silk-like Block Copolymers

    DTIC Science & Technology

    2011-01-01

    Shipley, N. H.; Lewis, R. V. Int. J. Biol.Macromol. 1999, 24, 271. (c) Thiel, B. L.; Guess, K. B.; Viney, C. Biopolymers 1997, 41, 703. (13) Silk ...Film Assembly of Spider Silk -like Block Copolymers Sreevidhya T. Krishnaji,†,‡ Wenwen Huang,§ Olena Rabotyagova,†,‡ Eugenia Kharlampieva, ) Ikjun Choi...Received November 26, 2010 We report the self-assembly of monolayers of spider silk -like block copolymers. Langmuir isotherms were obtained for a series of

  11. Photooxidative degradation of clear ultraviolet absorbing acrylic copolymer surfaces

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Liang, R. H.; Vogl, O.; Pradellok, W.; Huston, A. L.; Scott, G. W.

    1983-01-01

    Photodegradation of copolymer of methyl methacrylate and 2(2'-hydroxy 5'vinyl-phenyl) 2H-benzotriazole has been investigated in order to determine the changes in the chemical composition of the surface of the copolymer on photooxidation. An electronic energy transfer mechanism has been postulated in order to interpret the observed photochemical changes in the polymer. Preliminary examination of the photophysical properties of the chromophore provides support for such a mechanism.

  12. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida.

    PubMed

    Li, Shi Yan; Dong, Cui Ling; Wang, Shen Yu; Ye, Hai Mu; Chen, Guo-Qiang

    2011-04-01

    Polyhydroxyalkanoate (PHA) synthesis genes phaPCJ(Ac) cloned from Aeromonas caviae were transformed into Pseudomonas putida KTOY06ΔC, a mutant of P. putida KT2442, resulting in the ability of the recombinant P. putida KTOY06ΔC (phaPCJ(A.c)) to produce a short-chain-length and medium-chain-length PHA block copolymer consisting of poly-3-hydroxybutyrate (PHB) as one block and random copolymer of 3-hydroxyvalerate (3HV) and 3-hydroxyheptanoate (3HHp) as another block. The novel block polymer was studied by differential scanning calorimetry (DSC), nuclear magnetic resonance, and rheology measurements. DSC studies showed the polymer to possess two glass transition temperatures (T(g)), one melting temperature (T(m)) and one cool crystallization temperature (T(c)). Rheology studies clearly indicated a polymer chain re-arrangement in the copolymer; these studies confirmed the polymer to be a block copolymer, with over 70 mol% homopolymer (PHB) of 3-hydroxybutyrate (3HB) as one block and around 30 mol% random copolymers of 3HV and 3HHp as the second block. The block copolymer was shown to have the highest tensile strength and Young's modulus compared with a random copolymer with similar ratio and a blend of homopolymers PHB and PHVHHp with similar ratio. Compared with other commercially available PHA including PHB, PHBV, PHBHHx, and P3HB4HB, the short-chain- and medium-chain-length block copolymer PHB-b-PHVHHp showed differences in terms of mechanical properties and should draw more attentions from the PHA research community. © Springer-Verlag 2010

  13. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, Michael S.; Saunders, Randall

    1997-01-01

    Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.

  14. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    PubMed

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.

  15. Dimensional control of block copolymer nanofibers with a π-conjugated core: crystallization-driven solution self-assembly of amphiphilic poly(3-hexylthiophene)-b-poly(2-vinylpyridine).

    PubMed

    Gwyther, Jessica; Gilroy, Joe B; Rupar, Paul A; Lunn, David J; Kynaston, Emily; Patra, Sanjib K; Whittell, George R; Winnik, Mitchell A; Manners, Ian

    2013-07-08

    With the aim of accessing colloidally stable, fiberlike, π-conjugated nanostructures of controlled length, we have studied the solution self-assembly of two asymmetric crystalline-coil, regioregular poly(3-hexylthiophene)-b-poly(2-vinylpyridine) (P3HT-b-P2VP) diblock copolymers, P3HT23-b-P2VP115 (block ratio=1:5) and P3HT44-b-P2VP115 (block ratio=ca. 1:3). The self-assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu-catalyzed azide-alkyne cycloaddition reactions of azide-terminated P2VP and alkyne end-functionalized P3HT homopolymers. When the block copolymers were self-assembled in a solution of a 50% (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP-selective alcoholic solvent (MeOH3 μm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain-extended P3HT blocks. The crystallinity and π-conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide-angle X-ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23-b-P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23-b-P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (L(w)/L(n) < 1.11) and

  16. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    DOEpatents

    Russell, Thomas P.; Hong, Sung Woo; Lee, Doug Hyun; Park, Soojin; Xu, Ting

    2015-10-13

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  17. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    SciTech Connect

    Russell, Thomas P.; Hong, Sung Woo; Lee, Dong Hyun

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  18. Topological Semimetals Studied by Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Okugawa, Ryo; Murakami, Shuichi

    2018-04-01

    In topological semimetals such as Weyl, Dirac, and nodal-line semimetals, the band gap closes at points or along lines in k space which are not necessarily located at high-symmetry positions in the Brillouin zone. Therefore, it is not straightforward to find these topological semimetals by ab initio calculations because the band structure is usually calculated only along high-symmetry lines. In this paper, we review recent studies on topological semimetals by ab initio calculations. We explain theoretical frameworks which can be used for the search for topological semimetal materials, and some numerical methods used in the ab initio calculations.

  19. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there

  20. Spectral monitoring of AB Aur

    NASA Astrophysics Data System (ADS)

    Rodríguez Díaz, L. F.; Oostra, B.

    2017-07-01

    The Astronomical Observatory of the Universidad de los Andes in Bogotá, Colombia, did a spectral monitoring during 2014 and 2015 to AB Aurigae, the brightest Herbig Ae/be star in the northern hemisphere. The aim of this project is applying spectral techniques, in order to identify specific features that could help us not only to understand how this star is forming, but also to establish a pattern to explain general star formation processes. We have recorded 19 legible spectra with a resolving power of R = 11,0000, using a 40 cm Meade telescope with an eShel spectrograph, coupled by a 50-micron optical fiber. We looked for the prominent absorption lines, the Sodium doublet at 5890Å and 5896Å, respectively and Magnesium II at 4481Å; to measure radial velocities of the star, but, we did not find a constant value. Instead, it ranges from 15 km/s to 32 km/s. This variability could be explained by means of an oscillation or pulsation of the external layers of the star. Other variabilities are observed in some emission lines: Hα, Hβ, He I at 5876Å and Fe II at 5018Å. It seems this phenomenon could be typical in stars that are forming and have a circumstellar disk around themselves. This variability is associated with the nonhomogeneous surface of the star and the interaction that it has with its disk. Results of this interaction could be seen also in the stellar wind ejected by the star. More data are required in order to look for a possible period in the changes of radial velocity of the star, the same for the variability of He I and Fe II, and phenomena present in Hα. We plan to take new data in January of 2017.