Ab Initio Electronic Relaxation Times and Transport in Noble Metals
NASA Astrophysics Data System (ADS)
Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.
Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.
Ab initio electronic properties of dual phosphorus monolayers in silicon
2014-01-01
In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device components are calculated. PMID:25246862
Ab initio study of hot electrons in GaAs.
Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G
2015-04-28
Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287
Ab initio electronic stopping power of protons in bulk materials
NASA Astrophysics Data System (ADS)
Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia
2016-01-01
The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.
Ab initio studies of phoshorene island single electron transistor.
Ray, S J; Venkata Kamalakar, M; Chowdhury, R
2016-05-18
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications. PMID:27093536
Ab initio studies of phosphorene island single electron transistor
NASA Astrophysics Data System (ADS)
Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.
2016-05-01
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.
Manson, S.T.; Miller, J.H.
1987-01-01
Ab initio calculations of single and double differential cross sections for ionization by fast, charged particles within the framework of the Born approximation are presented. In addition, a semi-empirical method based on the asymptotic Bethe-Born expansion is also discussed. Both are applied to ionization of helium by electrons and protons in an effort to assess their accuracy and validity. Agreement with experiment is quite good. The implications for other targets is discussed.
Ab initio electronic structure study for TTF-TCNQ under uniaxial compression
NASA Astrophysics Data System (ADS)
Ishibashi, Shoji; Hashimoto, Tamotsu; Kohyama, Masanori; Terakura, Kiyoyuki
2004-04-01
We have investigated the electronic structure of TTF-TCNQ under uniaxial compression with ab initio plane-wave pseudopotential calculations within the local-density approximation and generalized gradient approximation. Depending on the compression direction, the constituent molecules are deformed in different ways. Along with these structural deformations, quasi-one-dimensional Fermi surfaces show dramatic changes in their shapes and sizes.
Palummo, Maurizia; Hogan, Conor; Sottile, Francesco; Bagalá, Paolo; Rubio, Angel
2009-08-28
We present a theoretical investigation of electronic and optical properties of free-base porphyrins based on density functional theory and many-body perturbation theory. The electronic levels of free-base porphine (H(2)P) and its phenyl derivative, free-base tetraphenylporphyrin (H(2)TPP) are calculated using the ab initio GW approximation for the self-energy. The approach is found to yield results that compare favorably with the available photoemission spectra. The excitonic nature of the optical peaks is revealed by solving the Bethe-Salpeter equation, which provides an accurate description of the experimental absorption spectra. The lowest triplet transition energies are in good agreement with the measured values. PMID:19725603
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
NASA Astrophysics Data System (ADS)
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.; Tratnyek, Paul G.
2002-12-17
Substituted chloromethyl radicals and anions are potential intermediates in the reduction of substituted chlorinated methanes (CHxCl3-xL, with L- ) F-, OH-, SH-, NO3 -, HCO3 - and (x 0-3). Thermochemical properties, Hf (298.15 K), S(298.15 K,1 bar), and GS(298.15 K, 1 bar), were calculated by using ab initio electronic structure methods for the substituted chloromethyl radicals and anions: CHyCl2-yL and CHyCl2-yL-, for y 0-2. In addition, thermochemical properties were calculated for the aldehyde, ClHCO, and the gemchlorohydrin anions, CCl3O-, CHCl2O-, and CH2ClO-. The thermochemical properties of these additional compounds were calculated because the nitrate-substituted compounds, CHyCl2-y(NO3) and CHyCl2-y(NO3)-,
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS
Turchi, P A
2004-04-14
Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.
Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.
Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya
2016-12-01
An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range. PMID:26768147
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per
2006-09-01
We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.
NASA Astrophysics Data System (ADS)
Zeng, Xiancheng; Hu, Hao; Hu, Xiangqian; Cohen, Aron J.; Yang, Weitao
2008-03-01
Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H2O)62+/3+ and Ru(H2O)62+/3+. The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.
Surface electron density models for accurate ab initio molecular dynamics with electronic friction
NASA Astrophysics Data System (ADS)
Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.
2016-06-01
Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.
Yamaji, Youhei
2015-12-31
Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.
Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2
NASA Technical Reports Server (NTRS)
Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.
1976-01-01
The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.
Kurova, N. V. Burdov, V. A.
2013-12-15
The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.
Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.
Zhang, Dawei; Liu, Chungen
2016-04-12
The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems. PMID:26963572
Ab initio study on electronically excited states of lithium isocyanide, LiNC
NASA Astrophysics Data System (ADS)
Yasumatsu, Hisato; Jeung, Gwang-Hi
2014-01-01
The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ˜10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.
Holst, Bastian; French, Martin; Redmer, Ronald
2011-06-15
Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.
Electronic and transport properties edge functionalized graphene nanoribbons-An ab initio approach
Chauhan, Satyendra Singh; Srivastava, Pankaj; Shrivastva, A. K.
2014-04-24
With the help of ab initio approach we have investigated the electronic and transport properties of edge functionalized zigzag graphene nanoribbons using density functional theory. We have studied the energetic stability and Fermi energy of ZGNRs. We have reported that the edge functionalization of zigzag graphene nanoribbons can break the degeneracy that can be used to promote the onset of a semiconducting to metal transition or a half metal to semiconducting state. The edge functionalization also promotes a metal-semimetal transition. It has also been observed that the transmission spectrum of the edge functionalized ZGNRs are different from those of pristine.
NASA Astrophysics Data System (ADS)
Faghaninia, Alireza; Ager, Joel W.; Lo, Cynthia S.
2015-06-01
Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy—particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n -type semiconductors, by explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain the perturbation to the electron distribution—resulting from the dominant scattering mechanisms—and use this to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT, we accurately calculate electrical transport properties of the compound n -type semiconductors, GaAs and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards a fully ab initio carrier transport model that is valid in all compound semiconductors.
Ab initio determination of effective electron-phonon coupling factor in copper
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-04-01
The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean
2015-02-09
In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser,more » electron and ion irradiations.« less
Ab initio investigation of electronic properties of the magnesium hydride molecular ion.
Khemiri, Noura; Dardouri, Riadh; Oujia, Brahim; Gadéa, Florent Xavier
2013-09-12
In this work, adiabatic potential energy curves, spectroscopic constants, dipole moments, and vibrational levels for numerous electronic states of magnesium hydride molecular ion (MgH(+)) are computed. These properties are determined by the use of an ab initio method involving a nonempirical pseudopotential for the magnesium core (Mg), the core polarization potential (CPP), the l-dependent cutoff functions and the full valence configuration interaction (FCI). The molecular ion is thus treated as a two-electron system. Our calculations on the MgH(+) molecular ion extend previous theoretical works to numerous electronic excited states in the various symmetries. A good agreement with the available theoretical and experimental works is obtained for the spectroscopic constants, the adiabatic potential energy curves, and the dipole moments for the lowest states of MgH(+). PMID:23944679
Ab Initio Infrared Spectra and Electronic Response Calculations for the Insulating Phases of VO2
NASA Astrophysics Data System (ADS)
Hendriks, Christopher; Huffman, Tyler; Walter, Eric; Qazilbash, Mumtaz; Krakauer, Henry
Previous studies have shown that, under doping or tensile strain and upon heating, the well-known vanadium dioxide (VO2) transition from an insulating monoclinic (M1) to a metallic rutile (R) phase progresses through a triclinic symmetry (T) phase and a magnetic monoclinic phase (M2), both of which are insulating. Structurally, this progression from M1 to R through T and M2 can be characterized by the progressive breaking of the V dimers. Investigation of the effect of these structural changes on the insulating phases of VO2 may help resolve questions surrounding the long-debated issue of the respective roles of electronic correlation and Peierls mechanisms in driving the MIT. We investigated electronic and vibrational properties of the insulating phases of VO2 in the framework of DFT+U. We will present ab initio calculations of infrared spectra and optical electronic responses for the insulating phases and compare these to available experimental measurements. Supported by ONR.
An ab initio model for the modulation of galactic cosmic-ray electrons
Engelbrecht, N. E.; Burger, R. A.
2013-12-20
The modulation of galactic cosmic-ray electrons is studied using an ab initio three-dimensional steady state cosmic-ray modulation code in which the effects of turbulence on both the diffusion and drift of these cosmic-rays are treated as self-consistently as possible. A significant refinement is that a recent two-component turbulence transport model is used. This model yields results in reasonable agreement with observations of turbulence quantities throughout the heliosphere. The sensitivity of computed galactic electron intensities to choices of various turbulence parameters pertaining to the dissipation range of the slab turbulence spectrum, and to the choice of model of dynamical turbulence, is demonstrated using diffusion coefficients derived from the quasi-linear and extended nonlinear guiding center theories. Computed electron intensities and latitude gradients are also compared with spacecraft observations.
Atomic and Electronic Structures of C_60+BN Nanopeapods from ab initio Pseudopotential Calculations
NASA Astrophysics Data System (ADS)
Trave, Andrea; Ribeiro, Filipe; Louie, Steven G.; Cohen, Marvin L.
2004-03-01
Nanopeapods are structures of nanometric size consisting of an external carbon nanotube encapsulating a chain or complex array of fullerenes. Recent calculations and experiments have proven that nanopeapods can be obtained assembling fullerenes within boron nitride nanotubes, creating novel materials of possible interest for electronic transport applications. To improve the understanding of the properties of these composite systems, as compared to empty nanotubes and carbon nanopeapods, ab-initio total energy calculations have been performed within the pseudopotential Density Functional Theory in local density approximation. Results of these calculations on the energetics and geometrical deformations involved in the encapsulation will be presented, followed by a discussion of the consequences on the electronic structures of these systems, with particular focus on aspects relevant to electronic transport phenomena. This work is supported by NFS (Grant DMR00-87088) and DOE (Contract DE-AC03-76SF00098), using computational resources at NERSC and NPACI.
Electronic states of lithium passivated germanium nanowires: An ab-initio study
Trejo, A.; Carvajal, E.; Vázquez-Medina, R.; Cruz-Irisson, M.
2014-05-15
A study of the electronic and structural properties of germanium nanowires (GeNWs) was performed using the ab-initio Density Functional Theory within the generalized gradient approximation where electron-ion interactions are described by ultrasoft pseudopotentials. To study the effects of the lithium in the surface of the GeNWs we compare the electronic band structures of Hydrogen passivated GeNWs with those of partial and totally Li passivated GeNWs. The nanowires were constructed in the [001], [111] and [110] directions, using the supercell model to create different wire diameters. The results show that in the case of partial Li passivation there are localized orbitals near the valence band maximum, which would create a p-doped-kind of state. The total Li passivation created metallic states for all the wires.
NASA Astrophysics Data System (ADS)
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
Ab initio phonon coupling and optical response of hot electrons in plasmonic metals
NASA Astrophysics Data System (ADS)
Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.
2016-08-01
Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.
Klevets, Ivan; Bryk, Taras
2014-12-07
Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed.
Ab-initio calculations of electronic, transport, and structural properties of boron phosphide
Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D.
2014-09-14
We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.
Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules
NASA Astrophysics Data System (ADS)
Zheng, Haoping
The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with precise calculations. Thus the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule has become a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), will be presented in this paper. The reactive sites of the inhibitors are determined and explained. The accuracy of structure determination of the inhibitors are tested theoretically.
Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules
NASA Astrophysics Data System (ADS)
Zheng, Haoping
2003-04-01
The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.
Ab initio spectroscopic characterization of borane, BH, in its X1Σ+ electronic state.
Koput, Jacek
2015-11-15
The accurate potential energy and electric dipole moment functions of borane, BH, in its X1Σ+ electronic state have been determined from ab initio calculations using the multireference averaged coupled-pair functional method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, adiabatic, and nonadiabatic effects were discussed. Vibration-rotation energy levels of the (11)BH, (11)BD, (10)BH, and (10)BD isotopologues were predicted to near "spectroscopic" accuracy. For the main isotopologue (11)BH, the adiabatic dissociation energy D0 and the effective equilibrium internuclear distance r(e) were predicted to be 28,469 ± 10 cm(-1) and 1.23214 ± 0.0001 Å, respectively. PMID:26444679
Ab Initio Dynamics of AN Electron Interacting with a Lattice Defect
NASA Astrophysics Data System (ADS)
Ivanov, Vsevolod; Bernardi, Marco
We study the scattering process of a charge carrier with a defect in a range of bulk and 2D materials. The scattering potential is obtained using density functional theory, the carrier is represented by a gaussian wavepacket, and the dynamics is carried out with a split-operator technique. Our parallel code can model the electron-defect scattering processes in real space and time, with an electron wavepacket of realistic size (100 - 1000 unit cells) and an accuracy typical of ab initio calculations. We apply our approach to model a carrier scattering with a vacancy in silicon and an impurity in monolayer MoS2, obtaining angular dependent scattering cross sections and resonant states.
Ab initio electron scattering cross-sections and transport in liquid xenon
NASA Astrophysics Data System (ADS)
Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.
2016-09-01
Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac–Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10‑4–1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.
Ab-initio Calculations of Electronic Properties of Boron Phosphide (BP)
NASA Astrophysics Data System (ADS)
Ejembi, John; Franklin, Lashaunda; Malozovsky, Yuriy; Bagayoko, Diola
2014-03-01
We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende boron phosphide (BP). We employed a local density approximation (LDA) potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss our preliminary results for the indirect band gap, from Γ to X, of Boron Phosphide. We also report calculated electron and hole effective masses for Boron Phosphide and total (DOS) and partial (pDOS) density of states. Acknowledgments: This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Booske, John H.; Morgan, Dane
2010-02-01
Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of
Ab initio study of pressure induced structural and electronic properties in TmPo
Makode, Chandrabhan Pataiya, Jagdish; Sanyal, Sankar P.; Panwar, Y. S.; Aynyas, Mahendra
2015-06-24
We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.
Yu, Dequan; Chen, Jun; Cong, Shulin; Sun, Zhigang
2015-12-17
The FH2– anion has a stable structure that resembles a configuration in the vicinity of the transition state for neutral reaction F + H2 → HF + H. Electron photodetachment spectra of the FH2– anion reveal the neutral reaction dynamics in the critical transition-state region. Accurate quantum dynamics simulations of the photodetachment spectra using highly accurate new ab initio potential energy surfaces for both anionic and neutral FH2 are performed and compared with all available experimental results. The results provide reliable interpretations for the experimental observations of FH2– photoelectron detachment and reveal a detailed picture of the molecular dynamics around the transition state of the F + H2 reaction. The latest high-resolution photoelectron detachment spectra [Kim et al. Science, 2015, 349, 510-513] confirm the high accuracy of our new potential energy surface for describing the resonance-enhanced reactivity of the neutral F + H2 reaction. PMID:26550683
NASA Astrophysics Data System (ADS)
Kang, Youngho; Jeon, Sang Ho; Cho, Youngmi; Han, Seungwu
2016-01-01
We investigate the vertical ionization potential (IP) and electron affinity (EA) of organic semiconductors in the solid state that govern the optoelectrical property of organic devices using a fully ab initio way. The present method combines the density functional theory and many-body perturbation theory based on G W approximations. To demonstrate the accuracy of this approach, we carry out calculations on several prototypical organic molecules. Since IP and EA depend on the molecular orientation at the surface, the molecular geometry of the surface is explicitly considered through the slab model. The computed IP and EA are in reasonable and consistent agreements with spectroscopic data on organic surfaces with various molecular arrangements. However, the transport gaps are slightly underestimated in calculations, which can be explained by different screening effects between surface and bulk regions.
Electron-scattering form factors for 6Li in the ab initio symmetry-guided framework
NASA Astrophysics Data System (ADS)
Dytrych, T.; Hayes, A. C.; Launey, K. D.; Draayer, J. P.; Maris, P.; Vary, J. P.; Langr, D.; Oberhuber, T.
2015-02-01
We present an ab initio symmetry-adapted no-core shell-model description for 6Li. We study the structure of the ground state of 6Li and the impact of the symmetry-guided space selection on the charge density components for this state in momentum space, including the effect of higher shells. We accomplish this by investigating the electron scattering charge form factor for momentum transfers up to q ˜4 fm-1 . We demonstrate that this symmetry-adapted framework can achieve significantly reduced dimensions for equivalent large shell-model spaces while retaining the accuracy of the form factor for any momentum transfer. These new results confirm the previous outcomes for selected spectroscopy observables in light nuclei, such as binding energies, excitation energies, electromagnetic moments, E 2 and M 1 reduced transition probabilities, as well as point-nucleon matter rms radii.
Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization
NASA Astrophysics Data System (ADS)
Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng
With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.
NASA Astrophysics Data System (ADS)
Singh, Ram Sevak; Solanki, Ankit
2016-03-01
Silicon carbide nanotubes (SiCNTs) have received a great deal of scientific and commercial interest due to their intriguing properties that include high temperature stability and electronic properties. For their efficient and widespread applications, tuning of electronic properties of SiCNTs is an attractive study. In this article, electronic properties of sulphur doped (S-doped) zigzag (9 , 0) SiCNT is investigated by ab initio calculations based on density functional theory (DFT). Energy band structures and density of states of fully optimized undoped and doped structures with varying dopant concentration are calculated. S-doped on C-site of the nanotube exhibits a monotonic reduction of energy gap with increase in dopant concentration, and the nanotube transforms from semiconductor to metal at high dopant concentration. In case of S-doped on Si-site doping has less influence on modulating electronic structures, which results in reduction of energy gap up to a moderate doping concentration. Importantly, S preferential substitutes of Si-sites and the nanotube with S-doped on Si-site are energetically more stable as compared to the nanotube with S-doped on C-site. The study of tunable electronic properties in S-doped SiCNT may have potential in fabricating nanoelectronic devices, hydrogen storage and gas sensing applications.
Ab initio calculation of the electronic absorption spectrum of liquid water
NASA Astrophysics Data System (ADS)
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-01
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Ab initio calculation of the electronic absorption spectrum of liquid water
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Hoy, Erik P.; Mazziotti, David A.
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.
Hoy, Erik P; Mazziotti, David A
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory. PMID:26277123
Time-domain ab initio studies of photoinduced electron dynamics in nanoscale semiconductors
NASA Astrophysics Data System (ADS)
Prezhdo, Oleg
2010-03-01
Design of novel materials for energy harvesting and storage requires an understanding of the dynamical response on the nanometer scale. We have developed state-of-the-art non-adiabatic molecular dynamics techniques and implemented them within time-dependent density functional theory in order to model the ultrafast processes in these materials at the atomistic level and in real time. Quantum dots (QD) are quasi-zero dimensional structures with a unique combination of molecular and bulk properties. As a result, QDs exhibit new physical phenomena such as the electron-phonon relaxation bottleneck and carrier multiplication, which have the potential to greatly increase solar cell efficiencies. Photoinduced charge separation across molecular/bulk interfaces drives the dye-sensitized semiconductor solar cell. A subject of active research, it creates many challenges due to the stark differences between the quantum states of molecular and periodic systems, as well as the different sets of theories and experimental tools used by physicists and chemists. Our time-domain atomistic simulations create a detailed picture of these materials. By comparing and contrasting their properties, we provide a unifying description of quantum dynamics on the nanometer scale, resolve several highly debated issues, and generate theoretical guidelines for development of novel systems for energy harvesting and storage. [4pt] [1] O. V. Prezhdo ``Photoinduced dynamics in semiconductor quantum-dots: insights from time-domain ab initio studies'', Acc. Chem. Res., available online.[0pt] [2] O. V. Prezhdo, W. R. Duncan, V. V. Prezhdo, ``Photoinduced electron dynamics at semiconductor interfaces: a time-domain ab initio prospective'', Prog. Surf. Science, 84, 39 (2009).[0pt] [3] O. V. Prezhdo, et al., ``Dynamics of the photoexcited electron at the chromophore-semiconductor interface'', Acc. Chem. Res., 41, 339 (2008).[0pt] [4] W. R. Duncan, O. V. Prezhdo, ``Theoretical studies of photoinduced electron
Nekrashevich, S. S. Gritsenko, V. A.; Klauser, R.; Gwo, S.
2010-10-15
Charge transfer {Delta}Q = 0.35e at the Si-N bond in silicon nitride is determined experimentally using photoelectron spectroscopy, and the ionic formula of silicon nitride Si{sub 3}{sup +1.4}N{sub 4}{sup -1.05} is derived. The electronic structure of {alpha}-Si{sub 3}N{sub 4} is studied ab initio using the density functional method. The results of calculations (partial density of states) are compared with experimental data on X-ray emission spectroscopy of amorphous Si{sub 3}N{sub 4}. The electronic structure of the valence band of amorphous Si{sub 3}N{sub 4} is studied using synchrotron radiation at different excitation energies. The electron and hole effective masses m{sub e}{sup *} {approx} m{sub h}{sup *} {approx} 0.5m{sub e} are estimated theoretically. The calculated values correspond to experimental results on injection of electrons and holes into silicon nitride.
Ab initio calculations of the mechanical and electronic properties of strained Si nanowires
NASA Astrophysics Data System (ADS)
Leu, Paul W.; Svizhenko, Alexei; Cho, Kyeongjae
2008-06-01
This paper reports a systematic study of the mechanical and electronic properties of strained small diameter (0.7-2.6 nm) silicon nanowires (Si NWs) using ab initio density functional theory calculations. The values of Young’s modulus, Poisson ratio, band gap, effective mass, work function, and deformation potentials are calculated for ⟨110⟩ and ⟨111⟩ Si NWs. We find that quantum confinement in ⟨110⟩ Si NWs splits conduction band valleys and decreases transport effective mass compared to the bulk case. Consequently, additional tensile strain should not lead to further significant electron mobility improvement. An interesting finding we report in this paper is that under compressive strain, there is a dramatic decrease in deformation potentials of ⟨110⟩ Si NWs, which may result in a strong increase in electron mobilities, despite a concurrent increase in effective mass. We also observe a similar strain-induced counterplay of hole deformation potentials and effective masses for both ⟨110⟩ and ⟨111⟩ Si NWs. Finally, we do not see any significant effect of tensile or compressive strain on electron effective masses and deformation potentials in ⟨111⟩ Si NWs. The sudden changes in effective mass and deformation potentials are concurrent with a change in the conduction and valence band edge states. In ⟨110⟩ NWs, this change corresponds to a transition from direct-to-indirect band gap under strain.
Hegde, Ganesh Bowen, R. Chris
2015-10-15
The accuracy of a single s-orbital representation of Cu towards enabling multi-thousand atom ab initio calculations of electronic structure is evaluated in this work. If an electrostatic compensation charge of 0.3 electron per atom is used in this basis representation, the electronic transmission in bulk and nanocrystalline Cu can be made to compare accurately to that obtained with a Double Zeta Polarized basis set. The use of this representation is analogous to the use of single band effective mass representation for semiconductor electronic structure. With a basis of just one s-orbital per Cu atom, the representation is extremely computationally efficient and can be used to provide much needed ab initio insight into electronic transport in nanocrystalline Cu interconnects at realistic dimensions of several thousand atoms.
NASA Astrophysics Data System (ADS)
Cuong, Nguyen Tien; Mizuta, Hiroshi; Cong, Bach Thanh; Otsuka, Nobuo; Chi, Dam Hieu
2012-09-01
Graphene is a promising candidate as a material used in nano-scale devices because of recent developments in advanced experimental techniques. Motivated by recent successful fabrications of U-shaped graphene channel transistors by using the gallium focused ion beam technology, we have performed ab-initio calculations to investigate the electronic properties and quantum transport in U-shaped graphene nanoribbons. The electronic properties are calculated using a numerical atomic orbital basis set in the framework of the density functional theory. The transport properties are investigated using the non-equilibrium Green's function method. The transmission spectra of U-shaped graphenes are analyzed in order to reveal the quantum transport of the systems. We found that the graphene nanoribbons tend to open a band gap when U-shaped structures are formed in both armchair and zigzag cases. The geometrical structures of U-shaped GNRs had enormous influences on the electron transport around the Fermi energy due to the formation of quasi-bound states at zigzag edges. The obtained results have provided valuable information for designing potential nano-scale devices based on graphenes.
Feng, Wen-Ling; Tian, Shan Xi
2015-03-12
Dissociative electron attachment (DEA) processes of six low-lying conformers (1-6) of dialanine in the gas phase are investigated by using ab initio molecular dynamics simulations. The incoming electron is captured and primarily occupies the virtual molecular orbital π*, which is followed by the different dissociation processes. The electron attachments to conformers 1 and 2 having the stronger N-H···N and O-H···O intramolecular hydrogen bonds do not lead to fragmentations, but two different backbone bonds are broken in the DEAs to conformers 3 (or 4) and 6, respectively. It is interesting that the hydrogen abstraction of -NH from the terminal methyl group -CH3 is found in the roaming dissociation of the temporary anion of conformer 3. The present simulations enable us to have more insights into the peptide backbone bond breaks in the DEA process and demonstrate a promising way toward understanding of the radiation damages of complicated biological system. PMID:25679256
A Simple ab Initio Model for the Hydrated Electron That Matches Experiment.
Kumar, Anil; Walker, Jonathan A; Bartels, David M; Sevilla, Michael D
2015-08-27
Since its discovery over 50 years ago, the "structure" and properties of the hydrated electron have been a subject for wonderment and also fierce debate. In the present work we seriously explore a minimal model for the aqueous electron, consisting of a small water anion cluster embedded in a polarized continuum, using several levels of ab initio calculation and basis set. The minimum energy "zero Kelvin" structure found for any 4-water (or larger) anion cluster, at any post-Hartree–Fock theory level, is very similar to a recently reported embedded-DFT-in-classical-water-MD simulation (Uhlig, Marsalek, and Jungwirth, J. Phys. Chem. Lett. 2012, 3, 3071−3075), with four OH bonds oriented toward the maximum charge density in a small central "void". The minimum calculation with just four water molecules does a remarkably good job of reproducing the resonance Raman properties, the radius of gyration derived from the optical spectrum, the vertical detachment energy, and the hydration free energy. For the first time we also successfully calculate the EPR g-factor and (low temperature ice) hyperfine couplings. The simple tetrahedral anion cluster model conforms very well to experiment, suggesting it does in fact represent the dominant structural motif of the hydrated electron. PMID:26275103
Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study
NASA Astrophysics Data System (ADS)
Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo
2016-07-01
Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.
Ab-Initio Calculations of Electronic Properties of InP and GaP
NASA Astrophysics Data System (ADS)
Malozovsky, Y.; Franklin, L.; Ekuma, E. C.; Zhao, G. L.; Bagayoko, D.
2013-06-01
We present results from ab-initio, self-consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende indium phosphide (InP) and gallium phosphide (GaP). We employed a LDA potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). This method searches for the optimal basis set that yields the minima of the occupied energies. This search entails increases of the size of the basis set and the related modifications of angular symmetry and of radial orbitals. Our calculated, direct band gap of 1.398 eV (1.40 eV), at the Γ point, is in excellent agreement with experimental values, for InP, and our preliminary result for the indirect gap of GaP is 2.135 eV, from the Γ to X high symmetry points. We have also calculated electron and hole effective masses for both InP and GaP. These calculated properties also agree with experimental findings. We conclude that the BZW-EF method could be employed in calculations of electronic properties of high-Tc superconducting materials to explain their complex properties.
ab Initio Diabatic energies and dipole moments of the electronic states of RbLi molecule.
Dardouri, Riadh; Habli, Héla; Oujia, Brahim; Gadéa, Florent Xavier
2013-09-15
For all states dissociating below the ionic limit Li(-) Rb(+) , we perform a diabatic study for (1) Σ(+) electronic states dissociating into Rb (5s, 5p, 4d, 6s, 6p, 5d, 7s, 4f) + Li (2s, 2p, 3s). Furthermore, we present the diabatic results for the 1-11 (3) σ, 1-8 (1,3) Π, and 1-4 (1,3) Δ states. The present calculations on the RbLi molecule are complementary to previous theoretical work on this system, including recently observed electronic states that had not been calculated previously. The calculations rely on ab-initio pseudopotential, core polarization potential operators for the core-valence correlation and full valence configuration interaction approaches, combined to an efficient diabatization procedure. For the low-lying states, diabatic potentials and permanent dipole moments are analyzed, revealing the strong imprint of the ionic state in the (1) Σ(+) adiabatic states. The transition dipole moment is used to evaluate the radiative lifetimes of the vibrational levels trapped in the 2 (1) Σ(+) excited states for the first time. In addition to the bound-bound contribution, the bound-free term has been evaluated using the Franck-Condon approximation and also exactly added to the total radiative lifetime. PMID:23804208
Ab-initio Electronic, Transport and Related Properties of Zinc Blende Boron Arsenide (zb-BAs)
NASA Astrophysics Data System (ADS)
Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola
We present results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide (zb-BAs). We utilized a local density approximation (LDA) potential and the linear combination of atomic orbital (LCAO) formalism. Our computational technique follows the Bagayoko, Zhao, and Williams method, as enhanced by Ekuma and Franklin. Our results include electronic energy bands, densities of states, and effective masses. We explain the agreement between these findings, including the indirect band gap, and available, corresponding, experimental ones. This work confirms the capability of DFT to describe accurately properties of materials, provided the computations adhere to the conditions of validity of DFT [AIP Advances, 4, 127104 (2014)]. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.
Ab initio electron affinity and hyperfine structure constants of ^231Pa:
NASA Astrophysics Data System (ADS)
Dinov, Konstantin D.; Beck, Donald R.
1996-05-01
We have performed valence shell Relativistic Configuration Interaction calculations(Konstantin D. Dinov and Donald R. Beck, Electron affinity and hyperfine structure constants of Pa^-: 7p attachment.) Submitted to Phys. Rev. A for the Electron Affinity (EA) of ^231Pa. Our result of 0.222 eV for the binding energy of the Pa^- 5f^2 6d 7s^2 7p J=6 state is consistent with the experimental yield(X-L. Zhao, M-J. Nadeau, M.A. Garwan, L.R. Kilius and A.E. Litherland, Nuc. Instr. Meth. B 92), 258-64 (1994). Our result for the hyperfine structure constants of Pa^-, is the first available ab initio result. No other bound states were found for the 7p attachment. We didn't find evidence to support possible 5d attachment in this system. This work extends our previous calculations for the Rare Earth negative ions(K.D. Dinov and D.R. Beck, Phys. Rev. A 52) , 2632-37 (1995); K. Dinov and D.R. Beck, Phys. Rev. A 51 (2), 1680-82 (1995); K. Dinov, D.R. Beck and D. Datta, Phys. Rev. A 50 (2), 1144-48 (1994).
PSI3: an open-source Ab Initio electronic structure package.
Crawford, T Daniel; Sherrill, C David; Valeev, Edward F; Fermann, Justin T; King, Rollin A; Leininger, Matthew L; Brown, Shawn T; Janssen, Curtis L; Seidl, Edward T; Kenny, Joseph P; Allen, Wesley D
2007-07-15
PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis-set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file-system-sizes), especially multi-index quantities such as electron repulsion integrals. This platform is useful for the rapid implementation of both standard quantum chemical methods, as well as the development of new models. Features that have already been implemented include Hartree-Fock, multiconfigurational self-consistent-field, second-order Møller-Plesset perturbation theory, coupled cluster, and configuration interaction wave functions. Distinctive capabilities include the ability to employ Gaussian basis functions with arbitrary angular momentum levels; linear R12 second-order perturbation theory; coupled cluster frequency-dependent response properties, including dipole polarizabilities and optical rotation; and diagonal Born-Oppenheimer corrections with correlated wave functions. This article describes the programming infrastructure and main features of the package. PSI3 is available free of charge through the open-source, GNU General Public License. PMID:17420978
A nonlocal, ab initio model of dissociative electron attachment and vibrational excitation of NO
Trevisan, Cynthia S.; Houfek, Karel; Zhang, Zhiyong; Orel, Ann E.; McCurdy, C. William; Rescigno, Thomas N.
2005-02-01
We present the results of an ab initio study of elastic scattering and vibrational excitation of NO by electron impact in the low-energy (0-2 eV) region where the cross sections are dominated by resonance contributions. The 3Sigma-, 1Delta and 1Sigma+ NO- resonance lifetimes are taken from our earlier study [Phys. Rev. A 69, 062711 (2004)], but the resonance energies used here are obtained from new configuration-interaction studies. Here we employ a more elaborate nonlocal treatment of the nuclear dynamics, which is found to remedy the principal deficiencies of the local complex potential model we employed in our earlier study, and gives cross sections in better agreement with the most recent experiments. We also present cross sections for dissociative electron attachment to NO leading to groundstate products. The calculations show that, while the peak cross sections starting from NO in its ground vibrational state are very small, the cross sections are extremely sensitive to vibrational excitation of the target and should be readily observable for target NO molecules excited to v = 10 and above.
NASA Astrophysics Data System (ADS)
Padilha, José Eduardo; Pontes, Renato Borges
2016-01-01
Ab initio electronic structure and transport calculations of 2D hexagonal germanium with four possible structural defects were performed. The considered defects were Stone-Wales (SW), single vacancy (5-9) and two divacancies (5-8-5 and 555-777). We showed that these defects present a local reconstruction that can be clearly identified by STM images. Among the investigated defects, we verified that the SW defect has the lowest formation energy. We showed that in the presence of structural defects the 2D hexagonal germanium maintains its Dirac cone feature only for the single vacancy. The divacancies and the SW defect destroy the linear dispersion relation of the electrons, near the Fermi level, in this system. Moreover, we verified that these defects create scattering centers, which can lead to diminishing of the current by roughly 42% for the Stone-Wales and single vacancy, 55% for the divacancy 5-8-5 and 68% for the 555-777 divacancy.
Ab-Initio Computations of Electronic and Related Properties of cubic Lithium Selenide (Li2Se)
NASA Astrophysics Data System (ADS)
Goita, Abdoulaye; Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola
We present theoretical predictions, from ab-initio, self-consistent calculations, of electronic and related properties of cubic lithium selenide (Li2Se). We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). We performed the computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Our results include electronic energies, total and partial densities of states, effective masses, and the bulk modulus. The theoretical equilibrium lattice constant is 5.882 Å. We found cubic Li2Se to have a direct band gap of 4.363 eV (prediction), at Γ. This gap is 4.065 eV for a room temperature lattice constant of 6.017 Å. The calculated bulk modulus is 31.377 GPa. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.
Ab-initio Calculations of Accurate Electronic Properties of ZnS
NASA Astrophysics Data System (ADS)
Khamala, Bethuel; Franklin, Loushanda; Malozovski, Yuriy; Stewart, Anthony; Bagayoko, Diola; Bagayoko Research Group Team
2014-03-01
We present the results from ab-initio, self consistent, local density approximation (LDA) calculations of the electronic and related properties of zinc-blende zinc sulphide (zb-ZnS). We employed the Ceperley and Alder LDA potential and the linear combination of atomic orbital (LCAO) formalism in our non-relativistic computations. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams method as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method includes a methodical search for the optimal basis set that yields the minima of the occupied energies. This search entails increasing the size of the basis set and related modifications of angular symmetry and of radial orbitals. Our calculated, direct gap of 3.725 eV, at the Γ point, is in excellent agreement with experiment. We have also calculated the total (DOS) and partial (pDOS) densities of states, electron and hole effective masses and total energies that agree very well with available, corresponding experimental results. Acknowledgement: This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.
Ab-initio Calculations of Electronic Properties of InP and GaP
NASA Astrophysics Data System (ADS)
Malozovsky, Yuriy; Franklin, Lashounda; Ekuma, Chinedu; Zhao, Guang-Lin; Bagayoko, Diola
2013-03-01
We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende indium and gallium phosphides (InP & GaP) We employed a local density approximation (LDA) potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). This method searches for the optimal basis set that yields the minima of the occupied energies. This search entails methodically increasing the size of the basis set, up to the optimal one, and the accompanying enrichment of angular symmetry and of radial orbitals. Our calculated, direct band gap of 1.398 eV (1.40 eV) for InP, at the Γ point, is in excellent agreement with experimental values. We discuss our preliminary results for the indirect band gap, from Γ to X, of GaP. We also report calculated electron and hole effective masses for both InP and GaP and the total (DOS) and partial (pDOS) densities of states. This work was funded in part by the National Science Foundation and the Louisiana Board of Regents, through LASiGMA and LS-LAMP, [EPS-1003897, No. NSF (2010-15)-RII-SUBR, and HRD-1002541] and by the Louisiana Optical Network Initiative (LONI) at SUBR.
Ab initio prediction of electronic, transport and bulk properties of Li2S
NASA Astrophysics Data System (ADS)
Malozovsky, Yuriy; Franklin, Lashounda; Ekuma, Chinedu; Bagayoko, Diola
2015-08-01
In this paper, we present results from ab initio, self-consistent, local density approximation (LDA) calculations of electronic and related properties of cubic antifluorite (anti-CaF2) lithium sulfide (Li2S). Our nonrelativistic computations implemented the linear combination of atomic orbital (LCAO) formalism following the Bagayoko, Zhao and Williams method, as enhanced by Ekuma and Franklin (BZW-EF). Consequently, using several self-consistent calculations with increasing basis sets, we searched for the smallest basis set that yields the absolute minima of the occupied energies. The outcomes of the calculation with this basis set, called the optimal basis set, have the full physical content of density functional theory (DFT). Our calculated indirect band gap, from Γ to X, is 3.723 eV, for the low temperature experimental lattice constant of 5.689 Å. The predicted indirect band gap of 3.702 eV is obtained for the computationally determined equilibrium lattice constant of 5.651 Å. We have also calculated the total density of states (DOS) and partial densities of states (pDOS), electron and hole effective masses and the bulk modulus of Li2S. Due to a lack of experimental results, most of the calculated ones reported here are predictions for this material suspected of exhibiting a high temperature superconductivity similar to that of MgB2.
Ab initio study of the electronic structures of lithium containing diatomic molecules and ions
NASA Astrophysics Data System (ADS)
Boldyrev, Alexander I.; Simons, Jack; Schleyer, Paul von R.
1993-12-01
Ab initio calculations are used to provide bond lengths, harmonic frequencies, and dissociation energies of low-lying electronic states for LiX, LiX+, and LiX- (with X=Li through F and Na through Cl). Most of these species represent hitherto experimentally unknown molecules or ions, which provides the focus of the work presented here. All of these species are stable to dissociation and the anions are stable to loss of an electron. Differences among the electronic structures of the valence isoelectronic LiX; and HX, LiX+, and HX+; and LiX- and HX- species are analyzed. Optimized geometries, dissociation energies, ionization potentials, and electron affinities were calculated for the following ground states of the respective species: 1Σ+ for Li2(1Σ+g) LiNa, LiBe+, LiBe-, LiMg+, LiMg-, LiF, LiAl, LiS-, and LiCl; 2Σ+ for Li+2(2Σ+g), Li-2(2Σ+u) LiBe, LiB+, LiF-, LiNa+, LiNa-, LiMg, LiAl+, and LiCl-; 2Πr for LiB-, LiAl-; 2Πi for LiO, LiF+, LiS, and LiCl+; 3Πr for LiB, LiC+, and LiSi+; 3Σ- for LiN, LiO+, LiSi-, LiP, and LiS+; 4Σ- for LiC, LiN+, LiN-, LiSi, LiP+, and LiP-; and 5Σ- for LiC-.
Ab initio calculation of structural stability, electronic and optical properties of Ag{sub 2}Se
Rameshkumar, S.; Jayalakshmi, V.; Jaiganesh, G.; Palanivel, B.
2015-06-24
The structural stability, electronic and optical properties of Ag{sub 2}Se compound is studied using ab initio packages. Ag{sub 2}Se is found to crystallize in orthorhombic structure with two different space groups i.e. P2{sub 1}2{sub 1}2{sub 1} (No. 19) and P222{sub 1} (No. 17). For this compound in these two space groups, the total energy has been computed as a function of volume. Our calculated results suggest that the P2{sub 1}2{sub 1}2{sub 1}–phase is more stable than that of the P222{sub 1}–phase. The band structure calculation show that Ag{sub 2}Se is semimetallic with an overlap of about 0.014 eV in P2{sub 1}2{sub 1}2{sub 1}–phase whereas is metallic in nature in P222{sub 1}–phase. Moreover, the optical properties including the dielectric function, energy loss spectrum are obtained and analysed.
Ab-initio Calculations of Accurate Electronic Properties of Wurzite AlN
NASA Astrophysics Data System (ADS)
Nwigboji, Ifeanyi; Malozovsky, Yuriy; Bagayoko, Diola; Bagayoko Research Group Team
2014-03-01
We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of wurtzite Aluminum Nitride (w-AlN). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbital (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams' method as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method verifiably obtains the minima of the occupied energies; these minima provide the most variationally and physically valid density functional theory (DFT) description of the ground states of materials under study. Our preliminary results for w-AlN show that w-AlN has a direct band gap of 5.82 eV at the Γ point. The preliminary energy bands were obtained with a basis set comprising 48 functions. None of the several, larger basis sets tested to date led to occupied energies lower than those obtained with the above 48. While most previous LDA calculations are 2 eV smaller or more than the experimental value of 5.9 eV that is in excellent agreement with our finding, considering the typical experimental uncertainty of 0.2 eV for absorption measurements on AlN. We also discuss our calculated density of states (DOS) and partial densities of states (pDOS).
Borges, P. D. E-mail: lscolfaro@txstate.edu; Scolfaro, L. E-mail: lscolfaro@txstate.edu
2014-12-14
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
NASA Astrophysics Data System (ADS)
Matsuda, Yuki
This dissertation focuses on ab-initio quantum mechanical calculations of nanoelectronics in three research topics: contact resistance properties of carbon nanotubes and graphenes (Chapters 1 through 3), electrical properties of carbon nanotubes (Chapter 4) and silicon nanowires (Chapter 5). Through all the chapters, the aim of the research is to provide useful guidelines for experimentalists. Chapter 1 presents the contact resistance of metal electrode-carbon nanotube and metal electrode-graphene interfaces for various deposited metals, based on first-principles quantum mechanical density functional and matrix Green's function methods. Chapters 2 and 3 describe inventive ways to enhance contact resistance properties as well as mechanical stabilities using "molecular anchors" (Chapter 2) or using "end-contacted" (or end-on) electrodes (Chapter 3). Chapters 1 through 3 also provide useful guidelines for nanotube assembly process which is one of the main obstacles in nanoelectronics. Chapter 4 shows accurate and detailed band structure properties of single-walled carbon nanotubes using B3LYP hybrid functional, which are critical parameters in determining the electronic properties such as small band gaps (˜0.1 eV) and effective masses. Chapter 5 details both structural and electronic properties of silicon nanowires. These results lead to the findings controlling the diameter and surface coverage by adsorbates (e.g., hydrogen) of silicon nanowires can be effectively used to optimize their properties for various applications. All the theoretical results are compared with other theoretical studies and experimental data. Notably, electronic studies using B3LYP show excellent agreement with experimental studies quantitatively, which previous quantum mechanical calculations had failed. These studies show how quantum mechanical predictions of complex phenomena can be effectively investigated computationally in nanomaterials and nanodevices. Given the difficulty, expense
Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes
NASA Astrophysics Data System (ADS)
Groth, S.; Schoof, T.; Dornheim, T.; Bonitz, M.
2016-02-01
The uniform electron gas (UEG) at finite temperature is of key relevance for many applications in the warm dense matter regime, e.g., dense plasmas and laser excited solids. Also, the quality of density functional theory calculations crucially relies on the availability of accurate data for the exchange-correlation energy. Recently, results for N =33 spin-polarized electrons at high density, rs=r ¯/aB≲4 , and low temperature have been obtained with the configuration path integral Monte Carlo (CPIMC) method [T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015), 10.1103/PhysRevLett.115.130402]. To achieve these results, the original CPIMC algorithm [T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011), 10.1002/ctpp.201100012] had to be further optimized to cope with the fermion sign problem (FSP). It is the purpose of this paper to give detailed information on the manifestation of the FSP in CPIMC simulations of the UEG and to demonstrate how it can be turned into a controllable convergence problem. In addition, we present new thermodynamic results for higher temperatures. Finally, to overcome the limitations of CPIMC towards strong coupling, we invoke an independent method—the recently developed permutation blocking path integral Monte Carlo approach [T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015), 10.1063/1.4936145]. The combination of both approaches is able to yield ab initio data for the UEG over the entire density range, above a temperature of about one half of the Fermi temperature. Comparison with restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013), 10.1103/PhysRevLett.110.146405] allows us to quantify the systematic error arising from the free particle nodes.
NASA Astrophysics Data System (ADS)
Yoon, Sangmoon; Jin, Kyoungsuk; Kang, Seoung-Hun; Nam, Ki Tae; Kim, Miyoung; Kwon, Young-Kyun
Manganese oxide nanoparticles have attracted a lot of attentions as a promising candidate for next-generation catalyst. Therefore, understanding the electronic structure of manganese oxide in room temperature is highly required for the rational design of catalysts. We study the effects of paramagnetism and electron correlations on the electronic structure of MnO using ab initio density functional theory. Spin configurations of paramagnetism are postulated as the ensemble average of various spin disorders. Each initial disordered spin configuration is randomly generated with two constraints on magnetic local moments. We first investigate the influence of magnetic ordering on the elctronic structure of MnO using noncollinear spin calculations and find that the magnetic disorders make valence band maximum more delocalized. Moreover, we examine the role of electron correlations in the electronic structure of paramagnetic MnO using DFT +U calculations. Strong electron correlations modify not only the size of band gap but also the magnitude of local moments as in the antiferromagnetic MnO. Besides, the initialized spin disorder remains almost unchanged as electron correlation get stronger. Furthermore, our results obtained by considering both strong electron correlation and paramagnetism confirm experimentally-observed oxygen K edge X-ray emission spectra [1] reflecting the feature of valence bands. [1] E. Z. Kurmaev et al., Phys. Rev. B. 77, 165127 (2008).
Quarti, Claudio; Mosconi, Edoardo; De Angelis, Filippo
2015-04-14
The last two years have seen the unprecedentedly rapid emergence of a new class of solar cells, based on hybrid organic-inorganic halide perovskites. The success of this class of materials is due to their outstanding photoelectrochemical properties coupled to their low cost, mainly solution-based, fabrication techniques. Solution processed materials are however often characterized by an inherent flexible structure, which is hardly mapped into a single local minimum energy structure. In this perspective, we report on the interplay between structural and electronic properties of hybrid lead iodide perovskites investigated using ab initio molecular dynamics (AIMD) simulations, which allow the dynamical simulation of disordered systems at finite temperature. We compare the prototypical MAPbI3 (MA = methylammonium) perovskite in its cubic and tetragonal structure with the trigonal phase of FAPbI3 (FA = formamidinium), investigating different starting arrangements of the organic cations. Despite the relatively short time scale amenable to AIMD, typically a few tens of ps, this analysis demonstrates the sizable structural flexibility of this class of materials, showing that the instantaneous structure could significantly differ from the time and thermal averaged structure. We also highlight the importance of the organic-inorganic interactions in determining the fluxional properties of this class of materials. A peculiar spatial localization of the valence and conduction band edges is also found, with a dynamics in the range of 0.1 ps, which is associated with the positional dynamics of the organic cations within the cubo-octahedral perovskite cage. This asymmetry in the spatial localization of the band edges is expected to ease exciton dissociation and assist the initial stages of charge separation, possibly constituting one of the key factors for the impressive photovoltaic performances of hybrid lead-iodide perovskites. PMID:25766785
Tripathi, A.N.; Smith, V.H. Jr. K7L3N6); Kaijser, P.; Siemens, A.G. ); Diercksen, G.H.F. )
1990-03-01
Isotropic scattering functions and Compton profiles together with their directional components for several directions relevant to the molecular structure of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} have been evaluated for {ital ab} {ital initio} self-consistent field and configuration-interaction wave functions. The internally folded density (reciprocal form factor) {ital B}({ital r}) is calculated and discussed as are various momentum expectation values. Comparison is made with available experimental and other theoretical results.
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2016-09-01
Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.
NASA Astrophysics Data System (ADS)
Sobolewski, Andrzej L.; Domcke, Wolfgang
2000-05-01
Ab initio (RHF, CASSCF and CASPT2) calculations in the ground and lowest excited singlet states have been performed on pyrrole and pyrrole-water clusters. Full geometry optimization in the 1πσ ∗ state, which is energetically accessible from the optically allowed 1ππ ∗ state, reveals the flow of the electronic charge from pyrrole towards the water molecules, i.e., the formation of a charge transfer-to-solvent state. The computational results indicate that pyrrole-water clusters are good models for the investigation of the mechanistic details of the electron solvation process occurring upon ultraviolet photoexcitation of organic chromophores in liquid water.
Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method
NASA Astrophysics Data System (ADS)
Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio
2015-04-01
We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.
Combined electron beam imaging and ab initio modeling of T{sub 1} precipitates in Al-Li-Cu alloys
Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.
2011-05-16
Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T{sub 1} precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T{sub 1} structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.
NASA Astrophysics Data System (ADS)
Xavier, F. George D.; Kumar, Sanjay
2010-10-01
Ab initio global adiabatic and quasidiabatic potential energy surfaces of lowest four electronic (1-4 A3″) states of the H++O2 system have been computed in the Jacobi coordinates (R,r,γ) using Dunning's cc-pVTZ basis set at the internally contracted multireference (single and double) configuration interaction level of accuracy, which are relevant to the dynamics studies of inelastic vibrational and charge transfer processes observed in the scattering experiments. The computed equilibrium geometry parameters of the bound [HO2]+ ion in the ground electronic state and other parameters for the transition state for the isomerization process, HOO+⇌OOH+ are in good quantitative agreement with those available from the high level ab initio calculations, thus lending credence to the accuracy of the potential energy surfaces. The nonadiabatic couplings between the electronic states have been analyzed in both the adiabatic and quasidiabatic frameworks by computing the nonadiabatic coupling matrix elements and the coupling potentials, respectively. It is inferred that the dynamics of energy transfer processes in the scattering experiments carried out in the range of 9.5-23 eV would involve all the four electronic states.
Towards Accurate Ab Initio Predictions of the Spectrum of Methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2001-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
Ab initio infrared and Raman spectra
NASA Astrophysics Data System (ADS)
Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.
1983-06-01
We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean
2015-02-09
In this study, the response of titanate pyrochlores (A_{2}Ti_{2}O_{7}, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O_{2}-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations.
da Silva, F Ferreira; Duflot, D; Hoffmann, S V; Jones, N C; Rodrigues, F N; Ferreira-Rodrigues, A M; de Souza, G G B; Mason, N J; Eden, S; Limão-Vieira, P
2015-08-01
We present the first set of ab initio calculations (vertical energies and oscillator strengths) of the valence and Rydberg transitions of the anaesthetic compound halothane (CF3CHBrCl). These results are complemented by high-resolution vacuum ultraviolet photoabsorption measurements over the wavelength range 115-310 nm (10.8-4.0 eV). The spectrum reveals several new features that were not previously reported in the literature. Spin-orbit effects have been considered in the calculations for the lowest-lying states, allowing us to explain the broad nature of the 6.1 and 7.5 eV absorption bands assigned to σ*(C-Br) ← nBr and σ*(C-Cl) ← n(Cl) transitions. Novel absolute photoabsorption cross sections from electron scattering data were derived in the 4.0-40.0 eV range. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of halothane in the upper stratosphere (20-50 km). PMID:26171941
NASA Astrophysics Data System (ADS)
Trevisanutto, Paolo E.; Vignale, Giovanni
2016-05-01
Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is "native" to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory — density functional theory, GW approximation and Bethe-Salpeter equation — are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.
Trevisanutto, Paolo E; Vignale, Giovanni
2016-05-28
Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is "native" to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory - density functional theory, GW approximation and Bethe-Salpeter equation - are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields. PMID:27250294
Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.
2008-05-20
Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.
Ab initio infrared and Raman spectra
NASA Technical Reports Server (NTRS)
Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.
1983-01-01
It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.
Gall, D.; Sta''dele, M.; Ja''rrendahl, K.; Petrov, I.; Desjardins, P.; Haasch, R. T.; Lee, T.-Y.; Greene, J. E.
2001-03-15
Experimental and ab initio computational methods are employed to conclusively show that ScN is a semiconductor rather than a semimetal; i.e., there is a gap between the N 2p and the Sc 3d bands. Previous experimental investigators reported, in agreement with band structure calculations showing a band overlap of 0.2 eV, that ScN is a semimetal while others concluded that it is a semiconductor with a band gap larger than 2 eV. We have grown high quality, single crystalline ScN layers on MgO(001) and on TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. ScN optical properties were determined by transmission, reflection, and spectroscopic ellipsometry while in-situ x-ray and ultraviolet valence band photoelectron spectroscopy were used to determine the density of states (DOS) below the Fermi level. The measured DOS exhibits peaks at 3.8 and 5.2 eV stemming from the N 2p bands and at 15.3 eV due to the N 2s bands. The imaginary part of the measured dielectric function {epsilon}{sub 2} consists of two primary features due to direct X- and {Gamma}-point transitions at photon energies of 2.7 and 3.8 eV, respectively. For comparison, the ScN band structure was calculated using an ab initio Kohn--Sham approach which treats the exchange interactions exactly within density-functional theory. Calculated DOS and the complex dielectric function are in good agreement with our ScN valence-band photoelectron spectra and measured optical properties, respectively. We conclude, combining experimental and computational results, that ScN is a semiconductor with an indirect {Gamma}--X bandgap of 1.3{+-}0.3eV and a direct X-point gap of 2.4{+-}0.3eV.
NASA Astrophysics Data System (ADS)
Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun
2016-02-01
The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
NASA Astrophysics Data System (ADS)
Petit, L.; Paudyal, D.; Mudryk, Y.; Gschneidner, K. A.; Pecharsky, V. K.; Lüders, M.; Szotek, Z.; Banerjee, R.; Staunton, J. B.
2015-11-01
We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f -electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar-1 for GdCd confirmed by our experimental measurements of +1.6 K kbar-1 . Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. Replacing 35% of the Mg atoms with Zn removes this transition, in excellent agreement with long-standing experimental data.
Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W
2016-08-25
Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and
NASA Astrophysics Data System (ADS)
Aarset, Kirsten; Hagen, Kolbjørn; Stølevik, Reidar
1997-09-01
Gas-phase electron diffraction data obtained at 23°C, together with results from ab initio molecular orbital calculations ( {HF}/{6-31 G(d)}). were used to determine the structure and conformational composition of 1,1-dichlorobutane. Of the five distinguishable conformers (AA, G + A, AG +, G + G + and G + G -), the G + A conformer was found to be the low-energy form, and the investigation also indicated that certain amounts of the AA and G + G - conformers might be present. The symbols describing the conformers refer to torsion about the C 1C 2 and C 2C 3 bonds, anti (A) with H 5C 1C 2C 3 and C 1C 2C 3C 4 torsion angles of 180° and gauche (G + or G -) with torsion angles of + 60° or 300° (-60°) respectively. The results for the principal distances ( rg) and angles (∠ α) from the combined electron diffraction/ab initio study for the G + A conformer, with estimated 2σ uncertainties, were as follows: r( C1 C2) = 1.521(4) Å, r( C2 C3) = 1.539(4) Å, r( C3 C4) = 1.546(4) Å, r( C Cl6) = 1.782(3) Å, r( CCl7) = 1.782(3) Å,
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Astrophysics Data System (ADS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Astrophysics Data System (ADS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
Alemany, Manuel M. G.; Longo, Roberto; Gallego, Luis; Gonzales, D. J.; Gonzales, L. E.; Tiago, Murilo L; Chelikowsky, James
2007-01-01
We performed a comprehensive study of the static, dynamic and electronic properties of liquid Pb at T = 650 kelvins, density 0.0309 angstroms^{-3} by means of 216-particle ab initio molecular dynamics simulations based on a real-space implementation of pseudopotentials constructed within density-functional theory. The predicted results and available experimental data are very in good agreement, which confirms the adequacy of this technique to achieve a reliable description of the behavior of liquid metals, including their dynamic properties. Although some of the computed properties of liquid Pb are similar to those of simple liquid metals, others differ markedly. Our results show that an appropriate description of liquid Pb requires the inclusion of relativistic effects in the determination of the pseudopotentials of Pb.
Ab initio structural and electronic analysis of CH3SH self-assembled on a Cu(110) substrate
NASA Astrophysics Data System (ADS)
D'Agostino, S.; Chiodo, L.; Della Sala, F.; Cingolani, R.; Rinaldi, R.
2007-05-01
Ab initio Density Functional Theory calculations are here reported to characterize the adsorption of methanethiol at the Cu(110) surface. Theoretical results suggest that the binding of the adsorbate to the substrate is rather weak and the molecular geometry is correspondingly almost unaffected by the adsorption. Otherwise, when CH3SH deprotonates producing methanethiolate, a stronger chemical bond is realized between the sulfur atom of CH3S radical and Cu surface atoms. A detailed study of structural and electronic properties of methanethiolate on Cu(110) for a p(2×2) and a c(2×2) overlayer structure has been carried out. We find that, in the most stable configuration, the molecule adsorbs in the shortbridge site. The chemical bond arises due to a strong hybridization among p orbitals of sulfur and d states from the substrate, as it is deduced by an analysis of partial densities of states and charge densities.
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.
2000-01-01
The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. Favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH-, SH-, NO3 -, HCO3 -, HSO3 -, HSO4 -, H2PO4 -, and F-) that can occur in natural waters with the chlorinated methanes, CCl4, CCl3H, CCl2H2, and CClH3. The results of this investigation show that nucleophilic substitution reactions of OH-, SH-, HCO3 -, and F- are significantly exothermic for chlorine displacement, NO3 - reactions are slightly exothermic to thermoneutral, HSO3
NASA Astrophysics Data System (ADS)
Pati, Ranjit; Karna, Shashi P.
2002-01-01
The dependence of electron transfer (ET) coupling element, VAB, on the length of rigid-rod-like systems consisting of bicyclo[1.1.1]pentane (BCP), cubane (CUB), and bicyclo[2.2.2]octane (BCO) monomers, has been investigated with the use of ab initio Hartree-Fock (HF) method employing Marcus-Hush two-state (TS) model. The value of VAB decreases exponentially with increase in the number of the cage units of the σ-bonded molecules. The calculated decay constant, β, shows good agreement with previously reported data. For molecular length⩾15 Å, the value of VAB becomes negligibly small, suggesting complete suppression of the through bond direct tunneling contribution to ET process.
Electronic and mechanical properties of ZnX (X = S, Se and Te)--An ab initio study
Verma, Ajay Singh; Sharma, Sheetal; Jindal, Vijay Kumar; Sarkar, Bimal Kumar
2011-12-12
Zinc chalcogenides (ZnX, X = S, Se and Te) have been increasing attention as wide and direct band gap semiconductor for blue and ultraviolet optical devices. This paper analyzes electronic and mechanical properties of these materials by ab initio pseudo-potential method that uses non conserving pseudopotentials in fully nonlocal form, as implemented in SIESTA code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. The calculations are given for band gap, elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), shear modulus, and Young's modulus. The results are in very good agreement with previous theoretical calculations and available experimental data.
Calderín, L; González, L E; González, D J
2009-05-21
We report a study on several static, dynamic, and electronic properties of liquid Hg at room temperature. We have performed ab initio molecular dynamics simulations using Kohn-Sham density functional theory combined with a nonlocal ultrasoft pseudopotential. The calculated static structure shows good agreement with the available experimental data. We present results for the single-particle dynamics, and recent experimental data are analyzed. The calculated dynamic structure factors S(q,omega) fairly agree with their experimental counterparts as measured by inelastic x-ray (and neutron) scattering experiments. The dispersion relation exhibits a positive dispersion, which however is not so marked as suggested by the experiment; moreover, its slope at the long-wavelength limit provides a good estimate of the experimental sound velocity. We have also analyzed the dynamical processes behind the S(q,omega) in terms of a model including a relaxation mechanism with both fast and slow characteristic time scales. PMID:19466841
NASA Astrophysics Data System (ADS)
Mogulkoc, Y.; Ciftci, Y. O.; Kabak, M.; Colakoglu, K.
2014-07-01
The structural, elastic, thermodynamic, electronic and vibrational properties of CsCl-type TbMg have been studied by performing ab initio calculations based on density functional theory using the Vienna Ab initio Simulation Package (VASP). The exchange correlation potential within the generalized-gradient approximation (GGA) of projector augmented wave (PAW) method is used. The calculated structural parameters, such as the lattice constant, bulk modulus, its pressure derivative, formation energy and second-order elastic constants are presented in this paper. The obtained results are compared with related experimental and theoretical studies. The electronic band calculations, total density of states (DOS), partial DOS and charge density are also presented. Formation enthalpy and Cauchy pressure are determined. In order to obtain more information the elastic properties such as Zener anisotropy factor, Poisson’s ratio, Young modulus, isotropic shear modulus, Debye temperature and melting point have been carried out. The elastic constants are calculated in zero and different pressure ranges (0-50 GPa) with bulk modulus. We have performed the thermodynamic properties of TbMg by using quasi-harmonic Debye model. The temperature and pressure variation of the volume, bulk modulus, and thermal expansion coefficient have been predicted over a pressure range of 0-25 GPa for of TbMg. Pressure dependence of the anisotropy factors, Young’s modulus, Poisson’s ratios, bulk modulus and axis compressibility of TbMg are presented along different directions and planes. Finally, the phonon dispersion curves are presented for TbMg.
Ab initio non-relativistic spin dynamics
Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.
2014-12-07
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
Ab initio non-relativistic spin dynamics
NASA Astrophysics Data System (ADS)
Ding, Feizhi; Goings, Joshua J.; Frisch, Michael J.; Li, Xiaosong
2014-12-01
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li3 molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
NASA Astrophysics Data System (ADS)
Subotnik, Joseph
In this talk, I will give a broad overview of our work in nonadiabatic dynamics, i.e. the dynamics of strongly coupled nuclear-electronic motion whereby the relaxation of a photo-excited electron leads to the heating up of phonons. I will briefly discuss how to model such nuclear motion beyond mean field theory. Armed with the proper framework, I will then focus on how to calculate one flavor of electron-phonon couplings, known as derivative couplings in the chemical literature. Derivative couplings are the matrix elements that couple adiabatic electronic states within the Born-Oppenheimer treatment, and I will show that these matrix elements show spurious poles using formal (frequency-independent) time-dependent density functional theory. To correct this TD-DFT failure, a simple approximation will be proposed and evaluated. Finally, time permitting, I will show some ab initio calculations whereby one can use TD-DFT derivative couplings to study electronic relaxation through a conical intersection.
Long, Run; Fang, Weihai; Akimov, Alexey V
2016-02-18
We report ab initio time-domain simulations of nonradiative electron-hole recombination and electronic dephasing in ideal and defect-containing monolayer black phosphorus (MBP). Our calculations predict that the presence of phosphorus divacancy in MBP (MBP-DV) substantially reduces the nonradiative recombination rate, with time scales on the order of 1.57 ns. The luminescence line width in ideal MBP of 150 meV is 2.5 times larger than MBP-DV at room temperature, and is in excellent agreement with experiment. We find that the electron-hole recombination in ideal MBP is driven by the 450 cm(-1) vibrational mode, whereas the recombination in the MBP-DV system is driven by a broad range of vibrational modes. The reduced electron-phonon coupling and increased bandgap in MBP-DV rationalize slower recombination in this material, suggesting that electron-phonon energy losses in MBP can be minimized by creating suitable defects in semiconductor device material. PMID:26821943
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations. PMID:26931704
NASA Astrophysics Data System (ADS)
Polin, Daniel; Ziegler, Joshua; Malozovsky, Yuriy; Bagayoko, Diola
We present the findings of ab-initio calculations of electronic, transport, and structural properties of cubic sodium oxide (Na2O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO). Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). We describe the electronic band structure of Na2O with a direct band gap of 2.22 eV. Our results include predicted values for the electronic band structure and associated energy eigenvalues, the total and partial density of states (DOS and pDOS), the equilibrium lattice constant of Na2O, and the bulk modulus. We have also calculated the electron and holes effective masses in the Γ to L, Γ to X, and Γ to K directions. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.
Ab initio study of the low lying electronic states of ZnF and ZnF-.
Hayashi, Shinsuke; Léonard, Céline; Chambaud, Gilberte
2008-07-28
Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure and of the spectroscopy of the low lying electronic states of the ZnF system. Using effective core pseudopotentials and aug-cc-pVQZ basis sets for both atoms, the potential curves, the dipole moment functions, and the transition dipole moments between relevant electronic states have been calculated at the multireference-configuration-interaction level. The spectroscopic constants calculated for the X(2)Sigma(+) ground state are in good agreement with the most recent theoretical and experimental values. It is shown that, besides the X(2)Sigma(+) ground state, the B(2)Sigma(+), the C(2)Pi, and the D(2)Sigma(+) states are bound. The A(2)Pi state, which has been mentioned in previous works, is not bound but its potential presents a shoulder in the Franck-Condon region of the X(2)Sigma(+) ground state. All of the low lying quartet states are found to be repulsive. The absorption transitions from the v=0 level of the X(2)Sigma(+) ground state toward the three bound states have been evaluated and the spectra are presented. The potential energy of the ZnF(-) molecular anion has been determined in the vicinity of its equilibrium geometry and the electronic affinity of ZnF (EA=1.843 eV with the zero energy point correction) has been calculated in agreement with the photoelectron spectroscopy experiments. PMID:18681652
Saalfrank, Peter; Juaristi, J. I.
2014-12-21
Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.
Tohme, Samir N.; Korek, Mahmoud E-mail: fkorek@yahoo.com; Awad, Ramadan
2015-03-21
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
Tohme, Samir N; Korek, Mahmoud; Awad, Ramadan
2015-03-21
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time. PMID:25796254
NASA Astrophysics Data System (ADS)
Tohme, Samir N.; Korek, Mahmoud; Awad, Ramadan
2015-03-01
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
Li, Zi; Li, Chuanying; Wang, Cong; Zhang, Ping; Kang, Wei
2015-11-15
Ultrafast laser experiments on metals usually induce a high electron temperature and a low ion temperature and, thus, an energy relaxation process. The electron heat capacity and electron-phonon coupling factor are crucial thermal quantities to describe this process. We perform ab initio theoretical studies to determine these thermal quantities and their dependence on density and electron temperature for the metals aluminum and beryllium. The heat capacity shows an approximately linear dependence on the temperature, similar to free electron gas, and the compression only slightly affects the capacity. The electron-phonon coupling factor increases with both temperature and density, and the change observed for beryllium is more obvious than that for aluminum. The connections between thermal quantities and electronic/atomic structures are discussed in detail, and the different behaviors of aluminum and beryllium are well explained.
NASA Astrophysics Data System (ADS)
Li, Zi; Wang, Cong; Kang, Wei; Li, Chuanying; Zhang, Ping
2015-11-01
Ultrafast laser experiments on metals usually induce a high electron temperature and a low ion temperature and, thus, an energy relaxation process. The electron heat capacity and electron-phonon coupling factor are crucial thermal quantities to describe this process. We perform ab initio theoretical studies to determine these thermal quantities and their dependence on density and electron temperature for the metals aluminum and beryllium. The heat capacity shows an approximately linear dependence on the temperature, similar to free electron gas, and the compression only slightly affects the capacity. The electron-phonon coupling factor increases with both temperature and density, and the change observed for beryllium is more obvious than that for aluminum. The connections between thermal quantities and electronic/atomic structures are discussed in detail, and the different behaviors of aluminum and beryllium are well explained.
NASA Astrophysics Data System (ADS)
Souto, J.; Alemany, M. M. G.; Gallego, L. J.; Gonzalez, L. E.; Gonzalez, D. J.
2013-03-01
We perform an ab initio molecular dynamics study of the static, dynamic and electronic properties of the liquid Bi-Pb alloy at three concentrations, including the eutectic one. This alloy is of particular technological interest for its possible use as coolant in fast reactors. Our predictions are in good agreement with the available experimental data. In particular, the computed total static structure factors reproduce accurately the neutron diffraction results, and the predicted adiabatic sound velocity and shear viscosity compare well with the experimental values. The partial dynamic structure factors exhibit clear side peaks indicative of propagating density fluctuations, and the longitudinal and transverse dispersion relations show several branches.The electronic density of states show that the liquid Bi-Pb alloy is a good metal, but with strong deviations from the free-electron parabolic curve. Supported by FIS2008-02490/FIS, FIS2008-04894/FIS, VA068A06, GR120, INCITE09E2R206033ES and INCITE08PXIB206107PR
Chalupský, Jakub Yanai, Takeshi
2013-11-28
The derivation, implementation, and validation of a new approximation to the two-electron spin–orbit coupling (SOC) terms is reported. The approximation, referred to as flexible nuclear screening spin–orbit, is based on the effective one-electron spin–orbit operator and accounts for two-electron SOC effects by screening nuclear charges. A highly flexible scheme for the nuclear screening is developed, mainly using parameterization based on ab initio atomic SOC calculations. Tabulated screening parameters are provided for contracted and primitive Gaussian-type basis functions of the ANO-RCC basis set for elements from H to Cm. The strategy for their adaptation to any other Gaussian basis set is presented and validated. A model to correct for the effect of splitting of transition metal d orbitals on their SOC matrix elements is introduced. The method is applied to a representative set of molecules, and compared to exact treatment and other approximative approaches at the same level of relativistic theory. The calculated SOC matrix elements are in very good agreement with their “exact” values; deviation below 1% is observed on average. The presented approximation is considered to be generally applicable, simple to implement, highly efficient, and accurate.
NASA Astrophysics Data System (ADS)
Chalupský, Jakub; Yanai, Takeshi
2013-11-01
The derivation, implementation, and validation of a new approximation to the two-electron spin-orbit coupling (SOC) terms is reported. The approximation, referred to as flexible nuclear screening spin-orbit, is based on the effective one-electron spin-orbit operator and accounts for two-electron SOC effects by screening nuclear charges. A highly flexible scheme for the nuclear screening is developed, mainly using parameterization based on ab initio atomic SOC calculations. Tabulated screening parameters are provided for contracted and primitive Gaussian-type basis functions of the ANO-RCC basis set for elements from H to Cm. The strategy for their adaptation to any other Gaussian basis set is presented and validated. A model to correct for the effect of splitting of transition metal d orbitals on their SOC matrix elements is introduced. The method is applied to a representative set of molecules, and compared to exact treatment and other approximative approaches at the same level of relativistic theory. The calculated SOC matrix elements are in very good agreement with their "exact" values; deviation below 1% is observed on average. The presented approximation is considered to be generally applicable, simple to implement, highly efficient, and accurate.
Ab initio simulation of the electronic structure of Ta{sub 2}O{sub 5} crystal modifications
Perevalov, T. V. Shaposhnikov, A. V.
2013-06-15
Ab initio simulation of the electronic structure crystalline {beta} and {delta} phases of tantalum(V) oxide (Ta{sub 2}O{sub 5}), representing a promising dielectric material for microelectronics, has been carried out. Both ideal crystals and those with neutral oxygen vacancies in various coordination positions have been studied. The simulation has been performed using the density functional theory with hybrid functionals involving the Hartree-Fock exchange energy. This approach gives a correct description of the bandgap width: 4.1 eV for {beta}-Ta{sub 2}O{sub 5} and 3.1 eV for {delta}-Ta{sub 2}O{sub 5}. The energy levels related to oxygen vacancies in various positions have been determined for the spectra of electron states in {beta}- and {delta}-Ta{sub 2}O{sub 5} polymorphs. It is established that the presence of oxygen vacancies in Ta{sub 2}O{sub 5} crystal modifications leads to the formation of characteristic absorption peaks in their electron energy loss spectra.
Collective rotation from ab initio theory
NASA Astrophysics Data System (ADS)
Caprio, M. A.; Maris, P.; Vary, J. P.; Smith, R.
2015-08-01
Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7-9Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction.
Ab initio nuclear structure theory
NASA Astrophysics Data System (ADS)
Negoita, Gianina Alina
Ab initio no core methods have become major tools for understanding the properties of light nuclei based on realistic nucleon-nucleon (NN) and three-nucleon (NNN) interactions. A brief description is provided for the inter-nucleon interactions that fit two-body scattering and bound state data, as well as NNN interactions. Major new progress, including the goal of applying these interactions to solve for properties of nuclei, is limited by convergence issues. That is, with the goal of obtaining high precision solutions of the nuclear many-body Hamiltonian with no core methods (all nucleons treated on the same footing), one needs to proceed to very large basis spaces to achieve a convergence pattern suitable for extrapolation to the exact result. This thesis investigates (1) the similarity renormalization group (SRG) approach to soften the interaction, while preserving its phase shift properties, and (2) adoption of a realistic basis space using Woods-Saxon (WS) single-particle wavefunctions. Both have their advantages and limitations, discussed here. For (1), SRG was demonstrated by applying it to a realistic NN interaction, JISP16, in a harmonic oscillator (HO) representation. The degree of interaction softening achieved through a regulator parameter is examined. For (2), new results are obtained with the realistic JISP16 NN interaction in ab initio calculations of light nuclei 4He, 6He and 12C, using a WS basis optimized to minimize the ground-state energy within the truncated no core shell model. These are numerically-intensive many-body calculations. Finally, to gain insight into the potential for no core investigations of heavier nuclei, an initial investigation was obtained for the odd mass A = 47 - 49 region nuclei straddling 48Ca. The motivation for selecting these nuclei stems from the aim of preparing for nuclear double beta-decay studies of 48Ca. In these heavier systems, phenomenological additions to the realistic NN interaction determined by previous
Marquardt, Roberto; Sagui, Kenneth; Zheng, Jingjing; Thiel, Walter; Luckhaus, David; Yurchenko, Sergey; Mariotti, Fabio; Quack, Martin
2013-08-15
The analytical, full-dimensional, and global representation of the potential energy surface of NH(3) in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD(T)) and the method of multireference configuration interaction (MRCI). CCSD(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20,000 hc cm(–1). MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10,000 geometries at the CCSD(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r(eq)(NH(3)) ≈ 101.28 pm, α(eq)(NH(3)) ≈ 107.03°, the inversion barrier at r(inv)(NH(3)) ≈ 99.88 pm and 1774 hc cm(–1) above the NH(3) minimum, and dissociation channel energies 41,051 hc cm(–1) (for NH(3) → ((2)B(2))NH(2) + ((2)S(1/2))H) and 38,450 hc cm(–1) (for NH(3) → ((3)Σ(–))NH +((1)Σ(g)(+))H(2)); the average agreement between calculated and experimental vibrational line positions is 11 cm(–1) for (14)N(1)H(3) in the spectral region up to 5000 cm(–1). A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given. PMID:23688044
Bylaska, E.J.; Dixon, D.A.; Felmy, A.R.
2000-01-27
The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH{sup {minus}}, SH{sup {minus}}, NO{sub 3}{sup {minus}}, HCO{sub 3}{sup {minus}}, HSO{sub 3}{sup {minus}}, HSO{sub 4}{sup {minus}}, H{sub 2}PO{sub 4}{sup {minus}}, and F{sup {minus}}) that can occur in natural waters with the chlorinated methanes, CCk{sub 4}, CCl{sub 3}H, CCl{sub 2}H{sub 2}, and CClH{sub 3}. The results of this investigation show that nucleophilic substitution reactions of OH{sup {minus}}, SH{sup {minus}}, HCO{sub 3}{sup {minus}}, and F{sup {minus}} are significantly exothermic for chlorine displacement, NO{sub 3}{sup {minus}} reactions are slightly exothermic to the thermoneutral, HSO{sub 3}{sup {minus}} reactions are slightly endothermic to thermoneutral and HSO{sub 4}{sup {minus}}, and H{sub 2}PO{sub 4}{sup {minus}} reactions are significantly endothermic. In the case of OH{sup {minus}}, SH{sup {minus}}, and F{sup {minus}} where there are limited experimental data, these results agree well with experiment. The results for HCO{sub 3}{sup {minus}} are potentially important given the near ubiquitous occurrence of carbonate species in natural waters. The calculations reveal that the degree of chlorination, with the exception of substitution of OH{sup {minus}}, does not have a large effect on the Gibbs free energies of the substitution reactions. These results demonstrate that ab initio electronic structure methods can be used to calculate the reaction energetics of a potentially large number of organic compounds with other aqueous species in natural waters and can be used to help identify
Newton, M.D.
1980-01-01
Formalisms suitable for calculating the rate of electron exchange between transition metal complexes in aqueous solution are reviewed and implemented in conjunction with ab initio quantum chemical calculations which provide crucial off-diagonal Hamiltonian matrix elements as well as other relevant electronic structural data. Rate constants and activation parameters are calculated for the hex-aquo Fe^{2 +}-Fe^{3+} system, using a simple activated complex theory, a non-adiabatic semi-classical model which includes nuclear tunnelling, and a more detailed quantum mechanical method based on the Golden Rule. Comparisons are made between calculated results and those obtained by extrapolating experimental data to zero ionic strength. All methods yield similar values for the overall rate constant (∾ 0.1 L/(mol-sec)). The experimental activation parameters (δH^{‡} and δS^{‡}) are in somewhat better agreement with the semi classical and quantum mechanical results than with those from the simple activated complex theory, thereby providing some indication that non-adiabaticity and nuclear tunnelling may be important in the Fe^{2+/3+} exchange reaction. It is concluded that a model based on direct metal-metal overlap can account for the observed reaction kinetics provided the reactants are allowed to approach well within the traditional contact distance of 6.9 Å. 6 figures, 7 tables.
Vázquez-Mayagoitia, Alvaro; Huertas, Oscar; Brancolini, Giorgia; Migliore, Agostino; Sumpter, Bobby G; Orozco, Modesto; Luque, F Javier; Di Felice, Rosa; Fuentes-Cabrera, Miguel
2009-10-29
The structural, tautomeric, hydrogen-bonding, stacking, and electronic properties of a seleno-derivative of thymine (T), denoted here as 4SeT and created by replacing O4 in T with Se, are investigated by means of ab initio computational techniques. The structural properties of T and 4SeT are very similar, and the geometrical differences are mainly limited to the adjacent environment of the C-Se bond. The canonical "keto" form is the most stable tautomer, in the gas phase and in aqueous solution, for both T and 4SeT. It is argued that the competition between two opposite trends, i.e., a decrease in the base-pairing ability and an increase of the stacking interaction upon incorporation of 4SeT into a duplex, likely explains the similar experimental melting points of a seleno-derivative duplex (Se-DNA) and its native counterpart. Interestingly, the underlying electronic structure shows that replacement of O4 with Se promotes a reduction in the HOMO-LUMO gap and an increase in interplane coupling, which suggests that Se-DNA could be potentially useful for nanodevice applications. This finding is further supported by the fact that transfer integrals between 4SeT...A stacked base pairs are larger than those determined for similarly stacked natural T...A pairs. PMID:19813710
Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; Martínez, Todd J.; Gordon, Mark S.
2014-10-20
This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less
Ab-initio Calculations of Electronic Properties of AlP, GaP and InP
NASA Astrophysics Data System (ADS)
Malozovsky, Yuriy; Saliev, Azizjon; Franklin, Lashaunda; Ekuma, Chinedu; Zhao, Guang-Lin; Bagayoko, Diola
2014-03-01
We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende aluminum, gallium and indium phosphides (AlP, GaP & InP). We employed a local density approximation (LDA) potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Our calculated, indirect band gap of 2.56 eV for AlP, and of 2.14 eV for GaP, from Γ to X, are in excellent agreement with experimental values. Our calculated direct band gap of 1.40 eV, at Γ -point for InP is also in excellent agreement with experimental value. We also report calculated electron and hole effective masses for AlP, GaP and InP and total (DOS) and partial (pDOS) densities of states. This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.
van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.
2016-01-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375
Ab initio phonon limited transport
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu
We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)
NASA Astrophysics Data System (ADS)
Jakubek, Z. J.; Bunker, P. R.; Zachwieja, M.; Nakhate, S. G.; Simard, B.; Yurchenko, S. N.; Thiel, W.; Jensen, Per
2006-03-01
In this work, the X˜B12 and ÃA12 electronic states of the phosphino (PH2) free radical have been studied by dispersed fluorescence and ab initio methods. PH2 molecules were produced in a molecular free-jet apparatus by laser vaporizing a silicon rod in the presence of phosphine (PH3) gas diluted in helium. The laser-induced fluorescence, from the excited ÃA12 electronic state down to the ground electronic state, was dispersed and analyzed. Ten (υ1υ2υ3) vibrationally excited levels of the ground electronic state, with υ1⩽2, υ2⩽6, and υ3=0, have been observed. Ab initio potential-energy surfaces for the X˜B12 and ÃA12 electronic states have been calculated at 210 points. These two states correlate with a Πu2 state at linearity and they interact by the Renner-Teller coupling and spin-orbit coupling. Using the ab initio potential-energy surfaces with our RENNER computer program system, the vibronic structure and relative intensities of the ÃA12→X˜B12 emission band system have been calculated in order to corroborate the experimental assignments.
NASA Astrophysics Data System (ADS)
Keith, J. Brandon; Fennick, Jacob R.; Junkermeier, Chad E.; Nelson, Daniel R.; Lewis, James P.
2009-03-01
FIREBALL is an ab initio technique for fast local orbital simulations of nanotechnological, solid state, and biological systems. We have implemented a convenient interface for new users and software architects in the platform-independent Java language to access FIREBALL's unique and powerful capabilities. The graphical user interface can be run directly from a web server or from within a larger framework such as the Computational Science and Engineering Online (CSE-Online) environment or the Distributed Analysis of Neutron Scattering Experiments (DANSE) framework. We demonstrate its use for high-throughput electronic structure calculations and a multi-100 atom quantum molecular dynamics (MD) simulation. Program summaryProgram title: FireballUI Catalogue identifier: AECF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 279 784 No. of bytes in distributed program, including test data, etc.: 12 836 145 Distribution format: tar.gz Programming language: Java Computer: PC and workstation Operating system: The GUI will run under Windows, Mac and Linux. Executables for Mac and Linux are included in the package. RAM: 512 MB Word size: 32 or 64 bits Classification: 4.14 Nature of problem: The set up and running of many simulations (all of the same type), from the command line, is a slow process. But most research quality codes, including the ab initio tight-binding code FIREBALL, are designed to run from the command line. The desire is to have a method for quickly and efficiently setting up and running a host of simulations. Solution method: We have created a graphical user interface for use with the FIREBALL code. Once the user has created the files containing the atomic coordinates for each system that they are
NASA Astrophysics Data System (ADS)
Jensen, Per; Buenker, Robert J.; Hirsch, Gerhard; Rai, Sachchida N.
We have calculated ab initio the three-dimensional potential-energy surface of the NH2 molecule at 145 nuclear geometries spanning energy ranges of about 18 000 cm-1 for the NH stretch and 12 000 cm-1 for the bend. The ab initio configuration-interaction calculations were done using the multireference MRD-CI method. The calculated equilibrium configuration has NH bond length re = 1·0207 Å and bond angle α = 103·1°. The rotational-vibrational energies for 14NH2, 14NHD and 14ND2 were calculated variationally using the Morse-oscillator rigid-bender internal-dynamics Hamiltonian. For 14NH2 we calculate that υ1 = 3267 (3219) cm-1, υ2 = 1462 (1497) cm-1 and υ3 = 3283 (3301) cm-1, where experimental values are given in parentheses.
NASA Astrophysics Data System (ADS)
Bucci, F.; Sanna, A.; Continenza, A.; Katrych, S.; Karpinski, J.; Gross, E. K. U.; Profeta, G.
2016-01-01
As a follow-up to the discovery of a new family of Fe-based superconductors, namely, the RE4Fe2As2Te1 -xO4 (42214) (RE = Pr, Sm, and Gd), we present a detailed ab initio study of these compounds highlighting the role of rare-earth (RE) atoms, external pressure, and Te content on their physical properties. Modifications of the structural, magnetic, and electronic properties of the pure (e.g., x =0.0 ) 42214 compounds and their possible correlations with the observed superconducting properties are calculated and discussed. The careful analysis of the results obtained shows that (i) changing the RE atoms allows one to tune the internal pressure acting on the As height with respect to the Fe planes; (ii) similarly to other Fe pnictides, the 42214 pure compounds show an antiferromagnetic-stripe magnetic ground state phase joined by an orthorhombic distortion (not experimentally found yet); (iii) smaller RE atoms increase the magnetic instability of the compounds possibly favoring the onset of the superconducting state; (iv) external pressure induces the vanishing of the magnetic order with a transition to the tetragonal phase and can be a possible experimental route towards higher superconducting critical temperature (Tc) ; and (v) Te vacancies act on the structural parameters, changing the As height and affecting the stability of the magnetic phase.
NASA Astrophysics Data System (ADS)
Berriche, Hamid; Gadea, Florent Xavier
1995-02-01
All adiabatic curves of LiH + dissociating into Li(2s, 2p, 3s, 3p, 3d) + H + and Li + + H (1s, 2s, 2p) are determined by an ab initio approach involving a non-empirical pseudopotential for the Li(ls 2) core and core valence correlation corrections. The resulting spectroscopic constants and vibrational level spacings of all these states are presented. From the usual semiclassical approximations an analysis of the high energy vibrational level spacing is performed allowing for accurate long range extrapolations. For the lowest curves dissociating into Li + + H (1s) and Li (2s) + H + an analysis of the main electronic interactions is carried out from a diabatic model and reveals the importance of the binding charge delocalisation effects versus the polarisation (charge localised) ones. In addition the LiH photoelectron spectrum is calculated. An interesting feature of that spectrum is that both bound-bound and bound-free transitions coexist due to the particular shape of the LiH and LiH + potential energy curves.
NASA Astrophysics Data System (ADS)
Pask, J. E.; Sterne, P. A.
2004-03-01
The finite-element (FE) method is a general approach for the solution of partial differential equations. Like the planewave (PW) method, the FE method is a systematically improvable expansion approach. Unlike the PW method, however, its basis functions are strictly local in real space, which allows for variable resolution in real space and facilitates massively parallel implementation. We discuss the application of the FE method to ab initio electronic-structure calculations.(J.E. Pask, B.M. Klein, C.Y. Fong, and P.A. Sterne, Phys. Rev. B 59), 12352 (1999). In particular, we discuss the use of nonlocal pseudopotentials in bulk calculations, and the handling of long-range interactions in the construction of the Kohn-Sham effective potential and total energy. We show that the total energy converges variationally, and at the optimal theoretical rate consistent with the cubic completeness of the basis. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions
NASA Technical Reports Server (NTRS)
Stallcop, James R.; Partridge, Harry; Levin, Eugene
1996-01-01
Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.
C 1s and N 1s core excitation of aniline: Experiment by electron impact and ab initio calculations
Duflot, D.; Flament, J.-P.; Giuliani, A.; Heinesch, J.; Grogna, M.; Hubin-Franskin, M.-J.
2007-05-15
Core shell excitation spectra of aniline at the carbon and nitrogen 1s edges have been obtained by inner-shell electron energy-loss spectroscopy recorded under scattering conditions where electric dipolar conditions dominate, with higher resolution than in the previous studies. They are interpreted with the aid of ab initio configuration interaction calculations. The spectrum at the C 1s edge is dominated by an intense {pi}{sup *} band. The calculated chemical shift due to the different chemical environment at the carbon 1s edge calculated is in agreement with the experimental observations within a few tenths of an eV. The transition energies of the most intense bands in the C 1s excitation spectrum are discussed at different levels of calculations. In the nitrogen 1s excitation spectrum the most intense bands are due to Rydberg-valence transitions involving the {sigma}{sup *}-type molecular orbitals, in agreement with the experiment. This assignment is different from that of extended Hueckel molecular orbital calculations. The geometries of the core excited states have been calculated and compared to their equivalent core molecules and benzene.
Ab initio molar volumes and Gaussian radii.
Parsons, Drew F; Ninham, Barry W
2009-02-12
Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766
NASA Astrophysics Data System (ADS)
Wang, Zi; Bevan, Kirk H.
2016-01-01
In the present work, we study the effects of the electronic relaxation of semicore levels on polaron activation energies and dynamics. Within the framework of adiabatic ab initio theory, we utilize both static transition state theory and molecular dynamics methods for an in-depth study of polaronic hopping in delithiated LiFePO4 (FePO4). Our results show that electronic relaxation of semicore states is significant in FePO4, resulting in a lower activation barrier and kinetics that is one to two orders faster compared to the result of calculations that do not incorporate semicore states. In general, the results suggest that the relaxation of states far below the Fermi energy could dramatically impact the ab initio polaronic barrier estimates for many transition metal oxides and phosphates.
Bylaska, Eric J.; Glaesemann, Kurt R.; Felmy, Andrew R.; Vasiliu, Monica; Dixon, David A.; Tratnyek, P. G.
2010-11-25
Electronic structure methods were used to calculate the gas-phase and aqueous phase reaction energies for reductive dechlorination (i.e. hydrogenolysis), reductive Beta-elimination, dehydrochlorination, and nucleophilic substitution by OH- of 1,2,3-trichloropropane. The thermochemical properties Delta Hof(298.15K), So(298.15K,1 bar), and Delta GS(298.15K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely metabolites. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive Beta-elimination (Delta Gorxn ≈ -32 kcal/mol), followed closely by reductive dechlorination (Delta Gorxn ≈ -27 kcal/mol), dehydrochlorination (Delta Gorxn ≈ -27kcal/mol), and nucleophilic substitution by OH- (Delta Gorxn ≈ -25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate CH2-CHCl-CH2Cl , and CH2Cl-CH-CH2Cl species, was not favorable in the standard state (Delta Gorxn ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.
Alexandrov, Vitali Y.; Rosso, Kevin M.
2015-01-01
Goethite (α-FeOOH) surfaces represent one of the most ubiquitous redox-active interfaces in the environment, playing an important role in biogeochemical metal cycling and contaminant residence in the subsurface. Fe(II)-catalyzed recrystallization of goethite is a fundamental process in this context, but the proposed Fe(II)aq-Fe(III)goethite electron and iron atom exchange mechanism of recrystallization remains poorly understood at the atomic level. We examine the adsorption of aqueous Fe(II) and subsequent interfacial electron transfer (ET) between adsorbed Fe(II) and structural Fe(III) at the (110) and (021) goethite surfaces using density functional theory calculations including Hubbard U corrections (DFT+U) aided by ab initio molecular dynamics simulations. We investigate various surface sites for the adsorption of Fe2+(H2O)6 in different coordination environments. Calculated energies for adsorbed complexes at both surfaces favor monodentate complexes with reduced 4- and 5-fold coordination over higher-dentate structures and 6- fold coordination. The hydrolysis of H2O ligands is observed for some pre-ET adsorbed Fe(II) configurations. ET from the adsorbed Fe(II) into the goethite lattice is calculated to be energetically uphill always, but simultaneous proton transfer from H2O ligands of the adsorbed complexes to the surface oxygen species stabilizes post-ET states. We find that surface defects such as oxygen vacancies near the adsorption site also can stabilize post-ET states, enabling the Fe(II)aq-Fe(III)goethite interfacial electron transfer reaction implied from experiments to proceed.
NASA Astrophysics Data System (ADS)
Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.
2015-10-01
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B
2015-10-14
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range. PMID:26472380
Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P. E-mail: michael.brunger@flinders.edu.au; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J. E-mail: michael.brunger@flinders.edu.au; and others
2015-10-14
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
Szalay, Péter G; Holka, Filip; Fremont, Julien; Rey, Michael; Peterson, Kirk A; Tyuterev, Vladimir G
2011-03-01
The aim of the study was to explore the limits of ab initio methods towards the description of excited vibrational levels up to the dissociation limit for molecules having more than two electrons. To this end a high level ab initio potential energy function was constructed for the four-electron LiH molecule in order to accurately predict a complete set of bound vibrational levels corresponding to the electronic ground state. It was composed from: (a) an ab initio non-relativistic potential obtained at the MR-CISD level including size-extensivity corrections and quintuple-sextuple ζ extrapolation of the basis, (b) MVD relativistic corrections obtained at icMR-CISD/cc-pwCV5Z level, and (c) DBOC obtained at the MR-CISD/cc-pwCVTZ level. Finally, the importance of non-adiabatic effects was also tested by using atomic masses in the vibrational kinetic energy operator. The calculated vibrational levels were compared with those obtained from experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys., 2004, 121, 9378]. Our best estimate of the potential curve results in vibrational energies with a RMS deviation of only ∼1 cm(-1) for the entire set of all empirically determined vibrational levels known so far. These results represent a drastic improvement over previous theoretical predictions of vibrational levels of (7)LiH up to dissociation, D(0), which was predicted to be 19,594 cm(-1). PMID:21180724
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Ab initio investigations of the electronic structure and chemical bonding of Li{sub 2}ZrN{sub 2}
Matar, S.F.; Poettgen, R.; Al Alam, A.F.; Ouaini, N.
2012-06-15
The electronic structure of the ternary nitride Li{sub 2}ZrN{sub 2} is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N-N interactions are found dominant at the top of the valence band of Li{sub 2}ZrN{sub 2} and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li{sub 2-x}ZrN{sub 2} (x={approx}1) is favored. - Graphical abstract: Trigonal structure of Li{sub 2}ZrN{sub 2} showing the Zr-N-Li layers along the c-axis. Highlights: Black-Right-Pointing-Pointer Li{sub 2}ZrN{sub 2} calculated insulating with a 1.8 eV gap in agreement with its light green color. Black-Right-Pointing-Pointer Lithium de-intercalation is energetically favored for one out of two Li equivalents. Black-Right-Pointing-Pointer Li plays little role in the change of the structure, ensured by Zr and N binding. Black-Right-Pointing-Pointer Similar changes in the electronic structure as for various intercalated phases of ZrN.
Long, Run; Prezhdo, Oleg V
2015-11-24
TiO2 sensitized with organohalide perovskites gives rise to solar-to-electricity conversion efficiencies reaching close to 20%. Nonradiative electron-hole recombination across the perovskite/TiO2 interface constitutes a major pathway of energy losses, limiting quantum yield of the photoinduced charge. In order to establish the fundamental mechanisms of the energy losses and to propose practical means for controlling the interfacial electron-hole recombination, we applied ab initio nonadiabatic (NA) molecular dynamics to pristine and doped CH3NH3PbI3(100)/TiO2 anatase(001) interfaces. We show that doping by substitution of iodide with chlorine or bromine reduces charge recombination, while replacing lead with tin enhances the recombination. Generally, lighter and faster atoms increase the NA coupling. Since the dopants are lighter than the atoms they replace, one expects a priori that all three dopants should accelerate the recombination. We rationalize the unexpected behavior of chlorine and bromine by three effects. First, the Pb-Cl and Pb-Br bonds are shorter than the Pb-I bond. As a result, Cl and Br atoms are farther away from the TiO2 surface, decreasing the donor-acceptor coupling. In contrast, some iodines form chemical bonds with Ti atoms, increasing the coupling. Second, chlorine and bromine reduce the NA electron-vibrational coupling, because they contribute little to the electron and hole wave functions. Tin increases the coupling, since it is lighter than lead and contributes to the hole wave function. Third, higher frequency modes introduced by chlorine and bromine shorten quantum coherence, thereby decreasing the transition rate. The recombination occurs due to coupling of the electronic subsystem to low-frequency perovskite and TiO2 modes. The simulation shows excellent agreement with the available experimental data and advances our understanding of electronic and vibrational dynamics in perovskite solar cells. The study provides design principles
NASA Technical Reports Server (NTRS)
Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray
2011-01-01
Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.
NASA Astrophysics Data System (ADS)
Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.
1981-09-01
Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.
Electronic and thermal properties of TiFe{sub 2} compound: An ab initio study
Sathyakumari, V. S.; Sankar, S. Mahalakshmi, K.; Subashree, G.; Krithiga, R.
2015-06-24
A systematic study of electronic, and thermal properties such as the Density of states, Fermi energy, Debye temperature and specific heat coefficient, has been carried out using the results of electronic bandstructure and related characteristics of the Laves phase compound, TiFe{sub 2}. Computation of electronic bandstructure and associated properties has been carried out using the tight-binding-linear-muffin-tin-orbital (TB-LMTO) method within atomic sphere approximation (ASA). The calculated values are compared with the available results of literature.
Ab initio calculation of the electronic and optical properties of solid pentacene
Tiago, Murilo L.; Northrup, John E.; Louie, Steve G.
2002-11-01
The optical and electronic properties of crystalline pentacene are studied, using a first-principles Green's-function approach. The quasiparticle energies are calculated within the GW approximation and the electron-hole excitations are computed by solving the Bethe-Salpeter equation. We investigate the role of polymorphism on the electronic energy gap and linear optical spectrum by studying two different crystalline phases: the solution-phase structure and the vapor-phase structure. charge-transfer excitons are found to dominate the optical spectrum. Excitons with sizable binding energies are predicted for both phases.
Ab initio study of electron-phonon coupling in boron-doped SiC
NASA Astrophysics Data System (ADS)
Margine, E. R.; Blase, X.
2008-11-01
Density functional theory calculations have been used to study the electronic structure, lattice dynamics, and electron-phonon coupling in boron-doped silicon carbide in the cubic phase. Our results provide evidence that the recently discovered superconducting transition in boron-doped silicon carbide can be explained within a standard phonon-mediated mechanism. For the same doping rate, the coupling constant λ in B-doped SiC is very close to that of doped diamond and twice as large as that of B-doped silicon. However, doped silicon carbide differs from its diamond counterpart as most of the electron-phonon coupling originates from low energy vibrational modes.
Wang, Zhiguo; Zhou, Yungang; Bang, Junhyeok; Prange, Micah P.; Zhang, Shengbai; Gao, Fei
2012-08-02
Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of mono-vacancy, di-vacancy, Stone-Wales (SW) and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest to note that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy of above the displacement threshold energy (Td, {approx}19 eV) and can be healed with an energy (14-18 eV) lower than Td. The transformation between four types of divacancies, V2(5-8-5), V2(555-777), V2(5555-6-7777), and V2(55-77) can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner, and to tailor the physical properties of graphene.
NASA Astrophysics Data System (ADS)
Aryal, Sita Ram
The alumino-silicate solid solution series (Al 4+2xSi2-2 xO10-x) is an important class of ceramics. Except for the end member (x=0), Al2 SiO5 the crystal structures of the other phases, called mullite, have partially occupied sites. Stoichiometric supercell models for the four mullite phases 3Al2O 3 · 2SiO2 · 2Al 2O3 · SiO2, 4 Al2O3· SiO 2, 9Al2O3 · SiO2, and iota-Al2 O3 (iota-alumina) are constructed starting from experimentally reported crystal structures. A large number of models were built for each phase and relaxed using the Vienna ab initio simulation package (VASP) program. The model with the lowest total energy for a given x was chosen as the representative structure for that phase. Electronic structure and mechanical properties of mullite phases were studied via first-principles calculations. Of the various phases of transition alumina, iota-Al 2O3 is the least well known. In addition structural details have not, until now, been available. It is the end member of the aluminosilicate solid solution series with x=1. Based on a high alumina content mullite phase, a structural model for iota- Al2O3 is constructed. The simulated x-ray diffraction (XRD) pattern of this model agrees well with a measured XRD pattern. The iota-Al2 O3 is a highly disordered ultra-low-density phase of alumina with a theoretical density of 2854kg/m3. Using this theoretically constructed model, elastic, thermodynamic, electronic, and spectroscopic properties of iota-Al2 O3 have been calculated and compared it with those of alpha- Al2O3 and gamma- Al2O3. Boron carbide (B4C) undergoes an amorphization under high velocity impacts. The mechanism of amorphization is not clear. Ab initio methods are used to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B4C), B 11C-CBC, and B12- CCC where B11C or B12 is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms
Ab initio study of structural, electronic, magnetic alloys: XTiSb (X = Co, Ni and Fe)
Ibrir, M. Berri, S.; Lakel, S.; Alleg, S.; Bensalem, R.
2015-03-30
Structural, electronic and magnetic properties of three semi-Heusler compounds of CoTiSb, NiTiSb and FeTiSb were calculated by the method (FP-LAPW) which is based on the DFT code WIEN2k. We used the generalized gradient approximation (GGA (06)) for the term of the potential exchange and correlation (XC) to calculate structural properties, electronic properties and magnetic properties. Structural properties obtained as the lattice parameter are in good agreement with the experimental results available for the electronic and magnetic properties was that: CoTiSb is a semiconductor NiTiSb is a metal and FeTiSb is a half-metal ferromagnetic.
Ab initio Calculations of Electronic Fingerprints of DNA bases on Graphene
NASA Astrophysics Data System (ADS)
Ahmed, Towfiq; Rehr, John J.; Kilina, Svetlana; Das, Tanmoy; Haraldsen, Jason T.; Balatsky, Alexander V.
2012-02-01
We have carried out first principles DFT calculations of the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T) adsorbed on graphene using LDA with ultra-soft pseudo-potentials. We have also calculated the longitudinal transmission currents T(E) through graphene nano-pores as an individual DNA base passes through it, using a non-equilibrium Green's function (NEGF) formalism. We observe several dominant base-dependent features in the LDOS and T(E) in an energy range within a few eV of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases from dI/dV measurements in scanning tunneling spectroscopy (STS) and nano-pore experiments. Thus these electronic signatures can provide an alternative approach to DNA sequencing.
NASA Astrophysics Data System (ADS)
Debbichi, L.; Eriksson, O.; Lebègue, S.
2014-05-01
By means of first-principles GW calculations, we have studied the electronic structure properties of MX2 (M =Mo, W; X =S, Se, Te) bilayers, including hybrid structures of MX2 building blocks. The effect of spin-orbit coupling on the electronic structure and the effect of van der Waals interaction on the geometry were taken into account. All the homogeneous bilayers are identified as indirect band-gap materials, with an increase of the band gap when Mo is changed to W, and a decrease of the band gap when the atomic number of X is increased. The same behavior is also observed for hybrid bilayers with common chalcogen atoms, while bilayers with common metal atoms have a direct band gap. Finally, it is shown that due to their particular band alignment, some heterobilayers enable electron-hole separation, which is of interest for solar cell applications.
Casassa, S.; Baima, J.; Mahmoud, A.; Kirtman, B.
2014-06-14
Electronic and vibrational contributions to the static and dynamic (hyper)polarizability tensors of ice XI and model structures of ordinary hexagonal ice have been theoretically investigated. Calculations were carried out by the finite field nuclear relaxation method for periodic systems (FF-NR) recently implemented in the CRYSTAL code, using the coupled-perturbed Kohn-Sham approach (CPKS) for evaluating the required electronic properties. The effect of structure on the static electronic polarizabilities (dielectric constants) and second-hyperpolarizabilities is minimal. On the other hand, the vibrational contributions to the polarizabilities were found to be significant. A reliable evaluation of these (ionic) contributions allows one to discriminate amongst ice phases characterized by different degrees of proton-order, primarily through differences caused by librational motions. Transverse static and dynamic vibrational (hyper)polarizabilities were found by extrapolating calculations for slabs of increasing size, in order to eliminate substantial surface contributions.
High throughput ab initio modeling of charge transport for bio-molecular-electronics
NASA Astrophysics Data System (ADS)
Bruque, Nicolas Alexander
2009-12-01
Self-assembled nanostructures, composed of inorganic and organic materials, have multiple applications in the fields of engineering and nanotechnology. Experimental research using nanoscaled materials, such as semiconductor/metallic nanocrystals, nanowires (NW), and carbon nanotube (CNT)-molecular systems have potential applications in next generation nano electronic devices. Many of these molecular systems exhibit electronic device functionality. However, experimental analytical techniques to determine how the chemistry and geometry affects electron transport through these devices does not yet exist. Using theory and modeling, one can approximate the chemistry and geometry at the atomic level and also determine how the chemistry and geometry governs electron current. Nanoelectronic devices however, contain several thousand atoms which makes quantum modeling difficult. Popular atomistic modeling approaches are capable of handling small molecular systems, which are of scientific interest, but have little engineering value. The lack of large scale modeling tools has left the scientific and engineering community with a limited ability to understand, explore, and design complex systems of engineering interest. To address these issues, I have developed a high performance general quantum charge transport model based on the non-equilibrium Green function (NEGF) formalism using density functional theory (DFT) as implemented in the FIREBALL software. FIREBALL is a quantum molecular dynamics code which has demonstrated the ability to model large molecular systems. This dissertation project of integrating NEGF into FIREBALL provides researchers with a modeling tool capable of simulating charge current in large inorganic/organic systems. To provide theoretical support for experimental efforts, this project focused on CNT-molecular systems, which includes the discovery of a CNT-molecular resonant tunneling diode (RTD) for electronic circuit applications. This research also
Ab initio calculations on collisions of low energy electrons with polyatomic molecules
Rescigno, T.N.
1991-08-01
The Kohn variational method is one of simplest, and oldest, techniques for performing scattering calculations. Nevertheless, a number of formal problems, as well as practical difficulties associated with the computation of certain required matrix elements, delayed its application to electron--molecule scattering problems for many years. This paper will describe the recent theoretical and computational developments that have made the complex'' Kohn variational method a practical tool for carrying out calculations of low energy electron--molecule scattering. Recent calculations on a number of target molecules will also be summarized. 41 refs., 7 figs.
Milowska, Karolina Z.; Birowska, Magdalena; Majewski, Jacek A.
2013-12-04
We present exemplary results of extensive studies of structural, mechanical and electronic properties of covalent functionalization of carbon nanotubes (CNTs). We report new results for metallic (9,0), and semiconducting (10,0) single-wall carbon nanotubes (CNT) functionalized with -COOH, -OH, and both groups with concentration up to 12.5%. Our studies are performed in the framework of the density functional theory (DFT). We discuss here the stability, local and global changes in structure, elastic moduli (Young's, Shear, and Bulk), electronic structure and resulting band gaps, as a function of the density of the adsorbed molecules.
Ab Initio DFT study of electronic and thermoelectric properties of crystalline Ge2 Sb2 Te5
NASA Astrophysics Data System (ADS)
Ibarra Hernandez, Wilfredo; Raty, Jean-Yves
2015-03-01
Pseudo-binary phase change materials such as (GeTe)n/(Sb2Te3)m have been recently considered for thermoelectric applications. Among these, Ge2Sb2Te5 (GST225, n =2 and m =1) is very popular as it is the leading candidate for non-volatile memory devices such as phase change random access memory. It is well know that the stable crystal structure of GST225 is hexagonal, with atomic layers stacked in the c direction. The stacking sequence is however still under some debate, and structures varying from conventional semiconductor to Dirac semimetal have been claimed to differ only by the nature of the stacking sequence. Here we present electronic, dynamic and thermoelectric calculations on three different stacking sequences of crystalline GST225. We use ab-initio DFT calculations together with Boltzmann transport equations to access thermoelectric properties within the constant relaxation time approximation. Our results show that all three proposed stacking sequences are (meta-)stable. From the density of states we determine that two structures are metallic while the most stable structure has a 0.35 eV band gap. Above 100K, the computed Seebeck coefficient seems to indicate that the experimentally observed structure is the Dirac semimetal one, the doping level being of the order of 1 × 1020 cm-3. The authors acknowledge an A.R.C. grant (TheMoTherm 10/15-03) and the computer time provided by CECI, SEGI-ULg and PRACE projects NanoTherm (2IP FP7 RI-283493) and ThermoSpin on ARCHER (3IP FP7 RI-312763).
Peterson, Kirk A
2000-09-15
A global, analytical potential energy surface for the ground electronic state of HOBr has been determined using highly correlated multireference configuration interaction wave functions and explicit basis set extrapolations of large correlation consistent basis sets. The ab initio data have been fit to an analytical functional form that accurately includes both the HOBr and HBrO minima, as well as all dissociation asymptotes. Small adjustments to this surface are made based on the limited experimental data available and by indirectly taking into account the effects of spin-orbit coupling on the OH+Br dissociation channel. Vibrational energy levels are calculated variationally for both HOBr and HBrO up to the OH+Br dissociation limit using a truncation/recoupling method. The HOBr isomer is calculated to contain 708 bound vibrational energy levels, while the HBrO minimum lies above the OH+Br dissociation limit but is calculated to have 74 ''quasibound,'' localized eigenstates. Infrared intensities for all of these vibrational transitions are also calculated using MRCI dipole moment functions. The assignment of the HOBr states is complicated by strong stretch-bend resonances even at relatively low energies. In contrast to the HOCl case, these state mixings made it particularly difficult to assign the relatively intense OH overtone bands above v{sub 1}=2. The vibrational density of states of HOBr at the OH+Br dissociation limit is determined to be 0.16 states/cm-1. Comparisons to recent work on HOCl using similar methods are made throughout. (c) 2000 American Institute of Physics.
An Accurate Global Ab Initio Potential Energy Surface for the X(1)A' Electronic State of HOBr
Peterson, Kirk A.
1999-12-01
A global, analytical potential energy surface for the ground electronic state of HOBr has been determined using highly correlated multireference configuration interaction wave functions and explicit basis set extrapolations of large correlation consistent basis sets. The ab initio data have been fit to an analytical functional form that accurately includes both the HOBr and HBrO minima, as well as all dissociation asymptotes. Small adjustments to this surface are made based on the limited experimental data available and by indirectly taking into account the effects of spin-orbit coupling on the OH+Br dissociation channel. Vibrational energy levels are calculated variationally for both HOBr and HBrO up to the OH+Br dissociation limit using a truncation-recoupling method. The HOBr isomer is calculated to contain 708 bound vibrational energy levels, while the HBrO minimum lies above the OH+Br dissociation limit but is calculated to have 74 quasibound, localized eigenstates. Infrared intensities for all of these vibrational transitions are also calculated using MRCI dipole moment functions. The assignment of the HOBr states is complicated by strong stretch-bend resonances even at relatively low energies. In contrast to the HOCl case, these state mixings made it particularly difficult to assign the relatively intense OH overtone bands above v1=2. The vibrational density of states of HOBr at the OH+Br dissociation limit is determined to be 0.16 states/cm-1. Comparisons to recent work on HOCl using similar methods are made throughout.
An ab initio study of the lowest electronic states of yttrium dicarbide, YC2
NASA Astrophysics Data System (ADS)
Puzzarini, Cristina; Peterson, Kirk A.
2005-02-01
The low-lying electronic states of yttrium dicarbide have been calculated using highly correlated wave functions and systematic sequences of correlation consistent basis sets. For the A12 ground electronic state, the near-equilibrium potential energy surface (PES) has been calculated using the coupled cluster method in conjunction with basis sets ranging in size from double to quintuple ζ. The relativistic effects have been taken into account by using pseudopotentials for the Y atom. After extrapolation to the complete basis set limit, additional corrections due to core-valence correlation and spin-orbit effects have also been included. The same approach has been followed for the B12,B22, and A22 states but only the C2V PESs have been considered in these cases. For the two A12 electronic excited states and, for comparison purposes, for the ground state, the multireference configuration interaction (MRCI) approach has been used in conjunction with double-ζ and triple-ζ basis sets for the construction of the PES. The molecular and spectroscopic properties predicted for the ground and excited states investigated in this work compare well with the available experimental data, particularly for the ground electronic state. The 0 K dissociation enthalpy of YC2,ΔHY-C2(0K ), and its atomization enthalpy, ΣD0, are predicted to be 148.4 and 291.5kcal /mol, respectively.
Elastic, Electronic, Optical and Thermal Properties of Na2Po: An Ab Initio Study
NASA Astrophysics Data System (ADS)
Baki, N.; Eithiraj, R. D.; Khachai, H.; Khenata, R.; Murtaza, G.; Bouhemadou, A.; Seddik, T.; Bin-Omran, S.
2016-01-01
The structural, elastic, electronic, optical and thermodynamic properties of the sodium polonide Na2Po compound have been studied through the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) and tight-binding linear muffin-tin orbital (TB-LMTO) methods. The exchange-correlation potential was treated within the local density approximation for the TB-LMTO calculations and within the generalized gradient approximation for the FP-LAPW + lo calculations. In addition, Tran and Blaha-modified Becke-Johnson (TB-mBJ) potential and Engel-Vosko generalized gradient approximation were used for the electronic and optical properties. Ground state properties such as the equilibrium lattice constant, bulk modulus and its pressure derivative were calculated and compared with available data. The single-crystal and polycrystalline elastic constants of the considered compound were calculated via the total energy versus strain in the framework of the FP-LAPW + lo approach. The calculated electronic structure reveals that Na2Po is a direct band gap semiconductor. The frequency-dependent dielectric function, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for a wide energy range. The variations of the lattice constant, bulk modulus, heat capacity, volume expansion coefficient and Debye temperature with temperature and pressure were calculated successfully using the FP-LAPW + lo method in combination with the quasi-harmonic Debye model.
Ab initio investigation of the electronic properties of HgmTen clusters
NASA Astrophysics Data System (ADS)
Nanavati, Sachin; Kumar, Vijay; Pandey, Ravindra; Dixit, Ambesh
2014-03-01
Nanostructured HgTe quantum dots have attracted attention due to their potential applications in novel mid-infrared (3 - 5 μm) wavelength photodetectors and other optoelectronic applications. HgTe bulk material is a semimetal with bandgap ~ -0.3 eV, however at nanoscale, we observe drastic changes in the optical and electronic properties such as band gap opening, that makes it possible for engineering optoelectronic properties. We investigated the structural, optical, and electronic properties of HgmTen (m = n = 12, 13, 33, and 34) nanoparticles using density functional theory and the pseudopotential method within the generalized gradient approximation. The structures are relaxed to achieve the stable configurations and corresponding electronic properties are calculated. We investigated the density of states, energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), binding energy, and the Hg-Te bond length variation as a function of the cluster size. We will discuss the changes in the electronic structure and optical properties for these clusters with respect to the cluster size variation. The authors would like to thank C-DAC, Pune, India for the computational resources and MHRD, Gov. of India for financial support.
Electron Localization in Fe3 O4 : an Ab Initio Wannier Study
NASA Astrophysics Data System (ADS)
Sakkaris, Perry; Boekema, Carel
2014-03-01
Magnetite, Fe3O4 , is an unusual ferrimagnetic oxide with emergent physical properties that are not yet fully understood. Among these are the metal-insulator transition at the Verwey Temperature TV (123K) and a spin-glass-like transition at about twice TV. The ``extra'' fully spin-polarized 3d electrons that span the t2 g bands of the B sublattice show strong electron correlation effects and are mainly responsible for conduction above TV. We perform a DFT+U calculation to obtain a set of Bloch orbitals describing the t2 g bands. We then use the gauge invariance of Wannier functions to transform the Bloch orbitals into a set of Maximally Localized Wannier Functions (MLWFs). The MLWFs are a real space description of the ``extra'' 3d electrons allowing us to describe their spatial localization and determine the mechanism of conduction above TV. Wannier studies of Fe3O4 may also allow us to determine the extent of electronic coupling to lattice vibrations, which may provide us substantial quantitative clues on the physical mechanism of the Verwey Transition. Research is supported by AFC San Jose.
Electronic structure of Sc C[sub 60]. An ab initio theoretical study
Guo, T.; Odom, G.K.; Scuseria, G.E. )
1994-08-11
We have studied the electronic structure of Sc C[sub 60] at the self-consistent-field Hartree-Fock (SCF-HF) level of theory employing a double-zeta (DZ) basis set. Binding energies have also been calculated employing a hybrid of HF and density functional theory (herein denoted as HF-BLYP). Several electronic states in C[sub 50] and C[sub 30] symmetry were considered. A double-minimum configuration is found for the open-shell [sup 4]A[sub 2] electronic ground state in C[sub 50] symmetry. The lowest energy minimum has Sc located 1.175 [angstrom] away from the center of the cage, approaching a C[sub 60] pentagon along a C[sub 5] axis. Bonding between the Sc atom and the cage occurs by donation of the 4s electrons to the lowest unoccupied orbital of C[sub 60] and by 3d electron interaction with the antibonding orbital associated with the five double bonds radiating from the pentagon closest to Sc ([approximately] 2.5 [angstrom]). The other local minimum has Sc located at the center of the cage and is predicted to be 1.2 eV higher in energy at the highest level of theory employed in this work (DZ/HF-BLYP). The energy barrier for moving Sc from the center of the cage to the lowest energy position is predicted to be 0.1 eV at the same level of theory. 33 refs., 2 figs., 2 tabs.
Ab initio determination of light hadron masses.
Dürr, S; Fodor, Z; Frison, J; Hoelbling, C; Hoffmann, R; Katz, S D; Krieg, S; Kurth, T; Lellouch, L; Lippert, T; Szabo, K K; Vulvert, G
2008-11-21
More than 99% of the mass of the visible universe is made up of protons and neutrons. Both particles are much heavier than their quark and gluon constituents, and the Standard Model of particle physics should explain this difference. We present a full ab initio calculation of the masses of protons, neutrons, and other light hadrons, using lattice quantum chromodynamics. Pion masses down to 190 mega-electron volts are used to extrapolate to the physical point, with lattice sizes of approximately four times the inverse pion mass. Three lattice spacings are used for a continuum extrapolation. Our results completely agree with experimental observations and represent a quantitative confirmation of this aspect of the Standard Model with fully controlled uncertainties. PMID:19023076
Ab initio investigation of the structural and electronic properties of amorphous HgTe.
Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei
2014-01-29
We present the structure and electronic properties of amorphous mercury telluride obtained from first-principle calculations. The initial configuration of amorphous mercury telluride is created by computation alchemy. According to different exchange–correlation functions in our calculations, we establish two 256-atom models. The topology of both models is analyzed in terms of radial and bond angle distributions. It is found that both the Te and the Hg atoms tend to be fourfold, but with a wrong bond rate of about 10%. The fraction of threefold and fivefold atoms also shows that there are a significant number of dangling and floating bonds in our models. The electronic properties are also obtained. It is indicated that there is a bandgap in amorphous HgTe, in contrast to the zero bandgap for crystalline HgTe. The structures of the band tail and defect states are also discussed. PMID:24592480
Ab initio analysis of electron-phonon coupling in molecular devices.
Sergueev, N; Roubtsov, D; Guo, Hong
2005-09-30
We report a first principles analysis of electron-phonon coupling in molecular devices under external bias voltage and during current flow. Our theory and computational framework are based on carrying out density functional theory within the Keldysh nonequilibrium Green's function formalism. Using a molecular tunnel junction of a 1,4-benzenedithiolate molecule contacted by two aluminum leads as an example, we analyze which molecular vibrational modes are most relevant to charge transport under nonequilibrium conditions. We find that the low-lying modes are most important. As a function of bias voltage, the electron-phonon coupling strength can change drastically while the vibrational spectrum changes at a few percent level. PMID:16241682
Ab-initio study of electronic structure and elastic properties of ZrC
NASA Astrophysics Data System (ADS)
Mund, H. S.; Ahuja, B. L.
2016-05-01
The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.
Ab-initio Calculations of Electronic Properties of Calcium Fluoride (CaF2)
NASA Astrophysics Data System (ADS)
Bohara, Bir; Franklin, Lashounda; Malozovsky, Yuriy; Bagayoko, Diola
We have performed first principle, local density approximation (LDA) calculations of electronic and related properties of cubic calcium fluorite (CaF2) . Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, including the large band gap, total and partial density of states, electron and hole effective masses, and the bulk modulus. Our calculated, indirect (X- Γ) band gap is 12.98 eV; it is 1 eV above an experimental value of 11.8 eV. The calculated bulk modulus (82.89 GPA) is excellent agreement with the experimental result of 82.0 +/-0.7. Our predicted equilibrium lattice constant is 5.42Å. Acknowledgments: This work is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR], and NSF HRD-1002541, the US Department of Energy, National, Nuclear Security Administration (NNSA) (Award No. DE-NA-0002630), LaSPACE, and LONI-SUBR.
Nicolaides, Cleanthes A.; Mercouris, Theodoros; Komninos, Yannis
2007-11-29
The theoretical quantitative understanding of time-resolved processes of coherent excitation and decay in polyelectronic atoms, induced by hypershort electromagnetic pulses, is a prerequisite for their possible control. We review key elements of an approach to the ab initio determination of perturbative as well as of nonperturbative solutions of the time-dependent Schroedinger equation describing such processes. The essential element of this approach is the development of formalism and methods that utilize physically relevant state-specific wavefunctions of stationary states of the discrete and the continuous spectrum.
Extensive ab initio study of the electronic states of BSe radical including spin-orbit coupling.
Liu, Siyuan; Zhai, Hongsheng; Liu, Yufang
2016-06-01
The internally contracted multi-reference configuration interaction method (MRCI) with Davidson modification and the Douglas-Kroll scalar relativistic correction has been used to calculate the BSe molecule at the level of aug-cc-pV5Z basis set. The calculated electronic states, including 9 doublet and 6 quartet Λ-S states, are correlated to the dissociation limit of B((2)P(u))+Se((3)P(g)) and B((2)P(u))+Se((1)D(g)). The Spin-orbit coupling (SOC) interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian operator, which causes the entire 15 Λ-S states to split into 32Ω states. This is the first time that the spin-orbit coupling calculation has been carried out on BSe. The potential energy curves of the Λ-S and Ω electronic states are depicted with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound Λ-S and Ω states were determined, which are in good agreement with the experimental data. The transition dipole moments (TDMs) and the Franck-Condon factors (FCs) of the transitions from the low-lying bound Ω states A(2)Π(I)3/2, B(2)Π(I)1/2 and C(2)Δ(I)3/2 to the ground state X(2)Σ(+)1/2 have also been presented. Based on the previous calculations, the radiative lifetimes of the A(2)Π(I)3/2, B(2)Π(I)1/2 and C(2)Δ(I)3/2 were evaluated. PMID:26999315
Extensive ab initio study of the electronic states of BSe radical including spin-orbit coupling
NASA Astrophysics Data System (ADS)
Liu, Siyuan; Zhai, Hongsheng; Liu, Yufang
2016-06-01
The internally contracted multi-reference configuration interaction method (MRCI) with Davidson modification and the Douglas-Kroll scalar relativistic correction has been used to calculate the BSe molecule at the level of aug-cc-pV5Z basis set. The calculated electronic states, including 9 doublet and 6 quartet Λ-S states, are correlated to the dissociation limit of B(2Pu) + Se(3Pg) and B(2Pu) + Se(1Dg). The Spin-orbit coupling (SOC) interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian operator, which causes the entire 15 Λ-S states to split into 32 Ω states. This is the first time that the spin-orbit coupling calculation has been carried out on BSe. The potential energy curves of the Λ-S and Ω electronic states are depicted with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound Λ-S and Ω states were determined, which are in good agreement with the experimental data. The transition dipole moments (TDMs) and the Franck-Condon factors (FCs) of the transitions from the low-lying bound Ω states A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 to the ground state X2Σ+1/2 have also been presented. Based on the previous calculations, the radiative lifetimes of the A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 were evaluated.
Ab initio study of pressure induced structural and electronic properties in uranium monobismuthide
NASA Astrophysics Data System (ADS)
Pataiya, Jagdish; Aynyas, Mahendra; Makode, C.; Singh, A.; Sanyal, Sankar P.
2014-04-01
We have investigated the pressure induced structural and electronic properties of uranium monobismuthide. The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). We predict structural phase transition from NaCl to CsCl-type structure at a pressure of 4.6 GPa. From energy band diagram it is observed that UBi exhibits metallic behavior. The calculated equilibrium lattice parameter is in good agreement with the experimental and other theoretical work.
Ab initio study of the structural, electronic and optical properties of ZnTe compound
Bahloul, B.; Deghfel, B.; Amirouche, L.; Bounab, S.; Bentabet, A.; Bouhadda, Y.; Fenineche, N.
2015-03-30
Structural, electronic and optical properties of ZnTe compound were calculated using Density Functional Theory (DFT) based on the pseudopotentials and planewaves (PP-PW) method as implemented in the ABINIT computer code, where the exchange–correlation functional is approximated using the local density approximation (LDA) and the generalized gradient approximation (GGA). The obtained results from either LDA or GGa calculation for lattice parameter, energy band gap and optical parameters, such as the fundamental absorption edge, the peaks observed in the imaginary part of the dielectric function, the macroscopic dielectric constants and the optical dielectric constant, are compared with the available theoretical results and experimental data.
Ab initio investigation of electron capture by Cl{sup 7+} ions from H
Zhao, L. B.; Stancil, P. C.; Watanabe, A.; Kimura, M.
2007-08-15
An investigation of charge transfer in collisions of ground-state Cl{sup 7+} with H has been conducted based on a fully quantum-mechanical molecular-orbital close-coupling (QMOCC) approach. The charge-transfer process Cl{sup 7+}({sup 1}S)+H{yields}Cl{sup 6+}(2p{sup 6}nl {sup 2}S,{sup 2}P{sup o},{sup 2}D,{sup 2}F{sup o},{sup 2}G)+H{sup +} with n=5 and 6 is taken into account for collision energies between 10{sup -4} eV/u and 1 keV/u. The relevant adiabatic potentials and nonadiabatic coupling matrix elements for the ClH{sup 7+} system are evaluated with the configuration-interaction method. The investigation shows that electron capture into the 5d, 5f, 5g, and 6p states dominates for collision energies less than {approx}1 eV/u, while above 100 eV/u the 5s, 5p, 5d, and 6p are the primary capture channels. Comparison with experimental data for collisions of Cl{sup 7+}({sup 1}S) with D reveals a discrepancy over the full range of measured energies (5-430 eV/u), while no significant isotope effect is found for QMOCC calculations with deuterium. Furthermore, comparison with a previous calculation of the one-electron N{sup 7+}+H system, as well as measurements of the multielectron Al{sup 7+}+H and Fe{sup 7+}+H systems, suggests that the electronic structure of the core has a non-negligible effect on the charge-transfer process. A one-electron model for relative l distributions is found to agree with the QMOCC results for n=5 between 100 and 1000 eV/u, but fails at lower collision energies. Finally, state-selective and total rate coefficients are given for temperatures between 10 and 200 000 K.
Ab initio study of pressure induced structural and electronic properties in uranium monobismuthide
Pataiya, Jagdish Makode, C.; Aynyas, Mahendra; Singh, A.; Sanyal, Sankar P.
2014-04-24
We have investigated the pressure induced structural and electronic properties of uranium monobismuthide. The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). We predict structural phase transition from NaCl to CsCl-type structure at a pressure of 4.6 GPa. From energy band diagram it is observed that UBi exhibits metallic behavior. The calculated equilibrium lattice parameter is in good agreement with the experimental and other theoretical work.
Ab initio electronic structure study of a model water splitting dimer complex.
Fernando, Amendra; Aikens, Christine M
2015-12-28
A model manganese dimer electrocatalyst bridged by μ-OH ligands is used to investigate changes in spin states that may occur during water oxidation. We have employed restricted open-shell Hartree-Fock (ROHF), second-order Møller-Plesset perturbation theory (MP2), complete active space self-consistent field (CASSCF), and multireference second-order Møller-Plesset perturbation theory (MRMP2) calculations to investigate this system. Multiconfigurational methods like CASSCF and MRMP2 are appropriate methods to study these systems with antiferromagnetically-coupled electrons. Orbital occupations and distributions have been closely analyzed to understand the electronic details and contributions to the water splitting from manganese and oxygen atoms. The presence of Mn(IV)O˙ radical moieties has been observed in this catalytic pathway. Multiple nearly degenerate excited states were found close to the ground state in all structures. This suggests competing potential energy landscapes near the ground state may influence the reactivity of manganese complexes such as the dimers studied in this work. PMID:26593689
NASA Astrophysics Data System (ADS)
Suleiman, Mohammed S. H.; Joubert, Daniel P.
2015-11-01
In the present work, the atomic and the electronic structures of Au3N, AuN and AuN2 are investigated using first-principles density-functional theory (DFT). We studied cohesive energy vs. volume data for a wide range of possible structures of these nitrides. Obtained data were fitted to a Birch-Murnaghan third-order equation of state (EOS) so as to identify the most likely candidates for the true crystal structure in this subset of the infinite parameter space, and to determine their equilibrium structural parameters. The analysis of the electronic properties was achieved by the calculations of the band structure and the total and partial density of states (DOS). Some possible pressure-induced structural phase transitions have been pointed out. Further, we carried out GW0 calculations within the random-phase approximation (RPA) to the dielectric tensor to investigate the optical spectra of the experimentally suggested modification: Au3N(D09). Obtained results are compared with experiment and with some available previous calculations.
NASA Astrophysics Data System (ADS)
Mahjoub, Ahmed; Schwell, Martin; Benilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Garcia, Gustavo A.; Gaie-Leverl, Francois; Champion, Norbert; Leach, Sydney
2013-06-01
Cyanoacetylene is one of the key minor constituents in the atmosphere of Titan. The ion HCCCN+ has been detected in this atmosphere and it is supposed to be formed by the reaction between C3H2+ and atomic nitrogen. We present here a spectroscopic investigation of the cyanoacetylene cation using photoexcitation of the neutral by vacuum-ultraviolet (VUV) synchrotron radiation coupled to a velocity map imaging electron/ion coincidence spectrometer. The cation spectroscopy is studied by the Slow Photoelectron Spectroscopy technique (SPES) (figure below) and the Total Ion Yield (TIY). The TIY has been calibrated to absolute units using the known propane absolute cross-section. Quantum chemical calculations are performed in order to interpret these spectra. These calculations deal with the equilibrium geometries, electronic-state patterns and evolutions, and harmonic and anharmonic wavenumbers. Through this study, we observe, in the auto-ionization region above the ionization energy, a number of Rydberg series of neutral cyanoacetylene. These Rydberg series converge to the first and second excited states of the cation. Acknowledgments. We are indebted to the general technical staff of Synchrotron Soleil for the running facility. C. Barrientos, P. Redondo and A. Largo J. Chem. Phys. A {104}(49), 11541-11548. 2000 L. Nahon, N. De Oliveria,J. F. Gil,B. Pilette,O. Marcouillé, B. La garde and F. Polack Journal of Synchrotron Radiation {19}(4), 508-520; 2012
NASA Astrophysics Data System (ADS)
Haxton, Daniel
2009-05-01
Interactions of free electrons with neutral and positively charged molecular species play a role in various physical systems. In interstellar space, reactions such as dissociative recombination determine the balance of various charged and neutral species. In a laboratory equipped with an apparatus like a COLTRIMS device, the dissociative attachment process can be used as a microscope to study polyatomic molecular dynamics. We discuss the theoretical and numerical methods used to calculate dissociative attachment and dissociative recombination of electrons with larger molecules from first principles. Studies using these methods are complimentary to other methods that yield more approximate reaction rates at greatly lesser numerical cost; they may yield precise information about the dissociation dynamics, product distribution, and differential cross section that approximate methods cannot. We discuss calculations performed to date on the target species H2O, NO2, and LiH2^+. We discuss the scaling of our numerical methods with the number of atoms, and the prospects of applying them to tetra-atomics.
Nie, JL; Xiao, Haiyan J.; Gao, Fei; Zu, Xiaotao T.
2009-05-12
First-principles calculations based on density functional theory with the generalized gradient approximation have been performed to study the aluminum (Al) adsorption on the (001) surface of α-uranium (α-U). The geometric, electronic and magnetic properties have been investigated at coverages of 0.25 and 0.5 monolayer. The results show that the quasi-trigonal sites are preferred at both coverages. The bonding of Al with U is found to be metallic, which mainly arises from the mixing of Al 3sp and U 5f states. A ferromagnetic phase is determined for the bare α-U(001) surface, while the adsorption of Al on the surface significantly perturbs the spin arrangement pattern and reduces the local magnetic moment, leading to a ferrimagnetic phase on the α-U(001) surface at the coverage of 0.5 monolayer. However, the Al overlayer is paramagnetic. Generally, the spin polarization has negligible effects on the geometric and electronic properties of Al atoms on the α-U(001) surface.
Ab Initio Study of the Structural, Electronic, and Thermal Properties of Alloy
NASA Astrophysics Data System (ADS)
Benkaddour, I.; Khachai, H.; Chiker, F.; Benosman, N.; Benkaddour, Y.; Murtaza, G.; Omran, S. Bin; Khenata, R.
2015-07-01
The results of a first-principle study of the structural, electronic, and thermal properties of a alloy, using the full-potential linear muffin-tin-orbital (FP-LMTO) method in the framework of density functional theory, within both the local density approximation and the generalized gradient approximation are presented. The composition effect on lattice constants, bulk moduli, band gaps, and effective masses is analyzed. The quasi-harmonic Debye model, using a set of total energy versus volume calculations obtained with the FP-LMTO method, is applied to study the thermal and vibrational effects. The temperature effect on the lattice parameters, thermal expansions, heat capacities, and Debye temperatures is determined from the non-equilibrium Gibbs functions. The microscopic origins of the bowing parameter were explained using the approach of Zunger and coworkers.
Ab initio investigation of the electronic structure and the magnetic trends within equiatomic FeN
NASA Astrophysics Data System (ADS)
Houari, A.; Matar, S. F.; Belkhir, M. A.
2007-05-01
The magnetic properties of equiatomic FeN nitride have been investigated within the density functional theory (DFT) using the augmented spherical wave method (ASW). Calculation of the energy versus volume in hypothetic rocksalt (RS), zinc-blende (ZB) and wurtzite (W) types structures show that the RS-type structure is preferred. At equilibrium, energy/volume spin polarized calculations indicate that the ground state of RS-FeN is ferromagnetic with a high moment, while ZB-FeN and W-FeN are non magnetic. The magnetovolume effects with respect to the Slater-Pauling-Friedel model are discussed. Analyses of the electronic structure (density of states and chemical bonding) are reported. A discussion of the structural and magnetic properties of FeN compound is given with respect to N local environment of Fe.
NASA Astrophysics Data System (ADS)
Schiffmann, Florian; VandeVondele, Joost
2015-06-01
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.
Schiffmann, Florian; VandeVondele, Joost
2015-06-28
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step. PMID:26133420
An unconventional halogen bond with carbene as an electron donor: An ab initio study
NASA Astrophysics Data System (ADS)
Li, Qingzhong; Wang, Yilei; Liu, Zhenbo; Li, Wenzuo; Cheng, Jianbo; Gong, Baoan; Sun, Jiazhong
2009-02-01
An unconventional halogen bond has been proved to exist in H2C-BrH complex. The halogen bond energy of H2C-BrH complex is calculated at four levels of theory [MP2, MP4, CCSD, and CCSD(T)]. The result shows that the carbene is a better electron donor. The substitution effect is prominent in this interaction. For example, the interaction energy in H2C-BrCN complex is increased by more than 300% relative to H2C-BrH complex. The analyses of NBO, AIM, and energy components were used to unveil the nature of the interaction. The results show that this novel halogen bond has similar characteristics to hydrogen bonds.
Schiffmann, Florian; VandeVondele, Joost
2015-06-28
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.
Ab Initio Study of the Dielectric and Electronic Properties of Multilayer GaS Films.
Li, Yan; Chen, Hui; Huang, Le; Li, Jingbo
2015-03-19
The dielectric properties of multilayer GaS films have been investigated using a Berry phase method and a density functional perturbation theory approach. A linear relationship has been observed between the number of GaS layers and slab polarizability, which can be easily converged at a small supercell size and has a weak correlation with different stacking orders. Moreover, the intercoupling effect of the stacking pattern and applied vertical field on the electronic properties of GaS bilayers has been discussed. The band gaps of different stacking orders show various downward trends with the increasing field, which is interpreted as giant Stark effect. Our study demonstrates that the slab polarizability as the substitution of conventional dielectric constant can act as an independent and reliable parameter to elucidate the dielectric properties of low-dimensional systems and that the applied electric field is an effective method to modulate the electric properties of nanostructures. PMID:26262870
THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY
Turchi, P A
2004-09-24
Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.
NASA Astrophysics Data System (ADS)
Kong, Bo; Zhang, Yachao
2016-07-01
The electronic structures of the cubic GdH3 are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G0W0 calculations give a fundamental band gap of 1.72 eV, while GGA+ GW0 or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn-Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH3 can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G0W0 calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW0 and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G0W0 calculations in the 4f-core case is the closest to the real result. By G0W0 calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH3 occurs around 40 GPa, which might be a satisfied prediction.
Bylaska, Eric J; Glaesemann, Kurt R; Felmy, Andrew R; Vasiliu, Monica; Dixon, David A; Tratnyek, Paul G
2010-11-25
Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely. PMID:21038905
Ab initio approach to structural, electronic, and ferroelectric properties of antimony sulphoiodide
NASA Astrophysics Data System (ADS)
Amoroso, Danila; Picozzi, Silvia
2016-06-01
By means of first-principles calculations for the SbSI semiconductor, we show that bare density functional theory fails to reproduce the experimentally observed ferroelectric phase, whereas a more advanced approach, based on hybrid functionals, correctly works. When comparing the paraelectric and ferroelectric phases, our results show polar displacements along the c direction of the Sb and S sublattices with respect to the iodine framework, leading to a predicted spontaneous polarization of P ≃20 μ C/cm2 , in good agreement with experiments. In the ferroelectric phase, the semiconducting behavior of SbSI is confirmed by relatively large values for the indirect and direct gaps (≃2.15 eV and 2.3 eV , respectively). An analysis of the electronic structure, in terms of density of states, charge density distribution, and anomalies in the Born effective charges, reveals (i) the clear presence of a Sb(III) lone pair and (ii) a large covalency in the SbSI bonding, based on the hybridization between Sb and S ions, in turn more ionically bonded to iodine anions. Finally, the interplay between ferroelectricity and spin-orbit coupling reveals a coexistence of Dresselhaus and Rashba relativistic effects and a spin texture that can be reversed by switching the polarization, of potential appeal in electrically controlled spintronics.
NASA Astrophysics Data System (ADS)
Wu, Hai-Ying; Chen, Ya-Hong; Zhou, Ping; Han, Xiang-Yu; Liu, Zi-Jiang
2014-09-01
The structural, electronic, and mechanical stability properties of magnesium sulfide in different phases are presented using the plane wave pseudopotential method within the generalized gradient approximation. Eight different phases such as rocksalt (B1), zincblende (B3), wurtzite (B4), nickel arsenide (B8), cesium chloride (B2), PH4I-type (B11), FeSi-type (B28), and MnP-type (B31) are considered in great detail. The calculated ground-state properties of these phases are consistent with available experimental and theoretical data. It is found that MgS in the B1 and B8 phases are indirect band gap materials, the B3, B4, B11, B28, and B31 phases are all direct gap materials, while the B2 phase displays the metallic character. The B1, B3, B4, B8, B28, and B31 phases are mechanically stable at ambient conditions, but the B2 and B11 phases are mechanically unstable under zero pressure and zero temperature
NASA Astrophysics Data System (ADS)
Makode, Chandrabhan; Sanyal, Sankar P.
2011-09-01
We have investigated the structural and electronic properties of monophospides of thorium, uranium and neptunium. The total energy as a function of volume is obtained by means of the self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). From the present study with the help of total energy calculations it is found that ThP, UP and NpP are stable in NaCl-type structure at ambient pressure. The structural stability of ThP, UP and NpP changes under the application of pressure. We predict a structural phase transition from NaCl-type (B 1-phase) structure to CsCl-type (B 2-phase) structure for these phospides in the pressure range of 37.0-24.0 GPa (ThP-NpP). We also calculate lattice parameter ( a0), bulk modulus ( B0), band structure and density of states. From energy band diagram it is observed that ThP, UP and NpP exhibit metallic behavior. The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.
NASA Astrophysics Data System (ADS)
Hemzalová, P.; Friák, M.; Šob, M.; Ma, D.; Udyansky, A.; Raabe, D.; Neugebauer, J.
2013-11-01
We have employed parameter-free density functional theory calculations to study the thermodynamic stability and structural parameters as well as elastic and electronic properties of Ni4N in eight selected crystallographic phases. In agreement with the experimental findings, the cubic structure with Pearson symbol cP5, space group Pm3¯m (221) is found to be the most stable and it is also the only thermodynamically stable structure at T=0 K with respect to decomposition to the elemental Ni crystal and N2 gas phase. We determine structural parameters, bulk moduli, and their pressure derivatives for all eight allotropes. The thermodynamic stability and bulk modulus is shown to be anticorrelated. Comparing ferromagnetic and nonmagnetic states, we find common features between the magnetism of elemental Ni and studied ferromagnetic Ni4N structures. For the ground-state Ni4N structure and other two Ni4N cubic allotropes, we predict a complete set of single-crystalline elastic constants (in the equilibrium and under hydrostatic pressure), the Young and area moduli, as well as homogenized polycrystalline elastic moduli obtained by different homogenization methods. We demonstrate that the elastic anisotropy of the ground-state Ni4N is qualitatively opposite to that in the elemental Ni, i.e., these materials have hard and soft crystallographic directions interchanged. Moreover, one of the studied metastable cubic phases is found auxetic, i.e., exhibiting negative Poisson ratio.
Ab-Initio Calculations of the Electronic Properties of Boron Nitride
NASA Astrophysics Data System (ADS)
Stewart, Anthony; Khamala, Bethuel; Hart, Daniel; Bagayoko, Diola
2014-03-01
The potential of Boron Nitride (BN) in nanotechnology is tremendous. BN in its bulk form has a wide band gap with excellent thermal and chemical stability. BN structures can be tailored using various techniques in order to obtain desired materials properties. The State-of-the-art Proton Exchange Membrane Fuel Cell (PEMFCs) technology exploits graphitized carbon as a support for platinum-type catalysts. However, some forms of carbon are susceptible to long-term durability issues such as corrosion which is a detriment to fuel cell performance and viability. Novel non-carbon supports such as BN may provide a pathway for addressing the durability and performance issues associated with carbon support materials. We present preliminary theoretical studies, using an linear combination of atomic orbital (LCAO) quantum chemistry package from Ames Laboratory, of the electronic properties of this potentially important material. Our calculated band gap of 6.48 eV for the cubic structure, obtained with an LDA potential and the BZW-EF method, is in agreement with experiment. LASIGMA/ NNSA_MSIP.
Electronic structure and anisotropic chemical bonding in TiNF from ab initio study
Matar, Samir F.
2012-01-15
Accounting for disorder in anatase titanium nitride fluoride TiNF is done through atoms re-distributions based on geometry optimizations using ultra soft pseudo potentials within density functional theory DFT. The fully geometry relaxed structures are found to keep the body centering of anatase (I4{sub 1}/amd No. 141). The new structural setups are identified with space groups I-4m2 No. 119 and Imm2 No. 44 which obey the 'group to subgroup' relationships with respect to anatase. In the ground state Imm2 structure identified from energy differences, TiNF is found semi-conducting with similar density of states features to anatase TiO{sub 2} and a chemical bonding differentiated between covalent like Ti-N versus ionic like Ti-F. Inter-anion N-F bonding is also identified. - Graphical Abstract: The geometry optimized ground state anatase derived TiNF structure with arrangement of open faceted TiN3F3 distorted octahedra. The insert shows the arrangement of octahedra in anatase TiO{sub 2}. Highlights: Black-Right-Pointing-Pointer Original approach of TiNF structure for addressing the electronic band structure. Black-Right-Pointing-Pointer Based on anatase, two different ordering scheme models with geometry optimization. Black-Right-Pointing-Pointer New structures obeying the group{yields}subgroup relationships with Imm2 ground state from energy. Black-Right-Pointing-Pointer In the ground state TiNF is found semi-conducting with similar density of states to anatase TiO{sub 2}. Black-Right-Pointing-Pointer Chemical bonding differentiated between covalent like Ti-N and ionic Ti-F.
NASA Astrophysics Data System (ADS)
de Melo, Pedro Miguel M. C.; Marini, Andrea
2016-04-01
We present a full ab initio description of the coupled out-of-equilibrium dynamics of photons, phonons, and electrons. In the present approach, the quantized nature of the electromagnetic field as well as of the nuclear oscillations is fully taken into account. The result is a set of integrodifferential equations, written on the Keldysh contour, for the Green's functions of electrons, phonons, and photons where the different kinds of interactions are merged together. We then concentrate on the electronic dynamics in order to reduce the problem to a computationally feasible approach. By using the generalized Baym-Kadanoff ansatz and the completed collision approximation, we introduce a series of efficient but controllable approximations. In this way, we reduce all equations to a set of decoupled equations for the density matrix that describe all kinds of static and dynamical correlations. The final result is a coherent, general, and inclusive scheme to calculate several physical quantities: carrier dynamics, transient photoabsorption, and light emission, all of which include, at the same time, electron-electron, electron-phonon, and electron-photon interactions. We further discuss how all these observables can be easily calculated within the present scheme using a fully atomistic ab initio approach.
NASA Technical Reports Server (NTRS)
Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)
1994-01-01
Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.
Extensive ab initio study of the electronic states of S2 molecule including spin-orbit coupling
NASA Astrophysics Data System (ADS)
Xing, Wei; Shi, Deheng; Sun, Jinfeng; Liu, Hui; Zhu, Zunlue
2013-03-01
The potential energy curves (PECs) of 15 Λ-S states and 24 Ω states generated from the 13 Λ-S bound states of the S2 molecule are investigated in detail using an ab initio quantum chemical method. The PECs are calculated for internuclear separations from 0.12 to 1.10 nm by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson modification (MRCI + Q). The spin-orbit (SO) coupling effect is accounted for by the Breit-Pauli Hamiltonian. To discuss the effect on the energy splitting by the core-electron correlations, the all-electron basis set, cc-pCVTZ with and without 2s2p correlations, is used for the SO coupling calculations of the A3 ? and B‧3Πg Λ-S states since their measurements can be found in the literature. By comparison, the cc-pCVTZ basis set with 2s2p correlations is chosen for the SO coupling calculations of 13 Λ-S bound states. To improve the quality of PECs, core-valence correlation and scalar relativistic corrections are included. Scalar relativistic correction calculations are made using the third-order Douglas-Kroll Hamiltonian (DKH3) approximation at the level of a cc-pV5Z basis set. Core-valence correlation corrections are taken into account with a cc-pCVTZ basis set. The spectroscopic parameters of 13 Λ-S bound states and 24 Ω states are calculated. With the PECs obtained by the MRCI + Q/aug-cc-pV6Z + CV + DK + SO calculations, the SO coupling splitting energies are 379.25 cm-1 between the A‧3 and A‧2 Ω state, 83.40 cm-1 between the A1 and A0- Ω state and 210.91 cm-1 between the B‧2 and B‧1 Ω state, which agree well with the corresponding measurements of 383, 77.51 and 209 cm-1, respectively. Moreover, other spectroscopic parameters are also in excellent agreement with the measurements. It demonstrates that the spectroscopic parameters of 24 Ω states reported here for the first time can be expected to be
NASA Astrophysics Data System (ADS)
Nishioka, Hirotaka; Ando, Koji
2011-05-01
By making use of an ab initio fragment-based electronic structure method, fragment molecular orbital-linear combination of MOs of the fragments (FMO-LCMO), developed by Tsuneyuki et al. [Chem. Phys. Lett. 476, 104 (2009)], 10.1016/j.cplett.2009.05.069, we propose a novel approach to describe long-distance electron transfer (ET) in large system. The FMO-LCMO method produces one-electron Hamiltonian of whole system using the output of the FMO calculation with computational cost much lower than conventional all-electron calculations. Diagonalizing the FMO-LCMO Hamiltonian matrix, the molecular orbitals (MOs) of the whole system can be described by the LCMOs. In our approach, electronic coupling TDA of ET is calculated from the energy splitting of the frontier MOs of whole system or perturbation method in terms of the FMO-LCMO Hamiltonian matrix. Moreover, taking into account only the valence MOs of the fragments, we can considerably reduce computational cost to evaluate TDA. Our approach was tested on four different kinds of model ET systems with non-covalent stacks of methane, non-covalent stacks of benzene, trans-alkanes, and alanine polypeptides as their bridge molecules, respectively. As a result, it reproduced reasonable TDA for all cases compared to the reference all-electron calculations. Furthermore, the tunneling pathway at fragment-based resolution was obtained from the tunneling current method with the FMO-LCMO Hamiltonian matrix.
NASA Astrophysics Data System (ADS)
Szalay, Péter G.; Holka, Filip; Fremont, Julien; Rey, Michael; Tyuterev, Vladimir G.
2011-06-01
The aim of the study was to explore the limits of initio methods towards the description of excited vibrational levels up to the dissociation limit for molecules having more than two electrons. To this end a high level ab initio potential energy function was constructed for the four-electron LiH molecule in order to accurately predict a complete set of bound vibrational levels corresponding to the electronic ground state. It was composed from: a) an ab initio non-relativistic potential obtained at the MR-CISD level including size-extensivity corrections and quintuple-sextuple ζ extrapolation of the basis, b) MVD (Mass-velocity-Darwin) relativistic corrections obtained at icMR-CISD/cc-pwCV5Z level, and c) DBOC (Diagonal Born-Oppenheimer correction) obtained at the MR-CISD/cc-pwCVTZ level. Finally, the importance of non-adiabatic effects was also tested by using atomic masses in the vibrational kinetic energy operator and by calculation of non-adiabatic coupling by ab initio methods. The calculated vibrational levels were compared with those obtained from experimental data [J.A. Coxon and C.S. Dickinson, J. Chem. Phys., 2004, 121, 9378]. Our best estimate of the potential curve results in vibrational energies with a RMS deviation of only ˜1 wn\\ for the entire set of all empirically determined vibrational levels known so far. These results represent a drastic improvement over previous theoretical predictions of vibrational levels of ^7LiH up to dissociation, D_0, which was predicted to be 19594 Cm-1. In addition, rotational levels have also been calculated. The RMS deviation between our ab initio calculations and empirical results by Coxon and Dickinson for rotational spacings Δ E = E(v, J = 1)-E(v, J = 0) over all available vibrational states of ^7LiH from v = 0 to v= 20 is 0.010 wn (with nuclear masses) and 0.006 wn (with atomic masses). Note that for high vibrational states with v > 6 this falls within the uncertainty of the measurements.
Wang, Xue B.; Fu, Qiang; Yang, Jinlong
2010-09-02
Hydroxyl substituted phenoxide, o-, m-, p- HO(C6H4)O– and the corresponding neutral radicals are important species, in particularly, the p- isomer pair is directly involved in the proton-coupled electron transfer in biological photosynthetic centers. Here we report the first spectroscopic study of these species in the gas phase by means of low-temperature photoelectron spectroscopy (PES) and ab initio calculations. Vibrationally resolved PES spectra were obtained at 70 K and several photon energies for each anion, directly yielding electron affinity (EA) and electronic structure information of the corresponding hydroxyphenoxyl radical. The EAs are found to vary with OH positions, from 1.990 ± 0.010 eV (p-) to 2.315 ± 0.010 (o-) and 2.330 ± 0.010 (m-). Theoretical calculations were carried out to identify the optimized molecular structures for both anions and neutral radicals. The electron binding energies and excited state energies were also calculated to compare with experimental data. Excellent agreement is found between calculations and experiments. Molecular orbital analyses indicate strong OH anti-bonding interaction with the phenoxide moiety for o- as well as p- isomers, whereas such interaction is largely missing for the m- anion. The variance of EAs among three isomers is interpreted primarily due to the interplay between two competing factors: the OH anti-bonding interaction and H-bonding stabilization (existed only in the o- anion).
Ab initio two-component Ehrenfest dynamics
NASA Astrophysics Data System (ADS)
Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong
2015-09-01
We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H2 and O2. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.
Ab initio two-component Ehrenfest dynamics
Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong
2015-09-21
We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.
The study of molecular spectroscopy by ab initio methods
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1991-01-01
This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.
NASA Astrophysics Data System (ADS)
Dash, S.; Joshi, N.; Drera, G.; Ghosh, P.; Magnano, E.; Bondino, F.; Galinetto, P.; Mozzati, M. C.; Salvinelli, G.; Aguekian, V.; Sangaletti, L.
2016-03-01
The electronic properties of the Mn:GaSe interface, produced by evaporating Mn at room temperature on a ɛ -GaSe(0001) single-crystal surface, have been studied by soft x-ray spectroscopies, and the experimental results are discussed at the light of ab initio DFT+U calculations of a model Ga1 -xMnxSe (x =0.055 ) surface alloy. Consistently with these calculations that also predict a high magnetic moment for the Mn ions (4.73 -4.83 μB), XAS measurements at the Mn L edge indicate that Mn diffuses into the lattice as a Mn2 + cation with negligible crystal-field effects. Ab initio calculations also show that the most energetically favorable lattice sites for Mn diffusion are those where Mn substitutes Ga cations in the Ga layers of the topmost Se-Ga-Ga-Se sandwich. Mn s and p states are found to strongly hybridize with Se and Ga p states, while weaker hybridization is predicted for Mn d states with Se s and p orbitals. Furthermore, unlike other Mn-doped semiconductors, there is strong interaction between the Ga -s and Mn -dz2 states. The effects of hybridization of Mn 3 d electrons with neighboring atoms are still clearly detectable from the characteristic charge-transfer satellites observed in the photoemission spectra. The Mn 3 d spectral weight in the valence band is probed by resonant photoemission spectroscopy at the Mn L edge, which also allowed an estimation of the charge transfer (Δ =2.95 eV) and Mott-Hubbard (U =6.4 eV) energies on the basis of impurity-cluster configuration-interaction model of the photoemission process. The Mott-Hubbard correlation energy U is consistent with the Ueff on-site Coulomb repulsion parameter (5.84 eV) determined for the ab initio calculations.
Long, Run; Fang, Weihai; Prezhdo, Oleg V
2016-08-18
Experiments show both positive and negative changes in performance of hybrid organic-inorganic perovskite solar cells upon exposure to moisture. Ab initio nonadiabatic molecular dynamics reveals the influence of humidity on nonradiative electron-hole recombination. In small amounts, water molecules perturb perovskite surface and localize photoexcited electron close to the surface. Importantly, deep electron traps are avoided. The electron-hole overlap decreases, and the excited state lifetime increases. In large amounts, water forms stable hydrogen-bonded networks, has a higher barrier to enter perovskite, and produces little impact on charge localization. At the same time, by contributing high frequency polar vibrations, water molecules increase nonadiabatic coupling and accelerate recombination. In general, short coherence between electron and hole benefits photovoltaic response of the perovskites. The calculated recombination time scales show excellent agreement with experiment. The time-domain atomistic simulations reveal the microscopic effects of humidity on perovskite excited-state lifetimes and rationalize the conflicting experimental observations. PMID:27485025
NASA Astrophysics Data System (ADS)
Novko, D.; Blanco-Rey, M.; Juaristi, J. I.; Alducin, M.
2015-11-01
The relaxation dynamics of hot H, N, and N2 on Pd(100), Ag(111), and Fe(110), respectively, is studied by means of ab initio molecular dynamics with electronic friction. This method is adapted here to account for the electron density changes caused by lattice vibrations, thus treating on an equal footing both electron-hole (e -h ) pair and phonon excitations. We find that even if the latter increasingly dominate the heavier is the hot species, the contribution of e -h pairs is by no means negligible in these cases because it gains relevance at the last stage of the relaxation process. The quantitative details of energy dissipation depend on the interplay of the potential energy surface, electronic structure, and kinetic factors.
Zhang, Ru; Bu, Yuxiang
2016-07-28
In this work, we conduct ab initio molecular dynamics simulations on the localization dynamics of an excess electron (EE) in acetamide/Ca(2+) aqueous solutions with three different interaction modes of Ca(2+) with acetamide: tight contact, solvent-shared state, and separated interaction. The simulated results reveal that an EE could exhibit two different localization behaviors in these acetamide/Ca(2+) aqueous solutions depending on different amideCa(2+) interactions featuring different contact distances. For the tight contact and solvent-shared state of amideCa(2+) solutions, vertically injected diffuse EEs follow different mechanisms with different dynamics, forming a cavity-shaped hydrated electron or a hydrated amide anion, respectively. Meanwhile, for the separated state, only one localization pattern of a vertically injected diffuse EE towards the formation of hydrated amide anion is observed. The hindrance of hydrated Ca(2+) and the attraction of the hydrated amide group originating from its polarity and low energy π* orbital are the main driving forces. Additionally, different EE localization modes have different effects on the interaction between the amide group and Ca(2+) in turn. This work provides an important basis for further understanding the mechanisms and dynamics of localizations/transfers of radiation-produced EEs and associated EE-induced lesions and damage to biological species in real biological environments or other aqueous solutions. PMID:27351489
Multiple time step integrators in ab initio molecular dynamics
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
Collective rotation from ab initio theory
NASA Astrophysics Data System (ADS)
Caprio, Mark A.; Maris, Pieter; Vary, James P.
2015-10-01
The challenge of ab initio nuclear theory is to quantitatively predict the complex and highly-correlated behavior of the nuclear many-body system, starting from the underlying internucleon interactions. We may now seek to understand the wealth of nuclear collective phenomena through ab initio approaches. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. In this talk, the intrinsic structure of these bands is discussed, and the predicted rotational bands are compared to experiment. Supported by the US DOE under Award Nos. DE-FG02-95ER-40934, DESC0008485 (SciDAC/NUCLEI), and DE-FG02-87ER40371 and the US NSF under Award No. 0904782. Computational resources provided by NERSC (US DOE Contract No. DE-AC02-05CH11231).
NASA Astrophysics Data System (ADS)
Thiessen, P. A.; Treder, H.-J.
Jedes initium wird durch experimenta crucis zum eventus. Jedes theoretisch interpretierbare ex-eventu-Resultat führt auf ein neues Initium. Gerade dies ist die gemeinsame Aussage von Atomistik, Quantenmechanik und Relativitätstheorie.Translated AbstractAb initio vel ex eventu. IIEvery initium becomes an eventus by experimenta crucis. Every theoretically interpretable ex-eventu result leads to a new initium. Right this is the joint assertion of atomism, quantum mechanics, and relativity.
Ab initio Bogoliubov coupled cluster theory
NASA Astrophysics Data System (ADS)
Signoracci, Angelo; Hagen, Gaute; Duguet, Thomas
2014-09-01
Coupled cluster (CC) theory has become a standard method in nuclear theory for realistic ab initio calculations of medium mass nuclei, but remains limited by its requirement of a Slater determinant reference state which reasonably approximates the nuclear system of interest. Extensions of the method, such as equation-of-motion CC, permit the calculation of nuclei with one or two nucleons added or removed from a doubly magic core, yet still only a few dozen nuclei are accessible with modern computational restrictions. In order to extend the applicability of ab initio methods to open-shell systems, the superfluid nature of nuclei must be taken into account. By utilizing Bogoliubov algebra and employing spontaneous symmetry breaking with respect to particle number conservation, superfluid systems can be treated by a single reference state. An ab initio theory to include correlations on top of a Bogoliubov reference state has been developed in the guise of standard CC theory. The formalism and first results of this Bogoliubov coupled cluster theory will be presented to demonstrate the applicability of the method.
Wu, Xiuxiu; Gao, Liang; Liu, Jinxiang; Yang, Hongfang; Wang, Shoushan; Bu, Yuxiang
2015-10-28
Studies on the structure, states, and reactivity of excess electrons (EEs) in biological media are of great significance. Although there is information about EE interaction with desolvated biological molecules, solution effects are hardly explored. In this work, we present an ab initio molecular dynamics simulation study on the interaction and reactivity of an EE with glycine in solution. Our simulations reveal two striking results. Firstly, a pre-solvated EE partially localizes on the negatively charged -COO(-) group of the zwitterionic glycine and the remaining part delocalizes over solvent water molecules, forming an anion-centered quasi-localized structure, due to relative alignment of the lowest unoccupied molecular orbital energy levels of potential sites for EE residence in the aqueous solution. Secondly, after a period of anion-centered localization of an EE, the zwitterionic glycine is induced to spontaneously fragment through the cleavage of the N-Cα bond, losing ammonia (deamination), and leaving a ˙CH2-COO(-) anion radical, in good agreement with experimental observations. Introduction of the same groups (-COO(-) or -NH3(+)) in the side chain (taking lysine and aspartic acid as examples) can affect EE localization, with the fragmentation of the backbone part of these amino acids dependent on the properties of the side chain groups. These findings provide insights into EE interaction mechanisms with the backbone parts of amino acids and low energy EE induced fragmentation of amino acids and even peptides and proteins. PMID:26399512
NASA Astrophysics Data System (ADS)
Ford, Thomas A.
2014-09-01
The molecular structures, vibrational spectra and atomic charges of the alicyclic ethers containing from two to five carbon atoms have been determined by means of ab initio calculations, at the level of second order Møller-Plesset perturbation theory and using Dunning's augmented correlation-consistent polarized valence triple-zeta basis set. Two isomers of the oxetane, tetrahydrofuran and tetrahydropyran molecules have been identified and their relative energies determined. Structural properties, such as the COC bond angles and the CH bond lengths, are found to increase steadily with increasing ring size and with decreasing ionization energy. The mean CH2 stretching and bending wavenumbers exhibit the reverse behaviour, while the mean wavenumbers of the CH2 wagging and twisting modes follow the same trend as the structural features. The ring mode wavenumbers vary in a less regular way. The charges of the oxygen, α-carbon and axial and equatorial α- and β-hydrogen atoms also do not show systematic dependences on ring size or ionization energy. The trends in the values of these properties have been rationalized.
Magnetic and electronic properties of Cr- and Mn-doped SnO2: ab initio calculations
NASA Astrophysics Data System (ADS)
Ziat, Y.; Benyoussef, A.; El Kenz, A.
2014-06-01
The ab initio calculations, based on the Korringa-Kohn-Rostoker (KKR) approximation method combined with the coherent potential approximation (CPA), indicated as KKR-CPA, have been used to study the stability of ferromagnetic and ferrimagnetic states, for systems that are SnO2 doped and co-doped with two transition metals, that is, chromium and manganese. Our results indicate that the ferromagnetic state is more stable than the spin-glass state for the (Sn1-xCrxO2; x = 0.07, 0.09, 0.12 and 0.15)-doped system, while the spin-glass state is more stable than the ferromagnetic state for the (Sn1-xMnxO2; x = 0.02 and 0.05)-doped system. However, the ferromagnetic and/or the ferrimagnetic states are stable for the (Sn0.98-xMn0.02CrxO2; x = 0.05, 0.09 and 0.13)-doped system depending on the Cr concentration. Moreover, we estimated the Curie temperature (Tc) for the Cr-doped tin dioxide (SnO2), and we explained the origin of magnetic behaviour through the total density of states for different doped and co-doped SnO2 systems.
NASA Astrophysics Data System (ADS)
Yan, Lingling; Qu, Yizhi; Liu, Chunhua; Wang, Jianguo; Buenker, Robert J.
2012-03-01
An ab initio multireference single- and double-excitation configuration interaction (CI) study is carried out for the ground and excited electronic states of alkali-hydride cations (LiH+, NaH+, KH+, RbH+, and CsH+). For all alkali-metal atoms, the first inner-shell and valence electrons (nine active electrons, three for Li) are considered explicitly in the ab initio self-consistent-field and CI calculations. The adiabatic potential energy curves, radial and rotational couplings are calculated and presented. Short-range (˜3 a.u.) potential wells produced by the excitation of the inner-shell electrons are found. The depths of the inner potential wells are much greater than those of the outer wells for the CsH+ system. The computed spectroscopic constants for the long-range potential well of the 2 2Σ+ state are very close to the available theoretical and experimental data. The electronic states of alkali-hydrogen cations are also compared with each other, it is found that the positions of the potential wells shift to larger internuclear distances gradually, and the depths of these potential wells become greater with increasing alkali-metal atomic number. The relationships between structures of the radial coupling matrix elements and the avoiding crossings of the potential curves are analyzed. From NaH+ to CsH+, radial coupling matrix elements display more and more complex structures due to the gradual decrease of energy separations for avoided crossings. Finally, the behavior of some rotational couplings is also shown.
NASA Astrophysics Data System (ADS)
Ohsawa, Takeo; Ueda, Shigenori; Suzuki, Motohiro; Tateyama, Yoshitaka; Williams, Jesse R.; Ohashi, Naoki
2015-10-01
Crystalline-polarity-dependent electronic structures of gallium nitride (GaN) were studied by photoemission spectroscopy (PES) using soft and hard x-rays with different linear polarizations. A peak located near the valence band (VB) maximum was enhanced for a (0001) surface compared with that for a ( 000 1 ¯ ) surface regardless of photon energy. Comparison of the VB density of states obtained by ab-initio calculations with the observed VB-PES spectra indicates that the crystalline-polarity dependence is associated with the Ga 4p and N 2p states. The most plausible origin of the crystalline-polarity-dependent VB feature is based on the photoemission phenomena of electrons in the pz-orbitals due to spontaneous electric polarization along the c-axis of GaN.
NASA Astrophysics Data System (ADS)
Nikolopoulos, L. A. A.
2003-02-01
A package is presented for the fully ab-initio calculation of one- and two-photon ionization cross sections for two-electron atomic systems (H -, He, Mg, Ca, …) under strong laser fields, within lowest-order perturbation theory (LOPT) and in the dipole approximation. The atomic structure is obtained through configuration interaction (CI) of antisymmetrized two-electron states expanded in a B-spline finite basis. The formulation of the theory and the relevant codes presented here represent the accumulation of work over the last ten years [1-11,13-15]. Extensions to more than two-photon ionization is straightforward. Calculation is possible for both the length and velocity form of the laser-atom interaction operator. The package is mainly, written in standard FORTRAN language and uses the publicly available libraries SLATEC, LAPACK and BLAS.
NASA Astrophysics Data System (ADS)
Choi, Heechae; Lee, Eung-Kwan; Cho, Sung Beom; Chung, Yong-Chae
2012-04-01
Using ab initio calculations, we investigated the changes of the magnetic moment and electronic structures of Fe adatoms on strained graphene sheets. By the uniaxial tensile strains in armchair and zig-zag directions on graphene sheets, the amounts of charge transfers from graphene 2pz orbital to Fe adatom 3d orbitals were linearly increased. The magnetic moments of Fe, however, show the tendency of linear decrements with the uniaxial tensile strains. The increased Fe magnetic moments by uniaxialy graphene compressions resulted from the shifting of spin-minority states of electrons while the decreased Fe magnetic moments were due to the reduction in the spin-majority states of 3dxy-orbitals of the Fe adatom.
NASA Astrophysics Data System (ADS)
Jaiganesh, G.; Jaya, S. Mathi
2015-06-01
The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.
Jaiganesh, G. Jaya, S. Mathi
2015-06-24
The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.
NASA Astrophysics Data System (ADS)
Li, Wu
2015-08-01
We demonstrate the ab initio electrical transport calculation limited by electron-phonon coupling by using the full solution of the Boltzmann transport equation (BTE), which applies equally to metals and semiconductors. Numerical issues are emphasized in this work. We show that the simple linear interpolation of the electron-phonon coupling matrix elements from a relatively coarse grid to an extremely fine grid can ease the calculational burden, which makes the calculation feasible in practice. For the Brillouin zone (BZ) integration of the transition probabilities involving one δ function, the Gaussian smearing method with a physical choice of locally adaptive broadening parameters is employed. We validate the calculation in the cases of n -type Si and Al. The calculated conductivity and mobility are in good agreement with experiments. In the metal case we also demonstrate that the Gaussian smearing method with locally adaptive broadening parameters works excellently for the BZ integration with double δ functions involved in the Eliashberg spectral function and its transport variant. The simpler implementation is the advantage of the Gaussian smearing method over the tetrahedron method. The accuracy of the relaxation time approximation and the approximation made by Allen [Phys. Rev. B 17, 3725 (1978), 10.1103/PhysRevB.17.3725] has been examined by comparing with the exact solution of BTE. We also apply our method to n -type monolayer MoS2, for which a mobility of 150 cm2 v-1 s-1 is obtained at room temperature. Moreover, the mean free paths are less than 9 nm, indicating that in the presence of grain boundaries the mobilities should not be effectively affected if the grain boundary size is tens of nanometers or larger. The ab initio approach demonstrated in this paper can be directly applied to other materials without the need for any a priori knowledge about the electron-phonon scattering processes, and can be straightforwardly extended to study cases with
Accurate ab Initio Spin Densities
2012-01-01
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740]. PMID:22707921
Thermochemical data for CVD modeling from ab initio calculations
Ho, P.; Melius, C.F.
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
NASA Astrophysics Data System (ADS)
Henderson, Thomas M.; Cave, Robert J.
1998-11-01
Specific solvent effects on the electronic coupling element for electron transfer are examined using two model donor-acceptor systems (Zn2+ and Li2+) and several model "solvent" species (He, Ne, H2O, and NH3). The effects are evaluated relative to the given donor-acceptor pair without solvent present. The electronic coupling element (Hab) is found to depend strongly on the identity of the intervening solvent, with He atoms decreasing Hab, whereas H2O and NH3 significantly increase Hab. The distance dependence (essentially exponential decay) is weakly affected by a single intervening solvent atom-molecule. However, when the donor-acceptor distance increases in concert with addition of successively greater numbers of solvent species, the decay with distance of Hab is altered appreciably. Effects due to varying the orientation of molecular solvent are found, somewhat surprisingly, to be quite modest.
Kubas, Adam; Blumberger, Jochen; Hoffmann, Felix; Heck, Alexander; Elstner, Marcus; Oberhofer, Harald
2014-03-14
We introduce a database (HAB11) of electronic coupling matrix elements (H{sub ab}) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H{sub ab} values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.
Ab initio no core full configuration approach for light nuclei
NASA Astrophysics Data System (ADS)
Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy
2014-07-01
Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.
Ab initio no core full configuration approach for light nuclei
NASA Astrophysics Data System (ADS)
Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy
2015-10-01
Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.; Apra, Edoardo; Windus, Theresa L.; Zhan, Chang-Guo; Tratnyek, Paul G.
2004-07-08
Electronic structure methods were used to calculate the aqueous reaction energies for hydrogenolysis, dehydrochlorination, and nucleophilic substitution by OH- of 4,4¢-DDT. Thermochemical properties ¢Hf° (298.15 K), S° (298.15 K, 1 bar), ¢GS (298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for a series of DDT type structures (p-C6H4Cl)2-CH-CCl3, (p-C6H4Cl)2-CH-CCl2¥, (p-C6H4Cl)2-CHCHCl2, (p-C6H4Cl)2-CdCCl2, (p-C6H4Cl)2-CH-CCl2OH, (p-C6H4Cl)2-CH-CCl(dO), and (p-C6H4-Cl)2-CH-COOH. On the basis of these thermochemical estimates, the overall aqueous reaction energetics of hydrogenolysis, dehydrochlorination, and hydrolysis of 4,4¢-DDT were estimated. The results of this investigation showed that the dehydrochlorination and hydrolysis reactions have strongly favorable thermodynamics in the standard state, as well as under a wide range of pH conditions. For hydrogenolysis with the reductant aqueous Fe(II), the thermodynamics are strongly dependent on pH, and the stability region of the (p-C6H4Cl)2-CH-CCl2¥(aq) species is a key to controlling the reactivity in hydrogenolysis. These results illustrate the use of ab initio electronic structure methods to identify the potentially important environmental degradation reactions by calculation of the reaction energetics of a potentially large number of organic compounds with aqueous species in natural waters.
Skutterudites under pressure: An ab initio study
Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.
2014-03-07
Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.
Ab initio melting curve of osmium
NASA Astrophysics Data System (ADS)
Burakovsky, L.; Burakovsky, N.; Preston, D. L.
2015-11-01
The melting curve of osmium up to a pressure P of 500 GPa is obtained from an extensive suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. The ab initio P =0 melting point of Os is 3370 ±75 K; this range encompasses all of the available data in the literature and corroborates the conclusion of J. W. Arblaster [Platinum Metals Rev. 49, 166 (2005)], 10.1595/147106705X70264 that the melting temperature of pure Os is 3400 ±50 K and that the 3300 K typically quoted in the literature is the melting point of impure Os. The T =0 equation of state (EOS) of Os and the P dependence of the optimized c /a ratio for the hexagonal unit cell, both to pressures ˜900 GPa, are obtained in the ab initio approach as validation of its use. Although excellent agreement with the available experimental data (P ≲80 GPa) is found, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes the QMD data to higher pressures, in agreement with the more recent experimental EOS by Godwal et al. The theoretical melting curve of Os obtained earlier by Joshi et al. is shown to be inconsistent with our QMD results, and the possible reason for this discrepancy is suggested. Regularities in the melting curves of Os and five other third-row transition metals (Ta, W, Re, Pt, Au) could be used to estimate the currently unknown melting curves of Hf and Ir.
Ab initio quantum chemistry: Methodology and applications
Friesner, Richard A.
2005-01-01
This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller–Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly. PMID:15870212
NASA Astrophysics Data System (ADS)
Ikeda, Tohru; Nagayoshi, Kanade; Kitaura, Kazuo
2003-03-01
A computational procedure is proposed for calculating the lattice energy of molecular crystals using the ab initio MO method. Our method does not require any adjustable parameters and provides a general description for various molecular crystals including electron donor-acceptor (EDA) complexes. Using the method, the packing structure of H 3N-BF 3 crystal was optimized at the HF/3-21 + G level and the lattice energy was calculated at the MP2/6-311 + G * level. The calculation reproduced the experimental lattice constants with reasonable accuracy. Moreover, the structural feature of the H 3N-BF 3 crystal was discussed based on the molecular interactions in the crystal.
NASA Astrophysics Data System (ADS)
Saheer, V. C.; Kumar, Sanjay
2016-01-01
The global ground and first three excited electronic state adiabatic as well as the corresponding quasidiabatic potential energy surfaces is reported as a function of nuclear geometries in the Jacobi coordinates ( R → , r → , γ ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. Nonadiabatic couplings, arising out of relative motion of proton and the vibrational motion of CO, are also reported in terms of coupling potentials. The quasidiabatic potential energy surfaces and the coupling potentials have been obtained using the ab initio procedure [Simah et al., J. Chem. Phys. 111, 4523 (1999)] for the purpose of dynamics studies.
Ab-initio calculations on melting of thorium
NASA Astrophysics Data System (ADS)
Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.
2016-05-01
Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.
Ab initio molecular dynamics: concepts, recent developments, and future trends.
Iftimie, Radu; Minary, Peter; Tuckerman, Mark E
2005-05-10
The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed "on the fly" from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204
Recent progress in ab initio density matrix renormalization group methodology
NASA Astrophysics Data System (ADS)
Hachmann, Johannes; Dorando, Jonathan J.; Kin-Lic Chan, Garnet
2008-03-01
We present some recent developments in the ab initio density matrix renormalization group (DMRG) method for quantum chemical problems, in particular our local, quadratic scaling algorithm [1] for low dimensional systems. This method is particularly suited for the description of strong nondynamic correlation, and allows us to compute numerically exact (FCI) correlated energies for large active spaces, up to one order of magnitude larger then can be done by conventional CASCI techniques. Other features of this method are its inherent multireference nature, compactness, variational results, size-consistency and size-extensivity. In addition we will review the problems (predominantly organic electronic materials) on which we applied the ab initio DMRG: 1) metal-insulator transition in hydrogen chains [1] 2) all-trans polyacetylene [1] 3) acenes [2] 4) polydiacetylenes [3]. References [1] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [2] Hachmann, Dorando, Avil'es, Chan, JCP 127 (2007), 134309. [3] unpublished.
Ab initio Monte Carlo investigation of small lithium clusters.
Srinivas, S.
1999-06-16
Structural and thermal properties of small lithium clusters are studied using ab initio-based Monte Carlo simulations. The ab initio scheme uses a Hartree-Fock/density functional treatment of the electronic structure combined with a jump-walking Monte Carlo sampling of nuclear configurations. Structural forms of Li{sub 8} and Li{sub 9}{sup +} clusters are obtained and their thermal properties analyzed in terms of probability distributions of the cluster potential energy, average potential energy and configurational heat capacity all considered as a function of the cluster temperature. Details of the gradual evolution with temperature of the structural forms sampled are examined. Temperatures characterizing the onset of structural changes and isomer coexistence are identified for both clusters.
Wang, Zhiping; Zhang, Liang; Cukier, Robert I; Bu, Yuxiang
2010-02-28
The structural and electronic properties of an excess electron (EE) in the ionic liquid (IL) 1-methylpyridinium chloride were explored using ab initio molecular dynamics simulations and quantum chemical calculations to give an overall understanding of the solvation and transport behavior of an EE in this IL. The results show that the EE resides in cation pi*-type orbitals and that the electronic states can be characterized by the alternating appearance of localized and delocalized states during the time evolution. The characters of the EE electronic states are determined by the number of cations contributing to the LUMO of the IL. In a localized state one or two cations contribute to the LUMO of the bulk ionic liquid, while in the delocalized state the IL LUMO is composed of pi*-type orbitals spanning nearly all the cations in the cell. The arrangement and fluctuation-induced changes of the orbital components in the empty band produce an alternation of different states and leads to the migration of the excess electron. These findings can be attributed to the special features of the electronic structures and geometries of the IL, and they can be used to explain similarities and differences between pyridinium-based and imidazolium-based ILs in mediating electron migration. PMID:20145852
NASA Astrophysics Data System (ADS)
Pan, Yong; Guan, Weiming
2016-09-01
MoS3 has attracted considerable attention as potential hydrogen storage material due to the interaction between the hydrogen and unsaturated sulfur atoms. However, its structure and physical properties are unknown. By means of first-principles approach and Inorganic crystal structure Database (ISCD), we systematically investigated the structure, relevant physical and thermodynamic properties of MoS3. Phonon dispersion, electronic structure, band structure and heat capacity are calculated in detail. We predicted the orthorhombic B2ab (SrS3-type) and tetragonal P-421m (BaS3-type) structures of MoS3, which prefers to form the SrS3-type (Space group: B2ab, No.41) structure at the ground state. High pressure results in structural transition from SrS3-type structure to BaS3-type structure. This sulfide exhibits a degree of metallic behavior. The calculated heat capacity of MoS3 with SrS3-type structure is about of 39 J/(mol·K).
Ab Initio Neutron Drops with Chiral Hamiltonians
NASA Astrophysics Data System (ADS)
Potter, Hugh; Maris, Pieter; Vary, James
2015-04-01
Ab initio calculations for neutron drops are of interest for insights into neutron-rich nuclei and neutron star matter, and for examining the neutron-only sector of nucleon-nucleon and 3-nucleon interactions. I present ab initio results calculated using the no-core shell model with 2- and 3-body chiral Hamiltonians for neutron drops up to 20 neutrons confined in a 10 MeV harmonic trap. I discuss ground state energies, internal energies, radii, and evidence for pairing. In addition, excitation energies can be used to investigate the spin-orbit splittings in the p-shell and sd -shell. Prior Green's Function Monte Carlo calculations using the Argonne v8' potential with added 3-nucleon forces serve as a comparison. Supported by DOE Grants DESC0008485 (SciDAC/NUCLEI), DE-FG02-87ER40371, and NSF Grant 0904782; computational resources provided by the Oak Ridge Leadership Computing Facility (DOE Office of Science Contract DE-AC05-00OR22725) under an INCITE award.
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Draayer, Jerry P.
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
NASA Astrophysics Data System (ADS)
Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.
2014-08-01
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.
Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V
2014-08-01
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573
NASA Astrophysics Data System (ADS)
Sarhaddi, Reza; Arabi, Hadi; Pourarian, Faiz
2014-05-01
The structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) isomeric intermetallic compounds were systematically investigated by using density functional theory (DFT) and plane-wave pseudo-potential (PW-PP) method. The macroscopic properties including the lattice constant, bulk modulus and stability for these compounds were studied before and after hydrogenation. For parent compounds, the enthalpy of formation was evaluated with regard to their bulk modules and electronic structures. After hydrogenation of compounds at different interstitial tetrahedral sites (A2B2, A1B3, B4), a volume expansion was found for hydrides. The stability properties of hydrides characterized the A2B2 sites as the site preference of hydrogen atoms for both compounds. The Miedema's "reverse stability" rule is also satisfied in these compounds as lower the enthalpy of formation for the host compound, the more stable the hydride. Analysis of microscopic properties (electronic structures) after hydrogenation at more stable interstitial site (A2B2) shows that the H atoms interact stronger with the weaker (or non) hydride forming element B (Cr) than the hydride forming element A (Ti/Zr). A correlation was also found between the stability of the hydrides and their electronic structure: the deeper the hydrogen band, the less stable the hydride.
Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
NASA Astrophysics Data System (ADS)
Fathi, M. B.; Kanjouri, F.; Farhadi, G.
2015-07-01
Nitinol as a superelastic shape memory alloy (SMA) has been the focus of physical-chemical studies in recent decades in respect to functionality of biocompatibility in the body. Superelastic properties of nitinol are the direct results of the electronic structure of this material while dealing with the ab initio behavior of microstructure. In the present work, the elastic properties and electronic structure of B2-phase binary TiNi(1-x)Cux (x = 0, 0.25 and 0.75) shape memory alloys are discussed aiming at understanding of the physical properties underlying superelastic behavior. The calculations have been performed with the program package WIEN2K, in the framework of first-principle, all-electron density functional theory (DFT) within the scheme of the generalized gradient approximation (GGA). The optimized lattice parameters and independent elastic constants are obtained for use in the calculation of the bulk and shear moduli, Young modulus, Poisson ratio and Zener anisotropy parameter. For different alloying fractions x, the tetragonal (C‧) and trigonal (C44) shear constants are calculated and brittle/ductile behavior of these compounds is discussed. Finally, a qualitative discussion of dependence of elastic behavior of these compounds upon the electronic density of states (DOS) is presented.
NASA Astrophysics Data System (ADS)
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2016-06-01
In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH• radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH• radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.
Ab Initio Computation of the Energies of Circular Quantum Dots
Lohne, M. Pedersen; Hagen, Gaute; Hjorth-Jensen, M.; Kvaal, S.; Pederiva, F.
2011-01-01
We perform coupled-cluster and diffusion Monte Carlo calculations of the energies of circular quantum dots up to 20 electrons. The coupled-cluster calculations include triples corrections and a renormalized Coulomb interaction defined for a given number of low-lying oscillator shells. Using such a renormalized Coulomb interaction brings the coupled-cluster calculations with triples correlations in excellent agreement with the diffusion Monte Carlo calculations. This opens up perspectives for doing ab initio calculations for much larger systems of electrons.
Guiding ab initio calculations by alchemical derivatives.
to Baben, M; Achenbach, J O; von Lilienfeld, O A
2016-03-14
We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects. PMID:26979677
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less
Discovering chemistry with an ab initio nanoreactor
NASA Astrophysics Data System (ADS)
Martinez, Todd
Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-01-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881
Guiding ab initio calculations by alchemical derivatives
NASA Astrophysics Data System (ADS)
to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.
2016-03-01
We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.
Discovering chemistry with an ab initio nanoreactor.
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S; Martínez, Todd J
2014-12-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor--a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings. PMID:25411881
Discovering chemistry with an ab initio nanoreactor
NASA Astrophysics Data System (ADS)
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-12-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor—a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings.
Ab Initio Modeling of Molecular Radiation
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Schwenke, David
2014-01-01
Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.
Ab Initio Calculation of the Hoyle State
Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.
2011-05-13
The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.
NASA Astrophysics Data System (ADS)
Pazyuk, Elena A.; Revina, Elena I.; Stolyarov, Andrey V.
2016-07-01
The spin allowed electronic transition dipole moments (ETDM) of rubidium and cesium dimers are calculated among the states converging to the lowest three dissociation limits. The ETDM functions are evaluated for a wide range of internuclear distances R in the basis of the spin-averaged wavefunctions corresponding to pure Hund's coupling case (a) by using small (including the 8 subvalence +1 valence electrons) effective core pseudopotentials (ECP). The dynamic correlation is accounted for in a large scale multi-reference configuration interaction (MR-CI) method applied to only two valence electrons. The core-polarization potentials (CPP) are implemented to implicitly take the residual core-valence effect into account. The reliability of the present EDTM functions is discussed through comparison with preceding ab initio calculations and their long range perturbation theory counterparts. The achieved accuracy allowed us to quantitatively support the asymptotic behavior of the ETDM functions predicted in Marinescu and Dalgarno (1995 [4]). The long R-range transition moments could be useful to optimize stimulated Raman processes employed in ultracold molecule production.
Ab initio alpha-alpha scattering
NASA Astrophysics Data System (ADS)
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.
2015-12-01
Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Ab initio alpha-alpha scattering.
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-12-01
Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Grimminger, Robert; Clouthier, Dennis J.; Sheridan, Phillip M.
2014-04-28
We have studied the B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence (LIF) spectrum of the jet-cooled F{sub 2}BO radical for the first time. The transition consists of a strong 0{sub 0}{sup 0} band at 446.5 nm and eight weak sequence bands to shorter wavelengths. Single vibronic level emission spectra obtained by laser excitation of individual levels of the B{sup ~} state exhibit two electronic transitions: a very weak, sparse B{sup ~}–X{sup ~} band system in the 450–500 nm region and a stronger, more extensive set of B{sup ~} {sup 2}A{sub 1}–A{sup ~} {sup 2}B{sub 1} bands in the 580–650 nm region. We have also performed a series of high level ab initio calculations to predict the electronic energies, molecular structures, vibrational frequencies, and rotational and spin-rotation constants in the X{sup ~} {sup 2}B{sub 2}, A{sup ~2}B{sub 1} and B{sup ~} {sup 2}A{sub 1} electronic states as an aid to the analysis of the experimental data. The theoretical results have been used as input for simulations of the rotationally resolved B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} 0{sub 0}{sup 0} LIF band and Franck-Condon profiles of the LIF and single vibronic level emission spectra. The agreement between the simulations obtained with purely ab initio parameters and the experimental spectra validates the geometries calculated for the ground and excited states and the conclusion that the radical has C{sub 2v} symmetry in the X{sup ~}, A{sup ~}, and B{sup ~} states. The spectra provide considerable new information about the vibrational energy levels of the X{sup ~} and A{sup ~} states, but very little for the B{sup ~} state, due to the very restrictive Franck-Condon factors in the LIF spectra.
Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S
2014-06-10
We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good
NASA Astrophysics Data System (ADS)
Jezierski, Andrzej; Szytuła, Andrzej
2016-02-01
The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in a good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier-Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0
Zimmermann, Tomáš; Vaníček, Jiří
2014-10-07
We derive a somewhat crude, yet very efficient semiclassical approximation for computing nonadiabatic spectra. The resulting method, which is a generalization of the multiple-surface dephasing representation, includes quantum effects through interference of mixed quantum-classical trajectories and through quantum treatment of the collective electronic degree of freedom. The method requires very little computational effort beyond the fewest-switches surface hopping or Ehrenfest locally mean-field dynamics and is very easy to implement. The proposed approximation is tested by computing the absorption and time-resolved stimulated emission spectra of pyrazine using the four-dimensional three-surface model which allows for comparison with the numerically exact quantum spectra. As expected, the multiple-surface dephasing representation is not suitable for high-resolution linear spectra, yet it seems to capture all the important features of pump-probe spectra. Finally, the method is combined with on-the-fly ab initio evaluation of the electronic structure (i.e., energies, forces, electric-dipole, and nonadiabatic couplings) in order to compute fully dimensional nonadiabatic spectra of pyrazine without approximations inherent to analytical, including vibronic-coupling models. The Appendix provides derivations of perturbative expressions for linear and pump-probe spectra of arbitrary mixed states and for arbitrary laser pulse shapes.
Pi, Xiaodong; Ni, Zhenyi; Yang, Deren E-mail: christophe.delerue@isen.fr; Delerue, Christophe E-mail: christophe.delerue@isen.fr
2014-11-21
In contrast to the conventional doping of bulk silicon (Si), the doping of Si nanocrystals (NCs) that are often smaller than 5 nm in diameter may lead to serious structural changes. Since the electronic and optical properties of Si NCs are intimately associated with their structures, it is critical to understand how doping impacts the structures of Si NCs. By means of ab initio calculation we now compare 1.4 nm phosphorus (P)-doped Si NCs without structural relaxation and those with structural relaxation. Structural changes induced by structural relaxation are manifested by the stretching and compressing of bonds and apparent variations in bond angles. With the increase of the concentration of P structural changes induced by structural relaxation become more serious. It is found that structural relaxation makes differences in the energy-level schemes of P-doped Si NCs. Structural relaxation also causes the binding energy of an electron in a P-doped Si NC to more significantly increase as the concentration of P increases. With the increase of the concentration of P structural relaxation leads to more pronounced changes in the optical absorption of P-doped Si NCs.
NASA Astrophysics Data System (ADS)
Haddadi, K.; Bouhemadou, A.; Bin-Omran, S.; Maabed, S.; Khenata, R.
2015-01-01
The structural parameters, elastic constants, electronic structure and optical properties of the recently reported monoclinic quaternary nitridoaluminate LiCaAlN2 are investigated in detail using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The calculated equilibrium structural parameters are in excellent agreement with the experimental data, which validate the reliability of the applied theoretical method. The chemical and structural stabilities of LiCaAlN2 are confirmed by calculating the cohesion energy and enthalpy of formation. Chemical band stiffness is calculated to explain the pressure dependence of the lattice parameters. Through the band structure calculation, LiCaAlN2 is predicted to be an indirect band gap of 2.725 eV. The charge-carrier effective masses are estimated from the band structure dispersions. The frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for polarized incident light in a wide energy range. Optical spectra exhibit a noticeable anisotropy. Single-crystal and polycrystalline elastic constants and related properties, including isotropic sound velocities and Debye temperatures, are numerically estimated. The calculated elastic constants and elastic compliances are used to analyse and visualize the elastic anisotropy of LiCaAlN2. The calculated elastic constants demonstrate the mechanical stability and brittle behaviour of the considered material.
NASA Astrophysics Data System (ADS)
Salami, N.; Shokri, A. A.; Elahi, S. M.
2016-03-01
Electronic and magnetic properties of a molybdenum disulfide (MoS2) monolayer with some intrinsic and extrinsic vacancies are investigated using ab initio method in the presence of planar strain distributions. The calculations are carried out within the density functional theory (DFT) as implemented in SIESTA package. By using fully relaxed structures and applying a full spin-polarized description to the system, we concentrate on created magnetic moment due to the vacancies under different planar strains. The results show that the extrinsic MoS6 vacancy induces a net magnetic moment of 6.00 μB per supercell. Also, it is found that the pure MoS2 monolayer for the most cases does not show any magnetic properties under the planar strain. While the net magnetic moment of MoS2 monolayer with the vacancies enhances as the planar tensile strain is applied. The tunable magnetic moment of MoS2 monolayer may be utilized for the development of spintronic and flexible electronic nano-devices.
Yamamoto, Takeshi; Kato, Shigeki
2007-06-14
In quantum-mechanical/molecular-mechanical (QM/MM) treatment of chemical reactions in condensed phases, one solves the electronic Schrodinger equation for the solute (or an active site) under the electrostatic field from the environment. This Schrodinger equation depends parametrically on the solute nuclear coordinates R and the external electrostatic potential V. This fact suggests that one may use R and V as natural collective coordinates for describing the entire system, where V plays the role of collective solvent variables. In this paper such an (R,V) representation of the QM/MM canonical ensemble is described, with particular focus on how to treat charge transfer processes in this representation. As an example, the above method is applied to the proton-coupled electron transfer of a ubiquinol analog with phenoxyl radical in acetonitrile solvent. Ab initio free-energy surfaces are calculated as functions of R and V using the reference interaction site model self-consistent field method, the equilibrium points and the minimum free-energy crossing point are located in the (R,V) space, and then the kinetic isotope effects (KIEs) are evaluated approximately. The results suggest that a stiffer proton potential at the transition state may be responsible for unusual KIEs observed experimentally for related systems. PMID:17581070
Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; Martínez, Todd J.; Gordon, Mark S.
2014-10-20
This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitation on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.
Potential Dependence of Electrochemical Barriers from ab Initio Calculations.
Chan, Karen; Nørskov, Jens K
2016-05-01
We present a simple and computationally efficient method to determine the potential dependence of the activation energies for proton-electron transfer from a single ab initio barrier calculation. We show that the potential dependence of the activation energy is given by the partial charge transferred at the transition state. The method is evaluated against the potential dependence determined explicitly through multiple calculations at varying potential. We show that the transfer coefficient is given by the charge transferred from the initial to transition state, which has significant implications for electrochemical kinetics. PMID:27088442
Ab Initio Calculations Applied to Problems in Metal Ion Chemistry
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)
1994-01-01
Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.
Ab initio derivation of model energy density functionals
NASA Astrophysics Data System (ADS)
Dobaczewski, Jacek
2016-08-01
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.
NASA Astrophysics Data System (ADS)
Richard, D.; Muñoz, E. L.; Butz, T.; Errico, L. A.; Rentería, M.
2010-07-01
The time-differential γ-γ perturbed-angular-correlation (TDPAC) technique using T44i→S44c tracers was applied to study the nuclear quadrupole interaction of the first excited I=1 state of S44c in the cubic bixbyite structure of scandium sesquioxide (Sc2O3) . In addition, ab initio calculations of electronic and structural properties and hyperfine parameters at the cationic sites of the Sc2O3 structure were performed using the full-potential augmented plane wave plus local-orbital (APW+lo) method. The accuracy of the calculations and the excellent agreement of the predicted electric-field-gradient (EFG) tensors and the structural properties (lattice parameters, internal positions) with the experimental results enable us to identify the observed hyperfine interactions and to infer the EFG sign that cannot be measured in conventional TDPAC experiments. Additionally, the APW+lo calculations show that the EFG at Sc sites is originated in the population of Sc3p states and give an explanation for the preferential occupation of the asymmetric cationic site C of the structure by the T44i doping impurities. Finally, the validity of the ionic model, usually used to describe the EFG at native cation sites, is discussed.
NASA Astrophysics Data System (ADS)
Demkov, Alexander A.; Navrotsky, Alexandra
2001-03-01
The International Technology Roadmap for Semiconductors (ITRS) predicts that the strategy of scaling complementary metal-oxide-semiconductor (CMOS) devices will come to an abrupt end around the year 2012. The main reason for this will be the unacceptably high leakage current through the silicon dioxide gate with a thickness below 20 ÅFinding a gate insulator alternative to SiO2 has proven to be far from trivial. Hafnium and zirconium dioxides and silicates have been recently considered as gate dielectrics with intermediate dielectric constants. Hafnia and ziconia are important ceramic materials as well, and their phase relations are rather well studied. There is also interest in hafnia as a constituent of ceramic waste forms for plutonium, based on its refractory nature and high neutron absorption cross section. We use a combination of the ab-initio calculations and calorimetry to investigate thermodynamic and electronic properties of hafnia and zirconia. We describe the cubic to tetragonal phase transition in the fluorite structure by computing the total energy surface for zone-edge distortions correct to fourth order in the soft-mode displacement with the strain coupling renormalization included. We compare the two materials using some simple chemical concepts.
Tuna, Deniz; Udvarhelyi, Anikó; Sobolewski, Andrzej L; Domcke, Wolfgang; Domratcheva, Tatiana
2016-04-14
Eumelanin is a naturally occurring skin pigment which is responsible for developing a suntan. The complex structure of eumelanin consists of π-stacked oligomers of various indole derivatives, such as the monomeric building block 5,6-dihydroxyindole (DHI). In this work, we present an ab initio wave-function study of the absorption behavior of DHI oligomers and of doubly and triply π-stacked species of these oligomers. We have simulated the onset of the electronic absorption spectra by employing the MP2 and the linear-response CC2 methods. Our results demonstrate the effect of an increasing degree of oligomerization of DHI and of an increasing degree of π-stacking of DHI oligomers on the onset of the absorption spectra and on the degree of red-shift toward the visible region of the spectrum. We find that π-stacking of DHI and its oligomers substantially red-shifts the onset of the absorption spectra. Our results also suggest that the optical properties of biological eumelanin cannot be simulated by considering the DHI building blocks alone, but instead the building blocks indole-semiquinone and indole-quinone have to be considered as well. This study contributes to advancing the understanding of the complex photophysics of the eumelanin biopolymer. PMID:27005558
NASA Astrophysics Data System (ADS)
Parisi, Filippo; Sciascia, Luciana; Princivalle, Francesco; Merli, Marcello
2012-02-01
In order to characterize the pressure-induced decomposition of ringwoodite (γ-Mg2SiO4), the topological analysis of the electron density ρ( r), based upon the theory of atoms in molecules (AIM) developed by Bader in the framework of the catastrophe theory, has been performed. Calculations have been carried out by means of the ab initio CRYSTAL09 code at the HF/DFT level, using Hamiltonians based on the Becke- LYP scheme containing hybrid Hartree-Fock/density functional exchange-correlation terms. The equation of state at 0 K has been constructed for the three phases involved in the post-spinel phase transition (ringwoodite → Mg-perovskite + periclase) occurring at the transition zone-lower mantel boundary. The topological results show that the decomposition of the ringwoodite at high pressures is caused by a conflict catastrophe. Furthermore, topological evidences of the central role played by the oxygen atoms to facilitate the pressure-induced ringwoodite decomposition and the subsequent phase transition have been noticed.
NASA Astrophysics Data System (ADS)
Hamioud, Farida; Alghamdi, Ghadah S.; Al-Omari, Saleh; Mubarak, A. A.
2016-03-01
We have performed ab initio investigation of some physical properties of the perovskite TlMnX3 (X = F, Cl) compounds using the full-potential linearized augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) is employed as exchange-correlation potential. The calculated lattice constant and bulk modulus agree with previous studies. Both compounds are found to be elastically stable. TlMnF3 and TlMnCl3 are classified as anisotropic and ductile compounds. The calculations of the band structure of the studied compounds showed the semiconductor behavior with the indirect (M-X) energy gap. Both compounds are classified as a ferromagnetic due to the integer value of the total magnetic moment of the compounds. The different optical spectra are calculated from the real and the imaginary parts of the dielectric function and connected to the electronic structure of the compounds. The static refractive index n(0) is inversely proportional to the energy bandgap of the two compounds. Beneficial optics technology applications are predicted based on the optical spectra.
NASA Astrophysics Data System (ADS)
Matar, S. F.; Al Alam, A. F.; Gédéon, D.; Ouaini, N.
2013-11-01
Potential hydrogen storage ternaries Zr3FeH7 and Zr2FeH5, are studied from ab initio with the purpose of identifying changes in electronic structures and bonding properties. Cohesive energy trends: Ecoh. (ZrH2) > Ecoh. (Zr2FeH5) > Ecoh. (Zr3FeH7) > Ecoh. (hypothetic-FeH) indicate a progressive destabilization of the binary hydride ZrH2 through adjoined Fe so that Zr3FeH7 is found less cohesive than Zr2FeH5. From the energy volume equations of states EOS the volume increase upon hydriding the intermetallics leads to higher bulk moduli B0 explained by the Zr/Fe-H bonding. Fe-H bond in Zr2FeH5 leads to annihilate magnetic polarization on Fe whereas Fe magnetic moment develops in Zr3FeH7 identified as ferromagnetic in the ground state. These differences in magnetic behaviors are due to the weakly ferromagnetic Fe largely affected by lattice environment, as opposed to strongly ferromagnetic Co. Hydrogenation of the binary intermetallics weakens the inter-metal bonding and favors the metal-hydrogen bonds leading to more cohesive hydrides as with respect to the pristine binaries. Charge analyses point to covalent like Fe versus ionic Zr and hydrogen charges ranging from covalent H-0.27 to more ionic H-0.5.
Nový, Jakub; Böhm, Stanislav; Králová, Jarmila; Král, Vladimír; Urbanová, Marie
2008-02-01
Variations in the structure of d(GGGA)(5) oligonucleotide in the presence of Li(+), Na(+), and K(+) ions and its temperature stability were studied using electronic and vibrational circular dichroism, IR absorption, and ab initio calculations with the Becke 3-Lee-Yang-Parr functional at the 6-31G** level. The samples were characterized by nondenaturing gel electrophoresis. Oligonucleotide d(GGGA)(5) in the presence of Li(+) forms a nonplanar single tetramer, with angles of 102 degrees and 171 degrees between neighboring guanine bases. This tetramer changes its geometry at temperatures >50 degrees C, but does not form a quadruplex structure. In the presence of Na(+), the d(GGGA)(5) structure was optimized to almost planar tetramers with an angle of 177 degrees between neighboring guanines. The spectral results suggest that it stacks into a quadruplex helical structure. This quadruplex structure decayed to a single tetramer at temperatures >60 degrees C. The Hartree-Fock energies imply that d(GGGA)(5) prefers to form complexes with Na(+) rather than Li(+). The d(GGGA)(5) structure in the presence of monovalent ions is stabilized against thermal denaturation in the order Li(+) < Na(+) < K(+). PMID:17960602
NASA Astrophysics Data System (ADS)
Zemen, J.; Mašek, J.; Kučera, J.; Mol, J. A.; Motloch, P.; Jungwirth, T.
2014-04-01
An empirical multiorbital (spd) tight binding (TB) model including magnetism and spin-orbit coupling is applied to calculations of magnetic anisotropy energy (MAE) in CoPt L10 structure. A realistic Slater-Koster parametrisation for single-element transition metals is adapted for the ordered binary alloy. Spin magnetic moment and density of states are calculated using a full-potential linearised augmented plane-wave (LAPW) ab initio method and our TB code with different variants of the interatomic parameters. Detailed mutual comparison of this data allows for determination of a subset of the compound TB parameters tuning of which improves the agreement of the TB and LAPW results. MAE calculated as a function of band filling using the refined parameters is in broad agreement with ab initio data for all valence states and in quantitative agreement with ab initio and experimental data for the natural band filling. Our work provides a practical basis for further studies of relativistic magnetotransport anisotropies by means of local Green's function formalism which is directly compatible with our TB approach.
Ab Initio: And a New Era of Airline Pilot Training.
ERIC Educational Resources Information Center
Gesell, Laurence E.
1995-01-01
Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)
Phonocatalysis. An ab initio simulation experiment
NASA Astrophysics Data System (ADS)
Kim, Kwangnam; Kaviany, Massoud
2016-06-01
Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon) energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent) requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.
Ab Initio Studies of Calcium Carbonate Hydration.
Lopez-Berganza, Josue A; Diao, Yijue; Pamidighantam, Sudhakar; Espinosa-Marzal, Rosa M
2015-11-25
Ab initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate. Structural and energetics analysis of the hydration of these clusters revealed a first hydration shell composed of 12 water molecules. Bond-length and charge densities were also determined for different cluster sizes. The solvation of calcium carbonate in bulk water was investigated by placing the explicitly solvated CaCO3·nH2O clusters in a polarizable continuum model (PCM). The findings of this study provide new insights into the energetics and structure of hydrated calcium carbonate and contribute to the understanding of mechanisms where calcium carbonate formation or dissolution is of relevance. PMID:26505205
Sharma, Sheetal; Verma, A.S.; Jindal, V.K.
2014-05-01
Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX{sub 2} (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te). In this study, we have used the accurate full potential linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 33}, C{sub 44} and C{sub 66}). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures.
NASA Astrophysics Data System (ADS)
Tarroni, Riccardo; Clouthier, Dennis J.
2009-09-01
A series of ab initio calculations have been undertaken to predict the spectroscopic properties of the ground and first two excited states of the recently discovered arsenyl (H2AsO) free radical. This 13 valence electron species can be viewed as similar to the formaldehyde radical anion with a ground state electron configuration of ⋯(π)2(n)2(π∗)1. The arsenyl radical is nonplanar (pyramidal) in the ground state with a 59° out-of-plane angle and a 1.67 Å AsO bond length. It has a low-lying n-π ∗(Ã A2″) excited state (Te˜5000 cm-1) which has a much larger out-of-plane angle (86°) and longer AsO bond length (1.81 Å). The π-π ∗(B˜ A2') excited state at ˜20 500 cm-1 is less pyramidal (out-of-plane angle=70°) and has a somewhat shorter AsO bond (1.77 Å). Similar trends are found for the H2PO and H2NO free radicals, although the latter has a planar ground state, due to sp2 hybridization of the N atom, and a very long B˜ state AsO bond length. The geometric variations of the ground and excited states of the H2EO (E=N, P, As) radicals, as well as the ground states of the corresponding anions and cations, can be readily rationalized from the Walsh diagram of the anion. The variations in the E-O bond length are a result of changes in both the orbital occupancy and pyramidalization of the molecule. The results of the present work have been employed in the analysis of the B˜ A2'-X˜ A2' electronic band system of the H2AsO free radical as reported in the companion paper.
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Kolorenč, Přemysl; Sisourat, Nicolas
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.
Kolorenč, Přemysl; Sisourat, Nicolas
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states. PMID:26671378
NASA Astrophysics Data System (ADS)
Abadias, G.; Kanoun, M. B.; Goumri-Said, S.; Koutsokeras, L.; Dub, S. N.; Djemia, Ph.
2014-10-01
The structure, phase stability, and mechanical properties of ternary alloys of the Zr-Ta-N system are investigated by combining thin-film growth and ab initio calculations. Zr1-xTaxN films with 0≤x≤1 were deposited by reactive magnetron cosputtering in Ar +N2 plasma discharge and their structural properties characterized by x-ray diffraction. We considered both ordered and disordered alloys, using supercells and special quasirandom structure approaches, to account for different possible metal atom distributions on the cation sublattice. Density functional theory within the generalized gradient approximation was employed to calculate the electronic structure as well as predict the evolution of the lattice parameter and key mechanical properties, including single-crystal elastic constants and polycrystalline elastic moduli, of ternary Zr1-xTaxN compounds with cubic rocksalt structure. These calculated values are compared with experimental data from thin-film measurements using Brillouin light scattering and nanoindentation tests. We also study the validity of Vegard's empirical rule and the effect of growth-dependent stresses on the lattice parameter. The thermal stability of these Zr1-xTaxN films is also studied, based on their structural and mechanical response upon vacuum annealing at 850 °C for 3 h. Our findings demonstrate that Zr1-xTaxN alloys with Ta fraction 0.51⩽x⩽0.78 exhibit enhanced toughness, while retaining high hardness ˜30 GPa, as a result of increased valence electron concentration and phase stability tuning. Calculations performed for disordered or ordered structures both lead to the same conclusion regarding the mechanical behavior of these nitride alloys, in agreement with recent literature findings [H. Kindlund, D. G. Sangiovanni, L. Martinez-de-Olcoz, J. Lu, J. Jensen, J. Birch, I. Petrov, J. E. Greene, V. Chirita, and L. Hultman, APL Materials 1, 042104 (2013), 10.1063/1.4822440].
Long, Run; Prezhdo, Oleg V
2011-11-30
Following recent experiments [Science 2010, 328, 1543; PNAS 2011, 108, 965], we report an ab initio nonadiabatic molecular dynamics (NAMD) simulation of the ultrafast photoinduced electron transfer (ET) from a PbSe quantum dot (QD) into the rutile TiO(2) (110) surface. The system forms the basis for QD-sensitized semiconductor solar cells and demonstrates that ultrafast interfacial ET is instrumental for achieving high efficiencies in solar-to-electrical energy conversion. The simulation supports the observation that the ET successfully competes with energy losses due to electron-phonon relaxation. The ET proceeds by the adiabatic mechanism because of strong donor-acceptor coupling. High frequency polar vibrations of both QD and TiO(2) promote the ET, since these modes can rapidly influence the donor-acceptor state energies and coupling. Low frequency vibrations generate a distribution of initial conditions for ET, which shows a broad variety of scenarios at the single-molecule level. Compared to the molecule-TiO(2) interfaces, the QD-TiO(2) system exhibits pronounced differences that arise due to the larger size and higher rigidity of QDs relative to molecules. Both donor and acceptor states are more delocalized in the QD system, and the ET is promoted by optical phonons, which have relatively low frequencies in the QD materials composed of heavy elements. In contrast, in molecular systems, optical phonons are not thermally accessible under ambient conditions. Meanwhile, TiO(2) acceptor states resemble surface impurities due to the local influence of molecular chromophores. At the same time, the photoinduced ET at both QD-TiO(2) and molecule-TiO(2) interfaces is ultrafast and occurs by the adiabatic mechanism, as a result of strong donor-acceptor coupling. The reported state-of-the-art simulation generates a detailed time-domain atomistic description of the interfacial ET process that is fundamental to a wide variety of applications. PMID:22007727
Oxidation of GaN: An ab initio thermodynamic approach
NASA Astrophysics Data System (ADS)
Jackson, Adam J.; Walsh, Aron
2013-10-01
GaN is a wide-band-gap semiconductor used in high-efficiency light-emitting diodes and solar cells. The solid is produced industrially at high chemical purities by deposition from a vapor phase, and oxygen may be included at this stage. Oxidation represents a potential path for tuning its properties without introducing more exotic elements or extreme processing conditions. In this work, ab initio computational methods are used to examine the energy potentials and electronic properties of different extents of oxidation in GaN. Solid-state vibrational properties of Ga, GaN, Ga2O3, and a single substitutional oxygen defect have been studied using the harmonic approximation with supercells. A thermodynamic model is outlined which combines the results of ab initio calculations with data from experimental literature. This model allows free energies to be predicted for arbitrary reaction conditions within a wide process envelope. It is shown that complete oxidation is favorable for all industrially relevant conditions, while the formation of defects can be opposed by the use of high temperatures and a high N2:O2 ratio.
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-09-15
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Low-energy electron scattering from CO. 2: Ab-initio study using the frame-transformation theory
NASA Technical Reports Server (NTRS)
Chandra, N.
1976-01-01
The Wigner-Eisenbud R matrix method has been combined with the frame transformation theory to study electron scattering from molecular systems. The R matrix, calculated at the boundary point of the molecular core radius, has been transformed to the space frame in order to continue the solution of the scattering equations in the outer region where rotational motion of the nuclei is taken into account. This procedure has been applied to a model calculation of thermal energy electron scattering from CO.
NASA Astrophysics Data System (ADS)
Falcetta, Michael F.; Fair, Mark C.; Tharnish, Emily M.; Williams, Lorna M.; Hayes, Nathan J.; Jordan, Kenneth D.
2016-03-01
The stabilization method is used to calculate the complex potential energy curve of the 2Π state of CO- as a function of bond length, with the refinement that separate potentials are determined for p-wave and d-wave attachment and detachment of the excess electron. Using the resulting complex potentials, absolute vibrational excitation cross sections are calculated as a function of electron energy and scattering angle. The calculated cross sections agree well with experiment.
Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations
Cui Shouxin; Feng Wenxia; Hu Haiquan; Gong Zizheng; Liu Hong
2010-04-15
An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peak near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.
Atomic and electronic structure of hydrogen on ZnO (1bar 100) surface: ab initio hybrid calculations
NASA Astrophysics Data System (ADS)
Usseinov, A. B.; Kotomin, E. A.; Zhukovskii, Yu F.; Purans, J.; Sorokin, A. V.; Akilbekov, A. T.
2013-12-01
Hydrogen atoms unavoidably incorporated into ZnO during growth of bulk samples and thin films considerably affect their electrical conductivity. The results of first principles hybrid LCAO calculations are discussed for hydrogen atoms in the bulk and on the non-polar ZnO (1bar 100) surface. The incorporation energy, the atomic relaxation, the electronic density redistribution and the electronic structure modifications are compared for the surface adsorption and bulk interstitial H positions. It is shown that hydrogen has a strong binding with the surface O ions (2.7 eV) whereas its incorporation into bulk is energetically unfavorable. Surface hydrogen atoms are very shallow donors, thus, contributing to the electronic conductivity.
Ab initio engineering of materials with stacked hexagonal tin frameworks.
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
Ab Initio Calculations of Excited Carrier Dynamics in Gallium Nitride
NASA Astrophysics Data System (ADS)
Jhalani, Vatsal; Bernardi, Marco
Bulk wurtzite GaN is the primary material for blue light-emission technology. The radiative processes in GaN are regulated by the dynamics of excited (or so-called ``hot'') carriers, through microscopic processes not yet completely understood. We present ab initio calculations of electron-phonon (e-ph) scattering rates for hot carriers in GaN. Our work combines density functional theory to compute the electronic states, and density functional perturbation theory to obtain the phonon dispersions and e-ph coupling matrix elements. These quantities are interpolated on fine Brillouin zone grids with maximally localized Wannier functions, to converge the e-ph scattering rates within 5 eV of the band edges. We resolve the contribution of the different phonon modes to the total scattering rate, and study the impact on the relaxation times of the long-range Fröhlich interaction due to the longitudinal-optical phonon modes.
Ab initio engineering of materials with stacked hexagonal tin frameworks
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
Ab initio engineering of materials with stacked hexagonal tin frameworks
NASA Astrophysics Data System (ADS)
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-07-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.
Isofulminic acid, HONC: Ab initio theory and microwave spectroscopy.
Mladenović, Mirjana; Lewerenz, Marius; McCarthy, Michael C; Thaddeus, Patrick
2009-11-01
Isofulminic acid, HONC, the most energetic stable isomer of isocyanic acid HNCO, higher in energy by 84 kcal/mol, has been detected spectroscopically by rotational spectroscopy supported by coupled cluster electronic structure calculations. The fundamental rotational transitions of the normal, carbon-13, oxygen-18, and deuterium isotopic species have been detected in the centimeter band in a molecular beam by Fourier transform microwave spectroscopy, and rotational constants and nitrogen and deuterium quadrupole coupling constants have been derived. The measured constants agree well with those predicted by ab initio calculations. A number of other electronic and spectroscopic parameters of isofulminic acid, including the dipole moment, vibrational frequencies, infrared intensities, and centrifugal distortion constants have been calculated at a high level of theory. Isofulminic acid is a good candidate for astronomical detection with radio telescopes because it is highly polar and its more stable isomers (HNCO, HOCN, and HCNO) have all been identified in space. PMID:19895013
Ab initio correlated calculations of rare-gas dimer quadrupoles
NASA Astrophysics Data System (ADS)
Donchev, Alexander G.
2007-10-01
This paper reports ab initio calculations of rare gas ( RG=Kr , Ar, Ne, and He) dimer quadrupoles at the second order of Møller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG2 quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG2 quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG3 quadrupoles is discussed.
Boyé-Péronne, Séverine; Gauyacq, Dolores; Liévin, Jacques
2014-11-01
The first quantitative description of the Rydberg and valence singlet electronic states of vinylidene lying in the 0-10 eV region is performed by using large scale ab initio calculations. A deep analysis of Rydberg-valence interactions has been achieved thanks to the comprehensive information contained in the accurate Multi-Reference Configuration Interaction wavefunctions and an original population analysis highlighting the respective role played by orbital and state mixing in such interactions. The present theoretical approach is thus adequate for dealing with larger than diatomic Rydberg systems. The nine lowest singlet valence states have been optimized. Among them, some are involved in strong Rydberg-valence interactions in the region of the Rydberg state equilibrium geometry. The Rydberg states of vinylidene present a great similarity with the acetylene isomer, concerning their quantum defects and Rydberg molecular orbital character. As in acetylene, strong s-d mixing is revealed in the n = 3 s-d supercomplex. Nevertheless, unlike in acetylene, the close-energy of the two vinylidene ionic cores (2)A1 and (2)B1 results into two overlapped Rydberg series. These Rydberg series exhibit local perturbations when an accidental degeneracy occurs between them and results in avoided crossings. In addition, some Δl = 1 (s-p and p-d) mixings arise for some Rydberg states and are rationalized in term of electrostatic interaction from the electric dipole moment of the ionic core. The strongest dipole moment of the (2)B1 cationic state also stabilizes the lowest members of the n = 3 Rydberg series converging to this excited state, as compared to the adjacent series converging toward the (2)A1 ionic ground state. The overall energies of vinylidene Rydberg states lie above their acetylene counterpart. Finally, predictions for optical transitions in singlet vinylidene are suggested for further experimental spectroscopic characterization of vinylidene. PMID:25381524
NASA Astrophysics Data System (ADS)
Boyé-Péronne, Séverine; Gauyacq, Dolores; Liévin, Jacques
2014-11-01
The first quantitative description of the Rydberg and valence singlet electronic states of vinylidene lying in the 0-10 eV region is performed by using large scale ab initio calculations. A deep analysis of Rydberg-valence interactions has been achieved thanks to the comprehensive information contained in the accurate Multi-Reference Configuration Interaction wavefunctions and an original population analysis highlighting the respective role played by orbital and state mixing in such interactions. The present theoretical approach is thus adequate for dealing with larger than diatomic Rydberg systems. The nine lowest singlet valence states have been optimized. Among them, some are involved in strong Rydberg-valence interactions in the region of the Rydberg state equilibrium geometry. The Rydberg states of vinylidene present a great similarity with the acetylene isomer, concerning their quantum defects and Rydberg molecular orbital character. As in acetylene, strong s-d mixing is revealed in the n = 3 s-d supercomplex. Nevertheless, unlike in acetylene, the close-energy of the two vinylidene ionic cores 2A1 and 2B1 results into two overlapped Rydberg series. These Rydberg series exhibit local perturbations when an accidental degeneracy occurs between them and results in avoided crossings. In addition, some Δl = 1 (s-p and p-d) mixings arise for some Rydberg states and are rationalized in term of electrostatic interaction from the electric dipole moment of the ionic core. The strongest dipole moment of the 2B1 cationic state also stabilizes the lowest members of the n = 3 Rydberg series converging to this excited state, as compared to the adjacent series converging toward the 2A1 ionic ground state. The overall energies of vinylidene Rydberg states lie above their acetylene counterpart. Finally, predictions for optical transitions in singlet vinylidene are suggested for further experimental spectroscopic characterization of vinylidene.
Sevilla, M.D.; Colson, A.O. ); Besler, B. )
1995-01-19
Ab initio molecular orbital calculations of the electron affinities (EAs) and ionization potentials (IPs) of the DNA bases are presented in this work. Comparisons of calculated and experimental values are made for a series of compounds of size and/or structure similar to the DNA bases. Excellent correlations between calculated and experimental values are found for both Koopmans EAs at the 6-31G[sup *] and D95v levels and calculated vertical EAs of the model compounds. Several basis sets are considered: 6-31G[sup *], 6-31+G(d), and D95v. Calculations at 6-31G[sup *] and 6-31+G(d) using both ROHF and ROMP2 theories show a consistent difference between calculated vertical and adiabatic EAs. This allows for a good estimate of DNA base adiabatic EAs. i.e., -0.7, -0.3, 0.2, 0.3, and 0.4 eV; from the vertical EAs -1.23, -0.74, -0.40, -0.32, and -0.19 eV for G, A, C, T, and U respectively. While EAs must be scaled, we find that Koopmans IPs calculated at the simple 3-21G level predict vertical IPs of the DNA bases with only a 0.15 eV average absolute deviation from the experimentally reported values and calculations at MP2/6-31+G(d)//6-31G[sup *] for the adiabatic ionization potentials of the DNA bases are all within 0.1 eV of experiment. 41 refs., 2 figs., 5 tabs.
Boyé-Péronne, Séverine; Gauyacq, Dolores; Liévin, Jacques
2014-11-07
The first quantitative description of the Rydberg and valence singlet electronic states of vinylidene lying in the 0–10 eV region is performed by using large scale ab initio calculations. A deep analysis of Rydberg-valence interactions has been achieved thanks to the comprehensive information contained in the accurate Multi-Reference Configuration Interaction wavefunctions and an original population analysis highlighting the respective role played by orbital and state mixing in such interactions. The present theoretical approach is thus adequate for dealing with larger than diatomic Rydberg systems. The nine lowest singlet valence states have been optimized. Among them, some are involved in strong Rydberg-valence interactions in the region of the Rydberg state equilibrium geometry. The Rydberg states of vinylidene present a great similarity with the acetylene isomer, concerning their quantum defects and Rydberg molecular orbital character. As in acetylene, strong s-d mixing is revealed in the n = 3 s-d supercomplex. Nevertheless, unlike in acetylene, the close-energy of the two vinylidene ionic cores {sup 2}A{sub 1} and {sup 2}B{sub 1} results into two overlapped Rydberg series. These Rydberg series exhibit local perturbations when an accidental degeneracy occurs between them and results in avoided crossings. In addition, some Δl = 1 (s-p and p-d) mixings arise for some Rydberg states and are rationalized in term of electrostatic interaction from the electric dipole moment of the ionic core. The strongest dipole moment of the {sup 2}B{sub 1} cationic state also stabilizes the lowest members of the n = 3 Rydberg series converging to this excited state, as compared to the adjacent series converging toward the {sup 2}A{sub 1} ionic ground state. The overall energies of vinylidene Rydberg states lie above their acetylene counterpart. Finally, predictions for optical transitions in singlet vinylidene are suggested for further experimental spectroscopic
Peterson, Kirk A.; Francisco, Joseph S.
2014-01-28
A systematic ab initio treatment of the nitryl halides (XNO{sub 2}) and the cis- and trans- conformers of the halide nitrites (XONO), where X = Cl, Br, and I, have been carried out using highly correlated methods with sequences of correlation consistent basis sets. Equilibrium geometries and harmonic frequencies have been accurately calculated in all cases at the explicitly correlated CCSD(T)-F12b level of theory, including the effects of core-valence correlation for the former. Where experimental values are available for the equilibrium structures (ClNO{sub 2} and BrNO{sub 2}), the present calculations are in excellent agreement; however, the X-O distances are slightly too long by about 0.01 Å due to missing multireference effects. Accurate predictions for the iodine species are made for the first time. The vertical electronic excitation spectra have been calculated using equation-of-motion coupled cluster methods for the low-lying singlet states and multireference configuration interaction for both singlet and triplet states. The latter also included the effects of spin-orbit coupling to provide oscillator strengths for the ground state singlet to excited triplet transitions. While for ClNO{sub 2} the transitions to excited singlet states all occur at wavelengths shorter than 310 nm, there is one longer wavelength singlet transition in BrNO{sub 2} and two in the case of INO{sub 2}. The long wavelength tail in the XNO{sub 2} species is predicted to be dominated by transitions to triplet states. In addition to red-shifting from X = Cl to I, the triplet transitions also increase in oscillator strength, becoming comparable to many of the singlet transitions in the case of INO{sub 2}. Hence in particular, the latter species should be very photolabile. Similar trends are observed and reported for the halogen nitrites, many of which for the first time.
Komasa, J; Słupski, R; Jankowski, K; Wasilewski, J; Teale, A M
2013-04-28
Benchmark results for electron densities in the ground states of Li(-), Be, C(2+), Ne(6+), and Ar(14+) have been generated from very accurate variational wave functions represented in terms of extensive basis sets of exponentially correlated Gaussian functions. For Ne(6+), and Ar(14+), the upper bounds to the energies improve over previous results known from the literature. For the remaining systems our bounds are from 0.1 to 1.1 μhartree higher than the most accurate ones. We present in graphical and, partially, numerical form results both for the radial electron densities and for the difference radial density distributions (DRD) (defined with respect to the Hartree-Fock radial density) that highlight the impact of correlation effects on electron densities. Next, we have employed these DRD distributions in studies of the performance of several broadly used orbital-based quantum-chemical methods in accounting for correlation effects on the density. Our computed benchmark densities for Be have been also applied for testing the possibility of using the mathematically strict result concerning exact atomic electron densities, obtained by Ahlrichs et al. [Phys. Rev. A 23, 2106 (1981)], for the determination of the reliability range of computed densities in the long-range asymptotic region. The results obtained for Be are encouraging. PMID:23635137
High accuracy ab initio studies of electron-densities for the ground state of Be-like atomic systems
NASA Astrophysics Data System (ADS)
Komasa, J.; Słupski, R.; Jankowski, K.; Wasilewski, J.; Teale, A. M.
2013-04-01
Benchmark results for electron densities in the ground states of Li-, Be, C2+, Ne6+, and Ar14+ have been generated from very accurate variational wave functions represented in terms of extensive basis sets of exponentially correlated Gaussian functions. For Ne6+, and Ar14+, the upper bounds to the energies improve over previous results known from the literature. For the remaining systems our bounds are from 0.1 to 1.1 μhartree higher than the most accurate ones. We present in graphical and, partially, numerical form results both for the radial electron densities and for the difference radial density distributions (DRD) (defined with respect to the Hartree-Fock radial density) that highlight the impact of correlation effects on electron densities. Next, we have employed these DRD distributions in studies of the performance of several broadly used orbital-based quantum-chemical methods in accounting for correlation effects on the density. Our computed benchmark densities for Be have been also applied for testing the possibility of using the mathematically strict result concerning exact atomic electron densities, obtained by Ahlrichs et al. [Phys. Rev. A 23, 2106 (1981), 10.1103/PhysRevA.23.2106], for the determination of the reliability range of computed densities in the long-range asymptotic region. The results obtained for Be are encouraging.
NASA Astrophysics Data System (ADS)
Ramanna, J.; Yedukondalu, N.; Ramesh Babu, K.; Vaitheeswaran, G.
2013-06-01
We report the structural, elastic, electronic, and optical properties of antiperovskite alkali metal oxyhalides Na3OCl, Na3OBr, and K3OBr using two different density functional methods within generalized gradient approximation (GGA). Plane wave pseudo potential (PW-PP) method has been used to calculate the ground state structural and elastic properties while the electronic structure and optical properties are calculated explicitly using full potential-linearized augmented plane wave (FP-LAPW) method. The calculated ground state properties of the investigated compounds agree quite well with the available experimental data. The predicted elastic constants using both PW-PP and FP-LAPW methods are in good accord with each other and show that the materials are mechanically stable. The low values of the elastic moduli indicate that these materials are soft in nature. The bulk properties such as shear moduli, Young's moduli, and Poisson's ratio are derived from the calculated elastic constants. Tran-Blaha modified Becke-Johnson (TB-mBJ) potential improves the band gaps over GGA and Engel-Vosko GGA. The computed TB-mBJ electronic band structure reveals that these materials are direct band gap insulators. The complex dielectric function of the metal oxyhalide compounds have been calculated and the observed prominent peaks are analyzed through the TB-mBJ electronic structures. By using the knowledge of complex dielectric function other important optical properties including absorption, reflectivity, refractive index and loss function have been obtained as a function of energy.
NASA Astrophysics Data System (ADS)
Craco, L.; Laad, M. S.; Müller-Hartmann, E.
2003-12-01
Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.
NASA Astrophysics Data System (ADS)
Tsumuraya, Takao; Shishidou, Tatsuya; Oguchi, Tamio
2009-05-01
We study the electronic structure and vibrational modes of several amides M(NH2)n and alanates M(AlH4)n (M = K, Na, Li, Ca and Mg), focusing on the role of cation states. Calculated breathing stretching vibration modes for these compounds are compared with measured infrared and Raman spectra. In the amides, we find a significant tendency such that the breathing mode frequencies and the structural parameters of NH2 vary in accordance with the ionization energy of cation. The tendency may be explained by the strength in hybridization between cation orbitals and molecular orbitals of (NH2)-. The microscopic mechanism of correlations between the vibration frequencies and structural parameters is elucidated in relation to the electronic structure. A possible similar tendency in the alanates is also discussed.
Sarmiento-Pérez, Rafael; Botti, Silvana; Schnohr, Claudia S.; Lauermann, Iver; Rubio, Angel; Johnson, Benjamin
2014-09-07
Element-specific unoccupied electronic states of Cu(In, Ga)S{sub 2} were studied as a function of the In/Ga ratio by combining X-ray absorption spectroscopy with density functional theory calculations. The S absorption edge shifts with changing In/Ga ratio as expected from the variation of the band gap. In contrast, the cation edge positions are largely independent of composition despite the changing band gap. This unexpected behavior is well reproduced by our calculations and originates from the dependence of the electronic states on the local atomic environment. The changing band gap arises from a changing spatial average of these localized states with changing alloy composition.
NASA Astrophysics Data System (ADS)
Jamison, Laura; Zheng, Ming-Jie; Shannon, Steve; Allen, Todd; Morgan, Dane; Szlufarska, Izabela
2014-02-01
The crystalline-to-amorphous transition in nanocrystalline silicon carbide (ncSiC) has been studied using 1.25 MeV electron irradiation. When compared to literature values for single crystal silicon carbide under electron irradiation, an increase in the dose to amorphization (DTA) was observed, indicative of an increase in radiation resistance. Factors that contribute to this improvement are grain refinement, grain texture, and a high density of stacking faults (SFs) in this sample of ncSiC. To test the effect of SFs on the DTA, density functional theory simulations were conducted. It was found that SFs reduced the energy barriers for both Si interstitial migration and the rate-limiting defect recovery reaction, which may explain the increased DTA.
Crystal, J.; Friesner, R.A.
2000-03-23
Ionization potentials (IP) and electron affinities (EA) are calculated for bacteriopheophytin (BPh) and bacteriochlorophyll (BChl) in the photosynthetic reaction center utilizing density functional methods implemented in a parallel version of the JAGUAR electronic structure code. These quantities are studied as a function of basis set size and molecular geometry. The results indicate the necessity of using large basis sets with diffuse functions in order to obtain reliable IP and EA in the gas phase. The relative reduction potentials of BChl and BPh in dimethylformamide solution are also calculated and compared with experimental results. Excellent agreement between theory and experiment is obtained when ligand binding of solvent molecules to the central Mg atom of BNhl is incorporated in the calculations.
Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel
2015-09-07
Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θ{sub N}(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Np{sub z} state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N{sub 2} molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.
NASA Astrophysics Data System (ADS)
Čársky, Petr
2010-09-01
The UGU term was used as a model of the UGT term, and its evaluation by numerical quadrature was examined systematically with a training set of eight molecules. Minimum numbers of points have been determined for radial Gauss-Legendre and angular Lebedev quadratures that preserve the accuracy needed for practical applications. These quadratures are recommended for efficient calculation of electron scattering by polyatomic molecules.
Mathivon, Kevin; Linguerri, Roberto; Hochlaf, Majdi
2014-03-01
In the present theoretical work, we investigated the stationary points (minima and transition states) on the ground state potential energy surfaces of neutral and ionic 1,4-diazabicyclo[2.2.2]octane (DABCO)--Ar(n)⁰,⁺¹ (n = 1-4) clusters. As established in our systematic work on DABCO--Ar cluster (Mathivon et al., J Chem Phys 139:164306, 2013), the (R)MP2/aug-cc-pVDZ level is accurate enough for validating the prediction of stable forms. For n = 1 and 2, further computations at the MP2/aug-cc-pVTZ level confirm these assumptions. We show that some of the already known isomers of these heteroclusters derived using lower levels of theory are not realistic. More interestingly, our work reveals that DABCO is subject to slight deformations when binding to a small number of Ar atoms. Moreover, we computed the potential energy surfaces of the lowest singlet electronic states of DABCO--Ar(n)(n = 1-3) and of DABCO⁺--Ar(n)(n = 1-3), and the transition moments for the Sp(p = 1-3) ← S0 neutral transitions. These electronic states are found to be Rydberg in nature. The shape of their potentials is mainly repulsive with slight stabilization in the S2 potentials. Finally, the effects of microsolvation of DABCO in Ar clusters in ground and electronic excited states are discussed. The photophysical and photochemical dynamics of these electronic states may be complex. PMID:24549795
NASA Astrophysics Data System (ADS)
Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel; Krukowski, Stanislaw
2015-09-01
Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θN(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Npz state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N2 molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.
Liu, Jin; Prezhdo, Oleg V
2015-11-19
Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron-hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wave functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron-vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping. PMID:26505613
NASA Astrophysics Data System (ADS)
Toprek, Dragan; Belosevic-Cavor, Jelena; Koteski, Vasil
2015-10-01
First principles calculations were performed in the framework of the density functional theory (DFT) using the Full Potential-Linear Augment Plane Wave method (FP-LAPW) within the generalized gradient approximation (GGA) to predict the structural, electronic, elastic and thermal properties of NiTi2 intermetallic compound. By using the Wien2k all-electron code, calculations of the ground state and electronic properties such as lattice constants, bulk modulus, presure derivative of bulk modulus, total energies and density of states were also included. The elastic constants and mechanical properties such as Poisson's ratio, Young's modulus and shear modulus are estimated from the calculated elastic constants of the single crystal. Through the quasi-harmonic Debye model, the preasure and temperature dependences of the linear expansion coefficient, bulk modulus and heat capacity have been investigated. Finally, the Debye temperature has been estimated from the average sound velocity according to the predicted polycrystal bulk properties and from the single crystal elastic constants.
Valiev, R R; Minaev, B F
2016-09-01
The electric dipole transitions between pure spin and mixed spin electronic states are calculated at the XMC-QDPT2 and MCSCF levels of theory, respectively, for different intermolecular distances of the C6H6 and O2 collisional complex. The magnetic dipole transition moment between the mixed-spin ground ("triplet") and the first excited ("singlet") states is calculated by quadratic response at MCSCF level of theory. The obtained results confirm the theory of intensity borrowing and increasing the intensity of electronic transitions in the C6H6 + O2 collision. The calculation of magnetically induced current density is performed for benzene molecule being in contact with O2 at the distances from 3.5 to 4.5 Å. The calculation shows that the aromaticity of benzene is rising due to the conjugation of π-MOs of both molecules. The C6H6 + O2 complex becomes nonaromatic at the short distances (r < 3.5 Å). The computation of static polarizability in the excited electronic states of the C6H6 + O2 collisional complex at various distances supports the theory of red solvatochromic shift of the a → X band. Graphical abstract The C6H6+ O2 collisional complex. PMID:27544142
NASA Astrophysics Data System (ADS)
Benlamari, S.; Amara Korba, S.; Lakel, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.
2016-01-01
The structural, elastic, thermal and electronic properties of perovskite hydrides SrLiH3 and SrPdH3 have been investigated using the all-electron full-potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). For the exchange-correlation potential, local-density approximation (LDA) and generalized gradient approximation (GGA) have been used to calculate theoretical lattice parameters, bulk modulus, and its pressure derivative. The present results are in good agreement with available theoretical and experimental data. The three independent elastic constants (C11, C12 and C44) are also reported. From electronic band structure and density of states (DOSs), it is found that SrLiH3 is an insulator characterized by an indirect gap of 3.48 eV, while SrPdH3 is metallic with a calculated DOSs at Fermi energy of 0.745 states/eV-unit cell. Poisson’s ratio (σ), Young’s modulus (E), shear modulus (G), anisotropy factor (A), average sound velocities (vm) and density (ρ) of these compounds are also estimated for the first time. The Debye temperature is deduced from the average sound velocity. Variation of elastic constants and bulk modulus of these compounds as a function of pressure is also reported. Pressure and thermal effects on some macroscopic properties are predicted using the quasi-harmonic Debye model.
NASA Astrophysics Data System (ADS)
Bentouaf, Ali; Hassan, Fouad El Haj
2015-05-01
Density functional theory based on full-potential linearized augmented plane wave (FP LAPW) method is used to investigate the structural, electronic and magnetic properties of Co2VSi Heusler alloys, with L21 structure. It is shown that calculated lattice constants and spin magnetic moments using the general gradient approximation method are in good agreement with experimental values. We also presented the thermal effects using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. Temperature and pressure effects on the structural parameters, heat capacities, thermal expansion coefficient, and Debye temperatures are determined from the non-equilibrium Gibbs functions.
NASA Astrophysics Data System (ADS)
Sirajuddeen, M. Mohamed Sheik; Banu, I. B. Shameem
2016-05-01
The half-metallic ferromagnetic property of Cr, V doped CdN and ZnN has been investigated by the electronic band structure calculations using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method. The host compounds of CdN and ZnN were doped with Cr and V in the concentration of 37.5% to replace Cd and Zn atoms. The compounds CdN and ZnN doped with Cr are found to exhibit half-metallic ferromagnetism and the results are compared in GGA and GGA+U (Hubbard) method. In this present work, electronic band structure, density of states, magnetic properties and spin polarization were studied. The p-d hybridization in the doped transition metal-d bands and N-p bands that causes exchange splitting was discussed to bring out the differences in the half-metallic character of the doped compounds. The degree of half-metallic nature in terms of spin polarizations has been predicted for Cr-doped CdN and ZnN. The calculated magnetic moments for the doped compounds are found to increase with the increase in Hubbard potential U for Cr-doped compounds. The Cr-doped CdN and ZnN are found to exhibit direct band gap in spin down direction.
Electronic structure, magnetism and stability of Co2CrX (X =Al, Ga, In) ab initio study
NASA Astrophysics Data System (ADS)
Dahmane, F.; Mesri, D.; Tadjer, A.; Khenata, R.; Benalia, S.; Djoudi, L.; Doumi, B.; Boumia, L.; Aourag, H.
2016-01-01
The structural, electronic as well as the magnetic properties of the Co2CrX (X =Al, Ga and In) full-Heusler alloy have been studied using first-principles calculations performed in the framework of density functional theory (DFT) within the generalized gradient approximation (GGA). It was taken into account both possible L21 structures (i.e. Hg2CuTi- and Cu2MnAl-type). Basically, for all compounds, the Cu2MnAl-type structure is energetically more stable than Hg2CuTi-type structure at the equilibrium volume. The electronic structure calculations for Co2CrAl reveal that half-metallic (HM) character in Cu2MnAl-type structure, Co2CrGa show nearly HM behavior and Co2CrIn has a metallic character. The predicted total magnetic moment is 3μB for Co2CrX (X =Al, Ga) which is in good convergence with the Slater-Pauling (SP) rule.
NASA Astrophysics Data System (ADS)
Song, Li; Shan-Jun, Chen; Yan, Chen; Peng, Chen
2016-03-01
The SF radical and its singly charged cation and anion, SF+ and SF-, have been investigated on the MRCI/aug-cc-pVXZ (X = Q, 5, 6) levels of theory with Davidson correction. Both the core-valence correlation and the relativistic effect are considered. The extrapolating to the complete basis set (CBS) limit is adopted to remove the basis set truncation error. Geometrical parameters, potential energy curves (PECs), vibrational energy levels, spectroscopic constants, ionization potentials, and electron affinities of the ground electronic state for all these species are obtained. The information with respect to molecular characteristics of the SFn (n = -1, 0, +1) systems derived in this work will help to extend our knowledge and to guide further experimental or theoretical researches. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304023 and 11447172), the Young and Middle-Aged Talent of Education Burea of Hubei Province, China (Grant No. Q20151307), and the Yangtze Youth Talents Fund of Yangtze University, China (Grant No. 2015cqr21).
Strong electron-phonon coupling in Be{1-x}B{2}C{2}: ab initio studies
NASA Astrophysics Data System (ADS)
Moudden, A. H.
2008-07-01
Several structures for off-stoichiometric beryllium diboride dicarbide Be{1-x}B2C2 have been designed, and their properties studied from first-principles density functional methods. Among the most stable phases examined, the layered hexagonal structures are shown to exhibit various features in the electronic properties and in the lattice dynamics reminiscent of the superconducting magnesium diboride and alkaline earth-intercalated graphites. For substoichiometric composition x˜ 1/3, the system is found metallic with a moderately strong electron-phonon coupling through a predominant contribution arising from high frequency streching modes modulating the σ-bonding of the B C network, and a weaker contribution at medium frequency range of the phonon spectra, arising from the intercalent motion coupled to the π-bonding states. Further, anharmonicities emerging from the proximity of the Fermi level to the σ-band edge, contributes to reduce the phonon softening hence stabilizing the structure. All these effects appear to combine favourably to produce a high temperature phonon-superconductivity.
Hydrogen effect on electronic and magnetic properties of Cd1-xMnxTe: Ab initio study
NASA Astrophysics Data System (ADS)
Larabi, A.; Merad, G.; Abdelaoui, I.; Sari, A.
2016-07-01
Hydrogen effect on electronic and magnetic properties of diluted magnetic semiconductor (DMS) Cd1-xMnxTe for x composition of 0.125 has been investigated using the projected augmented wave (PAW) based on density functional theory (DFT) formalism within the generalized gradient approximation (GGA). The results show that the Mn dopant is spin-polarized with magnetic moment of 4.189 μB per Mn atom at x≈0.125. The calculated formation energies indicate that the hydrogen is not stable in CdTe and the lowest energy position for H is at the Cd-Mn bond center in Cd0.875Mn0.125Te. We find also that the existence of interstitial hydrogen decreases the magnetic moment of Cd0.875Mn0.125Te diluted magnetic semiconductor. From the calculated density of state, we observed that the presence of hydrogen does not cause a change in electronic properties of Cd0.875Mn0.125Te.
NASA Astrophysics Data System (ADS)
Bensadiq, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.
2016-09-01
Using the density functional theory, the electronic structure; density of states, band structure and exchange couplings of Tb Ni4 Si compound have been investigated. Magnetic and magnetocaloric properties of this material have been studied using Monte Carlo Simulation (MCS) and Mean Field Approximation (MFA) within a three dimensional Ising model. We calculated the isothermal magnetic entropy change, adiabatic temperature change and relative cooling power (RCP) for different external magnetic field and temperature. The highest obtained isothermal magnetic entropy change is of -14.52 J kg-1 K-1 for a magnetic field of H=4 T. The adiabatic temperature reaches a maximum value equal to 3.7 K and the RCP maximum value is found to be 125.12 J kg-1 for a field magnetic of 14 T.
Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl)
NASA Astrophysics Data System (ADS)
Kurosaki, Yuzuru; Yokoyama, Keiichi
2012-08-01
Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free Λ-S states, X1Σ+, A1Σ+, 3Σ+, 1Π, and 3Π, and then obtain PECs for 13 SO Ω states, X0+, A0+, B0+, 0-(I), 0-(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the Λ-S and Ω state energies. Vibrational eigenstates for the obtained X1Σ+ and X0+ PECs are calculated by solving the time-independent Schrödinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X1Σ+ and X0+ PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics.
Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl).
Kurosaki, Yuzuru; Yokoyama, Keiichi
2012-08-14
Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free Λ-S states, X(1)Σ(+), A(1)Σ(+), (3)Σ(+), (1)Π, and (3)Π, and then obtain PECs for 13 SO Ω states, X0(+), A0(+), B0(+), 0(-)(I), 0(-)(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the Λ-S and Ω state energies. Vibrational eigenstates for the obtained X(1)Σ(+) and X0(+) PECs are calculated by solving the time-independent Schrödinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X(1)Σ(+) and X0(+) PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics. PMID:22897271
Haskins, Justin B; Bauschlicher, Charles W; Lawson, John W
2015-11-19
Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li(+) on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li(+) solvation shell through DFT computations of [Li(Anion)n]((n-1)-) clusters, DFT-MD simulations of isolated Li(+) in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI], whereas solvation shells with four anions dominate in [EMIM][BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion)n]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DFT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to
Electronic, optical and thermal properties of TiCr2 and TiMn2 by ab initio simulations
NASA Astrophysics Data System (ADS)
Ali, M. S.; Roknuzzaman, M.; Parvin, R.; Islam, A. K. M. A.; Ostrikov, K.
2015-10-01
A theoretical study of TiX2 (X = Cr, Mn) with C14 Laves phase compounds has been performed by using the first-principles pseudopotential plane-wave method within the generalized gradient approximation (GGA). The electronic properties (Fermi surface and charge density) have been calculated and analyzed. The optical characteristics (dielectric functions, absorption spectrum, conductivity, energy-loss spectrum and reflectivity) are calculated and discussed. The calculated large positive static dielectric constant indicates good dielectric properties. The reflectivity of TiX2 (X = Cr, Mn) is high in the IR-Visible-UV region up to ˜13 eV showing promise as a good solar heating barrier material. The temperature and pressure dependence of bulk modulus, Debye temperature, specific heats and thermal expansion coefficient are obtained for T = 1200 K and P = 50 GPa through quasi-harmonic Debye model with phononic effects. Fermi surface, optical and thermodynamic properties are very important for practical applications of the materials in optical and other devices.
NASA Astrophysics Data System (ADS)
Dornheim, T.; Groth, S.; Schoof, T.; Hann, C.; Bonitz, M.
2016-05-01
In a recent publication [S. Groth et al., Phys. Rev. B 93, 085102 (2016), 10.1103/PhysRevB.93.085102], we have shown that the combination of two complementary quantum Monte Carlo approaches, namely configuration path integral Monte Carlo [T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015), 10.1103/PhysRevLett.115.130402] and permutation blocking path integral Monte Carlo [T. Dornheim et al., New J. Phys. 17, 073017 (2015), 10.1088/1367-2630/17/7/073017], allows for the accurate computation of thermodynamic properties of the spin-polarized uniform electron gas over a wide range of temperatures and densities without the fixed-node approximation. In the present work, we extend this concept to the unpolarized case, which requires nontrivial enhancements that we describe in detail. We compare our simulation results with recent restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013), 10.1103/PhysRevLett.110.146405] for different energy contributions and pair distribution functions and find, for the exchange correlation energy, overall better agreement than for the spin-polarized case, while the separate kinetic and potential contributions substantially deviate.
Ab initio study on the electronic and mechanical properties of ReB and ReC
Zhao Erjun; Wang Jinping; Meng Jian; Wu Zhijian
2009-04-15
The structural, electronic, and mechanical properties of ReB and ReC have been studied by use of the density functional theory. For each compound, six structures are considered, i.e., hexagonal WC, NiAs, wurtzite, cubic NaCl, CsCl, and zinc-blende type structures. The results indicate that for ReB and ReC, WC type structure is energetically the most stable among the considered structures, followed by NiAs type structure. ReB-WC (i.e., ReB in WC type structure) and ReB-NiAs are both thermodynamically and mechanically stable. ReC-WC and ReC-NiAs are mechanically stable and becomes thermodynamically stable above 35 and 55 GPa, respectively. The estimated hardness from shear modulus is 34 GPa for ReB-WC, 28 GPa for ReB-NiAs, 35 GPa for ReC-WC and 37 GPa for ReC-NiAs, indicating that they are potential candidates to be ultra-incompressible and hard materials. - Graphical Abstract: The enthalpy-pressure diagram for ReC from the selected structures. ReC-WC and ReC-NiAs become thermodynamically stable above 35 and 55 GPa, respectively. ReC-WC is the most stable phase.
Guzman, David M.; Strachan, Alejandro
2014-06-28
We characterize the electronic structure and elasticity of monolayer transition-metal dichalcogenides MX{sub 2} (M = Mo, W, Sn, Hf and X = S, Se, Te) based on 2H and 1T structures using fully relativistic first principles calculations based on density functional theory. We focus on the role of strain on the band structure and band alignment across the series of materials. We find that strain has a significant effect on the band gap; a biaxial strain of 1% decreases the band gap in the 2H structures, by as a much as 0.2 eV in MoS{sub 2} and WS{sub 2}, while increasing it for the 1T cases. These results indicate that strain is a powerful avenue to modulate their properties; for example, strain enables the formation of, otherwise impossible, broken gap heterostructures within the 2H class. These calculations provide insight and quantitative information for the rational development of heterostructures based on this class of materials accounting for the effect of strain.
An ab initio investigation into the elastic, structural and electronic properties of MoS2 nanotubes
NASA Astrophysics Data System (ADS)
Ansari, R.; Malakpour, S.; Faghihnasiri, M.; Sahmani, S.
2015-06-01
Molybdenum disulfide (MoS2) is a unique semiconductor with a honeycomb structure like graphite, which has the ability to form various nanostructures with distinct characteristics. In the present study, the elastic, structural and electronic properties of armchair and zigzag MoS2 nanotubes with different diameters are investigated using the density functional theory (DFT). The DFT calculations are performed within the framework of generalized gradient approximation and using the Perdew-Burke-Ernzerhof (PBE) exchange model. It is demonstrated that for all of the considered MoS2 nanotubes anharmonicity exists, except for (6,6) MoS2 nanotube. Moreover, it is found that by increasing the tube diameter, Young's modulus of both armchair and zigzag MoS2 nanotubes increases. Also, it is observed that all of armchair MoS2 nanotubes are indirect band gap-type. On the other hand, all of zigzag MoS2 nanotubes have band gaps with the type of direct in Γ point.
Barrett, B R; Navratil, P; Vary, J P
2011-04-11
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN
Chi, C.-C.; Hsiao, C.-H.; Ouyang, Chuenhou; Skoropata, E.; Lierop, J. van
2015-05-07
Significant efforts towards understanding bi-magnetic core-shell nanoparticles are underway currently as they provide a pathway towards properties unavailable with single-phased systems. Recently, we have demonstrated that the magnetism of γ-Fe2O3/CoO core-shell nanoparticles, in particular, at high temperatures, originates essentially from an interfacial doped iron-oxide layer that is formed by the migration of Co{sup 2+} from the CoO shell into the surface layers of the γ-Fe2O3 core [Skoropata et al., Phys. Rev. B 89, 024410 (2014)]. To examine directly the nature of the intermixed layer, we have used high-resolution transmission electron microscopy (HRTEM) and first-principles calculations to examine the impact of the core-shell intermixing at the atomic level. By analyzing the HRTEM images and energy dispersive spectra, the level and nature of intermixing was confirmed, mainly as doping of Co into the octahedral site vacancies of γ-Fe2O3. The average Co doping depths for different processing temperatures (150 °C and 235 °C) were 0.56 nm and 0.78 nm (determined to within 5% through simulation), respectively, establishing that the amount of core-shell intermixing can be altered purposefully with an appropriate change in synthesis conditions. Through first-principles calculations, we find that the intermixing phase of γ-Fe2O3 with Co doping is ferromagnetic, with even higher magnetization as compared to that of pure γ-Fe2O3. In addition, we show that Co doping into different octahedral sites can cause different magnetizations. This was reflected in a change in overall nanoparticle magnetization, where we observed a 25% reduction in magnetization for the 235 °C versus the 150 °C sample, despite a thicker intermixed layer.
The ab-initio density matrix renormalization group in practice
Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Highly anisotropic thermal conductivity of arsenene: An ab initio study
NASA Astrophysics Data System (ADS)
Zeraati, Majid; Vaez Allaei, S. Mehdi; Abdolhosseini Sarsari, I.; Pourfath, Mahdi; Donadio, Davide
2016-02-01
Elemental two-dimensional (2D) materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using ab initio calculations. Solving the Boltzmann transport equation for phonons, we predict a highly anisotropic thermal conductivity of 30.4 and 7.8 W/mK along the zigzag and armchair directions, respectively, at room temperature. Our calculations reveal that phonons with mean free paths between 20 nm and 1 μ m provide the main contribution to the large thermal conductivity in the zigzag direction; mean free paths of phonons contributing to heat transport in the armchair directions range between 20 and 100 nm. The obtained anisotropic thermal conductivity and feasibility of synthesis, in addition to high electron mobility reported elsewhere, make arsenene a promising material for nanoelectronic applications and thermal management.
Ab initio study of II-(VI)2 dichalcogenides.
Olsson, P; Vidal, J; Lincot, D
2011-10-12
The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. PMID:21937783
Transport coefficients in diamond from ab-initio calculations
NASA Astrophysics Data System (ADS)
Löfâs, Henrik; Grigoriev, Anton; Isberg, Jan; Ahuja, Rajeev
2013-03-01
By combining the Boltzmann transport equation with ab-initio electronic structure calculations, we obtain transport coefficients for boron-doped diamond. We find the temperature dependence of the resistivity and the hall coefficients in good agreement with experimental measurements. Doping in the samples is treated via the rigid band approximation and scattering is treated in the relaxation time approximation. In contrast to previous results, the acoustic phonon scattering is the dominating scattering mechanism for the considered doping range. At room temperature, we find the thermopower, S, in the range 1-1.6 mV/K and the power factor, S2σ, in the range 0.004-0.16 μW /cm K2.
Liu, Ping; Zhao, Jing; Liu, Jinxiang; Zhang, Meng; Bu, Yuxiang
2014-01-28
In view of the important implications of excess electrons (EEs) interacting with CO{sub 2}–H{sub 2}O clusters in many fields, using ab initio molecular dynamics simulation technique, we reveal the structures and dynamics of an EE associated with its localization and subsequent time evolution in heterogeneous CO{sub 2}–H{sub 2}O mixed media. Our results indicate that although hydration can increase the electron-binding ability of a CO{sub 2} molecule, it only plays an assisting role. Instead, it is the bending vibrations that play the major role in localizing the EE. Due to enhanced attraction of CO{sub 2}, an EE can stably reside in the empty, low-lying π{sup *} orbital of a CO{sub 2} molecule via a localization process arising from its initial binding state. The localization is completed within a few tens of femtoseconds. After EE trapping, the ∠OCO angle of the core CO{sub 2}{sup −} oscillates in the range of 127°∼142°, with an oscillation period of about 48 fs. The corresponding vertical detachment energy of the EE is about 4.0 eV, which indicates extreme stability of such a CO{sub 2}-bound solvated EE in [CO{sub 2}(H{sub 2}O){sub n}]{sup −} systems. Interestingly, hydration occurs not only on the O atoms of the core CO{sub 2}{sup −} through formation of O⋯H–O H–bond(s), but also on the C atom, through formation of a C⋯H–O H–bond. In the latter binding mode, the EE cloud exhibits considerable penetration to the solvent water molecules, and its IR characteristic peak is relatively red-shifted compared with the former. Hydration on the C site can increase the EE distribution at the C atom and thus reduce the C⋯H distance in the C⋯H–O H–bonds, and vice versa. The number of water molecules associated with the CO{sub 2}{sup −} anion in the first hydration shell is about 4∼7. No dimer-core (C{sub 2}O{sub 4}{sup −}) and core-switching were observed in the double CO{sub 2} aqueous media. This work provides molecular dynamics
Ab initio simulation of transport phenomena in rarefied gases.
Sharipov, Felix; Strapasson, José L
2012-09-01
Ab initio potentials are implemented into the direct simulation Monte Carlo (DSMC) method. Such an implementation allows us to model transport phenomena in rarefied gases without any fitting parameter of intermolecular collisions usually extracted from experimental data. Applying the method proposed by Sharipov and Strapasson [Phys. Fluids 24, 011703 (2012)], the use of ab initio potentials in the DSMC requires the same computational efforts as the widely used potentials such as hard spheres, variable hard sphere, variable soft spheres, etc. At the same time, the ab initio potentials provide more reliable results than any other one. As an example, the transport coefficients of a binary mixture He-Ar, viz., viscosity, thermal conductivity, and thermal diffusion factor, have been calculated for several values of the mole fraction. PMID:23030889
Ab initio calculation of double ionization of atoms
Serov, V. V.
2013-02-15
The Solov'ev-Vinitsky method was used to perform an ab initio calculation of the triple-differential cross section for the double single-photon photoionization of helium for the case of equal emitted-electron energies. A Gaussian width {gamma} describing angular electron-electron correlations at the total electron energy E taking values in range between 0.1 and 100 eV was obtained for this cross section. The results agree with available experimental data, but they raise a doubt as to whether the well-known Wannier law {gamma} {proportional_to} E{sup 1/4} is applicable at experimentally accessible energies. The Gaussian width {gamma} was investigated as a function of the total emitted-electron energy for targets that have a strongly asymmetric configuration of the initial state-specifically, a negative atomic-hydrogen ion H{sup -} and heliumin the 1s2s{sup 1}S and 1s3s{sup 1}S excited states. It was found that this function, {gamma}(E), had a maximum at low energies. It was also shown that, at low energies, the dependence of the double-differential cross section on the angle between the emitted-electron momenta for the targets indicated above differed substantially from the Gaussian dependence, featuring maxima whose number was equal to the number of radial nodes in the initial state. This opens new possibilities for a qualitative analysis of the electron structure of targets.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Yarkony, David R.
2016-01-01
In this work, we demonstrate that for moderate sized systems, here a system with 13 atoms, global coupled potential energy surfaces defined for several electronic states over a wide energy range and for distinct regions of nuclear coordinate space characterized by distinct electron configurations, can be constructed with precise energetics and an excellent description of non-adiabatic interactions in all regions. This is accomplished using a recently reported algorithm for constructing quasi-diabatic representations, Hd, of adiabatic electronic states coupled by conical intersections. In this work, the algorithm is used to construct an Hd to describe the photodissociation of phenol from its first and second excited electronic states. The representation treats all 33 internal degrees of freedom in an even handed manner. The ab initio adiabatic electronic structure data used to construct the fit are obtained exclusively from multireference configuration interaction with single and double excitation wave functions comprised of 88 × 106 configuration state functions, at geometries determined by quasi-classical trajectories. Since the algorithm uses energy gradients and derivative couplings in addition to electronic energies to construct Hd, data at only 7379 nuclear configurations are required to construct a representation, which describes all nuclear configurations involved in H atom photodissociation to produce the phenoxyl radical in its ground or first excited electronic state, with a mean unsigned energy error of 202.9 cm-1 for electronic energies <60 000 cm-1.
Yuxiang Bu; Zhaohua Cao; Zailun Yang
1995-08-15
This article presents an application of the accurate calculation scheme proposed recently for the inner-sphere reorganization energies of molecules of the type AH{sub 2} (A = Al, Si, P, and S). A reasonable extension has been made. The inner-sphere reorganization energies for the title thermal electron self-exchange reactions are calculated in terms of ab initio MO self-consistent field method (HFSCF) at different basis-set levels (6-31G**, 6-31 + G**, DZ, and DZP) and the involved parameters are also determined. These calculated results have been calibrated by comparing optimized molecular geometrical parameters and corresponding energy properties with the experimental findings or other theoretical values. An approximation, in which the contribution from the bond length-bond angle to the potential energy surface is neglected, is adopted in constructing the calculation formulas via the function model. Its adequacy is discussed. Agreement among different calculation schemes is analyzed. 32 refs., 2 tabs.
NASA Astrophysics Data System (ADS)
Guedj, C.; Hung, L.; Zobelli, A.; Blaise, P.; Sottile, F.; Olevano, V.
2014-12-01
The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO2) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO2, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO2 may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.
Guedj, C.; Hung, L.; Sottile, F.; Zobelli, A.; Blaise, P.; Olevano, V.
2014-12-01
The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO{sub 2}) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO{sub 2}, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO{sub 2} may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.
Ab initio computations of photodissociation products of CFC alternatives
Tai, S.; Illinger, K.H.; Kenny, J.E.
1995-12-31
Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.
Ab Initio Structure Analysis Using Laboratory Powder Diffraction Data
NASA Astrophysics Data System (ADS)
Sasaki, Akito
Today, laboratory X-ray diffractometers are seeing increasingly wide use in the ab initio crystal structure analysis of organic powder samples. This is because optics and optical devices have been improved, making it possible to obtain precise integrated intensities of reflections in high 2-theta ranges. Another reason is that one can use direct-space methods, which do not require “high-resolution diffraction data”, much more easily than before. Described here are some key points to remember when performig ab initio crystal structure analysis using powder diffraction data from organic compounds.
Aguirrechu-Comerón, Amagoia; Hernández-Molina, Rita; Rodríguez-Hernández, Plácida; Muñoz, Alfonso; Rodríguez-Mendoza, Ulises R; Lavín, Vı́ctor; Angel, Ross J; Gonzalez-Platas, Javier
2016-08-01
Copper(I) iodine compounds can exhibit interesting mechanochromic and thermochromic luminescent properties with important technological applications. We report the synthesis and structure determination by X-ray diffraction of a new polymeric staircase copper(I) iodine compound catena(bis(μ2-iodo)-6-methylquinoline-copper(I), [C10H9CuIN]. The structure is composed of isolated polymeric staircase chains of copper-iodine coordinated to organic ligands through Cu-N bonds. High pressure X-ray diffraction to 6.45 GPa shows that the material is soft, with a bulk modulus K0 = 10.2(2)GPa and a first derivative K'0 = 8.1(3), typical for organometallic compounds. The unit-cell compression is very anisotropic with the stiffest direction [302] arising from a combination of the stiff CuI ladders and the shear of the planar quinolone ligands over one another. Full structure refinements at elevated pressures show that pressures reduce the Cu···Cu distances in the compound. This effect is detected in luminescence spectra with the appearance of four sub-bands at 515, 600, 647, and 712 nm above 3.5 GPa. Red-shifts are observed, and they are tentatively associated with interactions between copper(I) ions due to the shortening of the Cu···Cu distances induced by pressure, below twice the van der Waals limit (2.8 Å). Additionally, ab initio simulations were performed, and they confirmed the structure and the results obtained experimentally for the equation of state. The simulation allowed the band structure and the electronic density of states of this copper(I) iodine complex to be determined. In particular, the band gap decreases slowly with pressure in a quadratic way with dEg/dP = -0.011 eV/GPa and d(2)Eg/dP(2) = 0.001 eV/GPa(2). PMID:27429246
An ab initio-based Er–He interatomic potential in hcp Er
Yang, Li; ye, Yeting; Fan, K. M.; Shen, Huahai; Peng, Shuming; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei
2014-09-01
We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations. The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.
NASA Astrophysics Data System (ADS)
Śmialek, Malgorzata A.; Łabuda, Marta; Guthmuller, Julien; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo
2016-06-01
The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate, C4H8O2, is presented over the energy range 4.5-10.7 eV (275.5-116.0 nm). Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Also, the photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the upper stratosphere (20-50 km). Calculations have also been carried out to determine the ionisation energies and fine structure of the lowest ionic state of ethyl acetate and are compared with a newly recorded photoelectron spectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the first photoelectron band of this molecule for the first time.
Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods
ERIC Educational Resources Information Center
Halpern, Arthur M.
2011-01-01
A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…
4He Thermophysical Properties: New Ab Initio Calculations
Hurly, John J.; Mehl, James B.
2007-01-01
Since 2000, atomic physicists have reduced the uncertainty of the helium-helium “ab initio” potential; for example, from approximately 0.6 % to 0.1 % at 4 bohr, and from 0.8 % to 0.1 % at 5.6 bohr. These results led us to: (1) construct a new inter-atomic potential ϕ07, (2) recalculate values of the second virial coefficient, the viscosity, and the thermal conductivity of 4He from 1 K to 10,000 K, and (3), analyze the uncertainties of the thermophysical properties that propagate from the uncertainty of ϕ07 and from the Born-Oppenheimer approximation of the electron-nucleon quantum mechanical system. We correct minor errors in a previous publication [J. J. Hurly and M. R. Moldover, J. Res. Nat. Inst. Standards Technol. 105, 667 (2000)] and compare our results with selected data published after 2000. The ab initio results tabulated here can serve as standards for the measurement of thermophysical properties. PMID:27110456
Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures
Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan
2006-04-05
A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.
Towards SiC Surface Functionalization: An Ab Initio Study
Cicero, G; Catellani, A
2005-01-28
We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for bio-compatible devices.
Ab initio pseudopotential band calculation of organic conductors
Ishibashi, Shoji; Kohyama, Masanori
1999-12-01
The authors have calculated the band structures of organic conductors TTF-TCNQ and {beta}-(BEDT-TTF){sub 2}I{sub 3} using the ab initio plane-wave pseudopotential method within the local-density approximation (LDA). The Fermi-surface shape and the origin of bands near the Fermi level are investigated for each compound.
Takahasi, S. ); Curtiss, L.A.; Gosztola, D.; Koura, N. ); Loong, C.K.; Saboungi, M.L. . Materials Science Div.)
1993-04-01
The Raman and neutron scattering spectra of 46 mol% AlCl[sub 3] -54 mol% 1-ethyl-3-methyl imidazolium chloride (EMIC) and 67 mol% AlCl[sub 3] - 33 mol% EMIC melts are presented. Ab initio molecular orbital calculations have been carried out on structures of chloroaluminate anion and EMI cation and the interaction between anion and cation.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.
Properties of metals during the heating by intense laser irradiation using ab initio simulations
NASA Astrophysics Data System (ADS)
Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane
2011-10-01
Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.
Melting curves of metals by ab initio calculations
NASA Astrophysics Data System (ADS)
Minakov, Dmitry; Levashov, Pavel
2015-06-01
In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).
Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures
NASA Astrophysics Data System (ADS)
Debernardi, Alberto; Marchetti, Luigi
2016-06-01
Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.
Ab initio calculations in a uniform magnetic field using periodic supercells
Cai, W; Galli, G
2003-10-21
We present a formulation of ab initio electronic structure calculations in a finite magnetic field, which retains the simplicity and efficiency of techniques widely used in first principles molecular dynamics simulations, based on plane-wave basis sets and Fourier transforms. In addition we discuss results obtained with this method for the energy spectrum of interacting electrons in quantum wells, and for the electronic properties of dense fluid deuterium in a uniform magnetic field.
Jastrzebski, Wlodzimierz; Kowalczyk, Pawel; Szczepkowski, Jacek; Allouche, Abdul-Rahman; Crozet, Patrick; Ross, Amanda J
2015-07-28
Two-colour polarization labelling experiments have been used to explore the excitation spectrum of the rubidium dimer in the region 25,500-27,000 cm(-1), probing two mutually interacting states, identified from ab initio calculations as the 5(1)Σu(+) and 5(1)Πu states whose atomic dissociation products are Rb(5s) + Rb(5d). Treating the rather irregular progressions observed in the excitation spectra as transitions to single states with (numerous) local perturbations, we propose spectroscopic parameters and potential energy curves to describe the investigated levels. Observations cover more than 20 vibrational levels in the inner minima of both the 5(1)Πu and 5(1)Σu(+) states. Analysis was guided by ab initio calculations performed to describe the (1,3)Λg,u electronic states of Rb2 up to the Rb(5s) + Rb(5f) atomic asymptote. The theoretical potential energy curves are given in ASCII format in an electronic supplement to this paper. PMID:26233130
CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule.
Barletta, Paolo; Shirin, Sergei V; Zobov, Nikolai F; Polyansky, Oleg L; Tennyson, Jonathan; Valeev, Edward F; Császár, Attila G
2006-11-28
The high accuracy ab initio adiabatic potential energy surfaces (PESs) of the ground electronic state of the water molecule, determined originally by Polyansky et al. [Science 299, 539 (2003)] and called CVRQD, are extended and carefully characterized and analyzed. The CVRQD potential energy surfaces are obtained from extrapolation to the complete basis set of nearly full configuration interaction valence-only electronic structure computations, augmented by core, relativistic, quantum electrodynamics, and diagonal Born-Oppenheimer corrections. We also report ab initio calculations of several quantities characterizing the CVRQD PESs, including equilibrium and vibrationally averaged (0 K) structures, harmonic and anharmonic force fields, harmonic vibrational frequencies, vibrational fundamentals, and zero-point energies. They can be considered as the best ab initio estimates of these quantities available today. Results of first-principles computations on the rovibrational energy levels of several isotopologues of the water molecule are also presented, based on the CVRQD PESs and the use of variational nuclear motion calculations employing an exact kinetic energy operator given in orthogonal internal coordinates. The variational nuclear motion calculations also include a simplified treatment of nonadiabatic effects. This sophisticated procedure to compute rovibrational energy levels reproduces all the known rovibrational levels of the water isotopologues considered, H(2) (16)O, H(2) (17)O, H(2) (18)O, and D(2) (16)O, to better than 1 cm(-1) on average. Finally, prospects for further improvement of the ground-state adiabatic ab initio PESs of water are discussed. PMID:17144700
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling
Ab initio study of optical excitations in VO2
NASA Astrophysics Data System (ADS)
Coulter, John; Gali, Adam; Manousakis, Efstratios
2014-03-01
Motivated by recent experimental efforts to fabricate p-n junctions from transition metal oxides (TMOs) and a recent theoretical study claiming TMOs to be good absorbers and promising materials for efficient carrier multiplication, we study the optical properties of a prototypical TMO, the insulator M1 phase of vanadium dioxide (VO2), by ab initio methods. We applied the Bethe-Salpeter equations (BSE) to calculate the optical properties, starting from self-consistent GW quasi-particle energy levels and states. In contrast to expectations, the exciton binding energy obtained by BSE is in good agreement with the experiment. We find that the electron-electron interaction is very strong which makes this material promising for efficient carrier multiplication that might lead to an enhanced efficiency in photo-voltaics applications. To illustrate this more quantitatively, we calculated the impact ionization rate within the independent quasiparticle approximation, and find that the rate is significantly higher than silicon in the region of highest solar intensity, due to the strong multiple carrier excitations.
Lead-Chalcogenides Under Pressure: Ab-Initio Study
NASA Astrophysics Data System (ADS)
Gupta, Dinesh C.; Hamid, Idris
ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.
NASA Astrophysics Data System (ADS)
Bannikov, V. V.; Beketov, A. R.; Baranov, M. V.; Elagin, A. A.; Kudyakova, V. S.; Shishkin, R. A.
2016-05-01
The phase stability, electronic structure, and magnetic properties of Al1- x Ti x N compositions based on the metastable aluminum nitride modification with the rock-salt structure at low ( x = 0.03) and high ( x = 0.25) concentrations of titanium in the system have been investigated using the results of ab initio band calculations. It has been shown that, at low values of x, the partial substitution is characterized by a positive enthalpy, which, however, changes sign with an increase in the titanium concentration. According to the results of the band structure calculations, the doped compositions have electronic conductivity. For x = 0.03, titanium impurity atoms have local magnetic moments (˜0.6 μB), and the electronic spectrum is characterized by a 100% spin polarization of near-Fermi states. Some of the specific features of the chemical bonding in Al1- x Ti x N cubic phases have been considered.
NASA Astrophysics Data System (ADS)
Resat, Marianne Sowa; Smolanoff, Jason N.; Goldman, Ilyse B.; Anderson, Scott L.
1994-06-01
We report a combined experimental and theoretical study of the reaction of small carbon cluster cations with N2O aimed at understanding the reaction mechanism and how it is affected by the electronic and geometric structure of the C+n reactants. Cross sections for reaction of C+n (n=3-12) with N2O were measured over a collision energy range from 0.1-10 eV, using a guided ion beam tandem mass spectrometer. Ab initio calculations were used to examine the structure and energetics of reactant and product species. Small clusters, which are linear, react with no activation barrier, resulting in either oxide or nitride formation. The branching between oxide and nitride channels shows a strong even-odd alternation, with even clusters preferentially forming nitrides. This appears to be correlated with an even/odd alternation in the ionization potential of the CnN. The larger, monocyclic C+n have activation barriers for reaction, and a completely different product distribution. Secondary reactions of the primary oxide and nitride products were studied at high N2O pressures. Products containing two O or two N atoms are not observed, but it is possible to add one of each. Possible reaction mechanisms are discussed and supported by thermochemistry derived from spin restricted ab initio calculations.
Śmiałek, M A; Łabuda, M; Guthmuller, J; Hoffmann, S V; Jones, N C; MacDonald, M A; Zuin, L; Mason, N J; Limão-Vieira, P
2015-08-13
The highest resolution vacuum ultraviolet photoabsorption spectrum of isobutyl formate, C5H10O2, yet reported is presented over the energy range 4.5-10.7 eV (275.5-118.0 nm) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl formate and are compared with a newly recorded photoelectron spectrum (from 9.0 to 27.0 eV). The value of the first ionization energy was determined to be 10.508 eV (adiabatic) and 10.837 eV (vertical). New vibrational structure is observed in the first photoelectron band, predominantly resulting from C-O and C═O stretches of the molecule. The photoabsorption cross sections have been used to calculate the photolysis lifetime of isobutyl formate in the upper stratosphere (20-50 km), indicating that the hydroxyl radical processes will be the main loss process for isobutyl formate. PMID:26176891
Towards an ab initio description of correlated materials
NASA Astrophysics Data System (ADS)
Yee, Chuck-Hou
Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls
Understanding phonon transport in thermoelectric materials using ab initio approaches
NASA Astrophysics Data System (ADS)
Broido, David
Good thermoelectric materials have low phonon thermal conductivity, kph. Accurate theories to describe kph are important components in developing predictive models of thermoelectric efficiency that can help guide synthesis and measurement efforts. We have developed ab initio approaches to calculate kph, in which phonon modes and phonon scattering rates are computed using interatomic force constants determined from density functional theory, and a full solution of the Boltzmann transport equation for phonons is implemented. A recent approach to calculate interatomic force constants using ab initio molecular dynamics has yielded a good description of the thermal properties of Bi2Te3. But, the complexity of new promising candidate thermoelectric materials introduces computational challenges in assessing their thermal properties. An example is germanane, a germanium based hydrogen-terminated layered semiconductor, which we will discuss in this talk.
Ab Initio Calculations Of Light-Ion Reactions
Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W
2012-03-12
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.
Spin-orbit decomposition of ab initio nuclear wave functions
NASA Astrophysics Data System (ADS)
Johnson, Calvin W.
2015-03-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
Exploring complex chemical reactions by ab-initio simulation
NASA Astrophysics Data System (ADS)
Parrinello, Michele
1998-03-01
Recent progress in the ab-initio molecular dynamics method and the power of parallel computing, allow the detailed study of complex chemical reaction of great industrial relevance. We illustrate this unprecedented capability by investigating the second generation Ziegler-Natta catalytic process. In this inhomogeneous catalyst, a polymerization reaction is induced by TiCl4 molecules deposited on an MgCl2 solid support. A density functional based ab-initio molecular dynamics calculation conducted with a minimum of initial assumption allows to understand the nature of the catalytic center and to determine the reaction path with the associated free energy barrier. Furthermore our calculation can explain in a nontrivial way the stereo-selectivity of the process.
Towards AB Initio Calculation of the Circular Dichroism of Peptides
NASA Astrophysics Data System (ADS)
Molteni, E.; Onida, G.; Tiana, G.
2012-08-01
In this work we plan to use ab initio spectroscopy calculations to compute circular dichroism (CD) spectra of peptides. CD provides information on protein secondary structure content; peptides, instead, remain difficult to address, due to their tendency to adopt multiple conformations in equilibrium. Therefore peptides are an interesting test-case for ab initio calculation of CD spectra. As a first application, we focus on the (83-92) fragment of HIV-1 protease, which is known to be involved in the folding and dimerization of this protein. As a preliminary step, we performed classical molecular dynamics (MD) simulations, in order to obtain a set of representative conformers of the peptide. Then, on some of the obtained conformations, we calculated absorption spectra at the independent particle, RPA and TDLDA levels, showing the presence of charge transfer excitations, and their influence on spectral features.
Ab initio quantum transport calculations using plane waves
NASA Astrophysics Data System (ADS)
Garcia-Lekue, A.; Vergniory, M. G.; Jiang, X. W.; Wang, L. W.
2015-08-01
We present an ab initio method to calculate elastic quantum transport at the nanoscale. The method is based on a combination of density functional theory using plane wave nonlocal pseudopotentials and the use of auxiliary periodic boundary conditions to obtain the scattering states. The method can be applied to any applied bias voltage and the charge density and potential profile can either be calculated self-consistently, or using an approximated self-consistent field (SCF) approach. Based on the scattering states one can straightforwardly calculate the transmission coefficients and the corresponding electronic current. The overall scheme allows us to obtain accurate and numerically stable solutions for the elastic transport, with a computational time similar to that of a ground state calculation. This method is particularly suitable for calculations of tunneling currents through vacuum, that some of the nonequilibrium Greens function (NEGF) approaches based on atomic basis sets might have difficulty to deal with. Several examples are provided using this method from electron tunneling, to molecular electronics, to electronic devices: (i) On a Au nanojunction, the tunneling current dependence on the electrode-electrode distance is investigated. (ii) The tunneling through field emission resonances (FERs) is studied via an accurate description of the surface vacuum states. (iii) Based on quantum transport calculations, we have designed a molecular conformational switch, which can turn on and off a molecular junction by applying a perpendicular electric field. (iv) Finally, we have used the method to simulate tunnel field-effect transistors (TFETs) based on two-dimensional transition-metal dichalcogenides (TMDCs), where we have studied the performance and scaling limits of such nanodevices and proposed atomic doping to enhance the transistor performance.
Ab initio studies of niobium defects in uranium
Xiang, S; Huang, H; Hsiung, L
2007-06-01
Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.
Volumic omit maps in ab initio dual-space phasing.
Oszlányi, Gábor; Sütő, András
2016-07-01
Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850
An Ab Initio Based Potential Energy Surface for Water
NASA Technical Reports Server (NTRS)
Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)
1996-01-01
We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.
Ab initio investigation of grain boundary cohesion in Al alloys
NASA Astrophysics Data System (ADS)
Zhang, Shengjun; Kontsevoi, Oleg Y.; Freeman, A. J.; Olson, G. B.
2010-03-01
Strength and hardness of aluminum alloys can be substantially increased by alloying with Mg, Zn, Cu, Si, and other elements. The main drawback of Al alloys is their susceptibility to stress corrosion cracking, which is caused by alloying impurities segregated at grain boundaries. We investigated the embrittling and cohesion-enhancing effects of impurities on a σ5(012)[100] grain boundary in Al by means of the full-potential linearized augmented plane-wave (FLAPW) method within the framework of the Rice-Wang thermodynamic model and within the ab initio tensile test approach. We calculated segregation energies, analyzed local atomic configurations, electronic structures and spatial charge density distributions around segregated impurities, and identified the roles of atomic size and the bonding behavior of the impurity with the surrounding Al atoms. The results show that He, H and Na are strong embrittlers, Zn is a weak embrittler, while Sc, B, Cu and Mg are cohesion enhancers. We further evaluated the effect of co-alloying with two or more elements on grain boundary strength. This work provides a fundamental basis for the design of high strength Al alloys.
Ab Initio Simulation of the Photoelectron Spectrum for Methoxy Radical
NASA Astrophysics Data System (ADS)
Cheng, Lan; Weichman, Marissa L.; Kim, Jongjin B.; Ichino, Takatoshi; Neumark, Daniel; Stanton, John F.
2015-06-01
A theoretical simulation of the photoelectron spectrum for the ground state of methoxy radical is reported based on the quasidiabatic model Hamiltonian originally proposed by Köppel, Domcke, and Cederbaum. The parameters in the model Hamiltonian have been obtained from ab initio coupled-cluster calculations. The linear and quadratic force constants have been calculated using equation-of-motion coupled-cluster ionization potential method with the singles, doubles, and triples (EOMIP-CCSDT) truncation scheme together with atomic natural orbital basis sets of triple-zeta quality (ANO1). The cubic and quartic force constants have been obtained from EOMIP-CCSD calculations with ANO basis sets of double-zeta quality (ANO0), and the spin-orbit coupling constant has been computed at the EOMIP-CCSD/pCVTZ level. The nuclear Schroedinger equation has been solved using the Lanzcos algorithm to obtain vibronic energy levels as well as the corresponding intensities. The simulated spectrum compares favorably with the recent high-resolution slow electron velocity-map imaging experiment for vibronic levels up to 2000 cm-1.
Ab initio study of MoS2 nanotube bundles
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu; Charlier, Jean-Christophe
2003-07-01
Recently, the synthesis of a new phase of MoS2I1/3 stoichiometry was reported [M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001)]. Electron microscope images and diffraction data were interpreted to indicate bundles of sub-nanometer-diameter single-wall MoS2 nanotubes. After experimental characterization, the structure was attributed to an assembly of “armchair” nanotubes with interstitial iodine. Using first-principles total-energy calculations, bundles of MoS2 nanotubes with different topologies and stoichiometries are investigated. All of the systems are strongly metallic. Configurations with “zigzag” structures are found to be more stable energetically than the “armchair” ones, though all of the structures have similar stabilities. After relaxation, there remain several candidates which give a lattice parameter in relative agreement with experiment. Further, spin-polarized calculations indicate that a structure with armchair tubes iodine atoms in their center acquires a very large spontaneous magnetic moment of 12μB, while the other structures are nonmagnetic. Our ab initio calculations show that in most of the other structures, the tubes are very strongly bound together, and that the compounds should be considered as a crystal, rather than as a bundle of tubes in the habitual sense.
Ab Initio Investigation of NH_3-O_2 Exciplex
NASA Astrophysics Data System (ADS)
Haupert, L. M.; Simpson, G.; Slipchenko, L. V.
2010-06-01
In their recent investigation of fluorescence from poly(amido amine) (PAMAM) dendrimers, Chu and Imae suggested an exciplex composed of tertiary amine and oxygen molecules might be responsible for fluorescence in PAMAM dendrimers. In this work, we present an ab initio investigation of the electronic structure of a possible ammonia-oxygen exciplex model system using equation-of-motion coupled cluster techniques. Geometry optimization of the triplet ground state produced a weakly bound state with an equilibrium separation of ˜ 3.5 Å, and an excited state geometry scan revealed a bound, excited triplet state with an equilibrium separation of 2.02 Å, consistent with results of earlier PM3 work by Juranic et al. The energy gap between the triplet ground state and first triplet excited state of the exciplex at 2.02 Å is 412.8 nm, lending support to the exciplex hypothesis. C.-C. Chu, and T. Imae, Macromol. Rapid. Commun., 30, 89-93 (2009). I. Juranic, H. S. Rzepa, and Y. MinYan, J. Chem. Soc. Perkin Trans., 2 (1990)
Accurate ab initio vibrational energies of methyl chloride
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup HL}, and CBS-37{sup HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup HL} and CBS-37{sup HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.
Accurate ab initio vibrational energies of methyl chloride.
Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH3 (35)Cl and CH3 (37)Cl. The respective PESs, CBS-35( HL), and CBS-37( HL), are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35( HL) and CBS-37( HL) PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm(-1), respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH3Cl without empirical refinement of the respective PESs. PMID:26133427
Accurate ab initio vibrational energies of methyl chloride
NASA Astrophysics Data System (ADS)
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-01
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH335Cl and CH337Cl. The respective PESs, CBS-35 HL, and CBS-37 HL, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35 HL and CBS-37 HL PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm-1, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH3Cl without empirical refinement of the respective PESs.
Ab initio study of the bonding in diatomic nickel
Noell, J.O.; Newton, M.D.; Hay, P.J.; Martin, R.L.; Bobrowicz, F.W.
1980-09-01
Hartree--Fock, GVB, and configuration interaction calculations were performed for diatomic nickel using an ab initio effective core potential. A basis set specifically optimized for the /sup 3/D state of atomic nickel is found to be far superior to the more common basis obtained from the /sup 3/F atomic state. Correlation effects are found to be significant in determining the bond energy. In particular, the two electrons of the s--s bond must be appropriately correlated. In addition, correlation effects which one would interpret as being principally intra-atomic in character are found to have a marked effect on the molecular properties. The theoretically predicted bond dissociation energy (D/sub e/) of 43.4 kcal/mol is significantly lower than the experimental estimate of 55 +- 5 kcal/mol. However, molecular partition functions calculated using the present results indicate that the experimental value should be revised downward to a value of approx.46 +- 5 kcal/mol, in good agreement with our calculations. An interatomic distance of 4.27 bohr is computed and compared with experimental estimates. Spectroscopic parameters for dipole-allowed transitions from the ground state were determined from SCF and GVB calculations and discussed in relation to the experimentally observed visible and ultraviolet spectra attributed to Ni/sub 2/.
Ab initio simulations on rutile-based titania nanowires
NASA Astrophysics Data System (ADS)
Zhukovskii, Yu F.; Evarestov, R. A.
2012-08-01
The rod symmetry groups for monoperiodic (1D) nanostructures have been applied for construction of models for bulk-like TiO2 nanowires (NWs) cut from a rutile-based 3D crystal along the chosen [001] and [110] directions of crystallographic axes. In this study, we have considered nanowires described by both the Ti-atom centered rotation axes as well as the hollow site centered axes passing through the interstitial positions between the Ti and O atoms closest to the axes. The most stable [001]-oriented TiO2 NWs with rhombic cross sections are found to display the energetically preferable {110} facets only while the nanowires with quasi-square sections across the [110] axis are formed by the alternating { 1bar 10 } and {001} facets. For simulations on rutile-based nanowires possessing different diameters for each NW type, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof (PBE) exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO). We have simulated both structural and electronic properties of TiO2 NWs depending both on orientation and position of symmetry axes as well as on diameter and morphology of nanowires.
GAUSSIAN 76: An ab initio Molecular Orbital Program
DOE R&D Accomplishments Database
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
Ab Initio Study of Defect Properties in YPO4
Gao, Fei; Xiao, Haiyan Y.; Zhou, Yungang; Devanathan, Ramaswami; Hu, Shenyang Y.; Li, Yulan; Sun, Xin; Khaleel, Mohammad A.
2012-03-01
Ab initio methods based on density functional theory have been used to calculate the formation energies of intrinsic defects, including vacancies, interstitials, antisites and Frenkel pairs in YPO4 under the O-rich and Y2O3-rich, and the O-rich and Y-rich conditions. The larger size of the yttrium atom may give rise to higher formation energy of the phosphorus antisite defect. In general, the formation energies of anion interstitials are much smaller than those of cation interstitials for both conditions considered. It is of greatly interest to find that the relative stabilities among the same types of interstitials are independent of the reference states. The most stable configuration for oxygen interstitials is an O-O split interstitial near the Ta site, while the most stable configuration for cation interstitials is a tetrahedral interstitial near the Ta site. The cation split interstitials are unfavorable in YPO4, with much higher formation energies. Furthermore, the properties of Frenkel pairs are compared with those calculated using empirical potentials. The results reveal that both ab initio and empirical potential calculations show a similar trend in the formation energies of Frenkel pairs, but the formation energies obtained by empirical potentials are much larger than those calculated by ab initio method.
A Complete and Accurate Ab Initio Repeat Finding Algorithm.
Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua
2016-03-01
It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy. PMID:26272474
Ab initio calculations of reactions with light nuclei
NASA Astrophysics Data System (ADS)
Quaglioni, Sofia; Hupin, Guillaume; Calci, Angelo; Navrátil, Petr; Roth, Robert
2016-03-01
An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review ab initio calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the ab initio no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the A-nucleon system are coupled to (A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.
Feller, D.F.
1993-07-01
This collection of benchmark timings represents a snapshot of the hardware and software capabilities available for ab initio quantum chemical calculations at Pacific Northwest Laboratory`s Molecular Science Research Center in late 1992 and early 1993. The ``snapshot`` nature of these results should not be underestimated, because of the speed with which both hardware and software are changing. Even during the brief period of this study, we were presented with newer, faster versions of several of the codes. However, the deadline for completing this edition of the benchmarks precluded updating all the relevant entries in the tables. As will be discussed below, a similar situation occurred with the hardware. The timing data included in this report are subject to all the normal failures, omissions, and errors that accompany any human activity. In an attempt to mimic the manner in which calculations are typically performed, we have run the calculations with the maximum number of defaults provided by each program and a near minimum amount of memory. This approach may not produce the fastest performance that a particular code can deliver. It is not known to what extent improved timings could be obtained for each code by varying the run parameters. If sufficient interest exists, it might be possible to compile a second list of timing data corresponding to the fastest observed performance from each application, using an unrestricted set of input parameters. Improvements in I/O might have been possible by fine tuning the Unix kernel, but we resisted the temptation to make changes to the operating system. Due to the large number of possible variations in levels of operating system, compilers, speed of disks and memory, versions of applications, etc., readers of this report may not be able to exactly reproduce the times indicated. Copies of the output files from individual runs are available if questions arise about a particular set of timings.
Ab initio DFT calculations of vibrational properties
NASA Astrophysics Data System (ADS)
Story, S. M.; Vila, F. D.; Kas, J. J.; Rehr, J. J.
2014-03-01
Vibrational properties such as EXAFS and crystallographic Debye-Waller factors, vibrational free energies, phonon self-energies, and phonon contributions to the electron spectral function, are key to understanding many aspects of materials beyond ground state electronic structure. Thus, their simulation using first principles methods is of particular importance. Many of these vibrational properties can be calculated from the dynamical matrix and electron-phonon coupling coefficients obtained from DFT calculations. Here we present a code DMVP that calculates these properties from the output of electronic structure codes such as ABINIT, Gaussian, Quantum Espresso and VASP. Our modular interfacing tool AI2PS allows us to translate the different outputs into a DMVP compatible format and generate vibrational properties in an automated way. Finally, we present some current applications that take advantage of the modular form of AI2PS to extend its capabilities to the calculation of coefficients of thermal expansion and other properties of interest such as infrared spectra. This work was supported by DOE Grant DE-FG02-97ER45623.
Ab initio cluster study of crystalline NaF
Temple, D.K.
1992-01-01
A highly-accurate ab initio cluster model of crystalline NaF has been constructed to explore the limits of cluster methods in the treatment of ionic solids. The focus of this model was the characterization of the lattice environment and its influence on the easily-polarizable fluorine anion. The model consisted of a central all-electron fluorine anion coordinated by pseudopotentials, to represent the nearest-neighbor sodium cations, and a finite array of point charges chosen to generate the correct crystal field from the surrounding infinite ionic lattice. The wavefunction and properties of the anion were calculated using the restricted Hartree-Fock and configuration interaction techniques from quantum chemistry. An extensive analysis of basis set incompleteness errors in the anion wavefunction was performed. Important features were identified in the embedded anion, such as its distortion under the influence of the lattice compressions, its stabilization from the Madelung potential, and its changes in size due to electron correlations. Bulk properties of the rocksalt-structure (B1) NaF crystal were derived from the total mode energies, calculated as a function of the crystal volume. The properties included the zero-pressure lattice constant, cohesive energy, and bulk modulus, and the pressure-volume equation-of-state. A series of test calculations explored the relationships, and their underlying physical mechanisms, between the features of the embedded anion and the bulk properties of the crystal. These features often produced opposing changes in the properties, demonstrating the importance of a thorough and systematic treatment of the embedded anion. The most thorough test calculation gave bulk properties that were within 1% of experiment. Using an embedded anion model for the high-pressure cesium-chloride (B2) phase of NaF, the B1-to-B2 structural transition was correctly predicted at 25 GPa, in excellent agreement with the experimental values of 23 to 27 GPa.
Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.
2015-02-27
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
NASA Astrophysics Data System (ADS)
Vigil-Fowler, Derek; Malone, Brad; Louie, Steven
2014-03-01
Understanding the effect of semicore electrons on ab initiioPW-PP GW calculations is currently of great interest due to the increasing importance of complex materials with active semicore electrons, e.g.,the transition metal dichalcogenides. While past research has found a significant effect due to the inclusion of semicore electrons, it did not fully explore the nature of the various deviations of traditional valence-only PW-PP GW calculations from calculations that include the semicore electrons. We study this issue in the simple system of the Si atom, where the effect is more easily isolated, and then extend our results to bulk Si, and other bulk systems. We present results showing the effect of semicore electrons on various contributions to the GW self energy, and discuss the nature of differences with the traditional PW-PP approach. We present methods to efficiently include the effect of semicore electrons in a hierarchy of computational cost and accuracy. This work was supported by NSF Grant No. DMR10-1006184 and U.S. DOE Contract No. DE-AC02-05CH11231. Computational resources have been provided by the NERSC and NICS. D.V-F. acknowledges funding from the DOD's NDSEG fellowship.
Cargnoni, Fausto; Nishibori, Eiji; Rabiller, Philippe; Bertini, Luca; Snyder, G Jeffrey; Christensen, Mogens; Gatti, Carlo; Iversen, Bo Brummerstadt
2004-08-20
The experimental electron density of the high-performance thermoelectric material Zn4Sb3 has been determined by maximum entropy (MEM) analysis of short-wavelength synchrotron powder diffraction data. These data are found to be more accurate than conventional single-crystal data due to the reduction of common systematic errors, such as absorption, extinction and anomalous scattering. Analysis of the MEM electron density directly reveals interstitial Zn atoms and a partially occupied main Zn site. Two types of Sb atoms are observed: a free spherical ion (Sb3-) and Sb2(4-) dimers. Analysis of the MEM electron density also reveals possible Sb disorder along the c axis. The disorder, defects and vacancies are all features that contribute to the drastic reduction of the thermal conductivity of the material. Topological analysis of the thermally smeared MEM density has been carried out. Starting with the X-ray structure ab initio computational methods have been used to deconvolute structural information from the space-time data averaging inherent to the XRD experiment. The analysis reveals how interstitial Zn atoms and vacancies affect the electronic structure and transport properties of beta-Zn4Sb3. The structure consists of an ideal A12Sb10 framework in which point defects are distributed. We propose that the material is a 0.184:0.420:0.396 mixture of A12Sb10, A11BCSb10 and A10BCDSb10 cells, in which A, B, C and D are the four Zn sites in the X-ray structure. Given the similar density of states (DOS) of the A12Sb10, A11BCSb10 and A10BCDSb10 cells, one may electronically model the defective stoichiometry of the real system either by n-doping the 12-Zn atom cell or by p-doping the two 13-Zn atom cells. This leads to similar calculated Seebeck coefficients for the A12Sb10, A11BCSb10 and A10BCDSb10 cells (115.0, 123.0 and 110.3 microV K(-1) at T=670 K). The model system is therefore a p-doped semiconductor as found experimentally. The effect is dramatic if these cells are
Ab initio study of the ν(CO 2) mode in EDA complexes
NASA Astrophysics Data System (ADS)
Jamróz, M. H.; Dobrowolski, J. Cz.; Bajdor, K.; Borowiak, M. A.
1995-04-01
Stabilization energy, geometry and ν2 mode of CO 2 molecule in EDA complexes with organic electron donors are ab initio modeled using SPARTAN program. We prove that the splitting of ν2 mode, observed previously in IR spectra, is an effect of removing the double degeneracy of this mode in the complex resulted from the deformation of CO 2 moiety. The dependence of the deformation on complex stabilization energy is discussed.
Ab initio calculation of positron distribution, ACAR and lifetime in TTF-TCNQ
NASA Astrophysics Data System (ADS)
Ishibashi, Shoji; Kohyama, Masanori
2000-06-01
We have performed ab initio calculations of positron distribution, ACAR and lifetime in the quasi-one-dimensional organic conductor TTF-TCNQ. The electronic structure is obtained within the LDA, while the positron state is calculated either with the LDA or with the GGA. Except the positron lifetime, differences between the LDA and GGA results are rather small. The obtained results are compared with our previous experiments and calculations.
Ab initio molecular dynamics study of liquid sodium and cesium up to critical point
Yuryev, Anatoly A.; Gelchinski, Boris R.
2015-08-17
Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.
Ab initio of the intramolecular dynamics trifluoronitromethane
Roehrig, M.A.; McCarthy, W.J.; Kukolich, S.G.; Adamowicz, L.
1993-12-31
Several experimental studies of trifluoronitromethane have indicated that this molecule undergoes a low energy motion corresponding to an internal rotation of the CF{sub 3} relative to the NO{sub 2} group. Values for the V{sub 6} barrier have been obtained by electron diffraction and microwave spectroscopy to be 3 kcal/mol and 74 cal/mol respectively. A theoretical study of this molecule investigating this and possible other low energy motions is currently underway. Results from this study should reveal new information on the low barrier dynamics and shed some light on this large discrepancy on the V{sub 6} barriers. Preliminary calculations seem to indicate that a simple V{sub 6} barrier does not adequately describe the intramolecular dynamics of this molecule.
Ab-Initio Physics of Electrochemistry
NASA Astrophysics Data System (ADS)
Letchworth Weaver, Kendra; Arias, Tomás
2010-03-01
We present a Joint Density Functional Theory (JDFT)footnotetextS. A. Petrosyan, A. A. Rigos, and T. A. Arias, J. Phys. Chem. B, 109, 15436-15444 (2005).^,footnotetextJ. Lischner and T. A. Arias, Phys. Rev. Lett. 101, 216401 (2008). capturing the key electrostatic interactions between electronic systems and a fluid environment. This novel theory is relevant to the study of electrochemical systems and includes the dielectric properties of the fluid and charge screening due to the presence of ions in solution. We also demonstrate how DFT calculations can address the fundamental physical issues underlying electrochemistry, including the definition of a consistent reference potential, the treatment of charged surfaces under periodic boundary conditions, and the study of the solid-electrolyte interface as a function of the applied potential. Results for interfacial capacitances and potentials of zero charge calculated using these techniques will be compared to experimental values. Our theory allows simulation of a variety of materials, such as intermetallics and complex oxides, in contact with an ionic liquid environment. This method has a wide range of potential applications including catalysis in fuel cells, batteries, and photoelectrochemical cells.
NASA Astrophysics Data System (ADS)
Tapia, O.; Andres, J.; Aullo, J. M.; Bränden, C.-I.
1985-11-01
The electronic mechanisms of a model hydride transfer reaction are theoretically studied with ab inito RHF and UHF SCF MO procedures at the 4-31G basis set level and analytical gradient methods. The model system describes the reduction of cyclopropenyl cation to cyclopropene by the oxidation of lithium hydride to lithium cation. The molecular fragments corresponding to the asymptotic reactive channels characterizing the stepwise mechanisms currently discussed in the literature have been characterized. The binding energy between the fragments is estimated within a simple electrostatic approximate scheme. The results show that a hydride-ion mechanism is a likely pathway for this particular system. The system is thereafter thoroughly studied from the supermolecule approach. Reaction paths for the ground and first triplet electronic states have been calculated. The hypersurface is explored from a geometrical disposition of the reactants that mimics the one found in several dehydrogenases (perpendicular configuration). A hydride ion is found to be the particle transferred on the unconstrained as well as the constrained reaction pathways in the ground electronic state. In the triplet state (perpendicular configuration) the mechanism is stepwise: electron transfer followed by a hydrogen atom transfer. It has been noticed that the perpendicular geometrical disposition of the reactants plays an important role by polarizing the susceptible cyclopropene C-H bond in the sense of increasing the electronic density at the hydrogen nucleus. This provides a clue to rationalize several dehydrogenase's active site structure and mechanism. The reactant molecular complex found in the inverted potential energy curves, namely the LiH---Cp+ association has an electronic distribution which can be described as a hydride ion cementing two electron deficient centers corresponding to the cyclopropenyl and the lithium cations. Direct CI calculations confirm the overall picture obtained above.
NASA Astrophysics Data System (ADS)
Tarighi Ahmadpour, Mahdi; Hashemifar, S. Javad; Rostamnejadi, Ali
2016-07-01
We use density functional computations to study the zero temperature structural, electronic, magnetic, and optical properties of (5,0) finite carbon nanotubes (FCNT), with length in the range of 4-44 Å. It is found that the structural and electronic properties of (5,0) FCNTs, in the ground state, converge at a length of about 30 Å, while the excited state properties exhibit long-range edge effects. We discuss that curvature effects enhance energy gap of FCNTs, in contrast to the known trend in the periodic limit. It is seen that compensation of curvature effects in two special small sizes may give rise to spontaneous magnetization. The obtained cohesive energies provide some insights into the effects of environment on the growth of FCNTs. The second-order difference of the total energies reveals an important magic size of about 15 Å. The optical and dynamical magnetic responses of the FCNTs to polarized electromagnetic pulses are studied by time dependent density functional theory. The results show that the static and dynamic magnetic properties mainly come from the edge carbon atoms. The optical absorption properties are described in terms of local field effects and characterized by Casida linear response method.
Macromolecular ab initio phasing enforcing secondary and tertiary structure
Millán, Claudia; Sammito, Massimo; Usón, Isabel
2015-01-01
Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631
The implementation of ab initio quantum chemistry calculations on transporters.
Cooper, M D; Hillier, I H
1991-06-01
The RHF and geometry optimization sections of the ab initio quantum chemistry code, GAMESS, have been optimized for a network of parallel microprocessors, Inmos T800-20 transputers, using both indirect and direct SCF techniques. The results indicate great scope for implementation of such codes on small parallel computer systems, very high efficiencies having been achieved, particularly in the cases of direct SCF and geometry optimization with large basis sets. The work, although performed upon one particular parallel system, the Meiko Computing Surface, is applicable to a wide range of parallel systems with both shared and distributed memory. PMID:1919615
Ab initio vibrational and dielectric properties of Y V O
NASA Astrophysics Data System (ADS)
Vali, R.
2009-10-01
For the yttrium orthovanadate Y V O with a tetragonal zircon-type structure, the first complete set of Raman-active and IR-active phonon modes has been calculated using ab initio density functional perturbation theory. The calculated IR reflectivity spectra are in good agreement with available experimental data. We report the calculated frequencies of three Raman-active modes that could not be detected experimentally and a new assignment of the experimental Raman data. The contributions of each IR-active phonon modes to static dielectric tensor have been determined.
Ab-Initio Shell Model with a Core
Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P
2008-06-04
We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.
Ab initio Study of He Stability in hcp-Ti
Dai, Yunya; Yang, Li; Peng, SM; Long, XG; Gao, Fei; Zu, Xiaotao T.
2010-12-20
The stability of He in hcp-Ti was studied using ab initio method based on density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms has been used to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models.
Ab initio study of hydrogen on beryllium surfaces
NASA Astrophysics Data System (ADS)
Bachurin, D. V.; Vladimirov, P. V.
2015-11-01
Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy.
An improved ab initio structure for fluorine peroxide (FOOF)
NASA Astrophysics Data System (ADS)
Mack, Hans-Georg; Oberhammer, Heinz
1988-03-01
Ab initio calculations with the 6-31G* and Dunning (9s5p/4s2p) basis sets augmented with p and d functions at various levels of theory (RHF, MP2, MP3, and MP4) were carried out on F 2O 2. The best result was obtained at the MP2 level with the Dunning basis plus one set of d functions on fluorine and two sets of d functions on oxygen. These calculations reproduce the experimental bond lengths to within 0.01 Å and the angles to within the experimental uncertainties.
Ab initio study of neutron drops with chiral Hamiltonians
NASA Astrophysics Data System (ADS)
Potter, H. D.; Fischer, S.; Maris, P.; Vary, J. P.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R.
2014-12-01
We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon-nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd-even energy differences for neutron numbers N = 2- 18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N = 8 , 16 , 20 , 28 , 40 , 50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8‧ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian.
Ab-initio study of transition metal hydrides
Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini
2014-04-24
We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.
NASA Astrophysics Data System (ADS)
Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven
2015-06-01
We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.
Melting of sodium under high pressure. An ab-initio study
González, D. J.; González, L. E.
2015-08-17
We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.
Ab initio calculations on the magnetic properties of transition metal complexes
Bodenstein, Tilmann; Fink, Karin
2015-12-31
We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.
B28: the smallest all-boron cage from an ab initio global search
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce
2015-09-01
Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2010-01-01
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree—Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations. PMID:19618944
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.
Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C
2013-01-01
: The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785
Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study
Rio, B. G. del; González, L. E.
2015-08-17
Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.
NASA Astrophysics Data System (ADS)
Knoop, S.; Żuchowski, P. S.; KÈ©dziera, D.; Mentel, Ł.; Puchalski, M.; Mishra, H. P.; Flores, A. S.; Vassen, W.
2014-08-01
We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet He4 and Rb87 in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+17-4+1a0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon
2013-01-01
The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785
Implementation of a vector potential method in an ab initio Hartree-Fock code
NASA Astrophysics Data System (ADS)
Tevekeliyska, Violina; Springborg, Michael; Champagne, Benoît; Kirtman, Bernard
2012-12-01
For extended systems exposed to an external, electrostatic field, the presence of the field leads to an extra term (E⃗. P⃗) to the Hamiltonian, where E⃗ is the field vector and P⃗ is the polarization of the system of interest. In order to find out how a polymer chain responds to an external electric perturbation, a field with a charge and a current term for the polarization is added to an ab initio Hartree-Fock Hamiltonian. The polarization expression is taken from an efficient vector potential approach (VPA) [1] for calculating electronic and nuclear responses of infinite periodic systems to finite electric fields and is implemented in the ab initio LCAO-SCF algorithm [3], which computes band structure of regular or helical polymers, taking into account the one-dimensional translational symmetry. A smoothing procedure for numerical differentiation of the orbital coefficients is used in order to calculate self-consistently the charge flow contribution to the polarization.
In pursuit of the ab initio limit for conformational energy prototypes
NASA Astrophysics Data System (ADS)
Császár, Attila G.; Allen, Wesley D.; Schaefer, Henry F.
1998-06-01
The convergence of ab initio predictions to the one- and n-particle limits has been systematically explored for several conformational energy prototypes: the inversion barriers of ammonia, water, and isocyanic acid, the torsional barrier of ethane, the E/Z rotamer separation of formic acid, and the barrier to linearity of silicon dicarbide. Explicit ab initio results were obtained with atomic-orbital basis sets as large as [7s6p5d4f3g2h1i/6s5p4d3f2g1h] and electron correlation treatments as extensive as fifth-order Møller-Plesset perturbation theory (MP5), the full coupled-cluster method through triple excitations (CCSDT), and Brueckner doubles theory including perturbational corrections for both triple and quadruple excitations [BD(TQ)]. Subsequently, basis set and electron correlation extrapolation schemes were invoked to gauge any further variations in arriving at the ab initio limit. Physical effects which are tacitly neglected in most theoretical work have also been quantified by computations of non-Born-Oppenheimer (BODC), relativistic, and core correlation shifts of relative energies. Instructive conclusions are drawn for the pursuit of spectroscopic accuracy in theoretical conformational analyses, and precise predictions for the key energetic quantities of the molecular prototypes are advanced.
Ab initio pseudopotential calculation for TTF-TCNQ and TSeF-TCNQ
NASA Astrophysics Data System (ADS)
Ishibashi, Shoji; Kohyama, Masanori
2000-09-01
We have investigated the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ [at room temperature (RT) and 100 K] and TSeF-TCNQ (RT), which have isomorphic crystal structure, by an ab initio plane-wave pseudopotential band calculation. To express the exchange and correlation energy for electrons, we used both the local density approximation and generalized gradient approximation for comparison. For each case, electronic band dispersions were calculated along several symmetric lines and tight-binding parameters were evaluated. The Fermi surface shape was also obtained. The six sets of results (for three structures and two approximations) were compared systematically.
NASA Astrophysics Data System (ADS)
Feshin, V. P.; Feshina, E. V.
2000-07-01
The results of ab initio calculations at the RHF/6-31G ∗ level of 1-methyl-4-chloro- and -5-chloroimidazoles as well as of 1-methyl-4,5-dichloroimidazoles with total optimization of their geometry were presented. They were used for the interpretation of peculiarities of an influence of the "pyridine" and "pyrrole" N atoms on the electron distribution of the Cl atoms in these molecules and of their 35Cl NQR frequencies. These peculiarities are caused by the different space electron distribution of these N atoms that causes the different polarization of the geminal Cl atom p-electron shell.
NASA Astrophysics Data System (ADS)
Pham, Thi Nu; Ono, Shota; Ohno, Kaoru
2016-04-01
Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronic excited state configuration.
Improving Li2O2 conductivity via polaron preemption: An ab initio study of Si doping
NASA Astrophysics Data System (ADS)
Timoshevskii, Vladimir; Feng, Zimin; Bevan, Kirk H.; Goodenough, John; Zaghib, Karim
2013-08-01
We report on ab initio electronic structure simulations of Li2O2, where 1.6% of lithium atoms are substituted by silicon. It is demonstrated that this leads to the formation of conducting impurity states in the band gap of Li2O2. We show that these states originate from the antibonding orbitals of the oxygen pairs and are remarkably stable against possible polaron formation (upon electron injection). Through this polaron preemption mechanism, the proposed compound is expected to show significantly higher electronic mobility than stoichiometric Li2O2, which could have significant applications in lithium-air batteries.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C
2015-01-01
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906
Three-cluster dynamics within an ab initio framework
Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr
2013-09-26
In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less
Ab initio thermodynamic model for magnesium carbonates and hydrates.
Chaka, Anne M; Felmy, Andrew R
2014-09-01
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation. PMID:24679248
Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates
Chaka, Anne M.; Felmy, Andrew R.
2014-03-28
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Ab initio prediction of the critical thickness of a precipitate
NASA Astrophysics Data System (ADS)
Sampath, S.; Janisch, R.
2013-09-01
Segregation and precipitation of second phases in metals and metallic alloys is an important phenomenon that has a strong influence on the mechanical properties of the material. Models exist that describe the growth of coherent, semi-coherent and incoherent precipitates. One important parameter of these models is the energy of the interface between matrix and precipitate. In this work we apply ab initio density functional theory calculations to obtain this parameter and to understand how it depends on chemical composition and mechanical strain at the interface. Our example is a metastable Mo-C phase, the body-centred tetragonal structure, which exists as a semi-coherent precipitate in body-centred cubic molybdenum. The interface of this precipitate is supposed to change from coherent to semi-coherent during the growth of the precipitate. We predict the critical thickness of the precipitate by calculating the different contributions to a semi-coherent interface energy by means of ab initio density functional theory calculations. The parameters in our model include the elastic strain energy stored in the precipitate, as well as a misfit dislocation energy that depends on the dislocation core width and the dislocation spacing. Our predicted critical thickness agrees well with experimental observations.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
NASA Astrophysics Data System (ADS)
Elenewski, Justin E.; Hackett, John C.
2015-02-01
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C
2015-02-14
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Entropy of Liquid Water from Ab Initio Molecular Dynamics
NASA Astrophysics Data System (ADS)
Spanu, Leonardo; Zhang, Cui; Galli, Giulia
2012-02-01
The debate on the structural properties of water has been mostly based on the calculation of pair correlation functions. However, the simulation of thermodynamic and spectroscopic quantities may be of great relevance for the characterization of liquid water properties. We have computed the entropy of liquid water using a two-phase thermodynamic model and trajectories generated by ab initio molecular dynamics simulations [1]. In an attempt to better understand the performance of several density functionals in simulating liquid water, we have performed ab initio molecular dynamics using semilocal, hybrid [2] and van der Waals density functionals [3]. We show that in all cases, at the experimental equilibrium density and at temperatures in the vicinity of 300 K, the computed entropies are underestimated, with respect to experiment, and the liquid exhibits a degree of tetrahedral order higher than in experiments. We also discuss computational strategies to simulate spectroscopic properties of water, including infrared and Raman spectra.[4pt] [1] C.Zhang, L.Spanu and G.Galli, J.Phys.Chem. B 2011 (in press)[0pt] [2] C.Zhang, D.Donadio, F.Gygi and G.Galli, J. Chem. Theory Comput. 7, 1443 (2011)[0pt] [3] C.Zhang, J.Wu, G.Galli and F.Gygi, J. Chem. Theory Comput. 7, 3061 (2011)
Unified ab initio approaches to nuclear structure and reactions
NASA Astrophysics Data System (ADS)
Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-05-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.
Ab initio tight-binding Hamiltonian for transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Fang, Shiang; Kuate Defo, Rodrick; Shirodkar, Sharmila N.; Lieu, Simon; Tritsaris, Georgios A.; Kaxiras, Efthimios
2015-11-01
We present an accurate ab initio tight-binding Hamiltonian for the transition metal dichalcogenides, MoS2, MoSe2, WS2, WSe2, with a minimal basis (the d orbitals for the metal atoms and p orbitals for the chalcogen atoms) based on a transformation of the Kohn-Sham density functional theory Hamiltonian to a basis of maximally localized Wannier functions. The truncated tight-binding Hamiltonian, with only on-site, first, and partial second neighbor interactions, including spin-orbit coupling, provides a simple physical picture and the symmetry of the main band-structure features. Interlayer interactions between adjacent layers are modeled by transferable hopping terms between the chalcogen p orbitals. The full-range tight-binding Hamiltonian can be reduced to hybrid-orbital k .p effective Hamiltonians near the band extrema that capture important low-energy excitations. These ab initio Hamiltonians can serve as the starting point for applications to interacting many-body physics including optical transitions and Berry curvature of bands, of which we give some examples.
Eremeev, S V; Chukurov, E N; Gruznev, D V; Zotov, A V; Saranin, A A
2015-08-01
Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)[Formula: see text]-Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the [Formula: see text] sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)[Formula: see text]-Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications. PMID:26151642
Boda, Anil; Ali, Sk Musharaf; Rao, Hanmanth; Ghosh, Sandip K
2012-08-01
The structures, energetic and thermodynamic parameters of model crown ethers with different donor, cavity and electron donating/ withdrawing functional group have been determined with ab initio MP2 and density functional theory in gas and solvent phase. The calculated values of binding energy/ enthalpy for lithium ion complexation are marginally higher for hard donor based aza and oxa crown compared to soft donor based thia and phospha crown. The calculated values of binding enthalpy for lithium metal ion with 12C4 at MP2 level of theory is in good agreement with the available experimental result. The binding energy is altered due to the inductive effect imparted by the electron donating/ withdrawing group in crown ether, which is well correlated with the values of electron transfer. The role of entropy for extraction of hydrated lithium metal ion by different donor and functional group based ligand has been demonstrated. The HOMO-LUMO gap is decreased and dipole moment of the ligand is increased from gas phase to organic phase because of the dielectric constant of the solvent. The gas phase binding energy is reduced in solvent phase as the solvent molecules weaken the metal-ligand binding. The theoretical values of extraction energy for LiCl salt from aqueous solution in different organic solvent is validated by the experimental trend. The study presented here should contribute to the design of model host ligand and screening of solvent for metal ion recognition and thus can contribute in planning the experiments. PMID:22318713
Hou, Gao-Lei; Feng, Gang; Zhao, Li-Juan; Xu, Hong-Guang; Zheng, Wei-Jun
2015-11-12
The (KI)n(-) (n = 1-4) and K(KI)n(-) (n = 1-3) clusters were studied by negative ion photoelectron spectroscopy and ab initio calculations. Comparison between the theoretical vertical detachment energies and the experimental values revealed that multiple isomers may coexist in the experiments. The existence of two isomers for K(KI)(-) and K(KI)2(-) were confirmed directly by isomer-depletion experiments, in which the low adiabatic detachment energy isomers were depleted by a 1064 nm laser beam before the anions were photodetached by a 532 nm laser beam. Our results show that the most stable structures of the K(KI)(-), (KI)2(-), and K(KI)2(-) anions are chain structures, while those of their neutral counterparts are planar. Three-dimensional structures start to appear at n = 3 for (KI)n(-/0) and K(KI)n(-/0). In the K(KI)n(-) cluster anions, the excess electron is localized on the extra K atom and forms an electron pair with the existing s electron of the K atom; the resulting negatively charged K prefers to interact with the other positively charged K atoms rather than with the I atoms. Both the anionic and neutral (KI)4 clusters have cuboid structures, which may be regarded as the smallest structural motif of KI crystal. PMID:26473992
Development of Novel Analytical Method for Ab Initio Powder Structural Analysis
NASA Astrophysics Data System (ADS)
Sakata, Makoto; Nishibori, Eiji; Sawa, Hiroshi
Genetic Algorithm (GA) applied to ab initio structure determination from synchrotron powder diffraction is described. It seems to have an advantage over other real space methods for ab initio structure determination because of the existence of schema theorem. As an example, the case of Prednisolone Succinate is shown in some detail. Future development of GA in crystallography is briefly described.
NASA Astrophysics Data System (ADS)
George, D. X. F.; Kumar, Sanjay
2010-08-01
Ab initio global adiabatic as well as quasidiabatic potential energy surfaces for the ground and the first excited electronic states of the H + + CO system have been computed as a function of the Jacobi coordinates ( R, r, γ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. In addition, nonadiabatic coupling matrix elements arising from radial motion, mixing angle and coupling potential have been computed using the ab initio procedure [Simah et al. (1999) [66
Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.
NASA Astrophysics Data System (ADS)
Kozlov, Maxim I.; Poddubnyy, Vladimir V.; Glebov, Ilya O.; Belov, Aleksandr S.; Khokhlov, Daniil V.
2016-02-01
The electronic properties of light-harvesting complexes determine the efficiency of energy transfer in photosynthetic antennae. Ab initio calculations of the electronic properties of bacteriochlorophylls (composing the LH1 complex of the purple bacteria Thermochromatium tepidum) were performed. Based on these calculations, the excitonic Hamiltonian of a native cyclic complex and the Hamiltonians of open complexes with several removed bacteriochlorophylls were constructed. Absorption spectra calculated based on these Hamiltonians agree well with the experimental data. We found that the parameters of interaction between the neighboring bacteriochlorophylls are significantly larger than the empirical parameters suggested previously.
Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.
NASA Astrophysics Data System (ADS)
Q, Mahmood; S, M. Alay-e.-Abbas; I, Mahmood; Mahmood, Asif; N, A. Noor
2016-04-01
The mechanical, electronic and magnetic properties of non-magnetic MgTe and ferro-magnetic (FM) Mg0.75 TM 0.25Te (TM = Fe, Co, Ni) in the zinc-blende phase are studied by ab-initio calculations for the first time. We use the generalized gradient approximation functional for computing the structural stability, and mechanical properties, while the modified Becke and Johnson local (spin) density approximation (mBJLDA) is utilized for determining the electronic and magnetic properties. By comparing the energies of non-magnetic and FM calculations, we find that the compounds are stable in the FM phase, which is confirmed by their structural stabilities in terms of enthalpy of formation. Detailed descriptions of elastic properties of Mg0.75 TM 0.25Te alloys in the FM phase are also presented. For electronic properties, the spin-polarized electronic band structures and density of states are computed, showing that these compounds are direct bandgap materials with strong hybridizations of TM 3d states and Te p states. Further, the ferromagnetism is discussed in terms of the Zener free electron model, RKKY model and double exchange model. The charge density contours in the (110) plane are calculated to study bonding properties. The spin exchange splitting and crystal field splitting energies are also calculated. The distribution of electron spin density is employed in computing the magnetic moments appearing at the magnetic sites (Fe, Co, Ni), as well as at the non-magnetic sites (Mg, Te). It is found that the p–d hybridization causes not only magnetic moments on the magnetic sites but also induces negligibly small magnetic moments at the non-magnetic sites.
Ab initio study of guanine damage by hydroxyl radical.
Chaban, Galina M; Wang, Dunyou; Huo, Winifred M
2015-01-15
Multiconfigurational ab initio methods are used in this study to examine two initial reactions that take place during the OH radical attack of the DNA base guanine: a ring opening reaction and a hydrogen transfer reaction. The same reactions are also studied in the presence of a single water molecule. The ring opening reaction has a moderate barrier height of ∼20-25 kcal/mol that is relatively insensitive to the presence of water. The barrier of the H-transfer reaction, on the other hand, is lowered from ∼50 to ∼22 kcal/mol when one water molecule is added, thus becoming comparable to the barrier height of the ring opening reaction. PMID:25517252
Vibrational and ab initio molecular dynamics studies of bradykinin
NASA Astrophysics Data System (ADS)
Święch, Dominika; Kubisiak, Piotr; Andrzejak, Marcin; Borowski, Piotr; Proniewicz, Edyta
2016-07-01
In this study, the comprehensive theoretical and experimental investigations of Raman (RS) and infrared absorption (IR) spectra of bradykinin (BK) are presented. The ab initio Born-Oppenheimer molecular dynamics (BOMD) calculations, in the presence of water molecules that form the first coordination sphere, were used for conformational analysis of the BK structure. Based on the Density Functional Theory (DFT) calculations at the B3LYP/6-311G(d) level the vibrational spectra were interpreted. The calculated frequencies were scaled by means of the effective scaling frequency factor (ESFF) method. The theoretical data, which confirm the compact structure of BK in the presence of the water molecules revealed the remarkable effect of the intermolecular hydrogen bonding on the BK structural properties.
Ab initio water pair potential with flexible monomers.
Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof
2015-03-26
A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects. PMID:25687650
Reactive Monte Carlo sampling with an ab initio potential
NASA Astrophysics Data System (ADS)
Leiding, Jeff; Coe, Joshua D.
2016-05-01
We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the "rare-event" character of chemical reactions.
Efficient Ab initio Modeling of Random Multicomponent Alloys
NASA Astrophysics Data System (ADS)
Jiang, Chao; Uberuaga, Blas P.
2016-03-01
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.
Ab initio H2O in realistic hydrophilic confinement.
Allolio, Christoph; Klameth, Felix; Vogel, Michael; Sebastiani, Daniel
2014-12-15
A protocol for the ab initio construction of a realistic cylindrical pore in amorphous silica, serving as a geometric nanoscale confinement for liquids and solutions, is presented. Upon filling the pore with liquid water at different densities, the structure and dynamics of the liquid inside the confinement can be characterized. At high density, the pore introduces long-range oscillations into the water density profile, which makes the water structure unlike that of the bulk across the entire pore. The tetrahedral structure of water is also affected up to the second solvation shell of the pore wall. Furthermore, the effects of the confinement on hydrogen bonding and diffusion, resulting in a weakening and distortion of the water structure at the pore walls and a slowdown in diffusion, are characterized. PMID:25208765
High-throughput ab-initio dilute solute diffusion database
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Ab initio calculation of the shock Hugoniot of bulk silicon
NASA Astrophysics Data System (ADS)
Strickson, Oliver; Artacho, Emilio
2016-03-01
We describe how ab initio molecular dynamics can be used to determine the Hugoniot locus (states accessible by a shock wave) for materials with a number of stable phases, and with an approximate treatment of plasticity and yield, without having to simulate these phenomena directly. We consider the case of bulk silicon, with forces from density-functional theory, up to 70 GPa. The fact that shock waves can split into multiple waves due to phase transitions or yielding is taken into account here by specifying the strength of any preceding waves explicitly based on their yield strain. Points corresponding to uniaxial elastic compression along three crystal axes and a number of postshock phases are given, including a plastically yielded state, approximated by an isotropic stress configuration following an elastic wave of predetermined strength. The results compare well to existing experimental data for shocked silicon.
Ab initio calculation of thermodynamic properties of silicon
NASA Astrophysics Data System (ADS)
Wei, Siqing; Li, Changlin; Chou, M. Y.
1994-11-01
We present a fully ab initio calculation of the thermodynamic properties for silicon within the quasiharmonic approximation, making use of volume-dependent phonon frequencies obtained from pseudopotential local-density calculations. The temperature dependence of the thermal-expansion coefficient, specific heat (at constant volume), and other related quantities are studied. We confirm that the thermal-expansion coefficient behaves differently in three temperature regions: positive for temperature below 15 K, negative between 15 and 125 K, and positive again above 125 K. This finding agrees with experiment. The abnormal (negative) thermal-expansion coefficient at low temperatures is explained through a detailed study of mode Grüneisen parameters. Both specific-heat and thermal-expansion-coefficient values calculated are in excellent agreement with experiment up to a few hundred kelvin.
XMVB: a program for ab initio nonorthogonal valence bond computations.
Song, Lingchun; Mo, Yirong; Zhang, Qianer; Wu, Wei
2005-04-15
An ab initio nonorthogonal valence bond program, called XMVB, is described in this article. The XMVB package uses Heitler-London-Slater-Pauling (HLSP) functions as state functions, and calculations can be performed with either all independent state functions for a molecule or preferably a few selected important state functions. Both our proposed paired-permanent-determinant approach and conventional Slater determinant expansion algorithm are implemented for the evaluation of the Hamiltonian and overlap matrix elements among VB functions. XMVB contains the capabilities of valence bond self-consistent field (VBSCF), breathing orbital valence bond (BOVB), and valence bond configuration interaction (VBCI) computations. The VB orbitals, used to construct VB functions, can be defined flexibly in the calculations depending on particular applications and focused problems, and they may be strictly localized, delocalized, or bonded-distorted (semidelocalized). The parallel version of XMVB based on MPI (Message Passing Interface) is also available. PMID:15704237
Ab initio theory of NMR chemical shifts in solids
Louie, S.G. |
1997-12-31
A new formalism for ab initio calculation of the orbital magnetic susceptibility and the NMR chemical shifts in solids and liquids is presented. The approach can be applied to periodic systems such as crystals, surfaces or polymers, and with a supercell technique, to nonperiodic systems such as amorphous materials, liquids, or solids with defects. The formalism is based on the density functional theory in the local density approximation and makes use of a generalized f-sum rule to eliminate the divergent terms that plagued previous theories. Calculations have been successfully carried out for the diamagnetic susceptibility of a number of insulators and for the NMR chemical shifts of a variety of systems including free molecules, ionic crystals, hydrogen-bonded materials and amorphous carbon.
Ab initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Ab initio calculations of grain boundaries in bcc metals
NASA Astrophysics Data System (ADS)
Scheiber, Daniel; Pippan, Reinhard; Puschnig, Peter; Romaner, Lorenz
2016-03-01
In this study, we compute grain boundary (GB) properties for a large set of GBs in bcc transition metals with a special focus on W, Mo and Fe using ab initio density functional theory (DFT) and semi-empirical second nearest neighbour modified embedded atom method (2NN-MEAM) potentials. The GB properties include GB energies, surface energies, GB excess volume and work of separation, which we analyse and then compare to experimental data. We find that the used 2NN-MEAM potentials can predict general trends of GB properties, but do not always reproduce the GB ground state structure and energy found with DFT. In particular, our results explain the experimental finding that W and Mo prefer intergranular fracture, while other bcc metals prefer transgranular cleavage.
Ab initio potential energy surface and rovibrational states of HBO
NASA Astrophysics Data System (ADS)
Ha, Tae-Kyu; Makarewicz, Jan
1999-01-01
The potential energy surface describing the large-amplitude motion of H around the BO core in the HBO molecule has been determined from ab initio calculations. This surface has been sampled by a set of 170 grid points from a two-dimensional space defined by the stretching and the bending coordinates of the H nucleus. At each grid point, the BO bond length has been optimized using the second-order Møller-Plesset perturbation theory with the basis set aug-cc-pVTZ. The surface has a local minimum for the linear as well as the bent configuration of HBO. A low energy barrier to the linear configuration BOH causes a large-amplitude motion and a strong rovibrational interaction in the molecule. Its rovibrational dynamics is different from the dynamics in bent or quasilinear triatomic molecules.
Ab initio study of helium behavior in titanium tritides
Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei
2013-03-01
Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].
High-throughput ab-initio dilute solute diffusion database.
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Ab initio quantum dynamics using coupled-cluster.
Kvaal, Simen
2012-05-21
The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given. PMID:22612082
Efficient Ab initio Modeling of Random Multicomponent Alloys.
Jiang, Chao; Uberuaga, Blas P
2016-03-11
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches. PMID:27015491
Ab Initio Screening of CO2-philic Groups.
Tian, Ziqi; Saito, Tomonori; Jiang, De-En
2015-04-23
Ab initio calculations were used to identify CO2-philic groups. Over 55 neutral molecules were screened for CO2 affinity via binding energetics. It is found that poly(ethylene oxide)s (PEO) oligomers with more than three repeating units are good CO2-binding groups, consistent with the high-performance of PEO-based materials for CO2/N2 separation. More interestingly, two triazole groups linked with a methylene chain are also excellent for CO2 binding with a favorable interaction of more than 28 kJ/mol, indicating that polymers or covalent-organic frameworks (COFs) with triazoles may be utilized for CO2 capture. This work provides a useful guide to introduce promising organic groups into polymeric membranes and COFs for CO2/N2 separation media. PMID:25825811
Ab initio methods for nuclear properties - a computational physics approach
NASA Astrophysics Data System (ADS)
Maris, Pieter
2011-04-01
A microscopic theory for the structure and reactions of light nuclei poses formidable challenges for high-performance computing. Several ab-initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab-initio no-core full configuration (NCFC) approach is based on basis space expansion methods and uses Slater determinants of single-nucleon basis functions to express the nuclear wave function. In this approach, the quantum many-particle problem becomes a large sparse matrix eigenvalue problem. The eigenvalues of this matrix give us the binding energies, and the corresponding eigenvectors the nuclear wave functions. These wave functions can be employed to evaluate experimental quantities. In order to reach numerical convergence for fundamental problems of interest, the matrix dimension often exceeds 1 billion, and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. I discuss different strategies for distributing and solving this large sparse matrix on current multicore computer architectures, including methods to deal with with memory bottleneck. Several of these strategies have been implemented in the code MFDn, which is a parallel fortran code for nuclear structure calculations. I will show scaling behavior and compare the performance of the pure MPI version with the hybrid MPI/OpenMP code on Cray XT4 and XT5 platforms. For large core counts (typically 5,000 and above), the hybrid version is more efficient than pure MPI. With this code, we have been able to predict properties of the unstable nucleus 14F, which have since been confirmed by experiments. I will also give an overview of other recent results for nuclei in the A = 6 to 16 range with 2- and 3-body interactions. Supported in part by US DOE Grant DE-FC02-09ER41582.
Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides
NASA Astrophysics Data System (ADS)
Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.
One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.
Marquez, A.; Sanz, J.F. )
1992-12-02
Experimental and theoretical research on the electronic and geometric structure of transition-metal-carbenes and -alkylidenes is an active area in chemistry nowadays due to their potential activity in catalysis and in organic and organometallic synthesis. A theoretical investigation of the electronic structure of the high-valent, transition-metal, alkylidene-like complexes MoM[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn) is reported. Based on ab initio calculations carried out at the complete active space multiconfiguration self-consistent field (CASSCF) level, the molecular structure of the ground state and some low-lying excited states have been determined. For M[prime] = C, Si, and Ge, the ground state has C[sub 2v] symmetry (state [sup 5]B[sub 1]) and corresponds to pairing each electron of the M[prime]H[sub 2] triplet [sup 3]B[sub 1] with an electron of Mo ([sup 7]S). In the case of MoSnH[sub 2], the lowest state is bent (C[sub s] symmetry, state [sup 7]A[prime]), the out-of-plane angle being 68[degrees], and dissociates into SnH[sub 2] ([sup 1]A[sub 1]) + Mo ([sup 7]S). Dissociation energies, potential energy profiles for the dissociation, harmonic force constants in terms of internal symmetry coordinates, and vibrational frequencies are reported. The comparison of these properties with those of their pentacarbonylated homologous (CO)[sub 5]M[double bond]M[prime]H[sub 2] shows that the carbene-like (Fischer) type of complexation is stronger than the alkylidene-like one (Schrock). 28 refs., 4 figs., 6 tabs.
NASA Astrophysics Data System (ADS)
Ziat, Younes; Zarhri, Zakaryaa; Hammi, Maryama; Slassi, Amine; Echihi, Siham; El Kenz, Abdallah; Benyoussef, Abdelilah
2016-07-01
The ab-initio calculations, based on the Korringa-Kohn-Rostoker approximation combined with Coherent Potential Approximation (KKR-CPA) and the local density approximation (LDA) have been used to study the electronic and magnetic properties of 3% of N-doped Fe0.98TM0.02S2 (TM=V or Cr) pyrite. The N is occurred as a non-metallic impurity to evaluate its effect on conductivity type and the stability of the studied systems. Our investigation confirms the p-type conductivity. The stabilization of the ferromagnetic state in N-doped Fe0.98V0.02S2 is observed due to the incorporation of N impurity. The majority-spin related to t2g+ is located around the Fermi level. And the ferromagnetic state connected to the half metal is potentially utilized in spintronic field. In Fe0.98Cr0.02S1.97N0.03, the 3% of N induced a hybridization between (Cr[3d] and N[2p]). We predicted an enlargement of the peak of the Cr[3d]. In addition, the total moment of the studied systems is augmented as well as the Curie temperature (TC).
NASA Astrophysics Data System (ADS)
Bannikov, V. V.; Ivanovskii, A. L.
2013-12-01
Very recently, on the example of hole- and spin-doped semiconductor LaZnAsO, quite an unexpected area of potential applications of quasi-two-dimensional 1111-like phases was proposed (C. Ding et al., Phys. Rev. B 88, 041102R (2013)) as a promising platform for searching for new diluted magnetic semiconductors (DMSs). In this work, by means of the ab initio calculations, we have examined in detail the electronic and magnetic properties of LaZnAsO alloyed with Ba and Mn. Our results demonstrate that Ba or Mn doping transforms the parent non-magnetic semiconductor LaZnAsO into a non-magnetic metal or a magnetic semiconductor, respectively. On the other hand, the joint effect of these dopants (i.e., co-doping Ba + Mn) leads to transition of La0.89Ba0.11Zn0.89Mn0.11AsO into the state of magnetic metal, which is formed by alternately stacked semiconducting non-magnetic blocks [La0.89Ba0.11O] and metallic-like magnetic blocks [Zn0.89Mn0.11As].
NASA Astrophysics Data System (ADS)
Palmer, Michael H.; Camp, Philip J.; Hoffmann, Søren Vrønning; Jones, Nykola C.; Head, Ashley R.; Lichtenberger, Dennis L.
2012-03-01
The first vacuum ultraviolet absorption spectrum of a 1,2,4-triazole has been obtained and analyzed in detail, with assistance from both an enhanced UV photoelectron spectroscopic study and ab initio multi-reference multi-root configuration interaction procedures. For both 1H- and 1-methyl-1,2,4-triazoles, the first ionization energy bands show complex vibrational structure on the low-energy edges of otherwise unstructured bands. Detailed analysis of these bands confirms the presence of three ionized states. The 6-7 eV VUV spectral region shows an unusual absorption plateau, which is interpreted in terms of the near degeneracy of the first two ionization energies, leading to a pseudo Jahn-Teller effect. The "fingerprint" of the ionization spectrum yields band origins for several Rydberg states. The configuration interaction study shows that although the equilibrium structure for the first cation is effectively planar, the second cation shows significant twisting of the ring system. Some calculated singlet electronic states also show skeletal twisting in which the ring C-H is substantially out of plane.
Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng; Xu Wenwu
2013-05-07
A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.
NASA Astrophysics Data System (ADS)
Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Asthana, B. P.
2011-12-01
(+)-Bicuculline (hereinafter referred to as bicuculline), a phthalide isoquinoline alkaloid is of current interest as an antagonist of gamma-aminobutyric acid (GABA). Its inhibitor properties have been studied through molecular electrostatic potential (MEP) mapping of this molecule and GABA receptor. The hot site on the potential surface of bicuculline, which is also isosteric with GABA receptor, has been used to interpret the inhibitor property. A systematic quantum chemical study of the possible conformations, their relative stabilities, FT-Raman, FT-IR and UV-vis spectroscopic analysis of bicuculline has been reported. The optimized geometries, wavenumber and intensity of the vibrational bands of all the conformers of bicuculline have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP functional and 6-311G(d,p) basis set. Mulliken atomic charges, HOMO-LUMO gap Δ E, ionization potential, dipole moments and total energy have also been obtained for the optimized geometries of both the molecules. TD-DFT method is used to calculate the electronic absorption parameters in gas phase as well as in solvent environment using integral equation formalism-polarizable continuum model (IEF-PCM) employing 6-31G basis set and the results thus obtained are compared with the UV absorption spectra. The combination of experimental and calculated results provides an insight into the structural and vibrational spectroscopic properties of bicuculline.
Operator evolution for ab initio theory of light nuclei
NASA Astrophysics Data System (ADS)
Schuster, Micah; Quaglioni, Sofia; Johnson, Calvin; Jurgenson, Eric; Navrátil, Petr
2014-09-01
The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range; short ranges have the largest absolute renormalization when including two- and three-body induced terms, while at long ranges the induced three-body contribution takes on increased relative importance. The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores