A highly accurate ab initio potential energy surface for methane
NASA Astrophysics Data System (ADS)
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-09-01
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.
Morphing ab initio potential energy curve of beryllium monohydride
NASA Astrophysics Data System (ADS)
Špirko, Vladimír
2016-12-01
Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.
Ab initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.
Ab Initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Accurate ab initio vibrational energies of methyl chloride
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup HL}, and CBS-37{sup HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup HL} and CBS-37{sup HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.
Ab initio predictions of the symmetry energy and recent constraints
NASA Astrophysics Data System (ADS)
Sammarruca, Francesca
2017-01-01
The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.
Ab initio molecular dynamics calculations of ion hydration free energies.
Leung, Kevin; Rempe, Susan B; von Lilienfeld, O Anatole
2009-05-28
We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or "lambda-path" technique to compute the intrinsic hydration free energies of Li(+), Cl(-), and Ag(+) ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential (phi) contributions, we obtain absolute AIMD hydration free energies (DeltaG(hyd)) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model phi predictions. The sums of Li(+)/Cl(-) and Ag(+)/Cl(-) AIMD DeltaG(hyd), which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag(+)+Ni(+)-->Ag+Ni(2+) in water. The predictions for this reaction suggest that existing estimates of DeltaG(hyd) for unstable radiolysis intermediates such as Ni(+) may need to be extensively revised.
An Ab Initio Based Potential Energy Surface for Water
NASA Technical Reports Server (NTRS)
Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)
1996-01-01
We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.
Exploring the free energy surface using ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Samanta, Amit; Morales, Miguel A.; Schwegler, Eric
2016-04-01
Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.
2014-08-20
Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules The focus of this research was to apply efficient...methods for using ab initio potential energy surfaces (PESs) computed with high levels of quantum chemistry theory to predict chemical reaction properties...in non peer-reviewed journals: Methods for Using Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules Report
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.
Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Global exploration of the energy landscape of solids on the ab initio level.
Doll, K; Schön, J C; Jansen, M
2007-12-14
Predicting which crystalline modifications can be present in a chemical system requires the global exploration of its energy landscape. Due to the large computational effort involved, in the past this search for sufficiently stable minima has been performed employing a variety of empirical potentials and cost functions followed by a local optimization on the ab initio level. However, this entails the risk of overlooking important modifications that are not modeled accurately using empirical potentials. In order to overcome this critical limitation, we develop an approach to employ ab initio energy functions during the global optimization phase of the structure prediction. As an example, we perform a global exploration of the landscape of LiF on the ab initio level and show that the relevant crystalline modifications are found during the search.
Ab initio potential energy surface for the highly nonlinear dynamics of the KCN molecule
Párraga, H.; Arranz, F. J. Benito, R. M.; Borondo, F.
2013-11-21
An accurate ab initio quantum chemistry study at level of quadratic configuration interaction method of the electronic ground state of the KCN molecule is presented. A fitting of the results to an analytical series expansion was performed to obtain a global potential energy surface suitable for the study of the associated vibrational dynamics. Additionally, classical Poincaré surfaces of section for different energies and quantum eigenstates were calculated, showing the highly nonlinear behavior of this system.
Theoretical method for full ab initio calculation of DNA/RNA-ligand interaction energy
NASA Astrophysics Data System (ADS)
Chen, Xi H.; Zhang, John Z. H.
2004-06-01
In this paper, we further develop the molecular fractionation with conjugate caps (MFCC) scheme for quantum mechanical computation of DNA-ligand interaction energy. We study three oligonuclear acid interaction systems: dinucleotide dCG/water, trinucleotide dCGT/water, and a Watson-Crick paired DNA segment, dCGT/dGCA. Using the basic MFCC approach, the nucleotide chains are cut at each phosphate group and a pair of conjugate caps (concaps) are inserted. Five cap molecules have been tested among which the dimethyl phosphate anion is proposed to be the standard concap for application. For each system, one-dimensional interaction potential curves are computed using the MFCC method and the calculated interaction energies are found to be in excellent agreement with corresponding results obtained from the full system ab initio calculations. The current study extends the application of the MFCC method to ab initio calculations for DNA- or RNA-ligand interaction energies.
Sibambo, Sibongile R; Pillay, Viness; Choonara, Yahya E; Khan, Riaz A; Sweet, Joe L
2007-09-01
This study elucidated the in vitro physicomechanical transitions of a crosslinked polylactic-co-glycolic acid (PLGA) scaffold, utilizing quantum mechanics to compute the ab initio energy requirements of a salted-out and subsequently crosslinked PLGA scaffold interacting with simulated physiological fluid, phosphate buffered saline (PBS) (pH 7.4, 37 degrees C) at a molecular level. Twenty-six salted-out PLGA scaffolds were formulated using a four factor, two centerpoint quadratic Face-Centered Central Composite Design (FCCD). PLGA molecular mass, PLGA concentration, water volume and salting-out reaction time were the dependant formulation variables. Subsequent to PLGA solubilization in dimethyl formamide (DMF), protonated water was added to induce salting-out of PLGA into a scaffolds that were immersed in PBS, oscillated at 100 rpm, and analyzed at pre-determined time intervals for their physicomechanical and ab initio quantum energy transitions. Results indicated that the matrix resilience (MR) decreased with longer incubation periods (MR=35-45%) at day 30. Scaffolds salted-out using higher PLGA concentrations exhibited minimal changes in MR and the matrix ability to absorb energy was found to closely correlate with the scaffold residence time in PBS. Spartan-based ab initio quantum energy predictions elucidated the potential scaffold stability from a molecular viewpoint and its suitability for use in rate-modulated drug delivery.
Boothroyd, A.I. ); Dove, J.E.; Keogh, W.J. ); Martin, P.G. ); Peterson, M.R. )
1991-09-15
The interaction potential energy surface (PES) of H{sub 4} is of great importance for quantum chemistry, as a test case for molecule--molecule interactions. It is also required for a detailed understanding of certain astrophysical processes, namely, collisional excitation and dissociation of H{sub 2} in molecular clouds, at densities too low to be accessible experimentally. Accurate {ital ab} {ital initio} energies were computed for 6046 conformations of H{sub 4}, using a multiple reference (single and) double excitation configuration interaction (MRD-CI) program. Both systematic and random'' errors were estimated to have an rms size of 0.6 mhartree, for a total rms error of about 0.9 mhartree (or 0.55 kcal/mol) in the final {ital ab} {ital initio} energy values. It proved possible to include in a self-consistent way {ital ab} {ital initio} energies calculated by Schwenke, bringing the number of H{sub 4} conformations to 6101. {ital Ab} {ital initio} energies were also computed for 404 conformations of H{sub 3}; adding {ital ab} {ital initio} energies calculated by other authors yielded a total of 772 conformations of H{sub 3}. (The H{sub 3} results, and an improved analytic PES for H{sub 3}, are reported elsewhere.) {ital Ab} {ital initio} energies are tabulated in this paper only for a sample of H{sub 4} conformations; a full list of all 6101 conformations of H{sub 4} (and 772 conformations of H{sub 3} ) is available from Physics Auxiliary Publication Service (PAPS), or from the authors.
Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.
Ab initio potential energy surface and vibration-rotation energy levels of sulfur dioxide.
Koput, Jacek
2017-05-05
An accurate potential energy surface of sulfur dioxide, SO2 , in its ground electronic state X∼ 1A1 has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to septuple-zeta quality. The results obtained with the conventional and explicitly correlated coupled-cluster methods are compared. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO2 molecule is discussed. The vibration-rotation energy levels of the (32) SO2 and (34) SO2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the "spectroscopic" accuracy. © 2017 Wiley Periodicals, Inc.
Ab initio potential energy surface and vibration-rotation energy levels of beryllium monohydroxide.
Koput, Jacek
2017-01-05
The accurate potential energy surface of beryllium monohydroxide, BeOH, in its ground electronic state X 2A' has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, and adiabatic effects were taken into account. The BeOH molecule was confirmed to be bent at equilibrium, with the BeOH angle of 141.2° and the barrier to linearity of 129 cm(-1) . The vibration-rotation energy levels of the BeOH and BeOD isotopologues were predicted using a variational approach and compared with recent experimental data. The results can be useful in a further analysis of high-resolution vibration-rotation spectra of these interesting species. © 2016 Wiley Periodicals, Inc.
First fully ab initio potential energy surface of methane with a spectroscopic accuracy
NASA Astrophysics Data System (ADS)
Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.
2016-09-01
Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
An ab initio method for locating potential energy minima
Bock, Nicolas; Peery, Travis; Venneri, Giulia; Chisolm, Eric; Wallace, Duane; Lizarraga, Raquel; Holmstrom, Erik
2009-01-01
We study the potential energy landscape underlying the motion of monatomic liquids by quenching from random initial configurations (stochastic configurations) to the nearest local minimum of the potential energy. We show that this procedure reveals the underlying potential energy surface directly. This is in contrast to the common technique of quenching from a molecular dynamics trajectory which does not allow a direct view of the underlying potential energy surface, but needs to be corrected for thermodynamic weighting factors.
The Energy Computation Paradox and ab initio Protein Folding
Faver, John C.; Benson, Mark L.; He, Xiao; Roberts, Benjamin P.; Wang, Bing; Marshall, Michael S.; Sherrill, C. David; Merz, Kenneth M.
2011-01-01
The routine prediction of three-dimensional protein structure from sequence remains a challenge in computational biochemistry. It has been intuited that calculated energies from physics-based scoring functions are able to distinguish native from nonnative folds based on previous performance with small proteins and that conformational sampling is the fundamental bottleneck to successful folding. We demonstrate that as protein size increases, errors in the computed energies become a significant problem. We show, by using error probability density functions, that physics-based scores contain significant systematic and random errors relative to accurate reference energies. These errors propagate throughout an entire protein and distort its energy landscape to such an extent that modern scoring functions should have little chance of success in finding the free energy minima of large proteins. Nonetheless, by understanding errors in physics-based score functions, they can be reduced in a post-hoc manner, improving accuracy in energy computation and fold discrimination. PMID:21541343
Ab Initio Calculations for the Surface Energy of Silver Nanoclusters
NASA Astrophysics Data System (ADS)
Medasani, Bharat; Vasiliev, Igor; Park, Young Ho
2007-03-01
We apply first principles computational methods to study the surface energy and the surface stress of silver nanoparticles. The structures, energies and lattice contractions of spherical Ag nanoclusters are calculated in the framework of density functional theory combined with the generalized gradient approximation. Our calculations predict the surface energies of Ag nanoclusters to be in the range of 1-2 J/m^2. These values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m^2 derived from the Kelvin equation for free Ag nanoparticles. From the lattice contraction and the nearest neighbor interatomic distance, we estimate the surface stress of the silver nanoclusters to be in the the range of 1-1.45 N/m. This result suggests that a liquid droplet model can be employed to evaluate the surface energy and the surface stress of Ag nanoparticles. K. K. Nanda et al., Phys. Rev. Lett. 91, 106102 (2003).
Ab initio research of energy loss for energetic protons in solid-density Be
NASA Astrophysics Data System (ADS)
He, Bin; Meng, Xu-Jun; Wang, Zhi-Gang; Wang, Jian-Guo
2017-03-01
Ab initio research of energy loss for energetic protons in solid-density Be is made based on the average atom model. Our results are found in good agreement with the recent experiment for both warm and cool matter. Our results are compared with the local density approximation model and the reason for their difference is also explored. The energy loss at smaller projectile energies is predicted by our model and local density approximation, which helps probe the higher reliability of the proving model and judge the existence of the non-Fermi-Dirac velocity distribution for free electrons exists in dense plasmas in future.
Exploring the free energy surface using ab initio molecular dynamics
Samanta, Amit; Morales, Miguel A.; Schwegler, Eric
2016-04-22
Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO_{2} and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string method in collective variables to study the melting pathways in the high pressure cotunnite phase of SiO_{2} and the hcp to fcc phase transition in Ti.
Exploring the free energy surface using ab initio molecular dynamics
Samanta, Amit; Morales, Miguel A.; Schwegler, Eric
2016-04-22
Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string method inmore » collective variables to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hcp to fcc phase transition in Ti.« less
NASA Astrophysics Data System (ADS)
Wu, Xiao-Zhi; Wang, Rui; Wang, Shao-Feng; Wei, Qun-Yi
2010-08-01
The ab initio calculations have been used to study the generalized-stacking-fault energy (GSFE) surfaces and surface energies for the closed-packed (1 1 1) plane in FCC metals Cu, Ag, Au, Ni, Al, Rh, Ir, Pd, Pt, and Pb. The GSFE curves along <112> (1 1 1) direction and <110> (1 1 1) direction, and surface energies have been calculated from first principles. Based on the translational symmetry of the GSFE surfaces, the fitted expressions have been obtained from the Fourier series. Our results of the GSFEs and surface energies agree better with experimental results. The metals Al, Pd, and Pt have low γ/γI value, so full dislocation will be observed easily; while Cu, Ag, Au, and Ni have large γ/γI value, so it is preferred to create partial dislocation. From the calculations of surface energies, it is confirmed that the VIII column elements Ni, Rh, Ir, Pd, and Pt have higher surface energies than other metals.
NASA Astrophysics Data System (ADS)
Bogdanchikov, Georgii A.; Baklanov, Alexey V.
2017-01-01
Ab initio calculations have been carried out to investigate interaction of titanium dioxide TiO2 with oxygen O2 in ground triplet and excited singlet states. On a singlet potential energy surface (PES) formation of a stable compound of titanium peroxide TiO4 is revealed which should appear in reaction of TiO2 with singlet oxygen without activation barrier. This peroxide is lower in energy than the ground state of two individual molecules TiO2 + 3O2 by 34.6 kcal/mol. Location of conical intersection between triplet and singlet PESs of TiO2sbnd O2 is also investigated.
Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations
NASA Astrophysics Data System (ADS)
Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.
2016-06-01
The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.
NASA Astrophysics Data System (ADS)
Persico, Maurizio; Cacelli, Ivo; Ferretti, Alessandro
1991-04-01
We have determined ab initio potential energy surfaces of the S0 and S1 states of dimethylnitrosamine, with particular care for the N-N bond dissociation pathway. The electronic correlation has been taken into account by a multireference perturbation method, CIPSI. Classical trajectories in the S1 surface have been run with statistically determined initial conditions. Computed lifetimes and orientation parameters for the recoil velocity and the NO fragment angular momentum are in agreement with experimental data. Large amplitude internal motions are of primary importance in determining such quantities.
An analytical ab initio potential surface and the calculated tunneling energies for the HCl dimer
NASA Astrophysics Data System (ADS)
Bunker, P. R.; Epa, V. C.; Jensen, Per; Karpfen, Alfred
1991-03-01
The six-dimensional potential energy surface of the HCl dimer has been calculated ab initio at 1654 nuclear geometries [A. Karpfen, P. R. Bunker and P. Jensen, Chem. Phys., in press]. In the present paper we have fitted an analytical function to these points; the analytical function is similar to that used previously by us for the potential surface of the HF dimer. The fitted function has 38 adjustable parameters and the standard deviation of the weighted fit is 19.0 cm -1. We have determined the minimum energy path for the trans-bending tunneling motion on this surface, and have calculated the tunneling and K-rotation energies and wavefunctions. Around equilibrium the path is qualitatively similar to that for the HF dimer in that there are two equivalent hydrogen-bonded structures of Cs symmetry (which are approximately L-shaped with a "bound" and a "free" H-atom) that can tunnel through a C2 h saddle point (the "closed" C2 h saddle point). However, away from equilibrium the path is qualitatively different from that found for the HF dimer since the HCl dimer never becomes linear along the path; in fact it passes through a second C2 h saddle point (the "open" C2 h saddle point). As a result the A-rotational constant only varies slightly along the path, and this explains the experimental observation that the tunneling splitting varies little with K-type rotation for the HCl dimer, in contrast to the situation for the HF dimer. Quantitatively it is clear that errors in the ab initio calculation, errors in the fitting of an analytic function to the points, the correction to the path that is caused by the zero point motion in the other vibrations, and the coupling between the four low-frequency modes, will all be relatively more significant than they were for the HF dimer because the full six-dimensional potential is much flatter; the ab initio dissociation energy is only ˜600 cm -1, and the ab initio tunneling barrier is only ˜70 cm -1. Therefore, we modify the
Vibrational energy levels for CH4 from an ab initio potential
NASA Technical Reports Server (NTRS)
Schwenke, D. W.; Partridge, H.
2001-01-01
Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.
Vibrational energy levels for CH4 from an ab initio potential.
Schwenke, D W; Partridge, H
2001-03-15
Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.
Han, Huixian; Li, Anyang; Guo, Hua
2014-12-28
A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.
NASA Astrophysics Data System (ADS)
Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei
2014-06-01
New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics
Nakamura, Makoto Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki
2014-05-14
We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.
An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics
NASA Astrophysics Data System (ADS)
Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki
2014-05-01
We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.
An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics.
Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki
2014-05-14
We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.
Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H7+ cluster
NASA Astrophysics Data System (ADS)
Barragán, Patricia; Prosmiti, Rita; Wang, Yimin; Bowman, Joel M.
2012-06-01
Full-dimensional ab initio potential energy surface is constructed for the H_7^+ cluster. The surface is a fit to roughly 160 000 interaction energies obtained with second-order MöllerPlesset perturbation theory and the cc-pVQZ basis set, using the invariant polynomial method [B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009), 10.1080/01442350903234923]. We employ permutationally invariant basis functions in Morse-type variables for all the internuclear distances to incorporate permutational symmetry with respect to interchange of H atoms into the representation of the surface. We describe how different configurations are selected in order to create the database of the interaction energies for the linear least squares fitting procedure. The root-mean-square error of the fit is 170 cm-1 for the entire data set. The surface dissociates correctly to the H_5^+ + H2 fragments. A detailed analysis of its topology, as well as comparison with additional ab initio calculations, including harmonic frequencies, verify the quality and accuracy of the parameterized potential. This is the first attempt to present an analytical representation of the 15-dimensional surface of the H_7^+ cluster for carrying out dynamics studies.
Polyatomic ab Initio Complex Potential Energy Surfaces: Illustration of Ultracold Collisions.
Bhattacharya, Debarati; Ben-Asher, Anael; Haritan, Idan; Pawlak, Mariusz; Landau, Arie; Moiseyev, Nimrod
2017-03-29
Resonances are metastable states that decay after a finite period of time. These states play a role in many physical processes. For example, in recent cold collision experiments, autoionization from a resonance state was observed. Complementing such observations with theory provides insight into the reaction dynamics under study. Theoretical investigation of autoionization processes is enabled via complex potential energy surfaces (CPESs), where the real and imaginary parts, respectively, provide the energy and decay rate of the system. Unfortunately, calculation of ab initio polyatomic CPESs are cumbersome; hence, they are not in abundance. Here, we present an ab initio polyatomic CPES utilizing a recently developed approach, which makes such calculations feasible. This CPES helps interpret the autoionization process observed in the He(2(3)S) + H2 collision. From the behavior of the calculated CPES we can conclusively determine the nature of the autoionization process. Moreover, this CPES was used to generate reaction rates for the collision of He with ortho- and para-H2. These reaction rates are obtained from first principles. The results show a remarkable agreement with the cold collision experimental measurements, which demonstrates the robustness of our method. Hereby, we provide a computational tool for designing and interpreting new types of experiments that involve resonance states, e.g., in nucleobase damages (DNA or RNA) or in interatomic (intermolecular) Coulombic decay.
Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.
NASA Technical Reports Server (NTRS)
Jaffe, Richard L.; Pattengill, Merle D.; Schwenke, David W.
1989-01-01
Strategies for constructing global potential energy surfaces from a limited number of accurate ab initio electronic energy calculations are discussed. Generally, these data are concentrated in small regions of configuration space (e.g., in the vicinity of saddle points and energy minima) and difficulties arise in generating a potential function that is globally well-behaved. Efficient computer codes for carrying out classical trajectory calculations on vector and parallel processors are also described. Illustrations are given from recent work on the following chemical systems: Ca + HF yields CaF + H, H + H + H2 yields H2 + H2, N + O2 yields NO + O and O + N2 yields NO + N. The dynamics and kinetics of metathesis, dissociation, recombination, energy transfer and complex formation processes will be discussed.
Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide
Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert Bich, Eckard
2015-06-28
We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N{sub 2}O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N{sub 2}O–N{sub 2}O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N{sub 2}O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.
Threshold displacement energy in GaN; Ab initio molecular dynamics study
Xiao, H. Y.; Gao, Fei; Zu, Xiaotao T.; Weber, William J.
2009-06-25
Large-scale ab initio molecular dynamics method has been used to determine the threshold displacement energies, Ed, along five specific directions and to determine the defect configurations created during low energy events. The Ed shows a significant dependence on direction. The minimum Ed is determined to be 39 eV along the <-1010> direction for a gallium atom and 17.0 eV along the <-1010> direction for a nitrogen atom, which are in reasonable agreement with the experimental measurements. The average Ed values determined are 73.2 and 32.4 eV for gallium and nitrogen atoms, respectively. The N defects created at low energy events along different crystallographic directions have a similar configuration (a N-N dumbbell configuration), but various configurations for Ga defects are formed in GaN.
Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide
NASA Astrophysics Data System (ADS)
Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard
2015-06-01
We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O-N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.
Ab initio Study on Ionization Energies of 3-Amino-1-propanol
NASA Astrophysics Data System (ADS)
Wang, Ke-dong; Jia, Ying-bin; Lai, Zhen-jiang; Liu, Yu-fang
2011-06-01
Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH···N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.
Ab initio potential energy and dipole moment surfaces of the F(-)(H2O) complex.
Kamarchik, Eugene; Toffoli, Daniele; Christiansen, Ove; Bowman, Joel M
2014-02-05
We present full-dimensional, ab initio potential energy and dipole moment surfaces for the F(-)(H2O) complex. The potential surface is a permutationally invariant fit to 16,114 coupled-cluster single double (triple)/aVTZ energies, while the dipole surface is a covariant fit to 11,395 CCSD(T)/aVTZ dipole moments. Vibrational self-consistent field/vibrational configuration interaction (VSCF/VCI) calculations of energies and the IR-spectrum are presented both for F(-)(H2O) and for the deuterated analog, F(-)(D2O). A one-dimensional calculation of the splitting of the ground state, due to equivalent double-well global minima, is also reported.
On potential energy models for EA-based ab initio protein structure prediction.
Mijajlovic, Milan; Biggs, Mark J; Djurdjevic, Dusan P
2010-01-01
Ab initio protein structure prediction involves determination of the three-dimensional (3D) conformation of proteins on the basis of their amino acid sequence, a potential energy (PE) model that captures the physics of the interatomic interactions, and a method to search for and identify the global minimum in the PE (or free energy) surface such as an evolutionary algorithm (EA). Many PE models have been proposed over the past three decades and more. There is currently no understanding of how the behavior of an EA is affected by the PE model used. The study reported here shows that the EA behavior can be profoundly affected: the EA performance obtained when using the ECEPP PE model is significantly worse than that obtained when using the Amber, OPLS, and CVFF PE models, and the optimal EA control parameter values for the ECEPP model also differ significantly from those associated with the other models.
Full-dimensional analytical ab initio potential energy surface of the ground state of HOI.
de Oliveira-Filho, Antonio G S; Aoto, Yuri A; Ornellas, Fernando R
2011-07-28
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1).
Full-dimensional analytical ab initio potential energy surface of the ground state of HOI
NASA Astrophysics Data System (ADS)
de Oliveira-Filho, Antonio G. S.; Aoto, Yuri A.; Ornellas, Fernando R.
2011-07-01
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol-1. The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm-1.
Khaliullin, Rustam Z; Kühne, Thomas D
2013-10-14
The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.
Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches
NASA Astrophysics Data System (ADS)
Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente
2016-10-01
The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the ‘pseudo-interfacial energy’ that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.
Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface
Valentini, Paolo Schwartzentruber, Thomas E. Bender, Jason D. Nompelis, Ioannis Candler, Graham V.
2015-08-15
The direct molecular simulation (DMS) approach is used to predict the internal energy relaxation and dissociation dynamics of high-temperature nitrogen. An ab initio potential energy surface (PES) is used to calculate the dynamics of two interacting nitrogen molecules by providing forces between the four atoms. In the near-equilibrium limit, it is shown that DMS reproduces the results obtained from well-established quasiclassical trajectory (QCT) analysis, verifying the validity of the approach. DMS is used to predict the vibrational relaxation time constant for N{sub 2}–N{sub 2} collisions and its temperature dependence, which are in close agreement with existing experiments and theory. Using both QCT and DMS with the same PES, we find that dissociation significantly depletes the upper vibrational energy levels. As a result, across a wide temperature range, the dissociation rate is found to be approximately 4–5 times lower compared to the rates computed using QCT with Boltzmann energy distributions. DMS calculations predict a quasi-steady-state distribution of rotational and vibrational energies in which the rate of depletion of high-energy states due to dissociation is balanced by their rate of repopulation due to collisional processes. The DMS approach simulates the evolution of internal energy distributions and their coupling to dissociation without the need to precompute rates or cross sections for all possible energy transitions. These benchmark results could be used to develop new computational fluid dynamics models for high-enthalpy flow applications.
NASA Technical Reports Server (NTRS)
Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.
Koput, Jacek
2015-06-30
The accurate ground-state potential energy function of imidogen, NH, has been determined from ab initio calculations using the multireference averaged coupled-pair functional (MR-ACPF) method in conjunction with the correlation-consistent core-valence basis sets up to octuple-zeta quality. The importance of several effects, including electron correlation beyond the MR-ACPF level of approximation, the scalar relativistic, adiabatic, and nonadiabatic corrections were discussed. Along with the large one-particle basis set, all of these effects were found to be crucial to attain "spectroscopic" accuracy of the theoretical predictions of vibration-rotation energy levels of NH.
Ab initio molecular dynamics simulations of low energy recoil events in MgO
Petersen, B. A.; Liu, B.; Weber, W. J.; ...
2017-01-11
In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, Ed, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for Ed are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for Omore » along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.« less
Potential energy surface and second virial coefficient of methane-water from ab initio calculations.
Akin-Ojo, Omololu; Szalewicz, Krzysztof
2005-10-01
Six-dimensional intermolecular potential energy surfaces (PESs) for the interaction of CH4 with H2O are presented, obtained from ab initio calculations using symmetry-adapted perturbation theory (SAPT) at two different levels of intramonomer correlation and the supermolecular approach at three different levels of electron correlation. Both CH4 and H2O are assumed to be rigid molecules with interatomic distances and angles fixed at the average values in the ground-state vibration. A physically motivated analytical expression for each PES has been developed as a sum of site-site functions. The PES of the CH4-H2O dimer has only two symmetry-distinct minima. From the SAPT calculations, the global minimum has an energy of -1.03 kcal/mol at a geometry where H2O is the proton donor, HO-H...CH4, with the O-H-C angle of 165 degrees, while the secondary minimum, with an energy of -0.72 kcal/mol, has CH4 in the role of the proton donor (H3C-H...OH2). We estimated the complete basis set limit of the SAPT interaction energy at the global minimum to be -1.06 kcal/mol. The classical cross second virial coefficient B12(T) has been calculated for the temperature range 298-653 K. Our best results agree well with some experiments, allowing an evaluation of the quality of experimental results.
EL2-like defects in InP nanowires: An ab initio total energy investigation
NASA Astrophysics Data System (ADS)
Miwa, R. H.; Schmidt, T. M.; Fazzio, A.
2007-04-01
We have performed an ab initio total energy investigation, within the density-functional theory, of antisite defects in InP nanowires (InP NWs) grown along the [111] direction. Our total energy results indicate that (i) P antisites (PIn) are the most likely antisite defect compared with In antisites (InP) and (ii) the formation energies of P and In antisites do not depend on the NW diameter. In particular, in thin InP NWs, with diameters of ˜13Å , the PIn antisite exhibits a trigonal symmetry, lying at 0.15Å from the Td site, followed by a metastable configuration with PIn in an interstitial position ( 1.15Å from the Td site). We find a PIn-P dissociation energy of 0.33eV , and there is no EL2-like center for such a thin InP NW. However, EL2-like defects occur by increasing the NW diameter. For diameters of ˜18Å , the PIn-P dissociation energy increases to 0.53eV , which is 0.34eV lower compared with the PIn-P dissociation energy for the InP bulk phase, 0.87eV . We mapped the atomic displacements and calculated the relaxation energy, Franck-Condon shift, upon single excitation of PIn induced states in InP NW. The formation (or not) of EL2-like defects, PIn dissociation energy barrier, and the Franck-Condon energy shift can be tuned by the NW diameter.
Communication: Towards ab initio self-energy embedding theory in quantum chemistry
Lan, Tran Nguyen; Kananenka, Alexei A.; Zgid, Dominika
2015-12-28
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.
Interatomic Coulombic decay in a He dimer: Ab initio potential-energy curves and decay widths
Kolorenc, Premysl; Kryzhevoi, Nikolai V.; Sisourat, Nicolas; Cederbaum, Lorenz S.
2010-07-15
The energy gained by either of the two helium atoms in a helium dimer through simultaneous ionization and excitation can be efficiently transferred to the other helium atom, which then ionizes. The respective relaxation process called interatomic Coulombic decay (ICD) is the subject of the present paper. Specifically, we are interested in ICD of the lowest of the ionized excited states, namely, the He{sup +}(n=2)He states, for which we calculated the relevant potential-energy curves and the interatomic decay widths. The full-configuration interaction method was used to obtain the potential-energy curves. The decay widths were computed by utilizing the Fano ansatz, Green's-function methods, and the Stieltjes imaging technique. The behavior of the decay widths with the interatomic distance is examined and is elucidated, whereby special emphasis is given to the asymptotically large interatomic separations. Our calculations show that the electronic ICD processes dominate over the radiative decay mechanisms over a wide range of interatomic distances. The ICD in the helium dimer has recently been measured by Havermeier et al. [Phys. Rev. Lett. 104, 133401 (2010)]. The impact of nuclear dynamics on the ICD process is extremely important and is discussed by Sisourat et al. [Nat. Phys. 6, 508 (2010)] based on the ab initio data computed in the present paper.
Ab initio calculation of optical constants from visible to x-ray energies
NASA Astrophysics Data System (ADS)
Prange, M. P.; Rivas, G.; Ankudinov, A. L.; Rehr, J. J.
2004-03-01
We present a semi-automated approach for ab initio calculations of optical constants of materials from the visible to the hard x-ray energies. The approach is based on a generalization of the real space Green's formalism implemented in the FEFF8 spectroscopy code to include optical spectra. The method includes self-consistent potentials, core-hole and self-energy effects, inelastic losses and a full- or high order multiple-scattering. The procedure is based on calculations of the imaginary part of the dielectric function ɛ2 summed over all edges, from which other optical constants are derived using Kramers-Kronig transforms and analytical relations. These constants include the complex index of refraction, the real part of the dielectric function, and energy loss spectra. In contrast to standard atomic tables, the calculations include solid-state corrections, such as fine structure, Debye-Waller factors, lifetime broadening, etc. Typical results for several materials are presented and compared with experiment.
Hellmann, Robert; Bich, Eckard; Vogel, Eckhard
2008-06-07
A six-dimensional potential energy hypersurface (PES) for two interacting rigid methane molecules was determined from high-level quantum-mechanical ab initio computations. A total of 272 points for 17 different angular orientations on the PES were calculated utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory with basis sets of aug-cc-pVTZ and aug-cc-pVQZ qualities. The calculated interaction energies were extrapolated to the complete basis set limit. An analytical site-site potential function with nine sites per methane molecule was fitted to the interaction energies. In addition, a semiempirical correction to the analytical potential function was introduced to take into account the effects of zero-point vibrations. This correction includes adjustments of the dispersion coefficients and of a single-parameter within the fit to the measured values of the second virial coefficient B(T) at room temperature. Quantitative agreement was then obtained with the measured B values over the whole temperature range of the measurements. The calculated B values should definitely be more reliable at very low temperatures (T<150 K) than values extrapolated using the currently recommended equation of state.
Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel
2009-05-13
Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.
Ab initio dynamical vertex approximation
NASA Astrophysics Data System (ADS)
Galler, Anna; Thunström, Patrik; Gunacker, Patrik; Tomczak, Jan M.; Held, Karsten
2017-03-01
Diagrammatic extensions of dynamical mean-field theory (DMFT) such as the dynamical vertex approximation (DΓ A) allow us to include nonlocal correlations beyond DMFT on all length scales and proved their worth for model calculations. Here, we develop and implement an Ab initio DΓ A approach (AbinitioDΓ A ) for electronic structure calculations of materials. The starting point is the two-particle irreducible vertex in the two particle-hole channels which is approximated by the bare nonlocal Coulomb interaction and all local vertex corrections. From this, we calculate the full nonlocal vertex and the nonlocal self-energy through the Bethe-Salpeter equation. The AbinitioDΓ A approach naturally generates all local DMFT correlations and all nonlocal G W contributions, but also further nonlocal correlations beyond: mixed terms of the former two and nonlocal spin fluctuations. We apply this new methodology to the prototypical correlated metal SrVO3.
Ab initio Approach to Effective Single-Particle Energies in Doubly Closed Shell Nuclei
Duguet, T.
2012-01-01
The present work discusses, from an ab initio standpoint, the definition, the meaning, and the usefulness of effective single-particle energies (ESPEs) in doubly closed shell nuclei. We perform coupled-cluster calculations to quantify to what extent selected closed-shell nuclei in the oxygen and calcium isotopic chains can effectively be mapped onto an effective independent-particle picture. To do so, we revisit in detail the notion of ESPEs in the context of strongly correlated many-nucleon systems and illustrate the necessity of extracting ESPEs through the diagonalization of the centroid matrix, as originally argued by Baranger. For the purpose of illustration, we analyze the impact of correlations on observable one-nucleon separation energies and nonobservable ESPEs in selected closed-shell oxygen and calcium isotopes. We then state and illustrate the nonobservability of ESPEs. Similarly to spectroscopic factors, ESPEs can indeed be modified by a redefinition of inaccessible quantities while leaving actual observables unchanged. This leads to the absolute necessity of employing consistent structure and reaction models based on the same nuclear Hamiltonian to extract the shell structure in a meaningful fashion from experimental data.
Ab initio Determination of Formation Energies and Charge Transfer Levels of Charged Ions in Water
NASA Astrophysics Data System (ADS)
Vatti, Anoop Kishore; Todorova, Mira; Neugebauer, Joerg
The ability to describe the complex atomic and electronic structure of liquid water and hydrated ions on a microscopic level is a key requirement to understand and simulate electro-chemical and biological processes. Identifying theoretical concepts which enable us to achieve an accurate description in a computationally efficient way is thereby of central importance. Aiming to unravel the importance and influence of different contributions on the hydration energy of ions we perform extensive ab-initio molecular dynamics simulations for charged and neutral cations (Zn, Mg) and anions (Cl, Br, I) in water. The structural correlations and electronic properties of the studied ions are analysed and compared to experimental observations. Following an approach inspired by the defect chemistry in semiconductors and aligning the water band edges on an absolute scale allows us to benchmark the calculated formation energies, identify transition states and compare the results to experiment. Based on these results we discuss the performance of various DFT xc-functionals to predict charge transfer levels and photo-emission experiments.
Three-dimensional ab initio potential energy surface for H-CO(X̃(2)A').
Song, Lei; van der Avoird, Ad; Groenenboom, Gerrit C
2013-08-15
We present an ab initio potential for the H-CO(X̃(2)A') complex in which the CO bond length is varied and the long-range interactions between H and CO are accurately represented. It was computed using the spin-unrestricted open-shell single and double excitation coupled cluster method with perturbative triples [RHF-UCCSD(T)]. Three doubly augmented correlation-consistent basis sets were utilized to extrapolate the correlation energy to the complete basis set limit. More than 4400 data points were calculated and used for an analytic fit of the potential: long-range terms with inverse power dependence on the H-CO distance R were fit to the data points for large R, the reproducing kernel Hilbert space (RKHS) method was applied to the data at smaller distances. Our potential was compared with previous calculations and with some data extracted from spectroscopy. Furthermore, it was used in three-dimensional discrete variable representation (DVR) calculations of the vibrational frequencies and rotational constants of HCO, which agree very well with the most recently measured data. Also the dissociation energy D0 = 0.623 eV of HCO into H + CO obtained from these calculations agrees well with experimental values. Finally, we made preliminary two-dimensional (2D) calculations of the cross sections for rotationally inelastic H-CO collisions with the CO bond length fixed and obtained good agreement with recently published 2D results.
Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.; Schmidt, Burkhard; Jungwirth, Pavel
2014-07-03
Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. MDB is
Optimized energy landscape exploration using the ab initio based activation-relaxation technique
NASA Astrophysics Data System (ADS)
Machado-Charry, Eduardo; Béland, Laurent Karim; Caliste, Damien; Genovese, Luigi; Deutsch, Thierry; Mousseau, Normand; Pochet, Pascal
2011-07-01
Unbiased open-ended methods for finding transition states are powerful tools to understand diffusion and relaxation mechanisms associated with defect diffusion, growth processes, and catalysis. They have been little used, however, in conjunction with ab initio packages as these algorithms demanded large computational effort to generate even a single event. Here, we revisit the activation-relaxation technique (ART nouveau) and introduce a two-step convergence to the saddle point, combining the previously used Lanczós algorithm with the direct inversion in interactive subspace scheme. This combination makes it possible to generate events (from an initial minimum through a saddle point up to a final minimum) in a systematic fashion with a net 300-700 force evaluations per successful event. ART nouveau is coupled with BigDFT, a Kohn-Sham density functional theory (DFT) electronic structure code using a wavelet basis set with excellent efficiency on parallel computation, and applied to study the potential energy surface of C20 clusters, vacancy diffusion in bulk silicon, and reconstruction of the 4H-SiC surface.
Optimized energy landscape exploration using the ab initio based activation-relaxation technique.
Machado-Charry, Eduardo; Béland, Laurent Karim; Caliste, Damien; Genovese, Luigi; Deutsch, Thierry; Mousseau, Normand; Pochet, Pascal
2011-07-21
Unbiased open-ended methods for finding transition states are powerful tools to understand diffusion and relaxation mechanisms associated with defect diffusion, growth processes, and catalysis. They have been little used, however, in conjunction with ab initio packages as these algorithms demanded large computational effort to generate even a single event. Here, we revisit the activation-relaxation technique (ART nouveau) and introduce a two-step convergence to the saddle point, combining the previously used Lanczós algorithm with the direct inversion in interactive subspace scheme. This combination makes it possible to generate events (from an initial minimum through a saddle point up to a final minimum) in a systematic fashion with a net 300-700 force evaluations per successful event. ART nouveau is coupled with BigDFT, a Kohn-Sham density functional theory (DFT) electronic structure code using a wavelet basis set with excellent efficiency on parallel computation, and applied to study the potential energy surface of C(20) clusters, vacancy diffusion in bulk silicon, and reconstruction of the 4H-SiC surface.
Kemnitz, C.R.; Ellison, G.B.; Karney, W.L.; Borden, W.T.
2000-02-16
(12/11)CASSCF and (12/11)CASPT2 ab initio electronic structure calculations with both the cc-pVDZ and cc-pVTZ basis sets find that there is a barrier to the very exothermic hydrogen shift that converts singlet methylnitrene, CH{sub 3}N, to methyleneimine, H{sub 2}C{double{underscore}bond}NH. These two energy minima are connected by a transition structure of C{sub s} symmetry, which is computed to lie 3.8 kcal/mol above the reactant at the (12/11)CASPT2/cc-pVTZ//(12/11)CASSCF/cc-pVTZ level of theory. The (12/11)CASSCF/cc-pVTZ value for the lowest frequency vibration in the transition structure is 854 cm{sup {minus}1}, and CASPT2 calculations concur that this a{double{underscore}prime} vibration does indeed have a positive force constant. Thus, there is no evidence that this geometry is actually a mountain top, rather than a transition structure, on the global potential energy surface or that a C{sub 1} pathway of lower energy connects the reactant to the product. Therefore, computational results indicate that the bands seen for singlet methylnitrene in the negative ion photoelectron spectrum of CH{sub 3}N{sup {minus}} are due to singlet methylnitrene being an energy minimum, rather than a transition state. These results also lead to the prediction that, at least in principle, singlet methylnitrene should be an observable intermediate in the formation of methyleneimine.
An ab initio potential energy surface and dynamics of the Ar+H2+ → ArH + + H reaction
NASA Astrophysics Data System (ADS)
Liu, Xinguo; Liu, Huirong; Zhang, Qinggang
2011-04-01
An ab initio potential energy surface (PES) for the ground state (1 2A') of the chemical reaction Ar+H2+ → ArH + + H has been constructed from a set of accurate ab initio data, which we have computed using the coupled-cluster theory including all single and double excitations plus perturbative corrections for the triples UCCSD(T) with a large orbital basis set of aug-cc-pV5Z. The new PES has a root-mean-square (rms) error of 0.5341 kcal/mol. The total integral reaction cross-sections have been calculated at three collision energies by means of the quasi-classical trajectory (QCT) calculation based on the new PES and compared with previous TSH results.
Ab initio potential energy surfaces describing the interaction of CH(X2Π) with H2
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2016-09-01
We have determined four-dimensional ab initio quasi-diabatic potential energy surfaces describing the interaction of CH(X2Π) with H2, under the assumption of fixed CH and H2 internuclear separations. These calculations employed the multi-reference configuration interaction method [MRCISD+Q(Davidson)]. The computed points were fit to an analytical form suitable for time-independent quantum scattering calculations of rotationally inelastic cross sections and rate constants.
Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.
Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin
2011-01-14
Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.
NASA Astrophysics Data System (ADS)
Autrey, Daniel; Choo, Jaebum; Laane, Jaan
2000-10-01
The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.
An accurate potential energy curve for helium based on ab initio calculations
NASA Astrophysics Data System (ADS)
Janzen, A. R.; Aziz, R. A.
1997-07-01
Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.
2016-01-01
We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.
Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)
2002-01-01
The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.
NASA Astrophysics Data System (ADS)
Hellmann, Robert
2014-10-01
A four-dimensional intermolecular potential energy surface (PES) for two rigid carbon dioxide molecules was determined from quantum-chemical ab initio calculations. Interaction energies for 1229 CO2-CO2 configurations were computed at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. An analytical site-site potential function with seven sites per CO2 molecule was fitted to the interaction energies. The PES was validated by calculating the second virial coefficient as well as viscosity and thermal conductivity in the dilute-gas limit.
Muratov, L.S.; Cooper, B.R.; Wills, J.M.
1999-03-01
Vacancy formation and clustering significantly affect structural properties of transition-metal aluminides. Ab-initio quantum mechanical total-energy calculations using a full-potential linear combination of muffin-tin orbitals (LMTO) technique provide a convenient method of studying relevant characteristics such as changes in density of states, and charge redistribution around defects. Augmented with Hellmann-Feymann forces, LMTO allows calculations of relaxation geometries and relaxation energies. The authors have performed such calculations for vacancies and antisite substitutional point defects in Fe{sub 3}Al with DO{sub 3} crystallographic structure. There are two limiting factors complicating calculations of defect formation energies directly from ab-initio calculations. The first is that a single defect, due to the lattice periodicity necessitated by the use of ab-initio total energy techniques, cannot be considered as an isolated defect, even in the maximum computable simulation cell. Unlike previous calculations, which did not find a dependency on the size of the simulation cell, the calculations have shown a significant difference in results for 32- and 16- atom cells. This difference provides information about vacancy clustering since it can be explained by a relatively small attractive interaction energy {approximately} 0.2 eV between two vacancies located in adjacent simulation cells and separated by the lattice constant distance (5.52 {angstrom}). By comparing the internal energies for two configurations of 30 atom cells (32 atom--2 vacancies), the authors were able to estimate that the attractive interaction between two vacancies could reach 1.2 eV. The second complication is the fact that chemical potentials of elements cannot be directly extracted from the total energy calculations for the compound. To deal with this problem, they considered two possible approximations and compared results, which were found to be quite similar for iron vacancies.
Li, Y Q; Zhang, P Y; Han, K L
2015-03-28
A global many-body expansion potential energy surface is reported for the electronic ground state of CH2 (+) by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH(+)(X(1)Σ(+))+H((2)S)→C(+)((2)P)+H2(X(1)Σg (+)) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C(+)/H containing systems.
Towards Accurate Ab Initio Predictions of the Spectrum of Methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2001-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
NASA Astrophysics Data System (ADS)
De Almeida, Wagner B.
1994-12-01
The ground state potential energy surface for the C 2H 4...SO 2 complex has been extensively investigated at the Hartree-Fock (HF) level of theory employing the 6-31 G ∗∗ basis set. Electron correlation effects were assessed by second-order M∅ller-Plesset perturbation theory in single point calculations at the HF/6-31G ∗∗ optimized geometry. Various stationary points have been located and characterized through harmonic frequency analysis. The ab initio predicted global minimum energy structure is in agreement with an experimental microwave study.
Castillo, J F; Aoiz, F J; Martínez-Haya, B
2011-05-14
We present a global full dimensional potential energy surface (PES) for the Cl + O(3)→ ClO + O(2) reaction, which is an elementary step in a catalytic cycle that leads to the destruction of ozone in the stratosphere. The PES is constructed by interpolation of quantum chemistry data using the method developed by Collins and co-workers. Ab initio data points (energy, gradients and Hessian matrix elements) have been calculated at the UQCISD/aug-cc-pVDZ (unrestricted quadratic configuration interaction with single and double excitations) level of theory. The ab initio calculations predict a markedly non-coplanar (dihedral angle of 80°) transition state for the reaction, located very early in the reactant valley and slightly below the energy of the reactants as long as the spin-orbit splitting is neglected. Quasiclassical trajectory (QCT) calculations have been carried out at several collision energies to investigate the reaction dynamics. The QCT excitation function shows no threshold, displays a minimum at a collision energy of 2.5 kcal mol(-1), and then increases monotonically at larger collision energies. This behaviour is consistent with a barrierless reaction dominated by an oxygen-abstraction mechanism. The calculated product vibrational distributions (strongly inverted for ClO) and rate constants are compared with experimental determinations. Differential cross sections (DCS) summed over all final states are found to be in fairly good agreement with those derived from crossed molecular beam experiments.
Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.
Koput, Jacek
2016-10-05
The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3 = 16 state.
AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion
Ching, Wai-Yim
2013-12-31
In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.
Peterson, Charles; Penchoff, Deborah A.; Wilson, Angela K.
2015-11-21
An effective approach for the determination of lanthanide energetics, as demonstrated by application to the third ionization energy (in the gas phase) for the first half of the lanthanide series, has been developed. This approach uses a combination of highly correlated and fully relativistic ab initio methods to accurately describe the electronic structure of heavy elements. Both scalar and fully relativistic methods are used to achieve an approach that is both computationally feasible and accurate. The impact of basis set choice and the number of electrons included in the correlation space has also been examined.
NASA Astrophysics Data System (ADS)
Kakizaki, Akira; Takayanagi, Toshiyuki; Shiga, Motoyuki
2007-11-01
Path integral molecular dynamics simulations for the H6+ and D6+ cluster cations have been carried out in order to understand the floppy nature of their molecular structure due to quantum-mechanical fluctuation. A full-dimensional analytical potential energy surface for the ground electronic state of H6+ has been developed on the basis of accurate ab initio electronic structure calculations at the CCSD(T)/cc-pVTZ level. It is found that the outer H 2(D 2) nuclei rotate almost freely and that the probability density distributions of the central H 2(D 2) nuclei show strong spatial delocalization.
Ab initio infrared and Raman spectra
NASA Astrophysics Data System (ADS)
Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.
1983-06-01
We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum
AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS
Turchi, P A
2004-04-14
Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.
Ab initio Theory of Semiconductor Nanocrystals
NASA Astrophysics Data System (ADS)
Wang, Lin-Wang
2007-03-01
With blooming experimental synthesis of various nanostructures out of many semiconductor materials, there is an urgent need to calculate the electronic structures and optical properties of these nanosystems based on reliable ab initio methods. Unfortunately, due to the O(N^3) scaling of the conventional ab initio calculation methods based on the density functional theory (DFT), and the >1000 atom sizes of the most experimental nanosystems, the direct applications of these conventional ab intio methods are often difficult. Here we will present the calculated results using our O(N) scaling charge patching method (CPM) [1,2] to nanosystems up to 10,000 atoms. The CPM yields the charge density of a nanosystem by patching the charge motifs generated from small prototype systems. The CPM electron/hole eigen energies differ from the directly calculated results by only ˜10-20 meV. We will present the optical band gaps of quantum dots and wires, quantum rods, quantum dot/quantum well, and quantum dots doped with impurities. Besides good agreements with experimental measurements, we will demonstrate why it is important to perform ab initio calculations, in contrast with the continuum model k.p calculations. We will show the effects of surface polarization potentials and the internal electric fields. Finally, a linear scaling 3 dimensional fragment (LS3DF) method will be discussed. The LS3DF method can be used to calculate the total energy and atomic forces of a large nanosystem, with the results practically the same as the direct DFT method. Our work demonstrates that, with the help of supercomputers, it is now feasible to calculate the electronic structures and optical properties of >10,000 atom nanocrystals with ab initio accuracy. [1] L.W. Wang, Phys. Rev. Lett. 88, 256402 (2002). [2] J. Li, L.W. Wang, Phys. Rev. B 72, 125325 (2005).
Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J
2013-02-28
A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.
Bettens, Ryan P A
2003-01-15
Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.
AB initio infrared and Raman spectra
NASA Astrophysics Data System (ADS)
Fredkin, D. R.; Komornicki, A.; White, S. R.; Wilson, K. R.
1982-08-01
We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schroedinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques, are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules.
NASA Technical Reports Server (NTRS)
Defrees, D. J.; Mclean, A. D.
1986-01-01
The discovery of cyclopropenylidene in space suggests that other C3H2 isomers may be present, and a tentative detection of one such isomer, propargylene (HCCCH), has been reported. Ab initio molecular orbital theory has been used to characterize five low-lying, metastable isomers of cyclopropenylidene. Extended calculations including the electron correlation energy, show that the lowest in energy is singlet propadienylidene, followed by propargylene; the singlet and triplet of the latter are too close in energy to allow an assignment of the ground state; triplet propadienylidene is at a significantly higher energy. Rotational frequencies computed to an expected accuracy of + or - 1 -2 percent do not confirm the tentative detection of propargylene in space, although the discrepancy between theory and the observation is not so great as to unequivocally rule out this possibility.
Ab initio GW quasiparticle energies of small sodium clusters by an all-electron mixed-basis approach
NASA Astrophysics Data System (ADS)
Ishii, Soh; Ohno, Kaoru; Kawazoe, Yoshiyuki; Louie, Steven G.
2001-04-01
A state-of-the-art GW calculation is carried out for small sodium clusters, Na2, Na4, Na6, and Na8. The quasiparticle energies are evaluated by employing an ab initio GW code based on an all-electron mixed-basis approach, which uses both plane waves and atomic orbitals as basis functions. The calculated ionization potential and the electron affinity are in excellent agreement with available experimental data. The exchange and correlation parts to the electron self-energy within the GW approximation are presented from the viewpoint of their size dependence. In addition, the effect of the off-diagonal elements of the self-energy corrections to the local-density-approximation exchange-correlation potential is discussed. Na2 and Na8 have a larger energy gap than Na4 and Na6, consistent with the fact that they are magic number clusters.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
Enthalpy of the gas-phase CO2 + Mg reaction from ab initio total energies.
Lesar, Antonija; Prebil, Sasa; Hodoscek, Milan
2002-01-01
Various highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3(MP2), G3//B3LYP, G3(MP2)//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction enthalpies of the ground-state reaction of CO2 with Mg. All model chemistries predict highly endothermic reactions, with DeltaH(298) = 63.6-69.7 kcal x mol(-1). The difference between the calculated reaction enthalpies and the experimental value, evaluated with recommended experimental standard enthalpies of formation for products and reactants, is more than 20 kcal x mol(-1) for all methods. This difference originates in the incorrect experimental enthalpy of formation of gaseous MgO given in thermochemical databases. When the theoretical formation enthalpy for MgO calculated by a particular method is used, the deviation is reduced to 1.3 kcal x mol(-1). The performance of the methodologies used to calculate the heat of this particular reaction and the enthalpy of formation of MgO are discussed.
Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex
2013-08-15
The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.
Malbon, Christopher L; Zhu, Xiaolei; Guo, Hua; Yarkony, David R
2016-12-21
For two electronic states coupled by conical intersections, the line integral of the derivative coupling can be used to construct a complex-valued multiplicative phase factor that makes the real-valued adiabatic electronic wave function single-valued, provided that the curl of the derivative coupling is zero. Unfortunately for ab initio determined wave functions, the curl is never rigorously zero. However, when the wave functions are determined from a coupled two diabatic state Hamiltonian H(d) (fit to ab initio data), the resulting derivative couplings are by construction curl free, except at points of conical intersection. In this work we focus on a recently introduced diabatization scheme that produces the H(d) by fitting ab initio determined energies, energy gradients, and derivative couplings to the corresponding H(d) determined quantities in a least squares sense, producing a removable approximation to the ab initio determined derivative coupling. This approach and related numerical issues associated with the nonremovable ab initio derivative couplings are illustrated using a full 33-dimensional representation of phenol photodissociation. The use of this approach to provide a general framework for treating the molecular Aharonov Bohm effect is demonstrated.
NASA Astrophysics Data System (ADS)
Malbon, Christopher L.; Zhu, Xiaolei; Guo, Hua; Yarkony, David R.
2016-12-01
For two electronic states coupled by conical intersections, the line integral of the derivative coupling can be used to construct a complex-valued multiplicative phase factor that makes the real-valued adiabatic electronic wave function single-valued, provided that the curl of the derivative coupling is zero. Unfortunately for ab initio determined wave functions, the curl is never rigorously zero. However, when the wave functions are determined from a coupled two diabatic state Hamiltonian Hd (fit to ab initio data), the resulting derivative couplings are by construction curl free, except at points of conical intersection. In this work we focus on a recently introduced diabatization scheme that produces the Hd by fitting ab initio determined energies, energy gradients, and derivative couplings to the corresponding Hd determined quantities in a least squares sense, producing a removable approximation to the ab initio determined derivative coupling. This approach and related numerical issues associated with the nonremovable ab initio derivative couplings are illustrated using a full 33-dimensional representation of phenol photodissociation. The use of this approach to provide a general framework for treating the molecular Aharonov Bohm effect is demonstrated.
Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.
NASA Astrophysics Data System (ADS)
Zhang, Peng; Irle, Stephan; Morokuma, Keiji; Tschumper, Gregory S.
2003-10-01
The mechanism of photodissociation of the vinyl radical, C2H3, starting from the first doublet excited (D1,Ã) state was studied with high-level ab initio methods as well as with ab initio direct dynamics. Geometry optimizations of stationary points and surface crossing seams were performed with complete active space self-consistent field (CASSCF) method, and the energies were re-evaluated with single-point multireference single and double excitation configuration interaction (MRCISD) calculations. Both internal conversion and intersystem crossing channels, which could bring the excited vinyl radical down to the ground state potential energy surface leading to dissociation on the ground state, have been identified within planar Cs, twisted Cs and C2v symmetry. Direct dynamics calculation indicates that the most feasible reaction channel is the direct internal conversion from D1 to the ground state (D0) within planar Cs symmetry, through a minimum of seam of crossing (conical intersection) at an energy of about 80 kcal/mol (with respect to the ground-state equilibrium geometry). The other internal conversions from D1 to D0 through conical intersections within twisted Cs symmetry require energies of about 80 and 75 kcal/mol at the two minima of seam of crossing, respectively, and they are not favored dynamically without initial out-of-plane vibrational excitation. The intersystem crossing channels between D1 and the lowest quartet state (Q1) and D0 and Q1 within twisted Cs and C2v symmetry are not efficient due to the high energy of the minima of seam of crossing as well as the small spin-orbit coupling.
Bytautas, Laimutis; Ruedenberg, Klaus
2008-06-07
A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.
Exact vibrational energies of non-rotating H 2O and D 2O using an accurate ab initio potential
NASA Astrophysics Data System (ADS)
Bowman, Joel M.; Wierzbicki, Andrzej; Zúñiga, Jose
1988-09-01
Variationally exact vibrational energies are reported for non-rotating H 2O and D 2O using the recent CCSDT-1 ab initio potential of Bartlett, Cole, Purvis, Ermler, Hsieh and Shavitt as fit to an SPF quartic force field by Ermler. Twenty vibrational states are calculated for H 2O and D 2O and compared with experimental data. The agreement with experiment is fairly good; however, when the second-order bending force constant is reduced slightly, the agreement with experiment improves significantly. For eighteen states of H 2O the largest error is 15 cm -1 and the average absolute error is 6 cm -1. For eight states of D 2O the largest error is 7 cm -1 and the average absolute error is 4 cm -1.
González-Cataldo, F.; Wilson, Hugh F.; Militzer, B.
2014-05-20
By combining density functional molecular dynamics simulations with a thermodynamic integration technique, we determine the free energy of metallic hydrogen and silica, SiO{sub 2}, at megabar pressures and thousands of degrees Kelvin. Our ab initio solubility calculations show that silica dissolves into fluid hydrogen above 5000 K for pressures from 10 and 40 Mbars, which has implications for the evolution of rocky cores in giant gas planets like Jupiter, Saturn, and a substantial fraction of known extrasolar planets. Our findings underline the necessity of considering the erosion and redistribution of core materials in giant planet evolution models, but they also demonstrate that hot metallic hydrogen is a good solvent at megabar pressures, which has implications for high-pressure experiments.
NASA Astrophysics Data System (ADS)
Shayesteh, Alireza; Alavi, S. Fatemeh; Rahman, Moloud; Gharib-Nezhad, Ehsan
2017-01-01
Ab initio potential energy curves have been calculated for the X2Σ+, A2Π, B2Σ+, 12Δ, E2Π and D2Σ+ states of CaH using the multi-reference configuration interaction method with large active space and basis sets. Transition dipole moments were calculated at Ca-H distances from 2.0 a0 to 14.0 a0, and excited state lifetimes were obtained. Our theoretical transition dipole moments can be combined with the available experimental data on the X2Σ+, A2Π and B2Σ+ states to calculate Einstein A coefficients for all rovibronic transitions of CaH appearing in solar and stellar spectra.
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.
2000-01-01
The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. Favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH-, SH-, NO3 -, HCO3 -, HSO3 -, HSO4 -, H2PO4 -, and F-) that can occur in natural waters with the chlorinated methanes, CCl4, CCl3H, CCl2H2, and CClH3. The results of this investigation show that nucleophilic substitution reactions of OH-, SH-, HCO3 -, and F- are significantly exothermic for chlorine displacement, NO3 - reactions are slightly exothermic to thermoneutral, HSO3
Castillo-Chará, J; McIntosh, A L; Wang, Z; Lucchese, R R; Bevan, J W
2004-06-08
Supersonic jet investigations of the (HBr)(2) dimer have been carried out using a tunable diode laser spectrometer to provide accurate data for comparison with results from a four-dimensional (4-D) ab initio potential energy surface (PES). The near-infrared nu(1) (+/-), nu(2) (+/-), and (nu(1)+nu(4))(-) bands of (H (79)Br)(2), (H (79)Br-H (81)Br), and (H (81)Br)(2) isotopomers have been recorded in the range 2500-2600 cm(-1) using a CW slit jet expansion with an upgraded near-infrared diode laser spectrometer. The 4-D PES has been calculated for (HBr)(2) using second-order Møller-Plesset perturbation theory with an augmented and polarized 6-311G basis set. The potential is characterized by a global minimum occurring at the H bond structure with the distance between the center of masses (CM) of the monomer being R(CM)=4.10 A with angles theta(A)=10 degrees, theta(B)=100 degrees and a well depth of 692.2 cm(-1), theta(A) is the angle the HBr bond of monomer A makes with the vector from the CM of A to the CM of B, and theta(B) is the corresponding angle monomer B makes with the same CM-CM vector. The barrier for the H interchange occurs at the closed C(2h) structure for which R(CM)=4.07 A, theta(A)=45 degrees, theta(B)=135 degrees, and the barrier height is 73.9 cm(-1). The PES was fitted using a linear-least squares method and the rovibrational energy levels of the complex were calculated by a split pseudospectral method. The spectroscopic data provide accurate molecular parameters for the dimer that are then compared with the results predicted on the basis of the 4-D ab initio PES.
Germacrene D Cyclization: An Ab Initio Investigation
Setzer, William N.
2008-01-01
Essential oils that contain large concentrations of germacrene D are typically accompanied by cadinane sesquiterpenoids. The acid-catalyzed cyclization of germacrene D to give cadinane and selinane sesquiterpenes has been computationally investigated using both density functional (B3LYP/6-31G*) and post Hartree-Fock (MP2/6-31G* *) ab initio methods. The calculated energies are in general agreement with experimentally observed product distributions, both from acid-catalyzed cyclizations as well as distribution of the compounds in essential oils. PMID:19325722
Molecular associations from ab initio pair potentials
NASA Astrophysics Data System (ADS)
Iglesias, E.; Sordo, T. L.; Sordo, J. A.
1991-12-01
A method of building up stable molecular associations by using pair potentials from ab initio calculations is presented. The Matsuoka-Clementi-Yoshimine potential has been chosen to emulate the water-water interactions while 1-6-12 potentials are used to compute both solute-solvent and solute-solute interactions. Parameters for neutral-amino-acid-water and neutral- amino-acid-neutral-amino-acid interactions are provided by the program. Supermolecules are constructed by minimization of the interaction energy of the molecules involved. Both steepest-decent and Fletcher-Powell algorithms are available to carry out such a minimization.
Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W
2016-08-25
Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and
Ab initio molecular dynamics simulations of low energy recoil events in MgO
NASA Astrophysics Data System (ADS)
Petersen, B. A.; Liu, B.; Weber, W. J.; Zhang, Y.
2017-04-01
Low-energy recoil events in MgO are studied using ab intio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, Ed, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for Ed are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. There is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.
Ab initio phonon limited transport
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu
We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)
Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo
Liu, Bin; Yuan, Fenglin; Jin, Ke; Zhang, Yanwen; Weber, William J.
2015-10-06
Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atoms and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.
Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo
Liu, Bin; Yuan, Fenglin; Jin, Ke; ...
2015-10-06
Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less
Makarewicz, Jan; Shirkov, Leonid
2016-05-28
The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm(-1) is close to that of 387 cm(-1) calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.
Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions
NASA Technical Reports Server (NTRS)
Stallcop, James R.; Partridge, Harry; Levin, Eugene
1996-01-01
Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.
NASA Astrophysics Data System (ADS)
LeBlanc, James F.; Pacey, Philip D.
1985-11-01
Canonical variational transition state theory calculations have been performed for the reaction H+CH3→CH4 on potential energy surfaces based on ab initio calculations. Most vibrations were treated as harmonic. The resulting energy levels and partition functions were compared to empirical rules. For the two rotational degrees of freedom (χ) of CH3 which become bending vibrations in CH4, changing from a harmonic oscillator treatment to a hindered rotor treatment changed the partition functions by an order of magnitude or more for C ṡ ṡ ṡ H distances, R, greater than 0.3 nm. The variation of potential energy with R was taken as a standard Morse function, as a stiff Morse function with a variable parameter β or as a Lippincott function. The value of R for which the rate was minimum was found to vary between 0.25 and 0.5 nm, depending on the temperature and the assumed variation of potential energy with R and χ. Provided the χ bending modes were treated as hindered rotations for large values of R, the limiting values of the rate coefficients were similar to the results of experiments, of classical trajectory calculations, and of a modified version of simple collision theory.
Denis-Alpizar, Otoniel; Kalugina, Yulia; Stoecklin, Thierry; Vera, Mario Hernández; Lique, François
2013-12-14
We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H2. Ab initio calculations of the HCN-H2 van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN-H2 with the nitrogen pointing towards H2 at an intermolecular separation of 7.20 a0. The corresponding well depth is -195.20 cm(-1). A secondary minimum of -183.59 cm(-1) was found for a T-shape configuration with the H of HCN pointing to the center of mass of H2. We also determine the rovibrational energy levels of the HCN-para-H2 and HCN-ortho-H2 complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm(-1) and 60.26 cm(-1), respectively. The calculated ro-vibrational transitions in the HCN-H2 complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.
Řezáč, Jan; Hobza, Pavel
2014-08-12
Hydrogen fluoride dimer is a perfect model system for studying hydrogen bonding. Its size makes it possible to apply the most advanced theoretical methods available, yet it is a full-featured complex of molecules with nontrivial electronic structure and dynamic properties. Moreover, the dissociation energy of the HF dimer has been measured experimentally with an unparalleled accuracy of ±1 cm(-1)(Bohac et al. J. Chem. Phys. 1992, 9, 6681). In this work, we attempt to reproduce it by purely ab initio means, using advanced quantum-mechanical computational methods free of any empiricism. The purpose of this study is to demonstrate the capabilities of today's computational chemistry and to point out its limitations by identifying the contributions that introduce the largest uncertainty into the result. The dissociation energy is calculated using a composite scheme including large basis set CCSD(T) calculations, contributions of higher excitations up to CCSDTQ, relativistic and diagonal Born-Oppenheimer corrections and anharmonic vibrational calculations. The error of the calculated dissociation energy is 0.07 kcal/mol (25 cm(-1), 2.5%) when compared to the experiment. The major part of this error can be attributed to the inaccuracy of the calculations of the zero-point vibrational energy.
Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.
2008-05-20
Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.
Ab Initio Exploration of the Potential Energy Surface of the O_2-SO_2 Open-Shell Complex.
NASA Astrophysics Data System (ADS)
Fawzy, Wafaa M.; Hougen, Jon T.
2016-06-01
The O_2-SO_2 complex is believed to be a precursor to acid rain. The previously observed FTMW spectrum suggested internal motions within the complex, but their nature was not identified. Development of an effective Hamiltonian for an open-shell molecule with tunneling requires knowledge of the potential energy surface (PES) and the intrinsic reaction coordinates (IRC) for the paths between minima. A recent ab initio study reported two different nonplanar minima in the ground electronic state of O_2-SO_2. These predictions were based on geometry optimization calculations at the MP2/aug-cc-pVnZ level of theory, with n = 2 and 3. The current work is focused on a highly correlated ab initio investigation of the global PES (a 9-D problem) in the ground triplet electronic state of O_2-SO_2. Because of the high dimensionality in the complex, the PES calculations are partitioned into several two-dimensional cuts through the PES. We have so far explored only a 3-D part of the global PES to look for stable planar configurations. These calculations included geometry optimization, frequency, and single point energy calculations. Calculations were performed using UCCSD(T)/aug-cc-pV(n+D)Z,where n = 2 and 3, level of theory. We used an axis system that defines the radial and the angular van der Waals coordinates for a planar complex as RvW, θ_1, and θ_2. The bond length (RvW) is the distance between the center of mass of the O_2 unit and the S atom. θ_1 and θ_2 are the angles between the van der Waals bond and the O_2 internuclear axis or one of the SO bonds in the SO_2 moiety, respectively. Full geometry optimization calculations predicted a minimum of C_s symmetry in which both the O_2 and SO_2 units are tilted with respect to the van der Waals bond, and RvW = 3.63 {Å}. 3-D PES surface calculations, which involve the RvW, θ_1, and θ_2 vdW coordinates, showed that the optimized structure is the global minimum. In addition, a local minimum at RvW = 3.9 {Å}, which
NASA Astrophysics Data System (ADS)
Malshe, M.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Komanduri, R.
2010-05-01
The variation in the fitting accuracy of neural networks (NNs) when used to fit databases comprising potential energies obtained from ab initio electronic structure calculations is investigated as a function of the number and nature of the elements employed in the input vector to the NN. Ab initio databases for H2O2, HONO, Si5, and H2CCHBr were employed in the investigations. These systems were chosen so as to include four-, five-, and six-body systems containing first, second, third, and fourth row elements with a wide variety of chemical bonding and whose conformations cover a wide range of structures that occur under high-energy machining conditions and in chemical reactions involving cis-trans isomerizations, six different types of two-center bond ruptures, and two different three-center dissociation reactions. The ab initio databases for these systems were obtained using density functional theory/B3LYP, MP2, and MP4 methods with extended basis sets. A total of 31 input vectors were investigated. In each case, the elements of the input vector were chosen from interatomic distances, inverse powers of the interatomic distance, three-body angles, and dihedral angles. Both redundant and nonredundant input vectors were investigated. The results show that among all the input vectors investigated, the set employed in the Z-matrix specification of the molecular configurations in the electronic structure calculations gave the lowest NN fitting accuracy for both Si5 and vinyl bromide. The underlying reason for this result appears to be the discontinuity present in the dihedral angle for planar geometries. The use of trigometric functions of the angles as input elements produced significantly improved fitting accuracy as this choice eliminates the discontinuity. The most accurate fitting was obtained when the elements of the input vector were taken to have the form Rij-n, where the Rij are the interatomic distances. When the Levenberg-Marquardt procedure was modified
Tajti, Viktor; Czako, Gabor
2017-03-24
We compute benchmark structures, frequencies, and relative energies for the stationary points of the potential energy surface of the F- + CH3CH2Cl reaction using explicitly-correlated ab initio levels of theory. CCSD(T)-F12b geometries and harmonic vibrational frequencies are obtained with the aug-cc-pVTZ and aug-cc-pVDZ basis sets, respectively. The benchmark relative energies are determined using a high-level composite method based on CCSD(T)-F12b/aug-cc-pVQZ frozen-core energies, CCSD(T)-F12b/cc-pCVTZ-F12 core electron correlation effects, and CCSD(T)-F12b/aug-cc-pVDZ zero-point energy corrections. The SN2 channel leading to Cl- + CH3CH2F (-33.2) can proceed via back-side (-11.5), front-side (29.1), and double-inversion (18.0) transition states, whereas the bimolecular elimination (E2) products, Cl- + HF + C2H4 (-19.3), can be formed via anti (-15.0) and syn (-7.3) saddle points, whose best adiabatic energies relative to F- + CH3CH2Cl are shown in parentheses in kcal/mol. Besides the SN2 and E2 channels, the 0 K reaction enthalpies of the HF + H3C-CHCl- (29.4), H- + H3C-CHClF (46.2), H- + FH2C-CH2Cl (51.1), and FCl- + CH3CH2 (49.7) product channels are determined. Utilizing the new benchmark data, the performance of the DF-MP2, MP2, MP2-F12, CCSD(T), and CCSD(T)-F12b methods with aug-cc-pVDZ and aug-cc-pVTZ basis sets is tested.
Ahlstrand, Emma; Hermansson, Kersti; Friedman, Ran
2017-03-24
Zinc plays important roles in structural stabilization of proteins, enzyme catalysis, and signal transduction. Many Zn binding sites are located at the interface between the protein and the cellular fluid. In aqueous solutions, Zn ions adopt an octahedral coordination, while in proteins zinc can have different coordinations, with a tetrahedral conformation found most frequently. The dynamics of Zn binding to proteins and the formation of complexes that involve Zn are dictated by interactions between Zn and its binding partners. We calculated the interaction energies between Zn and its ligands in complexes that mimic protein binding sites and in Zn complexes of water and one or two amino acid moieties, using quantum mechanics (QM) and molecular mechanics (MM). It was found that MM calculations that neglect or only approximate polarizability did not reproduce even the relative order of the QM interaction energies in these complexes. Interaction energies calculated with the CHARMM-Drude polarizable force field agreed better with the ab initio results, although the deviations between QM and MM were still rather large (40-96 kcal/mol). In order to gain further insight into Zn-ligand interactions, the free energies of interaction were estimated by QM calculations with continuum solvent representation, and we performed energy decomposition analysis calculations to examine the characteristics of the different complexes. The ligand-types were found to have high impact on the relative strength of polarization and electrostatic interactions. Interestingly, ligand-ligand interactions did not play a significant role in the binding of Zn. Finally, analysis of ligand exchange energies suggests that carboxylates could be exchanged with water molecules, which explains the flexibility in Zn binding dynamics. An exchange between carboxylate (Asp/Glu) and imidazole (His) is less likely.
NASA Astrophysics Data System (ADS)
Laerdahl, Jon K.; Schwerdtfeger, Peter
1999-12-01
The parity-odd perturbation operator for the inelastic electron-nucleon scattering by weak neutral currents (exchange of virtual Z0 bosons) has been implemented into a fully relativistic four-component Dirac-Hartree-Fock scheme. Dirac-Hartree-Fock electronic structure calculations on H2O2, H2S2, H2Se2, H2Te2, and H2Po2 provides a demonstration of the higher than Z5 scaling of the parity-violating energy shift (Z is the nuclear charge) in chiral molecules. To our knowledge, the calculations for H2Te2 and H2Po2 are the first for molecules containing heavy elements from period 5 or 6 of the Periodic Table, and the parity-violating energy shifts are some of the highest reported in any ab initio study. It has been shown that special care is needed in the basis set expansion of the wave function because of the coupling between the large and small components of the Dirac wave function through the γ5 matrix. Estimates of the remaining errors in the calculations have been given. A comparison with the calculated parity-violating energy shift of H2TeO have confirmed the importance of the single-center theorem, which states that the parity-violating energy shift is suppressed in molecules containing only a single heavy atomic center. Due to the close correspondence between parity-violating energy shifts and observable parity-odd properties, our results have important consequences for the current search for an experimental confirmation of parity-odd effects in molecular physics: (i) The experiments should be performed on molecules containing heavy (period 5 or 6) elements. (ii) Molecules with more than one heavy atomic center will be extremely favorable due to the single-center theorem.
Marinakis, Sarantos; Dean, Indigo Lily; Kłos, Jacek; Lique, François
2015-09-07
We present a new set of potential energy surfaces (PESs) for the CH(X(2)Π)-He van der Waals system. Ab initio calculations of the CH-He PES were carried out using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations [RCCSD(T)]. The augmented correlation-consistent polarized valence quadruple-zeta (aug-cc-pVQZ) basis set was employed augmented by mid-bond functions. Integral cross sections for the rotational excitation in CH-He collisions were calculated using the new PES and compared with available experimental results. The newly constructed PES reproduces the available experimental results for CH(X(2)Π, v = 0)-He collisions better than any previously available PES. Differential cross sections (DCS) are presented for the first time for this system and discussed within the context of rotational rainbows. Finally, our work provides the first rate thermal coefficients for this system that are crucially needed for astrochemical modelling and future anticipated experiments in CH(X(2)Π)-He collisions.
NASA Astrophysics Data System (ADS)
Pai, Sung Jin; Bae, Young Chan
2014-08-01
A six-dimensional intermolecular potential energy surface for a rigid methane (CH4) and carbon dioxide (CO2) dimer was developed from the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory. A total of 466 grid points distributed to 46 orientations were calculated from the complete basis set limit extrapolation based on up to aug-cc-pVQZ basis set. A modified site-site pair potential function was proposed for rapid representation of the high level ab initio calculations. A nonadditive three-body interaction was represented by the Axilrod-Teller-Muto expression for mixtures with the polarizability and the London dispersion constant of each molecule. Second to fourth virial coefficients of CH4 and CO2 mixtures were calculated using both the Mayer sampling Monte Carlo method and the present potential functions. The virial equation of state derived from these coefficients was used to predict the pVT values and showed good agreement with experimental data below 200 bar at 300 K. The vapor-liquid coexistence curves of pure CH4, CO2 and their mixtures were presented with the aid of Gibbs ensemble Monte Carlo simulations. The predicted tie lines agreed with the experimental data within the uncertainties up to near the critical point.
Pai, Sung Jin; Bae, Young Chan
2014-08-14
A six-dimensional intermolecular potential energy surface for a rigid methane (CH4) and carbon dioxide (CO2) dimer was developed from the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory. A total of 466 grid points distributed to 46 orientations were calculated from the complete basis set limit extrapolation based on up to aug-cc-pVQZ basis set. A modified site-site pair potential function was proposed for rapid representation of the high level ab initio calculations. A nonadditive three-body interaction was represented by the Axilrod-Teller-Muto expression for mixtures with the polarizability and the London dispersion constant of each molecule. Second to fourth virial coefficients of CH4 and CO2 mixtures were calculated using both the Mayer sampling Monte Carlo method and the present potential functions. The virial equation of state derived from these coefficients was used to predict the pVT values and showed good agreement with experimental data below 200 bar at 300 K. The vapor-liquid coexistence curves of pure CH4, CO2 and their mixtures were presented with the aid of Gibbs ensemble Monte Carlo simulations. The predicted tie lines agreed with the experimental data within the uncertainties up to near the critical point.
NASA Astrophysics Data System (ADS)
Gonzalez, Dayana; Mebel, Alexander
2016-03-01
It has been recently shown that Titan provides a unique perspective in our solar system: its atmosphere is comparable to a model of prebiotic Earth's. Provided the organic cationic and anionic molecular species identified by the Cassini spacecraft, this research characterizes reaction pathways for the reactions of methyl derivatives of the cyclopropenyl cation, the methyl cation with methyl- and dimethyl-acetylene, and reactions of resonance structures of protonated acrylonitrile with CH2NH. Isomerization and dissociation reactions involving methyl-cyclopropenyl cations, the perinaphthenyl cation and anion, and cations of pyrimidine and purine precursors of nucleobases will be examined to locate reaction pathways, intermediates, transition states, and products of the reactions. Gaussian '09 software is used for ab initio calculations to map out the PES. Geometry optimizations and vibrational frequency computations are preformed via the double-hybrid density functional B2PLYP-D3. Single-point energies are refined by use of the explicitly-correlated coupled-cluster CCSD(T)-F12 method. Rate constants are calculated using microcanonical RRKM theory, and pressure effects evaluated used the Master Equation approach; these allow for prediction of absolute rate constants and product branching ratios at different pressures and temperatures.
Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene
2016-03-21
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.
Ab Initio Calculation of the Hoyle State
Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.
2011-05-13
The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.
Orimoto, Yuuichi; Xie, Peng; Liu, Kai; Yamamoto, Ryohei; Imamura, Akira; Aoki, Yuriko
2015-03-14
An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs’ inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligibly small energy error in the total energy calculations (in the order of 10{sup −7}–10{sup −8} hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. −290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for
NASA Astrophysics Data System (ADS)
Orimoto, Yuuichi; Yamamoto, Ryohei; Xie, Peng; Liu, Kai; Imamura, Akira; Aoki, Yuriko
2015-03-01
An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs' inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligibly small energy error in the total energy calculations (in the order of 10-7-10-8 hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. -290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for
Ab initio alpha-alpha scattering.
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-12-03
Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Ab initio alpha-alpha scattering
NASA Astrophysics Data System (ADS)
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.
2015-12-01
Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Li, Jun; Chen, Jun; Zhao, Zhiqiang; Xie, Daiqian; Zhang, Dong H; Guo, Hua
2015-05-28
We report a permutationally invariant global potential energy surface (PES) for the H + CH4 system based on ∼63,000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (Jtot = 0) including the abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].
NASA Astrophysics Data System (ADS)
Wang, Manhui; Sun, Xiaomin; Bian, Wensheng; Cai, Zhengting
2006-06-01
A global 12-dimensional ab initio interpolated potential energy surface (PES) for the SiH4+H →SiH3+H2 reaction is presented. The ab initio calculations are based on the unrestricted quadratic configuration interaction treatment with all single and double excitations together with the cc-pVTZ basis set, and the modified Shepard interpolation method of Collins and co-workers [K. C. Thompson et al., J. Chem. Phys. 108, 8302 (1998); M. A. Collins, Theor. Chem. Acc. 108, 313 (2002); R. P. A. Bettens and M. A. Collins, J. Chem. Phys. 111, 816 (1999)] is applied. Using this PES, classical trajectory and variational transition state theory calculations have been carried out, and the computed rate constants are in good agreement with the available experimental data.
NASA Astrophysics Data System (ADS)
Kalugina, Yulia N.; Lokshtanov, Sergei E.; Cherepanov, Victor N.; Vigasin, Andrey A.
2016-02-01
We present new three-dimensional potential energy surface (PES) and dipole moment surfaces (DMSs) for the CH4-Ar van der Waals system. Ab initio calculations of the PES and DMS were carried out using the closed-shell single- and double-excitation coupled cluster approach with non-iterative perturbative treatment of triple excitations. The augmented correlation-consistent aug-cc-pVXZ (X = D,T,Q) basis sets were employed, and the energies obtained were then extrapolated to the complete basis set limit. The dipole moment surface was obtained using aug-cc-pVTZ basis set augmented with mid-bond functions for better description of exchange interactions. The second mixed virial coefficient was calculated and compared to available experimental data. The equilibrium constant for true dimer formation was calculated using classical partition function based on the knowledge of ab initio PES. Temperature variations of the zeroth spectral moment of the rototranslational collision-induced band as well as its true dimer constituent were traced with the use of the Boltzmann-weighted squared induced dipole properly integrated over respective phase space domains. Height profiles for N2-N2, N2-H2, CH4-N2, (CH4)2, and CH4-Ar true bound dimers in Titan's atmosphere were calculated with the use of reliable ab initio PESs.
Pan, Hui
2014-01-01
Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting.
Ab initio study of cyanoguanidine isomers
NASA Astrophysics Data System (ADS)
Arbuznikov, A. V.; Sheludyakova, L. A.; Burgina, E. B.
1995-06-01
An ab initio quantum chemical study of the geometric structure and stability of cyanoguanidine isomers was carried out at the Hartree-Fock and Møller-Plesset levels of theory. Two stable separable isomers ('cyanioime' and 'cyanoamine') are found. This gives evidence in favour of the vibrational spectroscopy data showing the existence of both isomers.
Ab initio study of cyanoguanidine isomers
NASA Astrophysics Data System (ADS)
Arbuznikov, A. V.; Sheludyakova, L. A.; Burgina, E. B.
1995-06-01
An ab initio quantum chemical study of the geometric structure and stability of cyanoguanidine isomers was carried out at the Hartree-Fock and Møller-Plesset levels of theory. Two stable separable isomers (‘cyanioime' and ‘cyanoamine') are found. This gives evidence in favour of the vibrational spectroscopy data showing the existence of both isomers.
Ab initio study of thiol aqueous phase ionization energies. Methyl mercaptan and cysteamine
Colson, A.O.; Sevilla, M.D. )
1994-10-13
The ionization energies of two thiol model compounds (methyl mercaptan and cysteamine) are calculated at the ROHF/6-31G* level to aid our understanding of the mechanisms involved in DNA radioprotection. Methyl mercaptan, the thiolate anion, and its trihydrated form are fully geometry optimized. The resulting gas-phase Koopmans ionization energies are 9.68, 1.67, and 3.63 eV, respectively. The ionization energy for the solvated methylthiolate anion, CH[sub 3]S[sup [minus
Ab initio charge, spin and orbital energy scales in LaMnO3
NASA Astrophysics Data System (ADS)
Tyer, R.; Temmerman, W. M.; Szotek, Z.; Banach, G.; Svane, A.; Petit, L.; Gehring, G. A.
2004-02-01
The first-principles SIC-LSD theory is utilized to study electronic, magnetic and orbital phenomena in LaMnO3. The correct ground state is found, which is antiferro orbitally ordered with the spin magnetic moments antiferromagnetically aligned. Jahn-Teller energies are found to be the largest energy scale. In addition, it is the Jahn-Teller interaction which is the dominant effect in realizing orbital order, and the electronic effects alone do not suffice.
A medium-energy photoemission and ab-initio investigation of cubic yttria-stabilised zirconia
Cousland, G. P.; Cui, X. Y.; Smith, A. E.; Stampfl, C. M.; Wong, L.; Tayebjee, M.; Yu, D.; Triani, G.; Evans, P. J.; Ruppender, H.-J.; Jang, L.-Y.; Stampfl, A. P. J.
2014-04-14
Experimental and theoretical investigations into the electronic properties and structure of cubic yttria-stabilized zirconia are presented. Medium-energy x-ray photoemission spectroscopy measurements have been carried out for material with a concentration of 8-9 mol. % yttria. Resonant photoemission spectra are obtained for a range of photon energies that traverse the L2 absorption edge for both zirconium and yttrium. Through correlation with results from density-functional theory (DFT) calculations, based on structural models proposed in the literature, we assign photoemission peaks appearing in the spectra to core lines and Auger transitions. An analysis of the core level features enables the identification of shifts in the core level energies due to different local chemical environments of the constituent atoms. In general, each core line feature can be decomposed into three contributions, with associated energy shifts. Their identification with results of DFT calculations carried out for proposed atomic structures, lends support to these structural models. The experimental results indicate a multi-atom resonant photoemission effect between nearest-neighbour oxygen and yttrium atoms. Near-edge x-ray absorption fine structure spectra for zirconium and yttrium are also presented, which correlate well with calculated Zr- and Y-4d electron partial density-of-states and with Auger electron peak area versus photon energy curve.
Ab initio study of energy loss and wake potential in the vicinity of a graphene monolayer
NASA Astrophysics Data System (ADS)
Despoja, V.; Dekanić, K.; Šunjić, M.; Marušić, L.
2012-10-01
A propagator of the dynamically screened Coulomb interaction in the vicinity of a graphene monolayer is calculated using ground-state Kohn-Sham orbitals, and the imaginary part of this propagator is used to calculate the energy-loss rate of a static blinking point charge due to excitation of electronic modes in graphene. Energy loss calculated for all (Q,ω) modes gives intensities of electronic excitations, including plasmon dispersions in graphene, with low-energy two-dimensional (2D) and high-energy π1, π2, and π+σ plasmons. Plasmon energies are in good agreement with experimental results. This spectral analysis also enables us to study the contribution of each plasmon mode to the stopping power and potential induced by a point charge moving parallel to the graphene. We find the bow waves that in pristine graphene appear for higher velocities (v≥2vF) and predominantly originate from excitation of π plasmons. Doping induces extra features which appear for lower v≈vF velocities and predominantly originate from the excitation of 2D or Drude plasmons.
Ab initio intermolecular potential energy surfaces for the Ar-NCCN van der Waals complexes
NASA Astrophysics Data System (ADS)
Solimannejad, Mohammad; Jouypazadeh, Hamidreza; Farrokhpour, Hossein
2014-11-01
The intermolecular potential energy surface of complex pairing argon with cyanogen molecule (NCCN) was calculated using the coupled cluster with single and double and perturbative triple excitations (CCSD(T)) with aug-cc-pvdz basis set extended with a set of mid-bond (3s3p2d1f1g) functions. The interaction energies were calculated by the supermolecular approach with the full counterpoise correction for the basis set superposition error. The calculated potential energies were fitted to an analytical expression. The calculated Ar-NCCN potential energy surface shows a global minimum at 3.35 Å, the distance between argon and centre of mass of cyanogen, for the T-shaped geometry and two local minimum at distance of 5.54 Å for the linear geometry on one side of cyanogen. Finally, the interaction second virial coefficients were calculated using the fitted potential energy surface and were compared with those obtained by the parameters of the Beattie-Bridgeman equation of states of pure argon and cyanogens fluids, approximately.
Bylaska, Eric J.; Glaesemann, Kurt R.; Felmy, Andrew R.; Vasiliu, Monica; Dixon, David A.; Tratnyek, P. G.
2010-11-25
Electronic structure methods were used to calculate the gas-phase and aqueous phase reaction energies for reductive dechlorination (i.e. hydrogenolysis), reductive Beta-elimination, dehydrochlorination, and nucleophilic substitution by OH- of 1,2,3-trichloropropane. The thermochemical properties Delta Hof(298.15K), So(298.15K,1 bar), and Delta GS(298.15K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely metabolites. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive Beta-elimination (Delta Gorxn ≈ -32 kcal/mol), followed closely by reductive dechlorination (Delta Gorxn ≈ -27 kcal/mol), dehydrochlorination (Delta Gorxn ≈ -27kcal/mol), and nucleophilic substitution by OH- (Delta Gorxn ≈ -25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate CH2-CHCl-CH2Cl , and CH2Cl-CH-CH2Cl species, was not favorable in the standard state (Delta Gorxn ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.
Energy gap of extended states in SiC-doped graphene nanoribbon: Ab initio calculations
NASA Astrophysics Data System (ADS)
Liu, Xiaoshi; Wu, Yong; Li, Zhongyao; Gao, Yong
2017-04-01
The energy gap of extended states in zigzag graphene nanoribbons (ZGNRs) was examined on the basis of density-functional theory. In isolated ZGNRs, the energy gap is inversely proportional to the width of ribbon. It agrees well with the results from the Dirac equation in spin-unpolarized ZGNRs, although the considered ZGNRs have spin-polarized edges. However, the energy gap in SiC-doped ZGNRs cannot be modeled by effective width approximation. The doping also lifts the spin-degenerate of edge states and results in a metallic-like band structure near the Fermi level in SiC-doped ZGNRs. Our calculations may be helpful for understanding the origin of the reported single-channel ballistic transport in epitaxial graphene nanoribbons.
Liu, Fang; Lin, Lin; Vigil-Fowler, Derek; Lischner, Johannes; Kemper, Alexander F.; Sharifzadeh, Sahar; Jornada, Felipe H. da; Deslippe, Jack; Yang, Chao; and others
2015-04-01
We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit of using different self energy expressions to perform the numerical convolution at different frequencies.
An ab initio treatment of inelastic H + Ne collisions at low energy
NASA Astrophysics Data System (ADS)
Grosser, J.; Schnecke, A.; Voigt, H.
1990-12-01
On the basis of published quantum chemical data, we calculate the integral cross section for the inelastic process H(1 s) + Ne → H(2 s, 2 p) + Ne for collision energies between threshold and 1.5 keV. Though the quantum chemical data are not completely unambiguous and not so complete as desired, a reasonable agreement between experiment and theory can be achieved.
Ab initio studies of magnetic anisotropy energy in highly Co-doped ZnO
NASA Astrophysics Data System (ADS)
Łusakowski, A.; Szuszkiewicz, W.
2017-03-01
Density functional theory (DFT) calculations of the energy of magnetic anisotropy for diluted magnetic semiconductor (Zn,Co)O were performed using OpenMX package with fully relativistic pseudopotentials. The analysis of the band spin-orbit interaction and the magnetic ion's surrounding on magnetic anisotropy have been provided. As a result, the calculations show that the magnetic anisotropy in (Zn,Co)O solid solution, mainly of the single ion anisotropy type has been caused by Co ions.
Hua -Gen Yu; Han, Huixian; Guo, Hua
2016-03-29
Vibrational energy levels of the ammonium cation (NH4+) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4+ and ND4+ exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm–1.
Structure and energy of point defects in TiC: An ab initio study
NASA Astrophysics Data System (ADS)
Sun, Weiwei; Ehteshami, Hossein; Korzhavyi, Pavel A.
2015-04-01
We employ first-principles calculations to study the atomic and electronic structure of various point defects such as vacancies, interstitials, and antisites in the stoichiometric as well as slightly off-stoichiometric Ti1 -cCc (including both C-poor and C-rich compositions, 0.49 ≤c ≤0.51 ). The atomic structure analysis has revealed that both interstitial and antisite defects can exist in split conformations involving dumbbells. To characterize the electronic structure changes caused by a defect, we introduce differential density of states (dDOS) defined as a local perturbation of the density of states (DOS) on the defect site and its surrounding relative to the perfect TiC. This definition allows us to identify the DOS peaks characteristic of the studied defects in several conformations. So far, characteristic defect states have been discussed only in connection with carbon vacancies. Here, in particular, we have identified dDOS peaks of carbon interstitials and dumbbells, which can be used for experimental detection of such defects in TiC. The formation energies of point defects in TiC are derived in the framework of a grand-canonical formalism. Among the considered defects, carbon vacancies and interstitials are shown to have, respectively, the lowest and the second-lowest formation energies. Their formation energetics are consistent with the thermodynamic data on the phase stability of nonstoichiometric TiC. A cluster type of point defect is found to be next in energy, a titanium [100] dumbbell terminated by two carbon vacancies.
Modeling reaction pathways of low energy particle deposition on thiophene via ab initio calculations
NASA Astrophysics Data System (ADS)
Crenshaw, Jasmine D.; Phillpot, Simon R.; Iordanova, Nedialka; Sinnott, Susan B.
2011-07-01
Chemical reactions of thiophene with organic molecules are of interest to modify thermally deposited coatings of conductive polymers. Here, energy barriers for reactions involving thiophene and small hydrocarbon radicals are identified. Enthalpies of formation involving reactants are also calculated using the B3LYP, BMK, and B98 hybrid functionals within the G AUSSIAN03 program. Experimental values, G3, and CBS-QB3 calculations are used as standards, due to their accurate thermochemistry parameters. The BMK functional is found to perform best for the selected organic molecules. These results provide insights into the reactivity of several polymerization and deposition processes.
Ab initio design of low work function complex oxides for thermionic energy conversion
NASA Astrophysics Data System (ADS)
Mack, Stephanie; Li, Guo; Neaton, Jeffrey
Understanding and controlling work functions, or band edge energies, is of interest for a variety of applications in optoelectronics and energy conversion. In particular, while recent advances in device design have improved the feasibility of thermionic generators, new low work function materials are needed to enable their widespread use. Perovskite-based oxides (ABO3) are a diverse class of materials that, depending on the transition metal atoms on the A and B sites, can give rise to myriad emergent and collective phenomena. Here, we use density functional theory calculations to examine how the work function of one such oxide, SrRuO3 (SRO), can be tuned by monolayers of SrTiO3 (STO) and other polar or near-polar oxides. We find that SRO work functions can be tuned by over 1 eV with one layer of STO, although the calculated reduction in work function is an order of magnitude less than would be expected from the bulk polarization. We understand the variation in work function via a detailed analysis of Born effective charges at the surface, which are as small as 10% of their bulk values, and charge rearrangement at the STO surface and SRO/STO interface.
A new [ital ab initio] potential energy curve for the helium dimer
van Mourik, T.; Dunning, T.H. Jr. )
1999-11-01
The He[sub 2] interaction potential has been computed employing augmented correlation-consistent basis sets and several methods beyond those commonly used to recover electron correlation, namely fifth-order Mo/ller[endash]Plesset perturbation theory (MP5), coupled cluster theory with full triple excitations (CCSDT), and full configuration interaction (FCI). Calculations employing the largest basis sets were not feasible for the most sophisticated methods (MP5, CCSDT, and FCI). Nonetheless, because of the rapid convergence of the calculated interaction energy [ital differences] with basis set, it was possible to obtain reliable estimates of the complete basis set MP5, CCSDT, and FCI results. The MP5 method is predicted to yield a well depth of 10.67[plus minus]0.03 hthinsp;K at the complete basis set (CBS) limit. Thus, the accuracy of the MP5 method is comparable to that of the CCSD(T) method which yields a D[sub e] of 10.68[plus minus]0.02 hthinsp;K. The CCSDT method yields an estimated well depth of 10.98[plus minus]0.03 hthinsp;K. Thus, the [ital full] effect of connected triple excitations on the He[sub 2] well depth is 1.74 K (CCSDT-CCSD). Comparing the basis set dependence of the CCSDT and FCI well depths, the effect of [ital connected] quadruple excitations on the well depth is estimated to be just 0.015[endash]0.020 K. Thus, the current calculations predict the FCI He[sub 2] well depth to be 11.00[plus minus]0.03 hthinsp;K, in excellent agreement with the recent quantum Monte Carlo calculations of Anderson [ital et al.] [J. Chem. Phys. [bold 99], 345 (1993)]. Taking advantage of the rapid convergence of the full triples and quadruples correlation corrections to the CCSD(T) interaction energy with basis set, an estimated FCI/CBS potential energy curve has been constructed for He[sub 2] from 3.5 to 15.0 a[sub 0]. The resulting curve lies between the HFD-B3-FCI1 and SAPT2 semi-empirical potentials of Aziz [ital et al.], being closer to the SAPT2 potential
A new {ital ab initio} potential energy curve for the helium dimer
van Mourik, T.; Dunning, T.H. Jr.
1999-11-01
The He{sub 2} interaction potential has been computed employing augmented correlation-consistent basis sets and several methods beyond those commonly used to recover electron correlation, namely fifth-order Mo/ller{endash}Plesset perturbation theory (MP5), coupled cluster theory with full triple excitations (CCSDT), and full configuration interaction (FCI). Calculations employing the largest basis sets were not feasible for the most sophisticated methods (MP5, CCSDT, and FCI). Nonetheless, because of the rapid convergence of the calculated interaction energy {ital differences} with basis set, it was possible to obtain reliable estimates of the complete basis set MP5, CCSDT, and FCI results. The MP5 method is predicted to yield a well depth of 10.67{plus_minus}0.03&hthinsp;K at the complete basis set (CBS) limit. Thus, the accuracy of the MP5 method is comparable to that of the CCSD(T) method which yields a D{sub e} of 10.68{plus_minus}0.02&hthinsp;K. The CCSDT method yields an estimated well depth of 10.98{plus_minus}0.03&hthinsp;K. Thus, the {ital full} effect of connected triple excitations on the He{sub 2} well depth is 1.74 K (CCSDT-CCSD). Comparing the basis set dependence of the CCSDT and FCI well depths, the effect of {ital connected} quadruple excitations on the well depth is estimated to be just 0.015{endash}0.020 K. Thus, the current calculations predict the FCI He{sub 2} well depth to be 11.00{plus_minus}0.03&hthinsp;K, in excellent agreement with the recent quantum Monte Carlo calculations of Anderson {ital et al.} [J. Chem. Phys. {bold 99}, 345 (1993)]. Taking advantage of the rapid convergence of the full triples and quadruples correlation corrections to the CCSD(T) interaction energy with basis set, an estimated FCI/CBS potential energy curve has been constructed for He{sub 2} from 3.5 to 15.0 a{sub 0}. The resulting curve lies between the HFD-B3-FCI1 and SAPT2 semi-empirical potentials of Aziz {ital et al.}, being closer to the SAPT2 potential
NASA Astrophysics Data System (ADS)
Fujisaki, Hiroshi; Yagi, Kiyoshi; Kikuchi, Hiroto; Takami, Toshiya; Stock, Gerhard
2017-01-01
Performing comprehensive quantum-chemical calculations, a vibrational Hamiltonian of acetylbenzonitrile is constructed, on the basis of which a quantum-mechanical "tier model" is developed that describes the vibrational dynamics following excitation of the CN stretch mode. Taking into account 36 vibrational modes and cubic and quartic anharmonic couplings between up to three different modes, the tier model calculations are shown to qualitatively reproduce the main findings of the experiments of Rubtsov and coworkers (2011), including the energy relaxation of the initially excited CN mode and the structure-dependent vibrational transport. Moreover, the calculations suggest that the experimentally measured cross-peak among the CN and CO modes does not correspond to direct excitation of the CO normal mode but rather reflects excited low-frequency vibrations that anharmonically couple to the CO mode. Complementary quasiclassical trajectory calculations are found to be in good overall agreement with the quantum calculations.
Bond dissociation energy of the phenol O sbnd H bond from ab initio calculations
NASA Astrophysics Data System (ADS)
da Silva, Gabriel; Chen, Chiung-Chu; Bozzelli, Joseph W.
2006-06-01
The phenol O sbnd H bond dissociation energy (BDE) is currently disputed, despite its importance in combustion chemistry and in the reactions of antioxidants such as vitamin E. We have studied this BDE using the computational methods G3, G3B3 and CBS-APNO, with bond-isodesmic work reactions. These calculations yield a BDE of 89.0 ± 1.0 kcal mol -1, which supports other recent calculations [B.J. Costa Cabral, S. Canuto, Chem. Phys. Lett. 406 (2005) 300]. From our BDE we determine the enthalpy of formation of the phenoxy radical to be 13.9 ± 1.0 kcal mol -1. Comparison of the phenol C sbnd H BDE with the vinyl alcohol H sbnd CH dbnd CHOH BDE reveals the bond in phenol to be around 3 kcal mol -1 stronger than that in vinyl alcohol. Replacement of a H atom with the OH group on benzene or ethylene strengthens the C sbnd H bonds on adjacent carbons by 3 to 4 kcal mol -1.
Intrinsic errors in several ab initio methods. The dissociation energy of N{sub 2}
Peterson, K.A. |; Dunning, T.H. Jr.
1995-03-23
Using sequences of correlation consistent basis sets, complete basis set (CBS) limits for the dissociation energy D{sub c} of N{sub 2} have been estimated for a variety of commonly used electron correlation methods. After extrapolation to the CBS limit, the difference between theory and experiment corresponds to the error intrinsic to the chosen theoretical method. Correlated wave functions (valence electrons correlated only) for which intrinsic errors have been estimated include internally contracted multireference configuration interaction (CMRCI), singles and doubles coupled cluster theory with and without perturbative triple excitations [CCSD, CCSD(T)], and second-, third-, and fourth-order Moller-Plesset perturbation theory (MP2, MP3, MP4). For CMRCI and CCSD(T), D{sub c} converges smoothly from below the experimental value and yields the smallest intrinsic errors, -0.8 and -1.6 kcal/mol, respectively. In contrast, for MP2 and MP4, D{sub c} exhibits fortuitously good agreement with experiment for small basis sets but leads to CBS limits that are 11.6 and 3.4 kcal/mol larger than experiment, respectively. Correlation of the 1s core electrons is predicted to yield intrinsic errors of less than 1 kcal/mol for CMRCI and CCSD(T), while those for MP2 and MP4 increase still further. 38 refs., 1 fig., 1 tab.
Li, Y. Q.; Zhang, P. Y.; Han, K. L.
2015-03-28
A global many-body expansion potential energy surface is reported for the electronic ground state of CH{sub 2}{sup +} by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH{sup +}(X{sup 1}Σ{sup +})+H({sup 2}S)→C{sup +}({sup 2}P)+H{sub 2}(X{sup 1}Σ{sub g}{sup +}) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C{sup +}/H containing systems.
Ab initio infrared and Raman spectra
NASA Technical Reports Server (NTRS)
Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.
1983-01-01
It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.
Bylaska, Eric J; Glaesemann, Kurt R; Felmy, Andrew R; Vasiliu, Monica; Dixon, David A; Tratnyek, Paul G
2010-11-25
Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.
Kalugina, Yulia N; Lokshtanov, Sergei E; Cherepanov, Victor N; Vigasin, Andrey A
2016-02-07
We present new three-dimensional potential energy surface (PES) and dipole moment surfaces (DMSs) for the CH4-Ar van der Waals system. Ab initio calculations of the PES and DMS were carried out using the closed-shell single- and double-excitation coupled cluster approach with non-iterative perturbative treatment of triple excitations. The augmented correlation-consistent aug-cc-pVXZ (X = D,T,Q) basis sets were employed, and the energies obtained were then extrapolated to the complete basis set limit. The dipole moment surface was obtained using aug-cc-pVTZ basis set augmented with mid-bond functions for better description of exchange interactions. The second mixed virial coefficient was calculated and compared to available experimental data. The equilibrium constant for true dimer formation was calculated using classical partition function based on the knowledge of ab initio PES. Temperature variations of the zeroth spectral moment of the rototranslational collision-induced band as well as its true dimer constituent were traced with the use of the Boltzmann-weighted squared induced dipole properly integrated over respective phase space domains. Height profiles for N2-N2, N2-H2, CH4-N2, (CH4)2, and CH4-Ar true bound dimers in Titan's atmosphere were calculated with the use of reliable ab initio PESs.
Ab Initio Crystal Field for Lanthanides.
Ungur, Liviu; Chibotaru, Liviu F
2017-03-13
An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc)2 ](-) (Pc=phthalocyanine) and Dy4 K2 ([Dy(4) K(2) O(OtBu)(12) ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides.
Multiple time step integrators in ab initio molecular dynamics
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
NASA Astrophysics Data System (ADS)
Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard
2016-03-01
A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.
Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard
2016-03-21
A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.
Grotemeyer, Michael; Pehlke, Eckhard
2014-01-31
In this Letter, ab initio molecular dynamics simulations based on time-dependent density functional theory for the electrons and Ehrenfest dynamics for the nuclei are reported that detail the interaction of a vibrating HCl molecule with an Al(111) substrate. The mechanism responsible for the strong electron-hole-pair (EHP)-vibrational coupling in case of highly vibrationally excited molecules is traced back to a large eigenenergy shift of the spz*-like antibonding HCl lowest unoccupied molecular orbital with the bond length. As a consequence of this mechanism, the electronic excitation spectra turn out to be highly asymmetric. The simulations suggest an explanation of how to reconcile a strong EHP-vibrational coupling in case of highly vibrationally excited molecules with the small, but clearly evident, electronic contribution to the v=0 → v=1 vibrational excitation observed experimentally during the scattering of HCl molecules at a hot Au surface by Ran et al. [Phys. Rev. Lett. 98 237601 (2007)].
Ab Initio Quantum Simulations of Liquid Water
NASA Astrophysics Data System (ADS)
Gergely, John; Ceperley, David; Gygi, Francois
2007-03-01
Some recent efforts at simulating liquid water have employed ``ab initio'' molecular dynamics (AIMD) methods with forces from a version of density functional theory (DFT) and, in some cases, imaginary-time path integrals (PI) to study quantum effects of the protons. Although AIMD methods have met with many successes, errors introduced by the approximations and choices of simulation parameters are not fully understood. We report on path integral Monte Carlo (PIMC) studies of liquid water using DFT energies that provide quantitative benchmarks for PI-AIMD work. Specifically, we present convergence studies of the path integrals and address whether the Trotter number can be reduced by improving the form of the (approximate) action. Also, we assess 1) whether typical AIMD simulations are sufficiently converged in simulation time, i.e., if there is reason to suspect that nonergodic behavior in PI-AIMD methods leads to poor convergence, and 2) the relative efficiency of the methods. E. Schwegler, J.C. Grossman, F. Gygi, G. Galli, J. Chem. Phys 121, 5400 (2004).
Ab Initio and Ab Exitu No-Core Shell Model
Vary, J P; Navratil, P; Gueorguiev, V G; Ormand, W E; Nogga, A; Maris, P; Shirokov, A
2007-10-02
We outline two complementary approaches based on the no core shell model (NCSM) and present recent results. In the ab initio approach, nuclear properties are evaluated with two-nucleon (NN) and three-nucleon interactions (TNI) derived within effective field theory (EFT) based on chiral perturbation theory (ChPT). Fitting two available parameters of the TNI generates good descriptions of light nuclei. In a second effort, an ab exitu approach, results are obtained with a realistic NN interaction derived by inverse scattering theory with off-shell properties tuned to fit light nuclei. Both approaches produce good results for observables sensitive to spin-orbit properties.
Carter, Stuart; Wang, Yimin; Bowman, Joel M
2017-02-17
The code MULTIMODE is used in its reaction path version, along with ab initio potential energy and dipole moment surfaces introduced earlier, to predict the infrared spectra of both trans and cis forms of HOCO at temperatures 296 and 15 K. All six fundamentals are isolated for each isomer and temperature, and their main features examined, paying particular attention to the OH stretch fundamental, whose spectrum has been reported experimentally for trans-HOCO. The current spectra for cis-HOCO, while not of "spectroscopic" accuracy, should be sufficient to aid in new experimental efforts to record the spectrum of this isomer.
NASA Astrophysics Data System (ADS)
Lau, K.-C.; Ng, C. Y.
2006-01-01
The ionization energies (IEs) for the 2-propyl (2-C3H7), phenyl (C6H5), and benzyl (C6H5CH2) radicals have been calculated by the wave-function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasiperturbative triple excitation [CCSD(T)]. The zero-point vibrational energy correction, the core-valence electronic correction, and the scalar relativistic effect correction have been also made in these calculations. Although a precise IE value for the 2-C3H7 radical has not been directly determined before due to the poor Franck-Condon factor for the photoionization transition at the ionization threshold, the experimental value deduced indirectly using other known energetic data is found to be in good accord with the present CCSD(T)/CBS prediction. The comparison between the predicted value through the focal-point analysis and the highly precise experimental value for the IE(C6H5CH2) determined in the previous pulsed field ionization photoelectron (PFI-PE) study shows that the CCSD(T)/CBS method is capable of providing an accurate IE prediction for C6H5CH2, achieving an error limit of 35 meV. The benchmarking of the CCSD(T)/CBS IE(C6H5CH2) prediction suggests that the CCSD(T)/CBS IE(C6H5) prediction obtained here has a similar accuracy of 35 meV. Taking into account this error limit for the CCSD(T)/CBS prediction and the experimental uncertainty, the CCSD(T)/CBS IE(C6H5) value is also consistent with the IE(C6H5) reported in the previous HeI photoelectron measurement. Furthermore, the present study provides support for the conclusion that the CCSD(T)/CBS approach with high-level energy corrections can be used to provide reliable IE predictions for C3-C7 hydrocarbon radicals with an uncertainty of +/-35 meV. Employing the atomization scheme, we have also computed the 0 K (298 K) heats of formation in kJ/mol at the CCSD(T)/CBS level for 2-C3H7
Ivanov, Sergei D. Grant, Ian M.; Marx, Dominik
2015-09-28
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.
NASA Astrophysics Data System (ADS)
Holka, Filip; Szalay, Péter G.; Fremont, Julien; Rey, Michael; Peterson, Kirk A.; Tyuterev, Vladimir G.
2011-03-01
High level ab initio potential energy functions have been constructed for LiH in order to predict vibrational levels up to dissociation. After careful tests of the parameters of the calculation, the final adiabatic potential energy function has been composed from: (a) an ab initio nonrelativistic potential obtained at the multireference configuration interaction with singles and doubles level including a size-extensivity correction and quintuple-sextuple ζ extrapolations of the basis, (b) a mass-velocity-Darwin relativistic correction, and (c) a diagonal Born-Oppenheimer (BO) correction. Finally, nonadiabatic effects have also been considered by including a nonadiabatic correction to the kinetic energy operator of the nuclei. This correction is calculated from nonadiabatic matrix elements between the ground and excited electronic states. The calculated vibrational levels have been compared with those obtained from the experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys. 134, 9378 (2004)]. It was found that the calculated BO potential results in vibrational levels which have root mean square (rms) deviations of about 6-7 cm-1 for LiH and ˜3 cm-1 for LiD. With all the above mentioned corrections accounted for, the rms deviation falls down to ˜1 cm-1. These results represent a drastic improvement over previous theoretical predictions of vibrational levels for all isotopologues of LiH.
Holka, Filip; Szalay, Péter G; Fremont, Julien; Rey, Michael; Peterson, Kirk A; Tyuterev, Vladimir G
2011-03-07
High level ab initio potential energy functions have been constructed for LiH in order to predict vibrational levels up to dissociation. After careful tests of the parameters of the calculation, the final adiabatic potential energy function has been composed from: (a) an ab initio nonrelativistic potential obtained at the multireference configuration interaction with singles and doubles level including a size-extensivity correction and quintuple-sextuple ζ extrapolations of the basis, (b) a mass-velocity-Darwin relativistic correction, and (c) a diagonal Born-Oppenheimer (BO) correction. Finally, nonadiabatic effects have also been considered by including a nonadiabatic correction to the kinetic energy operator of the nuclei. This correction is calculated from nonadiabatic matrix elements between the ground and excited electronic states. The calculated vibrational levels have been compared with those obtained from the experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys. 134, 9378 (2004)]. It was found that the calculated BO potential results in vibrational levels which have root mean square (rms) deviations of about 6-7 cm(-1) for LiH and ∼3 cm(-1) for LiD. With all the above mentioned corrections accounted for, the rms deviation falls down to ∼1 cm(-1). These results represent a drastic improvement over previous theoretical predictions of vibrational levels for all isotopologues of LiH.
Ivanov, Sergei D; Grant, Ian M; Marx, Dominik
2015-09-28
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.
Agrawal, Paras M; Raff, Lionel M; Hagan, Martin T; Komanduri, Ranga
2006-04-07
The neural network (NN) procedure to interpolate ab initio data for the purpose of molecular dynamics (MD) simulations has been tested on the SiO(2) system. Unlike other similar NN studies, here, we studied the dissociation of SiO(2) without the initial use of any empirical potential. During the dissociation of SiO(2) into Si+O or Si+O(2), the spin multiplicity of the system changes from singlet to triplet in the first reaction and from singlet to pentet in the second. This paper employs four potential surfaces. The first is a NN fit [NN(STP)] to a database comprising the lowest of the singlet, triplet, and pentet energies obtained from density functional calculations in 6673 nuclear configurations. The other three potential surfaces are obtained from NN fits to the singlet, triplet, and pentet-state energies. The dissociation dynamics on the singlet-state and NN(STP) surfaces are reported. The results obtained using the singlet surface correspond to those expected if the reaction were to occur adiabatically. The dynamics on the NN(STP) surface represent those expected if the reaction follows a minimum-energy pathway. This study on a small system demonstrates the application of NNs for MD studies using ab initio data when the spin multiplicity of the system changes during the dissociation process.
NASA Astrophysics Data System (ADS)
Agrawal, Paras M.; Raff, Lionel M.; Hagan, Martin T.; Komanduri, Ranga
2006-04-01
The neural network (NN) procedure to interpolate ab initio data for the purpose of molecular dynamics (MD) simulations has been tested on the SiO2 system. Unlike other similar NN studies, here, we studied the dissociation of SiO2 without the initial use of any empirical potential. During the dissociation of SiO2 into Si +O or Si +O2, the spin multiplicity of the system changes from singlet to triplet in the first reaction and from singlet to pentet in the second. This paper employs four potential surfaces. The first is a NN fit [NN(STP)] to a database comprising the lowest of the singlet, triplet, and pentet energies obtained from density functional calculations in 6673 nuclear configurations. The other three potential surfaces are obtained from NN fits to the singlet, triplet, and pentet-state energies. The dissociation dynamics on the singlet-state and NN(STP) surfaces are reported. The results obtained using the singlet surface correspond to those expected if the reaction were to occur adiabatically. The dynamics on the NN(STP) surface represent those expected if the reaction follows a minimum-energy pathway. This study on a small system demonstrates the application of NNs for MD studies using ab initio data when the spin multiplicity of the system changes during the dissociation process.
NASA Astrophysics Data System (ADS)
Dayou, Fabrice; Duflot, Denis; Rivero-Santamaría, Alejandro; Monnerville, Maurice
2013-11-01
We report the first global potential energy surface (PES) for the X 2A' ground electronic state of the Si(3P) + OH(X2Π) → SiO(X^1Σ _g^+) + H(2S) reaction. The PES is based on a large number of ab initio energies obtained from multireference configuration interaction calculations plus Davidson correction (MRCI+Q) using basis sets of quadruple zeta quality. Corrections were applied to the ab initio energies in the reactant channel allowing a proper description of long-range interactions between Si(3P) and OH(X2Π). An analytical representation of the global PES has been developed by means of the reproducing kernel Hilbert space method. The reaction is found barrierless. Two minima, corresponding to the SiOH and HSiO isomers, and six saddle points, among which the isomerization transition state, have been characterized on the PES. The vibrational spectra of the SiOH/HSiO radicals have been computed from second-order perturbation theory and quantum dynamics methods. The structural, energetic, and spectroscopic properties of the two isomers are in good agreement with experimental data and previous high quality calculations.
NASA Astrophysics Data System (ADS)
Sato, Kota; Sugiyama, Yoko; Uchiyama, Akihiko; Iwabuchi, Susumu; Hirano, Tsuneo; Koinuma, Hideomi
1992-07-01
Successive hydrogen elimination reactions with low activation energies during the formation of a-Si:H by silane plasma chemical vapor deposition are proposed on the basis of an ab initio molecular-orbital method. The activation energy of the first step, the reaction of a dangling-bond site with an adjacent tetrahedrally coordinated silicon atom, was found to be 25.2 kcal/mol at 0 K when the zero-point vibrational energy was taken into account. The subsequent step was an exothermic process with a lower activation energy. The total process was thermodynamically much more favorable than the molecular processes by which a hydrogen atom or molecule is eliminated.
Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P. E-mail: michael.brunger@flinders.edu.au; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J. E-mail: michael.brunger@flinders.edu.au; and others
2015-10-14
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B
2015-10-14
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.
1991-01-01
Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.
NASA Technical Reports Server (NTRS)
Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.
1993-01-01
A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.
Ab initio quantum chemistry: Methodology and applications
Friesner, Richard A.
2005-01-01
This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller–Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly. PMID:15870212
Ab-initio phasing in protein crystallography
NASA Astrophysics Data System (ADS)
van der Plas, J. L.; Millane, Rick P.
2000-11-01
The central problem in the determination of protein structures form x-ray diffraction dada (x-ray crystallography) corresponds to a phase retrieval problem with undersampled amplitude data. Algorithms for this problem that have an increased radius of convergence have the potential for reducing the amount of experimental work, and cost, involved in determining protein structures. We describe such an algorithm. Application of the algorithm to a simulated crystallographic problem shows that it converges to the correct solution, with no initial phase information, where currently used algorithms fail. The results lend support to the possibility of ab initio phasing in protein crystallography.
Ab-initio Studies Of Lithium Oxide
NASA Astrophysics Data System (ADS)
Gupta, M. K.; Goel, Prabhatasree; Mittal, R.; Chaplot, S. L.
2010-12-01
Lithium oxide is an important material because of its high thermal conductivity and superionic behavior at high temperature. It behaves like a superionic conductor above 1200 K. Phonon frequencies have been calculated using ab-initio method. The calculations of phonon dispersion relation near unit cell volume corresponding to the superionic transition indicate softening of zone boundary transverse acoustic phonon mode along (110). The instability of phonon mode could lead to the dynamical disorder of lithium sub lattice. Thermal expansion and equation of states are also computed. The results compare well with our previous semi-empirical potential calculations.
Ab Initio Molecular Dynamics Simulations of Low-Energy Recoil Events in ThO2, CeO2, and ZrO2
Xiao, Haiyan Y.; Zhang, Yanwen; Weber, William J.
2012-08-13
Ab initio molecular dynamics simulations of low-energy recoil events in ThO2, CeO2, and ZrO2 have been carried out to determine the threshold displacement energies, resulting defect configurations, dynamics of defect generation, and role of charge transfer during the process. The results reveal that, in most cases, these fluorite structure oxides exhibit a similar response to low-energy recoils. A variety of different defect configurations are created, consisting mainly of vacancies and interstitials. Charge transfer occurs during the dynamic displacement process. Local charge redistribution leads to cation and O vacancies being negatively and positively charged, respectively. Likewise, due to charge redistribution, the cation and O interstitials are less positively and negatively charged, respectively, than the ions on lattice sites in perfect MO2.
Ab initio molecular dynamics simulations of low energy recoil events in ThO2, CeO2 and ZrO2
Xiao, Haiyan; Zhang, Yanwen; Weber, William J
2012-01-01
Ab initio molecular dynamics simulations of low energy recoil events in ThO2, CeO2 and ZrO2 have been carried out to determine the threshold displacement energies, resulting defect configurations, dynamics of defect generation, and role of charge transfer during the process. The results reveal that, in most cases, these fluorite structure oxides exhibit a similar response to low-energy recoils. A variety of different defect configurations are created, consisting mainly of vacancies and interstitials. Charge transfer occurs during the dynamic displacement process. Local charge redistribution leads to cation and O vacancies being negatively and positively charged, respectively. Likewise, due to charge redistribution, the cation and O interstitials are less positively and negatively charged, respectively, than the ions on lattice sites in perfect MO2.
NASA Astrophysics Data System (ADS)
Duguet, T.; Bender, M.; Ebran, J.-P.; Lesinski, T.; Somà, V.
2015-12-01
This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come.
NASA Astrophysics Data System (ADS)
Matsuda, Taishi; Yoshida, Yuki; Mitsuhara, Kei; Kido, Yoshiaki
2013-06-01
High-resolution medium energy ion scattering (MEIS) spectrometry coupled with photoelectron spectroscopy revealed unambiguously that the initial SrTiO3(001) surface chemically etched in a buffered NH4F-HF solution was perfectly terminated with a single-layer (SL) of TiO2(001) and annealing the surface at 600-800 °C in ultrahigh vacuum (UHV) led to a (2 × 1)-reconstructed surface terminated with a double-layer (DL) of TiO2(001). After annealing in UHV, rock-salt SrO(001) clusters with two atomic layer height grew epitaxially on the DL-TiO2(001)-2 × 1 surface with a coverage of 20%-30%. High-resolution MEIS in connection with ab initio calculations demonstrated the structure of the DL-TiO2(001)-2 × 1 surface close to that proposed by Erdman et al. [Nature (London) 419, 55 (2002)], 10.1038/nature01010 rather than that predicted by Herger et al. [Phys. Rev. Lett. 98, 076102 (2007)], 10.1103/PhysRevLett.98.076102. Based on the MEIS analysis combined with the ab initio calculations, we propose the most probable (2 × 1) surface structure.
Ab initio theories for light nuclei and neutron stars
NASA Astrophysics Data System (ADS)
Gezerlis, Alexandros
2016-09-01
In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).
Ab initio based polarizable force field parametrization
NASA Astrophysics Data System (ADS)
Masia, Marco
2008-05-01
Experimental and simulation studies of anion-water systems have pointed out the importance of molecular polarization for many phenomena ranging from hydrogen-bond dynamics to water interfaces structure. The study of such systems at molecular level is usually made with classical molecular dynamics simulations. Structural and dynamical features are deeply influenced by molecular and ionic polarizability, which parametrization in classical force field has been an object of long-standing efforts. Although when classical models are compared to ab initio calculations at condensed phase, it is found that the water dipole moments are underestimated by ˜30%, while the anion shows an overpolarization at short distances. A model for chloride-water polarizable interaction is parametrized here, making use of Car-Parrinello simulations at condensed phase. The results hint to an innovative approach in polarizable force fields development, based on ab initio simulations, which do not suffer for the mentioned drawbacks. The method is general and can be applied to the modeling of different systems ranging from biomolecular to solid state simulations.
Ab initio non-relativistic spin dynamics
Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.
2014-12-07
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.
Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Diffusion in liquid Germanium using ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.
1996-03-01
We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Xu, Jun; Zhang, John Z H; Xiang, Yun
2012-10-03
Ab initio QM/MM free-energy simulations were carried out to study the peptide bond formation reaction in the peptidyl transferase center of the ribosome. The QM part of the reaction was treated by density functional theory at the B3LYP/6-31G* level, while the MM part including the solvent and RNA environment was described by molecular force field. The calculated free-energy surfaces for the two popular reaction mechanisms, the six- and eight-membered ring reactions, exhibited large energetic differences which favor the eight-membered reaction mechanism. The simulated quasi-transition state structures clearly indicated a "late" feature consistent with previous theoretical studies. Also the important functional role played by water molecules in the active site of the ribosome and its implication in ribozymic catalysis was discussed in detail.
NASA Astrophysics Data System (ADS)
Mukherjee, Bijit; Mukherjee, Saikat; Adhikari, Satrajit
2016-10-01
We calculate the adiabatic potential energy surfaces and non-adiabatic interactions among the three lowest singlet states (11 A', 21 A' and 31 A') of H3 + in hyperspherical coordinates for a fixed hyperradius, ρ = 9 bohr as functions of hyperangles, θ (0 < θ < 90°) and ϕ (0 < ϕ < 360°). All ab initio calculations are performed using MRCI level of methodology implemented in quantum chemistry package, MOLPRO. The ground (11 A') and the first excited (21 A') states exhibit several conical intersections as functions of ϕ for θ > 70°. Subsequently, we carry out adiabatic to diabatic transformation (ADT) to obtain ADT angles for constructing single-valued, continuous, smooth and symmetric 3 × 3 diabatic potential energy matrix to perform accurate scattering calculations.
NASA Astrophysics Data System (ADS)
Åstrand, Per-Olof; Sommer-Larsen, Peter; Hvilsted, Søren; Ramanujam, P. S.; Bak, Keld L.; Sauer, Stephan P. A.
2000-07-01
The two lowest singlet excitation energies of 18 azo dyes have been studied by ab initio quantum-chemical methods within the second-order polarization propagator approximation (SOPPA). Various combinations of five-membered rings (furan, thiophene, pyrrole, oxazole, thiazole, and imidazole) have been investigated as diazo components for a potential use in optical data storage materials. It is found that the diazo compounds with two heterocyclic five-membered rings have π→π ∗ excitation energies corresponding to laser wavelengths in the region 450-500 nm whereas one five-membered ring and a phenyl group as diazo components results in wavelengths in the region 400-435 nm.
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Ab initio calculations of the melting temperatures of refractory bcc metals.
Wang, L G; van de Walle, A
2012-01-28
We present ab initio calculations of the melting temperatures for bcc metals Nb, Ta and W. The calculations combine phase coexistence molecular dynamics (MD) simulations using classical embedded-atom method potentials and ab initio density functional theory free energy corrections. The calculated melting temperatures for Nb, Ta and W are, respectively, within 3%, 4%, and 7% of the experimental values. We compare the melting temperatures to those obtained from direct ab initio molecular dynamics simulations and see if they are in excellent agreement with each other. The small remaining discrepancies with experiment are thus likely due to inherent limitations associated with exchange-correlation energy approximations within density-functional theory.
Kraisler, Eli; Makov, Guy; Kelson, Itzhak
2010-10-15
The total energies and the spin states for atoms and their first ions with Z=1-86 are calculated within the the local spin-density approximation (LSDA) and the generalized-gradient approximation (GGA) to the exchange-correlation (xc) energy in density-functional theory. Atoms and ions for which the ground-state density is not pure-state v-representable are treated as ensemble v-representable with fractional occupations of the Kohn-Sham system. A recently developed algorithm which searches over ensemble v-representable densities [E. Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations. It is found that for many atoms, the ionization energies obtained with the GGA are only modestly improved with respect to experimental data, as compared to the LSDA. However, even in those groups of atoms where the improvement is systematic, there remains a non-negligible difference with respect to the experiment. The ab initio electronic configuration in the Kohn-Sham reference system does not always equal the configuration obtained from the spectroscopic term within the independent-electron approximation. It was shown that use of the latter configuration can prevent the energy-minimization process from converging to the global minimum, e.g., in lanthanides. The spin values calculated ab initio fit the experiment for most atoms and are almost unaffected by the choice of the xc functional. Among the systems with incorrectly obtained spin, there exist some cases (e.g., V, Pt) for which the result is found to be stable with respect to small variations in the xc approximation. These findings suggest a necessity for a significant modification of the exchange-correlation functional, probably of a nonlocal nature, to accurately describe such systems.
Ab initio calculations for industrial materials engineering: successes and challenges.
Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul
2010-09-29
Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.
Ab initio rotation-vibration spectra of HCN and HNC
NASA Astrophysics Data System (ADS)
Harris, Gregory J.; Polyansky, Oleg L.; Tennyson, Jonathan
2002-03-01
We have calculated an ab initio HCN/HNC linelist for all transitions up to J=25 and 18 000 cm -1 above the zero point energy. This linelist contains more than 200 million lines each with frequencies and transition dipoles. The linelist has been calculated using our semi-global HCN/HNC VQZANO+PES and dipole moment surface, which were reported in van Mourik et al. (J. Chem. Phys. 115 (2001) 3706). With this linelist we synthesise absorption spectra of HCN and HNC at 298 K and we present the band centre and band transition dipoles for the bands which are major features in these spectra. Several of the HCN bands and many of the HNC bands have not been previously studied. Our line intensities reproduce via fully ab initio methods the unusual intensity structure of the HCN CN stretch fundamental (00 01) for the first time and also the forbidden (02 20) HCN bending overtone. We also compare the J=1→0 pure rotational transition dipole in the HCN/HNC ground and vibrationally excited states with experimental and existing ab initio results.
Galvão, B R L; Varandas, A J C
2009-12-31
A new global potential energy surface is reported for the (4)A'' ground electronic state of the N(3) system from double many-body expansion theory and an extensive set of accurate ab initio energies extrapolated to the complete basis set limit. It shows three equivalent metastable potential wells for C(2v) geometries that are separated from the three N((4)S) + N(2) asymptotes by energy barriers as predicted from previous ab initio work. The potential well and barrier height now predicted lie 42.9 and 45.9 kcal mol(-1) above the atom-diatom dissociation limit, respectively, being about 1 kcal mol(-1) lower than previous theoretical estimates. The ab initio calculations here reported predict also a (4)B(1)/(4)A(2) conical intersection and reveal a new minimum with D(3h) symmetry that lies 147 kcal mol(-1) above the atom-diatom asymptote. All major topographical features of the potential energy surface are accurately described by the DMBE function, including the weakly bound van der Waals minima at large atom-diatom separations.
Ab Initio Infrared and Raman Spectra.
1982-08-01
tions. For parameters not depending on momenta, a parallel ab fhti Monte Carlo approach would use electronic energies and other parameters of... Monte Carlo approach. Specifically, as one of us has suggested,t I classical molecular dynamics may be integrated with ab iniHo quan- tum force...alternative approach, for phenomena which are not explicitly time dependent, is a Monte Carlo procedure in which at each trial nuclear configuration
Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao
2009-04-28
A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.
Ab Initio Modeling of Molecular Radiation
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Schwenke, David
2014-01-01
Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.
Discovering chemistry with an ab initio nanoreactor
NASA Astrophysics Data System (ADS)
Martinez, Todd
Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.
Guiding ab initio calculations by alchemical derivatives
NASA Astrophysics Data System (ADS)
to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.
2016-03-01
We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-01-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less
NASA Astrophysics Data System (ADS)
Karton, Amir; Martin, Jan M. L.
2012-10-01
Accurate isomerization energies are obtained for a set of 45 C8H8 isomers by means of the high-level, ab initio W1-F12 thermochemical protocol. The 45 isomers involve a range of hydrocarbon functional groups, including (linear and cyclic) polyacetylene, polyyne, and cumulene moieties, as well as aromatic, anti-aromatic, and highly-strained rings. Performance of a variety of DFT functionals for the isomerization energies is evaluated. This proves to be a challenging test: only six of the 56 tested functionals attain root mean square deviations (RMSDs) below 3 kcal mol-1 (the performance of MP2), namely: 2.9 (B972-D), 2.8 (PW6B95), 2.7 (B3PW91-D), 2.2 (PWPB95-D3), 2.1 (ωB97X-D), and 1.2 (DSD-PBEP86) kcal mol-1. Isomers involving highly-strained fused rings or long cumulenic chains provide a 'torture test' for most functionals. Finally, we evaluate the performance of composite procedures (e.g. G4, G4(MP2), CBS-QB3, and CBS-APNO), as well as that of standard ab initio procedures (e.g. MP2, SCS-MP2, MP4, CCSD, and SCS-CCSD). Both connected triples and post-MP4 singles and doubles are important for accurate results. SCS-MP2 actually outperforms MP4(SDQ) for this problem, while SCS-MP3 yields similar performance as CCSD and slightly bests MP4. All the tested empirical composite procedures show excellent performance with RMSDs below 1 kcal mol-1.
Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules
NASA Astrophysics Data System (ADS)
Shiga, Motoyuki; Nakayama, Akira
2008-01-01
The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.
NASA Astrophysics Data System (ADS)
Luxford, Thomas F. M.; Sharples, Thomas R.; McKendrick, Kenneth G.; Costen, Matthew L.
2016-11-01
We present a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(A2Σ+, v = 0, N = 0, j = 0.5) in collisions with Ne atoms. From these measurements, we report differential cross sections and angle-resolved rotational angular momentum alignment moments for product states N' = 3 and 5-10 for collisions at an average energy of 523 cm-1, and N' = 3 and 5-14 for collisions at an average energy of 1309 cm-1, respectively. The experimental results are compared to the results of close-coupled quantum scattering calculations on two literature ab initio potential energy surfaces (PESs) [Pajón-Suárez et al., Chem. Phys. Lett. 429, 389 (2006) and Cybulski and Fernández, J. Phys. Chem. A 116, 7319 (2012)]. The differential cross sections from both experiment and theory show clear rotational rainbow structures at both collision energies, and comparison of the angles observed for the rainbow peaks leads to the conclusion that Cybulski and Fernández PES better represents the NO(A2Σ+)-Ne interaction at the collision energies used here. Sharp, forward scattered (<10°), peaks are observed in the experimental differential cross sections for a wide range of N' at both collision energies, which are not reproduced by theory on either PES. We identify these as L-type rainbows, characteristic of attractive interactions, and consistent with a shallow well in the collinear Ne-N-O geometry, similar to that calculated for the NO(A2Σ+)-Ar surface [Kłos et al., J. Chem. Phys. 129, 244303 (2008)], but absent from both of the NO(A2Σ+)-Ne surfaces tested here. The angle-resolved alignment moments calculated by quantum scattering theory are generally in good agreement with the experimental results, but both experiment and quantum scattering theories are dramatically different to the predictions of a classical rigid-shell, kinematic-apse conservation model. Strong oscillations are resolved in the experimental alignment moments as a
Luxford, Thomas F M; Sharples, Thomas R; McKendrick, Kenneth G; Costen, Matthew L
2016-11-07
We present a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) in collisions with Ne atoms. From these measurements, we report differential cross sections and angle-resolved rotational angular momentum alignment moments for product states N' = 3 and 5-10 for collisions at an average energy of 523 cm(-1), and N' = 3 and 5-14 for collisions at an average energy of 1309 cm(-1), respectively. The experimental results are compared to the results of close-coupled quantum scattering calculations on two literature ab initio potential energy surfaces (PESs) [Pajón-Suárez et al., Chem. Phys. Lett. 429, 389 (2006) and Cybulski and Fernández, J. Phys. Chem. A 116, 7319 (2012)]. The differential cross sections from both experiment and theory show clear rotational rainbow structures at both collision energies, and comparison of the angles observed for the rainbow peaks leads to the conclusion that Cybulski and Fernández PES better represents the NO(A(2)Σ(+))-Ne interaction at the collision energies used here. Sharp, forward scattered (<10°), peaks are observed in the experimental differential cross sections for a wide range of N' at both collision energies, which are not reproduced by theory on either PES. We identify these as L-type rainbows, characteristic of attractive interactions, and consistent with a shallow well in the collinear Ne-N-O geometry, similar to that calculated for the NO(A(2)Σ(+))-Ar surface [Kłos et al., J. Chem. Phys. 129, 244303 (2008)], but absent from both of the NO(A(2)Σ(+))-Ne surfaces tested here. The angle-resolved alignment moments calculated by quantum scattering theory are generally in good agreement with the experimental results, but both experiment and quantum scattering theories are dramatically different to the predictions of a classical rigid-shell, kinematic-apse conservation model. Strong oscillations are resolved in the experimental alignment
NASA Astrophysics Data System (ADS)
Dai, Zuyang; Sun, Wei; Wang, Jia; Mo, Yuxiang
2015-05-01
The energy levels of CD3F+ (X∼2 E) have been measured up to 1400 cm-1 above the ground vibrational state using the one-photon zero-kinetic energy photoelectron (ZEKE) spectroscopic method. The spin-vibronic energy levels have also been calculated using an ab initio diabatic model. The potential energy surfaces of CD3F+ were calculated from those of CH3F+ using a transformation of the normal coordinates. The calculations show that tunneling splittings of vibrational energy levels exist due to the three equivalent wells caused by the linear-plus-strong quadratic Jahn-Teller coupling. The splittings are smaller than those in CH3F+. The experimental spectrum was assigned based on the fundamental vibrational modes calculated at the energy minimum. The calculated spin-vibronic energy levels are in good agreement with the experimental data. The tunneling splitting pairs for the fundamental vibrations related to the CD3 rock were observed. The first adiabatic ionization energy was determined as 101 534 ± 3 cm-1 or 12.5886 ± 0.0004 eV.
NASA Astrophysics Data System (ADS)
Czakó, Gábor
2013-04-01
Chemically accurate full-dimensional non-spin-orbit and spin-orbit (SO) ground-state potential energy surfaces (PESs) are obtained for the Br + CH4 → HBr + CH3 reaction by fitting 21 574 composite ab initio energy points. The composite method considers electron correlation methods up to CCSD(T), basis sets up to aug-cc-pwCVTZ-PP, correlation of the core electrons, scalar relativistic effects via an effective core potential (ECP), and SO corrections, thereby achieving an accuracy better than 0.5 kcal/mol. Benchmark structures and relative energies are computed for the stationary points using the ab initio focal-point analysis (FPA) scheme based on both ECP and Douglas-Kroll approaches providing all-electron relativistic CCSDT(Q)/complete-basis-set quality energies. The PESs accurately describe the saddle point of the abstraction reaction and the van der Waals complexes in the entrance and product channels. The SO-corrected PES provides a classical barrier height of 7285(7232 ± 50) cm-1, De values of 867(799 ± 10) and 399(344 ± 10) cm-1 for the complexes CH3-HBr and CH3-BrH, respectively, and reaction endothermicity of 7867(7857 ± 50) cm-1, in excellent agreement with the new, FPA-based benchmark data shown in parentheses. The difference between the Br + CH4 asymptotes of the non-SO and SO PESs is 1240 cm-1, in good agreement with the experiment (1228 cm-1). Quasiclassical trajectory calculations based on more than 13 million trajectories for the late-barrier Br + CH4(vk = 0, 1) [k = 1, 2, 3, 4] reactions show that the vibrational energy, especially the excitation of the stretching modes, activates the reaction much more efficiently than translational energy, in agreement with the extended Polanyi rules. Angular distributions show dominant backward scattering for the ground-state reaction and forward scattering for the stretching-excited reactions. The reactivity on the non-SO PES is about 3-5 times larger than that on the SO PES in a wide collision energy
Czakó, Gábor
2013-04-07
Chemically accurate full-dimensional non-spin-orbit and spin-orbit (SO) ground-state potential energy surfaces (PESs) are obtained for the Br + CH4 → HBr + CH3 reaction by fitting 21 574 composite ab initio energy points. The composite method considers electron correlation methods up to CCSD(T), basis sets up to aug-cc-pwCVTZ-PP, correlation of the core electrons, scalar relativistic effects via an effective core potential (ECP), and SO corrections, thereby achieving an accuracy better than 0.5 kcal∕mol. Benchmark structures and relative energies are computed for the stationary points using the ab initio focal-point analysis (FPA) scheme based on both ECP and Douglas-Kroll approaches providing all-electron relativistic CCSDT(Q)∕complete-basis-set quality energies. The PESs accurately describe the saddle point of the abstraction reaction and the van der Waals complexes in the entrance and product channels. The SO-corrected PES provides a classical barrier height of 7285(7232 ± 50) cm(-1), De values of 867(799 ± 10) and 399(344 ± 10) cm(-1) for the complexes CH3-HBr and CH3-BrH, respectively, and reaction endothermicity of 7867(7857 ± 50) cm(-1), in excellent agreement with the new, FPA-based benchmark data shown in parentheses. The difference between the Br + CH4 asymptotes of the non-SO and SO PESs is 1240 cm(-1), in good agreement with the experiment (1228 cm(-1)). Quasiclassical trajectory calculations based on more than 13 million trajectories for the late-barrier Br + CH4(vk = 0, 1) [k = 1, 2, 3, 4] reactions show that the vibrational energy, especially the excitation of the stretching modes, activates the reaction much more efficiently than translational energy, in agreement with the extended Polanyi rules. Angular distributions show dominant backward scattering for the ground-state reaction and forward scattering for the stretching-excited reactions. The reactivity on the non-SO PES is about 3-5 times larger than that on the SO PES in a wide
Le, Hung M; Dinh, Thach S; Le, Hieu V
2011-10-13
The singlet-triplet transformation and molecular dissociation of ozone (O(3)) gas is investigated by performing quasi-classical molecular dynamics (MD) simulations on an ab initio potential energy surface (PES) with visible and near-infrared excitations. MP4(SDQ) level of theory with the 6-311g(2d,2p) basis set is executed for three different electronic spin states (singlet, triplet, and quintet). In order to simplify the potential energy function, an approximation is adopted by ignoring the spin-orbit coupling and allowing the molecule to switch favorably and instantaneously to the spin state that is more energetically stable (lowest in energy among the three spin states). This assumption has previously been utilized to study the SiO(2) system as reported by Agrawal et al. (J. Chem. Phys. 2006, 124 (13), 134306). The use of such assumption in this study probably makes the upper limits of computed rate coefficients the true rate coefficients. The global PES for ozone is constructed by fitting 5906 ab initio data points using a 60-neuron two-layer feed-forward neural network. The mean-absolute error and root-mean-squared error of this fit are 0.0446 eV (1.03 kcal/mol) and 0.0756 eV (1.74 kcal/mol), respectively, which reveal very good fitting accuracy. The parameter coefficients of the global PES are reported in this paper. In order to identify the spin state with high confidence, we propose the use of a pattern-recognition neural network, which is trained to predict the spin state of a given configuration (with a prediction accuracy being 95.6% on a set of testing data points). To enhance the prediction effectiveness, a buffer series of five points are validated to confirm the spin state during the MD process to gain better confidence. Quasi-classical MD simulations from 1.2 to 2.4 eV of total internal energy (including zero-point energy) result in rate coefficients of singlet-triplet transformation in the range of 0.027 ps(-1) to 1.21 ps(-1). Also, we find very
Ab initio molecular simulations with numeric atom-centered orbitals
NASA Astrophysics Data System (ADS)
Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias
2009-11-01
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.
Zhu, Hua; Guo, Yong; Xue, Ying; Xie, Daiqian
2006-07-15
An ab initio potential energy surface for the Ar--OCS dimer was calculated using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)] with a large basis set containing bond functions. The interaction energies were obtained by the supermolecular approach with the full counterpoise correction for the basis set superposition error. The CCSD(T) potential was found to have two minima corresponding to the T-shaped and the collinear Ar--SCO structures. The two-dimensional discrete variable representation method was employed to calculate the rovibrational energy levels for five isotopomers Ar--OCS, Ar--OC34S, Ar--O13CS, Ar--18OCS, and Ar--17OCS. The calculated pure rotational transition frequencies for the vibrational ground state of the five isotopomers are in good agreement with the observed values. The corresponding microwave spectra show that the b-type transitions (Delta Ka = +/-1) are significantly stronger than the a-type transitions (Delta Ka = 0). Minimum-energy structures of the Ar2--OCS trimer were been determined with MP2 optimization, whereas the minimum-energy structures of the Arn--OCS clusters with n = 3-14 were obtained with the pairwise additive potentials. It was found that there are two minima corresponding to one distorted tetrahedral structure and one planar structure for the ternary complex. The 14 nearest neighbor Ar atoms form the first solvation shell around the OCS molecule.
Ab Initio Study of Phase Equilibria in TiCx
NASA Astrophysics Data System (ADS)
Korzhavyi, P. A.; Pourovskii, L. V.; Hugosson, H. W.; Ruban, A. V.; Johansson, B.
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx ( x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies ( Ti2C, Ti3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures.
Pseudorotation motion in tetrahydrofuran: an ab initio study.
Rayón, Víctor M; Sordo, Jose A
2005-05-22
The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.
Ab Initio Calculations Applied to Problems in Metal Ion Chemistry
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)
1994-01-01
Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.
NASA Astrophysics Data System (ADS)
H., Michael; | Isobel C., Palmer; Walker
2010-08-01
The electronic vertical excitation energies for singlet and triplet valence, and Rydberg states of trans-buta-1,3-diene have been computed using ab initio multi-reference multi-root CI procedures with a [4s3p3d3f] set of Rydberg functions. Close numerical agreement between theory and experiment was found for a number of low-lying electronic states. The present CI and CASSCF [8MO,8e] calculations suggest that both the vertical and adiabatic order of the valence (ππ∗) states is: A˜1Aenergy-loss spectrum, reported here, in which the incident electrons have near-threshold energies, supports this order. Adiabatic excitation energies and structures were obtained for several singlet and triplet states using CASSCF and B3LYP procedures; the results from these methods are generally in good agreement with each other. The C 1C 2 to C 2C 3 bond length ratio in the excited states varies widely, and is discussed.
NASA Astrophysics Data System (ADS)
Palmer, Michael H.; Ganzenmüller, Georg; Walker, Isobel C.
2007-04-01
The oxazole VUV absorption spectrum over the range 5-12 eV shows intense bands centred near 6.3, 7.5, 8.3, 9.6 and 10.8 eV. The electron energy-loss (EEL) spectrum shows additional structure with a strong peak (˜1.4 eV) arising from resonant vibrational excitation of the molecule via a shape resonance, and a spin-forbidden 3ππ ∗ state at 4.6 eV. Electronic excitation energies for valence and Rydberg-type states have been computed using ab initio multi-reference multi-root CI methods. The CI studies used a triple zeta + polarisation basis set, augmented by diffuse (Rydberg) orbitals, to generate the theoretical singlet and triplet energy manifolds. The correlation of theory and experiment shows the nature of the more intense Rydberg state types, and identification of the main valence and Rydberg bands. Calculated energies for low-lying Rydberg states are relatively close (SD 0.38) to those expected, and there is generally a good correlation between the theoretical and experimental envelopes. Two of the three lowest electronic states arise from ππ ∗ excitation of the outer (3a″ and 2a″) π-orbitals, with one state (LP Nπ ∗) originating from the lone pair on nitrogen (15a') between them.
Martínez-Núñez, Emilio; Vázquez, Saulo A; Aoiz, F Javier; Castillo, Jesús F
2006-02-02
Classical trajectory calculations have been performed to investigate the collision-induced dissociation (CID) of the CH(3)SH(+) cation with Ar atoms. A new intramolecular potential energy surface for the CH(3)SH(+) cation is evaluated by interpolation of 3000 ab initio data points calculated at the MP2/6-311G(d,p) level of theory. The new potential energy surface includes seven accessible dissociation channels of the cation. The present QCT calculations show that migration of hydrogen atoms, leading to the rearrangement CH(3)SH(+) <--> CH(2)SH(2)(+), is significant at the collision energies considered (6.5-34.7 eV) and that the formation of CH(3)(+), CH(3)S(+), and CH(2)(+) cations takes place primarily by a "shattering" mechanism in which the products are formed just after the collision. The theoretical product abundances are found to be in qualitative agreement with the experimental data. However, at high collision energies, the calculated total cross sections for the formation of CH(3)(+) and CH(2)SH(+) cations are noticeably larger than the experimental determinations. Several features of the dynamics of the CID processes are discussed.
Denis-Alpizar, Otoniel; Kalugina, Yulia; Stoecklin, Thierry; Vera, Mario Hernández; Lique, François
2013-12-14
We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H{sub 2}. Ab initio calculations of the HCN–H{sub 2} van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN–H{sub 2} with the nitrogen pointing towards H{sub 2} at an intermolecular separation of 7.20 a{sub 0}. The corresponding well depth is −195.20 cm{sup −1}. A secondary minimum of −183.59 cm{sup −1} was found for a T-shape configuration with the H of HCN pointing to the center of mass of H{sub 2}. We also determine the rovibrational energy levels of the HCN–para-H{sub 2} and HCN–ortho-H{sub 2} complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm{sup −1} and 60.26 cm{sup −1}, respectively. The calculated ro-vibrational transitions in the HCN–H{sub 2} complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.
Gómez-Carrasco, S.; González-Sánchez, L.; Roncero, O.
2014-03-20
The dynamics and kinetics of the LiH + H reaction have been studied by using an accurate quantum reactive time-dependent wave packet method on the ab initio ground electronic state potential energy surfaces (PES) developed earlier. Reaction probabilities for the two possible reaction channels, the LiH + H→ H{sub 2} + Li depletion process and the LiH + H→H + LiH hydrogen exchange reaction, have been calculated from 1 meV up to 1.0 eV collision energies for total angular momenta J from 0 to 80. State-to-state and total integral cross sections for the LiH-depletion and H-exchange channels of the reaction have been calculated over this collision energy range. It is found that the LiH-depletion channel is dominant in the whole range of collision energies for both PESs. Accurate total rate coefficients have been calculated on both surfaces from 100 K to 2000 K and are significantly larger than previous empirical estimates and previous J-shifting results. In addition, the present accurate calculations present noticeable differences with previous calculations using the centrifugal sudden approximation.
Ab Initio: And a New Era of Airline Pilot Training.
ERIC Educational Resources Information Center
Gesell, Laurence E.
1995-01-01
Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)
Ab initio two-component Ehrenfest dynamics
Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong
2015-09-21
We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.
Ab initio phase diagram of iridium
NASA Astrophysics Data System (ADS)
Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.
2016-09-01
The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.
Ab initio calculations of nitramine dimers
NASA Astrophysics Data System (ADS)
Koh-Fallet, Sharon; Schweigert, Igor
2015-06-01
Elevated temperatures and pressures are typically thought to have opposing effects on the reaction channels of nitramine decomposition. These high temperatures promote reactions with loose transition structures (positive activation entropies and volumes), such as N-N bond homolysis. Elevated pressures promote reactions with tight transition structures (negative activation entropies and volumes), such as intramolecular and intermolecular H transfer. However, no quantitative data exists regarding the range of temperatures and pressures at which these effects become pronounced. We are pursuing ab initio calculations of the corresponding unimolecular and bimolecular transition structures with the objective of estimating the relevant thermochemical parameters and quantifying the effects of elevated temperature and pressures on the corresponding rate constants. Here, we present density functional theory and complete active space calculations of gas-phase molecular dimers of nitramines as an intermediate step toward modeling transition structures directly in the condensed phase. This work was supported by the Naval Research Laboratory via the American Society for Engineering and Education and by the Office of Naval Research, both directly and through the Naval Research Laboratory.
Ab-initio study of hexagonal apatites
NASA Astrophysics Data System (ADS)
Calderin, Lazaro; Stott, Malcom J.
2001-03-01
A silicon stabilized mixture of calcium phosphate phases has been recognized as playing an important role in actively resorbable coatings and in ceramics as bone materials. The nature of this material is being investigated using a variety of techniques including a combination of crystallographic analysis of measured x-ray diffraction spectra, and ab initio quantum mechanics simulations. We have used all-electron, density functional based calculations to investigate a group of hexagonal apatites. The fully relaxed crystallographic structures of hydroxyapatite, and related apatites have been obtained. We will present the results and discuss the nature of the bonding in these materials. The x-ray diffraction pattern and the infra-red spectra have also been obtained and will be compared with experiment. Acknowledgments:This work is part of a collaboration with the Applied Ceramics group of M.Sayer, and with Millenium Biologix Inc. Support of the NSERC of Canada through the award of a Co-operative R & D grant to the collaboration is acknowledged.
Liu, Zhen-Fei; Neaton, Jeffrey B.
2014-10-07
The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.
NASA Astrophysics Data System (ADS)
Szabó, István; Czakó, Gábor
2016-10-01
We report a detailed quasiclassical trajectory study for the dynamics of the ground-state and CH/CD stretching-excited F- + CHD2Cl(vCH/CD = 0, 1) → Cl- + CHD2F, HF + CD2Cl-, and DF + CHDCl- SN2, proton-, and deuteron-abstraction reactions using a full-dimensional global ab initio analytical potential energy surface. The simulations show that (a) CHD2Cl(vCH/CD = 1), especially for vCH = 1, maintains its mode-specific excited character prior to interaction, (b) the SN2 reaction is vibrationally mode-specific, (c) double inversion can occur and is enhanced upon CH/CD stretching excitations, (d) in the abstraction reactions the HF channel is preferred and the vCH/CD = 1 excitations significantly promote the HF/DF channels, (e) back-side rebound, back-side stripping, and front-side stripping are the dominant direct abstraction mechanisms based on correlated scattering- and attack-angle distributions, (f) the exact classical vibrational energy-based Gaussian binning (1GB) provides realistic mode-specific polyatomic product state distributions, (g) in the abstraction reactions CH and CD stretchings are not pure spectator modes and mainly ground-state products are produced, thus most of the initial energy transfers into product translation, and (h) the HF and DF product molecules are rotationally cold without any significant dependence on the reactant's and HF/DF vibrational states.
Westphal, Eduard; Pliego, Josefredo R. Jr.
2005-08-15
The solvation of the lithium and sodium ions in dimethyl sulfoxide solution was theoretically investigated using ab initio calculations coupled with the hybrid cluster-continuum model, a quasichemical theory of solvation. We have investigated clusters of ions with up to five dimethyl sulfoxide (DMSO) molecules, and the bulk solvent was described by a dielectric continuum model. Our results show that the lithium and sodium ions have four and five DMSO molecules into the first coordination shell, and the calculated solvation free energies are -135.5 and -108.6 kcal mol{sup -1}, respectively. These data suggest a solvation free energy value of -273.2 kcal mol{sup -1} for the proton in dimethyl sulfoxide solution, a value that is more negative than the present uncertain experimental value. This and previous studies on the solvation of ions in water solution indicate that the tetraphenylarsonium tetraphenylborate assumption is flawed and the absolute value of the free energy of transfer of ions from water to DMSO solution is higher than the present experimental values.
NASA Astrophysics Data System (ADS)
Liu, Zhen-Fei; Neaton, Jeffrey B.
2014-10-01
The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.
NASA Astrophysics Data System (ADS)
Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long; Li, Hui
2016-12-01
A full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H2O-He, which explicitly incorporates dependence on the intra-molecular (Q1,Q2,Q3) normal-mode coordinates of the H2O monomer has been calculated in this work. In addition, three analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averaged interaction energies for the (v1,v2,v3) = (0, 0, 0), (0, 0, 1) and (0, 1, 0) states of H2O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 578 points has root-mean-square (rms) deviation smaller than 0.1 cm-1, and required only 53 parameters. With the 3D PESs of the H2O-He dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. The rovibrational spectra and their relative intensities for the H2O-He complex have been predicted for the first time.
Li, Junjie; Iyengar, Srinivasan S
2015-09-08
Here, we demonstrate the application of fragment-based electronic structure calculations in (a) ab initio molecular dynamics (AIMD) and (b) reduced dimensional potential calculations, for medium- and large-sized protonated water clusters. The specific fragmentation algorithm used here is derived from ONIOM, but includes multiple, overlapping “model” systems. The interaction between the various overlapping model systems is (a) approximated by invoking the principle of inclusion-exclusion at the chosen higher level of theory and (b) within a real calculation performed at the chosen lower level of theory. The fragmentation algorithm itself is written using bit-manipulation arithmetic, which will prove to be advantageous, since the number of fragments in such methods has the propensity to grow exponentially with system size. Benchmark calculations are performed for three different protonated water clusters: H₉O₄⁺, H₁₃O₆⁺ and H(H₂O)₂₁⁺. For potential energy surface benchmarks, we sample the normal coordinates and compare our surface energies with full MP2 and CCSD(T) calculations. The mean absolute error for the fragment-based algorithm is <0.05 kcal/mol, when compared with MP2 calculations, and <0.07 kcal/mol, when compared with CCSD(T) calculations over 693 different geometries for the H₉O₄⁺ system. For the larger H(H₂O)₂₁⁺ water cluster, the mean absolute error is on the order of a 0.1 kcal/mol, when compared with full MP2 calculations for 84 different geometries, at a fraction of the computational cost. Ab initio dynamics calculations were performed for H₉O₄⁺ and H₁₃O₆⁺, and the energy conservation was found to be of the order of 0.01 kcal/mol for short trajectories (on the order of a picosecond). The trajectories were kept short because our algorithm does not currently include dynamical fragmentation, which will be considered in future publications. Nevertheless, the velocity autocorrelation functions and their
NASA Astrophysics Data System (ADS)
Mancini, John S.; Bowman, Joel M.
2013-03-01
We report a global, full-dimensional, ab initio potential energy surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44 000 CCSD(T)-F12b/aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm-1. The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm-1, in good agreement with the recent experimentally reported value of 1334 ± 10 cm-1 [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010), 10.1021/jp102532m]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C2v double-well saddle point and not the Cs global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm-1 above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm-1, which we hope will stand as a benchmark for future experimental work.
Mancini, John S; Bowman, Joel M
2013-03-28
We report a global, full-dimensional, ab initio potential energy surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44,000 CCSD(T)-F12b∕aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm(-1). The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm(-1), in good agreement with the recent experimentally reported value of 1334 ± 10 cm(-1) [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010)]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C(2v) double-well saddle point and not the C(s) global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm(-1) above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm(-1), which we hope will stand as a benchmark for future experimental work.
Li, Quan-Song; Zhang, Feng; Fang, Wei-Hai; Yu, Jian-Guo
2006-02-07
In the present work, the wavelength-dependent mechanistic photochemistry of glyoxal in the gas phase has been explored by ab initio calculations of potential-energy surfaces, surface crossing points, and adiabatic and nonadiabatic rates. The CHOCHO molecules in S1 by photoexcitation at 393-440 nm mainly decay to the ground state via internal conversion, which is followed by molecular eliminations to form CO, H2CO,H2, and HCOH. Upon photodissociation of CHOCHO at 350-390 nm, intersystem crossing to T1 followed by the C-C bond cleavage is the dominant process in this wavelength range, which is responsible for the formation of the CHO radicals. The C-C and C-H bond cleavages along the S1 pathway are energetically accessible upon photodissociation of CHOCHO at 290-310 nm, which can compete with the S1-->T1 intersystem crossing process. The present study predicts that the C-H bond cleavage on the S1 surface is probably a new photolysis pathway at high excitation energy, which has not been observed experimentally. In addition, the trans-cis isomerization is predicted to occur more easily in the ground state than in the excited states.
Kumar, Praveen; Jiang, Bin; Guo, Hua; Kłos, Jacek; Alexander, Millard H; Poirier, Bill
2017-02-09
The high resolution spectroscopy of the SO2 molecule is of great topical interest, in a wide variety of contexts ranging from origins of higher life, to astrophysics of the interstellar medium, to environmental chemistry. In particular, the C̃(1)B2 ← X̃(1)A1 UV photoabsorption spectrum has received considerable attention. This spectrum exhibits a highly regular progression of ∼20 or so strong peaks, spaced roughly 350 cm(-1) apart, which is comparable to the C̃(1)B2 bending vibrational frequency. Accordingly, they have for decades been largely attributed to the (1, v2('), 2) ← (0, 0, 0) bend progression. Using a highly accurate new ab initio potential energy surface (PES) for the C̃(1)B2 state, we compute vibrational energy levels and wave functions, and compare with a photoabsorption calculation obtained using the same PES and corresponding C̃(1)B2 ← X̃(1)A1 transition dipole surface (TDS). We find that the above putative assignment is incorrect, contradicting even general qualitative trends-thus necessitating a very different dynamical picture for this highly unusual molecule.
Mauney, Christopher; Lazzati, Davide; Buongiorno Nardelli, Marco
2015-02-10
The binding energies of n < 100 carbon clusters are calculated using the ab initio density functional theory code Quantum Espresso. Carbon cluster geometries are determined using several levels of classical techniques and further refined using density functional theory. The resulting energies are used to compute the work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen-poor environments, such as the inner layers of core-collapse supernovae and supernova remnants.
Skutterudites under pressure: An ab initio study
Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.
2014-03-07
Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.
Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus; Windus, Theresa L.
2013-12-07
The diatomic carbon molecule has a complex electronic structure with a large number of low-lying electronic excited states. In this work, the potential energy curves (PECs) of the four lowest lying singlet states (X-1 Sigma(+)(g), A(1)Pi(u), B-1 Delta(g), and B'(1)Sigma(+)(g)) were obtained by high-level ab initio calculations. Valence electron correlation was accounted for by the correlation energy extrapolation by intrinsic scaling (CEEIS) method. Additional corrections to the PECs included core-valence correlation and relativistic effects. Spin-orbit corrections were found to be insignificant. The impact of using dynamically weighted reference wave functions in conjunction with CEEIS was examined and found to give indistinguishable results from the even weighted method. The PECs showed multiple curve crossings due to the B-1 Delta(g) state as well as an avoided crossing between the two (1)Sigma(+)(g) states. Vibrational energy levels were computed for each of the four electronic states, as well as rotational constants and spectroscopic parameters. Comparison between the theoretical and experimental results showed excellent agreement overall. Equilibrium bond distances are reproduced to within 0.05 %. The dissociation energies of the states agree with experiment to within similar to 0.5 kcal/mol, achieving "chemical accuracy." Vibrational energy levels show average deviations of similar to 20 cm(-1) or less. The B-1 Delta(g) state shows the best agreement with a mean absolute deviation of 2.41 cm(-1). Calculated rotational constants exhibit very good agreement with experiment, as do the spectroscopic constants.
Qu, Chen; Conte, Riccardo; Houston, Paul L; Bowman, Joel M
2015-03-28
The potential energy surface of the methane-water dimer is represented as the sum of a new intrinsic two-body potential energy surface and pre-existing intramolecular potentials for the monomers. Different fits of the CH4-H2O intrinsic two-body energy are reported. All these fits are based on 30 467 ab initio interaction energies computed at CCSD(T)-F12b/haTZ (aug-cc-pVTZ for C and O, cc-pVTZ for H) level of theory. The benchmark fit is a full-dimensional, permutationally-invariant analytical representation with root-mean-square (rms) fitting error of 3.5 cm(-1). Two other computationally more efficient two-body potentials are also reported, albeit with larger rms fitting errors. Of these a compact permutationally invariant fit is shown to be the best one in combining precision and speed of evaluation. An intrinsic two-body dipole moment surface is also obtained, based on MP2/haTZ expectation values, with an rms fitting error of 0.002 au. As with the potential, this dipole moment surface is combined with existing monomer ones to obtain the full surface. The vibrational ground state of the dimer and dissociation energy, D0, are determined by diffusion Monte Carlo calculations, and MULTIMODE calculations are performed for the IR spectrum of the intramolecular modes. The relative accuracy of the different intrinsic two-body potentials is analyzed by comparing the energetics and the harmonic frequencies of the global minimum well, and the maximum impact parameter employed in a sample methane-water scattering calculation.
Three-cluster dynamics within an ab initio framework
Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr
2013-09-26
In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less
Ab initio study of hot electrons in GaAs.
Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G
2015-04-28
Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials.
Emission Spectroscopy and Ab Initio Calculations for TaN
NASA Astrophysics Data System (ADS)
Ram, R. S.; Liévin, J.; Bernath, P. F.
2002-10-01
The emission spectra of TaN have been investigated in the region 3000-35 000 cm -1 using a Fourier transform spectrometer. The spectra were observed in a tantalum hollow-cathode lamp by discharging a mixture of 1.5 Torr of Ne and about 6 mTorr of N 2. In addition to previously known bands, numerous additional bands were observed and assigned to a number of new transitions. The spectroscopic properties of the low-lying electronic states of TaN were also predicted by ab initio calculations. A 1Σ + state, with equilibrium constants of Be=0.457 852 1(48) cm -1, α e=0.002 235 9(67) cm -1, and Re=1.683 099 9(88) Å, has been identified as the ground state of TaN based on our experimental observations supported by the ab initio results. The first excited state has been identified as the a3Δ 1 spin component at 2827 cm -1 above the ground state. To higher energies, the states become difficult to assign because of their Hund's case (c) behavior and extensive interactions between the spin components of the electronic terms.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C
2015-01-01
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906
Implementation of renormalized excitonic method at ab initio level.
Zhang, Hongjiang; Malrieu, Jean-Paul; Ma, Haibo; Ma, Jing
2012-01-05
The renormalized excitonic method [Hajj et al., Phys Rev B 2005, 72, 224412], in which the excited state of the whole system may be described as a linear combination of local excitations, has been implemented at ab initio level. Its performance is tested on the ionization potential and the energy gap between singlet ground state and lowest triplet for linear molecular hydrogen chains and more realistic systems, such as polyenes and polysilenes, using full configuration interaction (FCI) wave functions with a minimal basis set. The influence of different block sizes and the extent of interblock interactions are investigated. It has been demonstrated that satisfactory results can be obtained if the near degeneracies between the model space and the outer space are avoided and if interactions between the next-nearest neighbor blocks are considered. The method can be used with larger basis sets and other accurate enough ab initio evaluations (instead of FCI) of local excited states, from blocks, or from dimers or trimers of blocks. It provides a new possibility to accurately and economically describe the low-lying delocalized excited states of large systems, even inhomogeneous ones.
Ab initio study of hot electrons in GaAs
Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.
2015-01-01
Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron–phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron–phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron–phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C
2015-02-14
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Mastalerz, R; Zehnder, O; Reiher, M; Merkt, F
2012-10-09
The dependence of the spin-orbit-coupling constant of the six low-lying electronic states of Ar2(+) and Kr2(+) on the internuclear distance R has been calculated ab initio. The spin-orbit-coupling constant varies by about 10% over the range of internuclear distances relevant for the interpretation of the high-resolution photoelectron spectra of Ar2 and Kr2 and can be accurately represented by a Morse-type function for the states of ungerade electronic symmetry and by an exponentially decreasing function for the states of gerade symmetry. The spin-orbit-coupling constant is larger than the asymptotic value (at R → ∞) for the gerade states and smaller for the ungerade states. The calculated R-dependent spin-orbit-coupling constants were used to derive a new set of potential energy functions for the low-lying electronic states of Ar2(+) and Kr2(+) and to quantify the errors resulting from the widely used approach consisting of approximating the spin-orbit-coupling constant by its asymptotic value. The effects of the R dependence on the potential energy functions of the six low-lying electronic states of the homonuclear rare-gas dimer ions are found to be very small for Ar2(+) (and by inference also for Ne2(+)) but significant for Kr2(+). The shifts arising in calculations of the potential energy functions from a neglect of the R dependence of the spin-orbit-coupling constant are the result of the interplay between the differences between the binding energies of the relevant (2)Π and (2)Σ(+) states, the magnitude of the spin-orbit-coupling constant, and the magnitude and sign of the deviations between the R-dependent spin-orbit-coupling constant and its asymptotic value at large internuclear distances.
Ab initio water pair potential with flexible monomers.
Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof
2015-03-26
A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects.
Ab Initio Study of KCl and NaCl Clusters
NASA Astrophysics Data System (ADS)
Brownrigg, Clifton; Hira, Ajit; Pacheco, Jose; Salazar, Justin
2013-03-01
We continue our interest in the theoretical study of molecular clusters to examine the chemical properties of small KnCln and NanCln clusters (n = 2 - 15). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods of quantum chemistry to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations have been performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. The potential for design of new medicinal drugs is explored.
de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Peterson, Kirk A
2012-05-07
In this work, we report the construction of potential energy surfaces for the (3)A('') and (3)A(') states of the system O((3)P) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O((3)P) + HBr → OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A('') electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A(') surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A('') and 4.16 kcal/mol for the (3)A(') state.
Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Barrett, Bruce R.; Navrátil, Petr; Vary, James P.
2012-11-17
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY
Turchi, P A
2004-09-24
Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.
NASA Astrophysics Data System (ADS)
Amatatsu, Yoshiaki; Morokuma, Keiji; Yabushita, Satoshi
1991-04-01
Ab initio contracted spin-orbit configuration interaction (SOCI) calculations have been carried out to obtain potential energy surfaces of 3Q0 and 1Q1 excited states of methyl iodide as functions of all the geometrical parameters except for the three C-H stretches. The results are fitted to six-dimensional diabatic potential functions and their couplings. Classical trajectory calculations have been performed using these potential functions. The rotation of the CH3 product in the I channel has been calculated to be perpendicular to the top axis and to have a peak at N=5 and extend up to N=8, whereas it is cold in the I* channel, in good agreement with recent experiments. The CH3 rotation is excited by the time trajectories arrive at the conical intersection region; this excitation is retained in the I-channel product because the 1Q1 surface has a small bending force constant outside the conical intersection, whereas it is damped in the I* channel because 3Q0 still has a large bending force constant. The calculated distribution in the ν2 umbrella vibrational mode of the CH3 product is hot and has a peak at v=2 for the I channel, and is cool for the I* channel, in good agreement with recent experiments. This channel selectivity is due to the difference in the preferred structure of the CH3 group outside the conical intersection region; while the 3Q0 surface prefers a bent CH3 until the CH3-I distance becomes very large, 1Q1 wants a planar CH3. The location of conical intersection and the ground-excited energy difference there are in good agreement with those deduced from experiment if a dynamical effect is taken into account.
Plotnikov, Nikolay V.; Prasad, B. Ram; Chakrabarty, Suman; Chu, Zhen T.; Warshel, Arieh
2013-01-01
Understanding the nature of the free energy surfaces for phosphate hydrolysis is a prerequisite for understanding the corresponding key chemical reactions in biology. Here the challenge has been to move to careful ab initio QM/MM (QM(ai)/MM) free energy calculations, where obtaining converging results is very demanding and computationally expensive. This work describes such calculations, focusing on the free energy surface for the hydrolysis of phosphate monoesters, paying a special attention to the comparison between the one water (1W) and two water (2W) paths for the proton transfer (PT) step. This issue has been explored before by energy minimization with implicit solvent models and by non-systematic QM/MM energy minimization, as well as by non-systematic free energy mapping. However, no study has provided the needed reliable 2D (3D) surfaces which are necessary for reaching concrete conclusions. Our study generated in a systematic way the 2D (3D) free energy maps for several relevant systems, comparing the results of QM(ai)/MM and QM(ai)/implicit solvent surfaces, and provides an advanced description of the relevant energetics. It is found that the 1W path for the hydrolysis of methyl diphosphate (MDP) trianion is 6–9 kcal/mol higher than the 2W path. This difference becomes slightly larger in the presence of Mg2+ ion, since this ion reduces the pKa of the conjugated acid form of the phosphate oxygen that accepts the proton. Interestingly, the BLYP approach (which has been used extensively in some studies) gives much smaller difference between the 1W and 2W activation barriers. At any rate, it is worth to point out that the 2W transition state for the PT is not much higher that the common plateau that serves as the starting point of both the 1W and 2W PT paths. Thus, the calculated catalytic effects of proteins based on the 2W PT mechanistic models are not expected to be different from the catalytic effects predicted using the 1W PT mechanistic models
Ab initio study of helium behavior in titanium tritides
Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei
2013-03-01
Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].
Simple calculation of ab initio melting curves: Application to aluminum
NASA Astrophysics Data System (ADS)
Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean
2015-03-01
We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003), 10.1063/1.1624057] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013), 10.1103/PhysRevE.88.062145]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.
An ab initio-based Er–He interatomic potential in hcp Er
Yang, Li; ye, Yeting; Fan, K. M.; Shen, Huahai; Peng, Shuming; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei
2014-09-01
We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations. The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.
Ab initio computations of photodissociation products of CFC alternatives
Tai, S.; Illinger, K.H.; Kenny, J.E.
1995-12-31
Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.
NASA Astrophysics Data System (ADS)
Dezerald, L.; Ventelon, Lisa; Clouet, E.; Denoual, C.; Rodney, D.; Willaime, F.
2014-01-01
A density functional theory (DFT) study of the 1/2<111> screw dislocation was performed in the following body-centered cubic transition metals: V, Nb, Ta, Cr, Mo, W, and Fe. The energies of the easy, hard, and split core configurations, as well as the pathways between them, were investigated and used to generate the two-dimensional (2D) Peierls potential, i.e. the energy landscape seen by the dislocation as a function of its position in the (111) plane. In all investigated elements, the nondegenerate easy core is the minimum energy configuration, while the split core configuration, centered in the immediate vicinity of a <111> atomic column, has a high energy near or above that of the hard core. This unexpected result yields 2D Peierls potentials very different from the usually assumed landscapes. The 2D Peierls potential in Fe differs from the other transition metals, with a monkey saddle instead of a local maximum located at the hard core. An estimation of the Peierls stress from the shape of the Peierls barrier is presented in all investigated metals. A strong group dependence of the core energy is also evidenced, related to the position of the Fermi level with respect to the minimum of the pseudogap of the electronic density of states.
NASA Astrophysics Data System (ADS)
Tsuzuki, Seiji; Honda, Kazumasa; Uchimaru, Tadafumi; Mikami, Masuhiro
2005-04-01
The intermolecular interaction energy of the toluene dimer has been calculated with the ARS-F model (a model chemistry for the evaluation of intermolecular interaction energy between ARomatic Systems using Feller's method), which was formerly called as the AIMI model III. The CCSD(T) (coupled cluster calculations with single and double substitutions with noniterative triple excitations) interaction energy at the basis set limit has been estimated from the second-order Møller-Plesset perturbation interaction energy at the basis set limit obtained by Feller's method and the CCSD(T) correction term obtained using a medium-size basis set. The cross (C2) dimer has the largest (most negative) interaction energy (-4.08kcal/mol). The antiparallel (C2h) and parallel (CS) dimers (-3.77 and -3.41kcal/mol, respectively) are slightly less stable. The dispersion interaction is found to be the major source of attraction in the toluene dimer. The dispersion interaction mainly determines the relative stability of the stacked three dimers. The electrostatic interaction of the stacked three dimers is repulsive. Although the T-shaped and slipped-parallel benzene dimers are nearly isoenergetic, the stacked toluene dimers are substantially more stable than the T-shaped toluene dimer (-2.62kcal/mol). The large dispersion interaction in the stacked toluene dimers is the cause of their enhanced stability.
Cheng, Tao; Xiao, Hai; Goddard, William A
2017-02-21
A critical step toward the rational design of new catalysts that achieve selective and efficient reduction of CO2 to specific hydrocarbons and oxygenates is to determine the detailed reaction mechanism including kinetics and product selectivity as a function of pH and applied potential for known systems. To accomplish this, we apply ab initio molecular metadynamics simulations (AIMμD) for the water/Cu(100) system with five layers of the explicit solvent under a potential of -0.59 V [reversible hydrogen electrode (RHE)] at pH 7 and compare with experiment. From these free-energy calculations, we determined the kinetics and pathways for major products (ethylene and methane) and minor products (ethanol, glyoxal, glycolaldehyde, ethylene glycol, acetaldehyde, ethane, and methanol). For an applied potential (U) greater than -0.6 V (RHE) ethylene, the major product, is produced via the Eley-Rideal (ER) mechanism using H2O + e(-) The rate-determining step (RDS) is C-C coupling of two CO, with ΔG(‡) = 0.69 eV. For an applied potential less than -0.60 V (RHE), the rate of ethylene formation decreases, mainly due to the loss of CO surface sites, which are replaced by H*. The reappearance of C2H4 along with CH4 at U less than -0.85 V arises from *CHO formation produced via an ER process of H* with nonadsorbed CO (a unique result). This *CHO is the common intermediate for the formation of both CH4 and C2H4 These results suggest that, to obtain hydrocarbon products selectively and efficiency at pH 7, we need to increase the CO concentration by changing the solvent or alloying the surface.
Ab initio calculations on the inclusion complexation of cyclobis(paraquat- p-phenylene)
NASA Astrophysics Data System (ADS)
Zhang, Ke-Chun; Liu, Lei; Mu, Ting-Wei; Guo, Qing-Xiang
2001-01-01
Semiempirical PM3, ab initio HF/3-21g ∗, and DFT B3LYP/6-31g ∗ calculations in vacuum and in solution were performed on the inclusion complexation of cyclobis(paraquat- p-phenylene) with nine symmetric aromatic substrates. A good correlation was found between the theoretical stabilization energies and experimental free energy changes upon complexation.
Sugden, Isaac; Adjiman, Claire S; Pantelides, Constantinos C
2016-12-01
The global search stage of crystal structure prediction (CSP) methods requires a fine balance between accuracy and computational cost, particularly for the study of large flexible molecules. A major improvement in the accuracy and cost of the intramolecular energy function used in the CrystalPredictor II [Habgood et al. (2015). J. Chem. Theory Comput. 11, 1957-1969] program is presented, where the most efficient use of computational effort is ensured via the use of adaptive local approximate model (LAM) placement. The entire search space of the relevant molecule's conformations is initially evaluated using a coarse, low accuracy grid. Additional LAM points are then placed at appropriate points determined via an automated process, aiming to minimize the computational effort expended in high-energy regions whilst maximizing the accuracy in low-energy regions. As the size, complexity and flexibility of molecules increase, the reduction in computational cost becomes marked. This improvement is illustrated with energy calculations for benzoic acid and the ROY molecule, and a CSP study of molecule (XXVI) from the sixth blind test [Reilly et al. (2016). Acta Cryst. B72, 439-459], which is challenging due to its size and flexibility. Its known experimental form is successfully predicted as the global minimum. The computational cost of the study is tractable without the need to make unphysical simplifying assumptions.
Maurer, Patrick; Iftimie, Radu
2010-02-21
We introduce a novel approach to compute dissociation free energy and entropy values in simulations that employ a density functional theory description of the acidic moiety and of the solvent. The approach consists of utilizing an alchemical transformation of a weak acid A-COOH into the strong acid B-COOH, which makes it practical to employ alchemical free energy perturbation methods in the context of ab initio molecular dynamics simulations. The present alchemical transformation circumvents the need to tackle changes in the total number of electrons and atoms by replacing the chemical residue responsible for the change in acidity with an easily tunable external effective potential. Our investigation demonstrates that (1) a simple but effective class of external potentials that control acidity changes in the acetic/trifluoroacetic acid series can be achieved by replacing the methyl and trifluoromethyl substituents by screened dipoles. Using this dipole-field/quantum-mechanics (DF/QM) approach one can predict gas-phase geometries, proton dissociation energies, total dipole moments, and water binding energies in good agreement with full-QM values. (2) The resulting alchemical perturbation calculations are stable and well converged and allow one to compute absolute pK(a) values whose accuracy is limited primarily by the exchange-correlation functional employed: H-COOH=2.5+/-0.6 (full-QM calculation), 3.7 (exp); F(3)C-COOH=0.4+/-0.6 (DF/QM calculation), 0.5 (exp); H(3)C-COOH=3.1+/-0.7 (DF/QM calculation), 4.7 (exp); 3) Our DF/QM model predicts that the difference in acidity between H-COOH and H(3)C-COOH is dominated by solvent entropy effects, in excellent agreement with experimental observations. The calculated difference between the dissociation energies of these acids is DeltaDelta(d)U=0.0+/-0.26 kcal/mol while the experimental value is 0.0+/-0.1 kcal/mol.
Lucas, José María; de Andrés, Jaime; Albertí, Margarita; Bofill, Josep Maria; Bassi, Davide; Aguilar, Antonio
2010-11-07
Reactive collisions between n-C(3)H(7)Cl molecules and lithium ions both in their ground electronic state have been studied in the 0.05-7.00 eV center of mass energy range using an octopole radio frequency guided-ion beam apparatus developed in our laboratory and recently modified. At low collision energies, dehydrohalogenation reactions leading to Li(C(3)H(6))(+) and Li(HCl)(+) are the main reaction channels, while on increasing energies C(3)H(7)(+) and C(2)H(3)(+) formation become dominant. Cross section energy dependences in arbitrary units for all these reactions have been measured. Also, ab initio electronic structure calculations at the MP2 level have been performed to obtain information about the potential energy surface on which the reactive processes take place. The reactants' entrance channel leads to the formation of a stable [Li-n-C(3)H(7)Cl](+) ion-molecule adduct that, following an intrinsic-reaction-coordinate pathway and surmounting a transition state, isomerizes to [Li-i-C(3)H(7)Cl](+). From this second minimum, dehydrohalogenation reactions for both n-C(3)H(7)Cl and i-C(3)H(7)Cl share a common reaction pathway leading to the same products. All potential barriers explored by reactions always lie below the reactants' energy. The entrance reaction channel [Li-n-C(3)H(7)Cl](+) adduct also leads adiabatically to C(3)H(7)(+) formation which, on increasing collision energy generates C(2)H(3)(+)via a unimolecular decomposition. A qualitative interpretation of the experimental results based on our ab initio calculations is also given.
ForceFit: a code to fit classical force fields to ab-initio potential energy surfaces
Henson, Neil Jon; Waldher, Benjamin; Kuta, Jadwiga; Clark, Aurora; Clark, Aurora E
2009-01-01
The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under Unix and is written in C++, is an easy to use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program.
NASA Astrophysics Data System (ADS)
Slassi, A.; Hammi, M.; El Rhazouani, O.
2017-02-01
The surface relaxations, surface energies and electronic structures of BaO- and SnO2-terminated BaSnO3 (001) surfaces have been studied by employing the first-principles density functional theory. For both terminations, we find that the upper-layer Ba and Sn atoms move inward, whereas upper-layer O atoms move outward from the surface. Moreover, the largest relaxations are occurred on the first-layer atoms of both terminations. The surface rumpling of BaO-terminated BaSnO3 (001) is slightly less than that of the SnO2-terminated BaSnO3 (001) surface. The surface energies show that both terminated surfaces are energetically stable and favorable. Finally, the surface band gap is slightly decreased for the BaO termination, while it is dramatically decreased for the SnO2 termination.
Low-energy electron scattering from CO. 2: Ab-initio study using the frame-transformation theory
NASA Technical Reports Server (NTRS)
Chandra, N.
1976-01-01
The Wigner-Eisenbud R matrix method has been combined with the frame transformation theory to study electron scattering from molecular systems. The R matrix, calculated at the boundary point of the molecular core radius, has been transformed to the space frame in order to continue the solution of the scattering equations in the outer region where rotational motion of the nuclei is taken into account. This procedure has been applied to a model calculation of thermal energy electron scattering from CO.
Recent Progresses in Ab-Initio Studies of Low-Energy Few-Nucleon Reactions of Astrophysical Interest
NASA Astrophysics Data System (ADS)
Marcucci, Laura E.
2017-03-01
We review the most recent theoretical studies of nuclear reactions of astrophysical interest involving few-nucleon systems. In particular, we focus on the radiative capture of protons by deuterons in the energy range of interest for Big Bang Nucleosynthesis. Related to this, we will discuss also the most recent calculation of tritium β -decay. Two frameworks will be considered, the conventional and the chiral effective field theory approach.
Isegawa, Miho; Liu, Fengyi; Morokuma, Keiji; Maeda, Satoshi
2014-06-28
Photodissociation pathways of nitromethane following π → π{sup *} electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH{sub 3} and NO{sub 2} ({sup 2}B{sub 2}) is formed by direct dissociation from the S{sub 1} state. Important pathways involving S{sub 1} and S{sub 0} states for production of various dissociation products CH{sub 3}NO + O ({sup 1}D), CH{sub 3}O(X{sup 2}E) + NO (X{sup 2}Π), CH{sub 2}NO + OH, and CH{sub 2}O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH{sub 3}NO{sub 2}, the OH radical roaming in OH dissociation from CH{sub 2}N(O)(OH), and the NO roaming in NO dissociation from CH{sub 3}ONO.
Janicki, Maciej; Lozynski, Marek
2017-05-01
(S)-3-Methyl-3-butenyl-(2R,3S)-N-benzoyl-3-phenylisoserinate is used as a model of the C-13 side chain, an essential subunit for the cytotoxicity of the diterpenoid paclitaxel, a chemotherapeutic drug used in the treatment of cancer. The potential energy surface (PES), calculated using a density functional theory method (DFT) and refined with MP2 single-point energy calculations, based on B3LYP geometries, was evaluated. Twelve intramolecular hydrogen bond patterns were identified for 103 in vacuo conformers. The most stable subset of these structures was found to have cooperative NH ⋯ OH ⋯ OC(O) motifs and six minima of importance that lie within 1.2kcal/mol of each other. The oxygen atoms of the ester groups effectively compete with the 2'-oxygen as a proton acceptor of NH to form stable internal hydrogen bonded structures. Additionally, the conventional OH ⋯ OC(N) hydrogen bond, which is represented by almost one third of the located minima, donates a number of stable conformers. However, the PES of the conformationally flexible model is highly dependent on the polarity of the environment. For example, the OH ⋯ OC(N) feature dominates over the cooperative motif in water. The side chain of the experimental T-taxol shaped structure agrees nicely with the respective theoretical lowest energy minimum. The π-π interactions of the phenyl rings and ethylene moiety of this structure are also discussed.
An Ab Initio Study of Alkali-C60 Complexes
NASA Astrophysics Data System (ADS)
Frick, Nathan; Hira, A. S.; Ray, A. K.
2003-03-01
We extend our previous work on fullerene-alkali complexes1-2 by presenting the results of an ab initio theoretical study of the alkali LiC60+, LiC60, NaC60+, NaC60, KC60+, and KC60 complexes. In the endohedral complexes for Li and Na, there is displacement of the adatom from the center. Of the ions, exohedral Li+ will sit closest to the cage, and among the neutrals, exohedral K remains closest. Bond lengths are consistently longer for the fivefold and threefold approaches. Adsorbates inside the fullerene donate negative charge to the carbons, but ions outside obtain a small amount, resulting in a polarization of the molecule. In the ion complexes, there is lowering of the orbital energy levels by 3 to 4 eV, resulting in an increase in the number of bound, but unoccupied, electronic orbitals. The HOMO-LUMO gap, of interest in superconductivity studies, is reduced by about 50 1. A.S. Hira and A.K. Ray, Phys. Rev. A 52, 141(1995); A 54, 2205(1996). 2. Ajit Hira and A. K. Ray, "An Initio Modeling of the Endohedral and Exohedral Complexes of C60Na2+ Complexes", Bull. Am. Phys. Soc. 47 (March 2002).
Qu, Chen; Bowman, Joel M
2016-09-14
We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm(-1) and the barrier for the double-proton transfer on the PES is 2848 cm(-1), in good agreement with the directly-calculated ab initio value of 2853 cm(-1). The zero-point vibrational energy of 15 337 ± 7 cm(-1) is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm(-1), which is roughly twice the experimental value. The tunneling splittings of (DCOOH)2 and (DCOOD)2 from one to three mode calculations are, as expected, smaller than that for (HCOOH)2 and consistent with experiment.
Ab initio study of electron energy loss spectra of bulk bismuth up to 100 eV
NASA Astrophysics Data System (ADS)
Timrov, Iurii; Markov, Maxime; Gorni, Tommaso; Raynaud, Michèle; Motornyi, Oleksandr; Gebauer, Ralph; Baroni, Stefano; Vast, Nathalie
2017-03-01
The dynamical charge-density response of bulk bismuth has been studied within time-dependent density functional perturbation theory, explicitly accounting for spin-orbit coupling. The use of the Liouville-Lanczos approach allows us to calculate electron energy loss spectra for excitation energies as large as 100 eV. Effects of 5 d semicore electronic states, spin-orbit coupling, exchange and correlation, local fields, and anisotropy are thoroughly investigated. The account of the 5 d states in the calculation turns out to be crucial to correctly describe the loss spectra above 10 eV and, in particular, the position and shape of the bulk-plasmon peak at 14.0 eV at vanishing transferred momentum. Our calculations reveal the presence of interband transitions at 16.3 eV, which had never been discussed before. The origin of the peak at 5.8 eV is revisited as due to mixed interband and collective excitations. Finally, our study supplements the lack of experiments at finite transferred momenta.
The interaction of NO(X2Π ) with H2: Ab initio potential energy surfaces and bound states
NASA Astrophysics Data System (ADS)
Kłos, Jacek; Ma, Qianli; Alexander, Millard H.; Dagdigian, Paul J.
2017-03-01
We determine from first principles two sets of four-dimensional diabatic potential energy surfaces (PES's) for the interaction of NO(X2Π ) with H2, under the assumption of fixed NO and H2 bond distances. The first set of PES's was computed with the explicitly correlated multi-reference configuration interaction method [MRCISD-F12 + Q(Davidson)], and the second set with an explicitly correlated, coupled-cluster method [RCCSD(T)-F12a] with the geometry scan limited to geometries possessing a plane of symmetry. The calculated PES's are then fit to an analytical form suitable for bound state and scattering calculations. The RCCSD(T)-F12a dissociation energies (D0) of the NO-para-H2(ortho-D2) and the NO-ortho-H2(para-D2) complexes are computed to be 22.7 (31.7) and 23.9 (29.2) cm-1, respectively. The values calculated with the MRCISD-F12 + Q PES's are 21.6 (31.1) and 23.3 (28.4) cm-1, respectively.
The interaction of NO(X(2)Π) with H2: Ab initio potential energy surfaces and bound states.
Kłos, Jacek; Ma, Qianli; Alexander, Millard H; Dagdigian, Paul J
2017-03-21
We determine from first principles two sets of four-dimensional diabatic potential energy surfaces (PES's) for the interaction of NO(X(2)Π) with H2, under the assumption of fixed NO and H2 bond distances. The first set of PES's was computed with the explicitly correlated multi-reference configuration interaction method [MRCISD-F12 + Q(Davidson)], and the second set with an explicitly correlated, coupled-cluster method [RCCSD(T)-F12a] with the geometry scan limited to geometries possessing a plane of symmetry. The calculated PES's are then fit to an analytical form suitable for bound state and scattering calculations. The RCCSD(T)-F12a dissociation energies (D0) of the NO-para-H2(ortho-D2) and the NO-ortho-H2(para-D2) complexes are computed to be 22.7 (31.7) and 23.9 (29.2) cm(-1), respectively. The values calculated with the MRCISD-F12 + Q PES's are 21.6 (31.1) and 23.3 (28.4) cm(-1), respectively.
Almeida, D; Kinzel, D; Ferreira da Silva, F; Puschnigg, B; Gschliesser, D; Scheier, P; Denifl, S; García, G; González, L; Limão-Vieira, P
2013-07-21
Electron transfer and dissociative electron attachment to 3-methyluracil (3meU) and 1-methylthymine (1meT) yielding anion formation have been investigated in atom-molecule collision and electron attachment experiments, respectively. The former has been studied in the collision energy range 14-100 eV whereas the latter in the 0-15 eV incident electron energy range. In the present studies, emphasis is given to the reaction channel resulting in the loss of the methyl group from the N-sites with the extra charge located on the pyrimidine ring. This particular reaction channel has neither been approached in the context of dissociative electron attachment nor in atom-molecule collisions yet. Quantum chemical calculations have been performed in order to provide some insight into the dissociation mechanism involved along the N-CH3 bond reaction coordinate. The calculations provide support to the threshold value derived from the electron transfer measurements, allowing for a better understanding of the role of the potassium cation as a stabilising agent in the collision complex. The present comparative study gives insight into the dynamics of the decaying transient anion and more precisely into the competition between dissociation and auto-detachment.
NASA Technical Reports Server (NTRS)
Brewer, D. A.; Schug, J. C.; Phillips, D. H.
1980-01-01
Some potential energy curves for CF2O were calculated using projected-unrestricted Hartree-Fock (PUHF) theory. The calculations employed a contracted (4s 3p) Gaussian-type atomic orbital basis set. Bound states were found for the X-tilde 1A1 and 1,3A2 states while the 1,3B1 and 1,3B2 states were repulsive in the valence representation. The merits of the PUHF treatment for excited states are discussed. The results are discussed in terms of available experimental information and previous calculations with particular emphasis on the question of the photolysis channels open in the solar spectral region.
Ab initio MCDHF calculations of electron-nucleus interactions
NASA Astrophysics Data System (ADS)
Bieroń, Jacek; Froese Fischer, Charlotte; Fritzsche, Stephan; Gaigalas, Gediminas; Grant, Ian P.; Indelicato, Paul; Jönsson, Per; Pyykkö, Pekka
2015-05-01
We present recent advances in the development of atomic ab initio multiconfiguration Dirac-Hartree-Fock theory, implemented in the GRASP relativistic atomic structure code. For neutral atoms, the deviations of properties calculated within the Dirac-Hartree-Fock (DHF) method (based on independent particle model of an atomic cloud) are usually dominated by electron correlation effects, i.e. the non-central interactions of individual electrons. We present the recent advances in accurate calculations of electron correlation effects in small, medium, and heavy neutral atoms. We describe methods of systematic development of multiconfiguration expansions leading to systematic, controlled improvement of the accuracy of the ab initio calculations. These methods originate from the concept of the complete active space (CAS) model within the DHF theory, which, at least in principle, permits fully relativistic calculations with full account of electron correlation effects. The calculations within the CAS model on currently available computer systems are feasible only for very light systems. For heavier atoms or ions with more than a few electrons, restrictions have to be imposed on the multiconfiguration expansions. We present methods and tools, which are designed to extend the numerical calculations in a controlled manner, where multiconfiguration expansions account for all leading electron correlation effects. We show examples of applications of the GRASP code to calculations of hyperfine structure constants, but the code may be used for calculations of arbitrary bound-state atomic properties. In recent years it has been applied to calculations of atomic and ionic spectra (transition energies and rates), to determinations of nuclear electromagnetic moments, as well as to calculations related to interactions of bound electrons with nuclear electromagnetic moments leading to violations of discrete symmetries.
NASA Astrophysics Data System (ADS)
Tran, Tung; Malloy, Thomas B., Jr.
2010-04-01
Hartree-Fock with and without MP2 (frozen core and full) corrections and density functional calculations have been performed on 1,2,3,6-tetrahydropyridine with basis sets 6-31G∗, 6-31+G∗ and 6-311+G∗∗. For all methods which included diffuse functions, the half-chair equatorial N-H conformer was found to be slightly more stable than the half-chair axial conformer, in agreement with experimental results. A detailed comparison for all the methods and basis sets was made with experimental data. These included rotational constants for both the normal and N-D isotopic species, dipole moments and dipole moment components. In addition, several interconversion pathways and barriers between the axial and equatorial conformations were explored by Hartree-Fock and B3LYP with the 6-31+G∗ basis set. The lowest energy pathway between was found to be via the N-H inversion (˜4-5 kcal/mol); via a bent (boat) axial form (˜6-7 kcal/mol) and finally via a bent (boat) equatorial form (˜7-8 kcal/mol). The planar form was found to be ˜10 kcal/mol less stable than the two half-chair forms.
An ab initio molecular orbital study of potential energy surface of the NH2+NO2 reaction
NASA Astrophysics Data System (ADS)
Mebel, A. M.; Hsu, C.-C.; Lin, M. C.; Morokuma, K.
1995-10-01
Potential energy surface of the reaction of NH2 with NO2 has been studied at the QCISD(T)/6-311G(d,p)//MP2/6-311G(d,p)+ZPC[MP2/6-311G(d,p)] and GAUSSIAN-2 (G2) levels of calculation. The reaction is shown to give three different groups of products. H2NO+NO can be produced by two different channels: (i) the barrierless association of the reactants to form H2NNO2 1, followed by the nitro-nitrite rearrangement into H2NONO 3 and the ON bond scission and (ii) the association of H2N with ONO directly forming 3 without barrier, followed by the dissociation 3. The barrier for the nitro-nitrite rearrangement at the transition state (TS) 2, 31.2 kcal/mol with respect to 1, is 20.8 kcal/mol lower than the reactants at the best G2 level. The TS 2 is found to lie significantly lower and to have much tighter structure than those previously reported. The thermodynamically most stable N2O+H2O products can be formed from 1 by the complex mechanism (iii), involving 1,3-hydrogen shift from nitrogen to oxygen, rotation of the OH bond, H shift from one oxygen to another and migration of the second H atom from N to O leading to elimination of H2O. The rate-determining step is the 1,3-H shift at TS 4 which is 12.5 kcal/mol lower than NH2+NO2, but 8.3 kcal/mol higher than the barrier for the nitro-nitrite isomerization at TS 2 at the G2 level. N2+H2O2 cannot be formed in the reaction, but several channels are shown to produce N2+2OH. All of them have as the rate-determining step the second 1,3-hydrogen shift from nitrogen to oxygen at TS 11 or 16, lying by 6.9 kcal/mol higher than NH2+NO2, and are not expected to compete with the reaction mechanisms producing H2NO+NO and N2O+H2O.
Patchkovskii, Serguei
2006-02-28
Potential energy surfaces for all Born-Oppenheimer electronic states of IBr molecule correlating to the neutral (2)P ((2)P(3/2) and (2)P(1/2)) iodine and bromine are calculated for the first time. Electric dipole and polarizability curves (static and transition) are also determined. Calculations include scalar and spin-orbit relativistic effects within all-electron Douglas-Kroll two-component Hamiltonian. Electron correlation is treated with quasi-degenerate multi-reference second-order perturbation theory. Seven adiabatic electronic states (X (1)Sigma(+), A'(3)Pi(2), A (3)Pi(1), 1 (3)Pi(0-), B (3)Pi(0+), B'(3)Sigma, and 2 (3)Pi(0+)) exhibit significant covalent bonding, and can support vibrational states. Calculated spectroscopic parameters agree with experiment to better than 1000 cm(-1) (T(e)), 10 cm(-1) (omega(e)), and 0.05 Angstrom (r(e)). A new 1 (3)Pi(0-) state correlating to ground-state atoms is predicted at T(e) approximately 14 000 cm(-1), omega(e) approximately 80 cm(-1), and r(e) approximately 3.0 Angstrom. The second new state (2 (3)Pi(0+)) correlates to excited iodine atom, with T(e) approximately 20 000 cm(-1), omega(e) approximately 115 cm(-1), and r(e) approximately 3.3 Angstrom. Non-adiabatic coupling parameters are calculated for the four avoided crossings, which arise due to electronic spin-orbit interaction. Estimated parameters of the B (3)Pi(0+)/B'(3)Sigma crossing (R(c) approximately 3.32 Angstrom; V approximately 120 cm(-1)) agree with experimental values. The previously unsuspected 2 (3)Pi(0-)/1 (1)Sigma(-) crossing of two repulsive surfaces provides a new collisional deactivation channel for Br* atoms at relative velocities above 1000 m s(-1). Several repulsive states (including 1 (1)Pi(1) and 2 (3)Pi(1)) intersect the B/B' system near the avoided crossing point, and may affect dynamics of IBr in strong laser fields.
NASA Astrophysics Data System (ADS)
de Boer, K.; Jansen, A. P. J.; van Santen, R. A.
1994-06-01
We have developed a new method for deriving parameters for the shell model of silica polymorphs. All parameters for the shell model are derived in a self-consistent way from ab initio energy surfaces, polarizabilities and dipole moments of small clusters. This yields an ab initio partial charge shell model potential. The predictive power of our potential is demonstrated by presenting predictions for the structure of α-quartz, α-cristobalite, coesite, stishovite and the IR spectrum of α-quartz which are compared with experiment and predictions of the widely used potentials of Jackson and Catlow, and Kramer, Farragher, van Beest and van Santen.
Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures
Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan
2006-04-05
A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.
Towards SiC Surface Functionalization: An Ab Initio Study
Cicero, G; Catellani, A
2005-01-28
We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for bio-compatible devices.
The application of ab initio calculations to molecular spectroscopy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1989-01-01
The state of the art in ab initio molecular structure calculations is reviewed, with an emphasis on recent developments such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is shown that new developments in methodology combined with improvements in computer hardware are leading to unprecedented accuracy in solving problems in spectroscopy.
The application of ab initio calculations to molecular spectroscopy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1989-01-01
The state of the art in ab initio molecular structure calculations is reviewed with an emphasis on recent developments, such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is found that new developments in methodology, combined with improvements in computer hardware, are leading to unprecedented accuracy in solving problems in spectroscopy.
NASA Astrophysics Data System (ADS)
Sato, Kota; Honna, Hiroshi; Iwabuchi, Susumu; Hirano, Tsuneo; Koinuma, Hideomi
1994-07-01
Successive hydrogen-elimination reactions with low activation energies during the formation of a-Si:H by silane plasma chemical-vapor deposition proposed by us were studied by using a larger cluster model on the basis of an ab initio molecular-orbital method. The activation energy of the first step, the reaction of a dangling-bond site with an adjacent tetrahedrally coordinated silicon, was found to be 18.2 kcal/mol (0.79 eV) by employing a larger cluster model. The total process was also shown to be thermodynamically more favorable by using larger cluster models. Thus, the successive process is considered to play an important role in a-Si:H formation processes.
Computer simulation of acetonitrile and methanol with ab initio-based pair potentials
NASA Astrophysics Data System (ADS)
Hloucha, M.; Sum, A. K.; Sandler, S. I.
2000-10-01
This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.
Ab-initio kinetics and thermodynamics studies of ammonia-borane for hydrogen storage
NASA Astrophysics Data System (ADS)
Miranda, Caetano R.; Ceder, Gerbrand
2007-03-01
Ammonia-borane (BH3NH3) is a promising chemical hydrogen storage material given its high gravimetry and volumetric properties. However, the ammonia-borane (AB) thermal hydrogen release is not very efficient, being mainly limited by the kinetics of hydrogenation. Using ab initio calculations, we have investigated the thermodynamics and kinetics of hydrogen release on AB by calculating the free energies of the H2 release reactions for different possible decomposition products. Our results indicate that AB regeneration through the ammonia-borane polymeric and borazine-cyclotriborazane cycles is very unlikely due to the strong exothermic character of the reactions. The kinetics of hydrogen release is further investigated with the recently developed metadynamics method. This method allows us to calculate the multidimensional free energy surface of hydrogen release on AB. Our simulations reveal the atomistic mechanism of hydrogenation and provide the free energies barriers and transition states involved in inter and intramolecule H2 release on AB.
NASA Technical Reports Server (NTRS)
Lindh, Roland; Lee, Timothy J.; Bernhardsson, Anders; Persson, B. Joakim; Karlstroem, Gunnar; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The autoaromatization of (Z)-hex-3-ene-1,5-diyne to the singlet biradical para-benzyne has been reinvestigated by state of the art ab initio methods. Previous CCSD(T)/6-31G(d,p) and CASPT2[0]/ANO[C(5s4p2d1f)/H(3s2p)] calculations estimated the the reaction heat at 298 K to be 8-10 and 4.9 plus or minus 3.2 kcal/mol, respectively. Recent NO- and oxygen-dependent trapping experiments and collision-induced dissociation threshold energy experiments estimate the heat of reaction to be 8.5 plus or minus 1.0 at 470 K (recomputed to 9.5 plus or minus 1.0 at 298 K) and 8.4 plus or minus 3.0 kcal/mol at 298 K, respectively. New theoretical estimates at 298 K predict the values at the basis set limit for the CCSD(T) and CASPT2(g1) methods to be 12.7 plus or minus 2.0 and 5.4 plus or minus 2.0 kcal/mol, respectively. The experimentally predicted electronic contribution to the heat of activation is 28.6 kcal/mol. This can be compared with 25.5 and 29.8 kcal/mol from the CASPT2[g1] and the CCSD(T) methods, respectively. The new study has in particular improved on the one-particle basis set for the CCSD(T) method as compared to earlier studies. For the CASPT2 investigation the better suited CASPT2[g1] approximation is utilized. The original CASPT2 method, CASPT2[0], systematically favors open shell systems relative to closed shell systems. This was previously corrected empirically. The study shows that the energy difference between CCSD(T) and CASPT2[g1] at the basis set limit is estimated to be 7 plus or minus 2 kcal/mol. The study also demonstrates that the estimated heat of reaction is very sensitive to the quality of the basis set.
Ab initio calculation of the potential bubble nucleus 34Si
NASA Astrophysics Data System (ADS)
Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.
2017-03-01
Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to
Efficient conformational space exploration in ab initio protein folding simulation
Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel
2015-01-01
Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554
Efficient conformational space exploration in ab initio protein folding simulation.
Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel
2015-08-01
Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.
NASA Astrophysics Data System (ADS)
Borchert, Manuela; Wilke, Max; Schmidt, Christian; Kvashnina, Kristina; Jahn, Sandro
2014-10-01
Although fluid-melt partitioning of trace elements like Sr, Ba, La, and Y is known to be strongly influenced by the fluid and melt chemical composition, their speciation in silicate-saturated fluids is studied insufficiently at high temperatures and pressures. Here, high energy-resolution fluorescence detection-X-ray absorption spectroscopy (HERFD-XAS) has been applied to investigate the local environment of strontium in crystalline model compounds, silicate glasses, and aqueous solutions. Acquisition of Sr K-edge HERFD-XAS spectra of aqueous solutions of SrCl2 and Sr(OH)2, and three aqueous fluids with dissolved silicate components was done in situ at temperatures to 780 °C and pressures to ∼800 MPa using hydrothermal diamond-anvil cells. Experiments were complemented by theoretical spectroscopy calculations using the finite difference method near edge structure (FDMNES) code. This approach was validated for a number of crystalline model compounds. For the silicate glasses and aqueous solutions (SrCl2 and Sr(OH)2), small clusters were examined. Either symmetric or distorted SrO6 clusters were found to describe Sr complexation in peraluminous or peralkaline glasses. However, small ‘static’ clusters seem not to be fully suited to account for the dynamically changing atomic arrangements in aqueous solutions at high temperature. Therefore, ab-initio molecular dynamics simulations were performed and used as input for modeling of X-ray absorption spectra. Analyses of these simulations indicated [SrCl(H2O)6]+ and Sr(OH)2(H2O)4 as the most likely complexes in the chloride and hydroxide solutions, respectively. Analysis of the spectra of the silicate-rich fluids shows that both melt and fluid composition strongly influence Sr complexation. For the silicate-rich fluids, formation of Sr-Cl complexes occurs at low (Na + K)/Cl and (Si + Al)/(Na + K) ratios in the fluid, whereas Sr hydroxide and possibly silicate complexes (similar to those in the silicate glass) are
Ab initio studies of phosphorene island single electron transistor
NASA Astrophysics Data System (ADS)
Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.
2016-05-01
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.
Predicting lattice thermal conductivity with help from ab initio methods
NASA Astrophysics Data System (ADS)
Broido, David
2015-03-01
The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.
Ab initio studies of niobium defects in uranium
Xiang, S; Huang, H; Hsiung, L
2007-06-01
Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.
Perovskite transparent conducting oxides: an ab initio study.
Dabaghmanesh, S; Saniz, R; Amini, M N; Lamoen, D; Partoens, B
2013-10-16
We present an ab initio study of the electronic structure and of the formation energies of various point defects in BaSnO3 and SrGeO3. We show that La and Y impurities substituting Ba or Sr are shallow donors with a preferred 1 + charge state. These defects have a low formation energy within all the suitable equilibrium growth conditions considered. Oxygen vacancies behave as shallow donors as well, preferring the 2 + charge state. Their formation energies, however, are higher in most growth conditions, indicating a limited contribution to conductivity. The calculated electron effective mass in BaSnO3, with a value of 0.21 m(e), and the very high mobility reported recently in La-doped BaSnO3 single-crystals, suggest that remarkably low scattering rates can be achieved in the latter. In the case of SrGeO3, our results point to carrier density and mobility values in the low range for typical polycrystalline TCOs, in line with experiment.
Ab initio prediction of vacancy properties in concentrated alloys: The case of fcc Cu-Ni
NASA Astrophysics Data System (ADS)
Zhang, Xi; Sluiter, Marcel H. F.
2015-05-01
Vacancy properties in concentrated alloys continue to be of great interest because nowadays ab initio supercell simulations reach a scale where even defect properties in disordered alloys appear to be within reach. We show that vacancy properties cannot generally be extracted from supercell total energies in a consistent manner without a statistical model. Essential features of such a model are knowledge of the chemical potential and imposition of invariants. In the present work, we derive the simplest model that satisfies these requirements and we compare it with models in the literature. As illustration we compute ab initio vacancy properties of fcc Cu-Ni alloys as a function of composition and temperature. Ab initio density functional calculations were performed for SQS supercells at various compositions with and without vacancies. Various methods of extracting alloy vacancy properties were examined. A ternary cluster expansion yielded effective cluster interactions (ECIs) for the Cu-Ni-Vac system. Composition and temperature dependent alloy vacancy concentrations were obtained using statistical thermodynamic models with the ab initio ECIs. An Arrhenius analysis showed that the heat of vacancy formation was well represented by a linear function of temperature. The positive slope of the temperature dependence implies a negative configurational entropy contribution to the vacancy formation free energy in the alloy. These findings can be understood by considering local coordination effects.
Challenges for large scale ab initio Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Kent, Paul
2015-03-01
Ab initio Quantum Monte Carlo is an electronic structure method that is highly accurate, well suited to large scale computation, and potentially systematically improvable in accuracy. Due to increases in computer power, the method has been applied to systems where established electronic structure methods have difficulty reaching the accuracies desired to inform experiment without empiricism, a necessary step in the design of materials and a helpful step in the improvement of cheaper and less accurate methods. Recent applications include accurate phase diagrams of simple materials through to phenomena in transition metal oxides. Nevertheless there remain significant challenges to achieving a methodology that is robust and systematically improvable in practice, as well as capable of exploiting the latest generation of high-performance computers. In this talk I will describe the current state of the art, recent applications, and several significant challenges for continued improvement. Supported through the Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE).
Ab Initio Study of Covalently Functionalized Graphene and Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Jha, Sanjiv; Hammouri, Mahmoud; Vasiliev, Igor; Magedov, Igor; Frolova, Liliya; Kalugin, Nikolai
2014-03-01
The electronic and structural properties of carbon nanomaterials can be affected by chemical functionalization. We apply ab initio computational methods based on density functional theory to study the properties of graphene and single-walled carbon nanotubes functionalized with benzyne. Our calculations are carried out using the SIESTA electronic structure code combined with the generalized gradient approximation for the exchange correlation functional. The calculated binding energies, densities of states, and band structures of functionalized graphene and carbon nanotubes are analyzed in comparison with the available experimental data. The surfaces of carbon nanotubes are found to be significantly more reactive toward benzyne molecules than the surface of graphene. The strength of interaction between benzyne and carbon nanotubes is affected by the curvature of the nanotube sidewall. The binding energies of benzyne molecules attached to both semiconducting zigzag and metallic armchair nanotubes increase with decreasing the nanotube diameter. Supported by NSF CHE-1112388, NMSU GREG Award, NSF ECCS-0925988, NIH-5P20RR016480-12, and NIH- P20 GM103451.
Ab initio modeling of decomposition in iron based alloys
NASA Astrophysics Data System (ADS)
Gorbatov, O. I.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.
2016-12-01
This paper reviews recent progress in the field of ab initio based simulations of structure and properties of Fe-based alloys. We focus on thermodynamics of these alloys, their decomposition kinetics, and microstructure formation taking into account disorder of magnetic moments with temperature. We review modern theoretical tools which allow a consistent description of the electronic structure and energetics of random alloys with local magnetic moments that become totally or partially disordered when temperature increases. This approach gives a basis for an accurate finite-temperature description of alloys by calculating all the relevant contributions to the Gibbs energy from first-principles, including a configurational part as well as terms due to electronic, vibrational, and magnetic excitations. Applications of these theoretical approaches to the calculations of thermodynamics parameters at elevated temperatures (solution energies and effective interatomic interactions) are discussed including atomistic modeling of decomposition/clustering in Fe-based alloys. It provides a solid basis for understanding experimental data and for developing new steels for modern applications. The precipitation in Fe-Cu based alloys, the decomposition in Fe-Cr, and the short-range order formation in iron alloys with s-p elements are considered as examples.
Separable metamaterials: analytical ab-initio homogenization and chirality
NASA Astrophysics Data System (ADS)
Ciattoni, Alessandro; Rago, Domenico; Rizza, Carlo
2016-11-01
We investigate the ab-initio homogenization of separable metamaterials with factorized dielectric permittivity profiles, which can be achieved through suitable grey-scale permittivity design techniques. Separability allows such metamaterials to be physically regarded as the superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, separable metamaterials admit a simple and analytical description of their electromagnetic bi-anisotropic response, which can be reconstructed from the properties of the 1D generating media. Our approach provides a strategy that allows the full ab-initio and flexible design of a complex bianisotropic response by using the simple and well-known properties of 1D metamaterials.
High Level Ab Initio Kinetics as a Tool for Astrochemistry
NASA Astrophysics Data System (ADS)
Klippenstein, Stephen
2015-05-01
We will survey the application of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. The accuracy of various aspects of the calculations will be summarized including (i) the underlying ab initio electronic structure calculations, (ii) the treatment of the high pressure recombination process, and (iii) the treatment of the pressure dependence of the kinetics. The applications will consider the chemistry of phosphorous on giant planets, the kinetics of water dimerization, the chemistry of nitrogen on Titan's atmosphere, as well as various reactions of interstellar chemistry interest such as the recombination of OH with H, and O(3P) reacting with C2H5, CH2, and CCS. Chemical Sciences and Engineering Division.
Ab Initio Calculations Of Light-Ion Reactions
Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W
2012-03-12
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.
Spin-orbit decomposition of ab initio nuclear wave functions
NASA Astrophysics Data System (ADS)
Johnson, Calvin W.
2015-03-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
Ab Initio Atomistic Thermodynamics for Surfaces: A Primer
2006-02-01
Ab Initio Atomistic Thermodynamics for Surfaces: A Primer Jutta Rogal and Karsten Reuter Fritz - Haber -Institut der Max-Planck-Gesellschaft... Fritz - Haber -Institut der Max-Planck-Gesellschaft Faradayweg 4-6 D-14195 Berlin Germany 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...of the Fritz - Haber -Institut, in particular Wei-Xue Li, Cathy Stampfl and Mira Todorova. Particular thanks go to Matthias Scheffler for his continued
Thermochemical data for CVD modeling from ab initio calculations
Ho, P.; Melius, C.F.
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
The study of molecular spectroscopy by ab initio methods
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1991-01-01
This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.
GAUSSIAN 76: An ab initio Molecular Orbital Program
DOE R&D Accomplishments Database
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Draayer, Jerry P.
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab initio molecular dynamics using hybrid density functionals.
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; VandeVondele, Joost
2008-06-07
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Ab initio molecular dynamics using hybrid density functionals
NASA Astrophysics Data System (ADS)
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost
2008-06-01
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Resonance and aromaticity: an ab initio valence bond approach.
Rashid, Zahid; van Lenthe, Joop H; Havenith, Remco W A
2012-05-17
Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wave function for each system was constructed using a linear combination of the VB structures (spin functions), which closely resemble the Kekulé valence structures, and two types of orbitals, that is, strictly atomic (local) and delocalized atomic (delocal) p-orbitals, were used to describe the π-system. It is found that the Pauling-Wheland's resonance energy with nonorthogonal structures decreases, while the same with orthogonalized structures and the total mean resonance energy (the sum of the weighted off-diagonal contributions in the Hamiltonian matrix of orthogonalized structures) increase when delocal orbitals are used as compared to local p-orbitals. Analysis of the interactions between the different structures of a system shows that the resonance in the 6π electrons conjugated circuits have the largest contributions to the resonance energy. The VBSCF calculations also show that the extra stability of phenanthrene, a kinked benzenoid, as compared to its linear counterpart, anthracene, is a consequence of the resonance in the π-system rather than the H-H interaction in the bay region as suggested previously. Finally, the empirical parameters for the resonance interactions between different 4n+2 or 4n π electrons conjugated circuits, used in Randić's conjugated circuits theory or Herdon's semi-emprical VB approach, are quantified. These parameters have to be scaled by the structure coefficients (weights) of the contributing structures.
An efficient and accurate molecular alignment and docking technique using ab initio quality scoring
Füsti-Molnár, László; Merz, Kenneth M.
2008-01-01
An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561
Barragán, Patricia; Pérez de Tudela, Ricardo; Qu, Chen; Prosmiti, Rita; Bowman, Joel M
2013-07-14
Diffusion Monte Carlo (DMC) and path-integral Monte Carlo computations of the vibrational ground state and 10 K equilibrium state properties of the H7 (+)/D7 (+) cations are presented, using an ab initio full-dimensional potential energy surface. The DMC zero-point energies of dissociated fragments H5 (+)(D5 (+))+H2(D2) are also calculated and from these results and the electronic dissociation energy, dissociation energies, D0, of 752 ± 15 and 980 ± 14 cm(-1) are reported for H7 (+) and D7 (+), respectively. Due to the known error in the electronic dissociation energy of the potential surface, these quantities are underestimated by roughly 65 cm(-1). These values are rigorously determined for first time, and compared with previous theoretical estimates from electronic structure calculations using standard harmonic analysis, and available experimental measurements. Probability density distributions are also computed for the ground vibrational and 10 K state of H7 (+) and D7 (+). These are qualitatively described as a central H3 (+)/D3 (+) core surrounded by "solvent" H2/D2 molecules that nearly freely rotate.
Ab initio study of MoS2 nanotube bundles
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu; Charlier, Jean-Christophe
2003-07-01
Recently, the synthesis of a new phase of MoS2I1/3 stoichiometry was reported [M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001)]. Electron microscope images and diffraction data were interpreted to indicate bundles of sub-nanometer-diameter single-wall MoS2 nanotubes. After experimental characterization, the structure was attributed to an assembly of “armchair” nanotubes with interstitial iodine. Using first-principles total-energy calculations, bundles of MoS2 nanotubes with different topologies and stoichiometries are investigated. All of the systems are strongly metallic. Configurations with “zigzag” structures are found to be more stable energetically than the “armchair” ones, though all of the structures have similar stabilities. After relaxation, there remain several candidates which give a lattice parameter in relative agreement with experiment. Further, spin-polarized calculations indicate that a structure with armchair tubes iodine atoms in their center acquires a very large spontaneous magnetic moment of 12μB, while the other structures are nonmagnetic. Our ab initio calculations show that in most of the other structures, the tubes are very strongly bound together, and that the compounds should be considered as a crystal, rather than as a bundle of tubes in the habitual sense.
Lead-Chalcogenides Under Pressure: Ab-Initio Study
NASA Astrophysics Data System (ADS)
Gupta, Dinesh C.; Hamid, Idris
ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.
Melting curves of metals by ab initio calculations
NASA Astrophysics Data System (ADS)
Minakov, Dmitry; Levashov, Pavel
2015-06-01
In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).
Ab initio description of the exotic unbound 7He nucleus
Baroni, Simone; Navratil, Petr; Quaglioni, Sofia
2013-01-11
In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less
Ab initio calculations of nuclear reactions important for astrophysics
NASA Astrophysics Data System (ADS)
Navratil, Petr; Dohet-Eraly, Jeremy; Calci, Angelo; Horiuchi, Wataru; Hupin, Guillaume; Quaglioni, Sofia
2016-09-01
In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. One of the newly developed approaches is the No-Core Shell Model with Continuum (NCSMC), capable of describing both bound and scattering states in light nuclei simultaneously. We will present NCSMC results for reactions important for astrophysics that are difficult to measure at relevant low energies, such as 3He(α,γ)7Be and 3H(α,γ)7Li and 11C(p,γ)12N radiative capture, as well as the 3H(d,n)4He fusion. We will also address prospects of calculating the 2H(α,γ)6Li capture reaction within the NCSMC formalism. Prepared in part by LLNL under Contract DE-AC52-07NA27344. Supported by the U.S. DOE, OS, NP, under Work Proposal No. SCW1158, and by the NSERC Grant No. SAPIN-2016-00033. TRIUMF receives funding from the NRC Canada.
NASA Astrophysics Data System (ADS)
Schäfer, Lothar; Van Alsenoy, C.; Scarsdale, J. N.
The structural parameters of the completely relaxed 4-21G ab initio geometries of more than 30 basic organic compounds are compared to experimental results. Some ranges for systematic empirical corrections, which relate 4-21G bond distances to experimental parameters, are associated with total energy increments. In general, for the currently feasible comparisons, the following corrections can be given which relate calculated distances to experimental rg parameters and calculated angles to rs-structures : For C-C single bond distances, deviations bet-ween calculated and observed parameters ( rg) are in the ranges of -0.006(2) to -10(2) Å for normal or unstrained hydrocarbons; -0.011(3) to -O.O16(3) Å for cyclobutane type compounds; and +0.001(5) to +0.004(4) Å for CH 3 conjugated with CO. For C-O single bonds the ranges are -0.006(9) to + 0.002(3) Å for C-O conjugated with CO; and -0.019(3) to -0.027(9) Å for aliphatic and ether compounds. A very large and exceptional discrepancy exists for the highly strained ethylene oxide, rs — re = -0.049(5) Å and in CH 3OCH 3 and C 2H 5OCH 3 the rs - re differences are -0.029(5), -0.040(10) and -0.025(10) Å. Some of these discrepancies may also be due to deficiencies of the microwave substitution method caused by atomic coordinates close to inertial planes. For C-N bonds, two types of N-CH 3 corrections are from +0.005(6) to -0.006(6) and from -0.009(2) to -0.014(6) Å; and the range for N-CO is +0.012(3) to +0.028(4) Å. For isolated Cz.dbnd;C double bonds the range is + 0.025(2) to +0.028(2) Å. For conjugated CC double bonds the correction is less positive (+0.014(1) Å for benzene). For CO double bonds the corrections are -0.004(3) to +0.003(3) Å. For bond angles of type H-C-H, C-C-H, C-C-C, C-CO, C-C-O, O-CO, N-CO and C-CC the corrections are of the order of magnitude about 1-2° (or better). Angles centered at heteroatoms are less accurate than that, when hydrogen atoms are involved
Ab initio Thermal Transport in Compound Semiconductors
2013-04-02
Appendix). Important phonon scattering processes of the type acoustic + acoustic ↔ optic ( aao ) are completely forbidden by energy conservation due to the...with increasing temperature than κpure for AlAs and AlSb due to stronger aao scattering in AlP as optic phonons are increasingly thermally populated. At...than typical acoustic phonons. Since aao and ooo scattering channels are completely forbidden by energy conservation, aoo scattering provides the only
NASA Astrophysics Data System (ADS)
De Fazio, Dario; de Castro-Vitores, Miguel; Aguado, Alfredo; Aquilanti, Vincenzo; Cavalli, Simonetta
2012-12-01
In this work we critically revise several aspects of previous ab initio quantum chemistry studies [P. Palmieri et al., Mol. Phys. 98, 1835 (2000);, 10.1080/00268970009483387 C. N. Ramachandran et al., Chem. Phys. Lett. 469, 26 (2009)], 10.1016/j.cplett.2008.12.035 of the HeH_2^+ system. New diatomic curves for the H_2^+ and HeH+ molecular ions, which provide vibrational frequencies at a near spectroscopic level of accuracy, have been generated to test the quality of the diatomic terms employed in the previous analytical fittings. The reliability of the global potential energy surfaces has also been tested performing benchmark quantum scattering calculations within the time-independent approach in an extended interval of energies. In particular, the total integral cross sections have been calculated in the total collision energy range 0.955-2.400 eV for the scattering of the He atom by the ortho- and para-hydrogen molecular ion. The energy profiles of the total integral cross sections for selected vibro-rotational states of H_2^+ (v = 0, …,5 and j = 1, …,7) show a strong rotational enhancement for the lower vibrational states which becomes weaker as the vibrational quantum number increases. Comparison with several available experimental data is presented and discussed.
The hydration structure of carbon monoxide by ab initio methods
NASA Astrophysics Data System (ADS)
Awoonor-Williams, Ernest; Rowley, Christopher N.
2017-01-01
The solvation of carbon monoxide (CO) in liquid water is important for understanding its toxicological effects and biochemical roles. In this paper, we use ab initio molecular dynamics (AIMD) and CCSD(T)-F12 calculations to assess the accuracy of the Straub and Karplus molecular mechanical (MM) model for CO(aq). The CCSD(T)-F12 CO-H2O potential energy surfaces show that the most stable structure corresponds to water donating a hydrogen bond to the C center. The MM-calculated surface incorrectly predicts that the O atom is a stronger hydrogen bond acceptor than the C atom. The AIMD simulations indicate that CO is solvated like a hydrophobic solute, with very limited hydrogen bonding with water. The MM model tends to overestimate the degree of hydrogen bonding and overestimates the atomic radius of the C atom. The calculated Gibbs energy of hydration using the TIP3P water model is in good agreement with the experiment (9.3 kJ mol-1 expt. vs 10.7 kJ mol-1 calc.). The calculated diffusivity of CO (aq) in TIP3P-model water was 5.1 ×10-5 cm2/s calc., more than double the experimental value of 2.3 ×10-5 cm2/s. The hydration energy calculated using the TIP4P-FB water model is in poorer agreement with the experiment (ΔG = 6.8 kJ/mol) but the diffusivity is in better agreement (D =2.5 ±0.1 ×10-5 cm2/s).
Geng, Hua Y.
2015-02-15
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.
NASA Astrophysics Data System (ADS)
Geng, Hua Y.
2015-02-01
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.
Ab initio characterization of C5
NASA Astrophysics Data System (ADS)
Massó, H.; Veryazov, V.; Malmqvist, P.-A.˚.; Roos, B. O.; Senent, M. L.
2007-10-01
In this paper, the structure and spectroscopic parameters of the C5 cluster are determined using multiconfigurational quantum chemical methods as implemented in the MOLCAS software. A number of spectroscopic properties (band center positions, l-doubling parameters, and rotational constants) have been characterized. From the new results, the assignments of previous astrophysical observations [J. Goicoechea et al., Astrophys. J. 609, 225 (2004)] are discussed. A detailed exploration of the global potential energy surface confirms that C5 has a X 1Σg+ linear isomer of prominent stability and, at least, three minimum energy structures showing singlet electronic ground states. Two of them are cyclic and one has a nonplanar geometry. Vertical and adiabatic electronic transitions and vibrational spectroscopic parameters are determined for the most stable linear isomer using multiconfigurational second order perturbation theory (CASPT2) using an active space containing 12 valence orbitals with 12 active electrons and extended ANO-type basis sets. The infrared spectrum has been analyzed from an anharmonic force field derived form the local surface, determined from the energies of a grid of 1350 geometries. The force field includes four coupling terms. The CASPT2 band center position of the ν7(πu) anharmonic fundamental has been calculated to be at 102 cm-1, which validates the assignment to C5 of the pattern of bands centered at 102 cm-1 observed with the ISO telescope.
Hua -Gen Yu; Han, Huixian; Guo, Hua
2016-03-29
Vibrational energy levels of the ammonium cation (NH_{4}^{+}) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH_{4}^{+} and ND_{4}^{+} exhibit a polyad structure, characterized by a collective quantum number P = 2(v_{1} + v_{3}) + v_{2} + v_{4}. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm^{–1}.
Zhou, Shulan; Li, Zheng; Xie, Daiqian; Lin, Shi Ying; Guo, Hua
2009-05-14
A global potential-energy surface for the first excited electronic state of NH(2)(A(2)A(')) has been constructed by three-dimensional cubic spline interpolation of more than 20,000 ab initio points, which were calculated at the multireference configuration-interaction level with the Davidson correction using the augmented correlation-consistent polarized valence quadruple-zeta basis set. The (J=0) vibrational energy levels for the ground (X(2)A(")) and excited (A(2)A(')) electronic states of NH(2) were calculated on our potential-energy surfaces with the diagonal Renner-Teller terms. The results show a good agreement with the experimental vibrational frequencies of NH(2) and its isotopomers.
Li, Anyang; Guo, Hua
2014-06-14
An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm{sup −1}. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H{sub 4}O{sup +} well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H{sub 2}O{sup +} rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H{sub 2}O{sup +} reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.
Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.
Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim
2016-10-17
For CO and N2 on Mg(2+) sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.
B28: the smallest all-boron cage from an ab initio global search
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce
2015-09-01
Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
NASA Astrophysics Data System (ADS)
Jensen, Per; Bunker, P. R.; Epa, V. C.; Karpfen, A.
1992-02-01
We have previously determined an analytical ab initio six-dimensional potential energy surface for the HCl dimer, and have used it to determine the minimum energy path for the trans-tunneling motion. In the present paper we refine this path by fitting to data. We calculate a further 178 ab initio points in order to determine the HCl stretching energies, and HCl stretching dipole moment functions, at eight positions along the minimum energy path. We use these ab initio results to compute the stretching wavenumbers and transition moments from the v1 = v2 = 0 state to all states of (HCl) 2 that have v1 + v2 ≤ 3, where v1 and v2 are the local mode quantum numbers for the HCl stretching vibrations. In doing this calculation we have assumed an adiabatic separation of the HCl stretching motion from the other vibrational motions in the dimer, and have used the semirigid bender Hamiltonian to average over the trans-tunneling motion. We obtain the fundamental "free-H" stretch v1 at 2877 cm -1 and the fundamental "bound-H" stretch v2 at 2861 cm -1; the experimental values are 2880 and 2854 cm -1, respectively.
de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Bowman, Joel M
2014-02-20
We report a permutationally invariant, ab initio potential energy surface (PES) for the OH + HBr → Br + H2O reaction. The PES is a fit to roughly 26 000 spin-free UCCSD(T)/cc-pVDZ-F12a energies and has no classical barrier to reaction. It is used in quasiclassical trajectory calculations with a focus on the thermal rate constant, k(T), over the temperature range 5 to 500 K. Comparisons with available experimental data over the temperature range 23 to 416 K are made using three approaches to treat the OH rotational and associated electronic partition function. All display an inverse temperature dependence of k(T) below roughly 160 K and a nearly constant temperature dependence above 160 K, in agreement with experiment. The calculated rate constant with no treatment of spin-orbit coupling is overall in the best agreement with experiment, being (probably fortuitously) within 20% of it.
Jordan, R.M.; Siddiqui, H.R.; Siska, P.E.
1986-06-15
Crossed beam scattering experiments on He*(2 /sup 3/S)+He at energies of 0.94, 1.51, and 2.24 kcal/mol have been combined with ab initio theory and kinetic data on metastability exchange rates to produce new estimates of the title potential energy curves. The long-range potential barrier in the a state is found to be 1.43 +- 0.05 kcal/mol at a separation of 2.717 +- 0.04 A. Combining these results with those for the corresponding singlet states from an earlier paper (J. Chem. Phys. 80, 5027 (1984)), we discuss the long-range behavior of the curves, particularly with respect to curve crossing between a given pair of g and u states. These crossings, which conform to theoretical predictions, appear to be essential for a consistent description of all available data.
NASA Astrophysics Data System (ADS)
Guedj, C.; Hung, L.; Zobelli, A.; Blaise, P.; Sottile, F.; Olevano, V.
2014-12-01
The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO2) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO2, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO2 may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.
Ab initio molecular dynamics study of liquid sodium and cesium up to critical point
Yuryev, Anatoly A.; Gelchinski, Boris R.
2015-08-17
Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.
Ab initio molecular dynamics study of liquid sodium and cesium up to critical point
NASA Astrophysics Data System (ADS)
Yuryev, Anatoly A.; Gelchinski, Boris R.
2015-08-01
Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.
Ab initio Study of He Stability in hcp-Ti
Dai, Yunya; Yang, Li; Peng, SM; Long, XG; Gao, Fei; Zu, Xiaotao T.
2010-12-20
The stability of He in hcp-Ti was studied using ab initio method based on density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms has been used to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models.
Accelerating ab initio molecular dynamics simulations by linear prediction methods
NASA Astrophysics Data System (ADS)
Herr, Jonathan D.; Steele, Ryan P.
2016-09-01
Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.
Ab initio evidence for nonthermal characteristics in ultrafast laser melting
NASA Astrophysics Data System (ADS)
Lian, Chao; Zhang, S. B.; Meng, Sheng
2016-11-01
Laser melting of semiconductors has been observed for almost 40 years; surprisingly, it is not well understood where most theoretical simulations show a laser-induced thermal process. Ab initio nonadiabatic simulations based on real-time time-dependent density functional theory reveal intrinsic nonthermal melting of silicon, at a temperature far below the thermal melting temperature of 1680 K. Both excitation threshold and time evolution of diffraction intensity agree well with experiment. Nonthermal melting is attributed to excitation-induced drastic changes in bonding electron density, and the subsequent decrease in the melting barrier, rather than lattice heating as previously assumed in the two-temperature models.
Communication: Ab initio Joule-Thomson inversion data for argon
NASA Astrophysics Data System (ADS)
Wiebke, Jonas; Senn, Florian; Pahl, Elke; Schwerdtfeger, Peter
2013-02-01
The Joule-Thomson coefficient μH(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K. The results also illustrate the limitations of the virial equation in regions close to the critical temperature.
Ab initio quantum chemical study of electron transfer in carboranes
NASA Astrophysics Data System (ADS)
Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.
2005-05-01
The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.
Ab-Initio Shell Model with a Core
Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P
2008-06-04
We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.
Ab-initio study of transition metal hydrides
Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini
2014-04-24
We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.
Electric field response in bilayer graphene: Ab initio investigation
NASA Astrophysics Data System (ADS)
Mori, Yutaro; Minamitani, Emi; Ando, Yasunobu; Kasamatsu, Shusuke; Watanabe, Satoshi
2016-11-01
Stimulated by quantum capacitance measurements, we have investigated the electric properties of bilayer graphene (BLG) with carrier doping under an external electric field using ab initio calculations. We found that the relative permittivity of BLG depends weakly on the applied electric field, and that the BLG can be regarded as a dielectric material rather than a pair of metallic films. We also found that carrier doping affects the band gap of BLG under electric fields, although carrier doping has a much smaller effect on the band gap and density of states than the application of electric fields.
Communication: Ab initio Joule-Thomson inversion data for argon.
Wiebke, Jonas; Senn, Florian; Pahl, Elke; Schwerdtfeger, Peter
2013-02-21
The Joule-Thomson coefficient μ(H)(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K. The results also illustrate the limitations of the virial equation in regions close to the critical temperature.
Cosmic-Ray Modulation: an Ab Initio Approach
NASA Astrophysics Data System (ADS)
Engelbrecht, N. E.; Burger, R. A.
2014-10-01
A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.
AN AB INITIO MODEL FOR COSMIC-RAY MODULATION
Engelbrecht, N. E.; Burger, R. A.
2013-07-20
A proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays (CRs) is of vital importance for a better understanding of CR modulation in the heliosphere. This study presents an ab initio model for CR modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for solar minimum heliospheric conditions, utilizing boundary values chosen so that model results are in reasonable agreement with spacecraft observations of turbulence quantities in the solar ecliptic plane and along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modeled slab and two-dimensional (2D) turbulence energy spectra. The modeled 2D spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers. There currently exist no models or observations for the wavenumber where this drop-off occurs, and it is considered to be the only free parameter in this study. The modeled spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on CR drifts are modeled in a self-consistent way, also employing a recently developed model for wavy current sheet drift. The resulting diffusion and drift coefficients are applied to the study of galactic CR protons and antiprotons using a 3D, steady-state CR modulation code, and sample solutions in fair to good agreement with multiple spacecraft observations are presented.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon
2013-01-01
The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785
Pospíšil, Miroslav; Kovář, Petr; Vácha, Robert; Svoboda, Michal
2012-01-01
Ab initio and molecular simulation methods were used in calculations of the neutral individual betulin molecule, and molecular simulations were used to optimize the betulin molecule immersed in various amounts of water. Individual betulin was optimized in different force fields to find the one exhibiting best agreement with ab initio calculations obtained in the Gaussian03 program. Dihedral torsions of active groups of betulin were determined for both procedures, and related calculated structures were compared successfully. The selected force field was used for subsequent optimization of betulin in a water environment, and a conformational search was performed using quench molecular dynamics. The total energies of betulin and its interactions in water bulk were calculated, and the influence of water on betulin structure was investigated.
Ab initio studies of equations of state and chemical reactions of reactive structural materials
NASA Astrophysics Data System (ADS)
Zaharieva, Roussislava
subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated
Ab initio simulation of atomic-scale imaging in noncontact atomic force microscopy.
Caciuc, V; Hölscher, H
2009-07-01
In this paper, we summarize some results of our ab initio simulations aimed at investigating the mechanism of the NC-AFM image contrast on semiconductor and metallic surfaces. We start with an introduction into the basic ideas behind the ab initio simulation process of the NC-AFM experimental results. Our simulations reveal that the interaction of a clean silicon tip with a semiconductor surface like InAs(110) might lead to bond-formation and bond-breaking processes during the approach and retraction of the tip. This imaging mechanism is very similar to that observed on a metallic surface like Ag(110). Interestingly, a clean silicon tip can become contaminated with Ag surface atoms. On both types of surface we observe a significant energy dissipation which is caused by a hysteresis in the tip-sample force curves calculated on the approach and retraction path.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.
Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Ab initio thermodynamic model for magnesium carbonates and hydrates.
Chaka, Anne M; Felmy, Andrew R
2014-09-04
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Unified ab initio approaches to nuclear structure and reactions
Navratil, Petr; Quaglioni, Sofia; Hupin, Guillaume; ...
2016-04-13
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Bemore » $${({\\rm{p}},\\gamma )}^{8}{\\rm{B}}$$ radiative capture. Lastly, we highlight our efforts to describe transfer reactions including the 3H$${({\\rm{d}},{\\rm{n}})}^{4}$$He fusion.« less
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-09-15
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates
Chaka, Anne M.; Felmy, Andrew R.
2014-03-28
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Ab initio study of the optical properties of carbon nanotubes
NASA Astrophysics Data System (ADS)
Chang, Eric
2006-03-01
We present an ab initio study of the optical properties of carbon nanotubes. We use state-of-the-art electronic structure methods based on many-body perturbation theory to compute the optical absorption and resonance Raman spectra of large tubes which have up to 200 atoms [1,2]. Our symmetry-based method makes the study of large tubes feasible within the many- body framework and also allows us to understand the symmetry properties of the excitons and selection rules. We include a study of the so-called dark excitons which are crucial for understanding luminescence efficiency in carbon nanotubes. The mechanism that explains the dark-bright splitting can be understood within our symmetry-based approach. Finally, we present an analysis of the two-photon spectra for several carbon nanotubes, a theoretical analysis which, in conjunction with combined one- and two-photon experiments, allows one to measure the binding energy of excitons. We find in all cases that the excitonic binding energy is large, ranging from 0.5 to 0.9 eV depending on the diameter of the tube, and that the excitonic wavefunction is Wannier-like and extended over many atoms. Our studies for the one- and two-photon absorption and resonance Raman spectra have been fruitful for understanding the corresponding experiments. In particular, our theoretical results are in good agreement with one- and two-photon absorption experiments [3-5]. The results for resonance Raman show that such a spectroscopic technique is a good alternative to optical absorption since it allows for the selection of tubes of a given diameter while probing the same excited states. 1. E.K. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. Lett. 92, 196401 (2004). 2. E.K. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. B 72, 195423 (2005). 3. M. Y. Sfeir et al., Science 306, 1540 (2004). 4. J. Maultzsch et al., to be published in Phys. Rev. B, see also cond-mat/0505150. 5. Z. M. Li et. al., Phys. Rev. Lett. 87, 127401 (2001).
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per
2006-09-01
We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Yang, Lina; Minnich, Austin J.
2017-03-01
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
NASA Astrophysics Data System (ADS)
Tachikawa, Masanori; Shiga, Motoyuki
2004-09-01
We have applied the ab initio path integral molecular dynamics simulation to study hydronium ion and its isotopes, which are the simplest systems for hydrated proton and deuteron. In this simulation, all the rotational and vibrational degrees of freedom are treated fully quantum mechanically, while the potential energies of the respective atomic configurations are calculated "on the fly" using ab initio quantum chemical approach. With the careful treatment of the ab initio electronic structure calculation by relevant choices in electron correlation level and basis set, this scheme is theoretically quite rigorous except for Born-Oppenheimer approximation. This accurate calculation allows a close insight into the structural shifts for the isotopes of hydronium ion by taking account of both quantum mechanical and thermal effects. In fact, the calculation is shown to be successful to quantitatively extract the geometrical isotope effect with respect to the Walden inversion. It is also shown that this leads to the isotope effect on the electronic structure as well as the thermochemical properties.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
Yang, Lina; Minnich, Austin J.
2017-01-01
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries
NASA Astrophysics Data System (ADS)
Draayer, J. P.; Dytrych, T.; Launey, K. D.; Dreyfuss, A. C.; Langr, D.
2015-01-01
An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si.
Ab initio study on electronically excited states of lithium isocyanide, LiNC
NASA Astrophysics Data System (ADS)
Yasumatsu, Hisato; Jeung, Gwang-Hi
2014-01-01
The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.
Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations
NASA Astrophysics Data System (ADS)
Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.
2008-01-01
The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.
NASA Astrophysics Data System (ADS)
Ohta, Yasuhito; Ohta, Koji; Kinugawa, Kenichi
2004-01-01
An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.
Ab initio computational applications to complex biomolecular systems
NASA Astrophysics Data System (ADS)
Liang, Lei
A series of biomaterial related systems---including water and DNA molecules---have been studied using ab initio (first-principles) methods. By investigating the properties of water as the preliminary step, the hydrogen bond (HB) interactions, which play important roles in biomolecules, were better understood from the quantum mechanical viewpoint. The calculated K-edge x-ray absorption near edge structure (XANES) spectra of all 340 oxygen atoms in the model have been accumulated to reproduce the experimental one. The spectra were shown to be very sensitive to the HB configurations of O atoms, which could be used to elucidate the subtle structural variations in complex biomolecules. The simulation of single-molecule DNA overstretching experiments under torsionally constrained condition has been carried out afterwards. The initial DNA models were stretched stepwisely and eventually gained an extension of 1.5-fold (150% x the original length). The variation of total energy, atomic configuration, and the electronic structure during this process were analyzed in details. At the extension of ˜1.3-fold, the ring opening reactions occurred in the backbones. The backbone nicks appeared at elongations of ˜1.40-fold. The whole process was accompanied by HB breaking and charge transfers. We have proposed an overstretched structure named O-DNA (Opened-DNA) to clarify the confusion in understanding the behavior of DNA under high force load. With more experiences gained, a comprehensive methodology revealing the underlying principles of bioprocesses from the quantum mechanical viewpoint eventually come up. For the purpose of better computational accuracy, the scheme of implementing the generalized gradient approximation (GGA) exchange-correlation functionals into the Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) program suite has been discussed, and the computational efficiency has been analyzed correspondingly. Moreover, the parallel strategy for performing
NASA Astrophysics Data System (ADS)
Rey, M.; Nikitin, A. V.; Tyuterev, Vl. G.
2010-08-01
A theoretical approach to study ro-vibrational molecular states from a full nuclear Hamiltonian expressed in terms of normal-mode irreducible tensor operators is presented for the first time. Each term of the Hamiltonian expansion can thus be cast in the tensor form in a systematic way using the formalism of ladder operators. Pyramidal XY3 molecules appear to be good candidates to validate this approach which allows taking advantage of the symmetry properties when doubly degenerate vibrational modes are considered. Examples of applications will be given for PH3 where variational calculations have been carried out from our recent potential energy surface [Nikitin et al., J. Chem. Phys. 130, 244312 (2009)].
Liu, Lihong; Wang, Yating; Fang, Qiu
2017-02-14
Ethylene-bridged azobenzene (br-AB) has aroused broad interests due to its unique photoswitching properties. Numerous dynamical simulations have been performed for the br-AB photoisomerization, which focused mainly on the conformational effect and the funnel role of minimum-energy conical intersection (MECI) on the mechanism. In the present work, we use the "full quantum" ab initio multiple spawning method to simulate the br-AB photoisomerization, which provides new insights into the mechanism. Upon irradiation of br-AB to the first excited singlet state (S1), most of the excess energies are trapped in the azo-moiety. Since the intramolecular vibrational energy redistribution is slower than the S1 relaxation processes, the nonadiabatic transition from S1 to the ground state (S0) occurs in the vicinity of high-energy crossing seam and even the largest probabilities of the S1 → S0 transition are not distributed in the MECI regions. Once decaying to the S0 state through the high-energy region, the subsequent isomerization and re-formation of the initial isomer are ultrafast processes in the S0 state. It is the nonergodic behavior of the S1 and S0 dynamics that is mainly responsible for the unique photoswitching properties of the ethylene-bridged azobenzene, which will be discussed in detail.
NASA Astrophysics Data System (ADS)
Liu, Lihong; Wang, Yating; Fang, Qiu
2017-02-01
Ethylene-bridged azobenzene (br-AB) has aroused broad interests due to its unique photoswitching properties. Numerous dynamical simulations have been performed for the br-AB photoisomerization, which focused mainly on the conformational effect and the funnel role of minimum-energy conical intersection (MECI) on the mechanism. In the present work, we use the "full quantum" ab initio multiple spawning method to simulate the br-AB photoisomerization, which provides new insights into the mechanism. Upon irradiation of br-AB to the first excited singlet state (S1), most of the excess energies are trapped in the azo-moiety. Since the intramolecular vibrational energy redistribution is slower than the S1 relaxation processes, the nonadiabatic transition from S1 to the ground state (S0) occurs in the vicinity of high-energy crossing seam and even the largest probabilities of the S1 → S0 transition are not distributed in the MECI regions. Once decaying to the S0 state through the high-energy region, the subsequent isomerization and re-formation of the initial isomer are ultrafast processes in the S0 state. It is the nonergodic behavior of the S1 and S0 dynamics that is mainly responsible for the unique photoswitching properties of the ethylene-bridged azobenzene, which will be discussed in detail.
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Kolorenč, Přemysl; Sisourat, Nicolas
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Ab initio electronic and lattice dynamical properties of cerium dihydride
NASA Astrophysics Data System (ADS)
Gurel, Tanju; Eryigit, Resul
2007-03-01
The rare-earth metal hydrides are interesting systems because of the dramatic structural and electronic changes due to the hydrogen absorption and desorption. Among them, cerium dihydride (CeH2) is one of the less studied rare-earth metal-hydride. To have a better understanding, we have performed an ab initio study of electronic and lattice dynamical properties of CeH2 by using pseudopotential density functional theory within local density approximation (LDA) and a plane-wave basis. Electronic band structure of CeH2 have been obtained within LDA and as well as GW approximation. Lattice dynamical properties are calculated using density functional perturbation theory. The phonon spectrum is found to contain a set of high-frequency (˜ 850-1000 cm-1) optical bands, mostly hydrogen related, and low frequency cerium related acoustic modes climbing to 160 cm^ -1 at the zone boundary.
Approximate ab initio calculations of electronic structure of amorphous silicon
NASA Astrophysics Data System (ADS)
Durandurdu, M.; Drabold, D. A.; Mousseau, N.
2000-12-01
We report on ab initio calculations of electronic states of two large and realistic models of amorphous silicon generated using a modified version of the Wooten-Winer-Weaire algorithm and relaxed, in both cases, with a Keating and a modified Stillinger-Weber potentials. The models have no coordination defects and a very narrow bond-angle distribution. We compute the electronic density-of-states and pay particular attention to the nature of the band-tail states around the electronic gap. All models show a large and perfectly clean optical gap and realistic Urbach tails. Based on these results and the extended quasi-one-dimensional stringlike structures observed for certain eigenvalues in the band tails, we postulate that the generation of model a-Si without localized states might be achievable under certain circumstances.
The ab-initio density matrix renormalization group in practice
Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Ab initio engineering of materials with stacked hexagonal tin frameworks
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
Efficient Ab initio Modeling of Random Multicomponent Alloys.
Jiang, Chao; Uberuaga, Blas P
2016-03-11
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.
Quantum plasmonics: from jellium models to ab initio calculations
NASA Astrophysics Data System (ADS)
Varas, Alejandro; García-González, Pablo; Feist, Johannes; García-Vidal, F. J.; Rubio, Angel
2016-08-01
Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT) calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.
Ab initio electronic stopping power of protons in bulk materials
NASA Astrophysics Data System (ADS)
Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia
2016-01-01
The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.
Ab initio study of II-(VI)2 dichalcogenides
NASA Astrophysics Data System (ADS)
Olsson, P.; Vidal, J.; Lincot, D.
2011-10-01
The structural stabilities of the (Zn,Cd)(S,Se,Te)2 dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe2 pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.
Reactive Monte Carlo sampling with an ab initio potential
Leiding, Jeff; Coe, Joshua D.
2016-05-04
Here, we present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We also discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). Furthermore, we find that there are regions of state space formore » which RxMC sampling is much more efficient than AIMD due to the “rare-event” character of chemical reactions.« less
Ab initio engineering of materials with stacked hexagonal tin frameworks
NASA Astrophysics Data System (ADS)
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-07-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.
Ab initio electron propagator theory of molecular wires. I. Formalism.
Dahnovsky, Yu; Zakrzewski, V G; Kletsov, A; Ortiz, J V
2005-11-08
Ab initio electron propagator methodology may be applied to the calculation of electrical current through a molecular wire. A new theoretical approach is developed for the calculation of the retarded and advanced Green functions in terms of the electron propagator matrix for the bridge molecule. The calculation of the current requires integration in a complex half plane for a trace that involves terminal and Green's-function matrices. Because the Green's-function matrices have complex poles represented by matrices, a special scheme is developed to express these "matrix poles" in terms of ordinary poles. An expression for the current is derived for a terminal matrix of arbitrary rank. For a single terminal orbital, the analytical expression for the current is given in terms of pole strengths, poles, and terminal matrix elements of the electron propagator. It is shown that Dyson orbitals with high pole strengths and overlaps with terminal orbitals are most responsible for the conduction of electrical current.
Ab initio simulations of liquid carbon monoxide at high pressure
NASA Astrophysics Data System (ADS)
Leonhardi, Tanis C.; Militzer, Burkhard
2017-03-01
Carbon monoxide occurs as a volatile species in the interiors of terrestrial planets, and as a disequilibrium atmospheric constituent in the giant planets. It plays an important role during the accretionary stages of planet formation reacting with gases to form compounds such as CH4 and H2O. The structure of carbon monoxide is unknown over the majority of the temperature and pressure regime in giant planet interiors. Here we perform ab initio molecular dynamics simulations to characterize CO to 140 GPa and 5,000 K. We find that CO is stable as a molecular liquid at lower P-T conditions, as a polymeric liquid at higher P-T conditions found in ice giant interiors, and as a plasma at high-T.
An ab initio study on anionic aerogen bonds
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba
2017-01-01
An ab initio study is carried out to investigate the anionic aerogen bonds in complexes of KrO3, XeO3 and XeOF2 with F-, Cl-, Br-, CN-, NC-, N3-, SH-, SCN-, NCS-, OH- and OCH3- anions. All of the anionic aerogen bonds analyzed here have a partial covalent character. Charge transfer from the anion to the Kr-O or Xe-O σ∗ orbital stabilizes these complexes and leads to a sizable redshift in the corresponding stretching frequencies. The J(Kr-O) or J(Xe-O) spin-spin coupling constants can be regarded as a useful tool for the characterization of strength of the anionic aerogen-bonded complexes.
Ab initio quantum transport in atomic carbon chains
NASA Astrophysics Data System (ADS)
Botello-Méndez, Andrés R.; Charlier, Jean-Christophe; Banhart, Florian; NAPS Team; Carbyne Collaboration
2015-03-01
Carbyne, the sp-hybridized phase of carbon, is still a missing link in the family of carbon allotropes. Recently, detailed electrical measurements and first-principles electronic transport calculations have been performed on monoatomic carbon chains. When the 1D system is under strain, the current-voltage curves exhibit a semiconducting behavior, which corresponds to the polyyne structure of the atomic chain with alternating single and triple bonds. Conversely, when the chain is unstrained, the ohmic behavior is observed in agreement with the metallic cumulene structure with double bonds, confirming recent theoretical predictions, namely that a metal-insulator transition can be induced by adjusting the strain. The key role of the contacting leads is also scrutinized by ab initio quantum conductance calculations, explaining the rectifying behavior measured in monoatomic carbon chains in a non-symmetric contact configuration.
High-throughput ab-initio dilute solute diffusion database
NASA Astrophysics Data System (ADS)
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-07-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
Ab-initio theory of spin fluctuations in magnets
NASA Astrophysics Data System (ADS)
Antropov, Vladimir; Ke, Liqin; van Schilfgaarde, Mark; Katsnelson, Mikhael
2011-03-01
We propose a framework for a true ab initio theory of magnetism, based on many-body perturbation theory (MPBT). It fits in naturally with methods based MPBT such as the GW approximation; but the approach can be implemented as an extension to any existing static method for electronic structure such as the local spin density approximation to density functional theory, to include spin fluctuations. Initially we calculated the spin fluctuation contributions using random phase approximation. The self consistency procedure similar to the one used in Moryia-Kawabata theory can be naturally implemented. The fluctuation dissipation theorem is used to calculate the reduction of the mean field magnetic moment in itinerant magnets. The applications of the technique includes traditional 3d ferromagnetic metals, their alloys and compounds and 5f systems.
Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng; Xu Wenwu
2013-05-07
A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.
Hu, Mei; Xu, Wenwu; Liu, Xinguo; Tan, Ruishan; Li, Hongzheng
2013-05-07
A new global potential energy surface for the ground electronic state (1(2)A') of the Ar+H2(+)→ArH(+)+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.
NASA Astrophysics Data System (ADS)
Kubota, Yoshiyuki; Ohnuma, Toshiharu; Bučko, Tomáš
2017-03-01
The reaction of carbon dioxide (CO2) with aqueous 2-aminoethanol (MEA) has been investigated using both blue moon ensemble and metadynamics approaches combined with ab initio molecular dynamics (AIMD) simulations. The AIMD simulations predicted the spontaneous deprotonation of the intermediate compound, MEA zwitterion, and they were used to study two possible routes for subsequent proton transfer reactions: the formation of the protonated MEA and the formation of MEA carbamic acid. The free-energy curve depicted by blue moon ensemble technique supported the favorable deprotonation of MEA zwitterion. The overall free-energy profile showed the favorable formation of the ionic products of MEA carbamate ion and protonated MEA.
Trivacancy in silicon: A combined DLTS and ab-initio modeling study
NASA Astrophysics Data System (ADS)
Markevich, V. P.; Peaker, A. R.; Lastovskii, S. B.; Murin, L. I.; Coutinho, J.; Markevich, A. V.; Torres, V. J. B.; Briddon, P. R.; Dobaczewski, L.; Monakhov, E. V.; Svensson, B. G.
2009-12-01
Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V3) in Si. It is found that in the neutral charge state the V3 is bistable, with the "fourfold" configuration being lower in energy than the (1 1 0) planar configuration. V3 in the (1 1 0) planar configuration gives rise to two acceptor levels at Ec-0.36 eV and Ec-0.46 eV in the gap, while in the "fourfold" configuration the defect has trigonal symmetry and an acceptor level at Ec-0.075 eV.
Ab Initio Calculations of the Interaction between CO _{2} and the Acetate Ion
Steckel, Janice A.
2012-11-29
A series of ab initio calculations designed to investigate the interaction of CO{sub 2} with acetate are presented. The lowest energy structure, AC–CO{sub 2}-η{sup 2}, is predicted by CCSD(T)/aVTZ to be bound by -10.6 kcal/mol. Six of the bound complexes have binding energies on the order of -8 kcal/mol, but analysis shows that the η{sup 1}-CT complex is fundamentally different from the others. The η{sup 1}-CT complex is characterized by geometric distortion, large polarization and induction effects and charge transfer whereas the other five complexes have little geometric distortion and negligible charge transfer. The amount of charge that is transferred from the anion to the CO{sub 2} in the η{sup 1}-CT complex is estimated to be about half an electron by NPA, DMA, CHELPG, and Mulliken analyses, whereas the EDA-ALMO-CTA (B3LYP) approach predicts a charge transfer of 75 me{sup –}. However, the transfer of this small amount of charge leads to an energy lowering of -56 kcal/mol, without which the complex would not be bound. The RI-MP2 geometries closely approximate those resulting from the CCSD optimizations, and the optimized second-order opposite spin (O2) method performs well for all the complexes except for the η{sup 1}-CT complex. DFT methods do not reproduce all the ab initio geometries, binding energies and/or energy ordering of these complexes although the range-separated hybrid meta-GGA (M11) and nonlocal (VV10 and vdwDF10) functionals are shown to yield results significantly better than other functionals considered for this system. The fact that there is such variation among DFT methods has implications for DFT-based ab initio molecular dynamics simulations and for the parametrization of classical force fields based on DFT calculations.
An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry
Matthew Neurock; David A. Walthall
2006-05-07
One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various different energy sources potentially including fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch synthesis involves the initiation or activation of CO and H{sub 2} bonds, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. Commercially viable catalysts include supported Co and Co-alloys. Over the first two years of this project we have used ab initio methods to determine the adsorption energies for all reactants, intermediates, and products along with the overall reaction energies and their corresponding activation barriers over the Co(0001) surface. Over the third year of the project we developed and advanced an ab initio-based kinetic Monte Carlo simulation code to simulate Fischer Tropsch synthesis. This report details our work over the last year which has focused on the derivation of kinetic parameters for the elementary steps involved in FT synthesis from ab initio density functional theoretical calculations and the application of the kinetic Monte Carlo algorithm to simulate the initial rates of reaction for FT over the ideal Co(0001) surface. The results from our simulations over Co(0001) indicate the importance of stepped surfaces for the activation of adsorbed CO. In addition, they demonstrate that the dominant CH{sub x}* surface intermediate under steady state conditions is CH*. This strongly suggests that hydrocarbon coupling
Li, Y. Q.; Ma, F. C.; Sun, M. T.
2013-10-21
A full three-dimensional global potential energy surface is reported first time for the title system, which is important for the photodissociation processes. It is obtained using double many-body expansion theory and an extensive set of accurate ab initio energies extrapolated to the complete basis set limit. Such a work can be recommended for dynamics studies of the N({sup 2}D) + H{sub 2} reaction, a reliable theoretical treatment of the photodissociation dynamics and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen containing systems. In turn, a preliminary theoretical study of the reaction N({sup 2}D)+H{sub 2}(X{sup 1}Σ{sub g}{sup +})(ν=0,j=0)→NH(a{sup 1}Δ)+H({sup 2}S) has been carried out with the method of quasi-classical trajectory on the new potential energy surface. Integral cross sections and thermal rate constants have been calculated, providing perhaps the most reliable estimate of the integral cross sections and the rate constants known thus far for such a reaction.
Liu, Hanchao; Wang, Yimin; Bowman, Joel M
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
NASA Astrophysics Data System (ADS)
Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
2015-05-01
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
Koner, Debasish; Panda, Aditya N.; Barrios, Lizandra; González-Lezana, Tomás
2016-01-21
Initial state selected dynamics of the Ne + NeH{sup +}(v{sub 0} = 0, j{sub 0} = 0) → NeH{sup +} + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]{sup +} structure lying 0.72 eV below the Ne + NeH{sup +} asymptote is found to be the most stable geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.
Ab-initio method for X-ray absorption spectra simulation of hydride molecular ions
NASA Astrophysics Data System (ADS)
Puglisi, Alessandra; Sisourat, Nicolas; Carniato, Stéphane
2017-03-01
Soft X-ray absorption spectra of molecular ions are important data for the modeling and understanding of laboratory and astrophysical plasma. In this work, we present an ab-initio method, based on the Configuration Interaction (CI) approach, for the calculations of energy positions and oscillator strengths of X-ray absorption spectra. Furthermore, we investigate the effects of the choice of the nature and number of spin-orbitals used in the CI expansion on the spectra. The method is applied on three hydride molecular ions, namely CH+, OH+ and SiH+. However, the approach proposed here is general and may thus be applied to any kind of molecular ions.
A high-precision ab initio determination of the equilibrium geometry and force field of HOC(+)
NASA Technical Reports Server (NTRS)
Defrees, D. J.; Bunker, P. R.; Binkley, J. S.; Mclean, A. D.
1987-01-01
The results of an ab initio molecular orbital investigation of the isoformyl cation, HOC(+), shape are reported. The effects of expanding the basis set to near the Hartree-Fock limit and of electron correlation were examined, and the results indicate that near the Hartree-Fock limit the HOC(+) is linear. An analytic potential function is presented, from which the calculated rotational energies are only 0.03 percent different from the experimental values. This represents a nearly two orders of magnitude reduction in error from earlier work.
Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory
Vary, J. P.; Maris, P.; Honkanen, H.; Li, J.; Shirokov, A. M.; Brodsky, S. J.; Harindranath, A.
2009-12-17
Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually, we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.
Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory
Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.
2009-08-03
Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.
Ab initio calculation of the deuterium quadrupole coupling in liquid water
NASA Astrophysics Data System (ADS)
Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc
1992-10-01
The quadrupole coupling constant and asymmetry parameter for the deuteron in liquid heavy water was determined using purely theoretical methods. Molecular-dynamics simulations with the ab initio potential-energy surface of Lie and Clementi were used to generate snapshots of the liquid. The electric-field gradient at the deuteron was then calculated for these configurations and averaged to obtain the liquid quadrupole coupling constant. At 300 K a quadrupole coupling constant of 256±5 kHz and an asymmetry parameter of 0.164±0.003 were obtained. The temperature dependence of the quadrupole coupling constant was investigated.
Electric-field control of magnetism in graphene quantum dots: Ab initio calculations
Agapito, Luis A.; Kioussis, Nicholas; Kaxiras, Efthimios
2011-01-01
Employing ab initio calculations we predict that the magnetic states of hydrogenated diamond-shaped zigzag graphene quantum dots (GQDs), each exhibiting unique electronic structure, can be selectively tuned with gate voltage, through Stark or hybridization electric-field modulation of the spatial distribution and energy of the spin-polarized molecular orbitals, leading to transitions between these states. Electrical read-out of the GQD magnetic state can be accomplished by exploiting the distinctive electrical properties of the various magnetic configurations. PMID:21765631
AB Initio Study of Ion-Pair States of the Iodine Molecule
NASA Astrophysics Data System (ADS)
Alekseev, Vadim A.
2013-06-01
Ion-pair states of the I_2molecule have been the subject of many experimentals studies and to date all 18 states correlating with I^+(^3P_{J=2,1,0}, ^1D_2) + I^-(^1S_0) asymptotes are known from experiment. This contribution reports on {ab initio study of the I_2 molecule with an emphasis on the ion-pair states. Figure shows experimental and calculated potentials of the ion-pair states correlating with I^+(^3P_{2}) + I^-(^1S_0) asymptote (energy is relative to I (^2P_{3/2}) + I (^2P_{3/2}) asymptote).
Ab initio insight into graphene nanofibers to destabilize hydrazine borane for hydrogen release
NASA Astrophysics Data System (ADS)
Qian, Zhao; Raghubanshi, Himanshu; Sterlin Leo Hudson, M.; Srivastava, O. N.; Liu, Xiangfa; Ahuja, Rajeev
2017-02-01
We report the potential destabilizing effects of graphene nanofibers on the hydrogen release property of hydrazine borane via state-of-the-art ab initio calculations for the first time. Interactions of a hydrazine borane cluster with two types of graphene patch edges which exist abundantly in our synthesized graphene nanofibers have been investigated. It is found that both zigzag and armchair edges can greatly weaken the H-host bonds (especially the middle Nsbnd H bond) of hydrazine borane. The dramatic decrease in hydrogen removal energy is caused by the strong interaction between hydrazine borane and the graphene patch edges concerning the electronic charge density redistribution.
Testing the density matrix expansion against ab initio calculations of trapped neutron drops
Bogner, S. K.; Hergert, H.; Furnstahl, R. J.; Kortelainen, Erno M; Stoitsov, M. V.; Maris, Pieter; Vary, J. P.
2011-01-01
Microscopic input to a universal nuclear energy density functional can be provided through the density matrix expansion (DME), which has recently been revived and improved. Several DME implementation strategies are tested for neutron drop systems in harmonic traps by comparing to Hartree-Fock (HF) and ab initio no-core full configuration (NCFC) calculations with a model interaction (Minnesota potential). The new DME with exact treatment of Hartree contributions is found to best reproduce HF results and supplementing the functional with fit Skyrme-like contact terms shows systematic improvement toward the full NCFC results.
NASA Astrophysics Data System (ADS)
Kozlov, Maxim I.; Poddubnyy, Vladimir V.; Glebov, Ilya O.; Belov, Aleksandr S.; Khokhlov, Daniil V.
2016-02-01
The electronic properties of light-harvesting complexes determine the efficiency of energy transfer in photosynthetic antennae. Ab initio calculations of the electronic properties of bacteriochlorophylls (composing the LH1 complex of the purple bacteria Thermochromatium tepidum) were performed. Based on these calculations, the excitonic Hamiltonian of a native cyclic complex and the Hamiltonians of open complexes with several removed bacteriochlorophylls were constructed. Absorption spectra calculated based on these Hamiltonians agree well with the experimental data. We found that the parameters of interaction between the neighboring bacteriochlorophylls are significantly larger than the empirical parameters suggested previously.
Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones
NASA Astrophysics Data System (ADS)
Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng
2004-04-01
A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.
NASA Astrophysics Data System (ADS)
Pietrucci, Fabio; Andreoni, Wanda
2011-08-01
Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.
Pietrucci, Fabio; Andreoni, Wanda
2011-08-19
Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.
Ab initio study of the elastic anomalies in Pd-Ag alloys
NASA Astrophysics Data System (ADS)
Delczeg-Czirjak, E. K.; Delczeg, L.; Ropo, M.; Kokko, K.; Punkkinen, M. P. J.; Johansson, B.; Vitos, L.
2009-02-01
Ab initio total-energy calculations, based on the exact muffin-tin orbital method, are used to determine the elastic properties of Pd1-xAgx random alloys in the face-centered-cubic crystallographic phase. The compositional disorder is treated within the coherent-potential approximation. The single crystal and polycrystalline elastic constants and the Debye temperature are calculated for the whole range of concentration, 0≤x≤1 . It is shown that the variation in the elastic parameters of Pd-Ag alloys with chemical composition strongly deviates from a simple linear or parabolic trend. The complex electronic origin of these anomalies is demonstrated.
Ab initio calculations of elastic properties of Ru1-xNixAl superalloys
NASA Astrophysics Data System (ADS)
Bleskov, I. D.; Smirnova, E. A.; Vekilov, Yu. Kh.; Korzhavyi, P. A.; Johansson, B.; Katsnelson, M.; Vitos, L.; Abrikosov, I. A.; Isaev, E. I.
2009-04-01
Ab initio total energy calculations based on the exact muffin-tin orbitals method, combined with the coherent potential approximation, have been used to study the thermodynamical and elastic properties of substitutional refractory Ru1-xNixAl alloys. We have found that the elastic constants C' and C11 exhibit pronounced peculiarities near the concentration of about 40 at. % Ni, which we ascribe to electronic topological transitions. Our suggestion is supported by the Fermi surface calculations in the whole concentration range. Results of our calculations show that one can design Ru-Ni-Al alloys substituting Ru by Ni (up to 40 at. %) with almost invariable elastic constants and reduced density.
Protons in polar media: An ab initio molecular dynamics study
NASA Astrophysics Data System (ADS)
von Rosenvinge, Tycho
1998-10-01
The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations
Ab initio prediction of the critical thickness of a precipitate.
Sampath, S; Janisch, R
2013-09-04
Segregation and precipitation of second phases in metals and metallic alloys is an important phenomenon that has a strong influence on the mechanical properties of the material. Models exist that describe the growth of coherent, semi-coherent and incoherent precipitates. One important parameter of these models is the energy of the interface between matrix and precipitate. In this work we apply ab initio density functional theory calculations to obtain this parameter and to understand how it depends on chemical composition and mechanical strain at the interface.Our example is a metastable Mo-C phase, the body-centred tetragonal structure, which exists as a semi-coherent precipitate in body-centred cubic molybdenum. The interface of this precipitate is supposed to change from coherent to semi-coherent during the growth of the precipitate. We predict the critical thickness of the precipitate by calculating the different contributions to a semi-coherent interface energy by means of ab initio density functional theory calculations. The parameters in our model include the elastic strain energy stored in the precipitate, as well as a misfit dislocation energy that depends on the dislocation core width and the dislocation spacing. Our predicted critical thickness agrees well with experimental observations.
Ab initio study of structural and magnetic properties of Si-doped Fe2P
NASA Astrophysics Data System (ADS)
Delczeg-Czirjak, E. K.; Delczeg, L.; Punkkinen, M. P. J.; Johansson, B.; Eriksson, O.; Vitos, L.
2010-08-01
Ab initio electronic-structure methods are used to study the properties of Fe2P1-xSix in ferromagnetic and paramagnetic states. The site preference and lattice relaxation are calculated with the projector augmented wave method as implemented in the Vienna ab initio simulation package. The paramagnetic state is modeled by the disordered local magnetic moment scheme, and the chemical and magnetic disorder is treated using the coherent potential approximation in combination with the exact muffin-tin orbital formalism. The calculated lattice parameters, atomic positions, and magnetic properties are in good agreement with the experimental and other theoretical results. In contrast to the observation, for the ferromagnetic state the body centered orthorhombic structure (bco, space group Imm2&barbelow; ) is predicted to have lower energy than the hexagonal structure (hex, space group P6¯2m ). The zero-point spin fluctuation energy difference is found to be large enough to stabilize the hex phase. For the paramagnetic state, the hex structure is calculated to be the stable phase and the computed total energy versus composition indicates a hex to bco crystallographic phase transition with increasing Si content. The phonon vibrational free energy, estimated from the theoretical equation of state, turns out to stabilize the hexagonal phase, whereas the electronic and magnetic entropies favor the low symmetry orthorhombic structure.
Ashcraft, Robert W; Raman, Sumathy; Green, William H
2007-10-18
Ab initio molecular orbital calculations were performed and thermochemical parameters estimated for 46 species involved in the oxidation of hydroxylamine in aqueous nitric acid solution. Solution-phase properties were estimated using the several levels of theory in Gaussian03 and using COSMOtherm. The use of computational chemistry calculations for the estimation of physical properties and constants in solution is addressed. The connection between the pseudochemical potential of Ben-Naim and the traditional standard state-based thermochemistry is shown, and the connection of these ideas to computational chemistry results is established. This theoretical framework provides a basis for the practical use of the solution-phase computational chemistry estimates for real systems, without the implicit assumptions that often hide the nuances of solution-phase thermochemistry. The effect of nonidealities and a method to account for them is also discussed. A method is presented for estimating the solvation enthalpy and entropy for dilute aqueous solutions based on the solvation free energy from the ab initio calculations. The accuracy of the estimated thermochemical parameters was determined through comparison with (i) enthalpies of formation in the gas phase and in solution, (ii) Henry's law data for aqueous solutions, and (iii) various reaction equilibria in aqueous solution. Typical mean absolute deviations (MAD) for the solvation free energy in room-temperature water appear to be ~1.5 kcal/mol for most methods investigated. The MAD for computed enthalpies of formation in solution was 1.5-3 kcal/mol, depending on the methodology employed and the type of species (ion, radical, closed-shell) being computed. This work provides a relatively simple and unambiguous approach that can be used to estimate the thermochemical parameters needed to build detailed ab initio kinetic models of systems in aqueous solution. Technical challenges that limit the accuracy of the estimates are
Velaga, Srinath C; Anderson, Brian J
2014-01-16
Gas hydrate deposits are receiving increased attention as potential locations for CO2 sequestration, with CO2 replacing the methane that is recovered as an energy source. In this scenario, it is very important to correctly characterize the cage occupancies of CO2 to correctly assess the sequestration potential as well as the methane recoverability. In order to predict accurate cage occupancies, the guest–host interaction potential must be represented properly. Earlier, these potential parameters were obtained by fitting to experimental equilibrium data and these fitted parameters do not match with those obtained by second virial coefficient or gas viscosity data. Ab initio quantum mechanical calculations provide an independent means to directly obtain accurate intermolecular potentials. A potential energy surface (PES) between H2O and CO2 was computed at the MP2/aug-cc-pVTZ level and corrected for basis set superposition error (BSSE), an error caused due to the lower basis set, by using the half counterpoise method. Intermolecular potentials were obtained by fitting Exponential-6 and Lennard-Jones 6-12 models to the ab initio PES, correcting for many-body interactions. We denoted this model as the “VAS” model. Reference parameters for structure I carbon dioxide hydrate were calculated using the VAS model (site–site ab initio intermolecular potentials) as Δμ(w)(0) = 1206 ± 2 J/mol and ΔH(w)(0) = 1260 ± 12 J/mol. With these reference parameters and the VAS model, pure CO2 hydrate equilibrium pressure was predicted with an average absolute deviation of less than 3.2% from the experimental data. Predictions of the small cage occupancy ranged from 32 to 51%, and the large cage is more than 98% occupied. The intermolecular potentials were also tested by calculating the pure CO2 density and diffusion of CO2 in water using molecular dynamics simulations.
Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Ab initio solution of macromolecular crystal structures without direct methods.
McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J
2017-04-04
The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.
Ab initio electronic structure and optical conductivity of bismuth tellurohalides
NASA Astrophysics Data System (ADS)
Schwalbe, Sebastian; Wirnata, René; Starke, Ronald; Schober, Giulio A. H.; Kortus, Jens
2016-11-01
We investigate the electronic structure, dielectric, and optical properties of bismuth tellurohalides BiTe X (X =I , Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. [Phys. Rev. B 90, 035201 (2014), 10.1103/PhysRevB.90.035201], Makhnev et al. [Opt. Spectrosc. 117, 764 (2014), 10.1134/S0030400X14110125], and Rusinov et al. [JETP Lett. 101, 507 (2015), 10.1134/S0021364015080147]. We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.
Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures
NASA Astrophysics Data System (ADS)
Debernardi, Alberto; Marchetti, Luigi
2016-06-01
Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.
Ab-Initio Study of Incongruent Melting in Silicates
NASA Astrophysics Data System (ADS)
Pinilla, C.; Stixrude, L. P.
2014-12-01
Knowledge of the multi-component thermodynamics and phase equilibria of silicate melts at Earth's interior conditions are key to understand the chemical and thermal evolution of the planet. Yet they remain poorly constrained with a wide uncertainty on the eutectic composition and temperature. In this work we present results from ab-initio molecular dynamics in combination with the two-phase coexistance method to study properties of a system of MgSiO3 liquid coexisting with crystalline MgO at conditions of the deep lower mantle. During incongruent melting the crystal may either grow via partial freezing of the liquid or shrink via partial melting at a given temperature and pressure. The melting process can be studied using the two-phases method where liquid and solid are in contact at a given temperature and pressure and so under thermodynamic equilibrium. We characterise the composition and densities of the resultant solid and liquid phases, provide chemical potentials of the liquid phase and study the structural and dynamical properties of the melt. In addition, we discuss the performance of alternative computational methods applied to the study of incongruent melting in silicate systems where long simulation times and a large number of atoms are usually needed. Finally, we discuss the implication of our findings for the evolution of the Earth's interior.
Volumic omit maps in ab initio dual-space phasing.
Oszlányi, Gábor; Sütő, András
2016-07-01
Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed.
Ab initio liquid water from PBE0 hybrid functional simulations
NASA Astrophysics Data System (ADS)
Li, Zhaofeng; Wu, Xifan; Car, Roberto
2010-03-01
For reasons of computational efficiency, so far most ab initio molecular dynamics simulations of liquid water have been based on semi-local density functional approximations, such as PBE and BLYP. These approaches yield a liquid structure that, albeit qualitatively correct, is overstructured compared to experiment, even after nuclear quantum effects have been taken into account.footnotetextJ. A. Morrone and R. Car, Phys. Rev. Lett. 101, 017801(2008) A major cause of this inaccuracy is the delocalization error associated to semi-local density functional approximations, which, as a consequence, overestimate slightly the hydrogen bond strength in the liquid. In this work we adopt the PBE0 hybrid functional approximation, which, by mixing a fraction of exact (Hartree-Fock) exchange, reduces significantly the delocalization error of semi-local functionals. Our approach is based on a numerically efficient order-N implementation of exact exchange.footnotetextX. Wu, A. Selloni, and R. Car, Phys. Rev. B 79, 085102(2009) We find that PBE0 systematically improves the agreement of the simulated liquid with experiment. Our conclusion is substantiated by the calculated radial distribution functions, H-bond statistics, and molecular dipole distribution.
An efficient approach to ab initio Monte Carlo simulation.
Leiding, Jeff; Coe, Joshua D
2014-01-21
We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β(0)), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where-depending on the quality of the reference system potential-acceptance probabilities were enhanced by factors of 1.2-28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.
Ab-Initio Molecular Dynamics Simulation of Graphene Sheet
NASA Astrophysics Data System (ADS)
Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.
2017-01-01
The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.
Ab initio Raman spectroscopy of water under extreme conditions
NASA Astrophysics Data System (ADS)
Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia
Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.
Electronic structure and conductivity of ferroelectric hexaferrite: Ab initio calculations
NASA Astrophysics Data System (ADS)
Knížek, K.; Novák, P.; Küpferling, M.
2006-04-01
Ba0.5Sr1.5Zn2Fe12O22 is a promising multiferroic compound in which the electric polarization is intimately connected to the magnetic state. In principle, ferroelectrity might exist above the room temperature, but the electrical conductivity that increases with increasing temperature limits it to temperatures below ≈130K . We present results of an ab initio electronic structure calculation of the (BaSr)Zn2Fe12O22 system. To improve the description of strongly correlated 3d electrons of iron, the GGA+U method is used. The results show that the electrical conductivity strongly depends on relative fractions of iron and zinc in the tetrahedral sublattice that belongs to the spinel block of the hexaferrite structure. If this sublattice is fully occupied by zinc, the system is an insulator with a gap of ≈1.5eV . If it is occupied equally by Fe and Zn the gap decreases by a factor of 2, and the system is metallic when this sublattice is filled by iron only.
Ab initio calculation of infrared intensities for hydrogen peroxide
NASA Technical Reports Server (NTRS)
Rogers, J. D.; Hillman, J. J.
1982-01-01
Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.
Ab initio calculations of correlated electron dynamics in ultrashort pulses
NASA Astrophysics Data System (ADS)
Feist, Johannes
2010-03-01
The availability of ultrashort and intense light pulses on the femtosecond and attosecond timescale promises to allow to directly probe and control electron dynamics on their natural timescale. A crucial ingredient to understanding the dynamics in many-electron systems is the influence of electron correlation, induced by the interelectronic repulsion. In order to study electron correlation in ultrafast processes, we have implemented an ab initio simulation of the two-electron dynamics in helium atoms. We solve the time-dependent Schr"odinger equation in its full dimensionality, with one temporal and five spatial degrees of freedom in linearly polarized laser fields. In our computational approach, the wave function is represented through a combination of time-dependent close coupling with the finite element discrete variable representation, while time propagation is performed using an Arnoldi-Lanczos approximation with adaptive step size. This approach is optimized to allow for efficient parallelization of the program and has been shown to scale linearly using up to 1800 processor cores for typical problem sizes. This has allowed us to perform highly accurate and well- converged computations for the interaction of ultrashort laser pulses with He. I will present some recent results on using attosecond and femtosecond pulses to probe and control the temporal structure of the ionization process. This work was performed in collaboration with Stefan Nagele, Renate Pazourek, Andreas Kaltenb"ack, Emil Persson, Barry I. Schneider, Lee A. Collins, and Joachim Burgd"orfer.
Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; ...
2015-01-31
In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A = La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order–disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimentalmore » observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.« less
Ab initio study of the SeS local oscillator in zinc sulfide
NASA Astrophysics Data System (ADS)
Petzke, K.
1999-11-01
A method is presented to calculate the energy and symmetry of local vibrational modes (LVM's) at point defects in semiconductors from first principles. The force constants for the disturbed and undisturbed systems are calculated using a variant of the direct approach. The ab initio results are used as input parameters for a cluster simulation with up to 489 vibrating atoms, which accounts for hybridization effects between the LVM and the host lattice modes. The method is applied to the LVM of ZnS:SeS, which shows a pronounced fine structure due to both host and ligand induced isotope effects. The energy of the main peak, which represents the most abundant Selen isotope 80Se, is calculated as 229.6 cm-1. This agrees very well with the result of 229.2 cm-1 from Fourier transform infrared experiments found in the literature. It is shown that the ab initio result improves the understanding of the LVM, when compared to the previously used ad hoc model, especially in the low-energy region.
Thürmer, Stephan; Seidel, Robert; Winter, Bernd; Ončák, Milan; Slavíček, Petr
2011-06-16
The effect of hydration on the electronic structure of H(2)O(2) is investigated by liquid-jet photoelectron spectroscopy measurements and ab initio calculations. Experimental valence electron binding energies of the H(2)O(2) orbitals in water are, on average, 1.9 eV red-shifted with respect to the gas-phase molecule. A smaller width of the first peak was observed in the photoelectron spectrum from the solution. Our experiment is complemented by simulated photoelectron spectra, calculated at the ab initio level of theory (with EOM-IP-CCSD and DFT methods), and using path-integral sampling of the ground-state density. The observed shift in ionization energy upon solvation is attributed to a combination of nonspecific electrostatic effects (long-range polarization) and of the specific interactions between H(2)O(2) and H(2)O molecules in the first solvation shell. Changes in peak widths are found to result from merging of the two lowest ionized states of H(2)O(2) in water due to conformational changes upon solvation. Hydration effects on H(2)O(2) are stronger than on the H(2)O molecule. In addition to valence spectra, we report oxygen 1s core-level photoelectron spectra from H(2)O(2)(aq), and observed energies and spectral intensities are discussed qualitatively.
Ab initio study of weakly bound halogen complexes: RX⋯PH3.
Georg, Herbert C; Fileti, Eudes E; Malaspina, Thaciana
2013-01-01
Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R=methyl, phenyl, acetyl, H and X=F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy analysis found that the interaction energies are in the range -4.14 to -11.92 kJ mol(-1) (at MP2 level without ZPE correction). Effects of electronic correlation levels were evaluated at MP4 and CCSD(T) levels and a reduction of up to 27% in interaction energy obtained in MP2 was observed. Analysis of the electrostatic maps confirms that the PhCl⋯PH3 and all MeX⋯PH3 complexes are unstable. NBO analysis suggested that the charge transfer between the moieties is bigger when using iodine than bromine and chlorine. The electrical properties of these complexes (dipole and polarizability) were determined and the most important observed aspect was the systematic increase at the dipole polarizability, given by the interaction polarizability. This increase is in the range of 0.7-6.7 u.a. (about 3-7%).
NASA Astrophysics Data System (ADS)
Yin, Chih-Chien; Li, Arvin Huang-Te; Chao, Sheng D.
2013-11-01
We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform.
Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces
NASA Astrophysics Data System (ADS)
Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos
2016-08-01
Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.
Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces
Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos
2016-01-01
Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew–Burke–Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C−H and O−H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C−H and O−H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C−H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C−H bond of methanol is more facile than the O−H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O−H bond activation is enhanced, becoming slightly more facile than C−H bond activation. PMID:27503889
Experimental and ab initio infrared study of chi-, kappa- and alpha-aluminas formed from gibbsite
Favaro, L.; Boumaza, A.; Roy, P.; Ledion, J.; Sattonnay, G.; Brubach, J.B.; Huntz, A.M.; Tetot, R.
2010-04-15
chi-, kappa- and alpha-alumina phases formed by dehydration of micro-grained gibbsite between 773 and 1573 K are studied using infrared spectroscopy (IR). The structural transitions evidenced by X-ray diffraction (XRD) were interpreted by comparing IR measurements with ab initio simulations (except for the chi form whose complexity does not allow a reliable simulation). For each phase, IR spectrum presents specific bands corresponding to transverse optical (TO) modes of Al-O stretching and bending under 900 cm{sup -1}. The very complex chi phase, obtained at 773 K, provides a distinctive XRD pattern in contrast with the IR absorbance appearing as a broad structure extending between 200 and 900 cm{sup -1} resembling the equivalent spectra for gamma-alumina phase. kappa-alumina is forming at 1173 K and its rich IR spectrum is in good qualitative agreement with ab initio simulations. This complexity reflects the large number of atoms in the kappa-alumina unit cell and the wide range of internuclear distances as well as the various coordinances of both Al and O atoms. Ab initio simulations suggest that this form of transition alumina demonstrates a strong departure from the simple pattern observed for other transition alumina. At 1573 K, the stable alpha-ALPHAl{sub 2}OMICRON{sub 3} develops. Its IR spectra extends in a narrower energy range as compared to transition alumina and presents characteristics features similar to model alpha-ALPHAl{sub 2}OMICRON{sub 3}. Ab initio calculations show again a very good general agreement with the observed IR spectra for this phase. In addition, for both kappa- and alpha-ALPHAl{sub 2}OMICRON{sub 3}, extra modes, measured at high energy (above 790 cm{sup -1} for kappa and above 650 cm{sup -1} for alpha), can originate from either remnant chi-alumina or from surface modes. - Graphical abstract: Infrared spectra of the sequence Gibbsite ->chi->kappa->alpha-Al{sub 2}O{sub 3} obtained from 24 h calcinations of Gibbsite at 773 K, 1173 K
2015-06-28
Charts 3. DATES COVERED (From - To) June 2015-June 2015 4. TITLE AND SUBTITLE AB INITIO QUANTUM CHEMICAL REACTION KINETICS: RECENT APPLICATIONS IN...Unlimited. 13. SUPPLEMENTARY NOTES Briefing Charts presented at 9th Int. Conf. Chemical Kinetics; Ghent, Belgium; 28 Jun 2015. PA#15351. 14. ABSTRACT...ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical Reaction Kinetics: Recent Applications in Combustion Chemistry Ghanshyam L. Vaghjiani* DISTRIBUTION A
Experimental and ab initio study of the mechanical properties of hydroxyapatite
NASA Astrophysics Data System (ADS)
Snyders, R.; Music, D.; Sigumonrong, D.; Schelnberger, B.; Jensen, J.; Schneider, J. M.
2007-05-01
The authors have studied the elastic properties of radio frequency sputtered phase pure, stoichiometric, and dense hydroxyapatite films by nanoindentation. The measured elastic modulus values have been compared to ab initio calculated data. The calculation technique was based on the determination of all elastic constants. The calculated and measured elastic modulus values differ by ˜10%. The good agreement indicates that the elasticity of hydroxyapatite can be described using ab initio calculations, establishing the elastic modulus thereof.
Brière, B.; Kalinko, A.; Yamada, I.; Roy, P.; Brubach, J. B.; Sopracase, R.; Zaghrioui, M.; Phuoc, V. Ta
2016-01-01
Optical measurements were carried out by infrared spectroscopy on AA′3B4O12 A-site ordered quadruple perovskite EuCu3Fe4O12 (microscopic sample) as function of temperature. At 240 K (=TMI), EuCu3Fe4O12 undergoes a very abrupt metal to insulator transition, a paramagnetic to antiferromagnetic transition and an isostructural transformation with an abrupt large volume expansion. Above TMI, optical conductivity reveals a bad metal behavior and below TMI, an insulating phase with an optical gap of 125 meV is observed. As temperature is decreased, a large and abrupt spectral weight transfer toward an energy scale larger than 1 eV is detected. Concurrently, electronic structure calculations for both high and low temperature phases were compared to the optical conductivity results giving a precise pattern of the transition. Density of states and computed optical conductivity analysis identified Cu3dxy, Fe3d and O2p orbitals as principal actors of the spectral weight transfer. The present work constitutes a first step to shed light on EuCu3Fe4O12 electronic properties with optical measurements and ab-initio calculations. PMID:27346212
Bombasaro, J A; Zamora, M A; Baldoni, H A; Enriz, R D
2005-02-10
The full conformational space of N-acetyl-l-cysteine-N-methylamide was explored by ab initio (RHF/ 6-31G(d)) and DFT (B3LYP/6-31G(d)) computations. Multidimensional conformational analysis predicts 81 structures in N-acetyl-l-cysteine-N-methylamide, but only 47 relaxed structures were previously determined at the RHF/3-21G level of theory. These structures were now optimized using RHF/6-31G(d) and B3LYP/6-31G(d) approaches. Seven conformational migrations were observed when recalculated at higher level of theory. Besides these major changes, only smaller conformational shifts were operative for the remaining stationary points. The exploration of the whole conformational space of N-acetyl-l-cysteine-N-methylamide, including the transition-state structures allowing the conformational interconversion among the low-energy forms, was analyzed in this study. Our results offer new insights into the influence of polar side chains on the conformational preferences of peptide structures.
Wu, Dong-lan; Tan, Bin; Qin, Jiu-ying; Wan, Hui-jun; Xie, An-dong; Yan, Bing; Ding, Da-jun
2015-11-05
Ab initio calculations on potential energy curves (PECs), spectroscopic constants, transition dipole moments, radiative transition probabilities and lifetimes for the ground state (X(2)Σ(+)) and the first excited state (A(2)Π) of MgX (X=F, Cl, Br, I) molecules are determined by high-level internally contracted multi-reference configuration interaction (ic-MRCI) method. In order to improve the calculation, the Davidson modification (+Q) and scalar relativistic correction are included. The present results show that most of spectroscopic constants are in accordance with the measurements, the equilibrium internuclear distance Re increases while the other spectroscopic constants reduce along with the increasing of the atomic number of the halogen from F to I. Diagonal vibrational transitions are found to be dominant for the A(2)Π→X(2)Σ(+) system of MgX molecules. The corresponding radiative lifetimes of ν'=0 are computed to be 7.24, 9.98, 18.94 and 22.72 ns for MgF, MgCl, MgBr, and MgI, respectively. The calculated result of MgF molecule is in good agreement with the recent theoretical result of 7.16 ns, with a small relative error percent of 1.11%.
Brière, B; Kalinko, A; Yamada, I; Roy, P; Brubach, J B; Sopracase, R; Zaghrioui, M; Phuoc, V Ta
2016-06-27
Optical measurements were carried out by infrared spectroscopy on AA'3B4O12 A-site ordered quadruple perovskite EuCu3Fe4O12 (microscopic sample) as function of temperature. At 240 K (=TMI), EuCu3Fe4O12 undergoes a very abrupt metal to insulator transition, a paramagnetic to antiferromagnetic transition and an isostructural transformation with an abrupt large volume expansion. Above TMI, optical conductivity reveals a bad metal behavior and below TMI, an insulating phase with an optical gap of 125 meV is observed. As temperature is decreased, a large and abrupt spectral weight transfer toward an energy scale larger than 1 eV is detected. Concurrently, electronic structure calculations for both high and low temperature phases were compared to the optical conductivity results giving a precise pattern of the transition. Density of states and computed optical conductivity analysis identified Cu3dxy, Fe3d and O2p orbitals as principal actors of the spectral weight transfer. The present work constitutes a first step to shed light on EuCu3Fe4O12 electronic properties with optical measurements and ab-initio calculations.
Espinosa-Garcia, J; Rangel, C; Corchado, J C
2016-06-22
We report an analytical full-dimensional potential energy surface for the GeH4 + OH → GeH3 + H2O reaction based on ab initio calculations. It is a practically barrierless reaction with very high exothermicity and the presence of intermediate complexes in the entrance and exit channels, reproducing the experimental evidence. Using this surface, thermal rate constants for the GeH4 + OH/OD isotopic reactions were calculated using two approaches: variational transition state theory (VTST) and quasi-classical trajectory (QCT) calculations, in the temperature range 200-1000 K, and results were compared with the only experimental data at 298 K. Both methods showed similar values over the whole temperature range, with differences less than 30%; and the experimental data was reproduced at 298 K, with negative temperature dependence below 300 K, which is associated with the presence of an intermediate complex in the entrance channel. However, while the QCT approach reproduced the experimental kinetic isotope effect, the VTST approach underestimated it. We suggest that this difference is associated with the harmonic approximation used in the treatment of vibrational frequencies.
NASA Astrophysics Data System (ADS)
Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär
2017-02-01
The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.
Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides
NASA Astrophysics Data System (ADS)
Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.
One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.
2016-05-17
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO${}_{{\\rm{sat}}}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the ${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$ states in ${}^{\\mathrm{17,23,25}}$O, and—contrary to naive shell-model expectations—the level ordering of the ${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$ states in ${}^{\\mathrm{53,55,61}}$Ca.
Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system
Hormain, Laureline; Monnerville, Maurice Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón
2015-04-14
The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.
Ab initio calculations of the optical properties of crystalline and liquid InSb
Sano, Haruyuki; Mizutani, Goro
2015-11-15
Ab initio calculations of the electronic and optical properties of InSb were performed for both the crystalline and liquid states. Two sets of atomic structure models for liquid InSb at 900 K were obtained by ab initio molecular dynamics simulations. To reduce the effect of structural peculiarities in the liquid models, an averaging of the two sets of the calculated electronic and optical properties corresponding to the two liquid models was performed. The calculated results indicate that, owing to the phase transition from crystal to liquid, the density of states around the Fermi level increases. As a result, the energy band gap opening near the Fermi level disappears. Consequently, the optical properties change from semiconductor to metallic behavior. Namely, owing to the melting of InSb, the interband transition peaks disappear and a Drude-like dispersion is observed in the optical dielectric functions. The optical absorption at a photon energy of 3.06 eV, which is used in Blu-ray Disc systems, increases owing to the melting of InSb. This increase in optical absorption is proposed to result from the increased optical transitions below 2 eV.
Ab initio modeling of quasielastic neutron scattering of hydrogen pipe diffusion in palladium
NASA Astrophysics Data System (ADS)
Schiavone, Emily J.; Trinkle, Dallas R.
2016-08-01
A recent quasielastic neutron scattering (QENS) study of hydrogen in heavily deformed fcc palladium provided the first direct measurement of hydrogen pipe diffusion, which has a significantly higher diffusivity and lower activation barrier than in bulk. While ab initio estimates of hydrogen diffusion near a dislocation corroborated the experimental values, open questions remain from the Chudley-Elliott analysis of the QENS spectra, including significant nonmonotonic changes in jump distance with temperature. We calculate the spherically averaged incoherent scattering function at different temperatures using our ab initio data for the network of site energies, jump rates, and jump vectors to directly compare to experiment. Diffusivities and jump distances are sensitive to how a single Lorentzian is fit to the scattering function. Using a logarithmic least squares fit over the range of experimentally measured energies, our diffusivities and jump distances agree well with those measured by experiment. However, these calculated quantities do not reflect barriers or distances in our dislocation geometry. This computational approach allows for validation against experiment, along with a more detailed understanding of the QENS results.
Emergent properties of nuclei from ab initio coupled-cluster calculations
NASA Astrophysics Data System (ADS)
Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.
2016-06-01
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).
Kassab, E.; Seiti, K.; Allavena, M.
1988-11-17
SCF ab initio calculations at the 6-31G level have been used to investigate the structure of several aggregates simulating some of the proton donor sites within faujasite-type zeolites. The Si(OH)/sub 4/, H/sub 3/SiOHAlH/sub 3/, and (OH)/sub 3/SiOHAl(OH)/sub 3/ clusters have been successively examined. Deprotonation energies and charge distribution are determined at a higher level by using a 6-31G basis set augmented with polarization and diffuse functions. The results are compared with values obtained by using pseudopotential methods. The small differences between the two sets of results demonstrate that comparable accuracy should be expected from both procedures. Finally, deprotonation energies of (OH)/sub 3/T/sub 1/OHT/sub 2/(OH)/sub 3/ aggregates (T/sub 1/, T/sub 2/ = AlSi, BSi, GaSi; AlGe, BGe, GaGe) are calculated by using pseudopotential methods and compared with the results given by the semiempirical MNDO method. In some cases ab initio SCF calculations were also performed. The results confirm that the inclusion of boron atom lowers the acidity as already demonstrated by experimental investigation. The effects due to the inclusion of Ga are discussed and compared to available experimental data.
Ab-initio atomic level stresses in Cu-Zr crystal, liquid and glass phases
NASA Astrophysics Data System (ADS)
Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi
2013-03-01
The Cu-Zr system provides interesting playground for the study of glass structure, stability, and formability and liquid dynamics. Glasses form over a wide range of concentrations while they compete against various intermetallic compounds. We have calculated from first-principles the atomic level stresses, a new tool to characterize materials, within the local approximation to Density Functional Theory (DFT) for Cu-Zr glasses and compounds from low temperature to 4500K. Comparisons between ordered crystalline compounds and liquids and glasses allow us to relate atomic level stress to relaxation of chemical short-range order and structural relaxation. The results are counter-intuitive at times; a smaller atom is under higher compressive pressure, whereas geometrically they should be under tension. Ab-initio calculations were done using Vienna Ab-initio Simulation Package (VASP) and Locally Self-consistent Multiple Scattering (LSMS) codes. The work at the University of Tennessee and Oak Ridge National laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division.
Application of ab-initio calculations to modeling of nanoscale diffusion and activation in silicon
NASA Astrophysics Data System (ADS)
Diebel, Milan
As ULSI devices enter the nanoscale, ultra-shallow and highly electrically active junctions become necessary. New materials and 3D device structures as well as new process technologies are under exploration to meet the requirements of future devices. A detailed understanding of the atomistic mechanisms of point-defect/dopant interactions which govern diffusion and activation behavior is required to overcome the challenges in building these devices. This dissertation describes how ab-initio calculations can be used to develop physical models of diffusion and activation in silicon. A hierarchy of approaches (ab-initio, kinetic lattice Monte Carlo, continuum) is used to bridge the gaps in time scale and system size between atomistic calculations and nanoscale devices. This modeling approach is demonstrated by investigating two very different challenges in process technology: F co-implantation and stress effects on dopant diffusion/activation. In the first application, ab-initio calculations are used to understand anomalous F diffusion behavior. A set of strongly bound fluorine vacancy complexes (FnVm ) were found. The decoration of vacancies/dangling silicon bonds by fluorine leads to fluorine accumulating in vacancy rich regions, which explains the fluorine redistribution behavior reported experimentally. The revealed interactions of F with point-defects explain the benefits of F co-implantation for B and P activation and diffusion. Based on the insight gained, a simplified F diffusion model at the continuum level (50--100 nm scale) is extracted that accounts for co-implantation effects on B and P for various implant energies and doses. The second application addresses the effect of stress on point-defect/dopant equilibrium concentration, diffusion, and activation. A methodology is developed to extract detailed stress effects from ab-initio calculations. The approach is used to extract induced strains and elasticity tensors for various defects and impurities in order
NASA Astrophysics Data System (ADS)
Shimamura, K.; Shibuta, Y.; Ohmura, S.; Arifin, R.; Shimojo, F.
2016-04-01
The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed.
NASA Astrophysics Data System (ADS)
Olsson, Pär A. T.; Kese, Kwadwo; Alvarez Holston, Anna-Maria
2015-12-01
In this work we report the results of an ab initio study of the influence of hydrogen filled vacancies on the mechanical properties of zirconium. The modelling shows that hydrogen filled vacancies contribute to a lowering of the surface energy and an increase in the unstable stacking fault energy, which implies a reduction in ductility. The increase in unstable stacking fault energy suggests that the defects promote a change in the dislocation glide mechanism from prismatic to basal slip. To investigate the cleavage energetics, we model the decohesion process. For describing the interplanar interaction we adopt an extended version of Rose's universal binding energy relation, which is found to reproduce the behaviour accurately. The results of the modelling imply that the work of fracture and peak stress decrease as a result of the presence of hydrogen filled vacancies.
Ismail-Beigi; Arias
2000-02-14
We report the first ab initio density-functional study of <111> screw dislocation cores in the bcc transition metals Mo and Ta. Our results suggest a new picture of bcc plasticity with symmetric and compact dislocation cores, contrary to the presently accepted picture based on continuum and interatomic potentials. Core energy scales in this new picture are in much better agreement with the Peierls energy barriers to dislocation motion suggested by experiments.
Le, Hung M; Raff, Lionel M
2010-01-14
The classical reaction dynamics of a four-body, bimolecular reaction on a neural network (NN) potential-energy surface (PES) fitted to a database obtained solely from ab initio MP2/6-311G(d,p) calculations are reported. The present work represents the first reported application of ab initio NN methods to a four-body, bimolecular, gas-phase reaction where bond extensions reach 8.1 A for the BeH + H(2) --> BeH(2) + H reaction. A modified, iterative novelty sampling method is used to select data points based on classical trajectories computed on temporary NN surfaces. After seven iterations, the sampling process is found to converge after selecting 9604 configurations. Incorporation of symmetry increases this to 19 208 BeH(3) configurations. The analytic PES for the system is obtained from the ensemble average of a five-member (6-60-1) NN committee. The mean absolute error (MAE) for the committee is 0.0046 eV (0.44 kJ mol(-1)). The total energy range of the BeH(3) database is 147.0 kJ mol(-1). Therefore, this MAE represents a percent energy error of 0.30%. Since it is the gradient of the PES that constitutes the most important quantity in molecular dynamics simulations, the paper also reports mean absolute error for the gradient. This result is 0.026 eV A(-1) (2.51 kJ mol(-1) A(-1)). Since the gradient magnitudes span a range of 15.32 eV A(-1) over the configuration space tested, this mean absolute gradient error represents a percent error of 0.17%. The mean percent absolute relative gradient error is 4.67%. The classically computed reaction cross sections generally increase with total energy. They vary from 0.007 to 0.030 A(2) when H(2) is at ground state, and from 0.05 to 0.10 A(2) when H(2) is in the first excited state. Trajectory integration is very fast using the five-member NN PES. The average trajectory integration time is 1.07 s on a CPU with a clock speed of 2.4 GHz. Zero angular momentum collisions are also investigated and compared with previously reported
Ab initio molecular dynamics of liquid hydrogen chloride
NASA Astrophysics Data System (ADS)
Dubois, Vincent; Pasquarello, Alfredo
2005-03-01
We carried out an ab initio molecular dynamics simulation of liquid hydrogen chloride (ℓ-HCl) at a temperature of 313 K. Comparison with inelastic neutron scattering data shows that the simulation achieves an overall good description of the structural correlations, improving significantly upon a description based on classical interaction potentials. Despite some minor differences between theory and experiment in the H-H partial structure factor, the simulation gives a description of the hydrogen bonding in impressive agreement with experiment, for both the amount and the bond-length distribution of the bonds. In the simulation, 40% of the molecules are nonbonded, while the hydrogen-bonded chains are short, principally consisting of dimers (25%) and trimers (15%). Neighboring molecules in the simulation are found to form L-shaped arrangements, like in the isolated (HCl)2 dimer and in crystalline phases of HCl. The time correlation of the molecular-axis orientation is found to be characterized by a very short decay time (0.13 ps), consistent with the short length of the hydrogen-bonded chains. Other dynamical properties investigated in this work include the diffusion coefficient and the vibrational density of states. We evaluated the molecular dipole of the HCl molecule in the liquid using a definition based on the coupling of rotational modes to an external electric field. The average dipole moment (1.53 D) derived in this way is found to be considerably larger than for the isolated molecule (1.11 D). Our results show that the dipole moment in ℓ-HCl undergoes large fluctuations, both in orientation and in modulus. Upon the onset of an external field, such dipole fluctuations concur to reduce the fluctuations of the dielectric response.
Ab initio valence-space theory for exotic nuclei
NASA Astrophysics Data System (ADS)
Holt, Jason
2015-10-01
Recent advances in ab initio nuclear structure theory have led to groundbreaking predictions in the exotic medium-mass region, from the location of the neutron dripline to the emergence of new magic numbers far from stability. Playing a key role in this progress has been the development of sophisticated many-body techniques and chiral effective field theory, which provides a systematic basis for consistent many-nucleon forces and electroweak currents. Within the context of valence-space Hamiltonians derived from the nonperturbative in-medium similarity renormalization group (IM-SRG) approach, I will discuss the importance of 3N forces in understanding and making new discoveries in the exotic sd -shell region. Beginning in oxygen, we find that the effects of 3N forces are decisive in explaining why 24O is the last bound oxygen isotope, validating first predictions of this phenomenon from several years ago. Furthermore, 3N forces play a key role in reproducing spectroscopy, including signatures of doubly magic 22,24O, and physics beyond the dripline. Similar improvements are obtained in new spectroscopic predictions for exotic fluorine and neon isotopes, where agreement with recent experimental data is competitive with state-of-the-art phenomenology. Finally, I will discuss first applications of the IM-SRG to effective valence-space operators, such as radii and E 0 transitions, as well as extensions to general operators crucial for our future understanding of electroweak processes, such as neutrinoless double-beta decay. This work was supported by NSERC and the NRC Canada.
Uniaxial phase transition in Si: Ab initio calculations
NASA Astrophysics Data System (ADS)
Cheng, C.
2003-04-01
Based on a previously proposed thermodynamic analysis, [C. Cheng, W. H. Huang, and H. J. Li, Phys. Rev. B 63, 153202 (2001)] we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, βSn, simple-hexagonal (sh), simple-cubic, and hexagonal closed-packed structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different contributions to the relative phase stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic compression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures up to 20 GPa. The stable phases were found to be diamond, βSn, and sh structures, i.e., the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition Px>Pz. Similarly, the sh-to-βSn transition on increasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable to the condition Px
Bhattacharyya, Swarnendu Domcke, Wolfgang; Dai, Zuyang
2015-11-21
A diabatic three-sheeted six-dimensional potential-energy surface has been constructed for the ground state and the lowest excited state of the PH{sub 3}{sup +} cation. Coupling terms of Jahn-Teller and pseudo-Jahn-Teller origin up to eighth order had to be included to describe the pronounced anharmonicity of the surface due to multiple conical intersections. The parameters of the diabatic Hamiltonian have been optimized by fitting the eigenvalues of the potential-energy matrix to ab initio data calculated at the CASSCF/MRCI level employing the correlation-consistent triple-ζ basis. The theoretical photoelectron spectrum of phosphine and the non-adiabatic nuclear dynamics of the phosphine cation have been computed by propagating nuclear wave packets with the multiconfiguration time-dependent Hartree method. The theoretical photoelectron bands obtained by Fourier transformation of the autocorrelation function agree well with the experimental results. It is shown that the ultrafast non-radiative decay dynamics of the first excited state of PH{sub 3}{sup +} is dominated by the exceptionally strong Jahn-Teller coupling of the asymmetric bending vibrational mode together with a hyperline of conical intersections with the electronic ground state induced by the umbrella mode. Time-dependent population probabilities have been computed for the three adiabatic electronic states. The non-adiabatic Jahn-Teller dynamics within the excited state takes place within ≈5 fs. Almost 80% of the excited-state population decay to the ground state within about 10 fs. The wave packets become highly complex and delocalized after 20 fs and no further significant transfer of electronic population seems to occur up to 100 fs propagation time.
Ab Initio Atomic Simulations of Antisite Pair Recovery in Cubic Silicon Carbide
Gao, Fei; Du, Jincheng; Bylaska, Eric J.; Posselt, Matthias; Weber, William J.
2007-05-28
The thermal stability of an antisite pair in 3C-SiC is studied using ab initio molecular dynamics within the framework of density functional theory. The lifetime of the antisite pair configuration is calculated for temperatures between 1800 and 2250 K, and the effective activation energy for antisite pair recombination is determined to be 2.52 eV. The recombination energy path and static energy barrier are also calculated using the nudged elastic band method, along with the dimer method to accurately locate the transition states. The consistency of the results suggests that the antisite pair cannot be correlated with the DI photoluminescence center, as proposed by previously theoretical interpretations. An extended exchange mechanism is found for the antisite pair recombination, and this may be a dominant mechanism for antisite pair recombination and diffusion of impurities in compound semiconductors.
NASA Astrophysics Data System (ADS)
Nomura, Yusuke; Arita, Ryotaro
2015-12-01
We formulate an ab initio downfolding scheme for electron-phonon-coupled systems. In this scheme, we calculate partially renormalized phonon frequencies and electron-phonon coupling, which include the screening effects of high-energy electrons, to construct a realistic Hamiltonian consisting of low-energy electron and phonon degrees of freedom. We show that our scheme can be implemented by slightly modifying the density functional-perturbation theory (DFPT), which is one of the standard methods for calculating phonon properties from first principles. Our scheme, which we call the constrained DFPT, can be applied to various phonon-related problems, such as superconductivity, electron and thermal transport, thermoelectricity, piezoelectricity, dielectricity, and multiferroicity. We believe that the constrained DFPT provides a firm basis for the understanding of the role of phonons in strongly correlated materials. Here, we apply the scheme to fullerene superconductors and discuss how the realistic low-energy Hamiltonian is constructed.
NASA Astrophysics Data System (ADS)
Dadsetani, Mehrdad; Nejatipour, Hajar; Ebrahimian, Ali
2015-05-01
Using the ab initio methods for solving the Bethe-Salpeter equation on the basis of the FPLAPW method, optical properties of crystalline phenanthrene were calculated, in a comparison to its isomer, anthracene. It was found that despite the similarity of the structural, electronic, and the overall optical properties in a 40 eV energy range, phenanthrene and anthracene show significant differences in their optical spectra in the energy range below band gaps. Phenanthrene has two spin singlet excitonic features whereas anthracene shows one. The singlet and the lowest triplet binding energies of phenanthrene were found to be larger than anthracene. In this study, in addition, a comparison has been made between the optical spectra in RPA and the existing experimental data.
Ab-initio Study of the Diffusion Mechanisms of Gallium in a Silicon Matrix
NASA Astrophysics Data System (ADS)
Levasseur-Smith, Kevin; Mousseau, Normand
2007-03-01
We present the results of a study into the diffusion mechanisms of Ga defects in crystalline Si. The dominant neutral configurations for single and multi-atom defects are established by ab-initio calculations using the density functional theory in the LDA approximation, with a LCAO basis as implemented in the SIESTA package. We find formation energies of 0.7 eV and 2.9 eV, respectively, for the substitutional and tetrahedral interstitial defects, while the diatomic substitutional-tetrahedral complex has a formation energy of 2.2 eV. Subsequent calculations using this same DFT package in conjunction with the activation relaxation technique (ART nouveau) allow us to determine possible diffusion pathways as well as their corresponding saddle points and energy barriers.
AM1 and ab initio molecular orbital study of water dimer
Dannenberg, J.J.
1988-12-01
Several structures for the water dimer, including trifurcated structures similar to the optimized AM1 geometry, have been calculated by using the MP4/6-311G** level of ab initio molecular orbital theory. The relative energies of the structures become quite close at the higher levels of calculation. The best trifurcated is only 0.2 kcal/mol higher than the optimized HF/6-31G* structure and only 0.4 kcal/mol higher than the lowest energy structure found (optimized by using AM1 with the H bond constrained to be linear). It appears likely that the potential surface of the water dimer is extremely flat. The experimental geometry, which corresponds to the minimum on the free energy surface, is likely to be dominated by entropy contributions.
Ab initio study of structural and mechanical property of solid molecular hydrogens
NASA Astrophysics Data System (ADS)
Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng
2015-06-01
Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.
NASA Astrophysics Data System (ADS)
Trendafilova, N.; Bauer, G.; Georgieva, I.; Delchev, V.
2002-02-01
The conformational stability of glyoxilic acid oxime (HOOC-CH-NOH) (GAO) and its anions has been studied by ab initio calculations at different levels of the theory, HF/6-311G ∗∗, MP2/6-311G ∗∗ and B3LYP/6-311G ∗∗. Geometry optimization was performed for 16 conformations of GAO and five anions in Cs symmetry. The interconversion pathways for the four lowest energy conformers as well as the corresponding transition states have been investigated using QST3 and IRC techniques. The minima and the transition states obtained were estimated by calculations of the vibrational frequencies. The energy barriers of three interconversions, ectt-ecct, ectt-ettt and ectt-zccc, have been estimated. Vibrational spectra and IR intensities of the lowest energy conformers, zccc, ectt, ettt and ecct, have been calculated and discussed at HF/6-311G ∗∗ optimized geometries.
Thermal transmission at Si/Ge interface: ab initio lattice dynamics calculation
NASA Astrophysics Data System (ADS)
Alkurdi, A.; Merabia, S.
2017-01-01
We perform lattice dynamics calculations (LD) on silicon/germanium interfaces using ab initio interatomic force constants to predict the interfacial phonon transmission as a function of both phonon frequency and the transmission angle. We carry out a spectral and angular analysis to quantify the contribution of each phonon mode in a given scattering direction. The effect of the interaction range was studied at this interface by taking account of more or less atom layers across the interface. Moreover, we were able to predict the thermal boundary conductance (TBC) as a function of the transmission angle and temperature as well. Our results show that, the thermal energy transmission is highly anisotropic while thermal energy reflection is almost isotropic. In addition, we found that it seems there is a global critical angle of transmission beyond which almost no thermal energy is transmitted. This can be used to device high pass phonon filter via changing the orientation of the interface.
4He+n+n continuum within an ab initio framework
Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; ...
2014-07-16
In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known Jπ = 2+ resonance as well as a result consistent with a new low-lying second 2+ resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2–, 1+, and 0– channels, while no low-lying resonances are present in the 0+ and 1– channels.« less
Operator evolution for ab initio electric dipole transitions of 4He
Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; ...
2015-07-24
A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less
Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.
Wang, Linjun; Long, Run; Prezhdo, Oleg V
2015-04-01
Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.