Science.gov

Sample records for ab initio interaction

  1. Ab initio calculations of As-vacancy interactions in silicon

    SciTech Connect

    Xie, J.; Chen, S.P.

    1999-04-01

    Atomistic simulation of a vacancy-assisted dopant diffusion in silicon needs details of the dopant-vacancy interaction, i.e., the potential as a functional of dopant-vacancy separations. In this paper, the authors present a detailed study on the energetics of As-vacancy reaction in silicon and the lattice distortions surrounding the As-vacancy defect by using an ab initio plane wave pseudopotential method and the density functional theory (DFT). A potential-energy diagram as a function of As-vacancy separation is provided, which can be used in the atomistic diffusion simulations. The authors also calculate the binding energy and the formation energy of different complexes such as AsV, As{sub 2}V and AsV{sub 2} (V represents vacancy). They find that the stable configuration of As{sub 2}V is As-V-As, while the stable configuration of AsV{sub 2} is As-V-V. The nature of the binding between As and vacancy is explained from the lattice distortions and the change of chemical bond configuration introduced by the As-vacancy complex.

  2. An investigation of ab initio shell-model interactions derived by no-core shell model

    NASA Astrophysics Data System (ADS)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  3. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  4. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    SciTech Connect

    Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  5. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    SciTech Connect

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  6. Dissipative Particle Dynamics interaction parameters from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Sepehr, Fatemeh; Paddison, Stephen J.

    2016-02-01

    Dissipative Particle Dynamics (DPD) is a commonly employed coarse-grained method to model complex systems. Presented here is a pragmatic approach to connect atomic-scale information to the meso-scale interactions defined between the DPD particles or beads. Specifically, electronic structure calculations were utilized for the calculation of the DPD pair-wise interaction parameters. An implicit treatment of the electrostatic interactions for charged beads is introduced. The method is successfully applied to derive the parameters for a hydrated perfluorosulfonic acid ionomer with absorbed vanadium cations.

  7. Ab Initio Study of Molecular Interactions in Cellulose Iα

    SciTech Connect

    Devarajan, Ajitha; Markutsya, Serjiy; Lamm, Monica H.; Cheng, Xiaolin; Smith, Jeremy C.; Baluyut, John Y.; Kholod, Yana; Gordon, Mark S.; Windus, Theresa L.

    2013-08-12

    Biomass recalcitrance, the resistance of cellulosic biomass to degradation, is due in part to the stability of the hydrogen bond network and stacking forces between the polysaccharide chains in cellulose microfibers. The fragment molecular orbital (FMO) method at the correlated Møller–Plesset second order perturbation level of theory was used on a model of the crystalline cellulose Iα core with a total of 144 glucose units. These computations show that the intersheet chain interactions are stronger than the intrasheet chain interactions for the crystalline structure, while they are more similar to each other for a relaxed structure. An FMO chain pair interaction energy decomposition analysis for both the crystal and relaxed structures reveals an intricate interplay between electrostatic, dispersion, charge transfer, and exchange repulsion effects. The role of the primary alcohol groups in stabilizing the interchain hydrogen bond network in the inner sheet of the crystal and relaxed structures of cellulose Iα, where edge effects are absent, was analyzed. The maximum attractive intrasheet interaction is observed for the GT-TG residue pair with one intrasheet hydrogen bond, suggesting that the relative orientation of the residues is as important as the hydrogen bond network in strengthening the interaction between the residues.

  8. Ab initio molecular dynamics.

    PubMed

    Laasonen, Kari

    2013-01-01

    In this chapter, an introduction to ab initio molecular dynamics (AIMD) has been given. Many of the basic concepts, like the Hellman-Feynman forces, the difference between the Car-Parrinello molecular dynamics and AIMD, have been explained. Also a very versatile AIMD code, the CP2K, has been introduced. On the application, the emphasis was on the aqueous systems and chemical reactions. The biochemical applications have not been discussed in depth.

  9. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  10. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  11. Ab Initio Electronic Structure Calculations of Cytochrome P450 -- Ligand Interactions

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Ellis, S. W.; Tucker, G. T.

    1997-03-01

    The Cytochrome P450 superfamily of enzymes are of great interest in pharmacology as they participate in an enormous range of physiological processes including drug deactivation and xenobiotic detoxification. We apply ab initio electronic structure calculations to model the interactions of the haem molecule at the P450 active site with substrate and inhibitor ligands. These calculations, based on density function theory, were performed with the CETEP code which uses a plane wave basis set and pseudopotentials to perform efficient LDA, GGA and spin dependent calculations. A change in the spin state of the haem iron atom is observed on binding of a substrate molecule, consistent with the accepted reaction mechanism.

  12. Ab Initio Calculations of the Interaction between CO 2 and the Acetate Ion

    SciTech Connect

    Steckel, Janice A.

    2012-11-29

    A series of ab initio calculations designed to investigate the interaction of CO{sub 2} with acetate are presented. The lowest energy structure, AC–CO{sub 2}-η{sup 2}, is predicted by CCSD(T)/aVTZ to be bound by -10.6 kcal/mol. Six of the bound complexes have binding energies on the order of -8 kcal/mol, but analysis shows that the η{sup 1}-CT complex is fundamentally different from the others. The η{sup 1}-CT complex is characterized by geometric distortion, large polarization and induction effects and charge transfer whereas the other five complexes have little geometric distortion and negligible charge transfer. The amount of charge that is transferred from the anion to the CO{sub 2} in the η{sup 1}-CT complex is estimated to be about half an electron by NPA, DMA, CHELPG, and Mulliken analyses, whereas the EDA-ALMO-CTA (B3LYP) approach predicts a charge transfer of 75 me{sup –}. However, the transfer of this small amount of charge leads to an energy lowering of -56 kcal/mol, without which the complex would not be bound. The RI-MP2 geometries closely approximate those resulting from the CCSD optimizations, and the optimized second-order opposite spin (O2) method performs well for all the complexes except for the η{sup 1}-CT complex. DFT methods do not reproduce all the ab initio geometries, binding energies and/or energy ordering of these complexes although the range-separated hybrid meta-GGA (M11) and nonlocal (VV10 and vdwDF10) functionals are shown to yield results significantly better than other functionals considered for this system. The fact that there is such variation among DFT methods has implications for DFT-based ab initio molecular dynamics simulations and for the parametrization of classical force fields based on DFT calculations.

  13. Ab initio based investigation of interstitial interactions and Snoek relaxation in Nb-O

    NASA Astrophysics Data System (ADS)

    Dmitriev, V. V.; Blanter, M. S.; Ruban, A. V.; Johansson, B.

    2012-02-01

    Chemical and strain-induced effective pair interactions of interstitial oxygen atoms in bcc Nb have been determined in supercell first-principles calculations using Vienna ab initio simulation package (VASP). The strain-induced interactions are in reasonable agreement with those obtained earlier within a phenomenological microscopic Krivoglaz-Kanzaki-Khachaturyan model (KKKM). At the same time, the chemical interactions, which have been considered to be small in earlier theoretical considerations, turned out to be dominating at the first several coordination shells. The obtained interactions have been used in calculations of the concentration- and temperature-dependence of the internal friction Snoek peak. The theoretical results are found to be in good agreement with the existing experimental data.

  14. Ab initio theoretical study of the interactions between CFCl3 and SO2.

    PubMed

    Diao, Kai Sheng; Wang, Fang; Wang, Hai Jun

    2010-02-01

    Ab initio calculations have been performed on complexes of CFCl3 with SO2. Ten complexes were found stable, the interaction energies that reflect their stability were corrected by the basis set superposition error and the correction of zero-point energy. The natures of these interactions were investigated by the analysis of natural bond orbital and the atoms in molecules. The results from theoretical calculation indicated that there were the interactions of Cl...O, F...O, Cl...S and F...S between CFCl3 and SO2, furthermore, the non-covalent bonds of Cl...O and Cl...S were the major interaction forces, which provided some data and information for studying the environment problem such as greenhouse effect relevant to CFCl3 and SO2.

  15. Ab initio theoretical study of the interactions between CFCl3 and SO2.

    PubMed

    Diao, Kai Sheng; Wang, Fang; Wang, Hai Jun

    2010-02-01

    Ab initio calculations have been performed on complexes of CFCl3 with SO2. Ten complexes were found stable, the interaction energies that reflect their stability were corrected by the basis set superposition error and the correction of zero-point energy. The natures of these interactions were investigated by the analysis of natural bond orbital and the atoms in molecules. The results from theoretical calculation indicated that there were the interactions of Cl...O, F...O, Cl...S and F...S between CFCl3 and SO2, furthermore, the non-covalent bonds of Cl...O and Cl...S were the major interaction forces, which provided some data and information for studying the environment problem such as greenhouse effect relevant to CFCl3 and SO2. PMID:19943033

  16. Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential

    SciTech Connect

    Yin, Chih-Chien; Li, Arvin Huang-Te; Chao, Sheng D.

    2013-11-21

    We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform.

  17. Ab initio MO studies of interaction mechanisms of Protein Kinase C with cell membranes

    NASA Astrophysics Data System (ADS)

    Tsuda, Ken-ichiro; Kaneko, Hiroki; Shimada, Jiro; Takada, Toshikazu

    2001-12-01

    Protein Kinase C (PKC) is a family of regulatory enzymes. It is considered that binding with phorbol ester which are PKC activators, increases affinity of PKC for the membranes and consequently induces its conformation change. Electrostatic interactions between PKC and the membrane is assumed to be important, and performed ab initio MO calculations of one domain of PKC consisting of 50 amino acids and its complex with the ester is performed to investigate how the electrostatic potential of PKC changes through docking with the substrate. From the calculation, it is shown that the electrostatic potential of PKC near the binding site is dramatically affected through the binding, suggesting attractive interactions with the cell membrane.

  18. Ab initio studies on the structure of and atomic interactions in cellulose III(I) crystals.

    PubMed

    Ishikawa, Tetsuya; Hayakawa, Daichi; Miyamoto, Hitomi; Ozawa, Motoyasu; Ozawa, Tomonaga; Ueda, Kazuyoshi

    2015-11-19

    The crystal structure of cellulose III(I)was analyzed using first-principles density functional theory (DFT). The geometry was optimized using variable-cell relaxation, as implemented in Quantum ESPRESSO. The Perdew-Burke-Ernzerhof (PBE) functional with a correction term for long-range van der Waals interactions (PBE-D) reproduced the experimental structure well. By using the optimized crystal structure, the interactions existed among the cellulose chains in the crystal were precisely investigated using the NBO analysis. The results showed that the weak bonding nature of CH/O and the hydrogen bonding occur among glucose molecules in the optimized crystal structure. To investigate the strength of interaction, dimeric and trimeric glucose units were extracted from the crystal, and analyzed using MP2 ab initio counterpoise methods with BSSE correction. The results estimated the strength of the interactions. That is, the packed chains along with a-axis interacts with weak bonding nature of CH/O and dispersion interactions by -7.50 kcal/mol, and two hydrogen bonds of O2HO2…O6 and O6HO6…O2 connect the neighboring packed chains with -11.9 kcal/mol. Moreover, FMO4 calculation was also applied to the optimized crystal structure to estimate the strength of the interactions. These methods can well estimate the interactions existed in the crystal structure of cellulose III(I).

  19. Ab Initio Molecular Dynamics Study on the Interactions between Carboxylate Ions and Metal Ions in Water.

    PubMed

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Trinh, Thuat T; Grimes, Brian A

    2015-08-20

    The interaction between a carboxylate anion (deprotonated propanoic acid) and the divalent Mg(2+), Ca(2+), Sr(2+), Ba(2+) metal ions is studied via ab initio molecular dynamics. The main focus of the study is the selectivity of the carboxylate-metal ion interaction in aqueous solution. The interaction is modeled by explicitly accounting for the solvent molecules on a DFT level. The hydration energies of the metal ions along with their diffusion and mobility coefficients are determined and a trend correlated with their ionic radius is found. Subsequently, a series of 16 constrained molecular dynamics simulations for every ion is performed, and the interaction free energy is obtained from thermodynamic integration of the forces between the metal ion and the carboxylate ion. The results indicate that the magnesium ion interacts most strongly with the carboxylate, followed by calcium, strontium, and barium. Because the interaction free energy is not enough to explain the selectivity of the reaction observed experimentally, more detailed analysis is performed on the simulation trajectories to understand the steric changes in the reaction complex during dissociation. The solvent dynamics appear to play an important role during the dissociation of the complex and also in the observed selectivity behavior of the divalent ions.

  20. Ab initio calculations of many-body interactions for compressed solid argon.

    PubMed

    Tian, Chunling; Liu, Fusheng; Cai, Lingcang; Yuan, Hongkuan; Chen, Hong; Zhong, Mingmin

    2015-11-01

    An investigation on many-body effects of solid argon at high pressure was conducted based on a many-body expansion of interaction energy. The three- and four-body terms in the expansion were calculated using the coupled-cluster method with single, double, and noniterative triple theory and incremental method, in which the configurations of argon trimers and tetramers were chosen as the same as those in the actual lattice. The four-body interactions in compressed solid argon were estimated for the first time, and the three-body interaction ab initio calculations were extended to a small distance. It shows that the four-body contribution is repulsive at high densities and effectively cancels the three-body lattice energy. The dimer potential plus three-body interaction can well reproduce the measurements of equation of state at pressure approximately lower than ∼60 GPa, when including the four-body effects extends the agreement up to the maximum experimental pressure of 114 GPa. PMID:26547175

  1. Ab initio potential energy surfaces describing the interaction of CH(X2Π) with H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2016-09-01

    We have determined four-dimensional ab initio quasi-diabatic potential energy surfaces describing the interaction of CH(X2Π) with H2, under the assumption of fixed CH and H2 internuclear separations. These calculations employed the multi-reference configuration interaction method [MRCISD+Q(Davidson)]. The computed points were fit to an analytical form suitable for time-independent quantum scattering calculations of rotationally inelastic cross sections and rate constants.

  2. Hydrogen-vacancy interaction in bcc iron: ab initio calculations and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mirzaev, D. A.; Mirzoev, A. A.; Okishev, K. Yu.; Verkhovykh, A. V.

    2014-07-01

    The paper presents results of ab initio modelling of formation energies of vacancy-hydrogen complexes VHn and an extended variant of thermodynamic theory describing equilibrium concentrations of such complexes. A single H atom is shifted from vacancy to a neighbouring O-site by 1.19 Å. Two H atoms in a vacancy form a dumbbell with H-H distance of 2.38 Å being much greater than in H2 molecule. Configurations of three, four and five H atoms in a vacancy are more complex, and H-H distances gradually increase showing repulsion between hydrogen atoms. Binding energy of a VHn-1 complex with the next hydrogen atom to form VHn is 0.60, 0.61, 0.39, 0.37 and 0.31 for n = 1-5, which is close to other researchers' data. These results were used to construct an improved variant of thermodynamic description of vacancy-hydrogen interaction in a bcc solid solution taking into account both binding energies and hydrogen atom configurations in different VHn complexes. Calculations show that at low temperatures most vacancies are bound to several hydrogen atoms, and the equilibrium concentration of vacancies themselves significantly increases, in accordance with existing experiments.

  3. Acetonitrile-water hydrogen-bonded interaction: Matrix-isolation infrared and ab initio computation

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2015-08-01

    The 1:1 hydrogen-bonded complex of acetonitrile (CH3CN) and water (H2O) was trapped in Ar and N2 matrices and studied using infrared technique. Ab initio computations showed two types of complexes formed between CH3CN and H2O, a linear complex A with a Ctbnd N⋯H interaction between nitrogen of CH3CN and hydrogen of H2O and a cyclic complex B, in which the interactions are between the hydrogen of CH3CN with oxygen of H2O and hydrogen of H2O with π cloud of sbnd Ctbnd N of CH3CN. Vibrational wavenumber calculations revealed that both the complexes A and B were minima on the potential energy surface. Interaction energies computed at B3LYP/6-311++G(d,p) showed that linear complex A is more stable than cyclic complex B. Computations identified a blue shift of ∼11.5 cm-1 and a red shift of ∼6.5 cm-1 in the CN stretching mode for the complexes A and B, respectively. Experimentally, we observed a blue shift of ∼15.0 and ∼8.3 cm-1 in N2 and Ar matrices, respectively, in the CN stretching mode of CH3CN, which supports the formation of complex A. The Onsager Self Consistent Reaction Field (SCRF) model was used to explain the influence of matrices on the complexes A and B. To understand the nature of the interactions, Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were carried out for the complexes A and B.

  4. Peculiarities of geminal atom interaction in chloro-containing imidazoles using ab initio calculations

    NASA Astrophysics Data System (ADS)

    Feshin, V. P.; Feshina, E. V.

    2000-07-01

    The results of ab initio calculations at the RHF/6-31G ∗ level of 1-methyl-4-chloro- and -5-chloroimidazoles as well as of 1-methyl-4,5-dichloroimidazoles with total optimization of their geometry were presented. They were used for the interpretation of peculiarities of an influence of the "pyridine" and "pyrrole" N atoms on the electron distribution of the Cl atoms in these molecules and of their 35Cl NQR frequencies. These peculiarities are caused by the different space electron distribution of these N atoms that causes the different polarization of the geminal Cl atom p-electron shell.

  5. Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores

    DOE PAGES

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.

    2015-01-31

    In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A = La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order–disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimentalmore » observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.« less

  6. A new ab initio potential energy surface for the Ne-H 2 interaction

    NASA Astrophysics Data System (ADS)

    Lique, François

    2009-03-01

    A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.

  7. Intermolecular interactions of trifluorohalomethanes with Lewis bases in the gas phase: An ab initio study

    SciTech Connect

    Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D.

    2014-10-07

    We perform an ab initio computational study of molecular complexes with the general formula CF{sub 3}X—B that involve one trifluorohalomethane CF{sub 3}X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH{sub 3} and PH{sub 3}), two n-pairs (H{sub 2}O and H{sub 2}S), two n-pairs with an unsaturated bond (H{sub 2}CO and H{sub 2}CS), and a single π-pair (C{sub 2}H{sub 4}) and two π-pairs (C{sub 2}H{sub 2}). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C–X bond lengths shorten, while the C–X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.

  8. Ab initio RNA folding

    NASA Astrophysics Data System (ADS)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  9. Predominance of the Kitaev interaction in a three-dimensional honeycomb iridate: From ab initio to spin model

    NASA Astrophysics Data System (ADS)

    Kim, Heung-Sik; Kin-Ho Lee, Eric; Kim, Yong Baek

    2015-12-01

    The recently discovered three-dimensional hyperhoneycomb iridate, β-Li2IrO3, has raised hopes for the realization of the dominant Kitaev interaction between spin-orbit entangled local moments due to its near-ideal lattice structure. If true, this material may lie close to the sought-after quantum spin-liquid phase in three dimensions. Utilizing ab initio electronic structure calculations, we first show that the spin-orbit entangled basis, j\\text{eff} = 1/2 , correctly captures the low-energy electronic structure. The effective spin model derived in the strong-coupling limit supplemented by the ab initio results is shown to be dominated by the Kitaev interaction. We demonstrated that the possible range of parameters is consistent with a non-coplanar spiral magnetic order found in a recent experiment. All of these analyses suggest that β-Li2IrO3 may be the closest among known materials to the Kitaev spin-liquid regime.

  10. AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS

    SciTech Connect

    Turchi, P A

    2004-04-14

    Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.

  11. Microstructure from joint analysis of experimental data and ab initio interactions: Hydrogenated amorphous silicon

    SciTech Connect

    Biswas, Parthapratim; Drabold, D. A.; Atta-Fynn, Raymond

    2014-12-28

    A study of the formation of voids and molecular hydrogen in hydrogenated amorphous silicon is presented based upon a hybrid approach that involves inversion of experimental nuclear magnetic resonance data in conjunction with ab initio total-energy relaxations in an augmented solution space. The novelty of this approach is that the voids and molecular hydrogen appear naturally in the model networks unlike conventional approaches, where voids are created artificially by removing silicon atoms from the networks. Two representative models with 16 and 18 at. % of hydrogen are studied in this work. The result shows that the microstructure of the a-Si:H network consists of several microvoids and few molecular hydrogen for concentration above 15 at. % H. The microvoids are highly irregular in shape and size, and have a linear dimension of 5–7 Å. The internal surface of a microvoid is found to be decorated with 4–9 hydrogen atoms in the form of monohydride Si–H configurations as observed in nuclear magnetic resonance experiments. The microstructure consists of (0.9–1.4)% hydrogen molecules of total hydrogen in the networks. These observations are consistent with the outcome of infrared spectroscopy, nuclear magnetic resonance, and calorimetry experiments.

  12. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  13. Ab-initio calculations of interactions between Cu adatoms on Cu(1 1 0): Sensitivity of strong multi-site interactions to adatom relaxations

    NASA Astrophysics Data System (ADS)

    Sathiyanarayanan, Rajesh; Einstein, T. L.

    2009-08-01

    We have parameterized the various interactions between Cu adatoms on Cu(1 1 0) using density-functional theory based ab-initio calculations. Our results indicate that in addition to pair interactions, 3-adatom and 4-adatom interactions of significant strengths are present in this system. This further stresses the importance of multi-site interactions in constructing a complete lattice-gas picture. Even though adding these multi-site interactions leads to good convergence in interaction energies, we find that some multi-site interactions are very sensitive to adatom relaxations. This makes the application of a simple lattice-gas picture inadequate for such surfaces. We also parameterize adatom interactions on this surface using the recently developed connector model. The connector model parameterization is as efficient as the parameterization using lattice-gas model. Further, we present diffusion barriers for nearest-neighbor (NN) and next-nearest-neighbor (NNN) hops on this surface.

  14. Specific interactions between lactose repressor protein and DNA affected by ligand binding: ab initio molecular orbital calculations.

    PubMed

    Ohyama, Tatsuya; Hayakawa, Masato; Nishikawa, Shin; Kurita, Noriyuki

    2011-06-01

    Transcription mechanisms of gene information from DNA to mRNA are essentially controlled by regulatory proteins such as a lactose repressor (LacR) protein and ligand molecules. Biochemical experiments elucidated that a ligand binding to LacR drastically changes the mechanism controlled by LacR, although the effect of ligand binding has not been clarified at atomic and electronic levels. We here investigated the effect of ligand binding on the specific interactions between LacR and operator DNA by the molecular simulations combined with classical molecular mechanics and ab initio fragment molecular orbital methods. The results indicate that the binding of anti-inducer ligand strengthens the interaction between LacR and DNA, which is consistent with the fact that the binding of anti-inducer enhances the repression of gene transcription by LacR. It was also elucidated that hydrating water molecules existing between LacR and DNA contribute to the specific interactions between LacR and DNA. PMID:21328406

  15. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  16. Ab initio phonon limited transport

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu

    We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)

  17. An ab initio MO study of butalene

    NASA Astrophysics Data System (ADS)

    Ohta, Katsuhisa; Shima, Toru

    1994-01-01

    Butalene as a structural isomer of p-benzyne has been studied by using an ab initio GVB wavefunction. The geometry of butalene, which is shown to be almost rectangular, is first optimized as a local minimum on the energy surface at the ab initio level. However, the energy barrier of conversion to p-benzyne is as small as 1.6 kcal/mol, and experimental isolation of butalene is predicted to be difficult from a force-constant analysis.

  18. Ab Initio Study of Polonium

    SciTech Connect

    Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2008-05-20

    Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.

  19. Weak interactions in Graphane/BN systems under static electric fields—A periodic ab-initio study

    NASA Astrophysics Data System (ADS)

    Steinkasserer, Lukas Eugen Marsoner; Gaston, Nicola; Paulus, Beate

    2015-04-01

    Ab-initio calculations via periodic Hartree-Fock (HF) and local second-order Møller-Plesset perturbation theory (LMP2) are used to investigate the adsorption properties of combined Graphane/boron nitride systems and their response to static electric fields. It is shown how the latter can be used to alter both structural as well as electronic properties of these systems.

  20. Weak interactions in Graphane/BN systems under static electric fields—A periodic ab-initio study

    SciTech Connect

    Steinkasserer, Lukas Eugen Marsoner; Gaston, Nicola; Paulus, Beate

    2015-04-21

    Ab-initio calculations via periodic Hartree-Fock (HF) and local second-order Møller-Plesset perturbation theory (LMP2) are used to investigate the adsorption properties of combined Graphane/boron nitride systems and their response to static electric fields. It is shown how the latter can be used to alter both structural as well as electronic properties of these systems.

  1. Weak interactions in Graphane/BN systems under static electric fields—A periodic ab-initio study.

    PubMed

    Steinkasserer, Lukas Eugen Marsoner; Gaston, Nicola; Paulus, Beate

    2015-04-21

    Ab-initio calculations via periodic Hartree-Fock (HF) and local second-order Møller-Plesset perturbation theory (LMP2) are used to investigate the adsorption properties of combined Graphane/boron nitride systems and their response to static electric fields. It is shown how the latter can be used to alter both structural as well as electronic properties of these systems. PMID:25903899

  2. Ab initio Study of HZnF

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Léonard, C.; Chambaud, G.

    2009-11-01

    On the basis of highly correlated ab initio calculations, an accurate determination of the electronic structure and of the rovibrational spectroscopy has been performed for the electronic ground state of the HZnF system. Using effective core pseudopotentials for the Zn and F atoms and associated aug-cc-pVQZ basis sets, we have calculated, at the multireference configuration interaction level including the Davidson correction, the three-dimensional potential energy surface of the X1Σ+ ground state. The rovibrational energy levels have been obtained variationally, and the results have been discussed and compared with existing experimental data on the ground state of the close system HZnCl, which exhibits a complicated vibration-rotation spectrum. Our analysis shows that the nature of the H-ZnF bond is quite similar to that of the H-ZnCl bond, according to their bond lengths, harmonic frequencies of the H-Zn stretching mode, and dissociation energies into H and ZnF/ZnCl. The ab initio study of the electronic ground and excited states of ZnH and ZnH+ are also presented using similar level of calculations. Characteristic constants are given for the first bounded electronic states correlating to the first two dissociation asymptotes of the neutral and ionic diatomics.

  3. Ab initio characterization of electron transfer coupling in photoinduced systems: generalized Mulliken-Hush with configuration-interaction singles.

    PubMed

    Chen, Hung-Cheng; Hsu, Chao-Ping

    2005-12-29

    To calculate electronic couplings for photoinduced electron transfer (ET) reactions, we propose and test the use of ab initio quantum chemistry calculation for excited states with the generalized Mulliken-Hush (GMH) method. Configuration-interaction singles (CIS) is proposed to model the locally excited (LE) and charge-transfer (CT) states. When the CT state couples with other high lying LE states, affecting coupling values, the image charge approximation (ICA), as a simple solvent model, can lower the energy of the CT state and decouple the undesired high-lying local excitations. We found that coupling strength is weakly dependent on many details of the solvent model, indicating the validity of the Condon approximation. Therefore, a trustworthy value can be obtained via this CIS-GMH scheme, with ICA used as a tool to improve and monitor the quality of the results. Systems we tested included a series of rigid, sigma-linked donor-bridge-acceptor compounds where "through-bond" coupling has been previously investigated, and a pair of molecules where "through-space" coupling was experimentally demonstrated. The calculated results agree well with experimentally inferred values in the coupling magnitudes (for both systems studied) and in the exponential distance dependence (for the through-bond series). Our results indicate that this new scheme can properly account for ET coupling arising from both through-bond and through-space mechanisms.

  4. Nonlocal Pseudopotentials and Long-Range Interactions in Ab Initio Finite-Element Electronic-Structure Calculations

    NASA Astrophysics Data System (ADS)

    Pask, J. E.; Sterne, P. A.

    2004-03-01

    The finite-element (FE) method is a general approach for the solution of partial differential equations. Like the planewave (PW) method, the FE method is a systematically improvable expansion approach. Unlike the PW method, however, its basis functions are strictly local in real space, which allows for variable resolution in real space and facilitates massively parallel implementation. We discuss the application of the FE method to ab initio electronic-structure calculations.(J.E. Pask, B.M. Klein, C.Y. Fong, and P.A. Sterne, Phys. Rev. B 59), 12352 (1999). In particular, we discuss the use of nonlocal pseudopotentials in bulk calculations, and the handling of long-range interactions in the construction of the Kohn-Sham effective potential and total energy. We show that the total energy converges variationally, and at the optimal theoretical rate consistent with the cubic completeness of the basis. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  5. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water

    NASA Astrophysics Data System (ADS)

    DiStasio, Robert A.; Santra, Biswajit; Li, Zhaofeng; Wu, Xifan; Car, Roberto

    2014-08-01

    In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local van der Waals/dispersion (vdW) interactions, via a fully self-consistent density-dependent dispersion correction, and an approximate treatment of nuclear quantum effects, via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx and vdW as resulting from a large-scale AIMD simulation of (H2O)128 significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, SOO(Q), and corresponding oxygen-oxygen radial distribution function, gOO(r), that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of a hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions. This increasingly more accurate description of the underlying hydrogen bond network in liquid water also yields higher-order correlation functions, such as the oxygen-oxygen-oxygen triplet angular distribution, POOO(θ), and therefore the degree of local tetrahedrality, as well as electrostatic properties, such as the effective molecular dipole moment, that are in much better agreement with experiment.

  6. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water

    SciTech Connect

    DiStasio, Robert A.; Santra, Biswajit; Li, Zhaofeng; Wu, Xifan; Car, Roberto

    2014-08-28

    In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local van der Waals/dispersion (vdW) interactions, via a fully self-consistent density-dependent dispersion correction, and an approximate treatment of nuclear quantum effects, via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx and vdW as resulting from a large-scale AIMD simulation of (H{sub 2}O){sub 128} significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, S{sub OO}(Q), and corresponding oxygen-oxygen radial distribution function, g{sub OO}(r), that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of a hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions. This increasingly more accurate description of the underlying hydrogen bond network in liquid water also yields higher-order correlation functions, such as the oxygen-oxygen-oxygen triplet angular distribution, P{sub OOO}(θ), and therefore the degree of local tetrahedrality, as well as electrostatic properties, such as the effective molecular dipole moment, that are in much better agreement with experiment.

  7. Electrostatically enhanced FF interactions through hydrogen bonding, halogen bonding and metal coordination: an ab initio study.

    PubMed

    Bauzá, Antonio; Frontera, Antonio

    2016-07-27

    In this manuscript the ability of hydrogen and halogen bonding interactions, as well as metal coordination to enhance FF interactions involving fluorine substituted aromatic rings has been studied at the RI-MP2/def2-TZVPD level of theory. We have used 4-fluoropyridine, 4-fluorobenzonitrile, 3-(4-fluorophenyl)propiolonitrile and their respective meta derivatives as aromatic compounds. In addition, we have used HF and IF as hydrogen and halogen bond donors, respectively, and Ag(i) as the coordination metal. Furthermore, we have also used HF as an electron rich fluorine donor entity, thus establishing FF interactions with the above mentioned aromatic systems. Moreover, a CSD (Cambridge Structural Database) search has been carried out and some interesting examples have been found, highlighting the impact of FF interactions involving aromatic fluorine atoms in solid state chemistry. Finally, cooperativity effects between FF interactions and both hydrogen and halogen bonding interactions have been analyzed and compared. We have also used Bader's theory of "atoms in molecules" to further describe the cooperative effects.

  8. Ab initio O(N) elongation-counterpoise method for BSSE-corrected interaction energy analyses in biosystems

    SciTech Connect

    Orimoto, Yuuichi; Xie, Peng; Liu, Kai; Yamamoto, Ryohei; Imamura, Akira; Aoki, Yuriko

    2015-03-14

    An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs’ inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligibly small energy error in the total energy calculations (in the order of 10{sup −7}–10{sup −8} hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. −290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for

  9. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions.

    PubMed

    Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs. PMID:27004880

  10. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions.

    PubMed

    Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  11. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Bowman, Joel M.; Kamarchik, Eugene

    2016-03-01

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na+H2O, F-H2O, and Cl-H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na+ and aVTZ basis for Cl- and F-), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  12. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  13. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  14. An ab initio study on the concerted interaction between chalcogen and pnicogen bonds.

    PubMed

    Asiabar, Bahman Mohammadian; Esrafili, Mehdi D; Mohammadian-Sabet, Fariba; Sobhi, Hamid Reza; Javaheri, Majid

    2014-12-01

    We analyzed cooperation between chalcogen-bonding and pnicogen-bonding interactions in XHS···NCH2P···NCY (X = F, Cl; Y = H, OH, NH2, CN and NC) complexes at the MP2/6-311++G** level. These effects were studied in terms of geometric and energetic properties, harmonic frequencies, and nuclear magnetic resonance (NMR). A cooperativity factor was adopted to measure the cooperativity between the two types of interaction in triads based on S-X and P-CN stretching frequencies. The size of the cooperative effect in each complex depends on the strength of S···N and P···N interactions. It is largest for FHSN⋯CH2P⋯NCNH2 and smallest for ClHS⋯NCH2P⋯NCCN and ClHS⋯NCH2P⋯NCNC complexes. The total spin-spin coupling constants across the chalcogen and pnicogen bonds in the ternary complexes are always larger than those in the binary systems. This trend can be also interpreted as a cooperative effect between chalcogen and pnicogen bond interactions. The enhancing mechanism was analyzed in terms of electron redistribution effects in XHS···NCH2P···NCY complexes. PMID:25503702

  15. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations.

    PubMed

    Palmer, Michael H; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Zhang, Teng; Biczysko, Malgorzata; Baiardi, Alberto; Peterson, Kirk

    2015-10-28

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of (1)A1 (higher oscillator strength) and (1)B2 (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2(2)B1 ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b13s and 6b23s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.

  16. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations

    SciTech Connect

    Palmer, Michael H. Ridley, Trevor E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Hoffmann, Søren Vrønning E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it Jones, Nykola C. E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Coreno, Marcello E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Grazioli, Cesare; Zhang, Teng; and others

    2015-10-28

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.

  17. Chemical interaction of water molecules with framework Al in acid zeolites: a periodic ab initio study on H-clinoptilolite.

    PubMed

    Valdiviés-Cruz, Karell; Lam, Anabel; Zicovich-Wilson, Claudio M

    2015-09-28

    Periodic quantum-chemistry methods as implemented in the CRYSTAL14 code were considered to analyse the interaction of acid clinoptilolite with water. Initially adsorbed molecules hydrolyse the Al-O bonds, giving rise to defective dealuminated materials. A suitable and representative periodic model of the partially disordered hydrated H-zeolite is the primitive cell (18 T sites) of a decahydrated trialuminated structure of HEU topology. The water distribution inside the material cavities was initially investigated. The model considered for further dealumination was the most stable one from those generated through a combined force field Monte Carlo and ab initio optimization strategy. Optimizations and energy estimations were made at the hybrid DFT level of theory (PBE0 functional) with an atomic basis set of VDZP quality. The energetics of the different pathways involved in the dealumination process was addressed by considering the Gibbs free energy with thermal and zero-point corrections through phonon analysis. It arises that hydrated models exhibit protonated water clusters stabilized by different kinds of H-bonds. The first Al extraction is slightly more energetically favourable from T3 than T2 sites, but at the same time the latter is more probable owing to its larger Al population. However, concerning the second dealumination step, it is more favourable removing the Al atom from both remaining sites after a starting abstraction from T2 rather than T3. These facts determine that the most probable overall pathways go through a first Al removal from T2. The agreement with experimental results is discussed. PMID:26299763

  18. Chemical interaction of water molecules with framework Al in acid zeolites: a periodic ab initio study on H-clinoptilolite.

    PubMed

    Valdiviés-Cruz, Karell; Lam, Anabel; Zicovich-Wilson, Claudio M

    2015-09-28

    Periodic quantum-chemistry methods as implemented in the CRYSTAL14 code were considered to analyse the interaction of acid clinoptilolite with water. Initially adsorbed molecules hydrolyse the Al-O bonds, giving rise to defective dealuminated materials. A suitable and representative periodic model of the partially disordered hydrated H-zeolite is the primitive cell (18 T sites) of a decahydrated trialuminated structure of HEU topology. The water distribution inside the material cavities was initially investigated. The model considered for further dealumination was the most stable one from those generated through a combined force field Monte Carlo and ab initio optimization strategy. Optimizations and energy estimations were made at the hybrid DFT level of theory (PBE0 functional) with an atomic basis set of VDZP quality. The energetics of the different pathways involved in the dealumination process was addressed by considering the Gibbs free energy with thermal and zero-point corrections through phonon analysis. It arises that hydrated models exhibit protonated water clusters stabilized by different kinds of H-bonds. The first Al extraction is slightly more energetically favourable from T3 than T2 sites, but at the same time the latter is more probable owing to its larger Al population. However, concerning the second dealumination step, it is more favourable removing the Al atom from both remaining sites after a starting abstraction from T2 rather than T3. These facts determine that the most probable overall pathways go through a first Al removal from T2. The agreement with experimental results is discussed.

  19. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations.

    PubMed

    Palmer, Michael H; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Zhang, Teng; Biczysko, Malgorzata; Baiardi, Alberto; Peterson, Kirk

    2015-10-28

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of (1)A1 (higher oscillator strength) and (1)B2 (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2(2)B1 ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b13s and 6b23s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures. PMID:26520509

  20. A DFT and ab initio benchmarking study of metal-alkane interactions and the activation of carbon-hydrogen bonds.

    PubMed

    Flener-Lovitt, Charity; Woon, David E; Dunning, Thom H; Girolami, Gregory S

    2010-02-01

    Density functional theory and ab initio methods have been used to calculate the structures and energies of minima and transition states for the reactions of methane coordinated to a transition metal. The reactions studied are reversible C-H bond activation of the coordinated methane ligand to form a transition metal methyl hydride complex and dissociation of the coordinated methane ligand. The reaction sequence can be summarized as L(x)M(CH(3))H <==> L(x)M(CH(4)) <==> L(x)M + CH(4), where L(x)M is the osmium-containing fragment (C(5)H(5))Os(R(2)PCH(2)PR(2))(+) and R is H or CH(3). Three-center metal-carbon-hydrogen interactions play an important role in this system. Both basis sets and functionals have been benchmarked in this work, including new correlation consistent basis sets for a third transition series element, osmium. Double zeta quality correlation consistent basis sets yield energies close to those from calculations with quadruple-zeta basis sets, with variations that are smaller than the differences between functionals. The energies of important species on the potential energy surface, calculated by using 10 DFT functionals, are compared both to experimental values and to CCSD(T) single point calculations. Kohn-Sham natural bond orbital descriptions are used to understand the differences between functionals. Older functionals favor electrostatic interactions over weak donor-acceptor interactions and, therefore, are not particularly well suited for describing systems--such as sigma-complexes--in which the latter are dominant. Newer kinetic and dispersion-corrected functionals such as MPW1K and M05-2X provide significantly better descriptions of the bonding interactions, as judged by their ability to predict energies closer to CCSD(T) values. Kohn-Sham and natural bond orbitals are used to differentiate between bonding descriptions. Our evaluations of these basis sets and DFT functionals lead us to recommend the use of dispersion corrected functionals in

  1. Switching magnetic interactions in the NiFe Prussian Blue Analogue: an ab initio inspection.

    PubMed

    Krah, Tim; Amor, Nadia Ben; Robert, Vincent

    2014-05-28

    The magnetic interaction in the Ni(ii)-Fe(iii) Prussian Blue Analogue is investigated by means of Difference Dedicated Configuration Interaction (DDCI) calculations. Embedded cluster calculations are performed to extract the exchange coupling constant J with respect to an opening of the Ni-NC-Fe bridge while maintaining a rigid Fe(CN)6 unit. It is shown that such active distortion significantly modifies the magnetic interaction scheme in the material. Not only a ferromagnetic to antiferromagnetic transition is observed, but the J value is varied from +11.4 cm(-1) to -12.5 cm(-1) when the Ni-Fe cyanide bridge is opened by 20°. The enhancement of the intersite hopping electron transfer integral by a factor of 1.5 can be correlated with the observed Na(+)-ion mobility in a unified "cation-coupled electron transfer" (CCET) process. These results stress the complexity and originality of this class of compounds evidenced by the versatility of their magnetic network.

  2. Ab initio metadynamics simulations of oxygen/ligand interactions in organoaluminum clusters

    SciTech Connect

    Alnemrat, Sufian; Hooper, Joseph P.

    2014-10-14

    Car-Parrinello molecular dynamics combined with a metadynamics algorithm is used to study the initial interaction of O{sub 2} with the low-valence organoaluminum clusters Al{sub 4}Cp{sub 4} (Cp=C{sub 5}H{sub 5}) and Al{sub 4}Cp{sub 4}{sup *} (Cp{sup *}=C{sub 5}[CH{sub 3}]{sub 5}). Prior to reaction with the aluminum core, simulations suggest that the oxygen undergoes a hindered crossing of the steric barrier presented by the outer ligand monolayer. A combination of two collective variables based on aluminum/oxygen distance and lateral oxygen displacement was found to produce distinct reactant, product, and transition states for this process. In the methylated cluster with Cp{sup *} ligands, a broad transition state of 45 kJ/mol was observed due to direct steric interactions with the ligand groups and considerable oxygen reorientation. In the non-methylated cluster the ligands distort away from the oxidizer, resulting in a barrier of roughly 34 kJ/mol with minimal O{sub 2} reorientation. A study of the oxygen/cluster system fixed in a triplet multiplicity suggests that the spin state does not affect the initial steric interaction with the ligands. The metadynamics approach appears to be a promising means of analyzing the initial steps of such oxidation reactions for ligand-protected clusters.

  3. Interaction between single vacancies in graphene sheet: An ab initio calculation

    NASA Astrophysics Data System (ADS)

    Scopel, W. L.; Paz, Wendel S.; Freitas, Jair C. C.

    2016-08-01

    In order to investigate the interaction between single vacancies in a graphene sheet, we have used spin-polarized density functional theory (DFT). Two distinct configurations were considered, either with the two vacancies located in the same sublattice or in different sublattices, and the effect of changing the separation between the vacancies was also studied. Our results show that the ground state of the system is indeed magnetic, but the presence of the vacancies in the same sublattice or in different sublattices and the possible topological configurations can lead to different contributions from the π and σ orbitals to magnetism. On the other hand, our findings reveal that the net magnetic moment of the system with the two vacancies in the same sublattice move towards the value of the magnetic moment per isolated vacancy with the increase of the distance between the vacancies, which is ascribed to the different contributions due to π electrons. Moreover, it is also found that the local magnetic moments for vacancies in the same sublattice are in parallel configuration, while they have different orientations when the vacancies are created in different sublattices. So, our findings have clearly evidenced how difficult it would be to observe experimentally the emergence of magnetic order in graphene-based systems containing randomly created atomic vacancies, since the energy difference between cases of antiferromagnetic and ferromagnetic order decreases quickly with the increase in the distance separating each vacancy pair.

  4. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.

    PubMed

    Dashnau, Jennifer L; Zelent, Bogumil; Vanderkooi, Jane M

    2005-04-01

    In order to correlate how the solvent affects emission properties of tryptophan, the fluorescence and phosphorescence emission spectra of tryptophan and indole model compounds were compared for solid sugar glass (trehalose/sucrose) matrix and glycerol/water solution and under the same conditions, these matrices were examined by infrared spectroscopy. Temperature was varied from 290 to 12 K. In sugar glass, the fluorescence and phosphorescence emission spectra are constant over this temperature range and the fluorescence remains red shifted; these results are consistent with the static interaction of OH groups with tryptophan in the sugar glass. In sugar glass containing water, the water retains mobility over the entire temperature range as indicated by the HOH infrared bending frequency. The fluorescence of tryptophan in glycerol/water shifts to the blue as temperature decreases and the frequency change of the absorption of the HOH bend mode is larger than in the sugar glass. These results suggest rearrangement of glycerol and water molecules over the entire temperature change. Shifts in the fluorescence emission maximum of indole and tryptophan were relatively larger than shifts for the phosphorescence emission-as expected for the relatively smaller excited triplet state dipole for tryptophan. The fluorescence emission of tryptophan in glycerol/water at low temperature has maxima at 312, 313, and 316 nm at pH 1.4, 7.0, and 10.6, respectively. The spectral shifts are interpreted to be an indication of a charge, or Stark phenomena, effect on the excited state molecule, as supported by ab initio calculations. To check whether the amino acid remains charged over the temperature range, the infrared spectrum of alanine was monitored over the entire range of temperature. The ratio of infrared absorption characteristic of carboxylate/carbonyl was constant in glycerol/water and sugar glass, which indicates that the charge was retained. Tryptophan buried in proteins, namely

  5. Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores

    SciTech Connect

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.

    2015-01-31

    In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A = La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order–disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.

  6. Character of intermolecular interaction in pyridine-argon complex: Ab initio potential energy surface, internal dynamics, and interrelations between SAPT energy components.

    PubMed

    Makarewicz, Jan; Shirkov, Leonid

    2016-05-28

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm(-1) is close to that of 387 cm(-1) calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.

  7. Character of intermolecular interaction in pyridine-argon complex: Ab initio potential energy surface, internal dynamics, and interrelations between SAPT energy components

    NASA Astrophysics Data System (ADS)

    Makarewicz, Jan; Shirkov, Leonid

    2016-05-01

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm-1 is close to that of 387 cm-1 calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.

  8. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  9. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  10. Interaction-induced dipoles of hydrogen molecules colliding with helium atoms: a new ab initio dipole surface for high-temperature applications.

    PubMed

    Li, Xiaoping; Mandal, Anirban; Miliordos, Evangelos; Hunt, Katharine L C

    2012-01-28

    We report new ab initio results for the interaction-induced dipole moments Δμ of hydrogen molecules colliding with helium atoms. These results are needed in order to calculate collision-induced absorption spectra at high temperatures; applications include modeling the radiative profiles of very cool white dwarf stars, with temperatures from 3500 K to 9000 K. We have evaluated the dipoles based on finite-field calculations, with coupled cluster methods in MOLPRO 2006 and aug-cc-pV5Z (spdfg) basis sets for both the H and He centers. We have obtained values of Δμ for eight H(2) bond lengths ranging from 0.942 a.u. to 2.801 a.u., for 15 intermolecular separations R ranging from 2.0 a.u. to 10.0 a.u., and for 19 different relative orientations. In general, our values agree well with earlier ab initio results, for the geometrical configurations that are treated in common, but we have determined more points on the collision-induced dipole surface by an order of magnitude. These results make it possible to calculate transition probabilities for molecules in excited vibrational states, overtones, and rotational transitions with ΔJ > 4. We have cast our results in the symmetry-adapted form needed for absorption line shape calculations, by expressing Δμ as a series in the spherical harmonics of the orientation angles of the intermolecular vector and of a unit vector along the H(2) bond axis. The expansion coefficients depend on the H(2) bond length and the intermolecular distance R. For large separations R, we show that the ab initio values of the leading coefficients converge to the predictions from perturbation theory, including both classical multipole polarization and dispersion effects. PMID:22299884

  11. Interaction-induced dipoles of hydrogen molecules colliding with helium atoms: a new ab initio dipole surface for high-temperature applications.

    PubMed

    Li, Xiaoping; Mandal, Anirban; Miliordos, Evangelos; Hunt, Katharine L C

    2012-01-28

    We report new ab initio results for the interaction-induced dipole moments Δμ of hydrogen molecules colliding with helium atoms. These results are needed in order to calculate collision-induced absorption spectra at high temperatures; applications include modeling the radiative profiles of very cool white dwarf stars, with temperatures from 3500 K to 9000 K. We have evaluated the dipoles based on finite-field calculations, with coupled cluster methods in MOLPRO 2006 and aug-cc-pV5Z (spdfg) basis sets for both the H and He centers. We have obtained values of Δμ for eight H(2) bond lengths ranging from 0.942 a.u. to 2.801 a.u., for 15 intermolecular separations R ranging from 2.0 a.u. to 10.0 a.u., and for 19 different relative orientations. In general, our values agree well with earlier ab initio results, for the geometrical configurations that are treated in common, but we have determined more points on the collision-induced dipole surface by an order of magnitude. These results make it possible to calculate transition probabilities for molecules in excited vibrational states, overtones, and rotational transitions with ΔJ > 4. We have cast our results in the symmetry-adapted form needed for absorption line shape calculations, by expressing Δμ as a series in the spherical harmonics of the orientation angles of the intermolecular vector and of a unit vector along the H(2) bond axis. The expansion coefficients depend on the H(2) bond length and the intermolecular distance R. For large separations R, we show that the ab initio values of the leading coefficients converge to the predictions from perturbation theory, including both classical multipole polarization and dispersion effects.

  12. Ab initio molecular orbital-configuration interaction based quantum master equation (MOQME) approach to the dynamic first hyperpolarizabilities of asymmetric π-conjugated systems

    SciTech Connect

    Kishi, Ryohei; Fujii, Hiroaki; Minami, Takuya; Shigeta, Yasuteru; Nakano, Masayoshi

    2015-01-22

    In this study, we apply the ab initio molecular orbital - configuration interaction based quantum master equation (MOQME) approach to the calculation and analysis of the dynamic first hyperpolarizabilities (β) of asymmetric π-conjugated molecules. In this approach, we construct the excited state models by the ab initio configuration interaction singles method. Then, time evolutions of system reduced density matrix ρ(t) and system polarization p(t) are calculated by the QME approach. Dynamic β in the second harmonic generation is calculated based on the nonperturbative definition of nonlinear optical susceptibility, using the frequency domain system polarization p(ω). Spatial contributions of electrons to β are analyzed based on the dynamic hyperpolarizability density map, which visualizes the second-order response of charge density oscillating with a frequency of 2ω. We apply the present method to the calculation of the dynamic β of a series of donor/acceptor substituted polyene oligomers, and then discuss the applicability of the MOQME method to the calculation and analysis of dynamic NLO properties of molecular systems.

  13. Ab Initio No-Core Shell Model

    SciTech Connect

    Barrett, B R; Navratil, P; Vary, J P

    2011-04-11

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN

  14. Study of the thermodynamic properties of CeO{sub 2} from ab initio calculations: The effect of phonon-phonon interaction

    SciTech Connect

    Niu, Zhen-Wei; Zeng, Zhao-Yi; Hu, Cui-E; Cai, Ling-Cang; Chen, Xiang-Rong

    2015-01-07

    The thermodynamic properties of CeO{sub 2} have been reevaluated by a simple but accurate scheme. All our calculations are based on the self-consistent ab initio lattice dynamical (SCAILD) method that goes beyond the quasiharmonic approximation. Through this method, the effects of phonon-phonon interactions are included. The obtained thermodynamic properties and phonon dispersion relations are in good agreement with experimental data when considering the correction of phonon-phonon interaction. We find that the correction of phonon-phonon interaction is equally important and should not be neglected. At last, by comparing with quasiharmonic approximation, the present scheme based on SCAILD method is probably more suitable for high temperature systems.

  15. Ab Initio Quantum Mechanical Description of Noncovalent Interactions at Its Limits: Approaching the Experimental Dissociation Energy of the HF Dimer.

    PubMed

    Řezáč, Jan; Hobza, Pavel

    2014-08-12

    Hydrogen fluoride dimer is a perfect model system for studying hydrogen bonding. Its size makes it possible to apply the most advanced theoretical methods available, yet it is a full-featured complex of molecules with nontrivial electronic structure and dynamic properties. Moreover, the dissociation energy of the HF dimer has been measured experimentally with an unparalleled accuracy of ±1 cm(-1)(Bohac et al. J. Chem. Phys. 1992, 9, 6681). In this work, we attempt to reproduce it by purely ab initio means, using advanced quantum-mechanical computational methods free of any empiricism. The purpose of this study is to demonstrate the capabilities of today's computational chemistry and to point out its limitations by identifying the contributions that introduce the largest uncertainty into the result. The dissociation energy is calculated using a composite scheme including large basis set CCSD(T) calculations, contributions of higher excitations up to CCSDTQ, relativistic and diagonal Born-Oppenheimer corrections and anharmonic vibrational calculations. The error of the calculated dissociation energy is 0.07 kcal/mol (25 cm(-1), 2.5%) when compared to the experiment. The major part of this error can be attributed to the inaccuracy of the calculations of the zero-point vibrational energy. PMID:26588277

  16. Ab-initio calculations on melting of thorium

    NASA Astrophysics Data System (ADS)

    Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.

  17. Ab Initio Calculations Of Light-Ion Reactions

    SciTech Connect

    Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W

    2012-03-12

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  18. Ab initio melting curve of osmium

    NASA Astrophysics Data System (ADS)

    Burakovsky, L.; Burakovsky, N.; Preston, D. L.

    2015-11-01

    The melting curve of osmium up to a pressure P of 500 GPa is obtained from an extensive suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. The ab initio P =0 melting point of Os is 3370 ±75 K; this range encompasses all of the available data in the literature and corroborates the conclusion of J. W. Arblaster [Platinum Metals Rev. 49, 166 (2005)], 10.1595/147106705X70264 that the melting temperature of pure Os is 3400 ±50 K and that the 3300 K typically quoted in the literature is the melting point of impure Os. The T =0 equation of state (EOS) of Os and the P dependence of the optimized c /a ratio for the hexagonal unit cell, both to pressures ˜900 GPa, are obtained in the ab initio approach as validation of its use. Although excellent agreement with the available experimental data (P ≲80 GPa) is found, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes the QMD data to higher pressures, in agreement with the more recent experimental EOS by Godwal et al. The theoretical melting curve of Os obtained earlier by Joshi et al. is shown to be inconsistent with our QMD results, and the possible reason for this discrepancy is suggested. Regularities in the melting curves of Os and five other third-row transition metals (Ta, W, Re, Pt, Au) could be used to estimate the currently unknown melting curves of Hf and Ir.

  19. Ab-initio phasing in protein crystallography

    NASA Astrophysics Data System (ADS)

    van der Plas, J. L.; Millane, Rick P.

    2000-11-01

    The central problem in the determination of protein structures form x-ray diffraction dada (x-ray crystallography) corresponds to a phase retrieval problem with undersampled amplitude data. Algorithms for this problem that have an increased radius of convergence have the potential for reducing the amount of experimental work, and cost, involved in determining protein structures. We describe such an algorithm. Application of the algorithm to a simulated crystallographic problem shows that it converges to the correct solution, with no initial phase information, where currently used algorithms fail. The results lend support to the possibility of ab initio phasing in protein crystallography.

  20. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  1. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  2. Ab initio non-relativistic spin dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Frisch, Michael J.; Li, Xiaosong

    2014-12-01

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li3 molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  3. Ab initio determination of spin Hamiltonians with anisotropic exchange interactions: The case of the pyrochlore ferromagnet Lu2V2O7

    NASA Astrophysics Data System (ADS)

    Riedl, Kira; Guterding, Daniel; Jeschke, Harald O.; Gingras, Michel J. P.; Valentí, Roser

    2016-07-01

    We present a general framework for deriving effective spin Hamiltonians of correlated magnetic systems based on a combination of relativistic ab initio density functional theory calculations, exact diagonalization of a generalized Hubbard Hamiltonian on finite clusters, and spin projections onto the low-energy subspace. A key motivation is to determine anisotropic bilinear exchange couplings in materials of interest. As an example, we apply this method to the pyrochlore Lu2V2O7 where the vanadium ions form a lattice of corner-sharing spin-1/2 tetrahedra. In this compound, anisotropic Dzyaloshinskii-Moriya interactions (DMIs) play an essential role in inducing a magnon Hall effect. We obtain quantitative estimates of the nearest-neighbor Heisenberg exchange, the DMI, and the symmetric part of the anisotropic exchange tensor. Finally, we compare our results with experimental ones on the Lu2V2O7 compound.

  4. Strong π-π interaction of porphyrins on (6,5) carbon nanotubes with full surface coverage: Ab-initio calculations

    SciTech Connect

    Orellana, Walter

    2014-07-14

    The stability, electronic, and optical properties of (6,5) single-walled carbon nanotubes (CNTs) functionalized with free-base tetraphenylporphyrin (TPP) molecules through π-stacking interactions are studied by ab-initio calculations. The stability and optical response of the CNT-TPP compounds for increasing CNT-surface coverage are investigated. Our results show that four TPP molecules forming a ring around the CNT is the most stable configuration, showing strong binding energies of about 2.5 eV/TPP. However, this binding energy can increase even more after additional molecules assemble side by side along the CNT, favoring the formation of a full single layer of TPP, as experimentally suggested. The strong π-π attractive forces induce molecular distortions that move the TPP higher-occupied molecular orbital levels inside the CNT bandgap, changing the optical response of the TPP molecules stacked on the CNT.

  5. The anharmonic potential function of methylene fluoride. SCF ab initio computations of the cubic force field and analysis of vibration-rotation interaction constants

    NASA Astrophysics Data System (ADS)

    Gaw, Jeffrey F.; Handy, Nicholas C.; Palmieri, Paolo; Esposti, Alessandra Degli

    1988-07-01

    The harmonic and the cubic force fields of CH2F2 have been evaluated ab initio from the SCF energy expression by analytic derivative methods. The computed cubic force constants were used as starting values in a least squares analysis of the experimental vibration-rotation constants of CH2F2 and CD2F2. A simple scaling procedure of the ab initio cubic force constants provides a complete cubic force field for the molecule and the best fit with the experimental data.

  6. Interaction of an aluminum atom with an alkaline earth atom: Spectroscopic and ab initio investigations of AlCa

    NASA Astrophysics Data System (ADS)

    Behm, Jane M.; Morse, Michael D.; Boldyrev, Alexander I.; Simons, Jack

    1994-10-01

    A spectroscopic analysis of diatomic AlCa generated by laser vaporization of a 2:1 Al:Ca metal alloy followed by supersonic expansion has been completed using resonant two-photon ionization spectroscopy. Four excited electronic states have been identified and investigated in the energy region from 13 500 to 17 900 cm-1. These are the [13.5] 2Πr, the [15.8] 2Σ, the [17.0] 2Δ3/2(?), and the [17.6] 2Δ3/2 states. From rotational analysis excited state bond lengths have been measured for three of the four excited states, and the ground state has been unambiguously determined as a 2Πr state with a weighted least squares value of the ground state bond length of r0` = 3.1479± 0.0010 Å. The ionization energy of the molecule has also been directly determined as 5.072±0.028 eV. Ab initio calculations for the potential energy curves of seven low-lying states of AlCa [X 2Πr, 2Σ+, 4Σ-, 4Πr, 2Πr(2), 2Δ, and 2Σ-] and for the X 1Σ+ ground electronic state of AlCa+ have been carried out. In agreement with experiment, 2Πr is calculated to be the ground electronic state of the neutral molecule. The dissociation energies of AlCa (X 2Πr) into Al(3s23p1,2P0)+Ca(4s2,1S) and for AlCa+ (X 1Σ+) into Al+(3s2,1S)+Ca(4s2,1S) are calculated to be 0.47 and 1.50 eV, respectively. The excited 2Σ+, 4Σ-, 4Πr, 2Πr(2), 2Δ, and 2Σ- states are calculated to lie 0.2, 0.7, 0.7, 1.1, 1.1, and 1.1 eV above X 2Πr, respectively, and the vertical and adiabatic ionization energies of AlCa have been calculated to be 5.03 and 4.97 eV, respectively.

  7. Quaternary ammonium room-temperature ionic liquid including an oxygen atom in side chain/lithium salt binary electrolytes: ab initio molecular orbital calculations of interactions between ions.

    PubMed

    Tsuzuki, Seiji; Hayamizu, Kikuko; Seki, Shiro; Ohno, Yasutaka; Kobayashi, Yo; Miyashiro, Hajime

    2008-08-14

    Interactions of the lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) complex with N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium (DEME), 1-ethyl-3-methylimidazolium (EMIM) cations, neutral diethylether (DEE), and the DEMETFSA complex were studied by ab initio molecular orbital calculations. An interaction energy potential calculated for the DEME cation with the LiTFSA complex has a minimum when the Li atom has contact with the oxygen atom of DEME cation, while potentials for the EMIM cation with the LiTFSA complex are always repulsive. The MP2/6-311G**//HF/6-311G** level interaction energy calculated for the DEME cation with the LiTFSA complex was -18.4 kcal/mol. The interaction energy for the neutral DEE with the LiTFSA complex was larger (-21.1 kcal/mol). The interaction energy for the DEMETFSA complex with LiTFSA complex is greater (-23.2 kcal/mol). The electrostatic and induction interactions are the major source of the attraction in the two systems. The substantial attraction between the DEME cation and the LiTFSA complex suggests that the interaction between the Li cation and the oxygen atom of DEME cation plays important roles in determining the mobility of the Li cation in DEME-based room temperature ionic liquids.

  8. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  9. Ab initio calculations of reactions with light nuclei

    NASA Astrophysics Data System (ADS)

    Quaglioni, Sofia; Hupin, Guillaume; Calci, Angelo; Navrátil, Petr; Roth, Robert

    2016-03-01

    An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review ab initio calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the ab initio no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the A-nucleon system are coupled to (A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.

  10. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  11. Ab initio molecular dynamics simulations of ion–solid interactions in Gd2Zr2O7 and Gd2Ti2O7

    SciTech Connect

    Wang, X. J.; Xiao, Haiyan Y.; Zu, Xiaotao; Zhang, Yanwen; Weber, William J.

    2012-12-21

    The development of the ab initio molecular dynamics (AIMD) method has made it a powerful tool in describing ion–solid interactions in materials, with the determination of threshold displacement energies with ab initio accuracy, and prediction of a new mechanism for defect generation and new defective states that are different from classical molecular dynamics (MD) simulations. In the present work, this method is employed to study the low energy recoil events in Gd2Zr2O7 and Gd2Ti2O7. The weighted average threshold displacement energies in Gd2Zr2O7 are determined to be 38.8 eV for Gd, 41.4 eV for Zr, 18.6 eV for O48f, and 15.6 eV for O8b, which are smaller than the respective values of 41.8, >53.8, 22.6 and 16.2 eV in Gd2Ti2O7. It reveals that all the ions in Gd2Zr2O7 are more easily displaced than those in Gd2Ti2O7, and anion order–disorder is more likely to be involved in the displacement events than cation disordering. The average charge transfer from the primary knock-on atom to its neighbors is estimated to be [similar]0.15, [similar]0.11 to 0.27 and [similar]0.1 to 0.13 |e| for Gd, Zr (or Ti), and O, respectively. Neglecting the charge transfer in the interatomic potentials may result in the larger threshold displacement energies in classical MD.

  12. Ab initio molecular dynamics simulations of ion–solid interactions in Gd2Zr2O7 and Gd2Ti2O7

    SciTech Connect

    Wang, X. J.; Xiao, H. Y.; Zu, X. T.; Zhang, Y.; Weber, W. J.

    2013-01-01

    The development of ab initio molecular dynamics (AIMD) method has made it a powerful tool in describing ion-solid interactions in materials, with identification determination of threshold displacement energies with ab initio accuracy, and prediction of new mechanism for defect generation and new defective states that are different from classical molecular dynamics (MD) simulations. In the present work, this method is employed to study the low energy recoil events in Gd2Zr2O7 and Gd2Ti2O7. The weighted average threshold displacement energies in Gd2Zr2O7 are determined to be 38.8 eV for Gd, 41.4 eV for Zr, 18.6 eV for O48f, and 15.6 eV for O8b, which are smaller than the respective values of 41.8, >53.8, 22.6 and 16.2 eV in Gd2Ti2O7. It reveals that all the ions in Gd2Zr2O7 are more easily displaced than those in Gd2Ti2O7, and anion order-disorder are more likely to be involved in the displacement events than cation disordering. The average charge transfer from the primary knock-on atom to its neighbors is estimated to be ~0.15, ~0.11-0.27 and ~0.1-0.13 |e| for Gd, Zr (or Ti), and O, respectively. Negligence of the charge transfer in the interatomic potentials may result in the larger threshold displacement energies in classical MD.

  13. Ab Initio Computation of the Energies of Circular Quantum Dots

    SciTech Connect

    Lohne, M. Pedersen; Hagen, Gaute; Hjorth-Jensen, M.; Kvaal, S.; Pederiva, F.

    2011-01-01

    We perform coupled-cluster and diffusion Monte Carlo calculations of the energies of circular quantum dots up to 20 electrons. The coupled-cluster calculations include triples corrections and a renormalized Coulomb interaction defined for a given number of low-lying oscillator shells. Using such a renormalized Coulomb interaction brings the coupled-cluster calculations with triples correlations in excellent agreement with the diffusion Monte Carlo calculations. This opens up perspectives for doing ab initio calculations for much larger systems of electrons.

  14. Discovering chemistry with an ab initio nanoreactor

    PubMed Central

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-01-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881

  15. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  16. Discovering chemistry with an ab initio nanoreactor

    SciTech Connect

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.

  17. Discovering chemistry with an ab initio nanoreactor

    DOE PAGES

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  18. Ab Initio Calculation of the Hoyle State

    SciTech Connect

    Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.

    2011-05-13

    The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.

  19. Interactions of Hydrogen Molecules with Halogen-Containing Diatomics from Ab Initio Calculations: Spherical-Harmonics Representation and Characterization of the Intermolecular Potentials.

    PubMed

    Albernaz, Alessandra F; Aquilanti, Vincenzo; Barreto, Patricia R P; Caglioti, Concetta; Cruz, Ana Claudia P S; Grossi, Gaia; Lombardi, Andrea; Palazzetti, Federico

    2016-07-14

    For the prototypical diatomic-molecule-diatomic-molecule interactions H2-HX and H2-X2, where X = F, Cl, Br, quantum-chemical ab initio calculations are carried out on grids of the configuration space, which permit a spherical-harmonics representation of the potential energy surfaces (PESs). Dimer geometries are considered for sets of representative leading configurations, and the PESs are analyzed in terms of isotropic and anisotropic contributions. The leading configurations are individuated by selecting a minimal set of mutual orientations of molecules needed to build the spherical-harmonic expansion on geometrical and symmetry grounds. The terms of the PESs corresponding to repulsive and bonding dimer geometries and the averaged isotropic term, for each pair of interacting molecules, are compared with representations in terms of a potential function proposed by Pirani et al. (see Chem. Phys. Lett. 2004, 394, 37-44 and references therein). Connections of the involved parameters with molecular properties provide insight into the nature of the interactions.

  20. Effect of noncovalent interactions on the n-butylbenzene...Ar cluster studied by mass analyzed threshold ionization spectroscopy and ab initio computations.

    PubMed

    Tong, Xin; Cerný, Jirí; Müller-Dethlefs, Klaus

    2008-07-01

    Clusters of Ar bound to isomers of the aromatic hydrocarbon n-butylbenzene (BB) have been studied using two-color REMPI (resonance enhanced multiphoton ionization) and MATI (mass analyzed threshold ionization) spectroscopy to explore noncovalent vdW interactions between these two moieties. Blue shifts of excitation energy were observed for gauche-BB...Ar clusters, and red shifts for anti-BB...Ar clusters were observed. Adiabatic ionization energies (IEs) of the conformer BB-I...Ar and BB-V...Ar were determined as 70052 and 69845 +/- 5 cm (-1), respectively. Spectral features and vibrational modes were interpreted with the aid of UMP2/cc-pVDZ ab initio calculations. Data of complexation shifts of the alkyl-benzenes and their argon clusters were collected and discussed. Using the CCSD(T) method at complete basis set (CBS) level, interaction energies for the neutral ground states of BB-I...Ar and BB-V...Ar were obtained as 650 and 558 cm (-1), respectively. Combining the CBS calculation results and the REMPI and MATI spectra allowed further the determination of the interaction energies and the energetics of BB...Ar in the excited neutral S 1 and the D 0 cationic ground states.

  1. Effect of noncovalent interactions on the n-butylbenzene...Ar cluster studied by mass analyzed threshold ionization spectroscopy and ab initio computations.

    PubMed

    Tong, Xin; Cerný, Jirí; Müller-Dethlefs, Klaus

    2008-07-01

    Clusters of Ar bound to isomers of the aromatic hydrocarbon n-butylbenzene (BB) have been studied using two-color REMPI (resonance enhanced multiphoton ionization) and MATI (mass analyzed threshold ionization) spectroscopy to explore noncovalent vdW interactions between these two moieties. Blue shifts of excitation energy were observed for gauche-BB...Ar clusters, and red shifts for anti-BB...Ar clusters were observed. Adiabatic ionization energies (IEs) of the conformer BB-I...Ar and BB-V...Ar were determined as 70052 and 69845 +/- 5 cm (-1), respectively. Spectral features and vibrational modes were interpreted with the aid of UMP2/cc-pVDZ ab initio calculations. Data of complexation shifts of the alkyl-benzenes and their argon clusters were collected and discussed. Using the CCSD(T) method at complete basis set (CBS) level, interaction energies for the neutral ground states of BB-I...Ar and BB-V...Ar were obtained as 650 and 558 cm (-1), respectively. Combining the CBS calculation results and the REMPI and MATI spectra allowed further the determination of the interaction energies and the energetics of BB...Ar in the excited neutral S 1 and the D 0 cationic ground states. PMID:18533640

  2. Ab initio prediction of adsorption isotherms for small molecules in metal-organic frameworks: the effect of lateral interactions for methane/CPO-27-Mg.

    PubMed

    Sillar, Kaido; Sauer, Joachim

    2012-11-01

    A hybrid method that combines density functional theory for periodic structures with wave function-based electron correlation methods for finite-size models of adsorption sites is employed to calculate energies for adsorption of CH(4) onto different sites in the metal-organic framework (MOF) CPO-27-Mg (Mg-MOF-74) with chemical accuracy. The adsorption energies for the Mg(2+), linker, second layer sites are -27.8, -18.3, and -15.1 kJ/mol. Adsorbate-adsorbate interactions increase the average CH(4) adsorption energy by about 10% (2.4 kJ/mol). The free rotor-harmonic oscillator-ideal gas model is applied to calculate free energies/equilibrium constants for adsorption on the individual sites. This information is used in a multisite Langmuir model, augmented with a Bragg-Williams model for lateral interactions, to calculate adsorption isotherms. This ab initio approach yields the contributions of the individual sites to the final isotherms and also of the lateral interactions that contribute about 15% to the maximum excess adsorption capacity. Isotherms are calculated for both absolute amounts, for calculation of isosteric heats of adsorption as function of coverage, and excess amounts, for comparison with measured isotherms. Agreement with observed excess isotherms is reached if the experimentally determined limited accessibility of adsorption sites (78%) is taken into account.

  3. Nature of noncovalent interactions in catenane supramolecular complexes: calibrating the MM3 force field with ab initio, DFT, and SAPT methods.

    PubMed

    Simeon, Tomekia M; Ratner, Mark A; Schatz, George C

    2013-08-22

    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H···O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3]catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H···O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H···O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, we find that electrostatic interactions dominate the [C-H···O] hydrogen-bonding interactions, while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interaction energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correction have important differences compared to DFT-SAPT, while HF and even MP2 results are in poor agreement with DFT-SAPT.

  4. The Nature of Noncovalent Interactions in Catenane Supramolecular Complexes: Calibrating the MM3 Force Field with ab initio, DFT and SAPT Methods

    PubMed Central

    Simeon, Tomekia M.; Ratner, Mark A.; Schatz, George C.

    2013-01-01

    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H⋯O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3] catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H⋯O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H⋯O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, and we find that electrostatic interactions dominate the [C-H⋯O] hydrogen-bonding interactions while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interactions energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correct have important differences compared to DFT-SAPT while HF and even MP2 results are in poor agreement with DFT-SAPT. PMID:23941280

  5. Ab initio derivation of model energy density functionals

    NASA Astrophysics Data System (ADS)

    Dobaczewski, Jacek

    2016-08-01

    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.

  6. On the hierarchical parallelization of ab initio simulations

    NASA Astrophysics Data System (ADS)

    Ruiz-Barragan, Sergi; Ishimura, Kazuya; Shiga, Motoyuki

    2016-02-01

    A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.

  7. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  8. Ab-Initio Shell Model with a Core

    SciTech Connect

    Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P

    2008-06-04

    We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.

  9. Basis sets for ab initio periodic Hartree-Fock studies of zeolite/adsorbate interactions: He, Ne, and Ar in silica sodalite

    SciTech Connect

    Nada, R.; Nicholas, J.B.; McCarthy, M.I.; Hess, A.C.

    1996-11-15

    Silica sodalite is an ideal model system to establish base-line computer requirements of ab initio periodic Hartree-Fock (PHF) calculations of zeolites. In this article, the authors investigate the effect of various basis sets on the structural and electronic properties of bulk silica sodalite. They also study the interaction of He, Ne, and Ar with the sodalite cage. This work shows that basis-set superposition errors (BSSE) in calculations using STO-3G and 6-21G(*) basis sets are as large as the interaction energies, leading to poor confidence in the results. To cure this problem, the authors present high-quality basis sets for si, O, He, Ne, and Ar, optimized for use with PHF methods, and demonstrate that the new basis set greatly reduces BSSE. The theoretical barriers for transfer of the rare gases between sodalite cages are 5.6, 13.2, and 62.1 kcal/mol for He, Ne, and Ar. 27 refs., 6 figs., 8 tabs.

  10. Ab Initio: And a New Era of Airline Pilot Training.

    ERIC Educational Resources Information Center

    Gesell, Laurence E.

    1995-01-01

    Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)

  11. Ab initio calculations of nitramine dimers

    NASA Astrophysics Data System (ADS)

    Koh-Fallet, Sharon; Schweigert, Igor

    2015-06-01

    Elevated temperatures and pressures are typically thought to have opposing effects on the reaction channels of nitramine decomposition. These high temperatures promote reactions with loose transition structures (positive activation entropies and volumes), such as N-N bond homolysis. Elevated pressures promote reactions with tight transition structures (negative activation entropies and volumes), such as intramolecular and intermolecular H transfer. However, no quantitative data exists regarding the range of temperatures and pressures at which these effects become pronounced. We are pursuing ab initio calculations of the corresponding unimolecular and bimolecular transition structures with the objective of estimating the relevant thermochemical parameters and quantifying the effects of elevated temperature and pressures on the corresponding rate constants. Here, we present density functional theory and complete active space calculations of gas-phase molecular dimers of nitramines as an intermediate step toward modeling transition structures directly in the condensed phase. This work was supported by the Naval Research Laboratory via the American Society for Engineering and Education and by the Office of Naval Research, both directly and through the Naval Research Laboratory.

  12. Ab initio two-component Ehrenfest dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-21

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  13. Ab initio two-component Ehrenfest dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-01

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H2 and O2. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  14. Ab Initio Studies of Calcium Carbonate Hydration.

    PubMed

    Lopez-Berganza, Josue A; Diao, Yijue; Pamidighantam, Sudhakar; Espinosa-Marzal, Rosa M

    2015-11-25

    Ab initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate. Structural and energetics analysis of the hydration of these clusters revealed a first hydration shell composed of 12 water molecules. Bond-length and charge densities were also determined for different cluster sizes. The solvation of calcium carbonate in bulk water was investigated by placing the explicitly solvated CaCO3·nH2O clusters in a polarizable continuum model (PCM). The findings of this study provide new insights into the energetics and structure of hydrated calcium carbonate and contribute to the understanding of mechanisms where calcium carbonate formation or dissolution is of relevance.

  15. Phonocatalysis. An ab initio simulation experiment

    NASA Astrophysics Data System (ADS)

    Kim, Kwangnam; Kaviany, Massoud

    2016-06-01

    Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon) energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent) requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.

  16. Structure enhancement methodology using theory and experiment: gas-phase molecular structures using a dynamic interaction between electron diffraction, molecular mechanics, and ab initio data.

    PubMed

    Kafka, Graeme R; Masters, Sarah L; Rankin, David W H

    2007-07-01

    A new method of incorporating ab initio theoretical data dynamically into the gas-phase electron diffraction (GED) refinement process has been developed to aid the structure determination of large, sterically crowded molecules. This process involves calculating a set of differences between parameters that define the positions of peripheral atoms (usually hydrogen), as determined using molecular mechanics (MM), and those which use ab initio methods. The peripheral-atom positions are then updated continually during the GED refinement process, using MM, and the returned positions are modified using this set of differences to account for the differences between ab initio and MM methods, before being scaled back to the average parameters used to define them, as refined from experimental data. This allows the molecule to adopt a completely asymmetric structure if required, without being constrained by the MM parametrization, whereas the calculations can be performed on a practical time scale. The molecular structures of tri-tert-butylphosphine oxide and tri-tert-butylphosphine imide have been re-examined using this new technique, which we call SEMTEX (Structure Enhancement Methodology using Theory and EXperiment).

  17. i-TTM Model for Ab Initio-Based Ion-Water Interaction Potentials. 1. Halide-Water Potential Energy Functions.

    PubMed

    Arismendi-Arrieta, Daniel J; Riera, Marc; Bajaj, Pushp; Prosmiti, Rita; Paesani, Francesco

    2016-03-01

    New potential energy functions (i-TTM) describing the interactions between halide ions and water molecules are reported. The i-TTM potentials are derived from fits to electronic structure data and include an explicit treatment of two-body repulsion, electrostatics, and dispersion energy. Many-body effects are represented through classical polarization within an extended Thole-type model. By construction, the i-TTM potentials are compatible with the flexible and fully ab initio MB-pol potential, which has recently been shown to accurately predict the properties of water from the gas to the condensed phase. The accuracy of the i-TTM potentials is assessed through extensive comparisons with CCSD(T)-F12, DF-MP2, and DFT data as well as with results obtained with common polarizable force fields for X(-)(H2O)n clusters with X(-) = F(-), Cl(-), Br(-), and I(-), and n = 1-8. By construction, the new i-TTM potentials will enable direct simulations of vibrational spectra of halide-water systems from clusters to bulk and interfaces.

  18. Strong influence of coadsorbate interaction on CO desorption dynamics on Ru(0001) probed by ultrafast x-ray spectroscopy and ab initio simulations

    SciTech Connect

    Xin, H.; LaRue, J.; Oberg, H.; Beye, M.; Dell'Angela, M.; Turner, J. J.; Gladh, J.; Ng, M. L.; Sellberg, J. A.; Kaya, S.; Mercurio, G.; Hieke, F.; Nordlund, D.; Schlotter, W. F.; Dakovski, G. L.; Minitti, M. P.; Fohlisch, A.; Wolf, M.; Wurth, W.; Ogasawara, H.; Norskov, J. K.; Ostrom, H.; Pettersson, L. G. M.; Nilsson, A.; Ablid-Pedersen, F.

    2015-04-16

    We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.

  19. Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy and Ab Initio Simulations.

    PubMed

    Xin, H; LaRue, J; Öberg, H; Beye, M; Dell'Angela, M; Turner, J J; Gladh, J; Ng, M L; Sellberg, J A; Kaya, S; Mercurio, G; Hieke, F; Nordlund, D; Schlotter, W F; Dakovski, G L; Minitti, M P; Föhlisch, A; Wolf, M; Wurth, W; Ogasawara, H; Nørskov, J K; Öström, H; Pettersson, L G M; Nilsson, A; Abild-Pedersen, F

    2015-04-17

    We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process. PMID:25933322

  20. Three-cluster dynamics within an ab initio framework

    DOE PAGES

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less

  1. Unified ab initio approaches to nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-05-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.

  2. Dynamic hyperfine interactions in 111In(111Cd)-doped ZnO semiconductor: PAC results supported by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Muñoz, Emiliano L.; Mercurio, Marcio E.; Cordeiro, Moacir R.; Pereira, Luciano F. D.; Carbonari, Artur W.; Rentería, Mario

    2012-08-01

    In this work, we present results of Time-Differential γ-γ Perturbed-Angular-Correlations (PAC) experiments performed in 111Cd-doped ZnO semiconductor. The PAC technique has been applied in order to characterize the electric-field-gradient (EFG) tensor at (111In (EC)→) 111Cd nuclei located, as was later demonstrated, at defect-free cation sites of the ZnO host structure. The PAC experiments were performed in the temperature range of 77-1075 K. At first glance, the unexpected presence of low-intensity dynamic hyperfine interactions was observed, which were analyzed with a perturbation factor based on the Bäverstam and Othaz model. The experimental EFG results were compared with ab initio calculations performed with the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) method, in the framework of the Density Functional Theory (DFT), using the Wien2K code. The presence of the dynamic hyperfine interactions has been analyzed enlightened by the FP-APW+lo calculations of the EFG performed as a function of the charge state of the cell. We could correlate the large strength of the dynamic hyperfine interaction with the strong variation of the EFG due to changes in the electronic charge distribution in the Cd vicinity during the time-window of the PAC measurement. It was also revealed that the Cd impurity decays to a final stable neutral charge state (Cd2+) fast enough (in few ns) to produce the nearly undamped observed PAC spectra.

  3. Skutterudites under pressure: An ab initio study

    SciTech Connect

    Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.

    2014-03-07

    Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.

  4. Exploring "aerogen-hydride" interactions between ZOF2 (Z = Kr, Xe) and metal hydrides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-06-01

    In this work, a new σ-hole interaction formed between ZOF2 (Z = Kr and Xe) as the Lewis acid and a series of metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CN, CH3) is reported. The nature of this interaction, called "aerogen-hydride" interaction, is unveiled by molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. Our results indicate that the aerogen-hydride interactions are quite strong and can be comparable in strength to other σ-hole bonds. An important charge-transfer interaction is also associated with the formation of OF2Z⋯HMX complexes.

  5. Ab initio study of interaction between 3d adatoms on the vicinal Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L.

    2016-06-01

    Density functional theory is used to resolve the adatom-step and adatom-adatom interactions on vicinal Cu(111) surface. We demonstrated that the interactions between 3d adatoms appreciably depend on the distance from a surface step. Our calculations show that the magnitude of the repulsive barrier related to the surface step is larger for 3d adatoms located at the upper surface terrace than for adatoms located at the lower surface terrace.

  6. Ab initio coupled-cluster and multi-reference configuration interaction studies of the low-lying electronic states of 1,2,3,4-cyclobutanetetraone

    DOE PAGES

    Hansen, Jared A.; Bauman, Nicholas P.; Shen, Jun; Borden, Weston Thatcher; Piecuch, Piotr

    2015-12-09

    In this paper, the four, closely spaced, lowest energy electronic states of the challenging, D4h-symmetric, 1,2,3,4-cyclobutanetetraone (C4O4) molecule have been investigated using high-level ab initio methods. The calculated states include the closed-shell singlet 8π(1A1g) state, the singlet 10π(1A1g) state, in which the π-type lowest unoccupied molecular orbital (LUMO) of the 8π(1A1g) reference is doubly occupied and the σ-type highest occupied molecular orbital (HOMO) is empty, and the open-shell singlet and triplet states, designated as 9π(1B2u) and 9π(3B2u), respectively, originating from single occupancy of the HOMO and LUMO. Our focus is on single-reference coupled-cluster (CC) approaches capable of handling electronic near-degeneraciesmore » in diradicals, especially the completely renormalised CR-CC(2,3) and active-space CCSDt methods, along with their CCSD and EOMCCSD counterparts. The internally contracted multi-reference configuration interaction calculations with a quasi-degenerate Davidson correction are performed as well. Our computations demonstrate that the state ordering is 9π(3B2u) < 8π(1A1g) < 9π(1B2u) < 10π(1A1g) and that the 8π(1A1g) - 9π(3B2u) gap is in the 7–11 kJ/mol range, in reasonable agreement with the negative ion photoelectron spectroscopy measurements, which give 6.27 ± 0.5 kJ/mol. Finally, in addition to the theory level used, geometry relaxation and basis set play a significant role in determining the state ordering and energy spacings. In particular, it is unsafe to use lower level, non-CC geometries and smaller basis sets.« less

  7. Interactions of Metal Ions with Water: Ab Initio Molecular Orbital Studies of Structure, Bonding Enthalpies, Vibrational Frequencies and Charge Distributions. 1. Monohydrates.

    PubMed

    Trachtman, Mendel; Markham, George D.; Glusker, Jenny P.; George, Philip; Bock, Charles W.

    1998-08-24

    The formation and properties of a wide range of metal ion monohydrates, M(n)()(+)-OH(2), where n = 1 and 2, have been studied by ab initio molecular orbital calculations at the MP2(FULL)/6-311++G//MP2(FULL)/6-311++G and CCSD(T)(FULL)/6-311++G//MP2(FULL)/6-311++G computational levels. The ions M are from groups 1A, 2A, 3A, and 4A in the second, third, and fourth periods of the periodic table and the first transition series. Structural parameters, vibrational frequencies, bonding enthalpies, orbital occupancies and energies, and atomic charge distributions are reported. Trends in these properties are correlated with the progressive occupancy of the s, p, and d orbitals. Except for K(+)-OH(2) and Ca(2+)-OH(2), the O-H bond lengths and HOH angles are greater in the hydrates than in unbound water. The M-O bond lengths decrease proceeding from group 1A --> 4A but become larger in proceeding from the second --> fourth period. The bonding enthalpies, are found to be inversely linearly dependent on the M-O bond length M(n)()(+) according to equations of the form = A + B(1/M-O) for n = 1 and n = 2. Within each monohydrate the distribution of atomic charge reveals a small but definite transfer of charge from water to the metal ion. Compared to unbound water there is, in a metal-ion-bound water complex, an increase in the electronic (negative) charge on the oxygen atom, accompanied by a (significantly) larger decrease in the electronic charge on the hydrogen atoms. The bonding of the water molecule, although electrostatic in origin, is thus more complex than a simple interaction between a point charge on the metal ion, and the water dipole.

  8. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  9. THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY

    SciTech Connect

    Turchi, P A

    2004-09-24

    Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.

  10. Analytic ab initio-based molecular interaction potential for the BrO⋅H2O complex.

    PubMed

    Hoehn, Ross D; Yeole, Sachin D; Kais, Sabre; Francisco, Joseph S

    2016-05-28

    Radical halogen oxide species play important roles within atmospheric processes, specifically those responsible for the removal of O3. To facilitate future investigations on this family of compounds, RCCSD(T)/aug-cc-pVQZ-level electronic structure calculations were employed to generate individual-molecule optimized geometries, as well as to determine the global minimum energy structure for the BrO⋅H2O complex. This information facilitated the generation of several one-dimensional potential energy surface (PES) scans for the BrO⋅H2O complex. Scans were performed for both the ground state and the first excited state; this inclusion is due to a low-lying first electronic excited-state energy. These rigid-geometry PES scans were used both to generate a novel analytic interaction potential by modifying the existing Thole-type model used for water and to the fitted potential function. This interaction potential features anisotropic atomic polarizabilities facilitating appropriate modeling of the physics regarding the unpaired electron residing within the p-orbitals of the oxygen atom of the bromine oxide radical. The intention of this work is to facilitate future molecular dynamics simulations involving the interaction between the BrO radical and water clusters as a first step in devising possible novel chemistries taking place at the water interface of clouds within the atmosphere. PMID:27250293

  11. Analytic ab initio-based molecular interaction potential for the BrO⋅H2O complex.

    PubMed

    Hoehn, Ross D; Yeole, Sachin D; Kais, Sabre; Francisco, Joseph S

    2016-05-28

    Radical halogen oxide species play important roles within atmospheric processes, specifically those responsible for the removal of O3. To facilitate future investigations on this family of compounds, RCCSD(T)/aug-cc-pVQZ-level electronic structure calculations were employed to generate individual-molecule optimized geometries, as well as to determine the global minimum energy structure for the BrO⋅H2O complex. This information facilitated the generation of several one-dimensional potential energy surface (PES) scans for the BrO⋅H2O complex. Scans were performed for both the ground state and the first excited state; this inclusion is due to a low-lying first electronic excited-state energy. These rigid-geometry PES scans were used both to generate a novel analytic interaction potential by modifying the existing Thole-type model used for water and to the fitted potential function. This interaction potential features anisotropic atomic polarizabilities facilitating appropriate modeling of the physics regarding the unpaired electron residing within the p-orbitals of the oxygen atom of the bromine oxide radical. The intention of this work is to facilitate future molecular dynamics simulations involving the interaction between the BrO radical and water clusters as a first step in devising possible novel chemistries taking place at the water interface of clouds within the atmosphere.

  12. Carbon dioxide interacting with rare gases: Insights from high-level ab initio calculations of polarizability and hyperpolarizability effects

    NASA Astrophysics Data System (ADS)

    Haskopoulos, Anastasios; Maroulis, George

    2016-08-01

    We have obtained a quantitative, synthetic picture of the interaction-induced (hyper)polarizability in the sequence of the weakly bound complexes CO2⋯Rg, Rg = He, Ne, Ar, Kr, Xe. The properties are calculated from finite-field Møller-Plesset perturbation theory and coupled cluster calculations. We rely on flexible, prepared purpose-oriented atom- and molecule-specific basis set of Gaussian-type functions. We obtained interaction-induced electric properties for both the most stable T-shaped configuration and the less stable L-shaped one. Our interaction-induced first and second hyperpolarizabilities for the most stable (T-shaped) configurations, at the second order Møller-Plesset perturbation theory level are βbarint /e3 a03 Eh-2 (CO2⋯Rg) = 1.14 (He), 2.02 (Ne), 2.50 (Ar), 0.50 (Kr) and -5.32 (Xe). For the second hyperpolarizability at the same level of theory γbarint /e4a04 Eh-3 (CO2⋯Rg) = -11.66 (He), -25.88 (Ne), -108.16 (Ar), -206.75 (Kr) and -460.42 (Xe). In the vicinity of the equilibrium configuration, with the Rg atom displaced on the x axis for T-shaped configuration, the first hyperpolarizability changes as (dβ bar/dR )/e e3 a02 Eh-2 (CO2⋯Rg) = -1.07 (He), -1.86 (Ne), -0.71 (Ar), 2.65 (Kr) and 9.96 (Xe). For the second hyperpolarizability (d γ ‾/dR ) /e e4 a03 E h - 3 (CO2⋯Rg) = 7.94 (He), 20.34 (Ne), 65.00 (Ar), 118.48 (Kr) and 239.84 (Xe).

  13. Ab initio study of the interaction of polyoxymethylene with polyoxymethylene, ammonium perchlorate, and the aluminum (100) surface

    NASA Astrophysics Data System (ADS)

    Seel, M.; Kunz, A. B.; Wadiak, D. T.

    1988-05-01

    Self-consistent restricted and unrestricted Hartree-Fock calculations have been performed for the microscopic interactions in particle-filled polymeric suspensions. First, we have investigated the elongation and the torsion potential of a single infinite polyoxymethylene chain. It is found that the 9/5 helix is ~4.5 kcal/mol lower in energy than the planar zigzag conformation. A Young's modulus of 80+/-20 GPa is obtained for the chain-direction deformation. The potential-energy curve for the van der Waals interaction between two 2/1 helical polyoxymethylene chains has a minimum for a chain separation of ~4.3 Å with a binding energy of ~1.3 kcal per (CH2O)2 translational unit. For the chain-direction slip of two polyoxymethylene chains a barrier of ~5.1 kcal is calculated. To study polymer-particle interactions, cluster calculations for the interaction of polyoxymethylene fragments with ammonium perchlorate and the aluminum (100) surface have been performed. The oxygen in the polyoxymethylene backbone forms a hydrogen bond with ammonium perchlorate. For an O-H distance of 1.62 Å a binding energy of 23.7 kcal is obtained. This strong coordination of the ammonium ion with the oxygen in the polyether backbone is in agreement with the experimentally observed increase in viscosity of polyether lacquers upon dissolution of ammonium perchlorate. The potential energy curve for the bonding of a H3C-O-CH2-O-CH2-O-CH3 fragment at the on-top sites of an Al5 cluster has a minimum for an O-Al separation of 2.3 Å with a binding energy of 17.1 kcal (8.55 kcal per O-Al bonding). This binding energy is of the same order of magnitude as the energy of 4.5 kcal per CH2O unit needed to stretch the polyoxymethylene 9/5 helix to a helix whose next-nearest oxygen atoms are commensurate with the aluminum lattice constant of 4.05 Å. Therefore the coating of aluminum particles with polyoxymethylene polymers is possible. The quantum-mechanical results of these microscopic

  14. Ab initio study of chemical bond interactions between covalently functionalized carbon nanotubes via amide, ester and anhydride linkages

    NASA Astrophysics Data System (ADS)

    Ben Doudou, Bessem; Chen, Jun; Vivet, Alexandre; Poilâne, Christophe

    2016-03-01

    In this paper, we have investigated the chemical bond interactions between covalently functionalized zigzag (5,0) and (8,0) SWCNT-SWCNT via various covalent linkages. Side-to-side junctions connected via amide, ester and anhydride linkages were particularly studied. The geometries and energy of the forming reaction were investigated using first-principles density functional theory. Furthermore, the band structures and the total density of states (DOS) of the junctions have also been analyzed. Our results show that several promising structures could be obtained by using chemical connection strategy and particularly the junctions formed by coupling amino functionalized SWCNT and carboxylic acid functionalized SWCNT was more favorable.

  15. Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms.

    PubMed

    Cakır, D; Gülseren, O

    2012-08-01

    We have systematically investigated the growth behavior and stability of small stoichiometric (TiO(2))(n) (n = 1-10) clusters as well as their structural, electronic and magnetic properties by using the first-principles plane wave pseudopotential method within density functional theory. In order to find out the ground state geometries, a large number of initial cluster structures for each n has been searched via total energy calculations. Generally, the ground state structures for the case of n = 1-9 clusters have at least one monovalent O atom, which only binds to a single Ti atom. However, the most stable structure of the n = 10 cluster does not have any monovalent O atom. On the other hand, Ti atoms are at least fourfold coordinated for the ground state structures for n ≥ 4 clusters. Our calculations have revealed that clusters prefer to form three-dimensional structures. Furthermore, all these stoichiometric clusters have nonmagnetic ground state. The formation energy and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for the most stable structure of (TiO(2))(n) clusters for each n have also been calculated. The formation energy and hence the stability increases as the cluster size grows. In addition, the interactions between the ground state structure of the (TiO(2))(n) cluster and a single water molecule have been studied. The binding energy (E(b)) of the H(2)O molecule exhibits an oscillatory behavior with the size of the clusters. A single water molecule preferably binds to the cluster Ti atom through its oxygen atom, resulting an average binding energy of 1.1 eV. We have also reported the interaction of the selected clusters (n = 3, 4, 10) with multiple water molecules. We have found that additional water molecules lead to a decrease in the binding energy of these molecules to the (TiO(2))(n) clusters. Finally, the adsorption of transition metal (TM) atoms (V, Co and Pt) on the n = 10 cluster has been

  16. Ab initio prediction of ferrimagnetism, exchange interactions and Curie temperatures in Mn₂TiZ Heusler compounds.

    PubMed

    Meinert, M; Schmalhorst, J-M; Reiss, G

    2011-01-26

    The Heusler compounds Mn(2)TiZ (Z = Al, Ga, In, Si, Ge, Sn, P, As, Sb) are of great interest due to their potential ferrimagnetic properties and high spin polarization. Here, we present calculations of the structural and magnetic properties of these materials. Their magnetic moment follows the Slater-Pauling rule m = N(V) - 24. None of them is actually a perfect half-metallic ferrimagnet, but some exhibit more than 90% spin polarization and Curie temperatures well above room temperature. The exchange interactions are complex; direct and indirect exchange contributions are identified. The Curie temperature scales with the total magnetic moment, and it has a positive pressure dependence. The role of the Z element is investigated: it influences the properties of the compounds mainly via its valence electron number and its atomic radius, which determines the lattice parameter. Based on these results, Mn(2)TiSi, Mn(2)TiGe, and Mn(2)TiSn are proposed as candidates for spintronic applications.

  17. Effective pair potentials using an ab initio variational approach

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe; Silvestrelli, Pier Luigi

    2010-01-01

    We used a variational approach adapted to a quantum molecular-dynamics code to determine the best reference potential for warm dense aluminum. This ab initio variational approach was based on the Gibbs-Bogolyubov inequality. We used many-body reference systems interacting through inverse-power-law potentials, among which the Coulomb potential was a particular case defining the classical one-component plasma model. By comparisons with full quantum molecular-dynamics simulations, we found that the Coulomb potential was not always the best reference potential. We calculated the self-diffusion coefficient and the shear viscosity and discussed the results obtained using the Chisolm-Wallace relation in the warm dense matter regime.

  18. Ab Initio Calculations of Excited Carrier Dynamics in Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Jhalani, Vatsal; Bernardi, Marco

    Bulk wurtzite GaN is the primary material for blue light-emission technology. The radiative processes in GaN are regulated by the dynamics of excited (or so-called ``hot'') carriers, through microscopic processes not yet completely understood. We present ab initio calculations of electron-phonon (e-ph) scattering rates for hot carriers in GaN. Our work combines density functional theory to compute the electronic states, and density functional perturbation theory to obtain the phonon dispersions and e-ph coupling matrix elements. These quantities are interpolated on fine Brillouin zone grids with maximally localized Wannier functions, to converge the e-ph scattering rates within 5 eV of the band edges. We resolve the contribution of the different phonon modes to the total scattering rate, and study the impact on the relaxation times of the long-range Fröhlich interaction due to the longitudinal-optical phonon modes.

  19. Ab initio water pair potential with flexible monomers.

    PubMed

    Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof

    2015-03-26

    A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects.

  20. Ab Initio Study of KCl and NaCl Clusters

    NASA Astrophysics Data System (ADS)

    Brownrigg, Clifton; Hira, Ajit; Pacheco, Jose; Salazar, Justin

    2013-03-01

    We continue our interest in the theoretical study of molecular clusters to examine the chemical properties of small KnCln and NanCln clusters (n = 2 - 15). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods of quantum chemistry to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations have been performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. The potential for design of new medicinal drugs is explored.

  1. Ab initio water pair potential with flexible monomers.

    PubMed

    Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof

    2015-03-26

    A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects. PMID:25687650

  2. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  3. Quantum plasmonics: from jellium models to ab initio calculations

    NASA Astrophysics Data System (ADS)

    Varas, Alejandro; García-González, Pablo; Feist, Johannes; García-Vidal, F. J.; Rubio, Angel

    2016-08-01

    Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT) calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.

  4. First attempts at an elucidation of the interface structure resulting from the interaction between methacrylonitrile and a platinum anode: an experimental and theoretical (ab initio) study

    NASA Astrophysics Data System (ADS)

    Bureau, Christophe; Deniau, Guy; Valin, Françoise; Guittet, Marie-Joseph; Lécayon, Gérard; Delhalle, Joseph

    1996-06-01

    The aim of the present paper is to contribute to the elucidation of the molecular structures obtained on a platinum surface as this surface is submitted to an anodic potential (with respect to a silver reference electrode) when dipped into pure 2-methyl 2-propenenitrile (methacrylonitrile). Modified surfaces are examined using X- and UV-photoelectron spectroscopies (UPS and XPS). The results evidence the formation of an ultra-thin (20-40 Å) grafted oligomer film, which is not classical polymethacrylonitrile (PMAN), as obtained through a radical or anionic mechanism: spectral characteristics argue in the sense of a cationic polymerization of methacrylonitrile through its nitrile groups, as evidenced by a lowering of the gap as well as by the UPS and XPS (N 1s region) spectra. Molecular models of the reactants and reaction intermediates are proposed for the cationic polymerization of methacrylonitrile, and show that this polymerization is about as feasible as that of acetonitrile, at least on kinetic control grounds. Two different mechanisms are nonetheless possible, leading either to a quasi conjugated poly-imine type -(N  C) n-, or to a poly-cumulene type -(N  C  C) n- network. Theoretical consierations on reactants properties lead us to select the poly-imine way as the most plausible. Along with literature data concerning chemisorbed nitriles on platinum surfaces, a molecular model of the final state of the poly-imine reaction is then designed, comprising a three atom cluster to render the grafting site, and a dimer to render the grafted structure. A full geometry optimization is performed on the organic moiety at the Hartree-Fock (ab initio) level of theory, and a rough evaluation of the spectral footprint of the interface bond in the N 1s region is performed on the basis of Koopmans theorem with calibration on the bulk polymer peak. A preliminary 2.7 eV downward shift is predicted for N 1s interface nitrogens with respect to the polymer peak, which can

  5. Ab initio calculation of the effective on-site Coulomb interaction parameters for half-metallic magnets

    NASA Astrophysics Data System (ADS)

    Şaşıoğlu, Ersoy; Galanakis, Iosif; Friedrich, Christoph; Blügel, Stefan

    2013-10-01

    Correlation effects play an important role in the electronic structure of half-metallic (HM) magnets. In particular, they give rise to nonquasiparticle states above (or below) the Fermi energy at finite temperatures that reduce the spin polarization and, as a consequence, the efficiency of spintronics devices. Employing the constrained random-phase approximation (cRPA) within the full-potential linearized augmented-plane-wave (FLAPW) method using maximally localized Wannier functions, we calculate the strength of the effective on-site Coulomb interaction (Hubbard U and Hund exchange J) between localized electrons in different classes of HM magnets considering: (i) sp-electron ferromagnets in rock-salt structure, (ii) zinc-blende 3d binary ferromagnets, as well as (iii) ferromagnetic and ferrimagnetic semi- and full-Heusler compounds. For HM sp-electron ferromagnets, the calculated Hubbard U parameters are between 2.7 and 3.9 eV, while for transition-metal-based HM compounds, they lie between 1.7 and 3.8 eV, being smallest for MnAs (Mn-3d orbitals) and largest for Cr2CoGa (Co-3d orbitals). For the HM full-Heusler compounds, the Hubbard U parameters are comparable to the ones in elementary 3d transition metals, while for semi-Heusler compounds, they are slightly smaller. We show that the increase of the Hubbard U with structural complexity, i.e., from MnAs to Cr2CoGa, stems from the screening of the p electrons of the nonmagnetic sp atoms. The p-electron screening turns out to be more efficient for MnAs than for Cr2CoGa. The calculated Hubbard U parameters for CrAs, NiMnSb, and Co2MnSi are about two times smaller than previous estimates based on the constrained local-density approximation (cLDA) method. Furthermore, the width of the correlated d or p bands of the studied compounds is usually smaller than the calculated Hubbard U parameters. Thus these HM magnets should be classified as weakly correlated materials.

  6. Effect of noncovalent interactions on conformers of the n-butylbenzene monomer studied by mass analyzed threshold ionization spectroscopy and basis-set convergent ab initio computations.

    PubMed

    Tong, Xin; Cerný, Jirí; Müller-Dethlefs, Klaus; Dessent, Caroline E H

    2008-07-01

    Two conformational isomers of the aromatic hydrocarbon n-butylbenzene have been studied using two-color MATI (mass analyzed threshold ionization) spectroscopy to explore the effect of conformation on ionization dynamics. Cationic states of g auche-conformer III and anti- conformers IV were selectively produced by two-color excitation via the respective S 1 origins. Adiabatic ionization potentials of the gauche- and anti-conformations were determined to be 70146 and 69872 +/- 5 cm (-1) respectively. Spectral features and vibrational modes are interpreted with the aid of MP2/cc-pVDZ ab initio calculations, and ionization-induced changes in the molecular conformations are discussed. Complete basis set (CBS) ab initio studies at MP2 level reveal reliable energetics for all four n-butylbenzene conformers observed in earlier two-color REMPI (resonance enhanced multiphoton ionization) spectra. For the S 0 state, the energies of conformer III, IV and V are above conformer I by 130, 289, 73 cm (-1), respectively. Furthermore, the combination of the CBS calculations with the measured REMPI, MATI spectra allowed the determination of the energetics of all four conformers in the S 1 and D 0 states.

  7. Effect of noncovalent interactions on conformers of the n-butylbenzene monomer studied by mass analyzed threshold ionization spectroscopy and basis-set convergent ab initio computations.

    PubMed

    Tong, Xin; Cerný, Jirí; Müller-Dethlefs, Klaus; Dessent, Caroline E H

    2008-07-01

    Two conformational isomers of the aromatic hydrocarbon n-butylbenzene have been studied using two-color MATI (mass analyzed threshold ionization) spectroscopy to explore the effect of conformation on ionization dynamics. Cationic states of g auche-conformer III and anti- conformers IV were selectively produced by two-color excitation via the respective S 1 origins. Adiabatic ionization potentials of the gauche- and anti-conformations were determined to be 70146 and 69872 +/- 5 cm (-1) respectively. Spectral features and vibrational modes are interpreted with the aid of MP2/cc-pVDZ ab initio calculations, and ionization-induced changes in the molecular conformations are discussed. Complete basis set (CBS) ab initio studies at MP2 level reveal reliable energetics for all four n-butylbenzene conformers observed in earlier two-color REMPI (resonance enhanced multiphoton ionization) spectra. For the S 0 state, the energies of conformer III, IV and V are above conformer I by 130, 289, 73 cm (-1), respectively. Furthermore, the combination of the CBS calculations with the measured REMPI, MATI spectra allowed the determination of the energetics of all four conformers in the S 1 and D 0 states. PMID:18533642

  8. Computer simulation of acetonitrile and methanol with ab initio-based pair potentials

    NASA Astrophysics Data System (ADS)

    Hloucha, M.; Sum, A. K.; Sandler, S. I.

    2000-10-01

    This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.

  9. Ab initio computations of photodissociation products of CFC alternatives

    SciTech Connect

    Tai, S.; Illinger, K.H.; Kenny, J.E.

    1995-12-31

    Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.

  10. Exploring the ab initio/classical free energy perturbation method: The hydration free energy of water

    NASA Astrophysics Data System (ADS)

    Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.

    2000-08-01

    The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to

  11. An ab initio-based Er–He interatomic potential in hcp Er

    SciTech Connect

    Yang, Li; ye, Yeting; Fan, K. M.; Shen, Huahai; Peng, Shuming; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations. The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.

  12. Ab initio description of p-shell hypernuclei.

    PubMed

    Wirth, Roland; Gazda, Daniel; Navrátil, Petr; Calci, Angelo; Langhammer, Joachim; Roth, Robert

    2014-11-01

    We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction. We validate the approach for s-shell hypernuclei and apply it to p-shell hypernuclei, in particular to (Λ)(7)Li, (Λ)(9)Be, and (Λ)(13)C. We show that the chiral hyperon-nucleon interactions provide ground-state and excitation energies that generally agree with experiment within the cutoff dependence. At the same time we demonstrate that hypernuclear spectroscopy provides tight constraints on the hyperon-nucleon interactions. PMID:25415901

  13. Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures

    SciTech Connect

    Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan

    2006-04-05

    A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.

  14. Ab initio calculations in three-body cluster systems

    SciTech Connect

    Romero-Redondo, C.; Navratil, P.; Quaglioni, S.

    2013-06-10

    In this work we briefly outline the extension of the ab initio no-core shell model/Resonating group method (NCSM/RGM) to three-body cluster states. We present the results for {sup 6}He ground state within a {sup 4}He+n+n cluster basis under this approach.

  15. Operator evolution for ab initio theory of light nuclei

    NASA Astrophysics Data System (ADS)

    Schuster, Micah; Quaglioni, Sofia; Johnson, Calvin; Jurgenson, Eric; Navrátil, Petr

    2014-09-01

    The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range; short ranges have the largest absolute renormalization when including two- and three-body induced terms, while at long ranges the induced three-body contribution takes on increased relative importance. The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores

  16. Ab initio modelling of methane hydrate thermophysical properties.

    PubMed

    Jendi, Z M; Servio, P; Rey, A D

    2016-04-21

    The key thermophysical properties of methane hydrate were determined using ab initio modelling. Using density functional theory, the second-order elastic constants, heat capacity, compressibility, and thermal expansion coefficient were calculated. A wide and relevant range of pressure-temperature conditions were considered, and the structures were assessed for stability using the mean square displacement and radial distribution functions. Methane hydrate was found to be elastically isotropic with a linear dependence of the bulk modulus on pressure. Equally significant, multi-body interactions were found to be important in hydrates, and water-water interactions appear to strongly influence compressibility like in ice Ih. While the heat capacity of hydrate was found to be higher than that of ice, the thermal expansion coefficient was significantly lower, most likely due to the lower rigidity of hydrates. The mean square displacement gave important insight into stability, heat capacity, and elastic moduli, and the radial distribution functions further confirmed stability. The presented results provide a much needed atomistic thermoelastic characterization of methane hydrates and are essential input for the large-scale applications of hydrate detection and production. PMID:27019976

  17. Ab initio molecular dynamics: Concepts, recent developments, and future trends

    PubMed Central

    Iftimie, Radu; Minary, Peter; Tuckerman, Mark E.

    2005-01-01

    The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed “on the fly” from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204

  18. Ab Initio Electronic Relaxation Times and Transport in Noble Metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.

    Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.

  19. Towards AB Initio Calculation of the Circular Dichroism of Peptides

    NASA Astrophysics Data System (ADS)

    Molteni, E.; Onida, G.; Tiana, G.

    2012-08-01

    In this work we plan to use ab initio spectroscopy calculations to compute circular dichroism (CD) spectra of peptides. CD provides information on protein secondary structure content; peptides, instead, remain difficult to address, due to their tendency to adopt multiple conformations in equilibrium. Therefore peptides are an interesting test-case for ab initio calculation of CD spectra. As a first application, we focus on the (83-92) fragment of HIV-1 protease, which is known to be involved in the folding and dimerization of this protein. As a preliminary step, we performed classical molecular dynamics (MD) simulations, in order to obtain a set of representative conformers of the peptide. Then, on some of the obtained conformations, we calculated absorption spectra at the independent particle, RPA and TDLDA levels, showing the presence of charge transfer excitations, and their influence on spectral features.

  20. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  1. The Use of Ab Initio Wavefunctions in Line-Shape Calculations for Water Vapor

    NASA Astrophysics Data System (ADS)

    Gamache, Robert R.; Lamouroux, Julien; Schwenke, David W.

    2014-06-01

    In semi-classical line-shape calculations, the internal motions of the colliding pair are treated via quantum mechanics and the collision trajectory is determined by classical dynamics. The quantum mechanical component, i.e. the determination of reduced matrix elements (RME) for the colliding pair, requires the wavefunctions of the radiating and the perturbing molecules be known. Here the reduced matrix elements for collisions in the ground vibrational state of water vapor are calculated by two methods and compared. First, wavefunctions determined by diagonalizing an effective (Watson) Hamiltonian are used to calculate the RMEs and, second, the ab initio wavefunctions of Partridge and Schwenke are used. While the ground vibrational state will yield the best approximation of the wavefunctions from the effective Hamiltonian approach, this study clearly identifies problems for states not included in the fit of the Hamiltonian and for extrapolated states. RMEs determined using ab initio wavefunctions use ˜100000 times more computational time; however, all ro-vibrational interactions are included. Hence, the ab initio approach will yield better RMEs as the number of vibrational quanta exchanged in the optical transition increases, resulting in improvements in calculated half-widths and line shifts. It is important to note that even for pure rotational transitions the use of ab initio wavefunctions will yield improved results.

  2. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-01

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  3. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    PubMed

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  4. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  5. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  6. Acceleration of the Convergence in ab initio Atomic Relaxations

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan

    2006-03-01

    Atomic relaxations is often required to accurately describe the properties of nanosystems. In ab initio calculations, a common practice is to use a standard search algorithm, such as BFGS (Broyden-Fletcher-Goldfarb-Shanno) or CG (conjugate gradient) method, which starts the atomic relaxations without any knowledge of the Hessian matrix of the system. For example, the initial Hessian in BFGS method is often set to identity, and there is no preconditioning to CG method. One way to accelerate the convergence of the atomic relaxations is to estimate an approximate Hessian matrix of the system and then use it as the initial Hessian in BFGS method or a preconditioner in CG method. Previous attempts to obtain the approximated Hessian were focused on the use of classical force field models which rely on the existence of good parameters. Here, we present an alternative method to estimate the Hessian matrix of a nanosystem. First, we decompose the system into motifs which consist of a few atoms, then calculate the Hessian matrix elements on different motif types from ab initio calculations for small prototype systems. Then we generate the Hessian Matrix of the whole system by putting together these motif Hessians. We have applied our motif-based Hessian matrix in ab initio atomic relaxations in several bulk (with/without impurity) and quantum dot systems, and have found a speed up factor of 2 to 4 depending on the system size.

  7. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  8. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement. PMID:27634258

  9. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  10. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  11. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  12. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573

  13. Ab Initio Study of Covalently Functionalized Graphene and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Hammouri, Mahmoud; Vasiliev, Igor; Magedov, Igor; Frolova, Liliya; Kalugin, Nikolai

    2014-03-01

    The electronic and structural properties of carbon nanomaterials can be affected by chemical functionalization. We apply ab initio computational methods based on density functional theory to study the properties of graphene and single-walled carbon nanotubes functionalized with benzyne. Our calculations are carried out using the SIESTA electronic structure code combined with the generalized gradient approximation for the exchange correlation functional. The calculated binding energies, densities of states, and band structures of functionalized graphene and carbon nanotubes are analyzed in comparison with the available experimental data. The surfaces of carbon nanotubes are found to be significantly more reactive toward benzyne molecules than the surface of graphene. The strength of interaction between benzyne and carbon nanotubes is affected by the curvature of the nanotube sidewall. The binding energies of benzyne molecules attached to both semiconducting zigzag and metallic armchair nanotubes increase with decreasing the nanotube diameter. Supported by NSF CHE-1112388, NMSU GREG Award, NSF ECCS-0925988, NIH-5P20RR016480-12, and NIH- P20 GM103451.

  14. Local Environment Distribution in Ab Initio Liquid Water

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Distasio, Robert A., Jr.; Car, Roberto

    2013-03-01

    We have analyzed the distribution of local environments in liquid water at ambient conditions and its inherent potential energy surface (IPES) based on state-of-the-art ab initio molecular dynamics simulations performed on 128 molecules implementing hybrid PBE0 exchange [PRB 79, 085102 (2009)] and van der Waals (vdW) interactions [PRL 102, 073005 (2009)]. The local environments of molecules are characterized in terms of the local structure index (LSI) [JCP 104, 7671 (1996)] which is able to distinguish high- and low-density molecular environments. In agreement with simulations based on model potentials, we find that the distribution of LSI is unimodal at ambient conditions and bimodal in the IPES, consistent with the existence of polymorphism in amorphous phases of water. At ambient conditions spatial LSI fluctuations extend up to ~7 Å and their dynamical correlation decays on a time scale of ~3 ps, as found for density fluctuations in a recent study [PRL 106, 037801 (2011)]. DOE: DE-SC0008626, DOE: DE-SC0005180, NSF: CHE-0956500

  15. Microsolvation of methyl hydrogen peroxide: Ab initio quantum chemical approach

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anant D.; Rai, Dhurba; Bartolotti, Libero J.; Pathak, Rajeev K.

    2009-08-01

    Methyl hydrogen peroxide (MHP), one of the simplest organic hydroperoxides, is a strong oxidant, with enhanced activity in aqueous ambience. The present study investigates, at the molecular level, the role of hydrogen bonding that is conducive to cluster formation of MHP with water molecules from its peroxide end, with the methyl group remaining hydrophobic for up to five water molecules. Ab initio quantum chemical computations on MHP⋯(H2O)n, [n =1-5] are performed at second order Møller-Plesset (MP2) perturbation theory employing the basis sets 6-31G(d,p) and 6-311++G(2d,2p) to study the cluster formation of MHP with water molecules from its peroxide end and hydrophobic hydration due to the methyl group. Successive addition of water molecules alters the hydrogen bonding pattern, which leads to changes in overall cluster geometry and in turn to IR vibrational frequency shifts. Molecular co-operativity in these clusters is gauged directly through a detailed many-body interaction energy analysis. Molecular electrostatic potential maps are shown to have a bearing on predicting further growth of these clusters, which is duly corroborated through sample calculations for MHP⋯(H2O)8. Further, a continuum solvation model calculation for energetically stable clusters suggests that this study should serve as a precursor for pathways to aqueous solvation of MHP.

  16. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  17. Rational design of electrolyte components by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Johansson, Patrik; Jacobsson, Per

    This paper is a small review of the use of computer simulations and especially the use of standard quantum-mechanical ab initio electronic structure calculations to rationally design and investigate different choices of chemicals/systems for lithium battery electrolytes. Covered systems and strategies to enhance the performance of electrolytes will range from assisting the interpretation of vibrational spectroscopy experiments over development of potentials for molecular dynamics simulations, to the design of new lithium salts and the lithium ion coordination in liquid, polymer, and gel polymer electrolytes. Examples of studied properties include the vibrational spectra of anions and ion pairs to characterize the nature and extent of the interactions present, the lithium ion affinities of anions, important for the salt solvation and the ability to provide a high concentration of charge carriers, the HOMO energies of the anions to estimate the stability versus oxidation, the anion volumes that correlate to the anion mobility, the lithium ion coordination and dynamics to reveal the limiting steps of lithium ion transport, etc.

  18. Incorporating Ab Initio energy into threading approaches for protein structure prediction

    PubMed Central

    2011-01-01

    Background Native structures of proteins are formed essentially due to the combining effects of local and distant (in the sense of sequence) interactions among residues. These interaction information are, explicitly or implicitly, encoded into the scoring function in protein structure prediction approaches—threading approaches usually measure an alignment in the sense that how well a sequence adopts an existing structure; while the energy functions in Ab Initio methods are designed to measure how likely a conformation is near-native. Encouraging progress has been observed in structure refinement where knowledge-based or physics-based potentials are designed to capture distant interactions. Thus, it is interesting to investigate whether distant interaction information captured by the Ab Initio energy function can be used to improve threading, especially for the weakly/distant homologous templates. Results In this paper, we investigate the possibility to improve alignment-generating through incorporating distant interaction information into the alignment scoring function in a nontrivial approach. Specifically, the distant interaction information is introduced through employing an Ab Initio energy function to evaluate the “partial” decoy built from an alignment. Subsequently, a local search algorithm is utilized to optimize the scoring function. Experimental results demonstrate that with distant interaction items, the quality of generated alignments are improved on 68 out of 127 query-template pairs in Prosup benchmark. In addition, compared with state-to-art threading methods, our method performs better on alignment accuracy comparison. Conclusions Incorporating Ab Initio energy functions into threading can greatly improve alignment accuracy. PMID:21342587

  19. Ab Initio Calculations of Water Line Strengths

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry

    1998-01-01

    We report on the determination of a high quality ab initiu potential energy surface (PES) and dipole moment function for water. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base with J less than 6 for H2O. The changes in the PES are small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Using this adjusted PES, we can match 30,092 of the 30,117 transitions in the HITRAN 96 data base for H2O with theoretical lines. The 10,25,50,75, and 90 percentiles of the difference between the calculated and tabulated line positions are -0.11, -0.04, -0.01, 0.02, and 0.07 l/cm. Non-adiabatic effects are not explicitly included. About 3% of the tabulated line positions appear to be incorrect. Similar agreement using this adjusted PES is obtained for the oxygen 17 and oxygen 18 isotopes. For HDO, the agreement is not as good, with root-mean-square error of 0.25 l/cm for lines with J less than 6. This error is reduced to 0.02 l/cm by including a small asymmetric correction to the PES, which is parameterized by simultaneously fitting to HDO md D2O data. Scaling this correction by mass factors yields good results for T2O and HTO. The intensities summed over vibrational bands are usually in good agreement between the calculations and the tabulated results, but individual lines strengths can differ greatly. A high temperature list consisting of 307,721,352 lines is generated for H2O using our PES and dipole moment function.

  20. Ab initio study of Fe(+)-benzyne

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    1993-01-01

    The interaction of Fe(+) with benzyne is studied using the self-consistent-field (SCF), complete active space SCF, and modified-coupled-pair functional levels of theory. The most stable structure is planar, where the Fe(+) has inserted into the in-plane pi bond, although the C-C bond distance suggests that some in-plane pi bonding remains. This system is compared with Sc(+) bonding to benzyne and other ligands.

  1. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.

  2. Efficient conformational space exploration in ab initio protein folding simulation

    PubMed Central

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel

    2015-01-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  3. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  4. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  5. Ab initio calculations in a uniform magnetic field using periodic supercells

    SciTech Connect

    Cai, W; Galli, G

    2003-10-21

    We present a formulation of ab initio electronic structure calculations in a finite magnetic field, which retains the simplicity and efficiency of techniques widely used in first principles molecular dynamics simulations, based on plane-wave basis sets and Fourier transforms. In addition we discuss results obtained with this method for the energy spectrum of interacting electrons in quantum wells, and for the electronic properties of dense fluid deuterium in a uniform magnetic field.

  6. On limits of ab initio calculations of pairing gap in nuclei

    SciTech Connect

    Saperstein, E. E.; Baldo, M.; Lombardo, U.; Pankratov, S. S.; Zverev, M. V.

    2011-11-15

    A brief review of recent microscopic calculations of nuclear pairing gap is given. A semi-microscopic model is suggested in which the ab initio effective pairing interaction is supplemented with a small phenomenological addendum. It involves a parameter which is universal for all medium and heavy nuclei. Calculations for several isotopic and isotonic chains of semi-magic nuclei confirm the relevance of the model.

  7. Macromolecular ab initio phasing enforcing secondary and tertiary structure

    PubMed Central

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  8. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.

  9. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  10. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  11. Chiroptical properties of unsubstituted carbohydrates: Ab initio and semiempirical studies

    NASA Astrophysics Data System (ADS)

    Parra C., Alejandro

    Ab initio calculations support assignment of the vacuum ultraviolet circular dichroism (CD) of simple saccharides to 11A 1 --> 21B1 and 11A 1 --> 11A2 transitions centered on the oxygen atoms of the acetal group treated as two weakly coupled ether chromophores. The calculations are consistent with assignments previously made on the basis of a deconvolution of CD spectra. Estimates of the oxygen centered contributions to magnetic transition dipole moments were made. Semiempirical calculations were performed to model the NaD molar optical rotation of 1,6- and 3,6- anhydrosugars. For 1,6-anhydrosugars, current parameters produce reasonable agreement with experimental values. For 3,6-anhydrosugars, modifications to the ether parameters had to be introduced. The most relevant included a reorientation of the bond-centered s-->s* transition dipole charges in the ether chromophore to a C2v orientation, and a shift from prolate polarizability ellipsoids to general ellipsoids. These changes result in good agreement with experimental Na D molar rotations for 3,6-anhydrosugars. A low energy CD band arises in 3,6- and 1,6-anhydrosugars when agreement with the experimental NaD molar rotations is achieved. It is proposed that this band is a real feature in the spectrum. The origin of the band is primarily the interaction between b1 symmetry- oriented transition dipoles in the COC groups with other transition dipoles in the molecule. Comparison with experimental spectra leads to an assignment of this band to 11A1 --> 21B1 transitions centered on the COC groups.

  12. Ab initio cluster study of crystalline NaF

    SciTech Connect

    Temple, D.K.

    1992-01-01

    A highly-accurate ab initio cluster model of crystalline NaF has been constructed to explore the limits of cluster methods in the treatment of ionic solids. The focus of this model was the characterization of the lattice environment and its influence on the easily-polarizable fluorine anion. The model consisted of a central all-electron fluorine anion coordinated by pseudopotentials, to represent the nearest-neighbor sodium cations, and a finite array of point charges chosen to generate the correct crystal field from the surrounding infinite ionic lattice. The wavefunction and properties of the anion were calculated using the restricted Hartree-Fock and configuration interaction techniques from quantum chemistry. An extensive analysis of basis set incompleteness errors in the anion wavefunction was performed. Important features were identified in the embedded anion, such as its distortion under the influence of the lattice compressions, its stabilization from the Madelung potential, and its changes in size due to electron correlations. Bulk properties of the rocksalt-structure (B1) NaF crystal were derived from the total mode energies, calculated as a function of the crystal volume. The properties included the zero-pressure lattice constant, cohesive energy, and bulk modulus, and the pressure-volume equation-of-state. A series of test calculations explored the relationships, and their underlying physical mechanisms, between the features of the embedded anion and the bulk properties of the crystal. These features often produced opposing changes in the properties, demonstrating the importance of a thorough and systematic treatment of the embedded anion. The most thorough test calculation gave bulk properties that were within 1% of experiment. Using an embedded anion model for the high-pressure cesium-chloride (B2) phase of NaF, the B1-to-B2 structural transition was correctly predicted at 25 GPa, in excellent agreement with the experimental values of 23 to 27 GPa.

  13. Lithium insertion in silicon nanowires: an ab initio study.

    PubMed

    Zhang, Qianfan; Zhang, Wenxing; Wan, Wenhui; Cui, Yi; Wang, Enge

    2010-09-01

    The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process.

  14. Polymeric nitrogen in a graphene matrix: An ab initio study

    NASA Astrophysics Data System (ADS)

    Timoshevskii, V.; Ji, Wei; Abou-Rachid, Hakima; Lussier, Louis-Simon; Guo, H.

    2009-09-01

    A hybrid material where polymeric nitrogen chains are sandwiched between graphene sheets in the form of a three-dimensional crystal, is predicted by means of ab initio simulations. It is demonstrated that chainlike polymeric nitrogen phase becomes stable at ambient pressure when intercalated in a multilayer graphene matrix. The physical origin of this stabilization is identified by studying the electronic properties of the system. This approach of stabilizing polymeric nitrogen by means of external three-dimensional matrix constitutes a path toward synthesizing different types of nitrogen-based high-energy materials.

  15. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  16. Ab-initio study of transition metal hydrides

    SciTech Connect

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  17. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  18. Exploring Transition Metal Catalyzed Reactions via AB Initio Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Hratchian, Hrant P.

    2011-06-01

    The study and prediction of chemical reactivity is one of the most influential contributions of quantum chemistry. A central concept in the theoretical treatment of chemical reactions is the reaction pathway, which can be quite difficult to integrate accurately and efficiently. This talk will outline our developments in the integration of these pathways on ab initio potential energy surfaces. We will also describe results from recent studies on the kinetics of transition metal catalyzed reactions, including the importance of vibrational coupling to the reaction coordinate and the role of this coupling in catalytic rate enhancement.

  19. Ab-initio study of napthelene based conducting polymer

    SciTech Connect

    Ruhela, Ankur; Kanchan, Reena; Srivastava, Anurag; Sinha, O. P.

    2014-04-24

    In this paper, we have identified structural and electronic properties of conducting polymers by using DFT based ATK-VNL ab-initio tool. Naphthalene derivative structures were stabilized by varying the bond length between two atoms of the molecule C-N and C-C. We have also studied the molecular energy spectrum of naphthalene derivatives and found the HOMOLUMO for the same. A comparison of structural and electronic properties of naphthalene derivatives by attaching the functional group of amine, have been performed and found that they show good semi conducting properties.

  20. Pseudorotation motion in tetrahydrofuran: an ab initio study.

    PubMed

    Rayón, Víctor M; Sordo, Jose A

    2005-05-22

    The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.

  1. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  2. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    SciTech Connect

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  3. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    SciTech Connect

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  4. Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study

    SciTech Connect

    Rio, B. G. del; González, L. E.

    2015-08-17

    Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.

  5. Finite Elements in Ab Initio Electronic-Structure Calulations

    NASA Astrophysics Data System (ADS)

    Pask, J. E.; Sterne, P. A.

    Over the course of the past two decades, the density functional theory (DFT) (see e.g., [1]) of Hohenberg, Kohn, and Sham has proven to be an accurate and reliable basis for the understanding and prediction of a wide range of materials properties from first principles (ab initio), with no experimental input or empirical parameters. However, the solution of the Kohn-Sham equations of DFT is a formidable task and this has limited the range of physical systems which can be investigated by such rigorous, quantum mechanical means. In order to extend the interpretive and predictive power of such quantum mechanical theories further into the domain of "real materials", involving nonstoichiometric deviations, defects, grain boundaries, surfaces, interfaces, and the like; robust and efficient methods for the solution of the associated quantum mechanical equations are critical. The finite-element (FE) method (see e.g., [2]) is a general method for the solution of partial differential and integral equations which has found wide application in diverse fields ranging from particle physics to civil engineering. Here, we discuss its application to large-scale ab initio electronic-structure calculations.

  6. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  7. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  8. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials.

  9. Entropy of Liquid Water from Ab Initio Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Spanu, Leonardo; Zhang, Cui; Galli, Giulia

    2012-02-01

    The debate on the structural properties of water has been mostly based on the calculation of pair correlation functions. However, the simulation of thermodynamic and spectroscopic quantities may be of great relevance for the characterization of liquid water properties. We have computed the entropy of liquid water using a two-phase thermodynamic model and trajectories generated by ab initio molecular dynamics simulations [1]. In an attempt to better understand the performance of several density functionals in simulating liquid water, we have performed ab initio molecular dynamics using semilocal, hybrid [2] and van der Waals density functionals [3]. We show that in all cases, at the experimental equilibrium density and at temperatures in the vicinity of 300 K, the computed entropies are underestimated, with respect to experiment, and the liquid exhibits a degree of tetrahedral order higher than in experiments. We also discuss computational strategies to simulate spectroscopic properties of water, including infrared and Raman spectra.[4pt] [1] C.Zhang, L.Spanu and G.Galli, J.Phys.Chem. B 2011 (in press)[0pt] [2] C.Zhang, D.Donadio, F.Gygi and G.Galli, J. Chem. Theory Comput. 7, 1443 (2011)[0pt] [3] C.Zhang, J.Wu, G.Galli and F.Gygi, J. Chem. Theory Comput. 7, 3061 (2011)

  10. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  11. Ab initio study of hot electrons in GaAs

    PubMed Central

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron–phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron–phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron–phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  12. A fragmentation and reassembly method for ab initio phasing.

    PubMed

    Shrestha, Rojan; Zhang, Kam Y J

    2015-02-01

    Ab initio phasing with de novo models has become a viable approach for structural solution from protein crystallographic diffraction data. This approach takes advantage of the known protein sequence information, predicts de novo models and uses them for structure determination by molecular replacement. However, even the current state-of-the-art de novo modelling method has a limit as to the accuracy of the model predicted, which is sometimes insufficient to be used as a template for successful molecular replacement. A fragment-assembly phasing method has been developed that starts from an ensemble of low-accuracy de novo models, disassembles them into fragments, places them independently in the crystallographic unit cell by molecular replacement and then reassembles them into a whole structure that can provide sufficient phase information to enable complete structure determination by automated model building. Tests on ten protein targets showed that the method could solve structures for eight of these targets, although the predicted de novo models cannot be used as templates for successful molecular replacement since the best model for each target is on average more than 4.0 Å away from the native structure. The method has extended the applicability of the ab initio phasing by de novo models approach. The method can be used to solve structures when the best de novo models are still of low accuracy. PMID:25664740

  13. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ˜10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  14. 7Be(p,gamma)8B S-factor from Ab Initio Wave Functions

    SciTech Connect

    Navratil, P; Bertulani, C A; Caurier, E

    2006-10-12

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) predicts low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. We present here a brief overview of the first steps taken toward nuclear reaction applications. In particular, we discuss our calculation of the {sup 7}Be(p,{gamma}){sup 8}B S-factor. We also present our first results of the {sup 3}He({alpha},{gamma}){sup 7}Be S-factor and of the S-factor of the mirror reaction {sup 3}H({alpha},{gamma}){sup 7}Li. The {sup 7}Be(p,{gamma}){sup 8}B and {sup 3}He({alpha},{gamma}){sup 7}Be reactions correspond to the most important uncertainties in solar model predictions of neutrino fluxes.

  15. Summation of Parquet diagrams as an ab initio method in nuclear structure calculations

    SciTech Connect

    Bergli, Elise; Hjorth-Jensen, Morten

    2011-05-15

    Research Highlights: > We present a Green's function based approach for doing ab initio nuclear structure calculations. > In particular the sum the subset of so-called Parquet diagrams. > Applying the theory to a simple but realistic model, results in good agreement with other ab initio methods. > This opens up for ab initio calculations for medium-heavy nuclei. - Abstract: In this work we discuss the summation of the Parquet class of diagrams within Green's function theory as a possible framework for ab initio nuclear structure calculations. The theory is presented and some numerical details are discussed, in particular the approximations employed. We apply the Parquet method to a simple model, and compare our results with those from an exact solution. The main conclusion is that even at the level of approximation presented here, the results shows good agreement with other comparable ab initio approaches.

  16. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  17. Correlations between ab initio and experimental data for isolated H-bonded complexes of water with nitrogen bases

    NASA Astrophysics Data System (ADS)

    Maes, G.; Smets, J.; Adamowicz, L.; McCarthy, W.; Van Bael, M. K.; Houben, L.; Schoone, K.

    1997-06-01

    Correlations between selected ab initio predicted and experimentally observed properties of 1:1 H-bonded complexes of pyridines, pyrimidines, and imidazoles with water are investigated. Relationships are found between the experimental properties of proton affinity and water frequency shift, and the ab initio calculated bond distances, interaction energies and water frequency shifts. It is also found that well-defined relations can be established between calculated and observed properties for the pyridine complexes, but these cannot be reliably extended to the other N-base systems. The similarities demonstrate that the presently available ab initio methods are useful in predicting the experimental behaviour of H-bonded systems, but only for closely related molecules.

  18. Ab initio Calculations of Solvation Processes in Volcanic Gases

    NASA Astrophysics Data System (ADS)

    Lemke, K.; Seward, T.

    2006-12-01

    The structures and thermochemical properties of hydrated ions and neutral molecules play an important role in our understanding of solvent clustering and hydrogen bonding in the gas phase. Considerable effort therefore has been devoted to both the experimental and theoretical determination of stepwise hydration energies of geochemically important ions and neutral molecules with solvents, for instance H2O or H2S, over a broad range of temperatures typical of those encountered in volcanic gases. Because volcanic gases contain mutiple solute and solvent components which are subject to proton transfer, competive solvation and solvent switching, characterizing individual clusters has been a fundamental challenge to a molecular-level understanding of high temperature gas-phase solvation. However, recent advances in computational chemistry methods, especially Pople´s Gaussian (G-n) and complete basis set limit (CBS-x) model chemistries, now allow characterization of the dominant cluster structures and thermochemical properties of solute-solvent and solvent-solvent interactions in high temperature volcanic gases. Building on reported measurements of volcanic gases at Vesuvio, Italy, and Showa-Shinzan, Japan, as well as our recent investigations of ion-hydration we have re-examined the high temperature clustering equilibria of the small hydronium (H3O+) and ammonium (NH4+) ions as well as neutral ammonia and sulphur species with H2O and/or H2S using ab initio quantum chemical methods. From our study, we find that most of the gas phase ions tend to associate with a small number of H2O and H2S molecules to yield a hydrated ion cluster even at low humidities. Furthermore, inspection of van´t Hoff data demonstrate that (1) hydration energies of ions are shifted to less exergonic values as the solvent shell grows and the composition shifts from water-rich to hydrogen sulphide rich, (2) ion-cluster size increases with decreasing temperature at constant humidity, (3) attachment

  19. Ab initio ground and the first excited adiabatic and quasidiabatic potential energy surfaces of H + + CO system

    NASA Astrophysics Data System (ADS)

    George, D. X. F.; Kumar, Sanjay

    2010-08-01

    Ab initio global adiabatic as well as quasidiabatic potential energy surfaces for the ground and the first excited electronic states of the H + + CO system have been computed as a function of the Jacobi coordinates ( R, r, γ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. In addition, nonadiabatic coupling matrix elements arising from radial motion, mixing angle and coupling potential have been computed using the ab initio procedure [Simah et al. (1999) [66

  20. Ab initio study of helium behavior in titanium tritides

    SciTech Connect

    Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-03-01

    Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].

  1. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  2. Quasi-Ab initio molecular dynamic study of Fe melting

    PubMed

    Belonoshko; Ahuja; Johansson

    2000-04-17

    We have investigated the melting of hcp Fe at high pressure by employing molecular dynamics simulations in conjunction with the full potential linear muffin tin orbital method. Apart from being of fundamental value, the melting of iron at high pressure is also important for our understanding of the Earth. The subject of iron melting at high pressures is controversial. The experimental data for the iron melting temperature can be separated into two regions, "low" and "high." Here we present an ab initio simulated iron melting curve which is in agreement with the low temperatures at lower pressures, but is in excellent agreement with the high-mostly shockwave-temperatures at high pressures. A comparison with available data lends support to the presented iron melting curve.

  3. Ab initio calculation of the shock Hugoniot of bulk silicon

    NASA Astrophysics Data System (ADS)

    Strickson, Oliver; Artacho, Emilio

    2016-03-01

    We describe how ab initio molecular dynamics can be used to determine the Hugoniot locus (states accessible by a shock wave) for materials with a number of stable phases, and with an approximate treatment of plasticity and yield, without having to simulate these phenomena directly. We consider the case of bulk silicon, with forces from density-functional theory, up to 70 GPa. The fact that shock waves can split into multiple waves due to phase transitions or yielding is taken into account here by specifying the strength of any preceding waves explicitly based on their yield strain. Points corresponding to uniaxial elastic compression along three crystal axes and a number of postshock phases are given, including a plastically yielded state, approximated by an isotropic stress configuration following an elastic wave of predetermined strength. The results compare well to existing experimental data for shocked silicon.

  4. Ab initio study of guanine damage by hydroxyl radical.

    PubMed

    Chaban, Galina M; Wang, Dunyou; Huo, Winifred M

    2015-01-15

    Multiconfigurational ab initio methods are used in this study to examine two initial reactions that take place during the OH radical attack of the DNA base guanine: a ring opening reaction and a hydrogen transfer reaction. The same reactions are also studied in the presence of a single water molecule. The ring opening reaction has a moderate barrier height of ∼20-25 kcal/mol that is relatively insensitive to the presence of water. The barrier of the H-transfer reaction, on the other hand, is lowered from ∼50 to ∼22 kcal/mol when one water molecule is added, thus becoming comparable to the barrier height of the ring opening reaction. PMID:25517252

  5. Ab initio engineering of materials with stacked hexagonal tin frameworks

    NASA Astrophysics Data System (ADS)

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-07-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  6. Ab initio engineering of materials with stacked hexagonal tin frameworks.

    PubMed

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  7. Ab initio study of palladium and silicon carbide

    SciTech Connect

    Schuck, Paul C; Stoller, Roger E; Shrader, David

    2011-01-01

    Ab initio methods have been used to investigate the properties of Pd as impurity in bulk SiC at five charge states within the framework of density functional theory using the local density spin approximation. Pd interstitials and substitutionals have similar energy to their intrinsic counterparts. In addition, Pd substitutes for a vacancy, di-vacancy, and tri-vacancy with similar energies. Pd will also diffuse through SiC via an interstitial mechanism employing the tetrahedral sites and Pd can substitute for Si and C at positive charge states. Removing electrons (p-type doping) from SiC lowers the formation and migration energies of Pd defects in SiC for most configurations.

  8. Ab initio and RRKM calculations of o-benzyne pyrolysis

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Qiao; Han, Ke-Li; Zhan, Ji-Ping; He, Guo-Zhong

    1998-05-01

    Recently, a new mechanism has been provided in the phenyl pyrolysis, that is, the phenyl dissociation favours the benzyne channel by losing an H atom [H. Wang, M. Frenklach, J. Phys. Chem., 98 (1994) 11465]. In this Letter, the dissociation of o-benzyne has been investigated by means of ab initio theory. The geometries and structures of o-benzyne with its pyrolysis products C 4H 2, C 2H 2 and also the transition state were optimized at the UHF/6-31G* level. The single point energies were refined by B3LYP/6-31G* calculations. The unimolecular rate constants for o-benzyne pyrolysis in different pressures were calculated by the Rice-Ramsperger-Kassel-Marcus (RRKM) method.

  9. Efficient Ab initio Modeling of Random Multicomponent Alloys.

    PubMed

    Jiang, Chao; Uberuaga, Blas P

    2016-03-11

    We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches. PMID:27015491

  10. Reactive Monte Carlo sampling with an ab initio potential

    NASA Astrophysics Data System (ADS)

    Leiding, Jeff; Coe, Joshua D.

    2016-05-01

    We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the "rare-event" character of chemical reactions.

  11. Ab initio X-Ray Absorption Fine Structure Cumulants

    NASA Astrophysics Data System (ADS)

    Vila, F.; Rehr, J. J.; Rossner, H. H.; Krappe, H. J.

    2006-03-01

    Theoretical calculations of vibrational effects in x-ray absorption spectra typically employ semi-phenomenological models, e.g. empirical force constants or correlated Debye or Einstein models. Instead we introduce an efficient and generally applicable ab initio approach based on electronic structure calculations of the dynamical matrix together with the Lanczos recursion algorithm [1] and relations between the cumulants. The approach yields 1) the thermal expansion coefficients (first cumulant of the vibrational distribution function); 2) correlated Debye-Waller factors (second cumulants) and 3) anharmonic contributions (third cumulants). Results are presented for crystalline (Cu, Au, Ge, GaAs) and molecular (GeCl4, C6H6) systems. Our results for the Debye-Waller factors agree well with experiment. [1]H.J. Krappe and H.H. Rossner, Phys. Rev. B70, 104102 (2004).

  12. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.

    PubMed

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  13. Ab initio engineering of materials with stacked hexagonal tin frameworks

    PubMed Central

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  14. Ab Initio Force Fields for Imidazolium-Based Ionic Liquids.

    PubMed

    McDaniel, Jesse G; Choi, Eunsong; Son, Chang Yun; Schmidt, J R; Yethiraj, Arun

    2016-07-21

    We develop ab initio force fields for alkylimidazolium-based ionic liquids (ILs) that predict the density, heats of vaporization, diffusion, and conductivity that are in semiquantitative agreement with experimental data. These predictions are useful in light of the scarcity of and sometimes inconsistency in experimental heats of vaporization and diffusion coefficients. We illuminate physical trends in the liquid cohesive energy with cation chain length and anion. These trends are different than those based on the experimental heats of vaporization. Molecular dynamics prediction of the room temperature dynamics of such ILs is more difficult than is generally realized in the literature due to large statistical uncertainties and sensitivity to subtle force field details. We believe that our developed force fields will be useful for correctly determining the physics responsible for the structure/property relationships in neat ILs.

  15. Ab initio study of II-(VI)2 dichalcogenides.

    PubMed

    Olsson, P; Vidal, J; Lincot, D

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.

  16. The ab-initio density matrix renormalization group in practice

    SciTech Connect

    Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  17. Isofulminic acid, HONC: Ab initio theory and microwave spectroscopy.

    PubMed

    Mladenović, Mirjana; Lewerenz, Marius; McCarthy, Michael C; Thaddeus, Patrick

    2009-11-01

    Isofulminic acid, HONC, the most energetic stable isomer of isocyanic acid HNCO, higher in energy by 84 kcal/mol, has been detected spectroscopically by rotational spectroscopy supported by coupled cluster electronic structure calculations. The fundamental rotational transitions of the normal, carbon-13, oxygen-18, and deuterium isotopic species have been detected in the centimeter band in a molecular beam by Fourier transform microwave spectroscopy, and rotational constants and nitrogen and deuterium quadrupole coupling constants have been derived. The measured constants agree well with those predicted by ab initio calculations. A number of other electronic and spectroscopic parameters of isofulminic acid, including the dipole moment, vibrational frequencies, infrared intensities, and centrifugal distortion constants have been calculated at a high level of theory. Isofulminic acid is a good candidate for astronomical detection with radio telescopes because it is highly polar and its more stable isomers (HNCO, HOCN, and HCNO) have all been identified in space. PMID:19895013

  18. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  19. Vibrational and ab initio molecular dynamics studies of bradykinin

    NASA Astrophysics Data System (ADS)

    Święch, Dominika; Kubisiak, Piotr; Andrzejak, Marcin; Borowski, Piotr; Proniewicz, Edyta

    2016-07-01

    In this study, the comprehensive theoretical and experimental investigations of Raman (RS) and infrared absorption (IR) spectra of bradykinin (BK) are presented. The ab initio Born-Oppenheimer molecular dynamics (BOMD) calculations, in the presence of water molecules that form the first coordination sphere, were used for conformational analysis of the BK structure. Based on the Density Functional Theory (DFT) calculations at the B3LYP/6-311G(d) level the vibrational spectra were interpreted. The calculated frequencies were scaled by means of the effective scaling frequency factor (ESFF) method. The theoretical data, which confirm the compact structure of BK in the presence of the water molecules revealed the remarkable effect of the intermolecular hydrogen bonding on the BK structural properties.

  20. The ab-initio density matrix renormalization group in practice

    NASA Astrophysics Data System (ADS)

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-01

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  1. Ab initio studies of anisotropic magnetism in uranium and cerium monopnictides and monochalcogenides

    NASA Astrophysics Data System (ADS)

    Collins, Eric Mason

    We have applied two ab initio based methods to investigate the origin in the electronic structure of the unusual magnetic behavior of the cerium and uranium monopnictides and monochalcogenides. First, we have carried out spin-polarized electronic structure calculations, based on the full potential linear muffin tin (FPLMTO) method, with spin polarization (orbital polarization only via spin-orbit coupling) and also with orbital polarization correction. Second, we have carried out ab initio based calculations synthesizing (1) a phenomenological theory of orbitally driven magnetism based on the Anderson and Kondo, lattice model which incorporates explicitly the hybridization induced and the Coulomb exchange interactions on an equal footing, and (2) FPLMTO electronic structure calculations allowing a first principles evaluation of all the parameters entering the model Hamiltonian. For the cerium compounds, we also include the crystal field interactions on an equal footing with the hybridization and Coulomb exchange interactions with a scaling determined by experiment. The results for the uranium compound calculations show that both methods are limited to the extremes to which they are best suited. The pure band structure calculations provide the best agreement for the lighter uranium compounds, while the model hamiltonian approach provides better agreement for the heavier uranium compounds. In the case of the cerium compounds, while the pure FPLMTO calculations yield values for the magnetic moment in agreement with experiment for the lighter cerium chalcogenides, they fail to give, even qualitatively, the magnetic properties for all other systems. On the other hand, the ab initio based model Hamiltonian calculations reveal for the first time the interplay of hybridization, Coulomb exchange, and crystal field interactions across the cerium series, and give results for the low-temperature moment and ordering temperature in excellent agreement with experiment, for the

  2. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  3. Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2

    NASA Technical Reports Server (NTRS)

    Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.

    1976-01-01

    The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.

  4. Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.

    2016-06-01

    The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.

  5. Ab initio based force field and molecular dynamics simulations of crystalline TATB.

    PubMed

    Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E

    2004-04-15

    An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608

  6. Ab initio calculations of one-electron-scattering properties of ethyne (acetylene) and ethylene molecules

    SciTech Connect

    Tripathi, A.N.; Smith, V.H. Jr. K7L3N6); Kaijser, P.; Siemens, A.G. ); Diercksen, G.H.F. )

    1990-03-01

    Isotropic scattering functions and Compton profiles together with their directional components for several directions relevant to the molecular structure of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} have been evaluated for {ital ab} {ital initio} self-consistent field and configuration-interaction wave functions. The internally folded density (reciprocal form factor) {ital B}({ital r}) is calculated and discussed as are various momentum expectation values. Comparison is made with available experimental and other theoretical results.

  7. An accurate potential energy curve for helium based on ab initio calculations

    NASA Astrophysics Data System (ADS)

    Janzen, A. R.; Aziz, R. A.

    1997-07-01

    Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.

  8. Converging sequences in the ab initio no-core shell model

    SciTech Connect

    Forssen, C.; Vary, J. P.; Caurier, E.; Navratil, P.

    2008-02-15

    We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By examining the underlying theory of effective operators, we expose the physical foundations for the alternative pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for A-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We demonstrate the utility of our strategy with large-scale calculations in light nuclei.

  9. Ab initio potentials of F+Li{sub 2} accessible at ultracold temperatures

    SciTech Connect

    Wright, K. W. A.; Lane, Ian C.

    2010-09-15

    Ab initio calculations for the strongly exoergic Li{sub 2}+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li{sub 2} molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.

  10. New developments in the ``ab initio`` determination of transition metal alloy phase diagrams

    SciTech Connect

    Wolverton, C.; Asta, M.; Quannasser, S.; Dreysse, H.; de Fontaine, D.

    1992-04-01

    Certain classes of temperature-composition binary alloy phase diagrams can now be computed in an ``ab-initio`` approach. No adjustable or experimentally fitted parameter is used. The expectation value of the energy is expressed in terms of an expansion of cluster probabilities, where the prefactors, the Effective Cluster Interaction, are related to the alloy electronic structure. This framework is used to study the MoRe alloy for two situations: bulk and semi-infinite crystal bounded by a (001) surface. In both cases, good agreement with experimental data is found.

  11. New developments in the ab initio'' determination of transition metal alloy phase diagrams

    SciTech Connect

    Wolverton, C.; Asta, M. . Dept. of Physics); Quannasser, S.; Dreysse, H. . Lab. de Physique des Solides); de Fontaine, D. . Dept. of Materials Science and Mineral Engineering)

    1992-04-01

    Certain classes of temperature-composition binary alloy phase diagrams can now be computed in an ab-initio'' approach. No adjustable or experimentally fitted parameter is used. The expectation value of the energy is expressed in terms of an expansion of cluster probabilities, where the prefactors, the Effective Cluster Interaction, are related to the alloy electronic structure. This framework is used to study the MoRe alloy for two situations: bulk and semi-infinite crystal bounded by a (001) surface. In both cases, good agreement with experimental data is found.

  12. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.

    2009-08-03

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  13. Ab initio calculations of the ground and excited states of I 2- and ICl -

    NASA Astrophysics Data System (ADS)

    Maslen, P. E.; Faeder, J.; Parson, R.

    1996-12-01

    We performed all-electron ab initio calculations of the first six states of I 2- and ICl - using a multi-reference configuration interaction method. Spin-orbit coupling is included via an empirical one-electron operator and has a large effect on the dissociation energy. The ground state dissociation energies were in error by 20-30%, probably due to deficiencies in the one electron basis sets. The electronic wavefunctions at the equilibrium geometry were used to calculate the electronic absorption spectrum from the ground state, and good agreement was found with the experimental data.

  14. Can an ab initio three-body virial equation describe the mercury gas phase?

    PubMed

    Wiebke, J; Wormit, M; Hellmann, R; Pahl, E; Schwerdtfeger, P

    2014-03-27

    We report a sixth-order ab initio virial equation of state (EOS) for mercury. The virial coefficients were determined in the temperature range from 500 to 7750 K using a three-body approximation to the N-body interaction potential. The underlying two-body and three-body potentials were fitted to highly accurate Coupled-Cluster interaction energies of Hg2 (Pahl, E.; Figgen, D.; Thierfelder, C.; Peterson, K. A.; Calvo, F.; Schwerdtfeger, P. J. Chem. Phys. 2010, 132, 114301-1) and equilateral-triangular configurations of Hg3. We find the virial coefficients of order four and higher to be negative and to have large absolute values over the entire temperature range considered. The validity of our three-body, sixth-order EOS seems to be limited to small densities of about 1.5 g cm(-3) and somewhat higher densities at higher temperatures. Termwise analysis and comparison to experimental gas-phase data suggest a small convergence radius of the virial EOS itself as well as a failure of the three-body interaction model (i.e., poor convergence of the many-body expansion for mercury). We conjecture that the nth-order term of the virial EOS is to be evaluated from the full n-body interaction potential for a quantitative picture. Consequently, an ab initio three-body virial equation cannot describe the mercury gas phase. PMID:24547987

  15. Protons in polar media: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, Tycho

    1998-10-01

    The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations

  16. Towards an ab initio description of correlated materials

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls

  17. Evolved chiral NN +3N Hamiltonians for ab initio nuclear structure calculations

    NASA Astrophysics Data System (ADS)

    Roth, Robert; Calci, Angelo; Langhammer, Joachim; Binder, Sven

    2014-08-01

    We discuss the building blocks for a consistent inclusion of chiral three-nucleon (3N) interactions into ab initio nuclear structure calculations beyond the lower p shell. We highlight important technical developments, such as the similarity renormalization group (SRG) evolution in the 3N sector, a JT-coupled storage scheme for 3N matrix elements with efficient on-the-fly decoupling, and the importance-truncated no-core shell model with 3N interactions. Together, these developments make converged ab initio calculations with explicit 3N interactions possible also beyond the lower p shell. We analyze in detail the impact of various truncations of the SRG-evolved Hamiltonian, in particular the truncation of the harmonic-oscillator model space used for solving the SRG flow equations and the omission of the induced beyond-3N contributions of the evolved Hamiltonian. Both truncations lead to sizable effects in the upper p shell and beyond and we present options to remedy these truncation effects. The analysis of the different truncations is a first step towards a systematic uncertainty quantification of all stages of the calculation.

  18. Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system

    SciTech Connect

    Hormain, Laureline; Monnerville, Maurice Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón

    2015-04-14

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

  19. Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  20. Lead-Chalcogenides Under Pressure: Ab-Initio Study

    NASA Astrophysics Data System (ADS)

    Gupta, Dinesh C.; Hamid, Idris

    ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.

  1. Ab initio studies of phosphorene island single electron transistor

    NASA Astrophysics Data System (ADS)

    Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.

    2016-05-01

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.

  2. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850

  3. Ab initio simulations of MgO under extreme conditions

    NASA Astrophysics Data System (ADS)

    Cebulla, Daniel; Redmer, Ronald

    2014-04-01

    We determined the phase diagram of magnesium oxide with finite-temperature density functional theory molecular dynamics simulations up to temperatures and pressures as relevant for the deep interior of super-Earths and in rocky cores of giant planets such as Jupiter. The equation of state data, the Hugoniot, and a ramp compression curve are computed and compared to earlier results from diamond anvil cell and (decaying) shock wave experiments. In addition, the dynamical electrical conductivity and the reflectivity along the experimental Hugoniot curve are calculated in order to characterize electronic structure changes under compression. The structural properties of MgO are identified using pair correlation functions and self-diffusion coefficients. The solid-solid coexistence line is calculated by comparing the free enthalpies of the B1 and the B2 phase. The free energy of the solid phases is determined via thermodynamic relations using the ab initio simulation results and phonon calculations in the harmonic approximation. Our results indicate that the solid B2 phase of MgO does not occur in the interior of the Earth but may play an important role in super-Earths and in rocky planetary cores.

  4. Ab initio description of the exotic unbound 7He nucleus

    DOE PAGES

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-01-11

    In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less

  5. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  6. Engineering Room-temperature Superconductors Via ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen

    The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.

  7. FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole.

    PubMed

    Rai, Amareshwar K; Singh, Rachana; Singh, K N; Singh, V B

    2006-02-01

    FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value. PMID:16098806

  8. Ab initio calculations of nuclear reactions important for astrophysics

    NASA Astrophysics Data System (ADS)

    Navratil, Petr; Dohet-Eraly, Jeremy; Calci, Angelo; Horiuchi, Wataru; Hupin, Guillaume; Quaglioni, Sofia

    2016-09-01

    In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. One of the newly developed approaches is the No-Core Shell Model with Continuum (NCSMC), capable of describing both bound and scattering states in light nuclei simultaneously. We will present NCSMC results for reactions important for astrophysics that are difficult to measure at relevant low energies, such as 3He(α,γ)7Be and 3H(α,γ)7Li and 11C(p,γ)12N radiative capture, as well as the 3H(d,n)4He fusion. We will also address prospects of calculating the 2H(α,γ)6Li capture reaction within the NCSMC formalism. Prepared in part by LLNL under Contract DE-AC52-07NA27344. Supported by the U.S. DOE, OS, NP, under Work Proposal No. SCW1158, and by the NSERC Grant No. SAPIN-2016-00033. TRIUMF receives funding from the NRC Canada.

  9. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  10. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  11. An efficient approach to ab initio Monte Carlo simulation

    SciTech Connect

    Leiding, Jeff; Coe, Joshua D.

    2014-01-21

    We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β{sup 0}), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where—depending on the quality of the reference system potential—acceptance probabilities were enhanced by factors of 1.2–28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.

  12. Ab initio calculations of free-energy reaction barriers.

    PubMed

    Bucko, T

    2008-02-13

    The theoretical description of chemical reactions was until recently limited to a 'static' approach in which important parameters such as the rate constant are deduced from the local topology of the potential energy surface close to minima and saddle points. Such an approach has, however, serious limitations. The growing computational power allows us now to use advanced simulation techniques to determine entropic effects accurately for medium-sized systems at ab initio level. Recently, we have implemented free-energy simulation techniques based on molecular dynamics, in particular on the blue-moon ensemble technique and on metadynamics, in the popular DFT code VASP. In the thermodynamic integration (blue-moon ensemble) technique, the free-energy profile is calculated as the path integral over the restoring forces along a parametrized reaction coordinate. In metadynamics, an image of the free-energy surface is constructed on the fly during the simulation by adding small repulsive Gaussian-shaped hills to the Lagrangian driving the dynamics. The two methods are tested on a simple chemical reaction-the nucleophilic substitution of methyl chloride by a chlorine anion.

  13. Ab initio calculations of free-energy reaction barriers

    NASA Astrophysics Data System (ADS)

    Bucko, T.

    2008-02-01

    The theoretical description of chemical reactions was until recently limited to a 'static' approach in which important parameters such as the rate constant are deduced from the local topology of the potential energy surface close to minima and saddle points. Such an approach has, however, serious limitations. The growing computational power allows us now to use advanced simulation techniques to determine entropic effects accurately for medium-sized systems at ab initio level. Recently, we have implemented free-energy simulation techniques based on molecular dynamics, in particular on the blue-moon ensemble technique and on metadynamics, in the popular DFT code VASP. In the thermodynamic integration (blue-moon ensemble) technique, the free-energy profile is calculated as the path integral over the restoring forces along a parametrized reaction coordinate. In metadynamics, an image of the free-energy surface is constructed on the fly during the simulation by adding small repulsive Gaussian-shaped hills to the Lagrangian driving the dynamics. The two methods are tested on a simple chemical reaction—the nucleophilic substitution of methyl chloride by a chlorine anion.

  14. Ab initio Raman spectroscopy of water under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia

    Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.

  15. Exploring the free energy surface using ab initio molecular dynamics.

    PubMed

    Samanta, Amit; Morales, Miguel A; Schwegler, Eric

    2016-04-28

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525

  16. Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures

    NASA Astrophysics Data System (ADS)

    Debernardi, Alberto; Marchetti, Luigi

    2016-06-01

    Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.

  17. Ab initio molecular dynamics calculations of ion hydration free energies

    SciTech Connect

    Leung, Kevin; Rempe, Susan B.; Lilienfeld, O. Anatole von

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or '{lambda}-path' technique to compute the intrinsic hydration free energies of Li{sup +}, Cl{sup -}, and Ag{sup +} ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential ({phi}) contributions, we obtain absolute AIMD hydration free energies ({Delta}G{sub hyd}) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model {phi} predictions. The sums of Li{sup +}/Cl{sup -} and Ag{sup +}/Cl{sup -} AIMD {Delta}G{sub hyd}, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag{sup +}+Ni{sup +}{yields}Ag+Ni{sup 2+} in water. The predictions for this reaction suggest that existing estimates of {Delta}G{sub hyd} for unstable radiolysis intermediates such as Ni{sup +} may need to be extensively revised.

  18. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  19. The AB Initio Mia Method: Theoretical Development and Practical Applications

    NASA Astrophysics Data System (ADS)

    Peeters, Anik

    The bottleneck in conventional ab initio Hartree -Fock calculations is the storage of the electron repulsion integrals because their number increases with the fourth power of the number of basis functions. This problem can be solved by a combination of the multiplicative integral approximation (MIA) and the direct SCF method. The MIA approach was successfully applied in the geometry optimisation of some biologically interesting compounds like the neurolepticum Haloperidol and two TIBO derivatives, inactivators of HIV1. In this thesis the potency of the MIA-method is shown by the application of this method in the calculation of the forces on the nuclei. In addition, the MIA method enabled the development of a new model for performing crystal field studies: the supermolecule model. The results for this model are in better agreement with experimental data than the results for the point charge model. This is illustrated by the study of some small molecules in the solid state: 2,3-diketopiperazine, formamide oxime and two polymorphic forms of glycine, alpha-glycine and beta-glycine.

  20. Defining Condensed Phase Reactive Force Fields from ab Initio Molecular Dynamics Simulations: The Case of the Hydrated Excess Proton.

    PubMed

    Knight, Chris; Maupin, C Mark; Izvekov, Sergei; Voth, Gregory A

    2010-10-12

    In this report, a general methodology is presented for the parametrization of a reactive force field using data from a condensed phase ab initio molecular dynamics (AIMD) simulation. This algorithm allows for the creation of an empirical reactive force field that accurately reproduces the underlying ab initio reactive surface while providing the ability to achieve long-time statistical sampling for large systems not possible with AIMD alone. In this work, a model for the hydrated excess proton is constructed where the hydronium cation and proton hopping portions of the model are statistically force-matched to the results of Car-Parrinello Molecular Dynamics (CPMD) simulations. The flexible nature of the algorithm also allows for the use of the more accurate classical simple point-charge flexible water (SPC/Fw) model to describe the water-water interactions while utilizing the ab initio data to create an overall multistate molecular dynamics (MS-MD) reactive model of the hydrated excess proton in water. The resulting empirical model for the system qualitatively reproduces thermodynamic and dynamic properties calculated from the ab initio simulation while being in good agreement with experimental results and previously developed multistate empirical valence bond (MS-EVB) models. The present methodology, therefore, bridges the AIMD technique with the MS-MD modeling of reactive events, while incorporating key strengths of both. PMID:26616784

  1. Ab-initio modeling of an anion C- 60 pseudopotential for fullerene-based compounds

    NASA Astrophysics Data System (ADS)

    Vrubel, Ivan I.; Polozkov, Roman G.; Ivanov, Vadim K.

    2016-08-01

    An anion C- 60 pseudopotential is determined from an ab-initio-based approach. First, ab-initio calculations are performed to calculate the electronic charge density and the total electrostatic potential. Second, the effective dependence of the pseudopotential on the radial degree of freedom is extracted from the angular average of the total electrostatic potential. Finally, the resulting effective pseudopotential is fitted to a simple analytical form which can be applied in further dynamical simulations of fullerene-based compounds.

  2. Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.

    2012-05-01

    An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.

  3. Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H7+ cluster

    NASA Astrophysics Data System (ADS)

    Barragán, Patricia; Prosmiti, Rita; Wang, Yimin; Bowman, Joel M.

    2012-06-01

    Full-dimensional ab initio potential energy surface is constructed for the H_7^+ cluster. The surface is a fit to roughly 160 000 interaction energies obtained with second-order MöllerPlesset perturbation theory and the cc-pVQZ basis set, using the invariant polynomial method [B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009), 10.1080/01442350903234923]. We employ permutationally invariant basis functions in Morse-type variables for all the internuclear distances to incorporate permutational symmetry with respect to interchange of H atoms into the representation of the surface. We describe how different configurations are selected in order to create the database of the interaction energies for the linear least squares fitting procedure. The root-mean-square error of the fit is 170 cm-1 for the entire data set. The surface dissociates correctly to the H_5^+ + H2 fragments. A detailed analysis of its topology, as well as comparison with additional ab initio calculations, including harmonic frequencies, verify the quality and accuracy of the parameterized potential. This is the first attempt to present an analytical representation of the 15-dimensional surface of the H_7^+ cluster for carrying out dynamics studies.

  4. Three-cluster dynamics within an ab initio framework

    SciTech Connect

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to a 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.

  5. Emergent properties of nuclei from ab initio coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.

    2016-06-01

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).

  6. Moire pattern interlayer potentials in van der Waals materials from high level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Jung, Jeil; Leconte, Nicolas; Lebegue, Sebastien; Gould, Timothy

    Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. We study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) single layers for different possible combinations such as G/G, G/BN and BN/BN using high-level EXX+RPA ab initio calculations. The total energies differ substantially when compared with conventional LDA, but for stacking-dependent total energy differences we find that the dominance of short-range covalent-type binding over the longer-ranged van der Waals tails near equilibrium geometries renders the LDA as a reasonable starting point for ab initio calculation based analyses for the systems we have studied. Our calculations are useful input for study of strains originated by interlayer interactions in incommensurable 2D van der Waals crystals.

  7. 4He+n+n continuum within an ab initio framework

    DOE PAGES

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; Hupin, Guillaume

    2014-07-16

    In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known Jπ = 2+ resonance as well as a result consistent with a new low-lying second 2+ resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2–, 1+, and 0– channels, while no low-lying resonances are present in the 0+ and 1– channels.« less

  8. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  9. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost. PMID:26851913

  10. An ab initio investigation of the interactions involving the aromatic group of the set of fluorinated N-(4-sulfamylbenzoyl)benzylamine inhibitors and human carbonic anhydrase II.

    PubMed

    Riley, Kevin E; Cui, Guanglei; Merz, Kenneth M

    2007-05-24

    In this work we investigate the interactions that occur between the aromatic portion of the set of fluorinated N-(4-sulfamylbenzoyl)benzylamine (SBB) inhibitors and two residues of Human Carbonic Anhydrase II (HCAII), namely Phe-131 and Pro-202. Calculations were carried out at the MP2/aug-cc-pVDZ level of theory and the counterpoise scheme of Boys and Bernardi was employed to account for the basis set superposition error. The most striking result obtained here is that the SBB phenyl ring interacts at least as strongly with the proline pyrrolidine ring as with the phenylalanine phenyl ring, which is surprising because aromatic-aromatic interactions have long been thought to be particularly favorable in protein and protein-ligand structure. Comparison of the MP2 binding energies to those obtained with the Hartree-Fock method indicates that the attraction between the proline pyrrolidine ring and the SBB phenyl ring is largely attributable to dispersion forces. These favorable interactions between pyrrolidine and phenyl rings may have important implications in protein structure because there is potential for proline residues to interact with phenylalanine residues in a fashion analogous to that seen here. A preliminary protein data bank search indicates that the proline-phenylalanine contacts are about 40% as common as those between two phenylalanines. It is also found here that the number and pattern of fluorine substituents on the SBB phenyl ring is much less important in determining the SBB-HCAII binding energy than the relative geometric configuration of the interacting pairs.

  11. Self assembly of sandwich-layered 2D silver(I) coordination polymers stabilized by argentophilic interactions: Synthesis, crystal structures and ab initio intramolecular energetics

    NASA Astrophysics Data System (ADS)

    Zorlu, Yunus; Can, Hatice

    2014-11-01

    Two different two-dimensional silver(I) coordination polymers, namely {[Ag2(dcpa)}n (1) and {[Ag2(ma)]}n (2), where dcpa = 4,5-dichlorophthalate; ma = maleate, were synthesized and structurally analyzed by single crystal X-ray diffraction technique. Complexes 1 and 2 represent 2D coordination polymer with metal-organic sandwich type. Two independent Ag(I) ions in both complexes are linked to constructed 2D layer by μ8-η3:η2:η2:η1 (for complex 1) and μ8-η3:η3:η2:η2 (for complex 2) carboxylate bridging fashions. The 2D layers of 1 are further extended into a three-dimensional (3D) supramolecular network by weak Cl⋯Cl interactions while 2D layers of 2 are linked by weak CH⋯O interactions into a 3D supramolecular framework. These two complexes exhibit considerable short Ag-Ag argentophilic interactions. The long-range corrected density functional theory (DFT) method was used to investigate intramolecular energetics, which are responsible for these 2D structures. Natural bond orbital (NBO) analysis with long-range corrected DFT method assists to understand these intramolecular interactions.

  12. Ab initio study of the anharmonic lattice dynamics of iron at the γ -δ phase transition

    NASA Astrophysics Data System (ADS)

    Lian, Chao-Sheng; Wang, Jian-Tao; Chen, Changfeng

    2015-11-01

    We report calculations of phonon dispersions of iron (Fe) at its γ -δ phase transition using a self-consistent ab initio lattice dynamical method in conjunction with an effective magnetic force approach via the antiferromagnetic approximation. Our results show that anharmonic phonon-phonon interactions play a crucial role in stabilizing the δ -Fe phase in the open bcc lattice. In contrast, the lattice dynamics of the close-packed fcc γ -Fe phase are dominated by magnetic interactions. Simultaneous considerations of the lattice anharmonic and magnetic interactions produced temperature-dependent phonon dispersions for δ -Fe and γ -Fe phases in excellent agreement with recent experimental measurements. The present results highlight the key role of lattice anharmonicity in determining the structural stability of iron at high temperatures, which has significant implications for other high-temperature paramagnetic metals like Ce and Pu.

  13. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics.

    PubMed

    Pluhařová, Eva; Baer, Marcel D; Mundy, Christopher J; Schmidt, Burkhard; Jungwirth, Pavel

    2014-07-01

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkaline earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the infrared (IR) shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Because sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water.

  14. The constrained space orbital variation analysis for periodic ab initio calculations

    SciTech Connect

    Cruz Hernandez, N.; Zicovich-Wilson, Claudio Marcelo; Fdez Sanz, Javier

    2006-05-21

    The constrained space orbital variation (CSOV) method for the analysis of the interaction energy has been implemented in the periodic ab initio CRYSTAL03 code. The method allows for the partition of the energy of two interacting chemical entities, represented in turn by periodic models, into contributions which account for electrostatic effects, mutual polarization and charge transfer. The implementation permits one to carry out the analysis both at the Hartree-Fock and density functional theory levels, where in the latter the most popular exchange-correlation functionals can be used. As an illustrating example, the analysis of the interaction between CO and the MgO (001) surface has been considered. As expected by the almost fully ionic character of the support, our periodic CSOV results, in general agree with those previously obtained using the embedded cluster approach, showing the reliability of the present implementation.

  15. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  16. Ab initio molecular dynamics study of ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Srinivasan, Varadharajan

    We have undertaken the first ever fully first-principles simulations of ferroelectric crystals at finite temperature with an aim to understand the nature of their phase transitions. In particular, we have studied the different aspects of phase transitions in two protypical ferroelectrics - PbTiO3 and KH2PO4. In PbTiO3, we have successfully reproduced the temperature-driven transition from a tetragonal to a cubic phase by using constant-pressure Car-Parrinello molecular dynamics. By defining suitable order parameters in terms of atomic displacements, we are able to monitor the approach of the cubic phase. Using a quasi-harmonic analysis, with the inclusion of a temperature dependent volume and the average thermal atomic displacements as the most basic effects of anharmonicity, we are also able to recover the softening of ferroelectric modes as well as other features seen in experiments. These observations confirm the predominantly displacive nature of the transition, while our simulations also indicate a possible build-up of disorder near the transition temperature. We have also studied the isotope effects in the ferroelectric transition in KH2PO4 by quantifying the temperature and mass dependence of the extent of delocalization of the hydrogens. Using a recently developed ab initio Open Path-integral Molecular Dynamics scheme we have calculated both the real and momentum-space distribution of the hydrogens in both protonated and deuterated KDP above and below their respective transition temperatures. We find that the two crystals not only involve different transition mechanisms but also the fluctuations above the transition temperature are of a qualitatively different nature.

  17. Ab initio valence-space theory for exotic nuclei

    NASA Astrophysics Data System (ADS)

    Holt, Jason

    2015-10-01

    Recent advances in ab initio nuclear structure theory have led to groundbreaking predictions in the exotic medium-mass region, from the location of the neutron dripline to the emergence of new magic numbers far from stability. Playing a key role in this progress has been the development of sophisticated many-body techniques and chiral effective field theory, which provides a systematic basis for consistent many-nucleon forces and electroweak currents. Within the context of valence-space Hamiltonians derived from the nonperturbative in-medium similarity renormalization group (IM-SRG) approach, I will discuss the importance of 3N forces in understanding and making new discoveries in the exotic sd -shell region. Beginning in oxygen, we find that the effects of 3N forces are decisive in explaining why 24O is the last bound oxygen isotope, validating first predictions of this phenomenon from several years ago. Furthermore, 3N forces play a key role in reproducing spectroscopy, including signatures of doubly magic 22,24O, and physics beyond the dripline. Similar improvements are obtained in new spectroscopic predictions for exotic fluorine and neon isotopes, where agreement with recent experimental data is competitive with state-of-the-art phenomenology. Finally, I will discuss first applications of the IM-SRG to effective valence-space operators, such as radii and E 0 transitions, as well as extensions to general operators crucial for our future understanding of electroweak processes, such as neutrinoless double-beta decay. This work was supported by NSERC and the NRC Canada.

  18. AN AB INITIO MODEL FOR COSMIC-RAY MODULATION

    SciTech Connect

    Engelbrecht, N. E.; Burger, R. A.

    2013-07-20

    A proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays (CRs) is of vital importance for a better understanding of CR modulation in the heliosphere. This study presents an ab initio model for CR modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for solar minimum heliospheric conditions, utilizing boundary values chosen so that model results are in reasonable agreement with spacecraft observations of turbulence quantities in the solar ecliptic plane and along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modeled slab and two-dimensional (2D) turbulence energy spectra. The modeled 2D spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers. There currently exist no models or observations for the wavenumber where this drop-off occurs, and it is considered to be the only free parameter in this study. The modeled spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on CR drifts are modeled in a self-consistent way, also employing a recently developed model for wavy current sheet drift. The resulting diffusion and drift coefficients are applied to the study of galactic CR protons and antiprotons using a 3D, steady-state CR modulation code, and sample solutions in fair to good agreement with multiple spacecraft observations are presented.

  19. Ab initio kinetics of gas phase decomposition reactions.

    PubMed

    Sharia, Onise; Kuklja, Maija M

    2010-12-01

    The thermal and kinetic aspects of gas phase decomposition reactions can be extremely complex due to a large number of parameters, a variety of possible intermediates, and an overlap in thermal decomposition traces. The experimental determination of the activation energies is particularly difficult when several possible reaction pathways coexist in the thermal decomposition. Ab initio calculations intended to provide an interpretation of the experiment are often of little help if they produce only the activation barriers and ignore the kinetics of the decomposition process. To overcome this ambiguity, a theoretical study of a complete picture of gas phase thermo-decomposition, including reaction energies, activation barriers, and reaction rates, is illustrated with the example of the β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule by means of quantum-chemical calculations. We study three types of major decomposition reactions characteristic of nitramines: the HONO elimination, the NONO rearrangement, and the N-NO(2) homolysis. The reaction rates were determined using the conventional transition state theory for the HONO and NONO decompositions and the variational transition state theory for the N-NO(2) homolysis. Our calculations show that the HMX decomposition process is more complex than it was previously believed to be and is defined by a combination of reactions at any given temperature. At all temperatures, the direct N-NO(2) homolysis prevails with the activation barrier at 38.1 kcal/mol. The nitro-nitrite isomerization and the HONO elimination, with the activation barriers at 46.3 and 39.4 kcal/mol, respectively, are slow reactions at all temperatures. The obtained conclusions provide a consistent interpretation for the reported experimental data. PMID:21077597

  20. Ab initio quantum chemistry in parallel-portable tools and applications

    SciTech Connect

    Harrison, R.J.; Shepard, R. ); Kendall, R.A. )

    1991-01-01

    In common with many of the computational sciences, ab initio chemistry faces computational constraints to which a partial solution is offered by the prospect of highly parallel computers. Ab initio codes are large and complex (O(10{sup 5}) lines of FORTRAN), representing a significant investment of communal effort. The often conflicting requirements of portability and efficiency have been successfully resolved on vector computers by reliance on matrix oriented kernels. This proves inadequate even upon closely-coupled shared-memory parallel machines. We examine the algorithms employed during a typical sequence of calculations. Then we investigate how efficient portable parallel implementations may be derived, including the complex multi-reference singles and doubles configuration interaction algorithm. A portable toolkit, modeled after the Intel iPSC and the ANL-ACRF PARMACS, is developed, using shared memory and TCP/IP sockets. The toolkit is used as an initial platform for programs portable between LANS, Crays and true distributed-memory MIMD machines. Timings are presented. 53 refs., 4 tabs.

  1. Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Vigil-Fowler, Derek; Lischner, Johannes; Neaton, Jeffrey B.; Louie, Steven G.

    2014-06-01

    Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semiconductors. Our calculations include electron-electron and electron-phonon interactions, and require no experimental input other than the structure of the material. We apply our approach to study the relaxation time and mean free path of hot carriers in Si, and map the band and k dependence of these quantities. We demonstrate that a hot carrier distribution characteristic of Si under solar illumination thermalizes within 350 fs, in excellent agreement with pump-probe experiments. Our work sheds light on the subpicosecond time scale after sunlight absorption in Si, and constitutes a first step towards ab initio quantification of hot carrier dynamics in materials.

  2. Non-covalent C-Cl…π interaction in acetylene-carbon tetrachloride adducts: Matrix isolation infrared and ab initio computational studies

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Sundararajan, K.; Vidya, K.; Jemmis, Eluvathingal D.

    2016-03-01

    Non-covalent halogen-bonding interactions between π cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311 ++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl…π adduct being the global minimum, where π cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H…Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl…π and C-H…Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl…π interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)2-CCl4) and 1:2 (C2H2-(CCl4)2) multimers and their identification in the low temperature matrixes were also discussed.

  3. Ab initio configuration interaction study of the structure and magnetic properties of radicals and radical ions derived from group 13 15 trihydrides

    NASA Astrophysics Data System (ADS)

    Carmichael, Ian

    1987-09-01

    The structures, characteristic vibrations and magnetic properties of two isoelectronic series of radicals and radical ions derived from group 13-15 trihydrides have been investigated by post-Hartree-Fock theoretical techniques. Møller-Plesset perturbation theory based on an unrestricted Hartree-Fock determinant has been employed to determine the structures and vibrational frequencies in the 9-electron series, BH -3, CH 3, and NH +3. These species are found to be planar. Spin density distributions and ionization energetics have been estimated using a variational configuration interaction procedure. A positive electron affinity for BH 3 has not been demonstrated. The effect of out-of-plane vibrations on the hyperfine coupling constants is determined at a similar level of theory. In the 17-electron series AlH -3, SiH 3, and PH +3, pyramidal structures are found by using and extended split-valence basis at the SCF level. The computed harmonic force field suggests that a tentative assignment of a matrix isolated infrared spectrum to SiH 3 is incorrect. This conclusion is reinforced by calculation of the vibrational intensity patterns. Hyperfine interaction tensors computed at the optimized geometries from the UHF wavefunction with a more complete polarized double-zeta basis set are in accord with experiment. Vibrational effects are estimated by averaging the UHF spin density over an energy surface determined by second-order perturbation theory. Corrections due to vibrations are smaller than in the carbon series and single-point configuration interaction calculations confirm the reliability of the UHF spin densities.

  4. Cd hyperfine interactions in DNA bases and DNA of mouse strains infected with Trypanosoma cruzi investigated by perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Petersen, Philippe A D; Silva, Andreia S; Gonçalves, Marcos B; Lapolli, André L; Ferreira, Ana Maria C; Carbonari, Artur W; Petrilli, Helena M

    2014-06-01

    In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.

  5. H2O and CO2 confined in cement based materials: an ab initio molecular dynamics study with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    de Almeida, James; Miranda, Caetano; Fazzio, Adalberto

    2013-03-01

    Although the cement has been widely used for a long time, very little is known regarding the atomistic mechanism behind its functionality. Particularly, the dynamics of molecular systems at confined nanoporous and water hydration is largely unknown. Here, we study the dynamical and structural properties of H2O and CO2 confined between Tobermorite 9Å(T9) surfaces with Car-Parrinello molecular dynamics with and without van der Waals (vdW) interactions, at room temperature. For H2O confined, we have observed a broadening in the intra and intermolecular bond angle distribution. A shift from an ice-like to a liquid-like infrared spectrum with the inclusion of vdW interactions was observed. The bond distance for the confined CO2 was increased, followed with the appearance of shorter (larger) intramolecular (intermolecular) angles. These structural modifications result in variations on the CO2 symmetric stretching Raman active vibration modes. The diffusion coefficient obtained for both confined H2O and CO2 were found to be lower than their bulk counterparts. Interestingly, during the water dynamics, a proton exchange between H2O and the T9 surface was observed. However, for confined CO2, no chemical reactions or bond breaking were observed.

  6. Ab initio calculation of ICD widths in photoexcited HeNe

    SciTech Connect

    Jabbari, G.; Klaiman, S.; Chiang, Y.-C.; Gokhberg, K.; Trinter, F.; Jahnke, T.

    2014-06-14

    Excitation of HeNe by synchrotron light just below the frequency of the 1s → 3p transition of isolated He has been recently shown to be followed by resonant interatomic Coulombic decay (ICD). The vibrationally resolved widths of the ICD states were extracted with high precision from the photoion spectra. In this paper, we report the results of ab initio calculations of these widths. We show that interaction between electronic states at about the equilibrium distance of HeNe makes dark states of He accessible for the photoexcitation and subsequent electronic decay. Moreover, the values of the calculated widths are shown to be strongly sensitive to the presence of the non-adiabatic coupling between the electronic states participating in the decay. Therefore, only by considering the complete manifold of interacting decaying electronic states a good agreement between the measured and computed ICD widths can be achieved.

  7. A-dependence of the Spectra of the F Isotopes from ab initio Calculations

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.

    2016-03-01

    Using a succession of Okubo-Lee-Suzuki transformations within the No Core Shell Model (NCSM) formalism, we derive an ab initio, non-perturbative procedure for calculating the input for standard shell-model (SSM) calculations within one major shell. We have used this approach for calculating the spectra of the F isotopes from A=18 to A=25, so as to study the A-dependence of the results. In particular, we are interested in seeing if the theoretical input is weak enough, so that a single set of two-body effective interactions can be used for all of the F isotopes investigated. We will present results from SSM calculations based on input obtained with the JISP16 nucleon-nucleon interaction in an initial 4 ℏΩ NCSM basis space. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.

  8. Binding of TNT to amplifying fluorescent polymers: an ab initio and molecular dynamics study.

    PubMed

    Enlow, Mark A

    2012-03-01

    Molecular modeling techniques were employed to study the interaction of trinitrotoluene with an amplifying fluorescent polymer used in explosive sensor devices. The pentiptycene moiety present in these polymers appears to be the most energetically favorable binding site for trinitrotoluene. Surface features of the polymer suggest that the small cavity feature of the pentiptycene moiety may be more available for binding to analyte compounds due to steric crowding about the large cavity. Binding energies between model binding sites of the polymer and various analyte compounds were more rigorously estimated by semiempirical and ab initio techniques. Binding energies were found to be largest with trinitrotoluene and other nitroaromatic compounds. Electrostatic and π-stacking interactions between trinitrotoluene and the model host were investigated by studying a series of modified host compounds.

  9. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide

    SciTech Connect

    Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert Bich, Eckard

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N{sub 2}O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N{sub 2}O–N{sub 2}O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N{sub 2}O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.

  10. Towards a full ab initio theory of strong electronic correlations in nanoscale devices

    NASA Astrophysics Data System (ADS)

    Jacob, David

    2015-06-01

    In this paper I give a detailed account of an ab initio methodology for describing strong electronic correlations in nanoscale devices hosting transition metal atoms with open d- or f-shells. The method combines Kohn-Sham density functional theory for treating the weakly interacting electrons on a static mean-field level with non-perturbative many-body methods for the strongly interacting electrons in the open d- and f-shells. An effective description of the strongly interacting electrons in terms of a multi-orbital Anderson impurity model is obtained by projection onto the strongly correlated subspace properly taking into account the non-orthogonality of the atomic basis set. A special focus lies on the ab initio calculation of the effective screened interaction matrix U for the Anderson model. Solution of the effective Anderson model with the one-crossing approximation or other impurity solver techniques yields the dynamic correlations within the strongly correlated subspace giving rise e.g. to the Kondo effect. As an example the method is applied to the case of a Co adatom on the Cu(0 0 1) surface. The calculated low-bias tunnel spectra show Fano-Kondo lineshapes similar to those measured in experiments. The exact shape of the Fano-Kondo feature as well as its width depend quite strongly on the filling of the Co 3d-shell. Although this somewhat hampers accurate quantitative predictions regarding lineshapes and Kondo temperatures, the overall physical situation can be predicted quite reliably.

  11. Global analytical ab initio ground-state potential energy surface for the C((1)D)+H2 reactive system.

    PubMed

    Zhang, Chunfang; Fu, Mingkai; Shen, Zhitao; Ma, Haitao; Bian, Wensheng

    2014-06-21

    A new global ab initio potential energy surface (called ZMB-a) for the 1(1)A' state of the C((1)D)+H2 reactive system has been constructed. This is based upon ab initio calculations using the internally contracted multireference configuration interaction approach with the aug-cc-pVQZ basis set, performed at about 6300 symmetry unique geometries. Accurate analytical fits are generated using many-body expansions with the permutationally invariant polynomials, except that the fit of the deep well region is taken from our previous fit. The ZMB-a surface is unique in the accurate description of the regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The CIs between the 1(1)A' and 2(1)A' states cause two kinds of barriers on the ZMB-a surface: one is in the linear H-CH dissociation direction with a barrier height of 9.07 kcal/mol, which is much higher than those on the surfaces reported before; the other is in the C((1)D) collinearly attacking H2 direction with a barrier height of 12.39 kcal/mol. The ZMB-a surface basically reproduces our ab initio calculations in the vdW interaction regions, and supports a linear C-HH vdW complex in the entrance channel, and two vdW complexes in the exit channel, at linear CH-H and HC-H geometries, respectively.

  12. Ab Initio Treatment of Lower Mantle Mineral Solvi.

    NASA Astrophysics Data System (ADS)

    Jung, D. Y.; Oganov, A. R.; Schmidt, M. W.

    2006-12-01

    The lower mantle of the Earth extends from about 670 to 2980 km depth and consists mainly of MgSiO3- perovskite (~ 70 vol%), (Mg,Fe)O magnesiowüstite (~ 20 vol%) and CaSiO3-perovskite (~ 10 vol%). To obtain a realistic picture of the lower mantle, it is necessary to consider the perovskite minerals as coexisting solid solutions with a large miscibility gap, as this is the case in nature. In this work we investigate the solvi of the three binaries in the Ca-perovskite - Mg-perovskite - corundum ternary, i.e. the solid solutions relevant for the Earth's lower mantle minerals in a simplified CMAS system. It is possible to calculate thermodynamic properties, structures and energetics of the individual minerals at extreme conditions of the mantle using ab initio methods, such as the density functional theory (DFT). We use the DFT together with the generalized gradient approximation (GGA) and the projector augmented wave (PAW) method, as implemented in the VASP code. The binary solvi are modelled through a subregular solid solution model together with point defect calculations at different pressures in the lower mantle regime. Point defects in the (Ca,Mg)-perovskite system are simple substitutions, but in MgSiO3-Al2O3 there is a coupled charge substitution of 2Al3+ with Mg2+Si^{4+}. Additionally, different symmetries of the perovskite (and akimotoite/ilmenite for MgSiO3) structures have been taken into account, thus allowing for phase transitions in solid solutions. At pressures and temperatures of the lower mantle, the solvus in the (Ca,Mg)SiO3 system remains wide open and solubilities of Ca in Mg-perovskite and Mg in Ca-perovskite decrease with pressure (at constant temperature and along any adiabatic geotherm). Calculations on the MgSiO3-Al2O3 (akimotoite-corundum) solvus show higher solubilities. Still, we find it unlikely that Ca-perovskite would disappear (i.e. fully dissolve in Mg-perovskite) at conditions of the lower mantle, at last not in the simplified CMAS

  13. Large basis ab initio shell model investigation of {sup 9}Be and {sup 11}Be

    SciTech Connect

    Forssen, C.; Navratil, P.; Ormand, W.E.; Caurier, E.

    2005-04-01

    We present the first ab initio structure investigation of the loosely bound {sup 11}Be nucleus, together with a study of the lighter isotope {sup 9}Be. The nuclear structure of these isotopes is particularly interesting because of the appearance of a parity-inverted ground state in {sup 11}Be. Our study is performed in the framework of the ab initio no-core shell model. Results obtained using four different, high-precision two-nucleon interactions, in model spaces up to 9({Dirac_h}/2{pi}){omega}, are shown. For both nuclei, and all potentials, we reach convergence in the level ordering of positive- and negative-parity spectra separately. Concerning their relative position, the positive-parity states are always too high in excitation energy, but a fast drop with respect to the negative-parity spectrum is observed when the model space is increased. This behavior is most dramatic for {sup 11}Be. In the largest model space we were able to reach, the 1/2{sup +} level has dropped down to become either the first or the second excited state, depending on which interaction we use. We also observe a contrasting behavior in the convergence patterns for different two-nucleon potentials and argue that a three-nucleon interaction is needed to explain the parity inversion. Furthermore, large-basis calculations of {sup 13}C and {sup 11}B are performed. This allows us to study the systematics of the position of the first unnatural-parity state in the N=7 isotone and the A=11 isobar. The {sup 11}B run in the 9({Dirac_h}/2{pi}){omega} model space involves a matrix with dimension exceeding 1.1x10{sup 9}, and is our largest calculation so far. We present results on binding energies, excitation spectra, level configurations, radii, electromagnetic observables, and {sup 10}Be+n overlap functions.

  14. Theoretical study of ionic liquids based on the cholinium cation. Ab initio simulations of their condensed phases

    NASA Astrophysics Data System (ADS)

    Campetella, Marco; Bodo, Enrico; Montagna, Maria; De Santis, Serena; Gontrani, Lorenzo

    2016-03-01

    We have explored by means of ab initio molecular dynamics the homologue series of 11 different ionic liquids based on the combination of the cholinium cation with deprotonated amino acid anions. We present a structural analysis of the liquid states of these compounds as revealed by accurate ab initio computations of the forces. We highlight the persistent structural motifs that see the ionic couple as the basic building block of the liquid whereby a strong hydrogen bonding network substantially determines the short range structural behavior of the bulk state. Other minor docking features of the interaction network are also discovered and described. Special cases along the series such as Cysteine and Phenylalanine are discussed in the view of their peculiar properties due to zwitterion formation and additional long-range structural organization.

  15. Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians

    NASA Astrophysics Data System (ADS)

    Stroberg, S. R.; Hergert, H.; Holt, J. D.; Bogner, S. K.; Schwenk, A.

    2016-05-01

    We present ab initio predictions for ground and excited states of doubly open-shell fluorine and neon isotopes based on chiral two- and three-nucleon interactions. We use the in-medium similarity renormalization group to derive mass-dependent s d valence-space Hamiltonians. The experimental ground-state energies are reproduced through neutron number N =14 , beyond which a new targeted normal-ordering procedure improves agreement with data and large-space multireference calculations. For spectroscopy, we focus on neutron-rich F-2623 and Ne-2624 isotopes near N =14 ,16 magic numbers. In all cases we find agreement with experiment and established phenomenology. Moreover, yrast states are well described in 20Ne and 24Mg, providing a path toward an ab initio description of deformation in the medium-mass region.

  16. Thermochemistry of Aqueous Hydroxyl Radical from Advances in Photoacoustic Calorimetry and ab Initio Continum Solvation Theory

    SciTech Connect

    Autrey, Thomas; Brown, Aaron K.; Camaioni, Donald M.; Dupuis, Michel; Foster, Nancy S.; Getty, April D.

    2004-03-31

    Photoacoustic signals from dilute ({approx}30 mM) solutions of H{sub 2}O{sub 2} were measured over the temperature range from 10-45 C to obtain the reaction enthalpy and volume change for H{sub 2}O{sub 2}(aq) {yields} 2 OH(aq) from which we ultimately determined {Delta}{sub f}G{sup o}, {Delta}{sub f}H{sup o} and partial molal volume, v{sup o}, of OH (aq). We find {Delta}{sub r}H = 46.8 {+-} 1.4 kcal/mol, which is 4 kcal/mol smaller than the gas phase bond energy, and {Delta}V{sub r} = 6.5 {+-} 0.4 mL/mol. The v{sup o} for OH in water is 14.4 {+-} 0.4 mL/ml: smaller than the v{sup o} of water. Using ab initio continuum theory, the hydration free energy is calculated to be -3.9 {+-} 0.3 kcal/mol (for standard states in number density concentration units) by a novel approach devised to capture in the definition of the solute cavity the strength and specific interactions of the solute with a water solvent molecule. The shape of the cavity is defined by ''rolling'' a 3 dimensional electron density isocontour of water on the ab initio water-OH minimum interaction surface. The value of the contour is selected to reproduce the volume of OH in water. We obtain for OH(aq): {Delta}{sub f}H{sup o} = -0.2 {+-} 1.4 and {Delta}{sub f}G{sup o} = 5.8 {+-} 0.4 kcal/mol that are in agreement with literature values. The results provide confidence in the pulsed PAC technique for measuring aqueous thermochemistry of radicals and open the way to obtaining thermochemistry for most radicals that can be formed by reaction of OH with aqueous substrates while advancing the field of continuum solvation theory towards ab initio-defined solute cavities.

  17. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

    SciTech Connect

    Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.

    2015-02-01

    Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  18. An Efficient Time-Stepping Scheme for Ab Initio Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Tsuchida, Eiji

    2016-08-01

    In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. We also propose several extensions of the algorithm required for use in ab initio molecular dynamics. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2× performance gain over the standard Verlet method for a given accuracy. We also show how to generate a canonical ensemble within this approach.

  19. Ab initio calculations of free energy barriers for chemical reactions in solution: proton transfer in [FHF]-.

    PubMed

    Muller, R P; Warshel, A

    1996-01-01

    This paper describes a hybrid ab initio quantum mechanical/molecular mechanics (QM/MM) method for calculating activation free energies of chemical reactions in solution, using molecular mechanics force fields for the solvent and an ab initio technique that incorporates the potential from the solvent in its Hamiltonian for the solute. The empirical valence bond (EVB) method is used as a reference potential for the ab initio free energy calculation, and drives the reaction along the proper coordinate, thus overcoming problems encountered by direct attempts to use molecular orbital methods in calculations of activation free energies. The utility of our method is illustrated by calculating the activation free energy for proton transfer between fluoride ions in the [FHF]-system, in both polar and nonpolar solution.

  20. Electron transfer and localization in endohedral metallofullerenes: Ab initio density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Shenyuan; Yoon, Mina; Hicke, Christian; Zhang, Zhenyu; Wang, Enge

    2008-09-01

    Endohedral metallofullerenes constitute an appealing class of nanoscale building blocks for fabrication of a wide range of materials. One open question of fundamental importance is the precise nature of charge redistribution within the carbon cages (Cn) upon metal encapsulation. Using ab initio density functional theory, we systematically study the electronic structure of metallofullerenes, focusing on the spatial charge redistribution. For large metallofullerenes (n>32) , the valence electrons of the metal atoms are all transferred to the fullerene states. Surprisingly, the transferred charge is found to be highly localized inside the cage near the metal cations rather than uniformly distributed on the surfaces of the carbon cage as traditionally believed. This counterintuitive charge localization picture is attributed to the strong metal-cage interactions within the systems. These findings may prove to be instrumental in the design of fullerene-based functional nanomaterials.

  1. Ab initio study on the dynamics of furfural at the liquid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers

  2. Electronic states of lithium passivated germanium nanowires: An ab-initio study

    SciTech Connect

    Trejo, A.; Carvajal, E.; Vázquez-Medina, R.; Cruz-Irisson, M.

    2014-05-15

    A study of the electronic and structural properties of germanium nanowires (GeNWs) was performed using the ab-initio Density Functional Theory within the generalized gradient approximation where electron-ion interactions are described by ultrasoft pseudopotentials. To study the effects of the lithium in the surface of the GeNWs we compare the electronic band structures of Hydrogen passivated GeNWs with those of partial and totally Li passivated GeNWs. The nanowires were constructed in the [001], [111] and [110] directions, using the supercell model to create different wire diameters. The results show that in the case of partial Li passivation there are localized orbitals near the valence band maximum, which would create a p-doped-kind of state. The total Li passivation created metallic states for all the wires.

  3. Polymerization transition in liquid AsS under pressure: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Shimojo, Fuyuki

    2011-12-01

    We study the pressure dependence of the structural and electronic properties of liquid AsS by ab initio molecular dynamics simulations. We confirm that liquid AsS consists of As4S4 molecules at ambient pressure, as in the crystalline state. With increasing pressure, a structural transition from molecular to polymeric liquid occurs near 2 GPa, which is eventually followed by metallization. The pressure dependence of the density and diffusion coefficients changes qualitatively with this transition. We find that, during metallization in the polymeric phase at higher pressures, the remnants of covalent interactions between atoms play an important role in the dynamics, i.e., the As-S bond length becomes longer with increasing pressure and the diffusion coefficients have a local maximum near 5 GPa. When the pressure approaches about 15 GPa, the covalent nature of the liquid becomes quite weak. These results explain recent experiments on the pressure dependence of the viscosity.

  4. High-pressure crystalline polyethylene studied by x-ray diffraction and ab initio simulations

    SciTech Connect

    Fontana, L.; Vinh, Diep Q.; Santoro, M.; Gorelli, F. A.; Hanfland, M.

    2007-05-01

    Crystalline polyethylene was investigated under pressure between 0 and 40 GPa, up to 280 deg. C, by means of synchrotron x-ray powder diffraction and ab initio calculations. A rich polymorphism was unveiled, consisting of two new high-pressure monoclinic phases, in addition to the well-known orthorhombic one, which appear reversibly, although with strong hysteresis, upon increasing pressure above 6 GPa (P2{sub 1}/m, Z{sub chain}=1) and 14-16 GPa (A2/m, Z{sub chain}=2), respectively. The equation of state was determined for the three solid phases. We find that polyethylene is characterized by a sharp separation between strong covalent intrachain and weaker interchain interactions up to the maximum investigated pressure, which, in turn, places the ultimate chemical stability limit of polyethylene far beyond these thermodynamic conditions.

  5. Adsorption-Induced Surface Stresses of the Water/Quartz Interface: Ab Initio Molecular Dynamics Study.

    PubMed

    Gor, Gennady Y; Bernstein, Noam

    2016-05-31

    Adsorption-induced deformation is expansion or contraction of a solid due to adsorption on its surface. This phenomenon is important for a wide range of applications, from chemomechanical sensors to methane recovery from geological formations. The strain of the solid is driven by the change of the surface stress due to adsorption. Using ab initio molecular dynamics, we calculate the surface stresses for the dry α-quartz surfaces, and investigate how these stresses change when the surfaces are exposed to water. We find that the nonhydroxylated surface shows small and approximately isotropic changes in stress, while the hydroxylated surface, which interacts more strongly with the polar water molecules, shows larger and qualitatively anisotropic (opposite sign in xx and yy) surface stress changes. All of these changes are several times larger than the surface tension of water itself. The anisotropy and possibility of positive surface stress change can explain experimentally observed surface area contraction due to adsorption.

  6. Far-infrared spectrum and ab initio calculations for vinylene carbonate

    NASA Astrophysics Data System (ADS)

    Autrey, D.; del Rosario, A.; Laane, J.

    2000-09-01

    The far-infrared spectrum of vinylene carbonate shows five closely spaced bands near 233 cm -1, characteristic of a nearly harmonic ring-puckering potential energy function. Using a coordinate dependent kinetic energy expansion, the potential energy function was determined to be V ( cm-1)=1.652×10 5x 2-1.416×10 5x 4 where x is the puckering coordinate in Å. This shows the molecule to be much more rigid than the similar 3-cyclopenten-1-one due to π bonding interactions involving the oxygen atoms adjacent to the carbonyl group. Ab initio calculations with a B3LYP/6-311++G ∗∗ basis set yield structural data in good agreement with the previous microwave work and also predict vibrational frequencies that correspond closely to the experimental values.

  7. Ab initio investigation of the sum-frequency hyperpolarizability of small chiral molecules

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Fischer, Peer; Buckingham, A. David

    2000-11-01

    Using a sum-over-states procedure based on configuration interaction singles /6-311++G **, we have computed the sum-frequency hyperpolarizability βijk(-3 ω;2 ω, ω) of two small chiral molecules, R-monofluoro-oxirane and R-(+)-propylene oxide. Excitation energies were scaled to fit experimental UV-absorption data and checked with ab initio values from time-dependent density functional theory. The isotropic part of the computed hyperpolarizabilities, β¯(-3ω;2ω,ω) , is much smaller than that reported previously from sum-frequency generation experiments on aqueous solutions of arabinose. Comparison is made with a single-centre chiral model.

  8. Structure and lattice dynamics of rare-earth ferroborate crystals: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.; Serdtsev, A. V.; Kashchenko, M. A.; Klimin, S. A.

    2016-08-01

    The ab initio calculation of the crystal structure and the phonon spectrum of crystals RFe3(BO3)4 ( R = Pr, Nd, Sm) has been performed in the framework of the density functional theory. The ion coordinates in the unit cell, the lattice parameters, the frequencies and the types of fundamental vibrations, and also the intensities of lines in the Raman spectrum and infrared reflection spectra have been found. The elastic constants of the crystals have been calculated. For low-frequency A 2 mode in PrFe3(BO3)4, a "seed" vibration frequency that strongly interacts with the electronic excitation on a praseodymium ion was found. The calculation results satisfactory agree with the experimental data.

  9. Ab initio coupled-cluster and multi-reference configuration interaction studies of the low-lying electronic states of 1,2,3,4-cyclobutanetetraone

    SciTech Connect

    Hansen, Jared A.; Bauman, Nicholas P.; Shen, Jun; Borden, Weston Thatcher; Piecuch, Piotr

    2015-12-09

    In this paper, the four, closely spaced, lowest energy electronic states of the challenging, D4h-symmetric, 1,2,3,4-cyclobutanetetraone (C4O4) molecule have been investigated using high-level ab initio methods. The calculated states include the closed-shell singlet 8π(1A1g) state, the singlet 10π(1A1g) state, in which the π-type lowest unoccupied molecular orbital (LUMO) of the 8π(1A1g) reference is doubly occupied and the σ-type highest occupied molecular orbital (HOMO) is empty, and the open-shell singlet and triplet states, designated as 9π(1B2u) and 9π(3B2u), respectively, originating from single occupancy of the HOMO and LUMO. Our focus is on single-reference coupled-cluster (CC) approaches capable of handling electronic near-degeneracies in diradicals, especially the completely renormalised CR-CC(2,3) and active-space CCSDt methods, along with their CCSD and EOMCCSD counterparts. The internally contracted multi-reference configuration interaction calculations with a quasi-degenerate Davidson correction are performed as well. Our computations demonstrate that the state ordering is 9π(3B2u) < 8π(1A1g) < 9π(1B2u) < 10π(1A1g) and that the 8π(1A1g) - 9π(3B2u) gap is in the 7–11 kJ/mol range, in reasonable agreement with the negative ion photoelectron spectroscopy measurements, which give 6.27 ± 0.5 kJ/mol. Finally, in addition to the theory level used, geometry relaxation and basis set play a significant role in determining the state ordering and energy spacings. In particular, it is unsafe to use lower level, non-CC geometries and smaller basis sets.

  10. Ab-initio simulations of materials using VASP: Density-functional theory and beyond.

    PubMed

    Hafner, Jürgen

    2008-10-01

    During the past decade, computer simulations based on a quantum-mechanical description of the interactions between electrons and between electrons and atomic nuclei have developed an increasingly important impact on solid-state physics and chemistry and on materials science-promoting not only a deeper understanding, but also the possibility to contribute significantly to materials design for future technologies. This development is based on two important columns: (i) The improved description of electronic many-body effects within density-functional theory (DFT) and the upcoming post-DFT methods. (ii) The implementation of the new functionals and many-body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures. In this review, I discuss the implementation of various DFT functionals [local-density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functional mixing DFT, and exact (Hartree-Fock) exchange] and post-DFT approaches [DFT + U for strong electronic correlations in narrow bands, many-body perturbation theory (GW) for quasiparticle spectra, dynamical correlation effects via the adiabatic-connection fluctuation-dissipation theorem (AC-FDT)] in the Vienna ab initio simulation package VASP. VASP is a plane-wave all-electron code using the projector-augmented wave method to describe the electron-core interaction. The code uses fast iterative techniques for the diagonalization of the DFT Hamiltonian and allows to perform total-energy calculations and structural optimizations for systems with thousands of atoms and ab initio molecular dynamics simulations for ensembles with a few hundred atoms extending over several tens of ps. Applications in many different areas (structure and phase stability, mechanical and dynamical properties, liquids, glasses and quasicrystals, magnetism and magnetic nanostructures, semiconductors and insulators, surfaces

  11. Emergent properties of nuclei from ab initio coupled-cluster calculations

    DOE PAGES

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.

    2016-05-17

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less

  12. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

    PubMed Central

    Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.

    2015-01-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected. PMID:25664744

  13. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models.

    PubMed

    Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J

    2015-02-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  14. Ab initio centroid molecular dynamics: a fully quantum method for condensed-phase dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pavese, Marc; Berard, Daniel R.; Voth, Gregory A.

    1999-01-01

    A fully quantum molecular dynamics method is presented which combines ab initio Car-Parrinello molecular dynamics with centroid molecular dynamics. The first technique allows the forces on the atoms to be obtained from ab initio electronic structure. The second technique, given the forces on the atoms, allows one to calculate an approximate quantum time evolution for the nuclei. The combination of the two, therefore, represents the first feasible approach to simulating the fully quantum dynamics of a many-body system. An application to excess proton translocation along a model water wire will be presented.

  15. Ab initio study of collective excitations in a disparate mass molten salt.

    PubMed

    Bryk, Taras; Klevets, Ivan

    2012-12-14

    Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.

  16. Accurate ab initio quartic force fields for borane and BeH2

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.

    1992-01-01

    The quartic force fields of BH3 and BeH2 have been computed ab initio using an augmented coupled cluster (CCSD(T)) method and basis sets of spdf and spdfg quality. For BH3, the computed spectroscopic constants are in very good agreement with recent experimental data, and definitively confirm misassignments in some older work, in agreement with recent ab initio studies. Using the computed spectroscopic constants, the rovibrational partition function for both molecules has been constructed using a modified direct numerical summation algorithm, and JANAF-style thermochemical tables are presented.

  17. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  18. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  19. Calculation of rotation-vibration energy levels of the ammonia molecule based on an ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Ovsyannikov, Roman I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan; Yachmenev, Andrey; Yurchenko, Sergei N.; Zobov, Nikolai F.

    2016-09-01

    An ab initio potential energy surface (PES) for gas-phase ammonia NH3 has been computed using the methodology pioneered for water (Polyansky et al., 2013). Multireference configuration interaction calculations are performed at about 50 000 points using the aug-cc-pCVQZ and aug-cc-pCV5Z basis sets and basis set extrapolation. Relativistic and adiabatic surfaces are also computed. The points are fitted to a suitable analytical form, producing the most accurate ab initio PES for this molecule available. The rotation-vibration energy levels are computed using nuclear motion program TROVE in both linearised and curvilinear coordinates. Better convergence is obtained using curvilinear coordinates. Our results are used to assign the visible spectrum of 14NH3 recorded by Coy and Lehmann (1986). Rotation-vibration energy levels for the isotopologues NH2D, NHD2, ND3 and 15NH3 are also given. An ab initio value for the dissociation energy D0 of 14NH3 is also presented.

  20. Ab Initio Modeling of the Herpesvirus VP26 Core Domain Assessed by CryoEM Density

    PubMed Central

    Baker, Matthew L; Jiang, Wen; Wedemeyer, William J; Rixon, Frazer J; Baker, David; Chiu, Wah

    2006-01-01

    Efforts in structural biology have targeted the systematic determination of all protein structures through experimental determination or modeling. In recent years, 3-D electron cryomicroscopy (cryoEM) has assumed an increasingly important role in determining the structures of these large macromolecular assemblies to intermediate resolutions (6–10 Å). While these structures provide a snapshot of the assembly and its components in well-defined functional states, the resolution limits the ability to build accurate structural models. In contrast, sequence-based modeling techniques are capable of producing relatively robust structural models for isolated proteins or domains. In this work, we developed and applied a hybrid modeling approach, utilizing cryoEM density and ab initio modeling to produce a structural model for the core domain of a herpesvirus structural protein, VP26. Specifically, this method, first tested on simulated data, utilizes the cryoEM density map as a geometrical constraint in identifying the most native-like models from a gallery of models generated by ab initio modeling. The resulting model for the core domain of VP26, based on the 8.5-Å resolution herpes simplex virus type 1 (HSV-1) capsid cryoEM structure and mutational data, exhibited a novel fold. Additionally, the core domain of VP26 appeared to have a complementary interface to the known upper-domain structure of VP5, its cognate binding partner. While this new model provides for a better understanding of the assembly and interactions of VP26 in HSV-1, the approach itself may have broader applications in modeling the components of large macromolecular assemblies. PMID:17069457

  1. Interaction of a pseudo-π C-C bond with cuprous and argentous chlorides: Cyclopropane⋯CuCl and cyclopropane⋯AgCl investigated by rotational spectroscopy and ab initio calculations.

    PubMed

    Zaleski, Daniel P; Mullaney, John C; Bittner, Dror M; Tew, David P; Walker, Nicholas R; Legon, Anthony C

    2015-10-28

    Strongly bound complexes (CH2)3⋯MCl (M = Cu or Ag), formed by non-covalent interaction of cyclopropane and either cuprous chloride or argentous chloride, have been generated in the gas phase by means of the laser ablation of either copper or silver metal in the presence of supersonically expanded pulses of a gas mixture containing small amounts of cyclopropane and carbon tetrachloride in a large excess of argon. The rotational spectra of the complexes so formed were detected with a chirped-pulse, Fourier transform microwave spectrometer and analysed to give rotational constants and Cu and Cl nuclear quadrupole coupling constants for eight isotopologues of each of (CH2)3⋯CuCl and (CH2)3⋯AgCl. The geometry of each of these complexes was established unambiguously to have C(2v) symmetry, with the three C atoms coplanar, and with the MCl molecule lying along a median of the cyclopropane C3 triangle. This median coincides with the principal inertia axis a in each of the two complexes (CH2)3⋯MCl. The M atom interacts with the pseudo-π bond linking the pair of equivalent carbon atoms (F)C (F = front) nearest to it, so that M forms a non-covalent bond to one C-C edge of the cyclopropane molecule. The (CH2)3⋯MCl complexes have similar angular geometries to those of the hydrogen- and halogen-bonded analogues (CH2)3⋯HCl and (CH2)3⋯ClF, respectively. Quantitative details of the geometries were determined by interpretation of the observed rotational constants and gave results in good agreement with those from ab initio calculations carried out at the CCSD(T)(F12*)/aug-cc-pVTZ-F12 level of theory. Interesting geometrical features are the lengthening of the (F)C-(F)C bond and the shrinkage of the two equivalent (B)C-(F)C (B = back) bonds relative to the C-C bond in cyclopropane itself. The expansions of the (F)C-(F)C bond are 0.1024(9) Å and 0.0727(17) Å in (CH2)3⋯CuCl and (CH2)3⋯AgCl, respectively, according to the determined r0 geometries. The C-C bond

  2. Interaction of a pseudo-π C—C bond with cuprous and argentous chlorides: Cyclopropane⋯CuCl and cyclopropane⋯AgCl investigated by rotational spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Mullaney, John C.; Bittner, Dror M.; Tew, David P.; Walker, Nicholas R.; Legon, Anthony C.

    2015-10-01

    Strongly bound complexes (CH2)3⋯MCl (M = Cu or Ag), formed by non-covalent interaction of cyclopropane and either cuprous chloride or argentous chloride, have been generated in the gas phase by means of the laser ablation of either copper or silver metal in the presence of supersonically expanded pulses of a gas mixture containing small amounts of cyclopropane and carbon tetrachloride in a large excess of argon. The rotational spectra of the complexes so formed were detected with a chirped-pulse, Fourier transform microwave spectrometer and analysed to give rotational constants and Cu and Cl nuclear quadrupole coupling constants for eight isotopologues of each of (CH2)3⋯CuCl and (CH2)3⋯AgCl. The geometry of each of these complexes was established unambiguously to have C2v symmetry, with the three C atoms coplanar, and with the MCl molecule lying along a median of the cyclopropane C3 triangle. This median coincides with the principal inertia axis a in each of the two complexes (CH2)3⋯MCl. The M atom interacts with the pseudo-π bond linking the pair of equivalent carbon atoms FC (F = front) nearest to it, so that M forms a non-covalent bond to one C—C edge of the cyclopropane molecule. The (CH2)3⋯MCl complexes have similar angular geometries to those of the hydrogen- and halogen-bonded analogues (CH2)3⋯HCl and (CH2)3⋯ClF, respectively. Quantitative details of the geometries were determined by interpretation of the observed rotational constants and gave results in good agreement with those from ab initio calculations carried out at the CCSD(T)(F12*)/aug-cc-pVTZ-F12 level of theory. Interesting geometrical features are the lengthening of the FC—FC bond and the shrinkage of the two equivalent BC—FC (B = back) bonds relative to the C—C bond in cyclopropane itself. The expansions of the FC—FC bond are 0.1024(9) Å and 0.0727(17) Å in (CH2)3⋯CuCl and (CH2)3⋯AgCl, respectively, according to the determined r0

  3. Interaction of a pseudo-π C—C bond with cuprous and argentous chlorides: Cyclopropane⋯CuCl and cyclopropane⋯AgCl investigated by rotational spectroscopy and ab initio calculations

    SciTech Connect

    Zaleski, Daniel P.; Mullaney, John C.; Bittner, Dror M.; Walker, Nicholas R. E-mail: nick.walker@newcastle.ac.uk; Tew, David P.; Legon, Anthony C. E-mail: nick.walker@newcastle.ac.uk

    2015-10-28

    Strongly bound complexes (CH{sub 2}){sub 3}⋯MCl (M = Cu or Ag), formed by non-covalent interaction of cyclopropane and either cuprous chloride or argentous chloride, have been generated in the gas phase by means of the laser ablation of either copper or silver metal in the presence of supersonically expanded pulses of a gas mixture containing small amounts of cyclopropane and carbon tetrachloride in a large excess of argon. The rotational spectra of the complexes so formed were detected with a chirped-pulse, Fourier transform microwave spectrometer and analysed to give rotational constants and Cu and Cl nuclear quadrupole coupling constants for eight isotopologues of each of (CH{sub 2}){sub 3}⋯CuCl and (CH{sub 2}){sub 3}⋯AgCl. The geometry of each of these complexes was established unambiguously to have C{sub 2v} symmetry, with the three C atoms coplanar, and with the MCl molecule lying along a median of the cyclopropane C{sub 3} triangle. This median coincides with the principal inertia axis a in each of the two complexes (CH{sub 2}){sub 3}⋯MCl. The M atom interacts with the pseudo-π bond linking the pair of equivalent carbon atoms {sup F}C (F = front) nearest to it, so that M forms a non-covalent bond to one C—C edge of the cyclopropane molecule. The (CH{sub 2}){sub 3}⋯MCl complexes have similar angular geometries to those of the hydrogen- and halogen-bonded analogues (CH{sub 2}){sub 3}⋯HCl and (CH{sub 2}){sub 3}⋯ClF, respectively. Quantitative details of the geometries were determined by interpretation of the observed rotational constants and gave results in good agreement with those from ab initio calculations carried out at the CCSD(T)(F12*)/aug-cc-pVTZ-F12 level of theory. Interesting geometrical features are the lengthening of the {sup F}C—{sup F}C bond and the shrinkage of the two equivalent {sup B}C—{sup F}C (B = back) bonds relative to the C—C bond in cyclopropane itself. The expansions of the {sup F}C—{sup F}C bond are 0

  4. Ab initio charge-carrier mobility model for amorphous molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2016-05-01

    Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.

  5. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  6. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  7. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  8. New approaches for molecular conformer force field analysis in combination with ab initio results

    NASA Astrophysics Data System (ADS)

    Kuramshina, G. M.; Pentin, Yu. A.; Yagola, A. G.

    1999-10-01

    Ab initio and DFT results on harmonic force constants for trans- and gauche-conformers of CH 3CH 2CH 2Cl, CF 3CH 2CH 2Cl and CCl 3CH 2CH 2Cl are used for formulating constraints in molecular force field models described compounds with hindered internal rotation around the C-C bond.

  9. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094

  10. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  11. Raman and infrared spectra of minerals from ab initio molecular dynamics simulations: The spodumene crystal

    NASA Astrophysics Data System (ADS)

    Pagliai, Marco; Muniz-Miranda, Maurizio; Cardini, Gianni; Schettino, Vincenzo

    2011-05-01

    Ab initio molecular dynamics simulations with the Car-Parrinello method have been performed on the spodumene crystal at standard conditions and high pressure. Starting from the computed trajectories, accurate Raman and infrared spectra have been obtained and compared with available experimental measurements in the low and high pressure phases. The structural and spectroscopic changes due to the pressure effects are discussed.

  12. An ab initio molecular dynamics study on hydrogen bonds between water molecules.

    PubMed

    Pan, Zhang; Chen, Jing; Lü, Gang; Geng, Yi-Zhao; Zhang, Hui; Ji, Qing

    2012-04-28

    The quantitative estimation of the total interaction energy of a molecular system containing hydrogen bonds (H bonds) depends largely on how to identify H bonding. The conventional geometric criteria of H bonding are simple and convenient in application, but a certain amount of non-H bonding cases are also identified as H bonding. In order to investigate the wrong identification, we carry out a systematic calculation on the interaction energy of two water molecules at various orientation angles and distances using ab initio molecular dynamics method with the dispersion correction for the Becke-Lee-Yang-Parr (BLYP) functionals. It is shown that, at many orientation angles and distances, the interaction energies of the two water molecules exceed the energy criterion of the H bond, but they are still identified as H-bonded by the conventional "distance-angle" criteria. It is found that in these non-H bonding cases the wrong identification is mainly caused by short-range interaction between the two neighbouring water molecules. We thus propose that, in addition to the conventional distance and angle criteria of H bonding, the distance d(H···H) between the two neighbouring hydrogen atoms of the two water molecules should also be taken as a criterion, and the distance r(O···H) between the hydrogen atom of the H-bond donor molecule and the oxygen atom of the acceptor molecule should be restricted by a lower limit. When d(H···H) and r(O···H) are small (e.g., d(H···H) < 2.0 Å and r(O···H) < 1.62 Å), the repulsion between the two neighbouring atoms increases the total energy of the two water molecules dramatically and apparently weakens the binding of the water dimer. A statistical analysis and comparison of the numbers of the H bonds identified by using different criteria have been conducted on a Car-Parrinello ab initio molecular dynamics simulation with dispersion correction for a system of 64 water molecules at near-ambient temperature. They show that

  13. An ab initio molecular dynamics study on hydrogen bonds between water molecules

    NASA Astrophysics Data System (ADS)

    Pan, Zhang; Chen, Jing; Lü, Gang; Geng, Yi-Zhao; Zhang, Hui; Ji, Qing

    2012-04-01

    The quantitative estimation of the total interaction energy of a molecular system containing hydrogen bonds (H bonds) depends largely on how to identify H bonding. The conventional geometric criteria of H bonding are simple and convenient in application, but a certain amount of non-H bonding cases are also identified as H bonding. In order to investigate the wrong identification, we carry out a systematic calculation on the interaction energy of two water molecules at various orientation angles and distances using ab initio molecular dynamics method with the dispersion correction for the Becke-Lee-Yang-Parr (BLYP) functionals. It is shown that, at many orientation angles and distances, the interaction energies of the two water molecules exceed the energy criterion of the H bond, but they are still identified as H-bonded by the conventional "distance-angle" criteria. It is found that in these non-H bonding cases the wrong identification is mainly caused by short-range interaction between the two neighbouring water molecules. We thus propose that, in addition to the conventional distance and angle criteria of H bonding, the distance dHṡṡṡH between the two neighbouring hydrogen atoms of the two water molecules should also be taken as a criterion, and the distance rOṡṡṡH between the hydrogen atom of the H-bond donor molecule and the oxygen atom of the acceptor molecule should be restricted by a lower limit. When dHṡṡṡH and rOṡṡṡH are small (e.g., dHṡṡṡH < 2.0 Å and rOṡṡṡH < 1.62 Å), the repulsion between the two neighbouring atoms increases the total energy of the two water molecules dramatically and apparently weakens the binding of the water dimer. A statistical analysis and comparison of the numbers of the H bonds identified by using different criteria have been conducted on a Car-Parrinello ab initio molecular dynamics simulation with dispersion correction for a system of 64 water molecules at near-ambient temperature. They

  14. Global analytical ab initio ground-state potential energy surface for the C((1)D)+H2 reactive system.

    PubMed

    Zhang, Chunfang; Fu, Mingkai; Shen, Zhitao; Ma, Haitao; Bian, Wensheng

    2014-06-21

    A new global ab initio potential energy surface (called ZMB-a) for the 1(1)A' state of the C((1)D)+H2 reactive system has been constructed. This is based upon ab initio calculations using the internally contracted multireference configuration interaction approach with the aug-cc-pVQZ basis set, performed at about 6300 symmetry unique geometries. Accurate analytical fits are generated using many-body expansions with the permutationally invariant polynomials, except that the fit of the deep well region is taken from our previous fit. The ZMB-a surface is unique in the accurate description of the regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The CIs between the 1(1)A' and 2(1)A' states cause two kinds of barriers on the ZMB-a surface: one is in the linear H-CH dissociation direction with a barrier height of 9.07 kcal/mol, which is much higher than those on the surfaces reported before; the other is in the C((1)D) collinearly attacking H2 direction with a barrier height of 12.39 kcal/mol. The ZMB-a surface basically reproduces our ab initio calculations in the vdW interaction regions, and supports a linear C-HH vdW complex in the entrance channel, and two vdW complexes in the exit channel, at linear CH-H and HC-H geometries, respectively. PMID:24952535

  15. Conformations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane: are ab initio quantum chemistry predictions accurate?

    NASA Astrophysics Data System (ADS)

    Smith, Grant D.; Jaffe, Richard L.; Yoon, Do. Y.

    1998-06-01

    High-level ab initio quantum chemistry calculations are shown to predict conformer populations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane that are consistent with gas-phase NMR vicinal coupling constant measurements. The conformational energies of the cyclic ether 5-methoxy-1,3-dioxane are found to be consistent with those predicted by a rotational isomeric state (RIS) model based upon the acyclic analog 1,2-dimethoxypropane. The quantum chemistry and RIS calculations indicate the presence of strong attractive 1,5 C(H 3)⋯O electrostatic interactions in these molecules, similar to those found in 1,2-dimethoxyethane.

  16. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states

    SciTech Connect

    Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver

    2014-04-07

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He{sub 7} were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He {sub 2}{sup *}, and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed.

  17. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.

    PubMed

    Marsalek, Ondrej; Uhlig, Frank; VandeVondele, Joost; Jungwirth, Pavel

    2012-01-17

    liquid cluster and becomes indistinguishable from an equilibrated, solvated electron on a picosecond time scale. In contrast, for solid, cryogenic systems, the electron only partially localizes outside of the cluster, being trapped in a metastable, weakly bound "cushion-like" state. Strongly bound states under cryogenic conditions could only be prepared by cooling equilibrated, liquid, negatively charged clusters. These calculations allow us to rationalize how different isomers of electrons in cryogenic clusters can be observed experimentally. Our results also bring into question the direct extrapolation of properties of cryogenic, negatively charged water clusters to those of electrons in the bulk liquid. Ab initio molecular dynamics represents a unique computational tool for investigating the reactivity of the solvated electron in water. As a prototype, the electron-proton reaction was followed in the 32-water cluster. In accord with experiment, the molecular mechanism is a proton transfer process that is not diffusion limited, but rather controlled by a proton-induced deformation of the excess electron's solvent shell. We demonstrate the necessary ingredients of a successful density functional methodology for the hydrated electron that avoids potential pitfalls, such as self-interaction error, insufficient basis set, or lack of dispersion interactions. We also benchmark the density functional theory methods and outline the path to faithful ab initio simulations of dynamics and reactivity of electrons solvated in extended aqueous systems.

  18. Determination of a silane intermolecular force field potential model from an ab initio calculation

    SciTech Connect

    Li, Arvin Huang-Te; Chao, Sheng D.; Chang, Chien-Cheng

    2010-12-15

    Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.

  19. Ab initio Mapping of Interlayer Coupling in Transition Metal Dichalcogenides and Graphene

    NASA Astrophysics Data System (ADS)

    Fang, Shiang; Kaxiras, Efthimios

    Two-dimensional layered materials cover a wide variety of physics phenomena, such as topological phases, superconductivity, magnetism and charge density waves. Owing to the layered geometry and the van der Waals interactions in between, stacks of these van der Waals layered materials provide a venue to create a heterostructure with various physics properties. The interaction between different physics properties is particular interesting to engineer the material with the desired properties. One of the crucial ingredient in understanding the heterostructure is the interlayer coupling in between. In the literature, such kind of coupling has been proposed in various empirical forms. However, a true ab initio coupling model is still lacking. For the first time, here we have derived such interlayer coupling model from the first principle calculations based on the Wannier transformation of graphene stacks. We further investigate the Fermi velocity renormalization, van Hove singularities and the moire pattern for electron localization. Such microscopic understanding of the interlayer coupling would shed light on orbital hybridization and transport in multilayer stacks. This work was supported by the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319, and by ARO MURI Award No. W911NF-14-0247.

  20. A Comparison of the ab Initio Calculated and Experimental Conformational Energies of Alkylcyclohexanes

    NASA Astrophysics Data System (ADS)

    Freeman, Fillmore; Tsegai, Zufan M.; Kasner, Marc L.; Hehre, Warren J.

    2000-05-01

    Ab initio 6-31G(d) and MP2/6-31G(d)//6-31G(d) methods were used to calculate the energies of the rotamers of the chair conformers of alkylcyclohexanes and trimethylsilylcyclohexane. The MP2/6-31G(d)//6-31G(d) calculated conformational energies ( ? or A values, in kcal/mol) of the alkylcyclohexanes (Me = 1.96; Et = 1.80; Pr = 1.73 iso-Pr = 1.60; t-Bu = 5.45; neo-pent = 1.32) and trimethylsilylcyclohexane (SiMe3 = 2.69) are similar to the experimental values. Plots of the calculated conformational energies for the alkylcyclohexanes and trimethylsilylcyclohexane versus their experimental values are linear (slope = 1.253 and r = .993 for 6-31G(d) and slope = 1.114 and r = .982 for MP2/6-31G(d)//6-31G(d)). The conformational energies are determined primarily by steric effects which include gauche (synclinal) interactions and repulsive nonbonded interactions in both the axial and equatorial conformers.

  1. Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids.

    PubMed

    Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo

    2016-06-21

    The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties.

  2. Beyond Born-Mayer: Improved Models for Short-Range Repulsion in ab Initio Force Fields.

    PubMed

    Van Vleet, Mary J; Misquitta, Alston J; Stone, Anthony J; Schmidt, J R

    2016-08-01

    Short-range repulsion within intermolecular force fields is conventionally described by either Lennard-Jones (A/r(12)) or Born-Mayer (A exp(-Br)) forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of intermolecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, and robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Finally, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach. PMID:27337546

  3. Ab initio carbon capture in open-site metal-organic frameworks

    SciTech Connect

    Dzubak, AL; Lin, LC; Kim, J; Swisher, JA; Poloni, R; Maximoff, SN; Smit, B; Gagliardi, L

    2012-08-19

    During the formation of metal-organic frameworks (MOFs), metal centres can coordinate with the intended organic linkers, but also with solvent molecules. In this case, subsequent activation by removal of the solvent molecules creates unsaturated 'open' metal sites known to have a strong affinity for CO2 molecules, but their interactions are still poorly understood. Common force fields typically underestimate by as much as two orders of magnitude the adsorption of CO2 in open-site Mg-MOF-74, which has emerged as a promising MOF for CO2 capture. Here we present a systematic procedure to generate force fields using high-level quantum chemical calculations. Monte Carlo simulations based on an ab initio force field generated for CO2 in Mg-MOF-74 shed some light on the interpretation of thermodynamic data from flue gas in this material. The force field describes accurately the chemistry of the open metal sites, and is transferable to other structures. This approach may serve in molecular simulations in general and in the study of fluid-solid interactions.

  4. Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids.

    PubMed

    Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo

    2016-06-21

    The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties. PMID:27229870

  5. Ab initio study of the Br(2P)-HBr van der Waals complex.

    PubMed

    Toboła, R; Chałasiński, G; Kłos, J; Szcześniak, M M

    2009-05-14

    This study reports an ab initio characterization of a prereactive van der Waals complex between an open-shell atom Br((2)P) and a closed shell molecule HBr. The three adiabatic potential surfaces 1 (2)A('), 2 (2)A('), and 1 (2)A("), which result from the splitting of degenerate P state of Br are obtained from coupled cluster calculations. The coupling between same-symmetry states is calculated by multireference configuration-interaction method. A transformation to a diabatic representation and inclusion of the spin-orbit coupling effects on the interactions are also discussed. Bound states are calculated using an adiabatic bender model. The global minimum on the lowest adiabatic potential surface corresponds to a T-shaped geometry and has a well depth of D(e)=762.5 cm(-1) at R(e)=3.22 A. A secondary minimum occurs for a hydrogen-bonded geometry with D(e)=445.3 cm(-1) at R(e)=4.24 A. Upon inclusion of spin-orbit coupling the hydrogen-bonded minimum remains at the same depth, but the T-shaped minimum washes out to less than half of its spin-free value. The lowest bound state is localized in the linear minimum. The spin-orbit coupling plays a very important role in shaping of the potential energy surfaces of Br-HBr.

  6. Ab initio cluster studies of La sub 2 CuO sub 4

    SciTech Connect

    Martin, R.L.

    1991-01-01

    In this paper we examine the properties of small cluster models of La{sub 2}CuO{sub 4}. In Section 2, the Madelung/Pauli background potential used to imbed the primary cluster and the basis sets used to expand the cluster wavefunction are discussed. Section 3 presents the results of calculations on CuO{sub 6} in which the optical absorption and the photoemission spectrum are examined. The calculation on CuO{sub 6} and our earlier work on larger clusters suggest that a single-band Pariser-Parr-Pople (PPP) model be developed. Therefore, in Section 4 the PPP model and extensions which relax the zero-differential-overlap (ZDO) approximation upon which it is based are reviewed. Calculations on the states of Cu{sub 2}O{sub 7} necessary to parameterize the PPP model are presented in Section 5 and compared with analogous calculations for Cu{sub 2}O{sub 11}. Section 6 discusses the problems associated with the direct ab initio determination of the anti-ferromagnetic exchange interaction, examines the magnitudes of the occupation-dependent hopping and direct exchange interactions which arise when the ZDO approximation is relaxed, and provides estimates of the uncertainties in the parameters due to electron correlation and polarization effects not recoverable with the present basis sets and finite clusters. A comparison of the parameters with those extracted from constrained LDF theory concludes Section 6. Finally, Section 7 summarizes the conclusions of this research.

  7. Ab initio carbon capture in open-site metal-organic frameworks.

    PubMed

    Dzubak, Allison L; Lin, Li-Chiang; Kim, Jihan; Swisher, Joseph A; Poloni, Roberta; Maximoff, Sergey N; Smit, Berend; Gagliardi, Laura

    2012-10-01

    During the formation of metal-organic frameworks (MOFs), metal centres can coordinate with the intended organic linkers, but also with solvent molecules. In this case, subsequent activation by removal of the solvent molecules creates unsaturated 'open' metal sites known to have a strong affinity for CO(2) molecules, but their interactions are still poorly understood. Common force fields typically underestimate by as much as two orders of magnitude the adsorption of CO(2) in open-site Mg-MOF-74, which has emerged as a promising MOF for CO(2) capture. Here we present a systematic procedure to generate force fields using high-level quantum chemical calculations. Monte Carlo simulations based on an ab initio force field generated for CO(2) in Mg-MOF-74 shed some light on the interpretation of thermodynamic data from flue gas in this material. The force field describes accurately the chemistry of the open metal sites, and is transferable to other structures. This approach may serve in molecular simulations in general and in the study of fluid-solid interactions.

  8. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    PubMed

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-01

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes. PMID:27074500

  9. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    PubMed

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-01

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes.

  10. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory.

    PubMed

    Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L

    2016-05-13

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1  nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory. PMID:27232042

  11. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  12. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE PAGES

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-11

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  13. Melting of sodium under high pressure. An ab-initio study

    SciTech Connect

    González, D. J.; González, L. E.

    2015-08-17

    We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.

  14. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  15. Accelerating chemical reactions: Exploring reactive free-energy surfaces using accelerated ab initio molecular dynamics

    PubMed Central

    Pierce, Levi C. T.; Markwick, Phineus R. L.; McCammon, J. Andrew; Doltsinis, Nikos L.

    2011-01-01

    A biased potential molecular dynamics simulation approach, accelerated molecular dynamics (AMD), has been implemented in the framework of ab initio molecular dynamics for the study of chemical reactions. Using two examples, the double proton transfer reaction in formic acid dimer and the hypothetical adiabatic ring opening and subsequent rearrangement reactions in methylenecyclopropane, it is demonstrated that ab initio AMD can be readily employed to efficiently explore the reactive potential energy surface, allowing the prediction of chemical reactions and the identification of metastable states. An adaptive variant of the AMD method is developed, which additionally affords an accurate representation of both the free-energy surface and the mechanism associated with the chemical reaction of interest and can also provide an estimate of the reaction rate. PMID:21548673

  16. B28: the smallest all-boron cage from an ab initio global search

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce

    2015-09-01

    Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e

  17. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  18. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    PubMed

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations. PMID:26733483

  19. Prediction of the material with highest known melting point from ab initio molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun; van de Walle, Axel

    2015-07-01

    Using electronic structure calculations, we conduct an extensive investigation into the Hf-Ta-C system, which includes the compounds that have the highest melting points known to date. We identify three major chemical factors that contribute to the high melting temperatures. Based on these factors, we propose a class of materials that may possess even higher melting temperatures and explore it via efficient ab initio molecular dynamics calculations in order to identify the composition maximizing the melting point. This study demonstrates the feasibility of automated and high-throughput materials screening and discovery via ab initio calculations for the optimization of "higher-level" properties, such as melting points, whose determination requires extensive sampling of atomic configuration space.

  20. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems. PMID:25877566

  1. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-01

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  2. Ethanol decomposition on transition metal nanoparticles during carbon nanotube growth: ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Shimamura, Kohei; Oguri, Tomoya; Arifin, Rizal; Shimojo, Fuyuki; Yamaguchi, Shu

    2015-03-01

    The growth mechanism of carbon nanotubes (CNT) has been widely discussed both from experimental and computational studies. Regarding the computational studies, most of the studies focuses on the aggregation of isolate carbon atoms on the catalytic metal nanoparticle, whereas the initial dissociation of carbon source molecules should affect the yield and quality of the products. On the other hand, we have studied the dissociation process of carbon source molecules on the metal surface by the ab initio molecular dynamics simulation. In the study, we investigate the ethanol dissociation on Pt and Ni clusters by ab initio MD simulations to discuss the initial stage of CNT growth by alcohol CVD technique. Part of this research is supported by the Grant-in-Aid for Young Scientists (a) (No. 24686026) from MEXT, Japan.

  3. Like-charge guanidinium pairing from molecular dynamics and ab initio calculations.

    PubMed

    Vazdar, Mario; Vymětal, Jiři; Heyda, Jan; Vondrášek, Jiři; Jungwirth, Pavel

    2011-10-20

    Pairing of guanidinium moieties in water is explored by molecular dynamics simulations of short arginine-rich peptides and ab initio calculations of a pair of guanidinium ions in water clusters of increasing size. Molecular dynamics simulations show that, in an aqueous environment, the diarginine guanidinium like-charged ion pairing is sterically hindered, whereas in the Arg-Ala-Arg tripeptide, this pairing is significant. This result is supported by the survey of protein structure databases, where it is found that stacked arginine pairs in dipeptide fragments exist solely as being imposed by the protein structure. In contrast, when two arginines are separated by a single amino acid, their guanidinium groups can freely approach each other and they frequently form stacked pairs. Molecular dynamics simulations results are also supported by ab initio calculations, which show stabilization of stacked guanidinium pairs in sufficiently large water clusters.

  4. Conformational studies by liquid crystal NMR and ab initio calculations: methyl nicotinate and methyl isonicotinate

    NASA Astrophysics Data System (ADS)

    Kon, Masao; Kurokawa, Hideki; Takeuchi, Hiroshi; Konaka, Shigehiro

    1992-04-01

    Conformational properties of methyl nicotinate and methyl isonicotinate have been studied by liquid crystal 1H-NMR spectroscopy combined with ab initio calculations. The solvent used is a mixture of 80 mol.% of EBBA and 20 mol.% of MBBA.Ab initio calculations have been performed with 4-21G and MINI-4 basis sets to estimate molecular structures and the potential functions for internal rotation. Some structural parameters and the energy difference between rotational isomers have been refined by using observed dipolar coupling constants. The correlation between internal rotation and reorientational molecular motion has been taken into account according to the theory of Emsley, Luckhurst and Stockley. The parameters of the mean external potential are found to take similar values for methyl nicotinate and methyl isonicotinate. The energy difference of the two stable conformers of methyl nicotinate is in agreement with the analysis neglecting the correlation between the two motions.

  5. Point defect modeling in materials: Coupling ab initio and elasticity approaches

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Bruneval, Fabien; Marinica, Mihai-Cosmin; Clouet, Emmanuel

    2013-10-01

    Modeling point defects at an atomic scale requires careful treatment of the long-range atomic relaxations. This elastic field can strongly affect point defect properties calculated in atomistic simulations because of the finite size of the system under study. This is an important restriction for ab initio methods which are limited to a few hundred atoms. We propose an original approach coupling ab initio calculations and linear elasticity theory to obtain the properties of an isolated point defect for reduced supercell sizes. The reliability and benefit of our approach are demonstrated for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron, and the neutral vacancy in silicon.

  6. Ab initio calculations on the magnetic properties of transition metal complexes

    SciTech Connect

    Bodenstein, Tilmann; Fink, Karin

    2015-12-31

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.

  7. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  8. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon

    PubMed Central

    2013-01-01

    The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785

  9. An ab initio potential function for the ν13 vibrational mode of 1,3-butadiene

    NASA Astrophysics Data System (ADS)

    Senent, M. L.

    1995-06-01

    The restricted potential of the ν13 torsional mode of 1,3-butadiene has been determined from ab initio calculations. The relative energy and geometry of the second rotamer were calculated with the optimized couple cluster method with double substitutions. This ab initio level provides that the second stable structure attaches to a gauche form situated at 140.8°. The potential energy function was obtained by fitting to a symmetry-adapted Fourier series the total electronic energies of several selected conformations. These energies were calculated by the Möller-Plesset perturbation theory up to the second order (MP2) with full and partial optimization of the geometry. Torsional Raman band positions and fundamental frequencies were determined from the periodic potentials with a good agreement with experimental data. The convenience of performing fully optimized calculations to determine the restricted function is also refuted.

  10. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava

    subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated

  11. Properties of metals during the heating by intense laser irradiation using ab initio simulations

    NASA Astrophysics Data System (ADS)

    Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane

    2011-10-01

    Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.

  12. Ab initio study of AlxMoNbTiV high-entropy alloys.

    PubMed

    Cao, Peiyu; Ni, Xiaodong; Tian, Fuyang; Varga, Lajos K; Vitos, Levente

    2015-02-25

    The Al(x)MoNbTiV (x = 0-1.5) high-entropy alloys (HEAs) adopt a single solid-solution phase, having the body centered cubic (bcc) crystal structure. Here we employ the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation to investigate the equilibrium volume, elastic constants, and polycrystalline elastic moduli of Al(x)MoNbTiV HEAs. A comparison between the ab initio and experimental equilibrium volumes demonstrates the validity and accuracy of the present approach. Our results indicate that Al addition decreases the thermodynamic stability of the bcc structure with respect to face-centered cubic and hexagonal close packed lattices. For the elastically isotropic Al(0.4)MoNbTiV HEAs, the valence electron concentration (VEC) is about 4.82, which is slightly different from VEC ∼ 4.72 obtained for the isotropic Gum metals and refractory--HEAs. PMID:25640032

  13. Ab initio calculation of relative ion concentrations of protonated water clusters at equilibrium

    NASA Astrophysics Data System (ADS)

    Lee, E. P. F.; Dyke, J. M.; Wilders, A. E.; Watts, P.

    Relative concentrations of protonated water clusters, H(H2O)+n, are determined for the equilibria H(H2O)+n-1 + H2O ⇌ H(H2O)+n (for n = 1, …, 5), by ab initio molecular-orbital calculations (at the MP2/6-31G* level), using standard thermodynamic and statistical-mechanical methods. The calculated relative cluster-ion concentrations, at water concentrations of between 1 and 90 ppm at 308 K, are compared with the corresponding relative ion intensities measured with an ion-mobility mass spectrometer. The comparison shows that the observed cluster-ion intensity distributions agree well with those found from ab initio calculations for an equilibrium mixture of protonated water clusters.

  14. A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment

    NASA Technical Reports Server (NTRS)

    Bentley, Joseph A.; Bowman, Joel M.; Gazdy, Bela; Lee, Timothy J.; Dateo, Christopher E.

    1992-01-01

    An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.

  15. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.

    PubMed

    Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C

    2013-02-27

    : The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.

  16. Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations

    SciTech Connect

    Gall, D.; Sta''dele, M.; Ja''rrendahl, K.; Petrov, I.; Desjardins, P.; Haasch, R. T.; Lee, T.-Y.; Greene, J. E.

    2001-03-15

    Experimental and ab initio computational methods are employed to conclusively show that ScN is a semiconductor rather than a semimetal; i.e., there is a gap between the N 2p and the Sc 3d bands. Previous experimental investigators reported, in agreement with band structure calculations showing a band overlap of 0.2 eV, that ScN is a semimetal while others concluded that it is a semiconductor with a band gap larger than 2 eV. We have grown high quality, single crystalline ScN layers on MgO(001) and on TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. ScN optical properties were determined by transmission, reflection, and spectroscopic ellipsometry while in-situ x-ray and ultraviolet valence band photoelectron spectroscopy were used to determine the density of states (DOS) below the Fermi level. The measured DOS exhibits peaks at 3.8 and 5.2 eV stemming from the N 2p bands and at 15.3 eV due to the N 2s bands. The imaginary part of the measured dielectric function {epsilon}{sub 2} consists of two primary features due to direct X- and {Gamma}-point transitions at photon energies of 2.7 and 3.8 eV, respectively. For comparison, the ScN band structure was calculated using an ab initio Kohn--Sham approach which treats the exchange interactions exactly within density-functional theory. Calculated DOS and the complex dielectric function are in good agreement with our ScN valence-band photoelectron spectra and measured optical properties, respectively. We conclude, combining experimental and computational results, that ScN is a semiconductor with an indirect {Gamma}--X bandgap of 1.3{+-}0.3eV and a direct X-point gap of 2.4{+-}0.3eV.

  17. Multiple excitons and the electron phonon bottleneck in semiconductor quantum dots: An ab initio perspective

    NASA Astrophysics Data System (ADS)

    Prezhdo, Oleg V.

    2008-07-01

    The article presents the current perspective on the nature of photoexcited states in semiconductor quantum dots (QDs). The focus is on multiple excitons and photo-induced electron-phonon dynamics in PbSe and CdSe QDs, and the advocated view is rooted in the results of ab initio studies in both energy and time domains. As a new type of material, semiconductor QDs represent the borderline between chemistry and physics, exhibiting both molecular and bulk-like properties. Similar to atoms and molecules, the electronic spectra of QD show discrete bands. Just as bulk semiconductors, QDs comprise multiple copies of the elementary unit cell, and are characterized by valence and conduction bands. The electron-phonon coupling in QDs is weaker than in molecules, but stronger than in bulk semiconductors. Unlike either material, the QD properties can be tuned continuously by changing QD size and shape. The molecular and bulk points of view often lead to contradicting conclusions. For example, the molecular view suggests that the excitations in QDs should exhibit strong electron-correlation (excitonic) effects, and that the electron-phonon relaxation should be slow due to the discrete nature of the optical bands and the mismatch of the electronic energy gaps with vibrational frequencies. In contrast, a finite-size limit of bulk properties indicates that the kinetic energy of quantum confinement should be significantly greater than excitonic effects and that the electron-phonon relaxation inside the quasi-continuous bands should be efficient. Such qualitative differences have generated heated discussions in the literature. The great potential of QDs for a variety of applications, including photovoltaics, spintronics, lasers, light-emitting diodes, and field-effect transistors makes it crutual to settle the debates. By synthesizing different viewpoints and presenting a unified atomistic picture of the excited state processes, our ab initio analysis clarifies the controversies

  18. Structure, dynamics, and electronic structure of liquid Ag-Se alloys investigated by ab initio simulation

    NASA Astrophysics Data System (ADS)

    Kirchhoff, F.; Holender, J. M.; Gillan, M. J.

    1996-07-01

    Ab initio molecular-dynamics simulations have been used to investigate the structure, dynamics, and electronic properties of the liquid alloy Ag1-xSex at 1350 K and at the three compositions x=0.33, 0.42, and 0.65. To provide a point of reference, calculations are also presented for the equilibrium structure and the electronic structure of the α-Ag2Se crystal. The calculations are based on density-functional theory in the local-density approximation and on the pseudopotential plane-wave method. For the solid, we find excellent agreement with experiment for the equilibrium lattice parameters and the atomic coordinates of the 12-atom orthorhombic unit cell, and we present an analysis of the electronic density of states and density distribution. The reliability of the liquid simulations is confirmed by detailed comparisons with very recent neutron-diffraction results for the partial structure factors and radial distribution functions (RDF) of the stoichiometric liquid Ag2Se. Comparison with the predictions of an empirical interaction model due to Rino et al. is also given for l-Ag2Se. The ab initio simulations show a dramatic change of the Se-Se RDF with increasing Se content. This change is due to the formation of Se clusters bound by covalent bonds, the Se-Se bond length being almost the same as in pure c-Se and l-Se. The clusters are predominantly chainlike, but for higher x there is a significant fraction of threefold coordinated Se atoms. It is shown that the equilibrium fractions of Se present as isolated atoms and in clusters can be understood on a simple charge-balance model based on an ionic interpretation. The Ag diffusion coefficient in the simulated stoichiometric liquid is consistent with experimental values measured in the high-temperature superionic solid. The Ag and Se diffusion coefficients both increase with Se content, in spite of the Se clustering. An analysis of the Se-Se bond dynamics reveals surprisingly short bond lifetimes of less than 1 ps

  19. Conductivity of carbon-based molecular junctions from ab-initio methods

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fei; Luo, Yi

    2014-12-01

    Carbon nanomaterials (CNMs) are prompting candidates for next generational electronics. In this review we provide a mini overview of recent results on the conductivity of carbon-based molecular junctions obtained from ab-initio methods. CNMs used as nanoelectrodes and molecular materials in molecular junctions are discussed. The functionalities that include the nanomechanically controlled molecular conductance switches, negative differential resistance devices, and electronic rectifiers realized by using CNMs have been demonstrated.

  20. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    SciTech Connect

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-17

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  1. Methylchloride adsorbed on Si(0 0 1): an ab initio study

    NASA Astrophysics Data System (ADS)

    Preuss, M.; Schmidt, W. G.; Seino, K.; Bechstedt, F.

    2004-07-01

    We present ab initio calculations of the adsorption of methylchloride (CH 3Cl) on Si(0 0 1). Among multiple plausible adsorption geometries, we find five thermodynamically favorable configurations. These lead to strong geometrical changes in the Si surface structure as well as to significant charge transfer processes. The stability of the adsorption structures is discussed in terms of electrostatics. The results are compared to recent experimental and theoretical findings.

  2. An ab initio MIA study of TIBO derivatives R79882 and R82913

    NASA Astrophysics Data System (ADS)

    Peeters, Anik; Van Alsenoy, C.

    1995-04-01

    The gas phase structure of two TIBO compounds (R79882 and R82913), potent inhibitors of the reverse transcriptase of HIV1, was studied with ab initio Hartree-Fock methods using the MIA approach. For compound R82913 the geometry of a dimer and of the respective monomers was fully optimized and compared with experiment. For compound R79882 a complete geometry optimization of 15 different conformers was performed.

  3. First fully ab initio potential energy surface of methane with a spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.

    2016-09-01

    Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.

  4. Steady-state ab initio laser theory for N-level lasers.

    PubMed

    Cerjan, Alexander; Chong, Yidong; Ge, Li; Stone, A Douglas

    2012-01-01

    We show that Steady-state Ab initio Laser Theory (SALT) can be applied to find the stationary multimode lasing properties of an N-level laser. This is achieved by mapping the N-level rate equations to an effective two-level model of the type solved by the SALT algorithm. This mapping yields excellent agreement with more computationally demanding N-level time domain solutions for the steady state.

  5. Conformational properties of molecules by ab initio quantum mechanical energy minimization.

    PubMed Central

    Pedersen, L

    1985-01-01

    The recent literature on the determination of minimum energy conformations by ab initio quantum mechanical techniques is reviewed. The availability of computer-coded analytical first and second derivatives of the Hartree-Fock energy makes possible calculations that will be of significant assistance in structure determination of molecules. A short review of recent progress in empirical energy minimization and molecular dynamics is provided. PMID:3905373

  6. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  7. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools. PMID:27536341

  8. Ab initio molecular dynamics simulation of pressure-induced phase transformation of BeO

    SciTech Connect

    Xiao, H. Y.; Duan, G.; Zu, X. T.; Weber, W. J.

    2011-05-05

    Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ → RS and ZB → RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ → RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchange–correlation functional employed and the way of applying pressure.

  9. Structures of 13-atom clusters of fcc transition metals by ab initio and semiempirical calculations

    NASA Astrophysics Data System (ADS)

    Longo, R. C.; Gallego, L. J.

    2006-11-01

    We report the results of ab initio calculations of the structures and magnetic moments of Ni13 , Pd13 , Pt13 , Cu13 , Ag13 , and Au13 that were performed using a density-functional method that employs linear combinations of pseudoatomic orbitals as basis sets (SIESTA). Our structural results for Pt13 , Cu13 , Ag13 , and Au13 show that a buckled biplanar structure (BBP) is more stable than the icosahedral configuration, in keeping with results obtained recently by Chang and Chou [Phys. Rev. Lett. 93, 133401 (2004)] using the Vienna ab initio simulation package with a plane-wave basis. However, for Ni13 and Pd13 we found that the icosahedral structure is more stable than BBP. For all these clusters, two semiempirical methods based on spherically symmetric potentials both found the icosahedral structure to be the more stable, while the modified embedded atom model method, which uses a direction-dependent potential, found BBP to be the more stable structure. When low-energy structures found in recent ab initio studies of Pt13 , Cu13 , and Au13 other than Chang and Chou were optimized with SIESTA, those reported for Pt13 and Cu13 were found to be less stable than BBP, but the two-dimensional planar configuration reported for Au13 proved to be more stable than BBP.

  10. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  11. Ab initio quantum mechanical models of peptide helices and their vibrational spectra.

    PubMed

    Bour, Petr; Kubelka, Jan; Keiderling, Timothy A

    2002-10-01

    Structural parameters for standard peptide helices (alpha, 3(10), 3(1) left-handed) were fully ab initio optimized for Ac-(L-Ala)(9)-NHMe and for Ac-(L-Pro)(9)-NHMe (poly-L-proline-PLP I and PLP II-forms), in order to better understand the relative stability and minimum energy geometries of these conformers and the dependence of the ir absorption and vibrational CD (VCD) spectra on detailed variation in these conformations. Only the 3(10)-helical Ala-based conformation was stable in vacuum for this decaamide structure, but both Pro-based conformers minimized successfully. Inclusion of solvent effects, by use of the conductor-like screening solvent model (COSMO), enabled ab initio optimizations [at the DFT/B3LYP/SV(P) level] without any constraints for the alpha- and 3(10)-helical Ala-based peptides as well as the two Pro-based peptides. The geometries obtained compare well with peptide chain torsion angles and hydrogen-bond distances found for these secondary structure types in x-ray structures of peptides and proteins. For the simulation of VCD spectra, force field and intensity response tensors were obtained ab initio for the complete Ala-based peptides in vacuum, but constrained to the COSMO optimized torsional angles, due to limitations of the solvent model. Resultant spectral patterns reproduce well many aspects of the experimental spectra and capture the differences observed for these various helical types.

  12. In pursuit of the ab initio limit for conformational energy prototypes

    NASA Astrophysics Data System (ADS)

    Császár, Attila G.; Allen, Wesley D.; Schaefer, Henry F.

    1998-06-01

    The convergence of ab initio predictions to the one- and n-particle limits has been systematically explored for several conformational energy prototypes: the inversion barriers of ammonia, water, and isocyanic acid, the torsional barrier of ethane, the E/Z rotamer separation of formic acid, and the barrier to linearity of silicon dicarbide. Explicit ab initio results were obtained with atomic-orbital basis sets as large as [7s6p5d4f3g2h1i/6s5p4d3f2g1h] and electron correlation treatments as extensive as fifth-order Møller-Plesset perturbation theory (MP5), the full coupled-cluster method through triple excitations (CCSDT), and Brueckner doubles theory including perturbational corrections for both triple and quadruple excitations [BD(TQ)]. Subsequently, basis set and electron correlation extrapolation schemes were invoked to gauge any further variations in arriving at the ab initio limit. Physical effects which are tacitly neglected in most theoretical work have also been quantified by computations of non-Born-Oppenheimer (BODC), relativistic, and core correlation shifts of relative energies. Instructive conclusions are drawn for the pursuit of spectroscopic accuracy in theoretical conformational analyses, and precise predictions for the key energetic quantities of the molecular prototypes are advanced.

  13. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.

    PubMed

    Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models. PMID:26374007

  14. Fourfold Clusters of Rovibrational Energies in H2Te Studied With an Ab Initio Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.

  15. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Yexin, Feng; Ji, Chen; Xin-Zheng, Li; Enge, Wang

    2016-01-01

    The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275008, 91021007, and 10974012) and the China Postdoctoral Science Foundation (Grant No. 2014M550005).

  16. Surface electron density models for accurate ab initio molecular dynamics with electronic friction

    NASA Astrophysics Data System (ADS)

    Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.

    2016-06-01

    Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.

  17. Communication: Towards ab initio self-energy embedding theory in quantum chemistry

    NASA Astrophysics Data System (ADS)

    Lan, Tran Nguyen; Kananenka, Alexei A.; Zgid, Dominika

    2015-12-01

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.

  18. Communication: Towards ab initio self-energy embedding theory in quantum chemistry

    SciTech Connect

    Lan, Tran Nguyen; Kananenka, Alexei A.; Zgid, Dominika

    2015-12-28

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.

  19. Communication: Towards ab initio self-energy embedding theory in quantum chemistry.

    PubMed

    Lan, Tran Nguyen; Kananenka, Alexei A; Zgid, Dominika

    2015-12-28

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.

  20. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED

    PubMed Central

    Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; Collazo, Michael J.; Shi, Dan; Reyes, Francis E.; Gonen, Tamir; Eisenberg, David S.

    2016-01-01

    Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstacle is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined. We show with four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods. PMID:27647903

  1. Insights into photodissociation dynamics of acetaldehyde from ab initio calculations and molecular dynamics simulations

    SciTech Connect

    Chen Shilu; Fang Weihai

    2009-08-07

    In the present paper we report a theoretical study on mechanistic photodissociation of acetaldehyde (CH{sub 3}CHO). Stationary structures for H{sub 2} and CO eliminations in the ground state (S{sub 0}) have been optimized with density functional theory method, which is followed by the intrinsic reaction coordinate and ab initio molecular dynamics calculations to confirm the elimination mechanism. Equilibrium geometries, transition states, and intersection structures for the C-C and C-H dissociations in excited states were determined by the complete-active-space self-consistent field (CASSCF) method. Based on the CASSCF optimized structures, the potential energy profiles for the dissociations were refined by performing the single-point calculations using the multireference configuration interaction method. Upon the low-energy irradiation of CH{sub 3}CHO (265 nm<{lambda}<318 nm), the T{sub 1} C-C bond fission following intersystem crossing from the S{sub 1} state is the predominant channel and the minor channel, the ground-state elimination to CH{sub 4}+CO after internal conversion (IC) from S{sub 1} to S{sub 0}, could not be excluded. With the photon energy increasing, another pathway of IC, achieved via an S{sub 1}/S{sub 0} intersection point resulting from the S{sub 1} C-C bond fission, becomes accessible and increases the yield of CH{sub 4}+CO.

  2. Photochemistry of hydrogen bonded heterocycles probed by photodissociation experiments and ab initio methods.

    PubMed

    Slavíček, Petr; Fárník, Michal

    2011-07-14

    In this perspective article, we focus on the photochemistry of five-membered nitrogen containing heterocycles (pyrrole, imidazole and pyrazole) in clusters. These heterocycles represent paradigmatic structures for larger biologically active heterocyclic molecules and complexes. The dimers of the three molecules are also archetypes of different bonding patterns: N-H···π interaction, N-H···N hydrogen bond and double hydrogen bond. We briefly review available data on photochemistry of the title molecules in the gas phase, but primarily we focus on the new reaction channels opened upon the complexation with other heterocycles or solvent molecules. Based on ab initio calculations we discuss various possible reactions in the excited states of the clusters: (1) hydrogen dissociation, (2) hydrogen transfer between the heterocyclic units, (3) molecular ring distortion, and (4) coupled electron-proton transfer. The increasing photostability with complexity of the system can be inferred from experiments with photodissociation in these clusters. A unified view on photoinduced processes in five-membered N-heterocycles is provided. We show that even though different deactivation channels are energetically possible for the complexed heterocycles, in most cases the major result is a fast reconstruction of the ground state. The complexed or solvated heterocycles are thus inherently photostable although the stability can in principle be achieved via different reaction routes.

  3. Optimized energy landscape exploration using the ab initio based activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Machado-Charry, Eduardo; Béland, Laurent Karim; Caliste, Damien; Genovese, Luigi; Deutsch, Thierry; Mousseau, Normand; Pochet, Pascal

    2011-07-01

    Unbiased open-ended methods for finding transition states are powerful tools to understand diffusion and relaxation mechanisms associated with defect diffusion, growth processes, and catalysis. They have been little used, however, in conjunction with ab initio packages as these algorithms demanded large computational effort to generate even a single event. Here, we revisit the activation-relaxation technique (ART nouveau) and introduce a two-step convergence to the saddle point, combining the previously used Lanczós algorithm with the direct inversion in interactive subspace scheme. This combination makes it possible to generate events (from an initial minimum through a saddle point up to a final minimum) in a systematic fashion with a net 300-700 force evaluations per successful event. ART nouveau is coupled with BigDFT, a Kohn-Sham density functional theory (DFT) electronic structure code using a wavelet basis set with excellent efficiency on parallel computation, and applied to study the potential energy surface of C20 clusters, vacancy diffusion in bulk silicon, and reconstruction of the 4H-SiC surface.

  4. Communication: Towards ab initio self-energy embedding theory in quantum chemistry.

    PubMed

    Lan, Tran Nguyen; Kananenka, Alexei A; Zgid, Dominika

    2015-12-28

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces. PMID:26723581

  5. Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study.

    PubMed

    Lin, Qing; Zou, Xiaolong; Zhou, Gang; Liu, Rui; Wu, Jian; Li, Jia; Duan, Wenhui

    2011-07-14

    Our ab initio calculations indicate that the interaction of deoxyribonucleic/ribonucleic acid (DNA/RNA) nucleobases [guanine (G), adenine (A), thymine (T), cytosine (C), and uracil (U)] with the hexagonal boron nitride (h-BN) sheet, a polar but chemically inert surface, is governed by mutual polarization. Unlike the case of graphene, all nucleobases exhibit the same stacking arrangement on the h-BN sheet due to polarization effects: the anions (N and O atoms) of nucleobases prefer to stay on top of cations (B) of the substrate as far as possible, regardless of the biological properties of nucleobases. The adsorption energies, ranging from 0.5 eV to 0.69 eV, increase in the order of U, C, T, A and G, which can be attributed to different side groups or atoms of nucleobases. The fundamental nature of DNA/RNA nucleobases and h-BN sheet remains unchanged upon adsorption, suggesting that the h-BN sheet is a promising template for DNA/RNA-related research, such as self-assembly. PMID:21637870

  6. High-level ab initio computations of the absorption spectra of organic iridium complexes.

    PubMed

    Plasser, Felix; Dreuw, Andreas

    2015-02-12

    The excited states of fac-tris(phenylpyridinato)iridium [Ir(ppy)3] and the smaller model complex Ir(C3H4N)3 are computed using a number of high-level ab initio methods, including the recently implemented algebraic diagrammatic construction method to third-order ADC(3). A detailed description of the states is provided through advanced analysis methods, which allow a quantification of different charge transfer and orbital relaxation effects and give extended insight into the many-body wave functions. Compared to the ADC(3) benchmark an unexpected striking difference of ADC(2) is found for Ir(C3H4N)3, which derives from an overstabilization of charge transfer effects. Time-dependent density functional theory (TDDFT) using the B3LYP functional shows an analogous but less severe error for charge transfer states, whereas the ωB97 results are in good agreement with ADC(3). Multireference configuration interaction computations, which are in reasonable agreement with ADC(3), reveal that static correlation does not play a significant role. In the case of the larger Ir(ppy)3 complex, results at the TDDFT/B3LYP and TDDFT/ωB97 levels of theory are presented. Strong discrepancies between the two functionals, which are found with respect to the energies, characters, as well as the density of the low lying states, are discussed in detail and compared to experiment. PMID:25584785

  7. An ab initio investigation of possible intermediates in the reaction of the hydroxyl and hydroperoxyl radicals

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.

  8. Infrared signature of micro-hydration in the organophosphate sarin: An ab initio study

    DOE PAGES

    Alam, Todd M.; Pearce, Charles Joseph

    2015-06-28

    The infrared (IR) spectra of micro-hydrated Sarin•(H2O)n clusters containing between one and four explicit waters have been studied using ab initio density functional theory (DFT) methods. The phosphate group P=O bond vibration region (~1270 to 1290 cm–1) revealed the largest frequency variation with hydration, with a frequency red shift reflecting the direct hydrogen bond formation between the P=O of Sarin and water. Small variations to the P-F stretch (~810 to 815 cm–1) and the C-O-P vibrational modes (~995 to 1004 cm–1) showed that the water interactions with these functional groups were minor, and that the structures of Sarin were notmore » extensively perturbed in the hydrated complexes. Increasing the number of explicit hydration waters produced only small vibrational changes in the lowest free energy complexes. These minor changes were consistent with a single water-phosphate hydrogen bond being the dominant structure, though a second water-phosphate hydrogen bond was observed in some complexes and was identified by an additional red shift of the P=O bond vibration. As a result, the H2O•H2O vibrational modes (~3450 to 3660 cm–1) increased in complexity with higher hydration levels and reflect the extended hydrogen bonding networks formed between the explicit waters in the hydrated Sarin clusters.« less

  9. Ab initio Calculations of Charge Symmetry Breaking in the A =4 Hypernuclei

    NASA Astrophysics Data System (ADS)

    Gazda, Daniel; Gal, Avraham

    2016-03-01

    We report on ab initio no-core shell model calculations of the mirror Λ hypernuclei H4Λ and He4Λ , using the Bonn-Jülich leading-order chiral effective field theory hyperon-nucleon potentials plus a charge symmetry breaking Λ -Σ0 mixing vertex. In addition to reproducing rather well the 0g.s . + and 1exc+ binding energies, these four-body calculations demonstrate for the first time that the observed charge symmetry breaking splitting of mirror levels, reaching hundreds of keV for 0g.s . +, can be reproduced using realistic theoretical interaction models, although with a non-negligible momentum cutoff dependence. Our results are discussed in relation to recent measurements of the H4Λ(0g.s . +) binding energy at the Mainz Microtron [A. Esser et al. (A1 Collaboration), Phys. Rev. Lett. 114, 232501 (2015)] and the He4Λ(1exc+) excitation energy [T.O. Yamamoto et al. (J-PARC E13 Collaboration), Phys. Rev. Lett. 115, 222501 (2015)].

  10. An ab initio investigation of possible intermediates in the reaction of the hydroxyl and hydroperoxyl radicals

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.; Phillips, D. H.

    1986-01-01

    Ab initio quantum chemical techniques have been used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types were identified. Basic sets of polarized double-zeta quality and large scale configuration interaction wave functions have been utilized. Based upon electronic energies, the covalently-bonded HOOOH species is found to be 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen-bonded HO-HO2 species is found to have an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen-bonded form is found to be planar, to possess one relatively 'normal' hydrogen bond, and to have lowest energy 3A-prime and 1A-prime states that are essentially degenerate. The 1A-double prime and 3A-double prime excited states produced by rotation of the unpaired OH electron into the molecular plane are found to be very slightly bound.

  11. Unified ab initio formulation of flexoelectricity and strain-gradient elasticity

    NASA Astrophysics Data System (ADS)

    Stengel, Massimiliano

    2016-06-01

    The theory of flexoelectricity and that of nonlocal elasticity are closely related, and are often considered together when modeling strain-gradient effects in solids. Here I show, based on a first-principles lattice-dynamical analysis, that their relationship is much more intimate than previously thought, and their consistent simultaneous treatment is crucial for obtaining correct physical answers. In particular, I identify a gauge invariance in the theory, whereby the energies associated to strain-gradient elasticity and flexoelectrically induced electric fields are individually reference dependent, and only when summed up they yield a well-defined result. To illustrate this, I construct a minimal thermodynamic functional incorporating strain-gradient effects, and establish a formal link between the continuum description and ab initio phonon dispersion curves to calculate the relevant tensor quantities. As a practical demonstration, I apply such a formalism to bulk SrTiO3, where I find an unusually strong contribution of nonlocal elasticity, mediated by the interaction between the ferroelectric soft mode and the transverse acoustic branches. These results have important implications towards the construction of well-defined thermodynamic theories where flexoelectricity and ferroelectricity coexist. More generally, they open exciting new avenues for the implementation of hierarchical multiscale concepts in the first-principles simulation of crystalline insulators.

  12. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    NASA Astrophysics Data System (ADS)

    Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.

    2016-08-01

    Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.

  13. Vibrational modes of methane in the structure H clathrate hydrate from ab initio molecular dynamics simulation.

    PubMed

    Hiratsuka, Masaki; Ohmura, Ryo; Sum, Amadeu K; Yasuoka, Kenji

    2012-10-14

    Vibrational spectra of guest molecules in clathrate hydrates are frequently measured to determine the characteristic signatures of the molecular environment and dynamical properties of guest-host interactions. Here, we present results of our study on the vibrational frequencies of methane molecules in structure H clathrate hydrates, namely, in the 5(12) and 4(3)5(6)6(3) cages, as the frequencies of stretching vibrational modes in these environments are still unclear. The vibrational spectra of methane molecules in structure H clathrate hydrate were obtained from ab initio molecular dynamics simulation and computed from Fourier transform of autocorrelation functions for each distinct vibrational mode. The calculated symmetric and asymmetric stretching vibrational frequencies of methane molecules were found to be lower in the 4(3)5(6)6(3) cages than in the 5(12) cages (3.8 cm(-1) for symmetric stretching and 6.0 cm(-1) for asymmetric stretching). The C-H bond length and average distance between methane molecules and host-water molecules in 4(3)5(6)6(3) cages were slightly longer than those in the 5(12) cages.

  14. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  15. Efficient ab-initio thermodynamic calculations at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Wilson, Hugh

    2014-03-01

    Prediction of solubility properties and phase diagrams under conditions of high temperature and pressure requires the computation of the Gibbs free energies of materials, a property not directly accessible from molecular dynamics trajectories. Two-step coupling constant integration methods have previously achieved success in the computation of free energies of fluid, solid, and superionic phases of materials by connecting the ab-initio system of interest to a non-interacting reference system via a series of thermodynamic integration steps. These methods, however, require a series of time-consuming and computationally awkward integrations over molecular dynamics trajectories, limiting the utility of the method. Here we propose and demonstrate a method for more efficiently carrying out the same thermodynamic integration without the need for separate molecular dynamics runs, and show how it may be used to carry out the integration up to an order of magnitude more efficiently, in a massively parallel manner, and without the need for code modification. Applications of thermodynamic integration including core solubility in Jupiter and Saturn, and superionic-to-superionic phase transitions in Uranus and Neptune, will be discussed.

  16. Microwave and ab initio studies of the Xe-CH4 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Wen, Qing; Jäger, Wolfgang

    2006-01-01

    An ab initio potential-energy surface of the Xe-CH4 van der Waals complex was constructed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations. The recently developed small-core pseudopotential and augmented correlation-consistent polarized valence quadruple-zeta basis set was used for the xenon atom and Dunning's augmented correlation-consistent polarized valence triple-zeta basis set for the other atoms. The basis sets were supplemented with bond functions. Dipole moments were also calculated at various configurations. Rotational spectra of the Xe-CH4 van der Waals complex were recorded using a pulsed-nozzle Fourier transform microwave spectrometer. The isotopomers studied include those of CH4,CH134,CD4,CH3D, and CHD3 with the five most abundant Xe isotopes. Transitions within three internal rotor states, namely, the j =0,K=0;j=1,K=0; and j =2,K=1 states, were observed and assigned. Nuclear quadrupole hyperfine structures due to the presence of Xe131(I=3/2) were detected and analyzed. It was found that the j =1,K=0 state is perturbed by a Coriolis interaction with a nearby j =1,K=1 state. For isotopomers containing CH3D and CHD3, the j =2 states are no longer metastable and could not be observed. The spectroscopic results were used to derive structural and dynamical information of the Xe-CH4 complex.

  17. Surface tension of ab initio liquid water at the water-air interface

    NASA Astrophysics Data System (ADS)

    Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D.

    2016-05-01

    We report calculations on the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the influence of the cell size on surface tension of water from force field molecular dynamics simulations. We find that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is essential for small systems that are customary in AIMD simulations. Moreover, AIMD simulations reveal that the use of a double-ζ basis set overestimates the experimentally measured surface tension due to the Pulay stress while more accurate triple and quadruple-ζ basis sets give converged results. We further demonstrate that van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension while the van der Waals correction with the Grimme's D2 technique results in a value for the surface tension that is too high. The Grimme's D3 van der Waals correction provides a surface tension close to the experimental value. Whereas the specific choices for the van der Waals correction and basis sets critically affect the calculated surface tension, the surface tension is remarkably insensitive to the details of the exchange and correlation functionals, which highlights the impact of long-range interactions on the surface tension. Our simulated values provide important benchmarks, both for improving van der Waals corrections and AIMD simulations of aqueous interfaces.

  18. 7Be(p,(gamma))8B S-factor From Ab Initio Wave Functions

    SciTech Connect

    Navratil, P; Bertulani, C; Caurier, E

    2005-08-15

    Nuclear structure of {sup 7}Be, {sup 8}B and {sup 7,8}Li is studied within the ab initio no-core shell model (NCSM). Starting from the high-precision CD-Bonn 2000 nucleon-nucleon (NN) interaction, wave functions of {sup 7}Be and {sup 8}B bound states are obtained in basis spaces up to 10{h_bar}{Omega} and used to calculate channel cluster form factors (overlap integrals) of the {sup 8}B ground state with {sup 7}Be+p. Due to the use of the harmonic oscillator (HO) basis, the overlap integrals have incorrect asymptotic properties. We fix this problem in two alternative ways. First, by a Woods-Saxon (WS) potential solution fit to the interior of the NCSM overlap integrals. Second, by a direct matching with the Whittaker function. The corrected overlap integrals are then used for the {sup 7}Be(p,{gamma}){sup 8}B S-factor calculation. We study the convergence of the S-factor with respect to the NCSM HO frequency and the model space size. Our S-factor results are in agreement with recent direct measurement data.

  19. Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

    DOE PAGES

    Hupin, Guillaume; Langhammer, Joachim; Navratil, Petr; Quaglioni, Sofia; Calci, Angelo; Roth, Robert

    2013-11-27

    We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects from themore » inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2– and 1/2– resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. As a result, we find remarkably good agreement with measured differential cross sections at various energies below the d+3H threshold, while analyzing powers manifest larger deviations from experiment for certain energies and angles.« less

  20. Physical properties and spectra of IO, IO- and HOI studied by ab initio methods.

    PubMed

    Minaev, Boris; Loboda, Oleksandr; Vahtras, Olav; Agren, Hans; Bilan, Elena

    2002-03-15

    Structure and properties of the IO, IO- and HOI species, which are of potential importance for the ozone destruction catalytic cycle in the troposphere, have been calculated together with the EPR, NMR and UV-visible spectra by ab initio methodology with account of spin-orbit coupling (SOC) effects. Multi-configuration self-consistent field calculations with linear and quadratic response techniques and the multi-reference configuration interaction method have been employed. Photodissociation of these species, crucial for the catalytic ozone-destruction cycle, is critically reviewed and analyzed. Calculations predict that the singlet-triplet (S-T) transition to the lowest triplet state (X1 A' --> 3A'') should be responsible for the weak long-wavelength tail absorption (approximately 450-560 nm) and photodissociation of the HOI molecule. The second, more intense, band around 400 nm is produced by two overlapping S-S and S-T transitions. In order to check this assignment of the HOI photodissociation the isoelectronic IO- anion and IO radical have been studied by the same methods. Comparison with the EPR spectrum of the IO radical indicates that the methods are reliable which gives credit to the accuracy of the HOI spectral interpretation. NMR spectra of HOI and IO- molecules and some other properties are calculated for the first time.

  1. Surface tension of ab initio liquid water at the water-air interface.

    PubMed

    Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D

    2016-05-28

    We report calculations on the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the influence of the cell size on surface tension of water from force field molecular dynamics simulations. We find that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is essential for small systems that are customary in AIMD simulations. Moreover, AIMD simulations reveal that the use of a double-ζ basis set overestimates the experimentally measured surface tension due to the Pulay stress while more accurate triple and quadruple-ζ basis sets give converged results. We further demonstrate that van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension while the van der Waals correction with the Grimme's D2 technique results in a value for the surface tension that is too high. The Grimme's D3 van der Waals correction provides a surface tension close to the experimental value. Whereas the specific choices for the van der Waals correction and basis sets critically affect the calculated surface tension, the surface tension is remarkably insensitive to the details of the exchange and correlation functionals, which highlights the impact of long-range interactions on the surface tension. Our simulated values provide important benchmarks, both for improving van der Waals corrections and AIMD simulations of aqueous interfaces.

  2. Born-Oppenheimer Ab Initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions.

    PubMed

    Zhou, Y; Wang, S; Li, Y; Zhang, Y

    2016-01-01

    There are two key requirements for reliably simulating enzyme reactions: one is a reasonably accurate potential energy surface to describe the bond-forming/breaking process as well as to adequately model the heterogeneous enzyme environment; the other is to perform extensive sampling since an enzyme system consists of at least thousands of atoms and its energy landscape is very complex. One attractive approach to meet both daunting tasks is Born-Oppenheimer ab initio QM/MM molecular dynamics (aiQM/MM-MD) simulation with umbrella sampling. In this chapter, we describe our recently developed pseudobond Q-Chem-Amber interface, which employs a combined electrostatic-mechanical embedding scheme with periodic boundary condition and the particle mesh Ewald method for long-range electrostatics interactions. In our implementation, Q-Chem and the sander module of Amber are combined at the source code level without using system calls, and all necessary data communications between QM and MM calculations are achieved via computer memory. We demonstrate the applicability of this pseudobond Q-Chem-Amber interface by presenting two examples, one reaction in aqueous solution and one enzyme reaction. Finally, we describe our established aiQM/MM-MD enzyme simulation protocol, which has been successfully applied to study more than a dozen enzymes. PMID:27498636

  3. Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface

    SciTech Connect

    Valentini, Paolo Schwartzentruber, Thomas E. Bender, Jason D. Nompelis, Ioannis Candler, Graham V.

    2015-08-15

    The direct molecular simulation (DMS) approach is used to predict the internal energy relaxation and dissociation dynamics of high-temperature nitrogen. An ab initio potential energy surface (PES) is used to calculate the dynamics of two interacting nitrogen molecules by providing forces between the four atoms. In the near-equilibrium limit, it is shown that DMS reproduces the results obtained from well-established quasiclassical trajectory (QCT) analysis, verifying the validity of the approach. DMS is used to predict the vibrational relaxation time constant for N{sub 2}–N{sub 2} collisions and its temperature dependence, which are in close agreement with existing experiments and theory. Using both QCT and DMS with the same PES, we find that dissociation significantly depletes the upper vibrational energy levels. As a result, across a wide temperature range, the dissociation rate is found to be approximately 4–5 times lower compared to the rates computed using QCT with Boltzmann energy distributions. DMS calculations predict a quasi-steady-state distribution of rotational and vibrational energies in which the rate of depletion of high-energy states due to dissociation is balanced by their rate of repopulation due to collisional processes. The DMS approach simulates the evolution of internal energy distributions and their coupling to dissociation without the need to precompute rates or cross sections for all possible energy transitions. These benchmark results could be used to develop new computational fluid dynamics models for high-enthalpy flow applications.

  4. Silicene-derived phases on Ag(111) substrate versus coverage: Ab initio studies

    NASA Astrophysics Data System (ADS)

    Pflugradt, P.; Matthes, L.; Bechstedt, F.

    2014-01-01

    Silicene is systematically investigated as an epitaxial overlayer on an Ag(111) substrate based on the ab initio density functional theory. The geometry and stability of five silicene-silver adsorbate systems with four coincidence lattices, √7 ×√7 on √13 ×√13 , 3×3 on 4×4, 2×2 on √7 ×√7 , and √7 ×√7 on 2√3 ×2√3 , are related to the Si coverage, biaxial strain, and preparation conditions. Their phase diagram is calculated for varying chemical potential of the Si reservoir. The scanning tunneling microscopy images calculated for the optimized atomic geometries agree with those observed experimentally. The destruction of the original honeycomb symmetry and the strong adsorbate-substrate interaction significantly influence the electronic structure. Four peeled-off silicene sheets show conical linear bands, with small gaps. However, the band edges of the 3×3 on 4×4 geometry cannot be explained in terms of gap opening between Dirac cones for symmetry reasons. We confirm the conclusion that the linear bands observed by ARPES are due to folded Ag bands.

  5. Local Structure in Ab Initio Liquid Water: Signatures of Amorphous Phases

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Distasio, Robert A., Jr.; Martelli, Fausto; Car, Roberto

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate ab initio liquid water. At ambient conditions, the LSI probability distribution, P(I), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P(I) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies among water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- and high-density amorphous phases of ice are present in the IPES of ambient liquid water This work was supported by the DOE: DE-SC0008626, DE-SC0005180.

  6. Condensed-matter ab initio approach for strongly correlated electrons: Application to a quantum spin liquid candidate

    SciTech Connect

    Yamaji, Youhei

    2015-12-31

    Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.

  7. 4He+n+n continuum within an ab initio framework

    SciTech Connect

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; Hupin, Guillaume

    2014-07-16

    In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known Jπ = 2+ resonance as well as a result consistent with a new low-lying second 2+ resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2, 1+, and 0 channels, while no low-lying resonances are present in the 0+ and 1 channels.

  8. Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar-HOCO

    SciTech Connect

    Conte, Riccardo E-mail: jmbowma@emory.edu; Bowman, Joel M. E-mail: jmbowma@emory.edu; Houston, Paul L.

    2014-04-21

    A full-dimensional, global ab initio potential energy surface (PES) for the Ar-HOCO system is presented. The PES consists of a previous intramolecular ab initio PES for HOCO [J. Li, C. Xie, J. Ma, Y. Wang, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Phys. Chem. A 116, 5057 (2012)], plus a new permutationally invariant interaction potential based on fitting 12 432 UCCSD(T)-F12a/aVDZ counterpoise-corrected energies. The latter has a total rms fitting error of about 25 cm{sup −1} for fitted interaction energies up to roughly 12 000 cm{sup −1}. Two additional fits are presented. One is a novel very compact permutational invariant representation, which contains terms only involving the Ar-atom distances. The rms fitting error for this fit is 193 cm{sup −1}. The other fit is the widely used pairwise one. The pairwise fit to the entire data set has an rms fitting error of 427 cm{sup −1}. All of these potentials are used in preliminary classical trajectory calculations of energy transfer with a focus on comparisons with the results using the benchmark potential.

  9. Palladium clusters on graphene support: An ab initio study

    NASA Astrophysics Data System (ADS)

    Rubeš, Miroslav; He, Junjie; Nachtigall, Petr; Bludský, Ota

    2016-02-01

    CCSD(T) calculations with an energy-consistent scalar relativistic pseudopotential have been performed on a series of Pd-PAH complexes. The CCSD(T)//CBS interaction energies for Pd-ethylene and Pd-PAH (PAH = benzene, naphthalene, pyrene, coronene and ovalene) are -32.3, -25.3, -21.0, -22.5, -23.1 and -24.0 kcal mol-1, respectively. A DFT/CC interaction model based on the Pd-PAH calculations has been proposed for a reliable and accurate description of Pd-cluster interaction with graphene support. PBE/CC and PBEh/CC calculations for Pdn-PAH and Pdn-graphene (n ≤ 4) are reported. The PBEh/CC value of -27.7 kcal mol-1 is our best estimate of the Pd-graphene interaction energy.

  10. Carbonate-Bridged Lanthanoid Triangles: Single-Molecule Magnet Behavior, Inelastic Neutron Scattering, and Ab Initio Studies.

    PubMed

    Giansiracusa, Marcus J; Vonci, Michele; Van den Heuvel, Willem; Gable, Robert W; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette

    2016-06-01

    comprised of contributions from large MJ, giving rise to slow magnetic relaxation. Although no direct evidence for intramolecular RE···RE magnetic coupling is observed in either magnetic or INS studies, on the basis of the ab initio calculations, we find noncollinear magnetic axes in 1-Er that are coplanar with the erbium triangle and radially arranged with respect to the triangle's centroid; thus, we argue that the absence of magnetic coupling in this system arises from dipolar and antiferromagnetic superexchange interactions that cancel each other out. PMID:27203849

  11. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics

    SciTech Connect

    Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.; Schmidt, Burkhard; Jungwirth, Pavel

    2014-07-03

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. MDB is

  12. Ab initio study of hydrogen adsorption in MOF-5.

    PubMed

    Sillar, Kaido; Hofmann, Alexander; Sauer, Joachim

    2009-03-25

    Metal-organic frameworks (MOFs) are promising adsorbents for hydrogen storage. Density functional theory and second-order Møller-Plesset perturbation theory (MP2) are used to calculate the interaction energies between H(2) and individual structural elements of the MOF-5 framework. The strongest interaction, DeltaH(77) = -7.1 kJ/mol, is found for the alpha-site of the OZn(4)(O(2)Ph)(6) nodes. We show that dispersion interactions and zero-point vibrational energies must be taken into account. Comparison of calculations done under periodic boundary conditions for the complete structure with those done for finite models cut from the MOF-5 framework shows that the interactions with H(2) originate mainly from the local environment around the adsorption site. When used within a Multi-Langmuir model, the MP2 results reproduce measured adsorption isotherms (the predicted amount is 6 wt % at 77 K and 40 bar) if we assume that the H(2) molecules preserve their rotational degrees of freedom in the adsorbed state. This allows to discriminate between different isotherms measured for different MOF-5 samples and to reliably predict isotherms for new MOF structures. PMID:19253977

  13. Ab initio investigations of the electronic structure and chemical bonding of Li2ZrN2

    NASA Astrophysics Data System (ADS)

    Matar, S. F.; Pöttgen, R.; Al Alam, A. F.; Ouaini, N.

    2012-06-01

    The electronic structure of the ternary nitride Li2ZrN2 is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N-N interactions are found dominant at the top of the valence band of Li2ZrN2 and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li2-xZrN2 (x=∼1) is favored.

  14. π-Hydrogen Bonding of Aromatics on the Surface of Aerosols: Insights from Ab Initio and Molecular Dynamics Simulation.

    PubMed

    Feng, Ya-Juan; Huang, Teng; Wang, Chao; Liu, Yi-Rong; Jiang, Shuai; Miao, Shou-Kui; Chen, Jiao; Huang, Wei

    2016-07-14

    Molecular level insight into the interaction between volatile organic compounds (VOCs) and aerosols is crucial for improvement of atmospheric chemistry models. In this paper, the interaction between adsorbed toluene, one of the most significant VOCs in the urban atmosphere, and the aqueous surface of aerosols was studied by means of combined molecular dynamics simulations and ab initio quantum chemistry calculations. It is revealed that toluene can be stably adsorbed on the surface of aqueous droplets via hydroxyl-π hydrogen bonding between the H atoms of the water molecules and the C atoms in the aromatic ring. Further, significant modifications on the electrostatic potential map and frontier molecular orbital are induced by the solvation effect of surface water molecules, which would affect the reactivity and pathway of the atmospheric photooxidation of toluene. This study demonstrates that the surface interactions should be taken into consideration in the atmospheric chemical models on oxidation of aromatics.

  15. π-Hydrogen Bonding of Aromatics on the Surface of Aerosols: Insights from Ab Initio and Molecular Dynamics Simulation.

    PubMed

    Feng, Ya-Juan; Huang, Teng; Wang, Chao; Liu, Yi-Rong; Jiang, Shuai; Miao, Shou-Kui; Chen, Jiao; Huang, Wei

    2016-07-14

    Molecular level insight into the interaction between volatile organic compounds (VOCs) and aerosols is crucial for improvement of atmospheric chemistry models. In this paper, the interaction between adsorbed toluene, one of the most significant VOCs in the urban atmosphere, and the aqueous surface of aerosols was studied by means of combined molecular dynamics simulations and ab initio quantum chemistry calculations. It is revealed that toluene can be stably adsorbed on the surface of aqueous droplets via hydroxyl-π hydrogen bonding between the H atoms of the water molecules and the C atoms in the aromatic ring. Further, significant modifications on the electrostatic potential map and frontier molecular orbital are induced by the solvation effect of surface water molecules, which would affect the reactivity and pathway of the atmospheric photooxidation of toluene. This study demonstrates that the surface interactions should be taken into consideration in the atmospheric chemical models on oxidation of aromatics. PMID:27280740

  16. Ab initio Lattice Results for Fermi Polarons in Two Dimensions.

    PubMed

    Bour, Shahin; Lee, Dean; Hammer, H-W; Meißner, Ulf-G

    2015-10-30

    We investigate the attractive Fermi polaron problem in two dimensions using nonperturbative Monte Carlo simulations. We introduce a new Monte Carlo algorithm called the impurity lattice Monte Carlo method. This algorithm samples the path integral in a computationally efficient manner and has only small sign oscillations for systems with a single impurity. As a benchmark of the method, we calculate the universal polaron energy in three dimensions in the scale-invariant unitarity limit and find agreement with published results. We then present the first fully nonperturbative calculations of the polaron energy in two dimensions and density correlations between the impurity and majority particles in the limit of zero-range interactions. We find evidence for a smooth crossover transition from fermionic quasiparticle to molecular state as a function of the interaction strength. PMID:26565472

  17. The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations

    SciTech Connect

    Sellier, J.M. Dimov, I.

    2014-09-15

    The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practically unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.

  18. Conformation and tautomerism of methoxy-substituted 4-phenyl-4-thiazoline-2-thiones: a combined crystallographic and ab initio investigation.

    PubMed

    Balti, Monaem; Norberg, Bernadette; Efrit, Mohamed Lotfi; Lanners, Steve; Wouters, Johan

    2016-05-01

    4-Phenyl-4-thiazoline-2-thiol is an active pharmaceutical compound, one of whose activities is as a human indolenamine dioxygenase inhibitor. It has been shown recently that in both the solid state and the gas phase, the thiazolinethione tautomer should be preferred. As part of both research on this lead compound and a medicinal chemistry program, a series of substituted arylthiazolinethiones have been synthesized. The molecular conformations and tautomerism of 4-(2-methoxyphenyl)-4-thiazoline-2-thione and 4-(4-methoxyphenyl)-4-thiazoline-2-thione, both C10H9NOS2, are reported and compared with the geometry deduced from ab initio calculations [PBE/6-311G(d,p)]. Both the crystal structure analyses and the calculations establish the thione tautomer for the two substituted arylthiazolinethiones. In the crystal structure of the 2-methoxyphenyl regioisomer, the thiazolinethione unit was disordered over two conformations. Both isomers exhibit similar hydrogen-bond patterns [R2(2)(8) motif] and form dimers. The crystal packing is further reinforced by short S...S interactions in the 2-methoxyphenyl isomer. The conformations of the two regioisomers correspond to stable geometries calculated from an ab initio energy-relaxed scan. PMID:27146572

  19. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  20. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH2(+).

    PubMed

    Li, Y Q; Zhang, P Y; Han, K L

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH2 (+) by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH(+)(X(1)Σ(+))+H((2)S)→C(+)((2)P)+H2(X(1)Σg (+)) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C(+)/H containing systems.

  1. Ab initio adiabatic and quasidiabatic potential energy surfaces of lowest four electronic states of the H++O2 system

    NASA Astrophysics Data System (ADS)

    Xavier, F. George D.; Kumar, Sanjay

    2010-10-01

    Ab initio global adiabatic and quasidiabatic potential energy surfaces of lowest four electronic (1-4 A3″) states of the H++O2 system have been computed in the Jacobi coordinates (R,r,γ) using Dunning's cc-pVTZ basis set at the internally contracted multireference (single and double) configuration interaction level of accuracy, which are relevant to the dynamics studies of inelastic vibrational and charge transfer processes observed in the scattering experiments. The computed equilibrium geometry parameters of the bound [HO2]+ ion in the ground electronic state and other parameters for the transition state for the isomerization process, HOO+⇌OOH+ are in good quantitative agreement with those available from the high level ab initio calculations, thus lending credence to the accuracy of the potential energy surfaces. The nonadiabatic couplings between the electronic states have been analyzed in both the adiabatic and quasidiabatic frameworks by computing the nonadiabatic coupling matrix elements and the coupling potentials, respectively. It is inferred that the dynamics of energy transfer processes in the scattering experiments carried out in the range of 9.5-23 eV would involve all the four electronic states.

  2. Modeling the water-bioglass interface by ab initio molecular dynamics simulations.

    PubMed

    Tilocca, Antonio; Cormack, Alastair N

    2009-06-01

    The hydration of the surface of a highly bioactive silicate glass was modeled using ab initio (Car-Parrinello) molecular dynamics (CPMD) simulations, focusing on the structural and chemical modifications taking place at the glass-water interface immediately after contact and on the way in which they can affect the bioactivity of these materials. The adsorption of a water dimer and trimer on the dry surface was studied first, followed by the extended interface between the glass and liquid water. The CPMD trajectories provide atomistic insight into the initial stages relevant to the biological activity of these materials: following contact of the glass with an aqueous (physiological) medium, the initial enrichment of the surface region in Na+ cations establishes dominant Na+-water interactions at the surface, which allow water molecules to penetrate into the open glass network and start its partial dissolution. The model of a Na/H-exchanged interface shows that Ca2+-water interactions are mainly established after the dominant fraction of Na is leached into the solution. Another critical role of modifier cations was highlighted: they provide the Lewis acidity necessary to neutralize OH(-) produced by water dissociation and protonation of nonbridging oxygen (NBO) surface sites. The CPMD simulations also highlighted an alternative, proton-hopping mechanism by which the same process can take place in the liquid water film. The main features of the bioactive glass surface immediately after contact with an aqueous medium, as emerged from the simulations, are (a) silanol groups formed by either water dissociation at undercoordinated Si sites or direct protonation of NBOs, (b) OH(-) groups generally stabilized by modifier cations and coupled with the protonated NBOs, and (c) small rings, relatively stable and unopened even after exposure to liquid water. The possible role and effect of these sites in the bioactive process are discussed. PMID:20355929

  3. Numerical treatment discussion and ab initio computational reinvestigation of physisorption of molecular hydrogen on graphene.

    PubMed

    Ferre-Vilaplana, A

    2005-03-01

    A numerical treatment suitable for the computational investigation of physisorption of molecular hydrogen on carbon nanostructures has not been sufficiently discussed. In this paper it is shown that results used as a reference are actually a product of poorly solved interactions and contaminated estimates with errors which would be of the order of 60%. Moreover, using ab initio molecular orbital theory, under the rigid monomer supermolecular approach, the physisorption energy of molecular hydrogen on graphene was reinvestigated. The graphene surface was modeled as a coronenelike (C(24)H(12)) graphene sheet. The basis set superposition error was corrected by means of the counterpoise method. The H(2)-H(2) and H(2)-benzene interactions were examined, under systematic combinations of basis sets and correlation methods, including the aug-cc-pVQZ basis set and the coupled cluster correlation method with single, double, and noniterative triple excitations, searching for a numerical treatment with a reasonable trade-off between efficiency and accuracy. Asymmetrical modeling strategies, using diffusion augmented basis sets with preference for the adsorbate, were found to be effective. Also local modeling strategies, using more complete basis sets for the nearest atoms to the adsorbate than for the rest of the substrate, were considered. The aug-cc-pVTZ basis set for the adsorbate and for the nearest atoms to the adsorbate and the cc-pVTZ basis set for the rest of the cluster-modeled graphene, at the second-order Moller-Plesset perturbation theory correlation level, was selected as reference treatment. It was found that the physisorption energy of molecular hydrogen on graphene would be of the order of 0.06 eV, which would be 25% less than what has been previously published, though it would be sufficient to permit the storage of hydrogen physisorbed on carbon. To our knowledge this would be the most realistic theoretical estimate of the mentioned energy to date.

  4. Ab-initio Coarse-Graining of Entangled Polymer Systems

    NASA Astrophysics Data System (ADS)

    Padding, Johan T.; Briels, Wim J.

    Ever since Richard Kuhn's description of a polymer as a coiling flexible thread [1], polymer systems have received continuous interest from both theo- rists and experimentalists. In semi-dilute and concentrated polymer solutions each polymer chain interacts with many other chains. The effect of these in- termolecular interactions is revealed by the peculiar flow behaviour of these materials: they are very viscous and have surprising elastic properties. In un- crosslinked polymers these elastic properties manifest themselves temporarily, but still sometimes on time scales as long as seconds or hours. This peculiar viscoelastic behaviour is often rationalized by viewing poly- mer systems as temporary rubbery networks. Such a network arises as a result of mutual uncrossability of the polymer chains - they are entangled. Many at- tempts have already been made to fundamentally explain the entanglement phenomenon. The usual procedure is to propose a microscopic model, calculate the consequences for various dynamic properties, and compare the outcome with experiment, if available. Theoretical treatments of this sort include coop- erative motion models, where the focus is on the increased friction experienced by a test chain because it drags other chains with it over finite distances [2]. A major difficulty in such an approach is the specification of the location and duration of entanglements, because the exact nature of an entanglement is not known.

  5. Ab initio Study of Naptho-Homologated DNA Bases

    SciTech Connect

    Sumpter, Bobby G; Vazquez-Mayagoitia, Alvaro; Huertas, Oscar; Fuentes-Cabrera, Miguel A; Orozco, Modesto; Luque, Javier

    2008-01-01

    Naptho-homologated DNA bases have been recently used to build a new type of size expanded DNA known as yyDNA. We have used theoretical techniques to investigate the structure, tautomeric preferences, base-pairing ability, stacking interactions, and HOMO-LUMO gaps of the naptho-bases. The structure of these bases is found to be similar to that of the benzo-fused predecessors (y-bases) with respect to the planarity of the aromatic rings and amino groups. Tautomeric studies reveal that the canonical-like form of naptho-thymine (yyT) and naptho-adenine (yyA) are the most stable tautomers, leading to hydrogen-bonded dimers with the corresponding natural nucleobases that mimic the Watson-Crick pairing. However, the canonical-like species of naptho-guanine (yyG) and naptho-cytosine (yyC) are not the most stable tautomers, and the most favorable hydrogen-bonded dimers involve wobble-like pairings. The expanded size of the naphto-bases leads to stacking interactions notably larger than those found for the natural bases, and they should presumably play a dominant contribution in modulating the structure of yyDNA duplexes. Finally, the HOMO-LUMO gap of the naptho-bases is smaller than that of their benzo-base counterparts, indicating that size-expansion of DNA bases is an efficient way of reducing their HOMO-LUMO gap. These results are examined in light of the available experimental evidence reported for yyT and yyC.

  6. Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations.

    PubMed

    Ruckenstein, Eli; Shulgin, Ivan L; Tilson, Jeffrey L

    2005-02-10

    Large molecular clusters can be considered as intermediate states between gas and condensed phases, and information about them can help us understand condensed phases. In this paper, ab initio quantum mechanical methods have been used to examine clusters formed of methanol and water molecules. The main goal was to obtain information about the intermolecular interactions and the structure of methanol/water clusters at the molecular level. The large clusters (CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10)) containing one molecule of one component (methanol or water) and many (12, 10) molecules of the other component were considered. Møller-Plesset perturbation theory (MP2) was used in the calculations. Several representative cluster geometries were optimized, and nearest-neighbor interaction energies were calculated for the geometries obtained in the first step. The results of the calculations were compared to the available experimental information regarding the liquid methanol/water mixtures and to the molecular dynamics and Monte Carlo simulations, and good agreement was found. For the CH(4)O...(H(2)O)(12) cluster, it was shown that the molecules of water can be subdivided into two classes: (i) H bonded to the central methanol molecule and (ii) not H bonded to the central methanol molecule. As expected, these two classes exhibited striking energy differences. Although they are located almost the same distance from the carbon atom of the central methanol molecule, they possess very different intermolecular interaction energies with the central molecule. The H bonding constitutes a dominant factor in the hydration of methanol in dilute aqueous solutions. For the H(2)O...(CH(4)O)(10) cluster, it was shown that the central molecule of water has almost three H bonds with the methanol molecules; this result differs from those in the literature that concluded that the average number of H bonds between a central water molecule and methanol molecules in dilute solutions of

  7. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity.

    PubMed

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(X 2Pi)-Kr and NO(A 2Sigma+)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1 2A' state [NO(X 2Pi)-Kr] and the multireference singles and doubles configuration interaction method for the excited 2 2A' state [NO(A 2Sigma+)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match

  8. Ab initio modelling of UN grain boundary interfaces

    NASA Astrophysics Data System (ADS)

    Kotomin, E. A.; Zhukovkii, Yu F.; Bocharov, D.; Gryaznov, D.

    2012-08-01

    The uranium mononitride (UN) is a material considered as a promising candidate for Generation-IV nuclear reactor fuels. Unfortunately, oxygen in air affects UN fuel performance and stability. Therefore, it is necessary to understand the mechanism of oxygen adsorption and further UN oxidation in the bulk and at surface. Recently, we performed a detailed study on oxygen interaction with UN surface using density functional theory (DFT) calculations. We were able to identify an atomistic mechanism of UN surface oxidation consisting of several important steps, starting with the oxygen molecule dissociation and finishing with oxygen atom incorporation into vacancies on the surface. However, in reality most of processes occur at the interfaces and on UN grain boundaries. In this study, we present the results of first DFT calculations on O behaviour inside UN grain boundaries performed using GGA exchange-correlation functional PW91 as implemented into the VASP computer code. We consider a simple interface (310)[001](36.8°) tilt grain boundary. The N vacancy formation energies and energies of O incorporation into pre-existing vacancies in the grain boundaries as well as O solution energies were compared with those obtained for the UN (001) and (110) surfaces

  9. AsH3 ultraviolet photochemistry: An ab initio view

    NASA Astrophysics Data System (ADS)

    Alekseyev, Aleksey B.; Buenker, Robert J.; Liebermann, Heinz-Peter

    2012-06-01

    Multireference configuration interaction calculations have been carried out for low-lying electronic states of AsH3. Bending potentials for the nine lowest states of AsH3 are obtained in C3v symmetry for As-H distances fixed at the ground state equilibrium value of 2.850 a0, as well as for the minimum energy path constrained to R1 = R2 = R3. The calculated equilibrium geometry and bond energy for the tilde{X} {^1}{A}1 ground state agree very well with the previous experimental and theoretical data. It is shown that the lowest excited singlet state belongs to the 1A1 symmetry (in C3v), in contradiction to the previous calculations. This state is characterized by a planar equilibrium geometry. Asymmetric stretch potential energy surface (PES) cuts along the H2As-H recoil coordinate (at R1 = R2 = 2.850 a0, θ = 123.9° and 90°) for numerous excited states and two-dimensional PESs for the tilde{X} and tilde{A} states up to the dissociation limits are obtained for the first time. The tilde{A} {^1}{A}1, tilde{B} ^1E - tilde{X} {^1}{A}1 transition moments are calculated as well and used together with the PES data for the analysis of possible photodecay channels of arsine in its first absorption band.

  10. Ab initio modeling of 2D layered organohalide lead perovskites.

    PubMed

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-28

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place. PMID:27131557

  11. CL-20 photodecomposition: ab initio foundations for identification of products.

    PubMed

    Kholod, Yana; Kosenkov, Dmytro; Okovytyy, Sergiy; Gorb, Leonid; Qasim, Mohammad; Leszczynski, Jerzy

    2008-11-01

    1,5-Dihydrodiimidazo[4,5-b:4'5'e]pyrazine, 1H-imidazo[4,5-b]pyrazine, and 1H-imidazole were considered as possible products of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) photodecomposition. Since we took as a reference the product obtained after CL-20 irradiation in methanol solution, the nature of intermolecular bonds between heterocycles under study and methanol molecules was analyzed in detail. Existing hydrogen bonds were found to be quite strong, so dependence of calculations results on an influence of solvent was taken into account using both the polarizable continuum model (PCM) and the supermolecular approach. Electronic spectra of 1,5-dihydrodiimidazo[4,5-b:4'5'e]pyrazine, 1H-imidazo[4,5-b]pyrazine and 1H-imidazole were simulated using time dependent density functional theory (TD-DFT) and single-excitation configuration interaction (CIS) method. We observed that TD-DFT excitation energies are lower if compared to corresponding values obtained by the CIS method. Results of calculations with PCM and the supermolecular approach are very close. It was found that differences between calculated gas phase excitation energies and those values obtained by applying solvent models increases when the number of conjugated bonds in a molecule increases. Oscillator strengths of UV bands of the considered molecules are higher in the gas phase than in modeled methanol solutions. We found that the predicted spectrum of 1H-imidazole is in close agreement with the experimental UV spectrum of the CL-20 photolysis product. PMID:18262832

  12. CL-20 photodecomposition: Ab initio foundations for identification of products

    NASA Astrophysics Data System (ADS)

    Kholod, Yana; Kosenkov, Dmytro; Okovytyy, Sergiy; Gorb, Leonid; Qasim, Mohammad; Leszczynski, Jerzy

    2008-11-01

    1,5-Dihydrodiimidazo[4,5-b:4'5'e]pyrazine, 1H-imidazo[4,5-b]pyrazine, and 1H-imidazole were considered as possible products of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) photodecomposition. Since we took as a reference the product obtained after CL-20 irradiation in methanol solution, the nature of intermolecular bonds between heterocycles under study and methanol molecules was analyzed in detail. Existing hydrogen bonds were found to be quite strong, so dependence of calculations results on an influence of solvent was taken into account using both the polarizable continuum model (PCM) and the supermolecular approach. Electronic spectra of 1,5-dihydrodiimidazo[4,5-b:4'5'e]pyrazine, 1H-imidazo[4,5-b]pyrazine and 1H-imidazole were simulated using time dependent density functional theory (TD-DFT) and single-excitation configuration interaction (CIS) method. We observed that TD-DFT excitation energies are lower if compared to corresponding values obtained by the CIS method. Results of calculations with PCM and the supermolecular approach are very close. It was found that differences between calculated gas phase excitation energies and those values obtained by applying solvent models increases when the number of conjugated bonds in a molecule increases. Oscillator strengths of UV bands of the considered molecules are higher in the gas phase than in modeled methanol solutions. We found that the predicted spectrum of 1H-imidazole is in close agreement with the experimental UV spectrum of the CL-20 photolysis product.

  13. Organic/inorganic hybrid materials: challenges for ab initio methodology.

    PubMed

    Draxl, Claudia; Nabok, Dmitrii; Hannewald, Karsten

    2014-11-18

    CONSPECTUS: Organic/inorganic hybrid structures are most exciting since one can expect new properties that are absent in either of their building blocks. They open new perspectives toward the design and tailoring of materials with desired features and functions. Prerequisite for real progress is, however, the in-depth understanding of what happens on the atomic and electronic scale. In this respect, hybrid materials pose a challenge for electronic-structure theory. Methods that proved useful for describing one side may not be applicable for the other one, and they are likely to fail for the interfaces. In this Account, we address the question to what extent we can quantitatively describe hybrid materials and where we even miss a qualitative description. We note that we are dealing with extended systems and thus adopt a solid-state approach. Therefore, density-functional theory (DFT) and many-body perturbation theory (MBPT), the GW approach for charged and the Bethe-Salpeter equation for neutral excitations, are our methods of choice. We give a brief summary of the used methodology, focusing on those aspects where problems can be expected when materials of different character meet at an interface. These issues are then taken up when discussing hybrid materials. We argue when and why, for example, standard DFT may fall short when it comes to the electronic structure of organic/metal interfaces or where the framework of MBPT can or must take over. Selected examples of organic/inorganic interfaces, structural properties, electronic bands, optical excitation spectra, and charge-transport properties as obtained from DFT and MBPT highlight which properties can be reliably computed for such materials. The crucial role of van der Waals forces is shown for sexiphenyl films, where the subtle interplay between intermolecular and molecule-substrate interactions is decisive for growth and morphologies. With a PTCDA monolayer on metal surfaces we discuss the performance of DFT in

  14. Organic/inorganic hybrid materials: challenges for ab initio methodology.

    PubMed

    Draxl, Claudia; Nabok, Dmitrii; Hannewald, Karsten

    2014-11-18

    CONSPECTUS: Organic/inorganic hybrid structures are most exciting since one can expect new properties that are absent in either of their building blocks. They open new perspectives toward the design and tailoring of materials with desired features and functions. Prerequisite for real progress is, however, the in-depth understanding of what happens on the atomic and electronic scale. In this respect, hybrid materials pose a challenge for electronic-structure theory. Methods that proved useful for describing one side may not be applicable for the other one, and they are likely to fail for the interfaces. In this Account, we address the question to what extent we can quantitatively describe hybrid materials and where we even miss a qualitative description. We note that we are dealing with extended systems and thus adopt a solid-state approach. Therefore, density-functional theory (DFT) and many-body perturbation theory (MBPT), the GW approach for charged and the Bethe-Salpeter equation for neutral excitations, are our methods of choice. We give a brief summary of the used methodology, focusing on those aspects where problems can be expected when materials of different character meet at an interface. These issues are then taken up when discussing hybrid materials. We argue when and why, for example, standard DFT may fall short when it comes to the electronic structure of organic/metal interfaces or where the framework of MBPT can or must take over. Selected examples of organic/inorganic interfaces, structural properties, electronic bands, optical excitation spectra, and charge-transport properties as obtained from DFT and MBPT highlight which properties can be reliably computed for such materials. The crucial role of van der Waals forces is shown for sexiphenyl films, where the subtle interplay between intermolecular and molecule-substrate interactions is decisive for growth and morphologies. With a PTCDA monolayer on metal surfaces we discuss the performance of DFT in

  15. Accurate combined-hyperbolic-inverse-power-representation of ab initio potential energy surface for the hydroperoxyl radical and dynamics study of O + OH reaction.

    PubMed

    Varandas, A J C

    2013-04-01

    The Combined-Hyperbolic-Inverse-Power-Representation method, which treats evenly both short- and long-range interactions, is used to fit an extensive set of ab initio points for HO2 previously utilized [Xu et al., J. Chem. Phys. 122, 244305 (2005)] to develop a spline interpolant. The novel form is shown to perform accurately when compared with others, while quasiclassical trajectory calculations of the O + OH reaction clearly pinpoint the role of long-range forces at low temperatures. PMID:23574218

  16. Ab initio calculation of structure and transport properties of He…X (X = Zn, Cd, Hg) van der Waals complexes.

    PubMed

    Sládek, Vladimír; Lukeš, Vladimír; Ilčin, Michal; Biskupič, Stanislav

    2012-03-15

    The ground state ab initio CCSD(T) potential curves using various basis sets (aug-cc-pVXZ-PP (X = D, T, Q, 5)) is obtained for the dimers of helium with IIb group metals. The effect of the position of the (mid) bond-functions on the interaction energy is discussed. A Symmetry Adapted Perturbation Theory decomposition of the interaction energy is provided and the trends in the dimer stabilizing and destabilizing contributions are depicted. The spline fitted potential curves are applied together with rigorous statistical formulae in order to obtain the transport coefficients (viscosity coefficients, diffusion coefficients) and the second virial coefficient both for pure constituents and mixtures. The obtained theoretical results are compared with available experimental data. Molecular dynamics is used to obtain reliable values of the diffusion coefficients for all the systems under study.

  17. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    NASA Astrophysics Data System (ADS)

    Signoracci, A.; Duguet, T.; Hagen, G.; Jansen, G. R.

    2015-06-01

    Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A ≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed within the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an Nmax=6 spherical harmonic oscillator basis for O,1816 and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is relatively

  18. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    SciTech Connect

    Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; Jansen, G. R.

    2015-06-29

    Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed within the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an Nmax=6 spherical harmonic oscillator basis for 16,18O and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance

  19. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    DOE PAGES

    Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; Jansen, G. R.

    2015-06-29

    Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed withinmore » the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an Nmax=6 spherical harmonic oscillator basis for 16,18O and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is

  20. Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.

    PubMed

    Zhang, Dawei; Liu, Chungen

    2016-04-12

    The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems. PMID:26963572

  1. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock; David A. Walthall

    2006-05-07

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various different energy sources potentially including fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch synthesis involves the initiation or activation of CO and H{sub 2} bonds, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. Commercially viable catalysts include supported Co and Co-alloys. Over the first two years of this project we have used ab initio methods to determine the adsorption energies for all reactants, intermediates, and products along with the overall reaction energies and their corresponding activation barriers over the Co(0001) surface. Over the third year of the project we developed and advanced an ab initio-based kinetic Monte Carlo simulation code to simulate Fischer Tropsch synthesis. This report details our work over the last year which has focused on the derivation of kinetic parameters for the elementary steps involved in FT synthesis from ab initio density functional theoretical calculations and the application of the kinetic Monte Carlo algorithm to simulate the initial rates of reaction for FT over the ideal Co(0001) surface. The results from our simulations over Co(0001) indicate the importance of stepped surfaces for the activation of adsorbed CO. In addition, they demonstrate that the dominant CH{sub x}* surface intermediate under steady state conditions is CH*. This strongly suggests that hydrocarbon coupling

  2. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  3. Investigating the quartz (1010)/water interface using classical and ab initio molecular dynamics.

    PubMed

    Skelton, A A; Wesolowski, D J; Cummings, P T

    2011-07-19

    Two different terminations of the (1010) surface of quartz (α and β) interacting with water are simulated by classical (CMD) (using two different force fields) and ab initio molecular dynamics (AIMD) and compared with previously published X-ray reflectivity (XR) experiments. Radial distribution functions between hydroxyl and water show good agreement between AIMD and CMD using the ClayFF force field for both terminations. The Lopes et al. (Lopes, P. E. M.; Murashov, V.; Tazi, M.; Demchuk, E.; MacKerell, A. D. J. Phys. Chem. B2006, 110, 2782-2792) force field (LFF), however, underestimates the extent of hydroxyl-water hydrogen bonding. The β termination is found to contain hydroxyl-hydroxyl hydrogen bonds; the quartz surface hydroxyl hydrogens and oxygens that hydrogen bond with each other exhibit greatly reduced hydrogen bonding to water. Conversely, the hydroxyl hydrogen and oxygens that are not hydrogen bonded to other surface hydroxyls but are connected to those that are show a considerable amount of hydrogen bonding to water. The electron density distribution of an annealed surface of quartz (1010) obtained by XR is in qualitative agreement with electron densities calculated by CMD and AIMD. In all simulation methods, the interfacial water peak appears farther from the surface than observed by XR. Agreement among AIMD, LFF, and XR is observed for the relaxation of the near-surface atoms; however, ClayFF shows a larger discrepancy. Overall, results show that for both terminations of (1010), LFF treats the near-surface structure more accurately whereas ClayFF treats the interfacial water structure more accurately. It is shown that the number of hydroxyl and water hydrogen bonds to the bridging Si-O-Si oxygens connecting the surface silica groups to the rest of the crystal is much greater for the α than the β termination. It is suggested that this may play a role in the greater resistance to dissolution of the β termination than that of the α termination.

  4. Probing the Si(001) surface with a Si tip: An ab initio study

    NASA Astrophysics Data System (ADS)

    Kantorovich, Lev; Hobbs, Chris

    2006-06-01

    Topographic noncontact atomic force microscopy (NC-AFM) images of the p(2×1) and c(4×2) reconstructions of the Si(001) surface are simulated for the cases of weak and strong tip-surface interactions and various temperatures using ab initio density functional theory. In the simulations the surface is imaged by a sharp silicon tip with a single dangling bond at its apex. At a very close approach to the surface, the tip flips a surface dimer when positioned close to its lower atom. The energy barriers for an individual flipped surface dimer to regain its initial configuration are calculated to be ˜0.1eV , implying that the surface should be able to “heal” itself at all but extremely low temperatures during one oscillation cycle of the cantilever. Thus, at small enough temperatures, T⩽70K , and large frequency shifts, the imaging process is dominated by tip induced dimer flip events resulting in a permanent deformation of the surface and an apparent p(2×1) symmetric phase to be observed. No dissipation is expected as the tip oscillations are conservative at these conditions. At intermediate temperatures, 70K⩽T⩽200K , the flipped dimers are able to return to the ground state during each tip oscillation, resulting in continuous healing of the surface and thus large dissipation is expected. At T⩾200K dimers flip back and forth easily resulting in an apparent symmetric p(2×1) phase and noticeable dissipation. At small frequency shifts the dimers do not flip, still the upper dimer atoms are imaged as bright so that surface reconstruction can easily be determined. The possibility of manipulating the orientation of dimers at low temperatures and large frequency shifts by means of preprogrammed scan directions, is also discussed.

  5. Crystal structure and magnetism in α -RuCl3 : An ab initio study

    NASA Astrophysics Data System (ADS)

    Kim, Heung-Sik; Kee, Hae-Young

    2016-04-01

    α -RuCl3 has been proposed recently as an excellent playground for exploring Kitaev physics on a two-dimensional (2D) honeycomb lattice. However, structural clarification of the compound has not been completed, which is crucial in understanding the physics of this system. Here, using ab initio electronic structure calculations, we study a full three-dimensional (3D) structure of α -RuCl3 , including the effects of spin-orbit coupling (SOC) and electronic correlations. The three major results are as follows: (i) SOC suppresses dimerization of Ru atoms, which exists in other Ru compounds such as isostructural Li2RuO3 , and makes the honeycomb closer to an ideal one. (ii) The nearest-neighbor Kitaev exchange interaction between the jeff=1 /2 pseudospin strongly depends on the Ru-Ru distance and the Cl position, originating from the nature of the edge-sharing geometry. (iii) The optimized 3D structure without electronic correlations has P 3 ¯1 m space-group symmetry independent of SOC, but including electronic correlation changes the optimized 3D structure to either C 2 /m or C m c 21 within 0.1 meV per formula unit (f.u.) energy difference. The reported P 3112 structure is also close in energy. The interlayer spin-exchange coupling is a few percent of the in-plane spin-exchange terms, confirming that α -RuCl3 is close to a 2D system. We further suggest how to increase the Kitaev term via tensile strain, which sheds light in realizing the Kitaev spin-liquid phase in this system.

  6. Room Temperature Line Lists for CO_2 Isotopologues with AB Initio Computed Intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil; Tennyson, Jonathan; Polyansky, Oleg; Lodi, Lorenzo; Zobov, Nikolay Fedorovich; Tashkun, Sergey; Perevalov, Valery

    2016-06-01

    We report 13 room temperature line lists for all major CO_2 isotopologues, covering 0-8000 wn. These line lists are a response to the need for line intensities of high, preferably sub-percent, accuracy by remote sensing experiments. Our scheme encompasses nuclear motion calculations supported by critical reliability analysis of the generated line intensities. Rotation-vibration wavefunctions and energy levels are computed using DVR3D and a high quality semi-empirical potential energy surface (PES) [1], followed by computation of intensities using a fully ab initio dipole moment surface (DMS). Cross comparison of line lists calculated using pairs of high-quality PES's and DMS's is used to assess imperfections in the PES, which lead to unreliable transition intensities between levels involved in resonance interactions. Four line lists are computed for each isotopologue to quantify sensitivity to minor distortions of the PES/DMS. This provides an estimate of the contribution to the overall line intensity error introduced by the underlying PES. Reliable lines are benchmarked against recent state-of-the-art measurements [2] and HITRAN-2012 supporting the claim that the majority of line intensities for strong bands are predicted with sub-percent accuracy [3]. Accurate line positions are generated using an effective Hamiltonian [4]. We recommend use of these line lists for future remote sensing studies and inclusions in databases. X. Huang, D. W. Schwenke, S. A. Tashkun, T. J. Lee, J. Chem. Phys. 136, 124311, 2012. O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, J. Tennyson, PRL, 114, 243001, 2015. E. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, S. A. Tashkun, V. I. Perevalov, JQSRT, in press and to be submitted. S. A. Tashkun, V. I. Perevalov, R. R. Gamache, J. Lamouroux, JQSRT, 152, 45-73, 2015.

  7. Insights into the function of silver as an oxidation catalyst by ab initio atomistic thermodynamics

    NASA Astrophysics Data System (ADS)

    Li, Wei-Xue; Stampfl, Catherine; Scheffler, Matthias

    2003-10-01

    To help understand the high activity of silver as an oxidation catalyst, e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of methanol to formaldehyde, the interaction and stability of many different oxygen species at the Ag(111) surface has been studied for a wide range of coverages. Through calculation of the free energy, as obtained from density-functional theory and taking into account the temperature and pressure via the oxygen chemical potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a thin surface-oxide structure is most stable for the temperature and pressure range of ethylene epoxidation and we propose it (and possibly other similar structures) contains the species actuating the catalysis. For higher temperatures, low coverages of chemisorbed oxygen are most stable, which could also play a role in oxidation reactions. For temperatures greater than about 775 K there are no stable oxygen species, except for the possibility of O atoms adsorbed at undercoordinated surface sites (i.e., imperfections, defects). At low temperatures (≲400 K at atmospheric pressure), provided kinetic limitations can be overcome, thicker oxidelike structures are predicted. Due to their low thermal stability, however, they can be ruled out as playing an important role in the heterogeneous reactions under technical conditions. Bulk dissolved oxygen and a molecular ozonelike species adsorbed at a surface vacancy, as have been proposed in the literature, are found to be energetically unfavorable. The employed theoretical approach for calculating free energies and predicting the lowest energy structures in contact with species in the environment (“ab initio, atomistic thermodynamics”), affords investigation of a system that seamlessly connects standard (T=0 K) density-functional theory results, characteristic of “typical” theoretical surface science studies, through to those valid for the conditions of catalysis. Though the error

  8. Infrared signature of micro-hydration in the organophosphate sarin: An ab initio study

    SciTech Connect

    Alam, Todd M.; Pearce, Charles Joseph

    2015-06-28

    The infrared (IR) spectra of micro-hydrated Sarin•(H2O)n clusters containing between one and four explicit waters have been studied using ab initio density functional theory (DFT) methods. The phosphate group P=O bond vibration region (~1270 to 1290 cm–1) revealed the largest frequency variation with hydration, with a frequency red shift reflecting the direct hydrogen bond formation between the P=O of Sarin and water. Small variations to the P-F stretch (~810 to 815 cm–1) and the C-O-P vibrational modes (~995 to 1004 cm–1) showed that the water interactions with these functional groups were minor, and that the structures of Sarin were not extensively perturbed in the hydrated complexes. Increasing the number of explicit hydration waters produced only small vibrational changes in the lowest free energy complexes. These minor changes were consistent with a single water-phosphate hydrogen bond being the dominant structure, though a second water-phosphate hydrogen bond was observed in some complexes and was identified by an additional red shift of the P=O bond vibration. As a result, the H2O•H2O vibrational modes (~3450 to 3660 cm–1) increased in complexity with higher hydration levels and reflect the extended hydrogen bonding networks formed between the explicit waters in the hydrated Sarin clusters.

  9. AB Initio Protein Tertiary Structure Prediction: Comparative-Genetic Algorithm with Graph Theoretical Methods

    SciTech Connect

    Gregurick, S. K.

    2001-04-20

    During the period from September 1, 1998 until September 1, 2000 I was awarded a Sloan/DOE postdoctoral fellowship to work in collaboration with Professor John Moult at the Center for Advanced Research in Biotechnology (CARB). Our research project, ''Ab Initio Protein Tertiary Structure Prediction and a Comparative Genetic algorithm'', yielded promising initial results. In short, the project is designed to predict the native fold, or native tertiary structure, of a given protein by inputting only the primary sequence of the protein (one or three letter code). The algorithm is based on a general learning, or evolutionary algorithm and is called Genetic Algorithm (GAS). In our particular application of GAS, we search for native folds, or lowest energy structures, using two different descriptions for the interactions of the atoms and residues in a given protein sequence. One potential energy function is based on a free energy description, while the other function is a threading potential derived by Moult and Samudrala. This modified genetic algorithm was loosely termed a Comparative Genetic Algorithm and was designed to search for native folded structures on both potential energy surfaces, simultaneously. We tested the algorithm on a series of peptides ranging from 11 to 15 residues in length, which are thought to be independent folding units and thereby will fold to native structures independent of the larger protein environment. Our initial results indicated a modest increase in accuracy, as compared to a standard Genetic Algorithm. We are now in the process of improving the algorithm to increase the sensitivity to other inputs, such as secondary structure requirements. The project did not involve additional students and as of yet, the work has not been published.

  10. Laser cooling of BH and GaF: insights from an ab initio study.

    PubMed

    Gao, Yu-feng; Gao, Tao

    2015-04-28

    The feasibility of laser cooling BH and GaF is investigated using ab initio quantum chemistry. The ground state X (1)Σ(+) and first two excited states (3)Π and (1)Π of BH and GaF are calculated using the multireference configuration interaction (MRCI) level of theory. For GaF, the spin-orbit coupling effect is also taken into account in the electronic structure calculations at the MRCI level. Calculated spectroscopic constants for BH and GaF show good agreement with available theoretical and experimental results. The highly diagonal Franck-Condon factors (BH: f00 = 0.9992, f11 = 0.9908, f22 = 0.9235; GaF: f00 = 0.997, f11 = 0.989, f22 = 0.958) for the (1)Π (v' = 0-2) → X (1)Σ(+) (v = 0-2) transitions in BH and GaF are determined, which are found to be in good agreement with the theoretical and experimental data. Radiative lifetime calculations of the (1)Π (v' = 0-2) state (BH: 131, 151, and 187 ns; GaF: 2.26, 2.36, and 2.48 ns) are found to be short enough for rapid laser cooling. The proposed laser cooling schemes that drive the (1)Π (v' = 0) → X (1)Σ(+) (v = 0) transition use just one laser wavelength λ00 (BH: 436 nm, GaF: 209 nm). Though the cooling wavelength of GaF is deep in the UVC, a frequency quadrupled Ti:sapphire laser (189-235 nm) could be capable of generating useful quantities of light at this wavelength. The present results indicate that BH and GaF are two good choices of molecules for laser cooling.

  11. Rings and ladders in biology - fast ab initio simulations of polypeptides and DNA.

    NASA Astrophysics Data System (ADS)

    Lewis, James P.

    1996-03-01

    Throughout the years, developments of first principles methods have allowed a theoretical investigation of a wide variety of materials from semiconductors to zeolites. However, ab initio methods have not been widespread in the area of large biological systems. Several recent advances in theoretical techniques have prompted us to examine the possibility of simulating large biological systems. Linear scaling methods have been developed to avoid the N^3 computational roadblock due to matrix diagonalization, and a hydrogen-bonding model has been developed to correctly model weak intermolecular interactions within a tight-binding like local orbital framework.(J. Ortega, J. P. Lewis, O. F. Sankey Phys. Rev. B. 50), 10516 (1994); J. P. Lewis and O. F. Sankey, Biophys. J. 69, 1068 (1995). With these developments, a simulation of a dehydrated 10 basepair poly(dG) -- poly(dC) segment of DNA will be described. Results for the electronic structure of this relaxed structure will be discussed. In addition, a simulation of this relaxed structure, involving 1932 steps, was performed to determine the dynamical matrix. The corresponding vibrational spectrum was found and trends will be compared with experimental work.(Work done in collaboration with Otto F. Sankey and Pablo Ordejón) In addition, theoretical results on the energetics, electronic, vibrational and elastic properties of cyclic peptide systems cyclo[(D-Ala-Glu-D-Ala-Gln)_m], where m=1-4, will be presented. Experimentally, these cyclic peptide nanotubes have been shown to be excellent for transporting of ions and glucose across membranes, the attempt to simulate the placement of a dopant into the nanotube structure and the effects on the electronic structure will be discussed.(Work done in collaboration with Otto F. Sankey and Norma H. Pawley)

  12. Structural and magnetic properties of Tcn@C60 endohedral metallofullerenes: An ab initio study

    NASA Astrophysics Data System (ADS)

    Kim, Eunja; Weck, Philippe F.; Czerwinski, Kenneth R.; Tománek, David

    2010-03-01

    We use ab initio spin density functional calculations to study the equilibrium structure and magnetic properties of Tcn@C60 endohedral metallofullerenes. The radionuclide ^99mTc is well established in biomedicine as a potent in vivo diagnostic radiopharmaceutical; its encapsulation in the inert C60 shell is expected to limit possible cytotoxicity of radiometal nanoparticles catabolized by the biological host. We find that C60 can endohedrally accommodate Tcn clusters with up to n=7. The encapsulation does not change significantly the structure of the enclosed clusters, but reduces the magnetic moment due to a stronger Tc--C hybridization for the larger clusters.

  13. Scalable numerical approach for the steady-state ab initio laser theory

    NASA Astrophysics Data System (ADS)

    Esterhazy, S.; Liu, D.; Liertzer, M.; Cerjan, A.; Ge, L.; Makris, K. G.; Stone, A. D.; Melenk, J. M.; Johnson, S. G.; Rotter, S.

    2014-08-01

    We present an efficient and flexible method for solving the non-linear lasing equations of the steady-state ab initio laser theory. Our strategy is to solve the underlying system of partial differential equations directly, without the need of setting up a parametrized basis of constant flux states. We validate this approach in one-dimensional as well as in cylindrical systems, and demonstrate its scalability to full-vector three-dimensional calculations in photonic-crystal slabs. Our method paves the way for efficient and accurate simulations of microlasers which were previously inaccessible.

  14. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  15. Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P)

    SciTech Connect

    Kurova, N. V. Burdov, V. A.

    2013-12-15

    The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.

  16. Ab initio R-matrix calculations of e+-molecule scattering

    NASA Technical Reports Server (NTRS)

    Danby, Grahame; Tennyson, Jonathan

    1990-01-01

    The adaptation of the molecular R-matrix method, originally developed for electron-molecule collision studies, to positron scattering is discussed. Ab initio R-matrix calculations are presented for collisions of low energy positrons with a number of diatomic systems including H2, HF and N2. Differential elastic cross sections for positron-H2 show a minimum at about 45 deg for collision energies between 0.3 and 0.5 Ryd. The calculations predict a bound state of positronHF. Calculations on inelastic processes in N2 and O2 are also discussed.

  17. Reactivity of a sodium atom in vibrationally excited water clusters: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cwiklik, Lukasz; Kubisiak, Piotr; Kulig, Waldemar; Jungwirth, Pavel

    2008-07-01

    We investigated the reaction between a sodium atom and water molecules in both small and medium-size vibrationally excited water clusters using ab initio molecular dynamics simulations. Formation of NaOH was observed in small ( n = 4, 5) clusters, while water dissociation and subsequent geminate recombination accompanied by a transient formation of a Na +-OH - pair occurred in a 34 water cluster. Our results show that the initial step of the vibrationally excited reaction between a single sodium atom and water does not shut off in larger clusters and that it can also occur in the bulk water, however, more sodium atoms are likely required to stabilize the product.

  18. An ab initio quartic force field and the fundamental frequencies of o-benzyne

    NASA Astrophysics Data System (ADS)

    Bludský, Ota; Pirko, Vladimír; Kobayashi, Rika; Jørgensen, Poul

    1994-10-01

    The ab initio SCF, MCSCF and MP2 molecular energies, gradients and Hessians have been evaluated at 33 points for the ground electronic state of the o-benzyne molecule. The corresponding potential energy surfaces have been fitted to obtain a quartic force field from which the fundamental frequencies have been determined using second-order perturbation theory. Theoretical predictions reproduce the majority of the experimental data to a degree of agreement which allows a complete assignment of all the fundamental frequencies of o-benzyne.

  19. Matrix IR spectrum and ab initio SCF calculations of molecular SiS sub 2

    SciTech Connect

    Schnoeckel, H.; Koeppe, R. )

    1989-06-21

    In solid argon molecular SiS{sub 2} is generated by a reaction of SiS with S atoms. The antisymmetric stretching vibration {nu}{sub as}(SiS) is observed at 918 cm{sup {minus}1}. Bonding and structure (force constants from experimentally observed frequencies and results from ab initio SCF calculations) of SiS{sub 2} are compared with that of the similar molecules: CO, CS, CO{sub 2}, COS, CS{sub 2}, SiO, SiS, SiO{sub 2}, and SiOS.

  20. Efficient Use of an Adapting Database of Ab Initio Calculations To Generate Accurate Newtonian Dynamics.

    PubMed

    Shaughnessy, M C; Jones, R E

    2016-02-01

    We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm.