Ab Initio and Ab Exitu No-Core Shell Model
Vary, J P; Navratil, P; Gueorguiev, V G; Ormand, W E; Nogga, A; Maris, P; Shirokov, A
2007-10-02
We outline two complementary approaches based on the no core shell model (NCSM) and present recent results. In the ab initio approach, nuclear properties are evaluated with two-nucleon (NN) and three-nucleon interactions (TNI) derived within effective field theory (EFT) based on chiral perturbation theory (ChPT). Fitting two available parameters of the TNI generates good descriptions of light nuclei. In a second effort, an ab exitu approach, results are obtained with a realistic NN interaction derived by inverse scattering theory with off-shell properties tuned to fit light nuclei. Both approaches produce good results for observables sensitive to spin-orbit properties.
Ab Initio Modeling of Molecular Radiation
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Schwenke, David
2014-01-01
Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.
Barrett, Bruce R.; Navrátil, Petr; Vary, James P.
2012-11-17
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN
Student Modeling and Ab Initio Language Learning.
ERIC Educational Resources Information Center
Heift, Trude; Schulze, Mathias
2003-01-01
Provides examples of student modeling techniques that have been employed in computer-assisted language learning over the past decade. Describes two systems for learning German: "German Tutor" and "Geroline." Shows how a student model can support computerized adaptive language testing for diagnostic purposes in a Web-based language learning…
Ab-Initio Shell Model with a Core
Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P
2008-06-04
We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.
Ab initio thermodynamic model for magnesium carbonates and hydrates.
Chaka, Anne M; Felmy, Andrew R
2014-09-04
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates
Chaka, Anne M.; Felmy, Andrew R.
2014-03-28
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Efficient Ab initio Modeling of Random Multicomponent Alloys.
Jiang, Chao; Uberuaga, Blas P
2016-03-11
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.
Quantum plasmonics: from jellium models to ab initio calculations
NASA Astrophysics Data System (ADS)
Varas, Alejandro; García-González, Pablo; Feist, Johannes; García-Vidal, F. J.; Rubio, Angel
2016-08-01
Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT) calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.
Thermochemical data for CVD modeling from ab initio calculations
Ho, P.; Melius, C.F.
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
An investigation of ab initio shell-model interactions derived by no-core shell model
NASA Astrophysics Data System (ADS)
Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing
2016-09-01
The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.
AN AB INITIO MODEL FOR COSMIC-RAY MODULATION
Engelbrecht, N. E.; Burger, R. A.
2013-07-20
A proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays (CRs) is of vital importance for a better understanding of CR modulation in the heliosphere. This study presents an ab initio model for CR modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for solar minimum heliospheric conditions, utilizing boundary values chosen so that model results are in reasonable agreement with spacecraft observations of turbulence quantities in the solar ecliptic plane and along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modeled slab and two-dimensional (2D) turbulence energy spectra. The modeled 2D spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers. There currently exist no models or observations for the wavenumber where this drop-off occurs, and it is considered to be the only free parameter in this study. The modeled spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on CR drifts are modeled in a self-consistent way, also employing a recently developed model for wavy current sheet drift. The resulting diffusion and drift coefficients are applied to the study of galactic CR protons and antiprotons using a 3D, steady-state CR modulation code, and sample solutions in fair to good agreement with multiple spacecraft observations are presented.
Ab initio modeling of decomposition in iron based alloys
NASA Astrophysics Data System (ADS)
Gorbatov, O. I.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.
2016-12-01
This paper reviews recent progress in the field of ab initio based simulations of structure and properties of Fe-based alloys. We focus on thermodynamics of these alloys, their decomposition kinetics, and microstructure formation taking into account disorder of magnetic moments with temperature. We review modern theoretical tools which allow a consistent description of the electronic structure and energetics of random alloys with local magnetic moments that become totally or partially disordered when temperature increases. This approach gives a basis for an accurate finite-temperature description of alloys by calculating all the relevant contributions to the Gibbs energy from first-principles, including a configurational part as well as terms due to electronic, vibrational, and magnetic excitations. Applications of these theoretical approaches to the calculations of thermodynamics parameters at elevated temperatures (solution energies and effective interatomic interactions) are discussed including atomistic modeling of decomposition/clustering in Fe-based alloys. It provides a solid basis for understanding experimental data and for developing new steels for modern applications. The precipitation in Fe-Cu based alloys, the decomposition in Fe-Cr, and the short-range order formation in iron alloys with s-p elements are considered as examples.
Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J
2015-02-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
NASA Astrophysics Data System (ADS)
de Boer, K.; Jansen, A. P. J.; van Santen, R. A.
1994-06-01
We have developed a new method for deriving parameters for the shell model of silica polymorphs. All parameters for the shell model are derived in a self-consistent way from ab initio energy surfaces, polarizabilities and dipole moments of small clusters. This yields an ab initio partial charge shell model potential. The predictive power of our potential is demonstrated by presenting predictions for the structure of α-quartz, α-cristobalite, coesite, stishovite and the IR spectrum of α-quartz which are compared with experiment and predictions of the widely used potentials of Jackson and Catlow, and Kramer, Farragher, van Beest and van Santen.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.
Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models
NASA Technical Reports Server (NTRS)
Rammacher, W.; Cuntz, M.
1991-01-01
Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.
Point defect modeling in materials: Coupling ab initio and elasticity approaches
NASA Astrophysics Data System (ADS)
Varvenne, Céline; Bruneval, Fabien; Marinica, Mihai-Cosmin; Clouet, Emmanuel
2013-10-01
Modeling point defects at an atomic scale requires careful treatment of the long-range atomic relaxations. This elastic field can strongly affect point defect properties calculated in atomistic simulations because of the finite size of the system under study. This is an important restriction for ab initio methods which are limited to a few hundred atoms. We propose an original approach coupling ab initio calculations and linear elasticity theory to obtain the properties of an isolated point defect for reduced supercell sizes. The reliability and benefit of our approach are demonstrated for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron, and the neutral vacancy in silicon.
Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions
Navratil, P; Ormand, W E; Forssen, C; Caurier, E
2004-11-30
There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
NASA Astrophysics Data System (ADS)
Meisel, David D.; Szasz, Csilla; Kero, Johan
2008-06-01
The Arecibo UHF radar is able to detect the head-echos of micron-sized meteoroids up to velocities of 75 km/s over a height range of 80 140 km. Because of their small size there are many uncertainties involved in calculating their above atmosphere properties as needed for orbit determination. An ab initio model of meteor ablation has been devised that should work over the mass range 10-16 kg to 10-7 kg, but the faint end of this range cannot be observed by any other method and so direct verification is not possible. On the other hand, the EISCAT UHF radar system detects micrometeors in the high mass part of this range and its observations can be fit to a “standard” ablation model and calibrated to optical observations (Szasz et al. 2007). In this paper, we present a preliminary comparison of the two models, one observationally confirmable. Among the features of the ab initio model that are different from the “standard” model are: (1) uses the experimentally based low pressure vaporization theory of O’Hanlon (A users’s guide to vacuum technology, 2003) for ablation, (2) uses velocity dependent functions fit from experimental data on heat transfer, luminosity and ionization efficiencies measured by Friichtenicht and Becker (NASA Special Publication 319: 53, 1973) for micron sized particles, (3) assumes a density and temperature dependence of the micrometeoroids and ablation product specific heats, (4) assumes a density and size dependent value for the thermal emissivity and (5) uses a unified synthesis of experimental data for the most important meteoroid elements and their oxides through least square fits (as functions of temperature, density, and/or melting point) of the tables of thermodynamic parameters given in Weast (CRC Handbook of Physics and Chemistry, 1984), Gray (American Institute of Physics Handbook, 1972), and Cox (Allen’s Astrophysical Quantities 2000). This utilization of mostly experimentally determined data is the main reason for
Ab initio modeling of 2D layered organohalide lead perovskites
NASA Astrophysics Data System (ADS)
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio
2016-04-01
A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.
Converging sequences in the ab initio no-core shell model
Forssen, C.; Vary, J. P.; Caurier, E.; Navratil, P.
2008-02-15
We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By examining the underlying theory of effective operators, we expose the physical foundations for the alternative pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for A-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We demonstrate the utility of our strategy with large-scale calculations in light nuclei.
Application of ab-initio calculations to modeling of nanoscale diffusion and activation in silicon
NASA Astrophysics Data System (ADS)
Diebel, Milan
As ULSI devices enter the nanoscale, ultra-shallow and highly electrically active junctions become necessary. New materials and 3D device structures as well as new process technologies are under exploration to meet the requirements of future devices. A detailed understanding of the atomistic mechanisms of point-defect/dopant interactions which govern diffusion and activation behavior is required to overcome the challenges in building these devices. This dissertation describes how ab-initio calculations can be used to develop physical models of diffusion and activation in silicon. A hierarchy of approaches (ab-initio, kinetic lattice Monte Carlo, continuum) is used to bridge the gaps in time scale and system size between atomistic calculations and nanoscale devices. This modeling approach is demonstrated by investigating two very different challenges in process technology: F co-implantation and stress effects on dopant diffusion/activation. In the first application, ab-initio calculations are used to understand anomalous F diffusion behavior. A set of strongly bound fluorine vacancy complexes (FnVm ) were found. The decoration of vacancies/dangling silicon bonds by fluorine leads to fluorine accumulating in vacancy rich regions, which explains the fluorine redistribution behavior reported experimentally. The revealed interactions of F with point-defects explain the benefits of F co-implantation for B and P activation and diffusion. Based on the insight gained, a simplified F diffusion model at the continuum level (50--100 nm scale) is extracted that accounts for co-implantation effects on B and P for various implant energies and doses. The second application addresses the effect of stress on point-defect/dopant equilibrium concentration, diffusion, and activation. A methodology is developed to extract detailed stress effects from ab-initio calculations. The approach is used to extract induced strains and elasticity tensors for various defects and impurities in order
Trivacancy in silicon: A combined DLTS and ab-initio modeling study
NASA Astrophysics Data System (ADS)
Markevich, V. P.; Peaker, A. R.; Lastovskii, S. B.; Murin, L. I.; Coutinho, J.; Markevich, A. V.; Torres, V. J. B.; Briddon, P. R.; Dobaczewski, L.; Monakhov, E. V.; Svensson, B. G.
2009-12-01
Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V3) in Si. It is found that in the neutral charge state the V3 is bistable, with the "fourfold" configuration being lower in energy than the (1 1 0) planar configuration. V3 in the (1 1 0) planar configuration gives rise to two acceptor levels at Ec-0.36 eV and Ec-0.46 eV in the gap, while in the "fourfold" configuration the defect has trigonal symmetry and an acceptor level at Ec-0.075 eV.
Ab initio dynamical vertex approximation
NASA Astrophysics Data System (ADS)
Galler, Anna; Thunström, Patrik; Gunacker, Patrik; Tomczak, Jan M.; Held, Karsten
2017-03-01
Diagrammatic extensions of dynamical mean-field theory (DMFT) such as the dynamical vertex approximation (DΓ A) allow us to include nonlocal correlations beyond DMFT on all length scales and proved their worth for model calculations. Here, we develop and implement an Ab initio DΓ A approach (AbinitioDΓ A ) for electronic structure calculations of materials. The starting point is the two-particle irreducible vertex in the two particle-hole channels which is approximated by the bare nonlocal Coulomb interaction and all local vertex corrections. From this, we calculate the full nonlocal vertex and the nonlocal self-energy through the Bethe-Salpeter equation. The AbinitioDΓ A approach naturally generates all local DMFT correlations and all nonlocal G W contributions, but also further nonlocal correlations beyond: mixed terms of the former two and nonlocal spin fluctuations. We apply this new methodology to the prototypical correlated metal SrVO3.
Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations
NASA Astrophysics Data System (ADS)
Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.
2012-05-01
An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.
Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC
NASA Astrophysics Data System (ADS)
Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina
2016-11-01
New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.
On potential energy models for EA-based ab initio protein structure prediction.
Mijajlovic, Milan; Biggs, Mark J; Djurdjevic, Dusan P
2010-01-01
Ab initio protein structure prediction involves determination of the three-dimensional (3D) conformation of proteins on the basis of their amino acid sequence, a potential energy (PE) model that captures the physics of the interatomic interactions, and a method to search for and identify the global minimum in the PE (or free energy) surface such as an evolutionary algorithm (EA). Many PE models have been proposed over the past three decades and more. There is currently no understanding of how the behavior of an EA is affected by the PE model used. The study reported here shows that the EA behavior can be profoundly affected: the EA performance obtained when using the ECEPP PE model is significantly worse than that obtained when using the Amber, OPLS, and CVFF PE models, and the optimal EA control parameter values for the ECEPP model also differ significantly from those associated with the other models.
NASA Astrophysics Data System (ADS)
McKemmish, Laura K.; Yurchenko, Sergei N.; Tennyson, Jonathan
2016-11-01
Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity of electronic transitions. We test finite-field off-diagonal dipole moments, but found that (1) the accuracy of the excitation energies were not sufficient to allow accurate dipole moments to be evaluated and (2) computer time requirements for perpendicular transitions were prohibitive. The best off-diagonal dipole moments are calculated using wavefunctions with different CASSCF orbitals.
An ab initio model for the modulation of galactic cosmic-ray electrons
Engelbrecht, N. E.; Burger, R. A.
2013-12-20
The modulation of galactic cosmic-ray electrons is studied using an ab initio three-dimensional steady state cosmic-ray modulation code in which the effects of turbulence on both the diffusion and drift of these cosmic-rays are treated as self-consistently as possible. A significant refinement is that a recent two-component turbulence transport model is used. This model yields results in reasonable agreement with observations of turbulence quantities throughout the heliosphere. The sensitivity of computed galactic electron intensities to choices of various turbulence parameters pertaining to the dissipation range of the slab turbulence spectrum, and to the choice of model of dynamical turbulence, is demonstrated using diffusion coefficients derived from the quasi-linear and extended nonlinear guiding center theories. Computed electron intensities and latitude gradients are also compared with spacecraft observations.
Large basis ab initio shell model investigation of {sup 9}Be and {sup 11}Be
Forssen, C.; Navratil, P.; Ormand, W.E.; Caurier, E.
2005-04-01
We present the first ab initio structure investigation of the loosely bound {sup 11}Be nucleus, together with a study of the lighter isotope {sup 9}Be. The nuclear structure of these isotopes is particularly interesting because of the appearance of a parity-inverted ground state in {sup 11}Be. Our study is performed in the framework of the ab initio no-core shell model. Results obtained using four different, high-precision two-nucleon interactions, in model spaces up to 9({Dirac_h}/2{pi}){omega}, are shown. For both nuclei, and all potentials, we reach convergence in the level ordering of positive- and negative-parity spectra separately. Concerning their relative position, the positive-parity states are always too high in excitation energy, but a fast drop with respect to the negative-parity spectrum is observed when the model space is increased. This behavior is most dramatic for {sup 11}Be. In the largest model space we were able to reach, the 1/2{sup +} level has dropped down to become either the first or the second excited state, depending on which interaction we use. We also observe a contrasting behavior in the convergence patterns for different two-nucleon potentials and argue that a three-nucleon interaction is needed to explain the parity inversion. Furthermore, large-basis calculations of {sup 13}C and {sup 11}B are performed. This allows us to study the systematics of the position of the first unnatural-parity state in the N=7 isotone and the A=11 isobar. The {sup 11}B run in the 9({Dirac_h}/2{pi}){omega} model space involves a matrix with dimension exceeding 1.1x10{sup 9}, and is our largest calculation so far. We present results on binding energies, excitation spectra, level configurations, radii, electromagnetic observables, and {sup 10}Be+n overlap functions.
A New Generation of Cool White Dwarf Atmosphere Models Using Ab Initio Calculations
NASA Astrophysics Data System (ADS)
Blouin, S.; Dufour, P.; Kowalski, P. M.
2017-03-01
Due to their high photospheric density, cool helium-rich white dwarfs (particularly DZ, DQpec and ultracool) are often poorly described by current atmosphere models. As part of our ongoing efforts to design atmosphere models suitable for all cool white dwarfs, we investigate how the ionization ratio of heavy elements and the H2-He collision-induced absorption (CIA) spectrum are altered under fluid-like densities. For the conditions encountered at the photosphere of cool helium-rich white dwarfs, our ab initio calculations show that the ionization of most metals is inhibited and that the H2-He CIA spectrum is significantly distorted for densities higher than 0.1 g/cm3.
NASA Astrophysics Data System (ADS)
Olsson, P. A. T.; Kese, K.; Kroon, M.; Alvarez Holston, A.-M.
2015-06-01
In this work we report the results of an ab initio study of the transgranular fracture toughness and cleavage of brittle zirconium hydrides. We use the Griffith-Irwin relation to assess the fracture toughness using calculated surface energy and estimated isotropic Voigt-Reuss-Hill averages of the elastic constants. The calculated fracture toughness values are found to concur well with experimental data, which implies that fracture is dominated by cleavage failure. To investigate the cleavage energetics, we model the decohesion process. To describe the interplanar interaction we adopt Rose’s universal binding energy relation, which is found to reproduce the behaviour accurately. The modelling shows that the work of fracture and ductility decreases with increasing hydrogen content.
NASA Astrophysics Data System (ADS)
Bacca, Sonia
2016-04-01
A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.
Ab initio energetics for modeling phase stability of the Np-U system
NASA Astrophysics Data System (ADS)
Xie, Wei; Chang, Y. Austin; Morgan, Dane
2016-10-01
The Np-U system has been rarely studied despite this alloy being a key binary subsystem of metallic nuclear fuels. This study aims to further the understanding of the phase stability of the Np-U system through ab initio calculations. We first examined an existing CALPHAD model based on available experimental phase boundary data. We then focused on phases of which the CALPHAD model reproduces reasonably the experimental data and examined if values of the effective Hubbard U (i.e., Ueff) parameter for Np and U fitted previously in the Np-Zr and U-Zr systems are also applicable to the Np-U system, using CALPHAD predicted enthalpies as references. We found that in general DFT + U predicts improved or at least similarly accurate enthalpies compared to standard DFT when the Ueff's used are within the ranges of single-structure optimized Ueff's (0.65-0.9 eV for Np and 1-1.5 eV for U)-for example, the multi-structure optimized Ueff's (0.9 eV for Np and 1.24 eV for U)-determined in our previous U-Zr and Np-Zr studies. Finally, we focused on the intermediate phase ζ(Np,U), which at present is poorly characterized by experiments and unsatisfactorily described in the CALPHAD model. Based on ab initio calculated formation enthalpies for ordered end members and the compound energy formalism, we predicted its site occupations as functions of composition and temperature. Our study demonstrated that Ueff's fitted for U and Np determined in the U-Zr and Np-Zr systems may be transferable to the Np-U system and also provided new prediction of the site occupations for ζ(Np,U), which may serve as reference for future experimental and modeling study of the Np-U system.
Ab initio quantum chemical and kinetic modeling study of the pyrolysis kinetics of pyrrole
Martoprawiro, M.; Bacskay, G.B.; Mackie, J.C.
1999-05-20
The five-membered heterocyclic pyrrole moiety is an important structure in coals and derived tars, and the thermal decomposition reactions of pyrrole are important for production of precursors of the oxides of nitrogen, NO{sub x}, in the combustion of coals. The kinetics of pyrolysis of pyrrole have been investigated theoretically by ab initio quantum chemical techniques and by detailed chemical kinetic modeling of previously reported experimental results. The overall kinetics can be successfully modeled by a 117 step kinetic model that gives good agreement with temperature profiles of major products and also provides an acceptable fit for minor products. The thermochemistry and rate parameters of a number of key reactions have been obtained by ab initio calculations carried out at CASSCF, CASPT2, and G2(MP2) levels of theory. Several reaction pathways were investigated. The major product, HCN, arises principally from a hydrogen migration in pyrrole to form a cyclic carbene with the NH bond intact. Ring scission of this carbene leads to an allenic imine precursor of HCN and propyne. This is the decomposition pathway of lowest energy. Pyrolysis is preceded by the facile tautomerization of pyrrole to 2H-pyrrolenine. The latter can undergo CN fission to form an open chain biradical species, which is the precursor of the butenenitrile isomeric products, cis- and trans-crotononitrile and allyl cyanide. The biradical can also undergo facile H-fission to form cyanoallyl radical, which is an important precursor of acetylene, acetonitrile, and acrylonitrile, H{sub 2} also arises principally from H-fission of the biradical.
NASA Astrophysics Data System (ADS)
Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela
2015-06-01
RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.
Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela
2015-06-17
RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.
AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS
Turchi, P A
2004-04-14
Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.
Ab initio based State Specific Modeling of N2+O System
NASA Astrophysics Data System (ADS)
Luo, Han
Nitrogen and atomic oxygen play an important role in high temperature gas systems. Their Zeldovich reaction product nitric oxide not only affects aerothermal loads and emissions of hypersonic vehicles, but also has the possibility to influence the efficiency of hypersonic propulsion. Atomic oxygen induced nitrogen dissociation is another reaction mechanism of the N2+O system. However, due to the difficulty of conducting ground tests, there are no experimental data for this reaction now. Thermo-chemical nonequilibrium could make the problem more difficult since experiments could only track macroscopic gas properties instead of internal energy distribution. On the other hand, current reaction and internal energy exchange models are able to reproduce equilibrium condition. Whether their predictions at nonequilibrium conditions are reliable is still questionable. The work in this thesis employs quasi-classical trajectory (QCT) method based on an ab-initio chemistry calculated potential energy surface for the N2+O system. Through QCT calculations of different initial condition, high fidelity cross sections and rates are obtained. The cross sections are further used to generate a ME-QCT-VT model for vibrational excitation/relaxation, a state-specific exchange (SSE) model and a state-specific dissociation (SSD) model. These models are verified by comparison with direct QCT calculated rates and other experimental data or models. Although there are no flowfield calculations in this work, the models are able to be applied easily in DSMC calculations.
Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels
Morgan, Dane; Yang, Yong Austin
2013-10-28
The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.
Ab initio derivation of multi-orbital extended Hubbard model for molecular crystals
NASA Astrophysics Data System (ADS)
Tsuchiizu, Masahisa; Omori, Yukiko; Suzumura, Yoshikazu; Bonnet, Marie-Laure; Robert, Vincent
2012-01-01
From configuration interaction (CI) ab initio calculations, we derive an effective two-orbital extended Hubbard model based on the gerade (g) and ungerade (u) molecular orbitals (MOs) of the charge-transfer molecular conductor (TTM-TTP)I3 and the single-component molecular conductor [Au(tmdt)2]. First, by focusing on the isolated molecule, we determine the parameters for the model Hamiltonian so as to reproduce the CI Hamiltonian matrix. Next, we extend the analysis to two neighboring molecule pairs in the crystal and we perform similar calculations to evaluate the inter-molecular interactions. From the resulting tight-binding parameters, we analyze the band structure to confirm that two bands overlap and mix in together, supporting the multi-band feature. Furthermore, using a fragment decomposition, we derive the effective model based on the fragment MOs and show that the staking TTM-TTP molecules can be described by the zig-zag two-leg ladder with the inter-molecular transfer integral being larger than the intra-fragment transfer integral within the molecule. The inter-site interactions between the fragments follow a Coulomb law, supporting the fragment decomposition strategy.
Ab initio diffuse-interface model for lithiated electrode interface evolution
NASA Astrophysics Data System (ADS)
Stournara, Maria E.; Kumar, Ravi; Qi, Yue; Sheldon, Brian W.
2016-07-01
The study of chemical segregation at interfaces, and in particular the ability to predict the thickness of segregated layers via analytical expressions or computational modeling, is a fundamentally challenging topic in the design of novel heterostructured materials. This issue is particularly relevant for the phase-field (PF) methodology, which has become a prominent tool for describing phase transitions. These models rely on phenomenological parameters that pertain to the interfacial energy and thickness, quantities that cannot be experimentally measured. Instead of back-calculating these parameters from experimental data, here we combine a set of analytical expressions based on the Cahn-Hilliard approach with ab initio calculations to compute the gradient energy parameter κ and the thickness λ of the segregated Li layer at the LixSi-Cu interface. With this bottom-up approach we calculate the thickness λ of the Li diffuse interface to be on the order of a few nm, in agreement with prior experimental secondary ion mass spectrometry observations. Our analysis indicates that Li segregation is primarily driven by solution thermodynamics, while the strain contribution in this system is relatively small. This combined scheme provides an essential first step in the systematic evaluation of the thermodynamic parameters of the PF methodology, and we believe that it can serve as a framework for the development of quantitative interface models in the field of Li-ion batteries.
Ab initio Theory of Semiconductor Nanocrystals
NASA Astrophysics Data System (ADS)
Wang, Lin-Wang
2007-03-01
With blooming experimental synthesis of various nanostructures out of many semiconductor materials, there is an urgent need to calculate the electronic structures and optical properties of these nanosystems based on reliable ab initio methods. Unfortunately, due to the O(N^3) scaling of the conventional ab initio calculation methods based on the density functional theory (DFT), and the >1000 atom sizes of the most experimental nanosystems, the direct applications of these conventional ab intio methods are often difficult. Here we will present the calculated results using our O(N) scaling charge patching method (CPM) [1,2] to nanosystems up to 10,000 atoms. The CPM yields the charge density of a nanosystem by patching the charge motifs generated from small prototype systems. The CPM electron/hole eigen energies differ from the directly calculated results by only ˜10-20 meV. We will present the optical band gaps of quantum dots and wires, quantum rods, quantum dot/quantum well, and quantum dots doped with impurities. Besides good agreements with experimental measurements, we will demonstrate why it is important to perform ab initio calculations, in contrast with the continuum model k.p calculations. We will show the effects of surface polarization potentials and the internal electric fields. Finally, a linear scaling 3 dimensional fragment (LS3DF) method will be discussed. The LS3DF method can be used to calculate the total energy and atomic forces of a large nanosystem, with the results practically the same as the direct DFT method. Our work demonstrates that, with the help of supercomputers, it is now feasible to calculate the electronic structures and optical properties of >10,000 atom nanocrystals with ab initio accuracy. [1] L.W. Wang, Phys. Rev. Lett. 88, 256402 (2002). [2] J. Li, L.W. Wang, Phys. Rev. B 72, 125325 (2005).
Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations
NASA Astrophysics Data System (ADS)
Luo, Han; Kulakhmetov, Marat; Alexeenko, Alina
2017-02-01
Quasi-classical trajectory (QCT) calculations are used in this work to calculate state-specific N2(X1Σ ) +O(3P ) →2 N(4S ) +O(3P ) dissociation and N2(X1Σ ) +O(3P ) →NO(X2Π ) +N(4S ) exchange cross sections and rates based on the 13A″ and 13A' ab initio potential energy surface by Gamallo et al. [J. Chem. Phys. 119, 2545-2556 (2003)]. The calculations consider translational energies up to 23 eV and temperatures between 1000 K and 20 000 K. Vibrational favoring is observed for dissociation reaction at the whole range of collision energies and for exchange reaction around the dissociation limit. For the same collision energy, cross sections for v = 30 are 4 to 6 times larger than those for the ground state. The exchange reaction has an effective activation energy that is dependent on the initial rovibrational level, which is different from dissociation reaction. In addition, the exchange cross sections have a maximum when the total collision energy (TCE) approaches dissociation energy. The calculations are used to generate compact QCT-derived state-specific dissociation (QCT-SSD) and QCT-derived state-specific exchange (QCT-SSE) models, which describe over 1 × 106 cross sections with about 150 model parameters. The models can be used directly within direct simulation Monte Carlo and computational fluid dynamics simulations. Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model, Macheret's exchange model, and Park's two-temperature model. The new models match QCT-calculated and experimental rates within 30% under nonequilibrium conditions while other models under predict by over an order of magnitude under vibrationally-cold conditions.
Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations.
Luo, Han; Kulakhmetov, Marat; Alexeenko, Alina
2017-02-21
Quasi-classical trajectory (QCT) calculations are used in this work to calculate state-specific N2(X(1)Σ)+O((3)P)→2N((4)S)+O((3)P) dissociation and N2(X(1)Σ)+O((3)P)→NO(X(2)Π)+N((4)S) exchange cross sections and rates based on the 1(3)A″ and 1(3)A' ab initio potential energy surface by Gamallo et al. [J. Chem. Phys. 119, 2545-2556 (2003)]. The calculations consider translational energies up to 23 eV and temperatures between 1000 K and 20 000 K. Vibrational favoring is observed for dissociation reaction at the whole range of collision energies and for exchange reaction around the dissociation limit. For the same collision energy, cross sections for v = 30 are 4 to 6 times larger than those for the ground state. The exchange reaction has an effective activation energy that is dependent on the initial rovibrational level, which is different from dissociation reaction. In addition, the exchange cross sections have a maximum when the total collision energy (TCE) approaches dissociation energy. The calculations are used to generate compact QCT-derived state-specific dissociation (QCT-SSD) and QCT-derived state-specific exchange (QCT-SSE) models, which describe over 1 × 10(6) cross sections with about 150 model parameters. The models can be used directly within direct simulation Monte Carlo and computational fluid dynamics simulations. Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model, Macheret's exchange model, and Park's two-temperature model. The new models match QCT-calculated and experimental rates within 30% under nonequilibrium conditions while other models under predict by over an order of magnitude under vibrationally-cold conditions.
Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study
NASA Astrophysics Data System (ADS)
Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo
2016-07-01
Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.
A Simple ab initio Model for the Hydrated Electron that Matches Experiment
Kumar, Anil; Walker, Jonathan A.; Bartels, David M.; Sevilla, Michael D.
2015-01-01
Since its discovery over 50 years ago, the “structure” and properties of the hydrated electron has been a subject for wonderment and also fierce debate. In the present work we seriously explore a minimal model for the aqueous electron, consisting of a small water anion cluster embedded in a polarized continuum, using several levels of ab initio calculation and basis set. The minimum energy zero “Kelvin” structure found for any 4-water (or larger) anion cluster, at any post-Hartree-Fock theory level, is very similar to a recently reported embedded-DFT-in-classical-water-MD simulation (UMJ: Uhlig, Marsalek, and Jungwirth, Journal of Physical Chemistry Letters 2012, 3, 3071-5), with four OH bonds oriented toward the maximum charge density in a small central “void”. The minimum calculation with just four water molecules does a remarkably good job of reproducing the resonance Raman properties, the radius of gyration derived from the optical spectrum, the vertical detachment energy, and the hydration free energy. For the first time we also successfully calculate the EPR g-factor and (low temperature ice) hyperfine couplings. The simple tetrahedral anion cluster model conforms very well to experiment, suggesting it does in fact represent the dominant structural motif of the hydrated electron. PMID:26275103
Ab Initio Crystal Field for Lanthanides.
Ungur, Liviu; Chibotaru, Liviu F
2017-03-13
An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc)2 ](-) (Pc=phthalocyanine) and Dy4 K2 ([Dy(4) K(2) O(OtBu)(12) ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides.
Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study.
Brovarets', Ol'ha O; Yurenko, Yevgen P; Dubey, Igor Ya; Hovorun, Dmytro M
2012-01-01
Ab initio quantum-chemical study of specific point contacts of replisome proteins with DNA modeled by acetic acid with canonical and mutagenic tautomers of DNA bases methylated at the glycosidic nitrogen atoms was performed in vacuo and continuum with a low dielectric constant (ϵ ∼ 4) corresponding to a hydrophobic interface of protein-nucleic acid interaction. All tautomerized complexes were found to be dynamically unstable, because the electronic energies of their back-reaction barriers do not exceed zero-point vibrational energies associated with the vibrational modes whose harmonic vibrational frequencies become imaginary in the transition states of the tautomerization reaction. Additionally, based on the physicochemical arguments, it was demonstrated that the effects of biomolecular environment cannot ensure dynamic stabilization. This result allows suggesting that hypothetically generated by DNA-binding proteins of replisome rare tautomers will have no impact on the total spontaneous mutation due to the low reverse barrier allowing a quick return to the canonical form.
JUPITER MODELS WITH IMPROVED AB INITIO HYDROGEN EQUATION OF STATE (H-REOS.2)
Nettelmann, N.; Becker, A.; Redmer, R.; Holst, B.
2012-05-01
The amount and distribution of heavy elements in Jupiter gives indications on the process of its formation and evolution. Core mass and metallicity predictions, however, depend on the equations of state (EOSs) used and on model assumptions. We present an improved ab initio hydrogen EOS, H-REOS.2, and compute the internal structure and thermal evolution of Jupiter within the standard three-layer approach. The advance over our previous Jupiter models with H-REOS.1 by Nettelmann et al. is that the new models are also consistent with the observed {approx}> 2 times solar heavy element abundances in Jupiter's atmosphere. Such models have a rock core mass M{sub c} = 0-8 M{sub Circled-Plus }, total mass of heavy elements M{sub Z} = 28-32 M{sub Circled-Plus }, a deep internal layer boundary at {>=}4 Mbar, and a cooling time of 4.4-5.0 Gyr when assuming homogeneous evolution. We also calculate two-layer models in the manner of Militzer et al. and find a comparable large core of 16-21 M{sub Circled-Plus }, out of which {approx}11 M{sub Circled-Plus} is helium, but a significantly higher envelope metallicity of 4.5 times solar. According to our preferred three-layer models, neither the characteristic frequency ({nu}{sub 0} {approx} 156 {mu}Hz) nor the normalized moment of inertia ({lambda} {approx}0.276) is sensitive to the core mass but accurate measurements could well help to rule out some classes of models.
Dane Morgan
2010-06-10
The project began March 13, 2006, allocated for three years, and received a one year extension from March 13, 2009 to March 12, 2010. It has now completed 48 of 48 total months. The project was focused on using ab initio methods to gain insights into radiation induced segregation (RIS) in Ni-Fe-Cr alloys. The project had the following key accomplishments • Development of a large database of ab initio energetics that can be used by many researchers in the future for increased understanding of this system. For example, we have the first calculations showing a dramatic stabilization effect of Cr-Cr interstitial dumbbells in Ni. • Prediction of both vacancy and interstitial diffusion constants for Ni-Cr and Ni-Fe for dilute Cr and Fe. This work included generalization of widely used multifrequency models to make use of ab initio derived energetics and thermodynamics. • Prediction of qualitative trends of RIS from vacancy and interstitial mechanisms, suggesting the two types of defect fluxes drive Cr RIS in opposite directions. • Detailed kinetic Monte Carlo modeling of diffusion by vacancy mechanism in Ni-Cr as a function of Cr concentration. The results demonstrate that Cr content can have a significant effect on RIS. • Development of a quantitative RIS transport model, including models for thermodynamic factors and boundary conditions.
Thermodynamic properties of magnesium oxide: a comparison of ab initio and empirical models
NASA Astrophysics Data System (ADS)
Song, Ting; Sun, Xiao-Wei; Liu, Zi-Jiang; Kong, Bo; Quan, Wei-Long; Fu, Zhi-Jian; Li, Jian-Feng; Tian, Jun-Hong
2012-04-01
The pressure-volume equation of state (P-V EOS) and isothermal bulk modulus, the volume-temperature (V-T) EOS and thermal expansivity are investigated for magnesium oxide (MgO) by using ab initio density functional theory (DFT) calculations combined with the quasi-harmonic Debye (QHD) model in which the phononic effects are considered and isothermal-isobaric ensemble molecular dynamics (MD) simulations with different effective pair-wise potentials that consist of the Coulomb, dispersion and repulsion interactions. Polarization and compression effects are considered in MD simulations through the shell model (SM) and breathing shell model (BSM), respectively. The P-V relationship and isothermal bulk modulus K of the MgO dependence of pressures up to 200 GPa at 300 K and the V-T relationship and volume thermal expansion coefficient α of the MgO dependence of temperatures up to 3000 K at 0.1 MPa have been obtained from MD and DFT calculations and compared with the available experimental data and other theoretical results. Particular attention is paid to the prediction of the first and second pressure derivatives K' and K'' of the isothermal bulk modulus of MgO at a given temperature and pressure for the first time. Compared with the SM potential, MD simulations with the BSM and QHD models are highly successful in accurately reproducing the measured volumes of MgO. At extended pressure and temperature ranges, K, K', K'', α and P-V-T EOS have also been predicted. Detailed knowledge of the thermodynamic behavior in extreme conditions is of fundamental importance for understanding the physical properties of MgO.
Liu, Hanchao; Wang, Yimin; Bowman, Joel M
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
NASA Astrophysics Data System (ADS)
Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
2015-05-01
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
The ab initio model potential method. Second series transition metal elements
Barandiaran, Z.; Seijo, L. ); Huzinaga, S. )
1990-10-15
The {ital ab} {ital initio} core method potential model (AIMP) has already been presented in its nonrelativistic version and applied to the main group and first series transition metal elements (J. Chem. Phys. {bold 86}, 2132 (1987); {bold 91}, 7011 (1989)). In this paper we extend the AIMP method to include relativistic effects within the Cowan--Griffin approximation and we present relativistic Zn-like core model potentials and valence basis sets, as well as their nonrelativistic Zn-like core and Kr-like core counterparts. The pilot molecular calculations on YO, TcO, AgO, and AgH reveal that the 4{ital p} orbital is indeed a core orbital only at the end part of the series, whereas the 4{ital s} orbital can be safely frozen from Y to Cd. The all-electron and model potential results agree in 0.01--0.02 A in {ital R}{sub {ital e}} and 25--50 cm{sup {minus}1} in {bar {nu}}{sub {ital e}} if the same type of valence part of the basis set is used. The comparison of the relativistic results on AgH with those of the all-electron Dirac--Fock calculations by Lee and McLean is satisfactory: the absolute value of {ital R}{sub {ital e}} is reproduced within the 0.01 A margin and the relativistic contraction of 0.077 A is also very well reproduced (0.075 A). Finally, the relative magnitude of the effects of the core orbital change, mass--velocity potential, and Darwin potential on the net relativistic effects are analyzed in the four molecules studied.
Shrestha, Rojan; Simoncini, David; Zhang, Kam Y J
2012-11-01
Recent advancements in computational methods for protein-structure prediction have made it possible to generate the high-quality de novo models required for ab initio phasing of crystallographic diffraction data using molecular replacement. Despite those encouraging achievements in ab initio phasing using de novo models, its success is limited only to those targets for which high-quality de novo models can be generated. In order to increase the scope of targets to which ab initio phasing with de novo models can be successfully applied, it is necessary to reduce the errors in the de novo models that are used as templates for molecular replacement. Here, an approach is introduced that can identify and rebuild the residues with larger errors, which subsequently reduces the overall C(α) root-mean-square deviation (CA-RMSD) from the native protein structure. The error in a predicted model is estimated from the average pairwise geometric distance per residue computed among selected lowest energy coarse-grained models. This score is subsequently employed to guide a rebuilding process that focuses on more error-prone residues in the coarse-grained models. This rebuilding methodology has been tested on ten protein targets that were unsuccessful using previous methods. The average CA-RMSD of the coarse-grained models was improved from 4.93 to 4.06 Å. For those models with CA-RMSD less than 3.0 Å, the average CA-RMSD was improved from 3.38 to 2.60 Å. These rebuilt coarse-grained models were then converted into all-atom models and refined to produce improved de novo models for molecular replacement. Seven diffraction data sets were successfully phased using rebuilt de novo models, indicating the improved quality of these rebuilt de novo models and the effectiveness of the rebuilding process. Software implementing this method, called MORPHEUS, can be downloaded from http://www.riken.jp/zhangiru/software.html.
Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.
Wang, Linjun; Long, Run; Prezhdo, Oleg V
2015-04-01
Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.
Time-Domain Ab Initio Modeling of Photoinduced Dynamics at Nanoscale Interfaces
NASA Astrophysics Data System (ADS)
Wang, Linjun; Long, Run; Prezhdo, Oleg V.
2015-04-01
Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.
Ab initio modeling of quasielastic neutron scattering of hydrogen pipe diffusion in palladium
NASA Astrophysics Data System (ADS)
Schiavone, Emily J.; Trinkle, Dallas R.
2016-08-01
A recent quasielastic neutron scattering (QENS) study of hydrogen in heavily deformed fcc palladium provided the first direct measurement of hydrogen pipe diffusion, which has a significantly higher diffusivity and lower activation barrier than in bulk. While ab initio estimates of hydrogen diffusion near a dislocation corroborated the experimental values, open questions remain from the Chudley-Elliott analysis of the QENS spectra, including significant nonmonotonic changes in jump distance with temperature. We calculate the spherically averaged incoherent scattering function at different temperatures using our ab initio data for the network of site energies, jump rates, and jump vectors to directly compare to experiment. Diffusivities and jump distances are sensitive to how a single Lorentzian is fit to the scattering function. Using a logarithmic least squares fit over the range of experimentally measured energies, our diffusivities and jump distances agree well with those measured by experiment. However, these calculated quantities do not reflect barriers or distances in our dislocation geometry. This computational approach allows for validation against experiment, along with a more detailed understanding of the QENS results.
Ab initio phonon limited transport
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu
We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)
Timoshenko, J.; Shivhare, A.; Scott, R. W.; ...
2016-06-30
We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.
Timoshenko, Janis; Shivhare, Atal; Scott, Robert W J; Lu, Deyu; Frenkel, Anatoly I
2016-07-20
We adopted ab initio X-ray absorption near edge structure (XANES) modeling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modeling, where the candidate structures are known, and the inverse modeling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by revealing the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.
Ran, Shi-Ju
2016-05-01
In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising
NASA Astrophysics Data System (ADS)
Ran, Shi-Ju
2016-05-01
In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising
NASA Astrophysics Data System (ADS)
Liang, Wenkel
This dissertation consists of two general parts: (I) developments of optimization algorithms (both nuclear and electronic degrees of freedom) for time-independent molecules and (II) novel methods, first-principle theories and applications in time dependent molecular structure modeling. In the first part, we discuss in specific two new algorithms for static geometry optimization, the eigenspace update (ESU) method in nonredundant internal coordinate that exhibits an enhanced performace with up to a factor of 3 savings in computational cost for large-sized molecular systems; the Car-Parrinello density matrix search (CP-DMS) method that enables direct minimization of the SCF energy as an effective alternative to conventional diagonalization approach. For the second part, we consider the time dependence and first presents two nonadiabatic dynamic studies that model laser controlled molecular photo-dissociation for qualitative understandings of intense laser-molecule interaction, using ab initio direct Ehrenfest dynamics scheme implemented with real-time time-dependent density functional theory (RT-TDDFT) approach developed in our group. Furthermore, we place our special interest on the nonadiabatic electronic dynamics in the ultrafast time scale, and presents (1) a novel technique that can not only obtain energies but also the electron densities of doubly excited states within a single determinant framework, by combining methods of CP-DMS with RT-TDDFT; (2) a solvated first-principles electronic dynamics method by incorporating the polarizable continuum solvation model (PCM) to RT-TDDFT, which is found to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. (3) applications of the PCM-RT-TDDFT method to study the intramolecular charge-transfer (CT) dynamics in a C60 derivative. Such work provides insights into the
Combined electron beam imaging and ab initio modeling of T{sub 1} precipitates in Al-Li-Cu alloys
Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.
2011-05-16
Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T{sub 1} precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T{sub 1} structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.
Ab initio atomic recombination reaction energetics on model heat shield surfaces
NASA Technical Reports Server (NTRS)
Senese, Fredrick; Ake, Robert
1992-01-01
Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.
Lister, C.J.; McCutchan, E.A.
2014-06-15
A new generation of ab-initio calculations, based on realistic two- and three-body forces, is having a profound impact on our view of how nuclei work. To improve the numerical methods, and the parameterization of 3-body forces, new precise data are needed. Electromagnetic transitions are very sensitive to the dynamics which drive mixing between configurations. We have made a series of precise (< 3%) measurements of electromagnetic transitions in the A=10 nuclei {sup 10}C and {sup 10}Be by using the Doppler Shift Attenuation method carefully. Many interesting features can be reproduced including the strong α clustering. New measurements on {sup 8}Be and {sup 12}Be highlight the interplay between the alpha clusters and their valence neutrons.
AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion
Ching, Wai-Yim
2013-12-31
In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.
Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.
2008-05-20
Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.
Ab initio based polarizable force field parametrization
NASA Astrophysics Data System (ADS)
Masia, Marco
2008-05-01
Experimental and simulation studies of anion-water systems have pointed out the importance of molecular polarization for many phenomena ranging from hydrogen-bond dynamics to water interfaces structure. The study of such systems at molecular level is usually made with classical molecular dynamics simulations. Structural and dynamical features are deeply influenced by molecular and ionic polarizability, which parametrization in classical force field has been an object of long-standing efforts. Although when classical models are compared to ab initio calculations at condensed phase, it is found that the water dipole moments are underestimated by ˜30%, while the anion shows an overpolarization at short distances. A model for chloride-water polarizable interaction is parametrized here, making use of Car-Parrinello simulations at condensed phase. The results hint to an innovative approach in polarizable force fields development, based on ab initio simulations, which do not suffer for the mentioned drawbacks. The method is general and can be applied to the modeling of different systems ranging from biomolecular to solid state simulations.
Ab initio non-relativistic spin dynamics
Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.
2014-12-07
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
NASA Technical Reports Server (NTRS)
Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)
1994-01-01
Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.
NASA Astrophysics Data System (ADS)
Neukirch, Amanda; Nei, Wanyi; Pedesseau, Laurent; Even, Jacky; Katan, Claudine; Mohite, Aditya; Tretiak, Segrei
2015-03-01
The need for an inexpensive, clean, and plentiful source of energy has generated large amounts of research in an assortment of solution processed organic and hybrid organic-inorganic solar cells. A relative newcomer to the field of solution processed photovoltaics is the lead halide perovskite solar cell. In the past 5 years, the efficiencies of devices made from this material have increased from 3.5% to nearly 20%. Despite the rapid development of organic-inorganic perovskite solar cells, a thorough understanding of the fundamental photophysical processes driving the high performance of these devices is not well understood. I am using state-of-the-art ab initio computational techniques in order to characterize the properties at the interface of perovskite devices in order to aide in materials design and device engineering. I will present an in-depth analysis of the electronic and optical properties of bulk and surface states of pure and mixed halide systems. The high-level static quantum mechanical calculations, including spin-orbit-coupling and the many body GW approach, identify the key electronic states involved in photoinduced dynamics. This knowledge provides important information on how the optical properties change with variations to the system. Supported by the DOE, the LANL LDRD program XW11, and CNLS.
Discovering chemistry with an ab initio nanoreactor
NASA Astrophysics Data System (ADS)
Martinez, Todd
Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.
Stirling, András; Nair, Nisanth N; Lledós, Agustí; Ujaque, Gregori
2014-07-21
We present here a review of the mechanistic studies of the Wacker process stressing the long controversy about the key reaction steps. We give an overview of the previous experimental and theoretical studies on the topic. Then we describe the importance of the most recent Ab Initio Molecular Dynamics (AIMD) calculations in modelling organometallic reactivity in water. As a prototypical example of homogeneous catalytic reactions, the Wacker process poses serious challenges to modelling. The adequate description of the multiple role of the water solvent is very difficult by using static quantum chemical approaches including cluster and continuum solvent models. In contrast, such reaction systems are suitable for AIMD, and by combining with rare event sampling techniques, the method provides reaction mechanisms and the corresponding free energy profiles. The review also highlights how AIMD has helped to obtain a novel understanding of the mechanism and kinetics of the Wacker process.
An ab initio Study of the Crystalline Structure of Sulfuric Acid (H2SO4)- The Point Charge Model.
1987-12-01
2 ... 8 1.81. 5 111 .4 1111 . Pj LH~ H I Lp ’V. 1 4% % %4"~4 % 4’°" 111’, f LE AN AB INITIO STUDY OF THE CRYSTALLINE STRUCTURE OF SULFURIC ACID...first child .5 .5 4 S. S. S. ni-Ic A I’ J a ~-, ., I ,I/p - ~ ~SJ. ~ >4" h AN AB INITIO STUDY OF THE CRYSTALLINE STRUCTURE OF SULFURIC ACID (H2SO4)- THE
Ab initio study of cyanoguanidine isomers
NASA Astrophysics Data System (ADS)
Arbuznikov, A. V.; Sheludyakova, L. A.; Burgina, E. B.
1995-06-01
An ab initio quantum chemical study of the geometric structure and stability of cyanoguanidine isomers was carried out at the Hartree-Fock and Møller-Plesset levels of theory. Two stable separable isomers ('cyanioime' and 'cyanoamine') are found. This gives evidence in favour of the vibrational spectroscopy data showing the existence of both isomers.
Ab initio study of cyanoguanidine isomers
NASA Astrophysics Data System (ADS)
Arbuznikov, A. V.; Sheludyakova, L. A.; Burgina, E. B.
1995-06-01
An ab initio quantum chemical study of the geometric structure and stability of cyanoguanidine isomers was carried out at the Hartree-Fock and Møller-Plesset levels of theory. Two stable separable isomers (‘cyanioime' and ‘cyanoamine') are found. This gives evidence in favour of the vibrational spectroscopy data showing the existence of both isomers.
Ab initio alpha-alpha scattering.
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-12-03
Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Ab initio alpha-alpha scattering
NASA Astrophysics Data System (ADS)
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.
2015-12-01
Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Kaminski, George A.; Stern, Harry A.; Berne, Bruce J.; Friesner, Richard A.; Cao, Yixiang; Murphy, Robert B.; Zhou, Ruhong; Halgren, Thomas A.
2002-12-01
We present results of developing a methodology suitable for producing molecular mechanics force fields with explicit treatment of electrostatic polarization for proteins and other molecular system of biological interest. The technique allows simulation of realistic-size systems. Employing high-level ab initio data as a target for fitting allows us to avoid the problem of the lack of detailed experimental data. Using the fast and reliable quantum mechanical methods supplies robust fitting data for the resulting parameter sets. As a result, gas-phase many-body effects for dipeptides are captured within the average RMSD of 0.22 kcal/mol from their ab initio values, and conformational energies for the di- and tetrapeptides are reproduced within the average RMSD of 0.43 kcal/mol from their quantum mechanical counterparts. The latter is achieved in part because of application of a novel torsional fitting technique recently developed in our group, which has already been used to greatly improve accuracy of the peptide conformational equilibrium prediction with the OPLS-AA force field.1 Finally, we have employed the newly developed first-generation model in computing gas-phase conformations of real proteins, as well as in molecular dynamics studies of the systems. The results show that, although the overall accuracy is no better than what can be achieved with a fixed-charges model, the methodology produces robust results, permits reasonably low computational cost, and avoids other computational problems typical for polarizable force fields. It can be considered as a solid basis for building a more accurate and complete second-generation model.
KAMINSKI, GEORGE A.; STERN, HARRY A.; BERNE, B. J.; FRIESNER, RICHARD A.; CAO, YIXIANG X.; MURPHY, ROBERT B.; ZHOU, RUHONG; HALGREN, THOMAS A.
2014-01-01
We present results of developing a methodology suitable for producing molecular mechanics force fields with explicit treatment of electrostatic polarization for proteins and other molecular system of biological interest. The technique allows simulation of realistic-size systems. Employing high-level ab initio data as a target for fitting allows us to avoid the problem of the lack of detailed experimental data. Using the fast and reliable quantum mechanical methods supplies robust fitting data for the resulting parameter sets. As a result, gas-phase many-body effects for dipeptides are captured within the average RMSD of 0.22 kcal/mol from their ab initio values, and conformational energies for the di- and tetrapeptides are reproduced within the average RMSD of 0.43 kcal/mol from their quantum mechanical counterparts. The latter is achieved in part because of application of a novel torsional fitting technique recently developed in our group, which has already been used to greatly improve accuracy of the peptide conformational equilibrium prediction with the OPLS-AA force field.1 Finally, we have employed the newly developed first-generation model in computing gas-phase conformations of real proteins, as well as in molecular dynamics studies of the systems. The results show that, although the overall accuracy is no better than what can be achieved with a fixed-charges model, the methodology produces robust results, permits reasonably low computational cost, and avoids other computational problems typical for polarizable force fields. It can be considered as a solid basis for building a more accurate and complete second-generation model. PMID:12395421
NASA Astrophysics Data System (ADS)
Forssén, C.; Caurier, E.; Navrátil, P.
2009-02-01
Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the Li11 charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the Li6 quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign.
Forssen, C.; Caurier, E.; Navratil, P.
2009-02-15
Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the {sup 11}Li charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the {sup 6}Li quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign.
Ab initio shell model with a chiral-symmetry-based three-nucleon force for the p-shell nuclei
Navratil, P; Hayes, A C; Vary, J P; Ormand, W E
2003-10-14
The ab initio no-core shell model (NCSM) is extended to include a realistic three-body interaction in calculations for p-shell nuclei. They present results of first applications using the Argonne V8' nucleon-nucleon (NN) potential and the Tucson-Melbourne TM'(99) three-nucleon interaction (TNI). In addition to increase of binding energy, they observe a trend toward level-ordering and level-spacing improvement in comparison to experiment. With the TNI they obtain a correct ground-state spin for {sup 10}B contrary to calculations with NN potentials only. They also investigate neutrino-{sup 12}C exclusive cross sections and muon capture on {sup 12}C. They show that realistic nucleon-nucleon interactions underpredict the experimental cross sections by a factor of two or more. By including the TNI a much better agreement with experiment is achieved along with an encouraging trend.
Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H.; Antusek, Andrej; Parlinska-Wojtan, Magdalena; Bissig, Vinzenz
2012-10-29
Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.
Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance
NASA Astrophysics Data System (ADS)
Spiwok, Vojtěch; Lipovová, Petra; Skálová, Tereza; Vondráčková, Eva; Dohnálek, Jan; Hašek, Jindřich; Králová, Blanka
2005-12-01
Aromatic amino acid residues are often present in carbohydrate-binding sites of proteins. These binding sites are characterized by a placement of a carbohydrate moiety in a stacking orientation to an aromatic ring. This arrangement is an example of CH/π interactions. Ab initio interaction energies for 20 carbohydrate-aromatic complexes taken from 6 selected ultra-high resolution X-ray structures of glycosidases and carbohydrate-binding proteins were calculated. All interaction energies of a pyranose moiety with a side chain of an aromatic residue were calculated as attractive with interaction energy ranging from -2.8 to -12.3 kcal/mol as calculated at the MP2/6-311+G(d) level. Strong attractive interactions were observed for a wide range of orientations of carbohydrate and aromatic ring as present in selected X-ray structures. The most attractive interaction was associated with apparent combination of CH/π interactions and classical H-bonds. The failure of Hartree-Fock method (interaction energies from +1.0 to -6.9 kcal/mol) can be explained by a dispersion nature of a majority of the studied complexes. We also present a comparison of interaction energies calculated at the MP2 level with those calculated using molecular mechanics force fields (OPLS, GROMOS, CSFF/CHARMM, CHEAT/CHARMM, Glycam/AMBER, MM2 and MM3). For a majority of force fields there was a strong correlation with MP2 values. RMSD between MP2 and force field values were 1.0 for CSFF/CHARMM, 1.2 for Glycam/AMBER, 1.2 for GROMOS, 1.3 for MM3, 1.4 for MM2, 1.5 for OPLS and to 2.3 for CHEAT/CHARMM (in kcal/mol). These results show that molecular mechanics approximates interaction energies very well and support an application of molecular mechanics methods in the area of glycochemistry and glycobiology.
Ab initio joint density-functional theory of solvated electrodes, with model and explicit solvation
NASA Astrophysics Data System (ADS)
Arias, Tomas
2015-03-01
First-principles guided design of improved electrochemical systems has the potential for great societal impact by making non-fossil-fuel systems economically viable. Potential applications include improvements in fuel-cells, solar-fuel systems (``artificial photosynthesis''), supercapacitors and batteries. Economical fuel-cell systems would enable zero-carbon footprint transportation, solar-fuel systems would directly convert sunlight and water into hydrogen fuel for such fuel-cell vehicles, supercapacitors would enable nearly full recovery of energy lost during vehicle braking thus extending electric vehicle range and acceptance, and economical high-capacity batteries would be central to mitigating the indeterminacy of renewable resources such as wind and solar. Central to the operation of all of the above electrochemical systems is the electrode-electrolyte interface, whose underlying physics is quite rich, yet remains remarkably poorly understood. The essential underlying technical challenge to the first principles studies which could explore this physics is the need to properly represent simultaneously both the interaction between electron-transfer events at the electrode, which demand a quantum mechanical description, and multiscale phenomena in the liquid environment such as the electrochemical double layer (ECDL) and its associated shielding, which demand a statistical description. A direct ab initio approach to this challenge would, in principle, require statistical sampling and thousands of repetitions of already computationally demanding quantum mechanical calculations. This talk will begin with a brief review of a recent advance, joint density-functional theory (JDFT), which allows for a fully rigorous and, in principle, exact representation of the thermodynamic equilibrium between a system described at the quantum-mechanical level and a liquid environment, but without the need for costly sampling. We then shall demonstrate how this approach applies in
Energetics of neutral Si dopants in InGaAs: An ab initio and semiempirical Tersoff model study
NASA Astrophysics Data System (ADS)
Lee, Cheng-Wei; Lukose, Binit; Thompson, Michael O.; Clancy, Paulette
2015-03-01
A roadblock in utilizing III-V semiconductors for scaled-down electronic devices is their poor dopant activation. As a first step to unravel the dopant behavior in InGaAs, we studied the tendency for dopant formation computationally using two approaches: ab initio and semiempirical methods. We studied a number of structural possibilities, such as the impact of local sites and local and global environments. We will show that the dopant we considered here, Si, has discrete preferences for certain sites and the nature of its surroundings. Substitutional defects are clearly preferred over interstitial locations. We shall show that cation ordering has an impact on dopant energetics. Critically, for large-scale simulations of dopant diffusion in InGaAs alloys, we also present a parameterization of the Abell-Tersoff semiempirical potential for pairwise interactions between silicon atoms and each of the elements constituting InGaAs. In the absence of experimental data, reference parameters for estimating the Tersoff values were obtained using ab initio pseudopotential calculations (density functional theory and generalized gradient approximations). These sets of Tersoff parameters were optimized to describe the bulk structural properties of the mostly theoretical alloys Si-As, Si-Ga, and Si-In. We demonstrate the transferability of these parameters by predicting formation energies of extrinsic point "defects" of Si on a variety of sites in ternary InGaAs alloys with different local compositional configurations, both random and ordered. Tersoff model predictions of the extrinsic "substitution energy" of a Si dopant on a cationic lattice site were found to be independent of the composition of the dopant's second nearest neighbors, but were affected by the strain induced by a local arrangement of In and Ga cationic atoms. This finding is important since common deposition processes used to create InGaAs may lead to specifically ordered patterns within the cation sublattice.
Lu, Zhenyu; Zhang, Yingkai
2009-01-01
In order to further improve the accuracy and applicability of combined quantum mechanical/molecular mechanical (QM/MM) methods, we have interfaced the ab initio QM method with the classical Drude oscillator polarizable MM force field (ai-QM/MM-Drude). Different coupling approaches have been employed and compared: 1. the conventional dual self-consistent-field (SCF) procedure; 2. the direct SCF scheme, in which QM densities and MM Drude positions are converged simultaneously; 3. the micro-iterative SCF scheme, in which the Drude positions of the polarizable model are fully converged during each self-consistent field (SCF) step of QM calculations; 4. the one-step-Drude-update scheme, in which the MM Drude positions are updated only once instead of fully converged during each molecular dynamics (MD) step. The last three coupling approaches are found to be efficient and can achieve the desired convergence in a similar number of QM SCF steps comparing with the corresponding QM method coupled to a non-polarizable force field. The feasibility and applicability of the implemented ai-QM/MM-Drude approach have been demonstrated by carrying out Born-Oppenheimer molecular dynamics simulations with the umbrella sampling method to determine potentials of mean force for both the methyl transfer reaction of the methyl chlorine-chlorine ion system and the glycine intra-molecular proton transfer reaction in aqueous solution. Our results indicate that the ai-QM/MM-Drude approach is very promising, which provides a better description of QM/MM interactions while can achieve quite similar computational efficiency in comparison with the corresponding conventional ab initio QM/MM method. PMID:19221605
Ab initio infrared and Raman spectra
NASA Astrophysics Data System (ADS)
Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.
1983-06-01
We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum
Towards SiC Surface Functionalization: An Ab Initio Study
Cicero, G; Catellani, A
2005-01-28
We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for bio-compatible devices.
Ab initio infrared and Raman spectra
NASA Technical Reports Server (NTRS)
Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.
1983-01-01
It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.
AB initio infrared and Raman spectra
NASA Astrophysics Data System (ADS)
Fredkin, D. R.; Komornicki, A.; White, S. R.; Wilson, K. R.
1982-08-01
We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schroedinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques, are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules.
Ranaghan, Kara E; Ridder, Lars; Szefczyk, Borys; Sokalski, W Andrzej; Hermann, Johannes C; Mulholland, Adrian J
2004-04-07
To investigate fundamental features of enzyme catalysis, there is a need for high-level calculations capable of modelling crucial, unstable species such as transition states as they are formed within enzymes. We have modelled an important model enzyme reaction, the Claisen rearrangement of chorismate to prephenate in chorismate mutase, by combined ab initio quantum mechanics/molecular mechanics (QM/MM) methods. The best estimates of the potential energy barrier in the enzyme are 7.4-11.0 kcal mol(-1)(MP2/6-31+G(d)//6-31G(d)/CHARMM22) and 12.7-16.1 kcal mol(-1)(B3LYP/6-311+G(2d,p)//6-31G(d)/CHARMM22), comparable to the experimental estimate of Delta H(++)= 12.7 +/- 0.4 kcal mol(-1). The results provide unequivocal evidence of transition state (TS) stabilization by the enzyme, with contributions from residues Arg90, Arg7, and Arg63. Glu78 stabilizes the prephenate product (relative to substrate), and can also stabilize the TS. Examination of the same pathway in solution (with a variety of continuum models), at the same ab initio levels, allows comparison of the catalyzed and uncatalyzed reactions. Calculated barriers in solution are 28.0 kcal mol(-1)(MP2/6-31+G(d)/PCM) and 24.6 kcal mol(-1)(B3LYP/6-311+G(2d,p)/PCM), comparable to the experimental finding of Delta G(++)= 25.4 kcal mol(-1) and consistent with the experimentally-deduced 10(6)-fold rate acceleration by the enzyme. The substrate is found to be significantly distorted in the enzyme, adopting a structure closer to the transition state, although the degree of compression is less than predicted by lower-level calculations. This apparent substrate strain, or compression, is potentially also catalytically relevant. Solution calculations, however, suggest that the catalytic contribution of this compression may be relatively small. Consideration of the same reaction pathway in solution and in the enzyme, involving reaction from a 'near-attack conformer' of the substrate, indicates that adoption of this
Ab initio calculations of nitramine dimers
NASA Astrophysics Data System (ADS)
Koh-Fallet, Sharon; Schweigert, Igor
2015-06-01
Elevated temperatures and pressures are typically thought to have opposing effects on the reaction channels of nitramine decomposition. These high temperatures promote reactions with loose transition structures (positive activation entropies and volumes), such as N-N bond homolysis. Elevated pressures promote reactions with tight transition structures (negative activation entropies and volumes), such as intramolecular and intermolecular H transfer. However, no quantitative data exists regarding the range of temperatures and pressures at which these effects become pronounced. We are pursuing ab initio calculations of the corresponding unimolecular and bimolecular transition structures with the objective of estimating the relevant thermochemical parameters and quantifying the effects of elevated temperature and pressures on the corresponding rate constants. Here, we present density functional theory and complete active space calculations of gas-phase molecular dimers of nitramines as an intermediate step toward modeling transition structures directly in the condensed phase. This work was supported by the Naval Research Laboratory via the American Society for Engineering and Education and by the Office of Naval Research, both directly and through the Naval Research Laboratory.
NASA Astrophysics Data System (ADS)
Bastardis, Roland; Guihéry, Nathalie; de Graaf, Coen
2006-07-01
The low-energy spectrum of the Zener polaron in half-doped manganite is studied by means of correlated ab initio calculations. It is shown that the electronic structure of the low-energy states results from a subtle interplay between double-exchange configurations and O 2pσ to Mn 3d charge-transfer configurations that obey a Heisenberg logic. The comparison of the calculated spectrum to those predicted by the Zener Hamiltonian reveals that this simple description does not correctly reproduces the Zener polaron physics. A better reproduction of the calculated spectrum is obtained with either a Heisenberg model that considers a purely magnetic oxygen or the Girerd-Papaefthymiou double-exchange model. An additional significant improvement is obtained when different antiferromagnetic contributions are combined with the double-exchange model, showing that the Zener polaron spectrum is actually ruled by a refined double-exchange mechanism where non-Hund atomic states play a non-negligible role. Finally, eight states of a different nature have been found to be intercalated in the double-exchange spectrum. These states exhibit an O to Mn charge transfer, implying a second O 2p orbital of approximate π character instead of the usual σ symmetry. A small mixing of the two families of states occurs, accounting for the final ordering of the states.
Konstantinou, Konstantinos; Sushko, Peter V; Duffy, Dorothy M
2016-09-21
The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO2)57.5-(B2O3)10-(Na2O)15-(CaO)15-(MoO3)2.5 and (SiO2)57.3-(B2O3)20-(Na2O)6.8-(Li2O)13.4-(MoO3)2.5, were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na2MoO4 and CaMoO4). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations.
Ab initio model of salicylate adsorbed onto Al{sub 2}O{sub 3} and illite clay
Kubicki, J.D.; Itoh, M.J.; Apitz, S.E.
1996-10-01
Organic-mineral surface chemistry plays a significant role in numerous geochemical processes such as global carbon cycling, weathering, and contaminant fate and transport. Knowledge of bonding mechanisms between naturally-occurring organic matter (NOM) and minerals is necessary in environmental science. This research examines surface complexation of salicylic acid (which is often used as an analog for NOM) adsorbed onto Al{sub 2}O{sub 3} and illite. ATR-FTIR spectra of the adsorbed complexes were measured and compared to theoretical vibrational spectra of possible surface configurations derived form molecular orbital (MO) calculations. A variety of Al- and Si-salicylate complexes were modeled with ab initio MO calculations. The theoretical vibrational spectrum that best fits the observed spectra corresponds to a salicylate anion bonded to an octahedral Al{sup 3+} ion via a C-O-Al ester-type linkage. These results support the configuration proposed in Biber and Stumm for salicylate adsorbed onto Al{sub 2}O{sub 3}.
Superconductivity and its mechanism in an ab initio model for electron-doped LaFeAsO
NASA Astrophysics Data System (ADS)
Misawa, Takahiro; Imada, Masatoshi
2014-12-01
Two families of high-temperature superconductors whose critical temperatures are higher than 50 K are known. One are the copper oxides and the other are the iron-based superconductors. Comparisons of mechanisms between these two in terms of common ground as well as distinctions will greatly help in searching for higher Tc superconductors. However, studies on mechanisms for the iron family based on first principles calculations are few. Here we first show that superconductivity emerges in the state-of-the-art numerical calculations for an ab initio multi-orbital model of an electron-doped iron-based superconductor LaFeAsO, in accordance with experimental observations. Then the mechanism of the superconductivity is identified as enhanced uniform density fluctuations by one-to-one correspondence with the instability towards inhomogeneity driven by first-order antiferromagnetic and nematic transitions. Despite many differences, certain common features with the copper oxides are also discovered in terms of the underlying orbital-selective Mottness found in the iron family.
Superconductivity and its mechanism in an ab initio model for electron-doped LaFeAsO.
Misawa, Takahiro; Imada, Masatoshi
2014-12-22
Two families of high-temperature superconductors whose critical temperatures are higher than 50 K are known. One are the copper oxides and the other are the iron-based superconductors. Comparisons of mechanisms between these two in terms of common ground as well as distinctions will greatly help in searching for higher T(c) superconductors. However, studies on mechanisms for the iron family based on first principles calculations are few. Here we first show that superconductivity emerges in the state-of-the-art numerical calculations for an ab initio multi-orbital model of an electron-doped iron-based superconductor LaFeAsO, in accordance with experimental observations. Then the mechanism of the superconductivity is identified as enhanced uniform density fluctuations by one-to-one correspondence with the instability towards inhomogeneity driven by first-order antiferromagnetic and nematic transitions. Despite many differences, certain common features with the copper oxides are also discovered in terms of the underlying orbital-selective Mottness found in the iron family.
NASA Astrophysics Data System (ADS)
Fu, Zhijian; Quan, Weilong; Zhang, Wei; Li, Zhiguo; Zheng, Jun; Gu, Yunjun; Chen, Qifeng
2017-01-01
We have performed the ab initio molecular dynamics (AIMD) simulations for aluminum in the density and temperature range of 2.35-7.00 g cm-3 and 1000-70 000 K, respectively. The equation-of-state data obtained from the AIMD simulations are consistent with the available experimental and theoretical results. The electrical conductivity and thermal conductivity obtained by combining the Kubo-Greenwood formula with the AIMD simulations are also in agreement with the available experimental and theoretical results. The electrical conductivity calculated by a linear mixing rule (LMR) in the chemical picture provides appropriate although relatively underestimated values compared to those based on AIMD simulation. Both LMR and AIMD simulations demonstrate that a metal to nonmetal transition takes place at a temperature less than 30 000 K. The thermal power calculated shows not the direct signal connecting with the metal-nonmetal transition. The coupling parameter, degeneracy parameter, and fractions of warm dense aluminum are discussed systematically. Comparison of the simulation results with currently available theoretical and experimental data for warm dense aluminum is employed to evaluate the appropriate scope for currently available theoretical models, which will provide a useful guide for future experiments.
Germacrene D Cyclization: An Ab Initio Investigation
Setzer, William N.
2008-01-01
Essential oils that contain large concentrations of germacrene D are typically accompanied by cadinane sesquiterpenoids. The acid-catalyzed cyclization of germacrene D to give cadinane and selinane sesquiterpenes has been computationally investigated using both density functional (B3LYP/6-31G*) and post Hartree-Fock (MP2/6-31G* *) ab initio methods. The calculated energies are in general agreement with experimentally observed product distributions, both from acid-catalyzed cyclizations as well as distribution of the compounds in essential oils. PMID:19325722
Ab initio quantum chemistry: Methodology and applications
Friesner, Richard A.
2005-01-01
This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller–Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly. PMID:15870212
Molecular associations from ab initio pair potentials
NASA Astrophysics Data System (ADS)
Iglesias, E.; Sordo, T. L.; Sordo, J. A.
1991-12-01
A method of building up stable molecular associations by using pair potentials from ab initio calculations is presented. The Matsuoka-Clementi-Yoshimine potential has been chosen to emulate the water-water interactions while 1-6-12 potentials are used to compute both solute-solvent and solute-solute interactions. Parameters for neutral-amino-acid-water and neutral- amino-acid-neutral-amino-acid interactions are provided by the program. Supermolecules are constructed by minimization of the interaction energy of the molecules involved. Both steepest-decent and Fletcher-Powell algorithms are available to carry out such a minimization.
Ab-initio phasing in protein crystallography
NASA Astrophysics Data System (ADS)
van der Plas, J. L.; Millane, Rick P.
2000-11-01
The central problem in the determination of protein structures form x-ray diffraction dada (x-ray crystallography) corresponds to a phase retrieval problem with undersampled amplitude data. Algorithms for this problem that have an increased radius of convergence have the potential for reducing the amount of experimental work, and cost, involved in determining protein structures. We describe such an algorithm. Application of the algorithm to a simulated crystallographic problem shows that it converges to the correct solution, with no initial phase information, where currently used algorithms fail. The results lend support to the possibility of ab initio phasing in protein crystallography.
Ab-initio Studies Of Lithium Oxide
NASA Astrophysics Data System (ADS)
Gupta, M. K.; Goel, Prabhatasree; Mittal, R.; Chaplot, S. L.
2010-12-01
Lithium oxide is an important material because of its high thermal conductivity and superionic behavior at high temperature. It behaves like a superionic conductor above 1200 K. Phonon frequencies have been calculated using ab-initio method. The calculations of phonon dispersion relation near unit cell volume corresponding to the superionic transition indicate softening of zone boundary transverse acoustic phonon mode along (110). The instability of phonon mode could lead to the dynamical disorder of lithium sub lattice. Thermal expansion and equation of states are also computed. The results compare well with our previous semi-empirical potential calculations.
Spin-orbit decomposition of ab initio nuclear wave functions
NASA Astrophysics Data System (ADS)
Johnson, Calvin W.
2015-03-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.
Towards Accurate Ab Initio Predictions of the Spectrum of Methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2001-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
Ab Initio Calculations Of Light-Ion Reactions
Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W
2012-03-12
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.
Wong, Kin-Yiu; Xu, Yuqing; York, Darrin M
2014-06-30
Detailed understandings of the reaction mechanisms of RNA catalysis in various environments can have profound importance for many applications, ranging from the design of new biotechnologies to the unraveling of the evolutionary origin of life. An integral step in the nucleolytic RNA catalysis is self-cleavage of RNA strands by 2'-O-transphosphorylation. Key to elucidating a reaction mechanism is determining the molecular structure and bonding characteristics of transition state. A direct and powerful probe of transition state is measuring isotope effects on biochemical reactions, particularly if we can reproduce isotope effect values from quantum calculations. This article significantly extends the scope of our previous joint experimental and theoretical work in examining isotope effects on enzymatic and nonenzymatic 2'-O-transphosphorylation reaction models that mimic reactions catalyzed by RNA enzymes (ribozymes), and protein enzymes such as ribonuclease A (RNase A). Native reactions are studied, as well as reactions with thio substitutions representing chemical modifications often used in experiments to probe mechanism. Here, we report and compare results from eight levels of electronic-structure calculations for constructing the potential energy surfaces in kinetic and equilibrium isotope effects (KIE and EIE) computations, including a "gold-standard" coupled-cluster level of theory [CCSD(T)]. In addition to the widely used Bigeleisen equation for estimating KIE and EIE values, internuclear anharmonicity and quantum tunneling effects were also computed using our recently developed ab initio path-integral method, that is, automated integration-free path-integral method. The results of this work establish an important set of benchmarks that serve to guide calculations of KIE and EIE for RNA catalysis.
Phenylalanine ab initio models for the simulation of skin natural moisturizing factor
NASA Astrophysics Data System (ADS)
Carvalho, B. G.; Raniero, L. J.; Martin, A. A.; Favero, P. P.
2013-04-01
In this study, we evaluated models that can be used to simulate amino acids in biological environments via density functional theory (DFT). The goal was to obtain realistic representations that combine computational economy and result quality when compared to experimental data. We increased the complexity of the models by using a model of an amino acid in a vacuum, followed by a water-solvated amino acid model. To consider pH variation, we simulated zwitterionic and nonionic amino acid configurations. The amino acid chosen for testing was phenylalanine, an aromatic amino acid present in high concentrations in the natural moisturizing factor of skin that plays a fundamental role in ultraviolet protection and vitiligo disease. To validate the models, vibrational modes and electronic properties were calculated and compared to experimental results.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.
Ab Initio Calculation of the Hoyle State
Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.
2011-05-13
The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.
Guiding ab initio calculations by alchemical derivatives
NASA Astrophysics Data System (ADS)
to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.
2016-03-01
We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-01-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Draayer, Jerry P.
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Diffusion in liquid Germanium using ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.
1996-03-01
We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.
YinYang atom: a simple combined ab initio quantum mechanical molecular mechanical model.
Shao, Yihan; Kong, Jing
2007-05-10
A simple interface is proposed for combined quantum mechanical (QM) molecular mechanical (MM) calculations for the systems where the QM and MM regions are connected through covalent bonds. Within this model, the atom that connects the two regions, called YinYang atom here, serves as an ordinary MM atom to other MM atoms and as a hydrogen-like atom to other QM atoms. Only one new empirical parameter is introduced to adjust the length of the connecting bond and is calibrated with the molecule propanol. This model is tested with the computation of equilibrium geometries and protonation energies for dozens of molecules. Special attention is paid on the influence of MM point charges on optimized geometry and protonation energy, and it is found that it is important to maintain local charge-neutrality in the MM region in order for the accurate calculation of the protonation and deprotonation energies. Overall the simple YinYang atom model yields comparable results to some other QM/MM models.
NASA Astrophysics Data System (ADS)
Rao, Mala N.; Lamago, D.; Ivanov, A.; d'Astuto, M.; Postnikov, A. V.; Hussein, R. Hajj; Basak, Tista; Chaplot, S. L.; Firszt, F.; Paszkowicz, W.; Deb, S. K.; Pagès, O.
2014-04-01
The random Zn1-xBexSe zincblende alloy is known to exhibit a peculiar three-mode [1×(Zn-Se),2×(Be-Se)] vibration pattern near the Brillouin zone (BZ) center, of the so-called percolation type, apparent in its Raman spectra. This is due to an unusually large contrast between the physical properties (length, ionicity) of the constituting bonds. In the present work, the inelastic neutron scattering is applied to study the dispersion of modes away from the BZ center, with special attention to the q⃗ dependence of the BeSe-like transverse optic doublet. The discussion is supported by calculations of lattice dynamics done both ab initio (using the siesta code) and within the shell model. The BeSe-like doublet is found to survive nearly unchanged throughout the BZ up to the zone edge, indicating that its origin is at the ultimate bond scale. The microscopic mechanism of splitting is clarified by ab initio calculations. Namely, the local lattice relaxation needed to accommodate the contrast in physical properties of the Zn-Se and Be-Se bonds splits the stretching and bending modes of connected, i.e., percolativelike, (Be-Se) bonds.
Effective Operators Within the Ab Initio No-Core Shell Model
Stetcu, I; Barrett, B R; Navratil, P; Vary, J P
2004-11-30
We implement an effective operator formalism for general one- and two-body operators, obtaining results consistent with the no-core shell model (NCSM) wave functions. The Argonne V8' nucleon-nucleon potential was used in order to obtain realistic wave functions for {sup 4}He, {sup 6}Li and {sup 12}C. In the NCSM formalism, we compute electromagnetic properties using the two-body cluster approximation for the effective operators and obtain results which are sensitive to the range of the bare operator. To illuminate the dependence on the range, we employ a Gaussian two-body operator of variable range, finding weak renormalization of long range operators (e.g., quadrupole) in a fixed model space. This is understood in terms of the two-body cluster approximation which accounts mainly for short-range correlations. Consequently, short range operators, such as the relative kinetic energy, will be well renormalized in the two-body cluster approximation.
SurfKin: an ab initio kinetic code for modeling surface reactions.
Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K
2014-10-05
In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts.
NASA Astrophysics Data System (ADS)
Fujisaki, Hiroshi; Yagi, Kiyoshi; Kikuchi, Hiroto; Takami, Toshiya; Stock, Gerhard
2017-01-01
Performing comprehensive quantum-chemical calculations, a vibrational Hamiltonian of acetylbenzonitrile is constructed, on the basis of which a quantum-mechanical "tier model" is developed that describes the vibrational dynamics following excitation of the CN stretch mode. Taking into account 36 vibrational modes and cubic and quartic anharmonic couplings between up to three different modes, the tier model calculations are shown to qualitatively reproduce the main findings of the experiments of Rubtsov and coworkers (2011), including the energy relaxation of the initially excited CN mode and the structure-dependent vibrational transport. Moreover, the calculations suggest that the experimentally measured cross-peak among the CN and CO modes does not correspond to direct excitation of the CO normal mode but rather reflects excited low-frequency vibrations that anharmonically couple to the CO mode. Complementary quasiclassical trajectory calculations are found to be in good overall agreement with the quantum calculations.
Bour, P.; Tam, C.N.; Sopkova, J.; Trouw, F.R.
1998-01-01
Vibrational motions of solid N-methylformamide (NMF) and its N-deuterated analogue are investigated using the inelastic neutron scattering (INS) technique at 15 K. The force field for obtaining the normal vibrational modes of the crystal is based on a quantum chemical calculation and a subsequent transfer of a harmonic force field of a smaller pentameric segment to a fragment of 11 NMF molecules. Two types of hydrogen bonds present in crystalline NMF are also modeled with dimers. The distinct bonding leads to a splitting of the N-hydrogen wagging mode in the spectrum. Although the hydrogen bonding has a profound effect on vibrational frequencies, the results indicate that an occurrence of a double-well potential for bonded hydrogen proposed previously is unlikely. Instead, a limited electronic conjugation along the hydrogen bonds in crystalline NMF is observed. Unlike in previous models, we simulate the relative INS intensity of each vibrational transition separately, which leads to a substantial improvement of the overall profile of the intensity pattern. The modeling allows one to assign most of observed INS bands to vibrational modes and the overall spectral profile that reproduced by the simulation compares well with the experiment. {copyright} {ital 1998 American Institute of Physics.}
Hernández Velázquez, J D; Barroso-Flores, J; Gama Goicochea, A
2016-11-23
Two of the most commonly encountered friction-reducing agents used in plastic sheet production are the amides known as erucamide and behenamide, which despite being almost identical chemically, lead to markedly different values of the friction coefficient. To understand the origin of this contrasting behavior, in this work we model brushes made of these two types of linear-chain molecules using quantum mechanical numerical simulations under the density functional theory at the B97D/6-31G(d,p) level of theory. Four chains of erucamide and behenamide were linked to a 2 × 10 zigzag graphene sheet and optimized both in vacuum and in continuous solvent using the SMD implicit solvation model. We find that erucamide chains tend to remain closer together through π-π stacking interactions arising from the double bonds located at C13-C14, a feature behenamide lacks, and thus a more spread configuration is obtained with the latter. It is argued that this arrangement of the erucamide chains is responsible for the lower friction coefficient of erucamide brushes, compared with behenamide brushes, which is a macroscopic consequence of cooperative quantum mechanical interactions. While only quantum level interactions are modeled here, we show that behenamide chains are more spread out in the brush than erucamide chains as a consequence of those interactions. The spread-out configuration allows more solvent particles to penetrate the brush, leading in turn to more friction, in agreement with macroscopic measurements and mesoscale simulations of the friction coefficient reported in the literature.
Ab initio transport coefficients of Ar+ ions in Ar for cold plasma jet modeling
NASA Astrophysics Data System (ADS)
Chicheportiche, A.; Lepetit, B.; Gadéa, F. X.; Benhenni, M.; Yousfi, M.; Kalus, R.
2014-06-01
Collision cross sections and transport coefficients are calculated for Ar+ ions, in the ground state 2P3/2 and in the metastable state 2P1/2, colliding with their parent gas. Differential and integral collision cross sections are obtained using a numerical integration of the nuclear Schrödinger equation for several published interaction potentials. The Cohen-Schneider semi-empirical model is used for the inclusion of the spin-orbit interaction. The corresponding differential collision cross sections are then used in an optimized Monte Carlo code to calculate the ion transport coefficients for each initial ion state over a wide range of reduced electric field. Ion swarm data results are then compared with available experimental data for different proportions of ions in each state. This allows us to identify the most reliable interaction potential which reproduces ion transport coefficients falling within the experimental error bars. Such ion transport data will be used in electrohydrodynamic and chemical kinetic models of the low temperature plasma jet to quantify and to tune the active species production for a better use in biomedical applications.
Ab Initio Modeling of Intermediate States in the Cytochrome P450 Catalytic Cycle
NASA Astrophysics Data System (ADS)
Segall, Matthew; Payne, Mike; Ellis, Wynne; Tucker, Geoff
1998-03-01
First principles electronic structure calculations, based on Density Functional Theory, have previously been used to model the interaction between the active site of a Cytochrome P450 enzyme and ligand molecules (Segall et al., Xenobiotica (in press);. Segall et al., Phy. Rev. E. (submitted)). These enzymes are of great importance due to their participation in the metabolism of a wide range of endogenous and xenobiotic compounds. We apply the same techniques to the calculation of the energy change due to the first reduction of the active site system, finding an excellent correlation with experimental observations of the redox potential. This allows the study of the oxygen-bound active site complex, the structure of which has not been observed experimentally due to the short-lived nature of this state. The calculations were performed using the CETEP code on 64 nodes of an Hitachi SR2201 parallel supercomputer.
Magnetism in Sr2CrMoO6 : A combined ab initio and model study
NASA Astrophysics Data System (ADS)
Sanyal, Prabuddha; Halder, Anita; Si, Liang; Wallerberger, Markus; Held, Karsten; Saha-Dasgupta, Tanusri
2016-07-01
Using a combination of first-principles density functional theory (DFT) calculations and exact diagonalization studies of a first-principles derived model, we carry out a microscopic analysis of the magnetic properties of the half-metallic double perovskite compound Sr2CrMoO6 , a sister compound of the much discussed material Sr2FeMoO6 . The electronic structure of Sr2CrMoO6 , though appearing similar to Sr2FeMoO6 at first glance, shows nontrivial differences with that of Sr2FeMoO6 on closer examination. In this context, our study highlights the importance of charge transfer energy between the two transition metal sites. The change in charge transfer energy due to a shift of Cr d states in Sr2CrMoO6 compared to Fe d in Sr2FeMoO6 suppresses the hybridization between Cr t2 g and Mo t2 g. This strongly weakens the hybridization-driven mechanism of magnetism discussed for Sr2FeMoO6 . Our study reveals that, nonetheless, the magnetic transition temperature of Sr2CrMoO6 remains high since an additional superexchange contribution to magnetism arises with a finite intrinsic moment developed at the Mo site. We further discuss the situation in comparison to another related double perovskite compound, Sr2CrWO6 . We also examine the effect of correlation beyond DFT, using dynamical mean field theory.
None, None
2016-01-01
The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO2)57.5 – (B2O3)10 – (Na2O)15 – (CaO)15 – (MoO3)2.5 and (SiO2)57.3 – (B2O3)20 – (Na2O)6.8 – (Li2O)13.4 – (MoO3)2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na2MoO4 and CaMoO4). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations. K.K. was supported through the Impact Studentship scheme at UCL co-funded by the IHI Corporation and UCL. P.V.S. thanks the Royal Society, which supported preliminary work on this project, and the Laboratory Directed Research and Development program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. Via our membership of the UK's HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).
NASA Astrophysics Data System (ADS)
Mei, Yuan; Sherman, David M.; Liu, Weihua; Etschmann, Barbara; Testemale, Denis; Brugger, Joël
2015-02-01
The solubility of zinc minerals in hydrothermal fluids is enhanced by chloride complexation of Zn2+. Thermodynamic models of these complexation reactions are central to models of Zn transport and ore formation. However, existing thermodynamic models, derived from solubility measurements, are inconsistent with spectroscopic measurements of Zn speciation. Here, we used ab initio molecular dynamics simulations (with the PBE exchange-correlation functional) to predict the speciation of Zn-Cl complexes from 25 to 600 °C. We also obtained in situ XAS measurements of Zn-Cl solutions at 30-600 °C. Qualitatively, the simulations reproduced the main features derived from in situ XANES and EXAFS measurements: octahedral to tetrahedral transition with increasing temperature and salinity, stability of ZnCl42- at high chloride concentration up to ⩾500 °C, and increasing stability of the trigonal planar [ZnCl3]- complex at high temperature. Having confirmed the dominant species, we directly determined the stability constants for the Zn-Cl complexes using thermodynamic integration along constrained Zn-Cl distances in a series of MD simulations. We corrected our stability constants to infinite dilution using the b-dot model for the activity coefficients of the solute species. In order to compare the ab initio results with experiments, we need to re-model the existing solubility data using the species we identified in our MD simulations. The stability constants derived from refitting published experimental data are in reasonable agreement with those we obtained using ab initio MD simulations. Our new thermodynamic model accurately predicts the experimentally observed changes in ZnO(s) and ZnCO3(s) solubility as a function of chloride concentration from 200 (Psat) to 600 °C (2000 bar). This study demonstrates that metal speciation and geologically useful stability constants can be derived for species in hydrothermal fluids from ab initio MD simulations even at the generalized
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Ab initio quantum chemical study of electron transfer in carboranes
NASA Astrophysics Data System (ADS)
Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.
2005-05-01
The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.
Ab Initio: And a New Era of Airline Pilot Training.
ERIC Educational Resources Information Center
Gesell, Laurence E.
1995-01-01
Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)
Ab initio two-component Ehrenfest dynamics
Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong
2015-09-21
We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.
Ab initio phase diagram of iridium
NASA Astrophysics Data System (ADS)
Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.
2016-09-01
The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.
Ab Initio Quantum Simulations of Liquid Water
NASA Astrophysics Data System (ADS)
Gergely, John; Ceperley, David; Gygi, Francois
2007-03-01
Some recent efforts at simulating liquid water have employed ``ab initio'' molecular dynamics (AIMD) methods with forces from a version of density functional theory (DFT) and, in some cases, imaginary-time path integrals (PI) to study quantum effects of the protons. Although AIMD methods have met with many successes, errors introduced by the approximations and choices of simulation parameters are not fully understood. We report on path integral Monte Carlo (PIMC) studies of liquid water using DFT energies that provide quantitative benchmarks for PI-AIMD work. Specifically, we present convergence studies of the path integrals and address whether the Trotter number can be reduced by improving the form of the (approximate) action. Also, we assess 1) whether typical AIMD simulations are sufficiently converged in simulation time, i.e., if there is reason to suspect that nonergodic behavior in PI-AIMD methods leads to poor convergence, and 2) the relative efficiency of the methods. E. Schwegler, J.C. Grossman, F. Gygi, G. Galli, J. Chem. Phys 121, 5400 (2004).
Ab-initio study of hexagonal apatites
NASA Astrophysics Data System (ADS)
Calderin, Lazaro; Stott, Malcom J.
2001-03-01
A silicon stabilized mixture of calcium phosphate phases has been recognized as playing an important role in actively resorbable coatings and in ceramics as bone materials. The nature of this material is being investigated using a variety of techniques including a combination of crystallographic analysis of measured x-ray diffraction spectra, and ab initio quantum mechanics simulations. We have used all-electron, density functional based calculations to investigate a group of hexagonal apatites. The fully relaxed crystallographic structures of hydroxyapatite, and related apatites have been obtained. We will present the results and discuss the nature of the bonding in these materials. The x-ray diffraction pattern and the infra-red spectra have also been obtained and will be compared with experiment. Acknowledgments:This work is part of a collaboration with the Applied Ceramics group of M.Sayer, and with Millenium Biologix Inc. Support of the NSERC of Canada through the award of a Co-operative R & D grant to the collaboration is acknowledged.
Ab initio Study of He Stability in hcp-Ti
Dai, Yunya; Yang, Li; Peng, SM; Long, XG; Gao, Fei; Zu, Xiaotao T.
2010-12-20
The stability of He in hcp-Ti was studied using ab initio method based on density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms has been used to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models.
Pseudorotation motion in tetrahydrofuran: an ab initio study.
Rayón, Víctor M; Sordo, Jose A
2005-05-22
The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.
Ab initio evidence for nonthermal characteristics in ultrafast laser melting
NASA Astrophysics Data System (ADS)
Lian, Chao; Zhang, S. B.; Meng, Sheng
2016-11-01
Laser melting of semiconductors has been observed for almost 40 years; surprisingly, it is not well understood where most theoretical simulations show a laser-induced thermal process. Ab initio nonadiabatic simulations based on real-time time-dependent density functional theory reveal intrinsic nonthermal melting of silicon, at a temperature far below the thermal melting temperature of 1680 K. Both excitation threshold and time evolution of diffraction intensity agree well with experiment. Nonthermal melting is attributed to excitation-induced drastic changes in bonding electron density, and the subsequent decrease in the melting barrier, rather than lattice heating as previously assumed in the two-temperature models.
NASA Astrophysics Data System (ADS)
Rey, Michael; Nikitin, Andrei; Bezard, Bruno; Rannou, Pascal; Coustenis, Athena; Tyuterev, Vladimir
2016-06-01
Knowledge of intensities of spectral transitions in various temperature ranges including very low-T conditions is essential for the modeling of optical properties of planetary atmospheres and for other astrophysical applications. The temperature dependence of spectral features is crucial, but quantified experimental information in a wide spectral range is generally missing. A significant progress has been recently achieved in first principles quantum mechanical predictions (ab initio electronic structure + variational nuclear motion calculations) of rotationally resolved spectra for hydrocarbon molecules such as methane , ethylene and their isotopic species [1,2] . We have recently reported the TheoReTS information system (theorets.univ-reims.fr, theorets.tsu.ru) for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces [3] that permits online simulation of radiative properties including low-T conditions of cold planets. In this work, we apply ab initio predictions of the spectra of methane isotopologues down to T=80 K for the modeling of the transmittance in the atmosphere of Titan, Saturn's largest satellite explored by the Cassini-Huygens space mission. A very good agreement over the whole infrared range from 6,000 to 11,000 cm-1 compared with observations obtained by the Descent Imager / Spectral Radiometer (DISR) on the Huygens probe [4,5] at various altitudes will be reported.
NASA Astrophysics Data System (ADS)
Hyla, M.
2017-01-01
Network-forming As2(S/Se)m nanoclusters are employed to recognize expected variations in a vicinity of some remarkable compositions in binary As-Se/S glassy systems accepted as signatures of optimally constrained intermediate topological phases in earlier temperature-modulated differential scanning calorimetry experiments. The ab initio quantum chemical calculations performed using the cation-interlinking network cluster approach show similar oscillating character in tendency to local chemical decomposition but obvious step-like behavior in preference to global phase separation on boundary chemical compounds (pure chalcogen and stoichiometric arsenic chalcogenides). The onsets of stability are defined for chalcogen-rich glasses, these being connected with As2Se5 ( Z = 2.29) and As2S6 ( Z = 2.25) nanoclusters for As-Se and As-S glasses, respectively. The physical aging effects result preferentially from global phase separation in As-S glass system due to high localization of covalent bonding and local demixing on neighboring As2Sem+1 and As2Sem-1 nanoclusters in As-Se system. These nanoclusters well explain the lower limits of reversibility windows in temperature-modulated differential scanning calorimetry, but they cannot be accepted as signatures of topological phase transitions in respect to the rigidity theory.
Skutterudites under pressure: An ab initio study
Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.
2014-03-07
Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.
Three-cluster dynamics within an ab initio framework
Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr
2013-09-26
In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-09-15
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Casabianca, Leah B; Shaibat, Medhat A; Cai, Weiwei W; Park, Sungjin; Piner, Richard; Ruoff, Rodney S; Ishii, Yoshitaka
2010-04-28
Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D (13)C double-quantum/single-quantum correlation SSNMR spectrum of (13)C-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf-Klinowski model (Lerf, A. et al. Phys. Chem. B 1998, 102, 4477); this model is composed of interconnected sp(2), 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater. 2006, 18, 2740). (13)C chemical shift anisotropy (CSA) patterns measured by a 2D (13)C CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems.
Alexandrov, Vitali Y.; Rosso, Kevin M.
2015-01-01
Goethite (α-FeOOH) surfaces represent one of the most ubiquitous redox-active interfaces in the environment, playing an important role in biogeochemical metal cycling and contaminant residence in the subsurface. Fe(II)-catalyzed recrystallization of goethite is a fundamental process in this context, but the proposed Fe(II)aq-Fe(III)goethite electron and iron atom exchange mechanism of recrystallization remains poorly understood at the atomic level. We examine the adsorption of aqueous Fe(II) and subsequent interfacial electron transfer (ET) between adsorbed Fe(II) and structural Fe(III) at the (110) and (021) goethite surfaces using density functional theory calculations including Hubbard U corrections (DFT+U) aided by ab initio molecular dynamics simulations. We investigate various surface sites for the adsorption of Fe2+(H2O)6 in different coordination environments. Calculated energies for adsorbed complexes at both surfaces favor monodentate complexes with reduced 4- and 5-fold coordination over higher-dentate structures and 6- fold coordination. The hydrolysis of H2O ligands is observed for some pre-ET adsorbed Fe(II) configurations. ET from the adsorbed Fe(II) into the goethite lattice is calculated to be energetically uphill always, but simultaneous proton transfer from H2O ligands of the adsorbed complexes to the surface oxygen species stabilizes post-ET states. We find that surface defects such as oxygen vacancies near the adsorption site also can stabilize post-ET states, enabling the Fe(II)aq-Fe(III)goethite interfacial electron transfer reaction implied from experiments to proceed.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C
2015-01-01
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906
Implementation of renormalized excitonic method at ab initio level.
Zhang, Hongjiang; Malrieu, Jean-Paul; Ma, Haibo; Ma, Jing
2012-01-05
The renormalized excitonic method [Hajj et al., Phys Rev B 2005, 72, 224412], in which the excited state of the whole system may be described as a linear combination of local excitations, has been implemented at ab initio level. Its performance is tested on the ionization potential and the energy gap between singlet ground state and lowest triplet for linear molecular hydrogen chains and more realistic systems, such as polyenes and polysilenes, using full configuration interaction (FCI) wave functions with a minimal basis set. The influence of different block sizes and the extent of interblock interactions are investigated. It has been demonstrated that satisfactory results can be obtained if the near degeneracies between the model space and the outer space are avoided and if interactions between the next-nearest neighbor blocks are considered. The method can be used with larger basis sets and other accurate enough ab initio evaluations (instead of FCI) of local excited states, from blocks, or from dimers or trimers of blocks. It provides a new possibility to accurately and economically describe the low-lying delocalized excited states of large systems, even inhomogeneous ones.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C
2015-02-14
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY
Turchi, P A
2004-09-24
Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.
Approximate ab initio calculations of electronic structure of amorphous silicon
NASA Astrophysics Data System (ADS)
Durandurdu, M.; Drabold, D. A.; Mousseau, N.
2000-12-01
We report on ab initio calculations of electronic states of two large and realistic models of amorphous silicon generated using a modified version of the Wooten-Winer-Weaire algorithm and relaxed, in both cases, with a Keating and a modified Stillinger-Weber potentials. The models have no coordination defects and a very narrow bond-angle distribution. We compute the electronic density-of-states and pay particular attention to the nature of the band-tail states around the electronic gap. All models show a large and perfectly clean optical gap and realistic Urbach tails. Based on these results and the extended quasi-one-dimensional stringlike structures observed for certain eigenvalues in the band tails, we postulate that the generation of model a-Si without localized states might be achievable under certain circumstances.
Liu, Lihong; Liu, Jian; Martinez, Todd J.
2015-12-17
Here, we investigate the photoisomerization of a model retinal protonated Schiff base (trans-PSB3) using ab initio multiple spawning (AIMS) based on multi-state second order perturbation theory (MSPT2). Discrepancies between the photodynamical mechanism computed with three-root state-averaged complete active space self-consistent field (SA-3-CASSCF, which does not include dynamic electron correlation effects) and MSPT2 show that dynamic correlation is critical in this photoisomerization reaction. Furthermore, we show that the photodynamics of trans-PSB3 is not well described by predictions based on minimum energy conical intersections (MECIs) or minimum energy conical intersection (CI) seam paths. Instead, most of the CIs involved in the photoisomerizationmore » are far from MECIs and minimum energy CI seam paths. Thus, both dynamical nuclear effects and dynamic electron correlation are critical to understanding the photochemical mechanism.« less
Liu, Lihong; Liu, Jian; Martinez, Todd J.
2015-12-17
Here, we investigate the photoisomerization of a model retinal protonated Schiff base (trans-PSB3) using ab initio multiple spawning (AIMS) based on multi-state second order perturbation theory (MSPT2). Discrepancies between the photodynamical mechanism computed with three-root state-averaged complete active space self-consistent field (SA-3-CASSCF, which does not include dynamic electron correlation effects) and MSPT2 show that dynamic correlation is critical in this photoisomerization reaction. Furthermore, we show that the photodynamics of trans-PSB3 is not well described by predictions based on minimum energy conical intersections (MECIs) or minimum energy conical intersection (CI) seam paths. Instead, most of the CIs involved in the photoisomerization are far from MECIs and minimum energy CI seam paths. Thus, both dynamical nuclear effects and dynamic electron correlation are critical to understanding the photochemical mechanism.
NASA Astrophysics Data System (ADS)
Ishida, Toyokazu
2008-09-01
In this study, we investigated the electronic character of protein environment in enzymatic processes by performing all-electron QM calculations based on the fragment molecular orbital (FMO) method. By introducing a new computational strategy combining all-electron QM analysis with ab initio QM/MM modeling, we investigated the details of molecular interaction energy between a reactive substrate and amino acid residues at a catalytic site. For a practical application, we selected the chorismate mutase catalyzed reaction as an example. Because the computational time required to perform all-electron QM reaction path searches was very large, we employed the ab initio QM/MM modeling technique to construct reliable reaction profiles and performed all-electron FMO calculations for the selected geometries. The main focus of the paper is to analyze the details of electrostatic stabilization, which is considered to be the major feature of enzymatic catalyses, and to clarify how the electronic structure of proteins is polarized in response to the change in electron distribution of the substrate. By performing interaction energy decomposition analysis from a quantum chemical viewpoint, we clarified the relationship between the location of amino acid residues on the protein domain and the degree of electronic polarization of each residue. In particular, in the enzymatic transition state, Arg7, Glu78, and Arg90 are highly polarized in response to the delocalized electronic character of the substrate, and as a result, a large amount of electrostatic stabilization energy is stored in the molecular interaction between the enzyme and the substrate and supplied for transition state stabilization.
Ishida, Toyokazu
2008-09-28
In this study, we investigated the electronic character of protein environment in enzymatic processes by performing all-electron QM calculations based on the fragment molecular orbital (FMO) method. By introducing a new computational strategy combining all-electron QM analysis with ab initio QM/MM modeling, we investigated the details of molecular interaction energy between a reactive substrate and amino acid residues at a catalytic site. For a practical application, we selected the chorismate mutase catalyzed reaction as an example. Because the computational time required to perform all-electron QM reaction path searches was very large, we employed the ab initio QM/MM modeling technique to construct reliable reaction profiles and performed all-electron FMO calculations for the selected geometries. The main focus of the paper is to analyze the details of electrostatic stabilization, which is considered to be the major feature of enzymatic catalyses, and to clarify how the electronic structure of proteins is polarized in response to the change in electron distribution of the substrate. By performing interaction energy decomposition analysis from a quantum chemical viewpoint, we clarified the relationship between the location of amino acid residues on the protein domain and the degree of electronic polarization of each residue. In particular, in the enzymatic transition state, Arg7, Glu78, and Arg90 are highly polarized in response to the delocalized electronic character of the substrate, and as a result, a large amount of electrostatic stabilization energy is stored in the molecular interaction between the enzyme and the substrate and supplied for transition state stabilization.
Ab initio computations of photodissociation products of CFC alternatives
Tai, S.; Illinger, K.H.; Kenny, J.E.
1995-12-31
Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.
Simple calculation of ab initio melting curves: Application to aluminum
NASA Astrophysics Data System (ADS)
Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean
2015-03-01
We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003), 10.1063/1.1624057] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013), 10.1103/PhysRevE.88.062145]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.
Baysal, C; Meirovitch, H
2000-04-15
Using a recently developed statistical mechanics methodology, the solution structures and populations of the cyclic pentapeptide cyclo(D-Pro(1)-Ala(2)-Ala(3)-Ala(4)-Ala(5)) in DMSO are obtained ab initio, i.e., without using experimental restraints. An important ingredient of this methodology is a novel optimization of implicit solvation parameters, which in our previous publication [Baysal, C.; Meirovitch, H. J Am Chem Soc 1998, 120, 800-812] has been applied to a cyclic hexapeptide in DMSO. The molecule has been described by the simplified energy function E(tot) = E(GRO) + summation operator(k) sigma(k)A(k), where E(GRO) is the GROMOS force-field energy, sigma(k) and A(k) are the atomic solvation parameter (ASP) and the solvent accessible surface area of atom k. This methodology, which relies on an extensive conformational search, Monte Carlo simulations, and free energy calculations, is applied here with E(tot) based on the ASPs derived in our previous work, and for comparison also with E(GRO) alone. For both models, entropy effects are found to be significant. For E(tot), the theoretical values of proton-proton distances and (3)J coupling constants agree very well with the NMR results [Mierke, D. F.; Kurz, M.; Kessler, H. J Am Chem Soc 1994, 116, 1042-1049], while the results for E(GRO) are significantly worse. This suggests that our ASPs might be transferrable to other cyclic peptides in DMSO as well, making our methodology a reliable tool for an ab initio structure prediction; obviously, if necessary, parts of this methodology can also be incorporated in a best-fit analysis where experimental restraints are used.
Ab initio MCDHF calculations of electron-nucleus interactions
NASA Astrophysics Data System (ADS)
Bieroń, Jacek; Froese Fischer, Charlotte; Fritzsche, Stephan; Gaigalas, Gediminas; Grant, Ian P.; Indelicato, Paul; Jönsson, Per; Pyykkö, Pekka
2015-05-01
We present recent advances in the development of atomic ab initio multiconfiguration Dirac-Hartree-Fock theory, implemented in the GRASP relativistic atomic structure code. For neutral atoms, the deviations of properties calculated within the Dirac-Hartree-Fock (DHF) method (based on independent particle model of an atomic cloud) are usually dominated by electron correlation effects, i.e. the non-central interactions of individual electrons. We present the recent advances in accurate calculations of electron correlation effects in small, medium, and heavy neutral atoms. We describe methods of systematic development of multiconfiguration expansions leading to systematic, controlled improvement of the accuracy of the ab initio calculations. These methods originate from the concept of the complete active space (CAS) model within the DHF theory, which, at least in principle, permits fully relativistic calculations with full account of electron correlation effects. The calculations within the CAS model on currently available computer systems are feasible only for very light systems. For heavier atoms or ions with more than a few electrons, restrictions have to be imposed on the multiconfiguration expansions. We present methods and tools, which are designed to extend the numerical calculations in a controlled manner, where multiconfiguration expansions account for all leading electron correlation effects. We show examples of applications of the GRASP code to calculations of hyperfine structure constants, but the code may be used for calculations of arbitrary bound-state atomic properties. In recent years it has been applied to calculations of atomic and ionic spectra (transition energies and rates), to determinations of nuclear electromagnetic moments, as well as to calculations related to interactions of bound electrons with nuclear electromagnetic moments leading to violations of discrete symmetries.
High-throughput ab-initio dilute solute diffusion database
NASA Astrophysics Data System (ADS)
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-07-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
Ab Initio Infrared and Raman Spectra.
1982-08-01
tions. For parameters not depending on momenta, a parallel ab fhti Monte Carlo approach would use electronic energies and other parameters of... Monte Carlo approach. Specifically, as one of us has suggested,t I classical molecular dynamics may be integrated with ab iniHo quan- tum force...alternative approach, for phenomena which are not explicitly time dependent, is a Monte Carlo procedure in which at each trial nuclear configuration
Multiple time step integrators in ab initio molecular dynamics
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures
Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan
2006-04-05
A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.
The application of ab initio calculations to molecular spectroscopy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1989-01-01
The state of the art in ab initio molecular structure calculations is reviewed, with an emphasis on recent developments such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is shown that new developments in methodology combined with improvements in computer hardware are leading to unprecedented accuracy in solving problems in spectroscopy.
The application of ab initio calculations to molecular spectroscopy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1989-01-01
The state of the art in ab initio molecular structure calculations is reviewed with an emphasis on recent developments, such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is found that new developments in methodology, combined with improvements in computer hardware, are leading to unprecedented accuracy in solving problems in spectroscopy.
An Ab Initio Study of Alkali-C60 Complexes
NASA Astrophysics Data System (ADS)
Frick, Nathan; Hira, A. S.; Ray, A. K.
2003-03-01
We extend our previous work on fullerene-alkali complexes1-2 by presenting the results of an ab initio theoretical study of the alkali LiC60+, LiC60, NaC60+, NaC60, KC60+, and KC60 complexes. In the endohedral complexes for Li and Na, there is displacement of the adatom from the center. Of the ions, exohedral Li+ will sit closest to the cage, and among the neutrals, exohedral K remains closest. Bond lengths are consistently longer for the fivefold and threefold approaches. Adsorbates inside the fullerene donate negative charge to the carbons, but ions outside obtain a small amount, resulting in a polarization of the molecule. In the ion complexes, there is lowering of the orbital energy levels by 3 to 4 eV, resulting in an increase in the number of bound, but unoccupied, electronic orbitals. The HOMO-LUMO gap, of interest in superconductivity studies, is reduced by about 50 1. A.S. Hira and A.K. Ray, Phys. Rev. A 52, 141(1995); A 54, 2205(1996). 2. Ajit Hira and A. K. Ray, "An Initio Modeling of the Endohedral and Exohedral Complexes of C60Na2+ Complexes", Bull. Am. Phys. Soc. 47 (March 2002).
Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization
NASA Astrophysics Data System (ADS)
Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng
With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.
NASA Astrophysics Data System (ADS)
Zijlstra, E. S.; Kortus, J.; Krajčí, M.; Stadnik, Z. M.; Bose, S. K.
2004-03-01
We present a detailed analysis of electronic properties of the Cockayne model of icosahedral AlCuFe, both in its original form and after a structural relaxation using the ab initio density functional approach. The electronic density of states (DOS) and electric field gradients (EFG’s) of the Al and Fe atoms in the original and the relaxed Cockayne models were calculated and compared with available photoemission, Mössbauer, and nuclear quadrupole resonance spectroscopy data. The relaxed and the original models show significantly different electronic properties. Both models are deficient in describing the available experimental data. The DOS’s show two Fe-d peaks, where there is only one such peak in the photoemission spectroscopy data. These models also cannot account for the shape of the Mössbauer spectra. We show that the interchange between 12 Cu and 12 Fe atoms, each belonging to a single symmetry class, results in a smaller number of Cu-Fe nearest-neighbor pairs and a lowering of the total energy by an amount of ΔE˜50 meV/atom. This “modified” version of the Cockayne model was further relaxed for the final comparison between the calculation and experimental results. The modified model shows a considerable improvement: The DOS has only one Fe-d peak, in agreement with photoemission spectroscopy data, and the calculated EFG’s account very well for the experimental Mössbauer spectra.
Xu, Dong; Zhang, Jian; Roy, Ambrish; Zhang, Yang
2011-01-01
I-TASSER is an automated pipeline for protein tertiary structure prediction using multiple threading alignments and iterative structure assembly simulations. In CASP9 experiments, two new algorithms, QUARK and fragment-guided molecular dynamics (FG-MD), were added to the I-TASSER pipeline for improving the structural modeling accuracy. QUARK is a de novo structure prediction algorithm used for structure modeling of proteins that lack detectable template structures. For distantly homologous targets, QUARK models are found useful as a reference structure for selecting good threading alignments and guiding the I-TASSER structure assembly simulations. FG-MD is an atomic-level structural refinement program that uses structural fragments collected from the PDB structures to guide molecular dynamics simulation and improve the local structure of predicted model, including hydrogen-bonding networks, torsion angles, and steric clashes. Despite considerable progress in both the template-based and template-free structure modeling, significant improvements on protein target classification, domain parsing, model selection, and ab initio folding of β-proteins are still needed to further improve the I-TASSER pipeline.
An ab initio-based Er–He interatomic potential in hcp Er
Yang, Li; ye, Yeting; Fan, K. M.; Shen, Huahai; Peng, Shuming; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei
2014-09-01
We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations. The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.
Global exploration of the energy landscape of solids on the ab initio level.
Doll, K; Schön, J C; Jansen, M
2007-12-14
Predicting which crystalline modifications can be present in a chemical system requires the global exploration of its energy landscape. Due to the large computational effort involved, in the past this search for sufficiently stable minima has been performed employing a variety of empirical potentials and cost functions followed by a local optimization on the ab initio level. However, this entails the risk of overlooking important modifications that are not modeled accurately using empirical potentials. In order to overcome this critical limitation, we develop an approach to employ ab initio energy functions during the global optimization phase of the structure prediction. As an example, we perform a global exploration of the landscape of LiF on the ab initio level and show that the relevant crystalline modifications are found during the search.
NASA Astrophysics Data System (ADS)
Wiengarten, T.; Oughton, S.; Engelbrecht, N. E.; Fichtner, H.; Kleimann, J.; Scherer, K.
2016-12-01
We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.
Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Khaliullin, Rustam Z; Kühne, Thomas D
2013-10-14
The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.
Baroni, Simone; Navratil, Petr; Quaglioni, Sofia
2013-03-26
In this study, we introduce a unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model (NCSM), a bound-state technique, with the no-core shell model/resonating group method (NCSM/RGM), a nuclear scattering technique. This new ab initio method, no-core shell model with continuum (NCSMC), leads to convergence properties superior to either NCSM or NCSM/RGM while providing a balanced approach to different classes of states. In the NCSMC, the ansatz for the many-nucleon wave function includes (i) a square-integrable A-nucleon component expanded in a complete harmonic oscillator basis and (ii) a binary-cluster component with asymptoticmore » boundary conditions that can properly describe weakly bound states, resonances, and scattering. The Schrödinger equation is transformed into a system of coupled-channel integral-differential equations that we solve using a modified microscopic R-matrix formalism within a Lagrange mesh basis. We demonstrate the usefulness of the approach by investigating the unbound 7He nucleus.« less
Li, Junjie; Iyengar, Srinivasan S
2015-09-08
Here, we demonstrate the application of fragment-based electronic structure calculations in (a) ab initio molecular dynamics (AIMD) and (b) reduced dimensional potential calculations, for medium- and large-sized protonated water clusters. The specific fragmentation algorithm used here is derived from ONIOM, but includes multiple, overlapping “model” systems. The interaction between the various overlapping model systems is (a) approximated by invoking the principle of inclusion-exclusion at the chosen higher level of theory and (b) within a real calculation performed at the chosen lower level of theory. The fragmentation algorithm itself is written using bit-manipulation arithmetic, which will prove to be advantageous, since the number of fragments in such methods has the propensity to grow exponentially with system size. Benchmark calculations are performed for three different protonated water clusters: H₉O₄⁺, H₁₃O₆⁺ and H(H₂O)₂₁⁺. For potential energy surface benchmarks, we sample the normal coordinates and compare our surface energies with full MP2 and CCSD(T) calculations. The mean absolute error for the fragment-based algorithm is <0.05 kcal/mol, when compared with MP2 calculations, and <0.07 kcal/mol, when compared with CCSD(T) calculations over 693 different geometries for the H₉O₄⁺ system. For the larger H(H₂O)₂₁⁺ water cluster, the mean absolute error is on the order of a 0.1 kcal/mol, when compared with full MP2 calculations for 84 different geometries, at a fraction of the computational cost. Ab initio dynamics calculations were performed for H₉O₄⁺ and H₁₃O₆⁺, and the energy conservation was found to be of the order of 0.01 kcal/mol for short trajectories (on the order of a picosecond). The trajectories were kept short because our algorithm does not currently include dynamical fragmentation, which will be considered in future publications. Nevertheless, the velocity autocorrelation functions and their
{sup 7}Be(p,{gamma}){sup 8}B S factor from ab initio no-core shell model wave functions
Navratil, P.; Bertulani, C.A.; Caurier, E.
2006-06-15
Nuclear structure of {sup 7}Be, {sup 8}B, and {sup 7,8}Li is studied within the ab initio no-core shell model (NCSM). Starting from high-precision nucleon-nucleon (NN) interactions, wave functions of {sup 7}Be and {sup 8}B bound states are obtained in basis spaces up to 10({Dirac_h}/2{pi}){omega} and used to calculate channel cluster form factors (overlap integrals) of the {sup 8}B ground state with {sup 7}Be+p. Due to the use of the harmonic oscillator (HO) basis, the overlap integrals have incorrect asymptotic properties. We fix this problem in two alternative ways. First, by a Woods-Saxon potential solution fit to the interior of the NCSM overlap integrals. Second, by a direct matching with the Whittaker function. The corrected overlap integrals are then used for the {sup 7}Be(p,{gamma}){sup 8}B S-factor calculation. We study the convergence of the S factor with respect to the NCSM HO frequency and the model space size. Our S factor results agree with recent direct measurement data. We also test the spectroscopic factors and the corrected overlap integrals from the NCSM in describing the momentum distributions in knockout reactions with {sup 8}B projectiles. A good agreement with the available experimental data is also found, attesting to the overall consistency of the calculations.
Westphal, Eduard; Pliego, Josefredo R. Jr.
2005-08-15
The solvation of the lithium and sodium ions in dimethyl sulfoxide solution was theoretically investigated using ab initio calculations coupled with the hybrid cluster-continuum model, a quasichemical theory of solvation. We have investigated clusters of ions with up to five dimethyl sulfoxide (DMSO) molecules, and the bulk solvent was described by a dielectric continuum model. Our results show that the lithium and sodium ions have four and five DMSO molecules into the first coordination shell, and the calculated solvation free energies are -135.5 and -108.6 kcal mol{sup -1}, respectively. These data suggest a solvation free energy value of -273.2 kcal mol{sup -1} for the proton in dimethyl sulfoxide solution, a value that is more negative than the present uncertain experimental value. This and previous studies on the solvation of ions in water solution indicate that the tetraphenylarsonium tetraphenylborate assumption is flawed and the absolute value of the free energy of transfer of ions from water to DMSO solution is higher than the present experimental values.
Ab initio prediction of vacancy properties in concentrated alloys: The case of fcc Cu-Ni
NASA Astrophysics Data System (ADS)
Zhang, Xi; Sluiter, Marcel H. F.
2015-05-01
Vacancy properties in concentrated alloys continue to be of great interest because nowadays ab initio supercell simulations reach a scale where even defect properties in disordered alloys appear to be within reach. We show that vacancy properties cannot generally be extracted from supercell total energies in a consistent manner without a statistical model. Essential features of such a model are knowledge of the chemical potential and imposition of invariants. In the present work, we derive the simplest model that satisfies these requirements and we compare it with models in the literature. As illustration we compute ab initio vacancy properties of fcc Cu-Ni alloys as a function of composition and temperature. Ab initio density functional calculations were performed for SQS supercells at various compositions with and without vacancies. Various methods of extracting alloy vacancy properties were examined. A ternary cluster expansion yielded effective cluster interactions (ECIs) for the Cu-Ni-Vac system. Composition and temperature dependent alloy vacancy concentrations were obtained using statistical thermodynamic models with the ab initio ECIs. An Arrhenius analysis showed that the heat of vacancy formation was well represented by a linear function of temperature. The positive slope of the temperature dependence implies a negative configurational entropy contribution to the vacancy formation free energy in the alloy. These findings can be understood by considering local coordination effects.
Separable metamaterials: analytical ab-initio homogenization and chirality
NASA Astrophysics Data System (ADS)
Ciattoni, Alessandro; Rago, Domenico; Rizza, Carlo
2016-11-01
We investigate the ab-initio homogenization of separable metamaterials with factorized dielectric permittivity profiles, which can be achieved through suitable grey-scale permittivity design techniques. Separability allows such metamaterials to be physically regarded as the superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, separable metamaterials admit a simple and analytical description of their electromagnetic bi-anisotropic response, which can be reconstructed from the properties of the 1D generating media. Our approach provides a strategy that allows the full ab-initio and flexible design of a complex bianisotropic response by using the simple and well-known properties of 1D metamaterials.
High Level Ab Initio Kinetics as a Tool for Astrochemistry
NASA Astrophysics Data System (ADS)
Klippenstein, Stephen
2015-05-01
We will survey the application of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. The accuracy of various aspects of the calculations will be summarized including (i) the underlying ab initio electronic structure calculations, (ii) the treatment of the high pressure recombination process, and (iii) the treatment of the pressure dependence of the kinetics. The applications will consider the chemistry of phosphorous on giant planets, the kinetics of water dimerization, the chemistry of nitrogen on Titan's atmosphere, as well as various reactions of interstellar chemistry interest such as the recombination of OH with H, and O(3P) reacting with C2H5, CH2, and CCS. Chemical Sciences and Engineering Division.
Ab initio theories for light nuclei and neutron stars
NASA Astrophysics Data System (ADS)
Gezerlis, Alexandros
2016-09-01
In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).
Ab initio solution of macromolecular crystal structures without direct methods.
McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J
2017-04-04
The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.
Ab Initio Atomistic Thermodynamics for Surfaces: A Primer
2006-02-01
Ab Initio Atomistic Thermodynamics for Surfaces: A Primer Jutta Rogal and Karsten Reuter Fritz - Haber -Institut der Max-Planck-Gesellschaft... Fritz - Haber -Institut der Max-Planck-Gesellschaft Faradayweg 4-6 D-14195 Berlin Germany 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...of the Fritz - Haber -Institut, in particular Wei-Xue Li, Cathy Stampfl and Mira Todorova. Particular thanks go to Matthias Scheffler for his continued
The study of molecular spectroscopy by ab initio methods
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1991-01-01
This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.
GAUSSIAN 76: An ab initio Molecular Orbital Program
DOE R&D Accomplishments Database
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
Hostert, C; Music, D; Bednarcik, J; Keckes, J; Kapaklis, V; Hjörvarsson, B; Schneider, J M
2011-11-30
Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm(-3) for Co(43)Fe(20)Ta(5.5)B(31.5) and 8.42 g cm(-3) for Co(45.5)Fe(24)Ta(6)B(24.5), as well as the Young's moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness.
NASA Astrophysics Data System (ADS)
Troitskaya, E. P.; Chabanenko, V. V.; Gorbenko, Ie. Ie.; Pilipenko, E. A.
2015-01-01
Ab initio calculations of phonon frequencies of compressed rare-gas crystals have been performed taking into account the many-body interaction in the model of deformable atoms. In the short-range repulsive potential, along with the previously considered three-body interaction associated with the overlap of the electron shells of atoms, the three-body forces generated by the mutual deformation of the electron shells of the nearest-neighbor atoms have been investigated in the dipole approximation. The relevant forces make no contribution to the elastic moduli but affect the equation for lattice vibrations. At high compressions, the softening of the longitudinal mode at the points L and X is observed for all the rare-gas crystals, whereas the transverse mode T 1 is softened in the direction Σ and at the point L for solid xenon. This effect is enhanced by the three-body forces. There is a good agreement between the theoretical phonon frequencies and the experimental values at zero pressure.
Ab initio calculation of the potential bubble nucleus 34Si
NASA Astrophysics Data System (ADS)
Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.
2017-03-01
Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to
Kemege, Kyle E.; Hickey, John M.; Lovell, Scott; Battaile, Kevin P.; Zhang, Yang; Hefty, P. Scott
2012-02-13
Chlamydia trachomatis is a medically important pathogen that encodes a relatively high percentage of proteins with unknown function. The three-dimensional structure of a protein can be very informative regarding the protein's functional characteristics; however, determining protein structures experimentally can be very challenging. Computational methods that model protein structures with sufficient accuracy to facilitate functional studies have had notable successes. To evaluate the accuracy and potential impact of computational protein structure modeling of hypothetical proteins encoded by Chlamydia, a successful computational method termed I-TASSER was utilized to model the three-dimensional structure of a hypothetical protein encoded by open reading frame (ORF) CT296. CT296 has been reported to exhibit functional properties of a divalent cation transcription repressor (DcrA), with similarity to the Escherichia coli iron-responsive transcriptional repressor, Fur. Unexpectedly, the I-TASSER model of CT296 exhibited no structural similarity to any DNA-interacting proteins or motifs. To validate the I-TASSER-generated model, the structure of CT296 was solved experimentally using X-ray crystallography. Impressively, the ab initio I-TASSER-generated model closely matched (2.72-{angstrom} C{alpha} root mean square deviation [RMSD]) the high-resolution (1.8-{angstrom}) crystal structure of CT296. Modeled and experimentally determined structures of CT296 share structural characteristics of non-heme Fe(II) 2-oxoglutarate-dependent enzymes, although key enzymatic residues are not conserved, suggesting a unique biochemical process is likely associated with CT296 function. Additionally, functional analyses did not support prior reports that CT296 has properties shared with divalent cation repressors such as Fur.
Ab initio calculations for industrial materials engineering: successes and challenges.
Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul
2010-09-29
Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.
Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio molecular dynamics using hybrid density functionals.
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; VandeVondele, Joost
2008-06-07
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Ab initio molecular dynamics using hybrid density functionals
NASA Astrophysics Data System (ADS)
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost
2008-06-01
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
A highly accurate ab initio potential energy surface for methane
NASA Astrophysics Data System (ADS)
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-09-01
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.
Ab initio rotation-vibration spectra of HCN and HNC
NASA Astrophysics Data System (ADS)
Harris, Gregory J.; Polyansky, Oleg L.; Tennyson, Jonathan
2002-03-01
We have calculated an ab initio HCN/HNC linelist for all transitions up to J=25 and 18 000 cm -1 above the zero point energy. This linelist contains more than 200 million lines each with frequencies and transition dipoles. The linelist has been calculated using our semi-global HCN/HNC VQZANO+PES and dipole moment surface, which were reported in van Mourik et al. (J. Chem. Phys. 115 (2001) 3706). With this linelist we synthesise absorption spectra of HCN and HNC at 298 K and we present the band centre and band transition dipoles for the bands which are major features in these spectra. Several of the HCN bands and many of the HNC bands have not been previously studied. Our line intensities reproduce via fully ab initio methods the unusual intensity structure of the HCN CN stretch fundamental (00 01) for the first time and also the forbidden (02 20) HCN bending overtone. We also compare the J=1→0 pure rotational transition dipole in the HCN/HNC ground and vibrationally excited states with experimental and existing ab initio results.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio description of the exotic unbound 7He nucleus
Baroni, Simone; Navratil, Petr; Quaglioni, Sofia
2013-01-11
In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less
Ab initio Raman spectroscopy of water under extreme conditions
NASA Astrophysics Data System (ADS)
Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia
Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.
Cosmic-Ray Modulation: an Ab Initio Approach
NASA Astrophysics Data System (ADS)
Engelbrecht, N. E.; Burger, R. A.
2014-10-01
A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.
Challenges for large scale ab initio Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Kent, Paul
2015-03-01
Ab initio Quantum Monte Carlo is an electronic structure method that is highly accurate, well suited to large scale computation, and potentially systematically improvable in accuracy. Due to increases in computer power, the method has been applied to systems where established electronic structure methods have difficulty reaching the accuracies desired to inform experiment without empiricism, a necessary step in the design of materials and a helpful step in the improvement of cheaper and less accurate methods. Recent applications include accurate phase diagrams of simple materials through to phenomena in transition metal oxides. Nevertheless there remain significant challenges to achieving a methodology that is robust and systematically improvable in practice, as well as capable of exploiting the latest generation of high-performance computers. In this talk I will describe the current state of the art, recent applications, and several significant challenges for continued improvement. Supported through the Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE).
Ab initio calculations of nuclear reactions important for astrophysics
NASA Astrophysics Data System (ADS)
Navratil, Petr; Dohet-Eraly, Jeremy; Calci, Angelo; Horiuchi, Wataru; Hupin, Guillaume; Quaglioni, Sofia
2016-09-01
In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. One of the newly developed approaches is the No-Core Shell Model with Continuum (NCSMC), capable of describing both bound and scattering states in light nuclei simultaneously. We will present NCSMC results for reactions important for astrophysics that are difficult to measure at relevant low energies, such as 3He(α,γ)7Be and 3H(α,γ)7Li and 11C(p,γ)12N radiative capture, as well as the 3H(d,n)4He fusion. We will also address prospects of calculating the 2H(α,γ)6Li capture reaction within the NCSMC formalism. Prepared in part by LLNL under Contract DE-AC52-07NA27344. Supported by the U.S. DOE, OS, NP, under Work Proposal No. SCW1158, and by the NSERC Grant No. SAPIN-2016-00033. TRIUMF receives funding from the NRC Canada.
Ab initio molecular dynamics calculations of ion hydration free energies.
Leung, Kevin; Rempe, Susan B; von Lilienfeld, O Anatole
2009-05-28
We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or "lambda-path" technique to compute the intrinsic hydration free energies of Li(+), Cl(-), and Ag(+) ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential (phi) contributions, we obtain absolute AIMD hydration free energies (DeltaG(hyd)) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model phi predictions. The sums of Li(+)/Cl(-) and Ag(+)/Cl(-) AIMD DeltaG(hyd), which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag(+)+Ni(+)-->Ag+Ni(2+) in water. The predictions for this reaction suggest that existing estimates of DeltaG(hyd) for unstable radiolysis intermediates such as Ni(+) may need to be extensively revised.
NASA Astrophysics Data System (ADS)
Karna, Shashi P.; Keshari, Vijaya; Prasad, Paras N.
1995-03-01
The linear and nonlinear optical (NLO) properties of the cis and trans isomers of diphenylbenzobisoxazole (PBO) and diphenylbenzobisthiazole (PBT) have been calculated by ab initio time-dependent coupled perturbed Hartree-Fock method using a split-valence basis set. The second-order NLO susceptibilities of the trans isomers are calculated to be larger by a factor of 1.5 or more compared to the cis isomers over a wide range of optical frequency. Between the two homologues (PBO and PBT), the linear and the NLO susceptibilities of the thiazole systems are calculated to be slightly higher than the oxazole systems.
Tawa, G.J.; Pratt, L.R.; Martin, R.L.
1996-12-31
We present a method for computing the electrostatic component of the solvation free energy, {Delta}G{sup el}, of a solute molecule in the presence of solvent modeled as a dielectric continuum. The method is based on an integral form of Poisson`s equation which is solved to obtain a distribution of induced polarization charge at the solute-solvent dielectric interface. The solution of Poisson`s equation is obtained by application of a boundary element procedure. The method is tested by comparing its predictions of {Delta}G{sup el} to exact values for several model problems. The method is then used in a variety of contexts to assess its qualitative prediction ability. It is first combined with a molecular mechanics treatment of the solute to evaluate the effects of aqueous solvent on the conformational equilibria of several small molecules of interest-these are N-methyl acetamide and alanine dipeptide. For both molecules dielectric continuum solvation predicts torsional free energies of solvation that are in accord with other more complete treatments of solvation. The method is then combined with ab initio and semi-empirical molecular orbital theory for the solute. Self consistent reaction field calculations (SCRF) are performed to evaluate the correlation is in general very good. Relative agreement with experiment is best for ions where electrostatics predominate and worst for non-polar neutral molecules were electrostatics are minor. Semi-empirical configuration interaction SCRF calculations are also performed in the presence of solvent in order to determine ground-to-excited state absorption energy shifts for formaldehyde and indole mine ground-to-excited state absorption energy shifts for formaldehyde and indole when placed in water. We find a rough correlation between transition energy shifts and the dipole moments of the initial and final states involved in the transition.
The hydration structure of carbon monoxide by ab initio methods
NASA Astrophysics Data System (ADS)
Awoonor-Williams, Ernest; Rowley, Christopher N.
2017-01-01
The solvation of carbon monoxide (CO) in liquid water is important for understanding its toxicological effects and biochemical roles. In this paper, we use ab initio molecular dynamics (AIMD) and CCSD(T)-F12 calculations to assess the accuracy of the Straub and Karplus molecular mechanical (MM) model for CO(aq). The CCSD(T)-F12 CO-H2O potential energy surfaces show that the most stable structure corresponds to water donating a hydrogen bond to the C center. The MM-calculated surface incorrectly predicts that the O atom is a stronger hydrogen bond acceptor than the C atom. The AIMD simulations indicate that CO is solvated like a hydrophobic solute, with very limited hydrogen bonding with water. The MM model tends to overestimate the degree of hydrogen bonding and overestimates the atomic radius of the C atom. The calculated Gibbs energy of hydration using the TIP3P water model is in good agreement with the experiment (9.3 kJ mol-1 expt. vs 10.7 kJ mol-1 calc.). The calculated diffusivity of CO (aq) in TIP3P-model water was 5.1 ×10-5 cm2/s calc., more than double the experimental value of 2.3 ×10-5 cm2/s. The hydration energy calculated using the TIP4P-FB water model is in poorer agreement with the experiment (ΔG = 6.8 kJ/mol) but the diffusivity is in better agreement (D =2.5 ±0.1 ×10-5 cm2/s).
Ab initio approach for gap plasmonics
NASA Astrophysics Data System (ADS)
Hohenester, Ulrich; Draxl, Claudia
2016-10-01
Gap plasmonics deals with the properties of surface plasmons in the narrow region between two metallic nanoparticles forming the gap. For subnanometer gap distances, electrons can tunnel between the nanoparticles, leading to the emergence of novel charge-transfer plasmons. These are conveniently described within the quantum corrected model by introducing an artificial material with a tunnel conductivity inside the gap region. Here we develop a methodology for computing such tunnel conductivities within the first-principles framework of density functional theory and apply our approach to a jellium model representative for sodium. We show that the frequency dependence of the tunnel conductivity at infrared and optical frequencies can be significantly more complicated than previously thought.
Ab initio molecular simulations with numeric atom-centered orbitals
NASA Astrophysics Data System (ADS)
Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias
2009-11-01
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.
Efficient conformational space exploration in ab initio protein folding simulation
Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel
2015-01-01
Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554
Efficient conformational space exploration in ab initio protein folding simulation.
Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel
2015-08-01
Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.
Ab Initio Study of Phase Equilibria in TiCx
NASA Astrophysics Data System (ADS)
Korzhavyi, P. A.; Pourovskii, L. V.; Hugosson, H. W.; Ruban, A. V.; Johansson, B.
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx ( x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies ( Ti2C, Ti3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures.
Accelerating ab initio molecular dynamics simulations by linear prediction methods
NASA Astrophysics Data System (ADS)
Herr, Jonathan D.; Steele, Ryan P.
2016-09-01
Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.
Morphing ab initio potential energy curve of beryllium monohydride
NASA Astrophysics Data System (ADS)
Špirko, Vladimír
2016-12-01
Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.
Communication: Ab initio Joule-Thomson inversion data for argon
NASA Astrophysics Data System (ADS)
Wiebke, Jonas; Senn, Florian; Pahl, Elke; Schwerdtfeger, Peter
2013-02-01
The Joule-Thomson coefficient μH(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K. The results also illustrate the limitations of the virial equation in regions close to the critical temperature.
Ab-initio study of transition metal hydrides
Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini
2014-04-24
We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.
Ab Initio Calculations Applied to Problems in Metal Ion Chemistry
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)
1994-01-01
Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.
Electric field response in bilayer graphene: Ab initio investigation
NASA Astrophysics Data System (ADS)
Mori, Yutaro; Minamitani, Emi; Ando, Yasunobu; Kasamatsu, Shusuke; Watanabe, Satoshi
2016-11-01
Stimulated by quantum capacitance measurements, we have investigated the electric properties of bilayer graphene (BLG) with carrier doping under an external electric field using ab initio calculations. We found that the relative permittivity of BLG depends weakly on the applied electric field, and that the BLG can be regarded as a dielectric material rather than a pair of metallic films. We also found that carrier doping affects the band gap of BLG under electric fields, although carrier doping has a much smaller effect on the band gap and density of states than the application of electric fields.
Communication: Ab initio Joule-Thomson inversion data for argon.
Wiebke, Jonas; Senn, Florian; Pahl, Elke; Schwerdtfeger, Peter
2013-02-21
The Joule-Thomson coefficient μ(H)(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K. The results also illustrate the limitations of the virial equation in regions close to the critical temperature.
Evidence for Symplectic Symmetry in AbInitio No-Core Shell Model Results for Light Nuclei
NASA Astrophysics Data System (ADS)
Dytrych, Tomáš; Sviratcheva, Kristina D.; Bahri, Chairul; Draayer, Jerry P.; Vary, James P.
2007-04-01
Clear evidence for symplectic symmetry in low-lying states of C12 and O16 is reported. Eigenstates of C12 and O16, determined within the framework of the no-core shell model using the J-matrix inverse scattering potential with A≤16 (JISP16) nucleon-nucleon (NN) realistic interaction, typically project at the 85% 90% level onto a few of the most deformed symplectic basis states that span only a small fraction of the full model space. The results are nearly independent of whether the bare or renormalized effective interactions are used in the analysis. The outcome confirms Elliott’s SU(3) model which underpins the symplectic scheme, and above all, points to the relevance of a symplectic no-core shell model that can reproduce experimental B(E2) values without effective charges as well as deformed spatial modes associated with clustering phenomena in nuclei.
Ab initio and Atomic kinetic Monte Carlo modelling of segregation in concentrated FeCrNi alloys
NASA Astrophysics Data System (ADS)
Piochaud, J. B.; Becquart, C. S.; Domain, C.
2014-06-01
Internal structure of pressurised water reactors are made of austenitic materials. Under irradiation, the microstructure of these concentrated alloys evolves and solute segregation on grain boundaries or irradiation defects such as dislocation loops are observed to take place. In order to model and predict the microstructure evolution, a multiscale modelling approach needs to be developed, which starts at the atomic scale. Atomic Kinetic Monte Carlo (AKMC) modelling is the method we chose to provide an insight on defect mediated diffusion under irradiation. In that approach, we model the concentrated commercial steel as a FeCrNi alloy (γ-Fe70Cr20Ni10). As no reliable empirical potential exists at the moment to reproduce faithfully the phase diagram and the interactions of the elements and point defects, we have adjusted a pair interaction model on large amount of DFT calculations. The point defect properties in the Fe70Cr20Ni10, and more precisely, how their formation energy depends on the local environment will be presented and some AKMC results on thermal non equilibrium segregation and radiation induce segregation will be presented. The effect of Si on the segregation will also be discussed.
Lespes, Nicolas; Filhol, Jean-Sébastien
2015-07-14
This paper focuses on the use of implicit solvent in electrochemical density functional theory (DFT) calculations. We investigate both the necessity and limits of an implicit solvent polarizable continuum model (PCM). In order to recover the proper electrochemical behavior of the surface and, in particular, a proper potential scale, the solvent model is determined to be mandatory: in the limit of a high dielectric constant, the surface capacitance becomes independent of the interslab space used in the model and, therefore, the electrochemical properties become intrinsic of the interface structure. We show that the computed surface capacitance is not only dependent on the implicit solvent dielectric constant, but also on the solvent cavity parameter that should be precisely tuned. This model is then applied to the Li/electrolyte interface in order to check its ability to compute thermodynamic equilibrium properties. The use of a purely implicit solvent approach allows the recovery of a more reasonable equilibrium potential for the Li(+)/Li redox pair, compared to vacuum approaches, but a potential that it is still off by 1.5 V. Then, the inclusion of explicit solvent molecules improves the description of the solvent-Li(+) chemical bond in the first solvation shell and allows recovery of the experimental value within 100 mV. Finally, we show that the redox active center involves the first solvation shell of Li(+), suggesting a particular pathway for the observed solvent dissociation in Li-ion batteries.
Ab initio molecular dynamics study of liquid sodium and cesium up to critical point
Yuryev, Anatoly A.; Gelchinski, Boris R.
2015-08-17
Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.
Ab initio molecular dynamics study of liquid sodium and cesium up to critical point
NASA Astrophysics Data System (ADS)
Yuryev, Anatoly A.; Gelchinski, Boris R.
2015-08-01
Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.
Conte, Riccardo; Houston, Paul L; Bowman, Joel M
2015-12-17
Quasi-classical trajectory studies have been performed for the collision of internally excited methane with water using an accurate methane-water potential based on a full-dimensional, permutationally invariant analytical representation of energies calculated at a high level of theory. The results suggest that most energy transfer takes place at impact parameters smaller than about 8 Bohr; collisions at higher impact parameters are mostly elastic. Overall, energy transfer is fairly facile, with values for ⟨ΔEdown⟩ and ⟨ΔEup⟩ approaching almost 2% of the total excitation energy. A classical model previously developed for the collision of internally excited molecules with atoms (Houston, P. L.; Conte, R.; Bowman, J. M. J. Phys. Chem. A 2015, 119, 4695-4710) has been extended to cover collisions of internally excited molecules with other molecules. For high initial rotational levels, the agreement with the trajectory results is quite good (R(2) ≈ 0.9), whereas for low initial rotational levels it is only fair (R(2) ≈ 0.7). Both the model and the trajectories can be characterized by a four-dimensional joint probability distribution, P(J1,f,ΔE1,J2,f,ΔE2), where J1,f and J2,f are the final rotational levels of molecules 1 and 2 and ΔE1 and ΔE2 are the respective changes in internal energy. A strong anticorrelation between ΔE1 and ΔE2 is observed in both the model and trajectory results and can be explained by the model. There is evidence in the trajectory results for a small amount of V ↔ V energy transfer from the water, which has low internal energy, to the methane, which has substantial internal energy. This observation suggests that V ↔ V energy transfer in the other direction also occurs.
NASA Astrophysics Data System (ADS)
Ferreira, Ary R.; Küçükbenli, Emine; de Gironcoli, Stefano; Souza, Wladmir F.; Chiaro, Sandra Shirley X.; Konstantinova, Elena; Leitão, Alexandre A.
2013-09-01
The activation of highly catalytic γ-alumina surfaces by thermal treatment and the description of the related chemical processes at atomic scale is a topical issue. According to a recent study [J. Am. Chem. Soc. 134 (2012) 14430], the enhanced reactivity of γ-alumina has been associated to tri-coordinated aluminum sites which supposedly are exposed exclusively on the (1 1 0) surfaces of this oxide. In this work, we explore this possibility by modeling the (1 0 0) and (1 1 0) terminations using Krokidis et al. [J. Phys. Chem. B 105 (2001) 5121] bulk structure and performing an extensive search of the most stable hydrated surface models at conditions consistent with experiment. Among the 156 structures analyzed, we identify several “metastable” models for the (1 1 0) surface with a considerable probability of containing the AlIII centers at OH coverages of 9.0 and 6.0 OH/nm2. We then test the reactivity of these sites through their Lewis acidity by simulating the CO adsorbtion on the surface and our results confirm the high reactivity of AlIII centers. Based on the Gibbs free energy of the explored structures, we carry on a thermodynamical analysis at varying hydroxylation degrees and pretreatment temperatures and simulate the experimental volcano-type behavior reported in [J. Am. Chem. Soc. 134 (2012) 14430] and predict the optimum pretreatment temperature as 700 °C, in very good agreement with experimental findings. We further use infrared and solid state MAS NMR spectroscopies and reproduce the 1H MAS NMR spectra under high vacuum conditions (10-5 Torr). The strong resemblance of spectra to the experimental ones in the literature [J. Phys. Chem. C 116 (2012) 834] validate further the structural models we have generated in this study.
Influence of the sequence on the ab initio band structures of single and double stranded DNA models
NASA Astrophysics Data System (ADS)
Bogár, Ferenc; Bende, Attila; Ladik, János
2014-06-01
The solid state physical approach is widely used for the characterization of electronic properties of DNA. In the simplest case the helical symmetry is explicitly utilized with a repeat unit containing only a single nucleotide or nucleotide pair. This model provides a band structure that is easily interpretable and reflects the main characteristic features of the single nucleotide or a nucleotide pair chain, respectively. The chemical variability of the different DNA chains is, however, almost completely neglected in this way. In the present work we have investigated the effect of the different sequences on the band structure of periodic DNA models. For this purpose we have applied the Hartree-Fock crystal orbital method for single and double stranded DNA chains with two different subsequent nucleotides in the repeat unit of former and two different nucleotide pairs in the latter case, respectively. These results are compared to simple helical models with uniform sequences. The valence and conduction bands related to the stacked nucleotide bases of single stranded DNA built up only from guanidine as well as of double stranded DNA built up only from guanidine-cytidine pairs showed special properties different from the other cases. Namely, they had higher conduction and lower valence band positions and this way larger band gaps and smaller widths of these bands. With the introduction of non-uniform guanidine containing sequences band structures became more similar to each other and to the band structures of other sequences without guanidine. The maximal bandwidths of the non-uniform sequences are considerably smaller than in the case of uniform sequences implying smaller charge carrier mobilities both in the conduction and valence bands.
NASA Astrophysics Data System (ADS)
Corral, Inés; González, Leticia
2007-10-01
The vertical excited spectrum of a model endoperoxide (cyclohexadieneendoperoxide) has been calculated using time dependent density functional theory (TD-DFT), resolution of the identity second order approximate coupled-cluster theory (RI-CC2), multiconfigurational complete active space self consistent field (CASSCF) and second order multi-state perturbation theory (MS-CASPT2). All theoretical methods predict the charge transfer πOO∗→πCC∗, and the πOO∗→σOO∗ excitation to be the lowest absorbing excited states. CASSCF optimized geometries for these states provide some hints about the photodissociation mechanisms as well as the emission spectrum of the molecule.
NASA Technical Reports Server (NTRS)
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that
Resonance and aromaticity: an ab initio valence bond approach.
Rashid, Zahid; van Lenthe, Joop H; Havenith, Remco W A
2012-05-17
Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wave function for each system was constructed using a linear combination of the VB structures (spin functions), which closely resemble the Kekulé valence structures, and two types of orbitals, that is, strictly atomic (local) and delocalized atomic (delocal) p-orbitals, were used to describe the π-system. It is found that the Pauling-Wheland's resonance energy with nonorthogonal structures decreases, while the same with orthogonalized structures and the total mean resonance energy (the sum of the weighted off-diagonal contributions in the Hamiltonian matrix of orthogonalized structures) increase when delocal orbitals are used as compared to local p-orbitals. Analysis of the interactions between the different structures of a system shows that the resonance in the 6π electrons conjugated circuits have the largest contributions to the resonance energy. The VBSCF calculations also show that the extra stability of phenanthrene, a kinked benzenoid, as compared to its linear counterpart, anthracene, is a consequence of the resonance in the π-system rather than the H-H interaction in the bay region as suggested previously. Finally, the empirical parameters for the resonance interactions between different 4n+2 or 4n π electrons conjugated circuits, used in Randić's conjugated circuits theory or Herdon's semi-emprical VB approach, are quantified. These parameters have to be scaled by the structure coefficients (weights) of the contributing structures.
Sugden, Isaac; Adjiman, Claire S; Pantelides, Constantinos C
2016-12-01
The global search stage of crystal structure prediction (CSP) methods requires a fine balance between accuracy and computational cost, particularly for the study of large flexible molecules. A major improvement in the accuracy and cost of the intramolecular energy function used in the CrystalPredictor II [Habgood et al. (2015). J. Chem. Theory Comput. 11, 1957-1969] program is presented, where the most efficient use of computational effort is ensured via the use of adaptive local approximate model (LAM) placement. The entire search space of the relevant molecule's conformations is initially evaluated using a coarse, low accuracy grid. Additional LAM points are then placed at appropriate points determined via an automated process, aiming to minimize the computational effort expended in high-energy regions whilst maximizing the accuracy in low-energy regions. As the size, complexity and flexibility of molecules increase, the reduction in computational cost becomes marked. This improvement is illustrated with energy calculations for benzoic acid and the ROY molecule, and a CSP study of molecule (XXVI) from the sixth blind test [Reilly et al. (2016). Acta Cryst. B72, 439-459], which is challenging due to its size and flexibility. Its known experimental form is successfully predicted as the global minimum. The computational cost of the study is tractable without the need to make unphysical simplifying assumptions.
Ab initio study of hot electrons in GaAs.
Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G
2015-04-28
Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials.
Emission Spectroscopy and Ab Initio Calculations for TaN
NASA Astrophysics Data System (ADS)
Ram, R. S.; Liévin, J.; Bernath, P. F.
2002-10-01
The emission spectra of TaN have been investigated in the region 3000-35 000 cm -1 using a Fourier transform spectrometer. The spectra were observed in a tantalum hollow-cathode lamp by discharging a mixture of 1.5 Torr of Ne and about 6 mTorr of N 2. In addition to previously known bands, numerous additional bands were observed and assigned to a number of new transitions. The spectroscopic properties of the low-lying electronic states of TaN were also predicted by ab initio calculations. A 1Σ + state, with equilibrium constants of Be=0.457 852 1(48) cm -1, α e=0.002 235 9(67) cm -1, and Re=1.683 099 9(88) Å, has been identified as the ground state of TaN based on our experimental observations supported by the ab initio results. The first excited state has been identified as the a3Δ 1 spin component at 2827 cm -1 above the ground state. To higher energies, the states become difficult to assign because of their Hund's case (c) behavior and extensive interactions between the spin components of the electronic terms.
Unified ab initio approaches to nuclear structure and reactions
Navratil, Petr; Quaglioni, Sofia; Hupin, Guillaume; ...
2016-04-13
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Bemore » $${({\\rm{p}},\\gamma )}^{8}{\\rm{B}}$$ radiative capture. Lastly, we highlight our efforts to describe transfer reactions including the 3H$${({\\rm{d}},{\\rm{n}})}^{4}$$He fusion.« less
Ab initio study of hot electrons in GaAs
Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.
2015-01-01
Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron–phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron–phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron–phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287
NASA Astrophysics Data System (ADS)
Borchert, Manuela; Wilke, Max; Schmidt, Christian; Kvashnina, Kristina; Jahn, Sandro
2014-10-01
Although fluid-melt partitioning of trace elements like Sr, Ba, La, and Y is known to be strongly influenced by the fluid and melt chemical composition, their speciation in silicate-saturated fluids is studied insufficiently at high temperatures and pressures. Here, high energy-resolution fluorescence detection-X-ray absorption spectroscopy (HERFD-XAS) has been applied to investigate the local environment of strontium in crystalline model compounds, silicate glasses, and aqueous solutions. Acquisition of Sr K-edge HERFD-XAS spectra of aqueous solutions of SrCl2 and Sr(OH)2, and three aqueous fluids with dissolved silicate components was done in situ at temperatures to 780 °C and pressures to ∼800 MPa using hydrothermal diamond-anvil cells. Experiments were complemented by theoretical spectroscopy calculations using the finite difference method near edge structure (FDMNES) code. This approach was validated for a number of crystalline model compounds. For the silicate glasses and aqueous solutions (SrCl2 and Sr(OH)2), small clusters were examined. Either symmetric or distorted SrO6 clusters were found to describe Sr complexation in peraluminous or peralkaline glasses. However, small ‘static’ clusters seem not to be fully suited to account for the dynamically changing atomic arrangements in aqueous solutions at high temperature. Therefore, ab-initio molecular dynamics simulations were performed and used as input for modeling of X-ray absorption spectra. Analyses of these simulations indicated [SrCl(H2O)6]+ and Sr(OH)2(H2O)4 as the most likely complexes in the chloride and hydroxide solutions, respectively. Analysis of the spectra of the silicate-rich fluids shows that both melt and fluid composition strongly influence Sr complexation. For the silicate-rich fluids, formation of Sr-Cl complexes occurs at low (Na + K)/Cl and (Si + Al)/(Na + K) ratios in the fluid, whereas Sr hydroxide and possibly silicate complexes (similar to those in the silicate glass) are
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon
2013-01-01
The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785
NASA Astrophysics Data System (ADS)
Whitfield, T. W.; Crain, J.; Martyna, G. J.
2006-03-01
In order to better understand the physical interactions that stabilize protein secondary structure, the neat liquid state of a peptidic fragment, N-methylacetamide (NMA), was studied using computer simulation. Three different descriptions of the molecular liquid were examined: an empirical force field treatment with classical nuclei, an empirical force field treatment with quantum mechanical nuclei, and an ab initio density functional theory (DFT) treatment. The DFT electronic structure was evaluated using the BLYP approximate functional and a plane wave basis set. The different physical effects probed by the three models, such as quantum dispersion, many-body polarization, and nontrivial charge distributions on the liquid properties, were compared. Much of the structural ordering in the liquid is characterized by hydrogen bonded chains of NMA molecules. Modest structural differences are present among the three models of liquid NMA. The average molecular dipole in the liquid under the ab initio treatment, however, is enhanced by 60% over the gas phase value.
NASA Astrophysics Data System (ADS)
Vu, M.; Massey, M.; Huang, P.
2015-12-01
The speciation of aqueous uranium ions is an important factor in predicting its mobility and fate in the environment. Two major controls on speciation are pH and the presence of complexing ligands. For the case of aqueous uranyl, UO22+(aq), some common complexes include uranyl-hydroxy, uranyl-carbonato, and uranyl-calcium-carbonato complexes, all of which differ in chemical reactivity and mobility. Uranyl-silicate complexes are also known but remain poorly characterized. In this work, we studied uranyl speciation in a series of aqueous solutions of 0.1 mM uranyl and 2 mM silicate with pH ranging from 4 to 7. Extended X-Ray Absorption Fine Structure (EXAFS) spectra of these samples were recorded at the Stanford Synchrotron Radiation Lightsource (SLAC National Accelerator Laboratory). Of particular note are the uranyl and silicate concentrations employed in our experiments, which are lower than conditions in previously reported EXAFS studies and approach conditions in natural groundwater systems. Preliminary analyses of EXAFS data indicate that uranyl speciation changes across the pH range, consistent with published thermodynamic data that suggest uranyl-silicate complexes may be important for pH ~ 5 and below, while uranyl-carbonato complexes become dominant at circumneutral pH. To guide the interpretation of the EXAFS data, molecular-scale simulations were carried out using density functional theory. We considered two classes of models: (i) hydrated clusters, and (ii) ab initio molecular dynamics simulations of 3D-periodic models involving uranyl and silicate in water. These calculations reveal that at pH ~ 5, the uranyl speciation is the [UO2(H2O)4H3SiO4]+ complex formed by the substitution of an equatorial uranyl water with a monodentate silicate ligand. The evidence from experiments and simulations provide a consistent picture for the uranyl-silicate complex, which may be important in the transport of uranyl in acidic, silicate-rich waters.
Resolution of ab initio shapes determined from small-angle scattering.
Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I
2016-11-01
Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.
Resolution of ab initio shapes determined from small-angle scattering
Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.
2016-01-01
Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683
Steady-state ab initio laser theory for N-level lasers.
Cerjan, Alexander; Chong, Yidong; Ge, Li; Stone, A Douglas
2012-01-02
We show that Steady-state Ab initio Laser Theory (SALT) can be applied to find the stationary multimode lasing properties of an N-level laser. This is achieved by mapping the N-level rate equations to an effective two-level model of the type solved by the SALT algorithm. This mapping yields excellent agreement with more computationally demanding N-level time domain solutions for the steady state.
Optical and other material properties of SiO2 from ab initio studies
NASA Astrophysics Data System (ADS)
Warmbier, Robert; Mohammed, Faris; Quandt, Alexander
2014-07-01
The optical properties of photonic devices largely depend on the dielectric properties of the underlying materials. We apply modern ab initio methods to study crystalline SiO2 phases, which serve as toy models for amorphous glass. We discuss the dielectric response from the infrared to the VIS/UV, which is crucial for glass based photonic applications. Low density silica, like cristobalite, may provide a good basis for high transmission optical devices.
Maurer, Patrick; Iftimie, Radu
2010-02-21
We introduce a novel approach to compute dissociation free energy and entropy values in simulations that employ a density functional theory description of the acidic moiety and of the solvent. The approach consists of utilizing an alchemical transformation of a weak acid A-COOH into the strong acid B-COOH, which makes it practical to employ alchemical free energy perturbation methods in the context of ab initio molecular dynamics simulations. The present alchemical transformation circumvents the need to tackle changes in the total number of electrons and atoms by replacing the chemical residue responsible for the change in acidity with an easily tunable external effective potential. Our investigation demonstrates that (1) a simple but effective class of external potentials that control acidity changes in the acetic/trifluoroacetic acid series can be achieved by replacing the methyl and trifluoromethyl substituents by screened dipoles. Using this dipole-field/quantum-mechanics (DF/QM) approach one can predict gas-phase geometries, proton dissociation energies, total dipole moments, and water binding energies in good agreement with full-QM values. (2) The resulting alchemical perturbation calculations are stable and well converged and allow one to compute absolute pK(a) values whose accuracy is limited primarily by the exchange-correlation functional employed: H-COOH=2.5+/-0.6 (full-QM calculation), 3.7 (exp); F(3)C-COOH=0.4+/-0.6 (DF/QM calculation), 0.5 (exp); H(3)C-COOH=3.1+/-0.7 (DF/QM calculation), 4.7 (exp); 3) Our DF/QM model predicts that the difference in acidity between H-COOH and H(3)C-COOH is dominated by solvent entropy effects, in excellent agreement with experimental observations. The calculated difference between the dissociation energies of these acids is DeltaDelta(d)U=0.0+/-0.26 kcal/mol while the experimental value is 0.0+/-0.1 kcal/mol.
Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries
NASA Astrophysics Data System (ADS)
Draayer, J. P.; Dytrych, T.; Launey, K. D.; Dreyfuss, A. C.; Langr, D.
2015-01-01
An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si.
Ab initio calculations on the magnetic properties of transition metal complexes
Bodenstein, Tilmann; Fink, Karin
2015-12-31
We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.
Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.
Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna
2016-01-01
Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.
NASA Astrophysics Data System (ADS)
Ohta, Yasuhito; Ohta, Koji; Kinugawa, Kenichi
2004-01-01
An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.
Ab initio computational applications to complex biomolecular systems
NASA Astrophysics Data System (ADS)
Liang, Lei
A series of biomaterial related systems---including water and DNA molecules---have been studied using ab initio (first-principles) methods. By investigating the properties of water as the preliminary step, the hydrogen bond (HB) interactions, which play important roles in biomolecules, were better understood from the quantum mechanical viewpoint. The calculated K-edge x-ray absorption near edge structure (XANES) spectra of all 340 oxygen atoms in the model have been accumulated to reproduce the experimental one. The spectra were shown to be very sensitive to the HB configurations of O atoms, which could be used to elucidate the subtle structural variations in complex biomolecules. The simulation of single-molecule DNA overstretching experiments under torsionally constrained condition has been carried out afterwards. The initial DNA models were stretched stepwisely and eventually gained an extension of 1.5-fold (150% x the original length). The variation of total energy, atomic configuration, and the electronic structure during this process were analyzed in details. At the extension of ˜1.3-fold, the ring opening reactions occurred in the backbones. The backbone nicks appeared at elongations of ˜1.40-fold. The whole process was accompanied by HB breaking and charge transfers. We have proposed an overstretched structure named O-DNA (Opened-DNA) to clarify the confusion in understanding the behavior of DNA under high force load. With more experiences gained, a comprehensive methodology revealing the underlying principles of bioprocesses from the quantum mechanical viewpoint eventually come up. For the purpose of better computational accuracy, the scheme of implementing the generalized gradient approximation (GGA) exchange-correlation functionals into the Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) program suite has been discussed, and the computational efficiency has been analyzed correspondingly. Moreover, the parallel strategy for performing
ab initio MD simulations of geomaterials with ~1000 atoms
NASA Astrophysics Data System (ADS)
Martin, G. B.; Kirtman, B.; Spera, F. J.
2009-12-01
In the last two decades, ab initio studies of materials using Density Functional Theory (DFT) have increased exponentially in popularity. DFT codes are now used routinely to simulate properties of geomaterials--mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only ~100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it is statistically marginal for duplicating physical properties of the liquid state like transport and structure. In MD simulations in the NEV ensemble, temperature (T), and pressure (P) fluctuations scale as N-1/2; small particle number (N) systems are therefore characterized by greater statistical state point location uncertainty than large N systems. Previous studies have used codes such as VASP where CPU time increases with N2, making calculations with N much greater than 100 impractical. SIESTA (Soler, et al. 2002) is a DFT code that enables electronic structure and MD computations on larger systems (N~103) by making some approximations, such as localized numerical orbitals, that would be useful in modeling some properties of geomaterials. Here we test the applicability of SIESTA to simulate geosilicates, both hydrous and anhydrous, in the solid and liquid state. We have used SIESTA for lattice calculations of brucite, Mg(OH)2, that compare very well to experiment and calculations using CRYSTAL, another DFT code. Good agreement between more classical DFT calculations and SIESTA is needed to justify study of geosilicates using SIESTA across a range of pressures and temperatures relevant to the Earth’s interior. Thus, it is useful to adjust parameters in
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Kolorenč, Přemysl; Sisourat, Nicolas
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Ab initio electronic and lattice dynamical properties of cerium dihydride
NASA Astrophysics Data System (ADS)
Gurel, Tanju; Eryigit, Resul
2007-03-01
The rare-earth metal hydrides are interesting systems because of the dramatic structural and electronic changes due to the hydrogen absorption and desorption. Among them, cerium dihydride (CeH2) is one of the less studied rare-earth metal-hydride. To have a better understanding, we have performed an ab initio study of electronic and lattice dynamical properties of CeH2 by using pseudopotential density functional theory within local density approximation (LDA) and a plane-wave basis. Electronic band structure of CeH2 have been obtained within LDA and as well as GW approximation. Lattice dynamical properties are calculated using density functional perturbation theory. The phonon spectrum is found to contain a set of high-frequency (˜ 850-1000 cm-1) optical bands, mostly hydrogen related, and low frequency cerium related acoustic modes climbing to 160 cm^ -1 at the zone boundary.
The ab-initio density matrix renormalization group in practice
Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Ab initio engineering of materials with stacked hexagonal tin frameworks
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
Ab initio electronic stopping power of protons in bulk materials
NASA Astrophysics Data System (ADS)
Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia
2016-01-01
The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.
Ab initio study of II-(VI)2 dichalcogenides
NASA Astrophysics Data System (ADS)
Olsson, P.; Vidal, J.; Lincot, D.
2011-10-01
The structural stabilities of the (Zn,Cd)(S,Se,Te)2 dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe2 pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.
Reactive Monte Carlo sampling with an ab initio potential
Leiding, Jeff; Coe, Joshua D.
2016-05-04
Here, we present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We also discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). Furthermore, we find that there are regions of state space formore » which RxMC sampling is much more efficient than AIMD due to the “rare-event” character of chemical reactions.« less
Ab initio engineering of materials with stacked hexagonal tin frameworks
NASA Astrophysics Data System (ADS)
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-07-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.
Ab initio water pair potential with flexible monomers.
Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof
2015-03-26
A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects.
Ab initio study of helium behavior in titanium tritides
Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei
2013-03-01
Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].
Ab initio electron propagator theory of molecular wires. I. Formalism.
Dahnovsky, Yu; Zakrzewski, V G; Kletsov, A; Ortiz, J V
2005-11-08
Ab initio electron propagator methodology may be applied to the calculation of electrical current through a molecular wire. A new theoretical approach is developed for the calculation of the retarded and advanced Green functions in terms of the electron propagator matrix for the bridge molecule. The calculation of the current requires integration in a complex half plane for a trace that involves terminal and Green's-function matrices. Because the Green's-function matrices have complex poles represented by matrices, a special scheme is developed to express these "matrix poles" in terms of ordinary poles. An expression for the current is derived for a terminal matrix of arbitrary rank. For a single terminal orbital, the analytical expression for the current is given in terms of pole strengths, poles, and terminal matrix elements of the electron propagator. It is shown that Dyson orbitals with high pole strengths and overlaps with terminal orbitals are most responsible for the conduction of electrical current.
Ab initio simulations of liquid carbon monoxide at high pressure
NASA Astrophysics Data System (ADS)
Leonhardi, Tanis C.; Militzer, Burkhard
2017-03-01
Carbon monoxide occurs as a volatile species in the interiors of terrestrial planets, and as a disequilibrium atmospheric constituent in the giant planets. It plays an important role during the accretionary stages of planet formation reacting with gases to form compounds such as CH4 and H2O. The structure of carbon monoxide is unknown over the majority of the temperature and pressure regime in giant planet interiors. Here we perform ab initio molecular dynamics simulations to characterize CO to 140 GPa and 5,000 K. We find that CO is stable as a molecular liquid at lower P-T conditions, as a polymeric liquid at higher P-T conditions found in ice giant interiors, and as a plasma at high-T.
Ab initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
An ab initio study on anionic aerogen bonds
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba
2017-01-01
An ab initio study is carried out to investigate the anionic aerogen bonds in complexes of KrO3, XeO3 and XeOF2 with F-, Cl-, Br-, CN-, NC-, N3-, SH-, SCN-, NCS-, OH- and OCH3- anions. All of the anionic aerogen bonds analyzed here have a partial covalent character. Charge transfer from the anion to the Kr-O or Xe-O σ∗ orbital stabilizes these complexes and leads to a sizable redshift in the corresponding stretching frequencies. The J(Kr-O) or J(Xe-O) spin-spin coupling constants can be regarded as a useful tool for the characterization of strength of the anionic aerogen-bonded complexes.
Ab Initio Study of KCl and NaCl Clusters
NASA Astrophysics Data System (ADS)
Brownrigg, Clifton; Hira, Ajit; Pacheco, Jose; Salazar, Justin
2013-03-01
We continue our interest in the theoretical study of molecular clusters to examine the chemical properties of small KnCln and NanCln clusters (n = 2 - 15). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods of quantum chemistry to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations have been performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. The potential for design of new medicinal drugs is explored.
Ab initio quantum transport in atomic carbon chains
NASA Astrophysics Data System (ADS)
Botello-Méndez, Andrés R.; Charlier, Jean-Christophe; Banhart, Florian; NAPS Team; Carbyne Collaboration
2015-03-01
Carbyne, the sp-hybridized phase of carbon, is still a missing link in the family of carbon allotropes. Recently, detailed electrical measurements and first-principles electronic transport calculations have been performed on monoatomic carbon chains. When the 1D system is under strain, the current-voltage curves exhibit a semiconducting behavior, which corresponds to the polyyne structure of the atomic chain with alternating single and triple bonds. Conversely, when the chain is unstrained, the ohmic behavior is observed in agreement with the metallic cumulene structure with double bonds, confirming recent theoretical predictions, namely that a metal-insulator transition can be induced by adjusting the strain. The key role of the contacting leads is also scrutinized by ab initio quantum conductance calculations, explaining the rectifying behavior measured in monoatomic carbon chains in a non-symmetric contact configuration.
Ab-initio theory of spin fluctuations in magnets
NASA Astrophysics Data System (ADS)
Antropov, Vladimir; Ke, Liqin; van Schilfgaarde, Mark; Katsnelson, Mikhael
2011-03-01
We propose a framework for a true ab initio theory of magnetism, based on many-body perturbation theory (MPBT). It fits in naturally with methods based MPBT such as the GW approximation; but the approach can be implemented as an extension to any existing static method for electronic structure such as the local spin density approximation to density functional theory, to include spin fluctuations. Initially we calculated the spin fluctuation contributions using random phase approximation. The self consistency procedure similar to the one used in Moryia-Kawabata theory can be naturally implemented. The fluctuation dissipation theorem is used to calculate the reduction of the mean field magnetic moment in itinerant magnets. The applications of the technique includes traditional 3d ferromagnetic metals, their alloys and compounds and 5f systems.
Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.
Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim
2016-10-17
For CO and N2 on Mg(2+) sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.
NASA Astrophysics Data System (ADS)
Geng, Hua Y.
2015-02-01
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.
Ab initio research of energy loss for energetic protons in solid-density Be
NASA Astrophysics Data System (ADS)
He, Bin; Meng, Xu-Jun; Wang, Zhi-Gang; Wang, Jian-Guo
2017-03-01
Ab initio research of energy loss for energetic protons in solid-density Be is made based on the average atom model. Our results are found in good agreement with the recent experiment for both warm and cool matter. Our results are compared with the local density approximation model and the reason for their difference is also explored. The energy loss at smaller projectile energies is predicted by our model and local density approximation, which helps probe the higher reliability of the proving model and judge the existence of the non-Fermi-Dirac velocity distribution for free electrons exists in dense plasmas in future.
Bochevarov, Arteum D; Temelso, Berhane; Sherrill, C David
2006-08-07
Moller-Plesset second-order (MP2) perturbation theory remains the least expensive standard ab initio method that includes electron correlation, scaling as O(N5) with the number of molecular orbitals N. Unfortunately, when restricted Hartree-Fock orbitals are employed, the potential energy curves calculated with this method are of little use at large interatomic separations because of the divergent behavior of MP2 in these regions. In our previous study [J. Chem. Phys. 122, 234110 (2005)] we combined the MP2 method with the singles and doubles coupled cluster (CCSD) method to produce a hybrid method that retains the computational scaling of MP2 and improves dramatically the shape of the MP2 curves. In this work we expand the hybrid methodology to several other schemes. We investigate a new, improved MP2-CCSD method as well as a few other O(N5) methods related to the Epstein-Nesbet pair correlation theory. Nonparallelity errors across the dissociation curve as well as several spectroscopic constants are computed for BH, HF, H2O, CH+, CH4, and Li2 molecules with the 6-31G* basis set and compared with the corresponding full configuration interaction results. We show that among the O(N5) methods considered, our new hybrid MP2-CCSD method is the most accurate and significantly outperforms MP2 not only at large interatomic separations, but also near equilibrium geometries.
NASA Astrophysics Data System (ADS)
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2016-06-01
In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH• radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH• radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.
Mayhall, Nicholas J
2016-09-13
Due to the promise of significantly enhanced photovoltaic efficiencies, significant effort has been directed toward understanding and controlling the singlet fission mechanism. Although accurate quantum chemical calculations would provide a detail-rich view of the singlet fission mechanism, this is complicated by the multiexcitonic nature of one of the key intermediates, the (1)(TT) state. Being described as two simultaneous and singlet-coupled triplet excitations on a pair of nearest neighbor monomers, the (1)(TT) state is inherently a multielectronic excitation. This fact renders most single-reference ab initio quantum chemical methods incapable of providing accurate results. This paper serves two purposes: (1) to demonstrate that the multiexciton states in singlet fission materials can be described using a spin-only Hamiltonian and with each monomer treated as a biradical and (2) to propose a very simple procedure for extracting the values for this Hamiltonian from single-reference calculations. Numerical examples are included for a number of different systems, including dimers, trimers, tetramers, and a cluster comprised of seven chromophores.
Batista, Enrique; Friesner, Richard A.
2002-07-16
To ab initio simulate an ionic crystal using a cluster of atoms, one must surround that cluster with point charges. These point charges add the effect of the electrostatic potential of the rest of the crystal on the electronic structure of the quantum cluster. The value of the point charges has to be chosen to reproduce the crystal field in the region of the cluster. In this work, a method to compute the necessary point charges is presented. The algorithm to choose the point charges is an extension of the one presented by Derenzo et al. [J. Chem. Phys. 2000, 112, 2074]. The method consists of a self-consistent loop, fitting in each iteration the value of the point charges to reproduce the electrostatic field, calculated from the quantum simulation, in the region of the cluster. This method was then applied to the study of the (001) basal surface of hematite, R-Fe2O3. As the cluster size is systematically increased, it is shown that to fully converge the electrostatic effect on the electronic structure of the cluster, clusters of the order of 60 atoms are necessary. As a convergence parameter for the cluster to the bulk behavior, we used the ionization energy of the cluster. In the limit of an infinite cluster, we obtained the work function of hematite to be 5.6 eV.
Ab initio calculations of the melting temperatures of refractory bcc metals.
Wang, L G; van de Walle, A
2012-01-28
We present ab initio calculations of the melting temperatures for bcc metals Nb, Ta and W. The calculations combine phase coexistence molecular dynamics (MD) simulations using classical embedded-atom method potentials and ab initio density functional theory free energy corrections. The calculated melting temperatures for Nb, Ta and W are, respectively, within 3%, 4%, and 7% of the experimental values. We compare the melting temperatures to those obtained from direct ab initio molecular dynamics simulations and see if they are in excellent agreement with each other. The small remaining discrepancies with experiment are thus likely due to inherent limitations associated with exchange-correlation energy approximations within density-functional theory.
Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules
NASA Astrophysics Data System (ADS)
Shiga, Motoyuki; Nakayama, Akira
2008-01-01
The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.
NASA Astrophysics Data System (ADS)
Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär
2017-02-01
The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.
Protons in polar media: An ab initio molecular dynamics study
NASA Astrophysics Data System (ADS)
von Rosenvinge, Tycho
1998-10-01
The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations
Zhang, Yang
2014-02-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems.
Velaga, Srinath C; Anderson, Brian J
2014-01-16
Gas hydrate deposits are receiving increased attention as potential locations for CO2 sequestration, with CO2 replacing the methane that is recovered as an energy source. In this scenario, it is very important to correctly characterize the cage occupancies of CO2 to correctly assess the sequestration potential as well as the methane recoverability. In order to predict accurate cage occupancies, the guest–host interaction potential must be represented properly. Earlier, these potential parameters were obtained by fitting to experimental equilibrium data and these fitted parameters do not match with those obtained by second virial coefficient or gas viscosity data. Ab initio quantum mechanical calculations provide an independent means to directly obtain accurate intermolecular potentials. A potential energy surface (PES) between H2O and CO2 was computed at the MP2/aug-cc-pVTZ level and corrected for basis set superposition error (BSSE), an error caused due to the lower basis set, by using the half counterpoise method. Intermolecular potentials were obtained by fitting Exponential-6 and Lennard-Jones 6-12 models to the ab initio PES, correcting for many-body interactions. We denoted this model as the “VAS” model. Reference parameters for structure I carbon dioxide hydrate were calculated using the VAS model (site–site ab initio intermolecular potentials) as Δμ(w)(0) = 1206 ± 2 J/mol and ΔH(w)(0) = 1260 ± 12 J/mol. With these reference parameters and the VAS model, pure CO2 hydrate equilibrium pressure was predicted with an average absolute deviation of less than 3.2% from the experimental data. Predictions of the small cage occupancy ranged from 32 to 51%, and the large cage is more than 98% occupied. The intermolecular potentials were also tested by calculating the pure CO2 density and diffusion of CO2 in water using molecular dynamics simulations.
The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Jakse, N.; Pasturel, A.
2014-09-01
We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.
Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Ab initio study of MoS2 nanotube bundles
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu; Charlier, Jean-Christophe
2003-07-01
Recently, the synthesis of a new phase of MoS2I1/3 stoichiometry was reported [M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001)]. Electron microscope images and diffraction data were interpreted to indicate bundles of sub-nanometer-diameter single-wall MoS2 nanotubes. After experimental characterization, the structure was attributed to an assembly of “armchair” nanotubes with interstitial iodine. Using first-principles total-energy calculations, bundles of MoS2 nanotubes with different topologies and stoichiometries are investigated. All of the systems are strongly metallic. Configurations with “zigzag” structures are found to be more stable energetically than the “armchair” ones, though all of the structures have similar stabilities. After relaxation, there remain several candidates which give a lattice parameter in relative agreement with experiment. Further, spin-polarized calculations indicate that a structure with armchair tubes iodine atoms in their center acquires a very large spontaneous magnetic moment of 12μB, while the other structures are nonmagnetic. Our ab initio calculations show that in most of the other structures, the tubes are very strongly bound together, and that the compounds should be considered as a crystal, rather than as a bundle of tubes in the habitual sense.
Ab initio electronic structure and optical conductivity of bismuth tellurohalides
NASA Astrophysics Data System (ADS)
Schwalbe, Sebastian; Wirnata, René; Starke, Ronald; Schober, Giulio A. H.; Kortus, Jens
2016-11-01
We investigate the electronic structure, dielectric, and optical properties of bismuth tellurohalides BiTe X (X =I , Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. [Phys. Rev. B 90, 035201 (2014), 10.1103/PhysRevB.90.035201], Makhnev et al. [Opt. Spectrosc. 117, 764 (2014), 10.1134/S0030400X14110125], and Rusinov et al. [JETP Lett. 101, 507 (2015), 10.1134/S0021364015080147]. We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.
Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures
NASA Astrophysics Data System (ADS)
Debernardi, Alberto; Marchetti, Luigi
2016-06-01
Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.
Lead-Chalcogenides Under Pressure: Ab-Initio Study
NASA Astrophysics Data System (ADS)
Gupta, Dinesh C.; Hamid, Idris
ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.
Melting curves of metals by ab initio calculations
NASA Astrophysics Data System (ADS)
Minakov, Dmitry; Levashov, Pavel
2015-06-01
In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).
Ab-Initio Study of Incongruent Melting in Silicates
NASA Astrophysics Data System (ADS)
Pinilla, C.; Stixrude, L. P.
2014-12-01
Knowledge of the multi-component thermodynamics and phase equilibria of silicate melts at Earth's interior conditions are key to understand the chemical and thermal evolution of the planet. Yet they remain poorly constrained with a wide uncertainty on the eutectic composition and temperature. In this work we present results from ab-initio molecular dynamics in combination with the two-phase coexistance method to study properties of a system of MgSiO3 liquid coexisting with crystalline MgO at conditions of the deep lower mantle. During incongruent melting the crystal may either grow via partial freezing of the liquid or shrink via partial melting at a given temperature and pressure. The melting process can be studied using the two-phases method where liquid and solid are in contact at a given temperature and pressure and so under thermodynamic equilibrium. We characterise the composition and densities of the resultant solid and liquid phases, provide chemical potentials of the liquid phase and study the structural and dynamical properties of the melt. In addition, we discuss the performance of alternative computational methods applied to the study of incongruent melting in silicate systems where long simulation times and a large number of atoms are usually needed. Finally, we discuss the implication of our findings for the evolution of the Earth's interior.
Volumic omit maps in ab initio dual-space phasing.
Oszlányi, Gábor; Sütő, András
2016-07-01
Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed.
Ab Initio Study of Covalently Functionalized Graphene and Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Jha, Sanjiv; Hammouri, Mahmoud; Vasiliev, Igor; Magedov, Igor; Frolova, Liliya; Kalugin, Nikolai
2014-03-01
The electronic and structural properties of carbon nanomaterials can be affected by chemical functionalization. We apply ab initio computational methods based on density functional theory to study the properties of graphene and single-walled carbon nanotubes functionalized with benzyne. Our calculations are carried out using the SIESTA electronic structure code combined with the generalized gradient approximation for the exchange correlation functional. The calculated binding energies, densities of states, and band structures of functionalized graphene and carbon nanotubes are analyzed in comparison with the available experimental data. The surfaces of carbon nanotubes are found to be significantly more reactive toward benzyne molecules than the surface of graphene. The strength of interaction between benzyne and carbon nanotubes is affected by the curvature of the nanotube sidewall. The binding energies of benzyne molecules attached to both semiconducting zigzag and metallic armchair nanotubes increase with decreasing the nanotube diameter. Supported by NSF CHE-1112388, NMSU GREG Award, NSF ECCS-0925988, NIH-5P20RR016480-12, and NIH- P20 GM103451.
Accurate ab initio vibrational energies of methyl chloride
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup HL}, and CBS-37{sup HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup HL} and CBS-37{sup HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.
Ab initio liquid water from PBE0 hybrid functional simulations
NASA Astrophysics Data System (ADS)
Li, Zhaofeng; Wu, Xifan; Car, Roberto
2010-03-01
For reasons of computational efficiency, so far most ab initio molecular dynamics simulations of liquid water have been based on semi-local density functional approximations, such as PBE and BLYP. These approaches yield a liquid structure that, albeit qualitatively correct, is overstructured compared to experiment, even after nuclear quantum effects have been taken into account.footnotetextJ. A. Morrone and R. Car, Phys. Rev. Lett. 101, 017801(2008) A major cause of this inaccuracy is the delocalization error associated to semi-local density functional approximations, which, as a consequence, overestimate slightly the hydrogen bond strength in the liquid. In this work we adopt the PBE0 hybrid functional approximation, which, by mixing a fraction of exact (Hartree-Fock) exchange, reduces significantly the delocalization error of semi-local functionals. Our approach is based on a numerically efficient order-N implementation of exact exchange.footnotetextX. Wu, A. Selloni, and R. Car, Phys. Rev. B 79, 085102(2009) We find that PBE0 systematically improves the agreement of the simulated liquid with experiment. Our conclusion is substantiated by the calculated radial distribution functions, H-bond statistics, and molecular dipole distribution.
Ab initio predictions of the symmetry energy and recent constraints
NASA Astrophysics Data System (ADS)
Sammarruca, Francesca
2017-01-01
The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.
An efficient approach to ab initio Monte Carlo simulation.
Leiding, Jeff; Coe, Joshua D
2014-01-21
We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β(0)), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where-depending on the quality of the reference system potential-acceptance probabilities were enhanced by factors of 1.2-28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.
Ab initio studies of phosphorene island single electron transistor
NASA Astrophysics Data System (ADS)
Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.
2016-05-01
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.
Predicting lattice thermal conductivity with help from ab initio methods
NASA Astrophysics Data System (ADS)
Broido, David
2015-03-01
The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.
Ab-Initio Molecular Dynamics Simulation of Graphene Sheet
NASA Astrophysics Data System (ADS)
Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.
2017-01-01
The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.
Ab initio studies of niobium defects in uranium
Xiang, S; Huang, H; Hsiung, L
2007-06-01
Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.
Perovskite transparent conducting oxides: an ab initio study.
Dabaghmanesh, S; Saniz, R; Amini, M N; Lamoen, D; Partoens, B
2013-10-16
We present an ab initio study of the electronic structure and of the formation energies of various point defects in BaSnO3 and SrGeO3. We show that La and Y impurities substituting Ba or Sr are shallow donors with a preferred 1 + charge state. These defects have a low formation energy within all the suitable equilibrium growth conditions considered. Oxygen vacancies behave as shallow donors as well, preferring the 2 + charge state. Their formation energies, however, are higher in most growth conditions, indicating a limited contribution to conductivity. The calculated electron effective mass in BaSnO3, with a value of 0.21 m(e), and the very high mobility reported recently in La-doped BaSnO3 single-crystals, suggest that remarkably low scattering rates can be achieved in the latter. In the case of SrGeO3, our results point to carrier density and mobility values in the low range for typical polycrystalline TCOs, in line with experiment.
Ab Initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
An Ab Initio Based Potential Energy Surface for Water
NASA Technical Reports Server (NTRS)
Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)
1996-01-01
We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.
Electronic structure and conductivity of ferroelectric hexaferrite: Ab initio calculations
NASA Astrophysics Data System (ADS)
Knížek, K.; Novák, P.; Küpferling, M.
2006-04-01
Ba0.5Sr1.5Zn2Fe12O22 is a promising multiferroic compound in which the electric polarization is intimately connected to the magnetic state. In principle, ferroelectrity might exist above the room temperature, but the electrical conductivity that increases with increasing temperature limits it to temperatures below ≈130K . We present results of an ab initio electronic structure calculation of the (BaSr)Zn2Fe12O22 system. To improve the description of strongly correlated 3d electrons of iron, the GGA+U method is used. The results show that the electrical conductivity strongly depends on relative fractions of iron and zinc in the tetrahedral sublattice that belongs to the spinel block of the hexaferrite structure. If this sublattice is fully occupied by zinc, the system is an insulator with a gap of ≈1.5eV . If it is occupied equally by Fe and Zn the gap decreases by a factor of 2, and the system is metallic when this sublattice is filled by iron only.
Exploring the free energy surface using ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Samanta, Amit; Morales, Miguel A.; Schwegler, Eric
2016-04-01
Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.
Ab initio calculation of infrared intensities for hydrogen peroxide
NASA Technical Reports Server (NTRS)
Rogers, J. D.; Hillman, J. J.
1982-01-01
Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.
Ab initio calculations of correlated electron dynamics in ultrashort pulses
NASA Astrophysics Data System (ADS)
Feist, Johannes
2010-03-01
The availability of ultrashort and intense light pulses on the femtosecond and attosecond timescale promises to allow to directly probe and control electron dynamics on their natural timescale. A crucial ingredient to understanding the dynamics in many-electron systems is the influence of electron correlation, induced by the interelectronic repulsion. In order to study electron correlation in ultrafast processes, we have implemented an ab initio simulation of the two-electron dynamics in helium atoms. We solve the time-dependent Schr"odinger equation in its full dimensionality, with one temporal and five spatial degrees of freedom in linearly polarized laser fields. In our computational approach, the wave function is represented through a combination of time-dependent close coupling with the finite element discrete variable representation, while time propagation is performed using an Arnoldi-Lanczos approximation with adaptive step size. This approach is optimized to allow for efficient parallelization of the program and has been shown to scale linearly using up to 1800 processor cores for typical problem sizes. This has allowed us to perform highly accurate and well- converged computations for the interaction of ultrashort laser pulses with He. I will present some recent results on using attosecond and femtosecond pulses to probe and control the temporal structure of the ionization process. This work was performed in collaboration with Stefan Nagele, Renate Pazourek, Andreas Kaltenb"ack, Emil Persson, Barry I. Schneider, Lee A. Collins, and Joachim Burgd"orfer.
2015-06-28
Charts 3. DATES COVERED (From - To) June 2015-June 2015 4. TITLE AND SUBTITLE AB INITIO QUANTUM CHEMICAL REACTION KINETICS: RECENT APPLICATIONS IN...Unlimited. 13. SUPPLEMENTARY NOTES Briefing Charts presented at 9th Int. Conf. Chemical Kinetics; Ghent, Belgium; 28 Jun 2015. PA#15351. 14. ABSTRACT...ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical Reaction Kinetics: Recent Applications in Combustion Chemistry Ghanshyam L. Vaghjiani* DISTRIBUTION A
Experimental and ab initio study of the mechanical properties of hydroxyapatite
NASA Astrophysics Data System (ADS)
Snyders, R.; Music, D.; Sigumonrong, D.; Schelnberger, B.; Jensen, J.; Schneider, J. M.
2007-05-01
The authors have studied the elastic properties of radio frequency sputtered phase pure, stoichiometric, and dense hydroxyapatite films by nanoindentation. The measured elastic modulus values have been compared to ab initio calculated data. The calculation technique was based on the determination of all elastic constants. The calculated and measured elastic modulus values differ by ˜10%. The good agreement indicates that the elasticity of hydroxyapatite can be described using ab initio calculations, establishing the elastic modulus thereof.
Multiferroicity in TTF-CA Organic Molecular Crystals Predicted through Ab Initio Calculations
NASA Astrophysics Data System (ADS)
Giovannetti, Gianluca; Kumar, Sanjeev; Stroppa, Alessandro; van den Brink, Jeroen; Picozzi, Silvia
2009-12-01
We show by means of ab initio calculations that the organic molecular crystal TTF-CA is multiferroic: it has an instability to develop spontaneously both ferroelectric and magnetic ordering. Ferroelectricity is driven by a Peierls transition of the TTF-CA in its ionic state. Subsequent antiferromagnetic ordering strongly enhances the opposing electronic contribution to the polarization. It is so large that it switches the direction of the total ferroelectric moment. Within an extended Hubbard model, we capture the essence of the electronic interactions in TTF-CA, confirm the presence of a multiferroic groundstate, and clarify how this state develops microscopically.
Ab-initio method for X-ray absorption spectra simulation of hydride molecular ions
NASA Astrophysics Data System (ADS)
Puglisi, Alessandra; Sisourat, Nicolas; Carniato, Stéphane
2017-03-01
Soft X-ray absorption spectra of molecular ions are important data for the modeling and understanding of laboratory and astrophysical plasma. In this work, we present an ab-initio method, based on the Configuration Interaction (CI) approach, for the calculations of energy positions and oscillator strengths of X-ray absorption spectra. Furthermore, we investigate the effects of the choice of the nature and number of spin-orbitals used in the CI expansion on the spectra. The method is applied on three hydride molecular ions, namely CH+, OH+ and SiH+. However, the approach proposed here is general and may thus be applied to any kind of molecular ions.
NASA Astrophysics Data System (ADS)
Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.
2016-03-01
Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.
Ab Initio Electronic Structure Calculations of Cytochrome P450 -- Ligand Interactions
NASA Astrophysics Data System (ADS)
Segall, M. D.; Payne, M. C.; Ellis, S. W.; Tucker, G. T.
1997-03-01
The Cytochrome P450 superfamily of enzymes are of great interest in pharmacology as they participate in an enormous range of physiological processes including drug deactivation and xenobiotic detoxification. We apply ab initio electronic structure calculations to model the interactions of the haem molecule at the P450 active site with substrate and inhibitor ligands. These calculations, based on density function theory, were performed with the CETEP code which uses a plane wave basis set and pseudopotentials to perform efficient LDA, GGA and spin dependent calculations. A change in the spin state of the haem iron atom is observed on binding of a substrate molecule, consistent with the accepted reaction mechanism.
Testing the density matrix expansion against ab initio calculations of trapped neutron drops
Bogner, S. K.; Hergert, H.; Furnstahl, R. J.; Kortelainen, Erno M; Stoitsov, M. V.; Maris, Pieter; Vary, J. P.
2011-01-01
Microscopic input to a universal nuclear energy density functional can be provided through the density matrix expansion (DME), which has recently been revived and improved. Several DME implementation strategies are tested for neutron drop systems in harmonic traps by comparing to Hartree-Fock (HF) and ab initio no-core full configuration (NCFC) calculations with a model interaction (Minnesota potential). The new DME with exact treatment of Hartree contributions is found to best reproduce HF results and supplementing the functional with fit Skyrme-like contact terms shows systematic improvement toward the full NCFC results.
Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations
NASA Astrophysics Data System (ADS)
Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.
2008-01-01
The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.
NASA Astrophysics Data System (ADS)
Nechaev, I. A.; Krasovskii, E. E.
2016-11-01
We present a method to microscopically derive a small-size k .p Hamiltonian in a Hilbert space spanned by physically chosen ab initio spinor wave functions. Without imposing any complementary symmetry constraints, our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian parameters and the true Z2 topological invariant. We consider bulk crystals and thin films of Bi2Se3 , Bi2Te3 , and Sb2Te3 . It turns out that the effective continuous k .p models with open boundary conditions often incorrectly predict the topological character of thin films.
Ashcraft, Robert W; Raman, Sumathy; Green, William H
2007-10-18
Ab initio molecular orbital calculations were performed and thermochemical parameters estimated for 46 species involved in the oxidation of hydroxylamine in aqueous nitric acid solution. Solution-phase properties were estimated using the several levels of theory in Gaussian03 and using COSMOtherm. The use of computational chemistry calculations for the estimation of physical properties and constants in solution is addressed. The connection between the pseudochemical potential of Ben-Naim and the traditional standard state-based thermochemistry is shown, and the connection of these ideas to computational chemistry results is established. This theoretical framework provides a basis for the practical use of the solution-phase computational chemistry estimates for real systems, without the implicit assumptions that often hide the nuances of solution-phase thermochemistry. The effect of nonidealities and a method to account for them is also discussed. A method is presented for estimating the solvation enthalpy and entropy for dilute aqueous solutions based on the solvation free energy from the ab initio calculations. The accuracy of the estimated thermochemical parameters was determined through comparison with (i) enthalpies of formation in the gas phase and in solution, (ii) Henry's law data for aqueous solutions, and (iii) various reaction equilibria in aqueous solution. Typical mean absolute deviations (MAD) for the solvation free energy in room-temperature water appear to be ~1.5 kcal/mol for most methods investigated. The MAD for computed enthalpies of formation in solution was 1.5-3 kcal/mol, depending on the methodology employed and the type of species (ion, radical, closed-shell) being computed. This work provides a relatively simple and unambiguous approach that can be used to estimate the thermochemical parameters needed to build detailed ab initio kinetic models of systems in aqueous solution. Technical challenges that limit the accuracy of the estimates are
Ab initio results for intermediate-mass, open-shell nuclei
NASA Astrophysics Data System (ADS)
Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.
2017-01-01
A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.
Xu, Dong; Zhang, Yang
2012-07-01
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field.
Ab initio molecular dynamics of liquid hydrogen chloride
NASA Astrophysics Data System (ADS)
Dubois, Vincent; Pasquarello, Alfredo
2005-03-01
We carried out an ab initio molecular dynamics simulation of liquid hydrogen chloride (ℓ-HCl) at a temperature of 313 K. Comparison with inelastic neutron scattering data shows that the simulation achieves an overall good description of the structural correlations, improving significantly upon a description based on classical interaction potentials. Despite some minor differences between theory and experiment in the H-H partial structure factor, the simulation gives a description of the hydrogen bonding in impressive agreement with experiment, for both the amount and the bond-length distribution of the bonds. In the simulation, 40% of the molecules are nonbonded, while the hydrogen-bonded chains are short, principally consisting of dimers (25%) and trimers (15%). Neighboring molecules in the simulation are found to form L-shaped arrangements, like in the isolated (HCl)2 dimer and in crystalline phases of HCl. The time correlation of the molecular-axis orientation is found to be characterized by a very short decay time (0.13 ps), consistent with the short length of the hydrogen-bonded chains. Other dynamical properties investigated in this work include the diffusion coefficient and the vibrational density of states. We evaluated the molecular dipole of the HCl molecule in the liquid using a definition based on the coupling of rotational modes to an external electric field. The average dipole moment (1.53 D) derived in this way is found to be considerably larger than for the isolated molecule (1.11 D). Our results show that the dipole moment in ℓ-HCl undergoes large fluctuations, both in orientation and in modulus. Upon the onset of an external field, such dipole fluctuations concur to reduce the fluctuations of the dielectric response.
Ab initio valence-space theory for exotic nuclei
NASA Astrophysics Data System (ADS)
Holt, Jason
2015-10-01
Recent advances in ab initio nuclear structure theory have led to groundbreaking predictions in the exotic medium-mass region, from the location of the neutron dripline to the emergence of new magic numbers far from stability. Playing a key role in this progress has been the development of sophisticated many-body techniques and chiral effective field theory, which provides a systematic basis for consistent many-nucleon forces and electroweak currents. Within the context of valence-space Hamiltonians derived from the nonperturbative in-medium similarity renormalization group (IM-SRG) approach, I will discuss the importance of 3N forces in understanding and making new discoveries in the exotic sd -shell region. Beginning in oxygen, we find that the effects of 3N forces are decisive in explaining why 24O is the last bound oxygen isotope, validating first predictions of this phenomenon from several years ago. Furthermore, 3N forces play a key role in reproducing spectroscopy, including signatures of doubly magic 22,24O, and physics beyond the dripline. Similar improvements are obtained in new spectroscopic predictions for exotic fluorine and neon isotopes, where agreement with recent experimental data is competitive with state-of-the-art phenomenology. Finally, I will discuss first applications of the IM-SRG to effective valence-space operators, such as radii and E 0 transitions, as well as extensions to general operators crucial for our future understanding of electroweak processes, such as neutrinoless double-beta decay. This work was supported by NSERC and the NRC Canada.
Uniaxial phase transition in Si: Ab initio calculations
NASA Astrophysics Data System (ADS)
Cheng, C.
2003-04-01
Based on a previously proposed thermodynamic analysis, [C. Cheng, W. H. Huang, and H. J. Li, Phys. Rev. B 63, 153202 (2001)] we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, βSn, simple-hexagonal (sh), simple-cubic, and hexagonal closed-packed structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different contributions to the relative phase stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic compression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures up to 20 GPa. The stable phases were found to be diamond, βSn, and sh structures, i.e., the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition Px>Pz. Similarly, the sh-to-βSn transition on increasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable to the condition Px
Aupiais, J; Bonin, L; Den Auwer, C; Moisy, P; Siberchicot, B; Topin, S
2016-03-07
In the case of an accidental nuclear event, contamination of human bodies by actinide elements may occur. Such elements have the particularity to exhibit both radiological and chemical toxicities that may induce severe damages at several levels, depending on the biokinetics of the element. In order to eliminate the actinide elements before they are stored in target organs (liver, kidneys, or bone, depending on the element), sequestering agents must be quickly injected. However, to date, there is still no ideal sequestering agent, despite the recent interest in this topic due to contamination concerns. DTPA (diethylene triamine pentaacetic acid) is currently generating interest for the development of oral or alternative self-administrable forms. Although biokinetics data are mostly available, molecular scale characterization of actinide-DTPA complexes is still scarce. Nevertheless, strong interest is growing in the characterization of An(IV)DTPA(-) complexes at the molecular level because this opens the way for predicting the stability constants of unknown systems or even for developing new analytical strategies aimed at better and more selective decorporation. For this purpose, Extended X-ray Absorption Fine Structure (EXAFS) and Ab Initio Molecular Dynamics (AIMD) investigations were undertaken and compared with capillary electrophoresis (CE) used in a very unusual way. Indeed, it is commonly believed that CE is incapable of extracting structural information. In capillary electrophoresis, the electrophoretic mobility of an ion is a function of its charge and size. Despite very similar ratios, partial separations between An(IV)DTPA(-) species (An(IV) = Th, U, Np, Pu) were obtained. A linear relationship between the electrophoretic mobility and the actinide--oxygen distance calculated by AIMD was evidenced. As an example, the interpolated U-O distances in U(IV)DTPA(-) from CE-ICPMS experiments, EXAFS, AIMD, and the relationship between the stability constants and
Ab initio prediction of the critical thickness of a precipitate.
Sampath, S; Janisch, R
2013-09-04
Segregation and precipitation of second phases in metals and metallic alloys is an important phenomenon that has a strong influence on the mechanical properties of the material. Models exist that describe the growth of coherent, semi-coherent and incoherent precipitates. One important parameter of these models is the energy of the interface between matrix and precipitate. In this work we apply ab initio density functional theory calculations to obtain this parameter and to understand how it depends on chemical composition and mechanical strain at the interface.Our example is a metastable Mo-C phase, the body-centred tetragonal structure, which exists as a semi-coherent precipitate in body-centred cubic molybdenum. The interface of this precipitate is supposed to change from coherent to semi-coherent during the growth of the precipitate. We predict the critical thickness of the precipitate by calculating the different contributions to a semi-coherent interface energy by means of ab initio density functional theory calculations. The parameters in our model include the elastic strain energy stored in the precipitate, as well as a misfit dislocation energy that depends on the dislocation core width and the dislocation spacing. Our predicted critical thickness agrees well with experimental observations.
Ab initio calculations of the optical properties of crystalline and liquid InSb
Sano, Haruyuki; Mizutani, Goro
2015-11-15
Ab initio calculations of the electronic and optical properties of InSb were performed for both the crystalline and liquid states. Two sets of atomic structure models for liquid InSb at 900 K were obtained by ab initio molecular dynamics simulations. To reduce the effect of structural peculiarities in the liquid models, an averaging of the two sets of the calculated electronic and optical properties corresponding to the two liquid models was performed. The calculated results indicate that, owing to the phase transition from crystal to liquid, the density of states around the Fermi level increases. As a result, the energy band gap opening near the Fermi level disappears. Consequently, the optical properties change from semiconductor to metallic behavior. Namely, owing to the melting of InSb, the interband transition peaks disappear and a Drude-like dispersion is observed in the optical dielectric functions. The optical absorption at a photon energy of 3.06 eV, which is used in Blu-ray Disc systems, increases owing to the melting of InSb. This increase in optical absorption is proposed to result from the increased optical transitions below 2 eV.
Experimental and ab initio infrared study of chi-, kappa- and alpha-aluminas formed from gibbsite
Favaro, L.; Boumaza, A.; Roy, P.; Ledion, J.; Sattonnay, G.; Brubach, J.B.; Huntz, A.M.; Tetot, R.
2010-04-15
chi-, kappa- and alpha-alumina phases formed by dehydration of micro-grained gibbsite between 773 and 1573 K are studied using infrared spectroscopy (IR). The structural transitions evidenced by X-ray diffraction (XRD) were interpreted by comparing IR measurements with ab initio simulations (except for the chi form whose complexity does not allow a reliable simulation). For each phase, IR spectrum presents specific bands corresponding to transverse optical (TO) modes of Al-O stretching and bending under 900 cm{sup -1}. The very complex chi phase, obtained at 773 K, provides a distinctive XRD pattern in contrast with the IR absorbance appearing as a broad structure extending between 200 and 900 cm{sup -1} resembling the equivalent spectra for gamma-alumina phase. kappa-alumina is forming at 1173 K and its rich IR spectrum is in good qualitative agreement with ab initio simulations. This complexity reflects the large number of atoms in the kappa-alumina unit cell and the wide range of internuclear distances as well as the various coordinances of both Al and O atoms. Ab initio simulations suggest that this form of transition alumina demonstrates a strong departure from the simple pattern observed for other transition alumina. At 1573 K, the stable alpha-ALPHAl{sub 2}OMICRON{sub 3} develops. Its IR spectra extends in a narrower energy range as compared to transition alumina and presents characteristics features similar to model alpha-ALPHAl{sub 2}OMICRON{sub 3}. Ab initio calculations show again a very good general agreement with the observed IR spectra for this phase. In addition, for both kappa- and alpha-ALPHAl{sub 2}OMICRON{sub 3}, extra modes, measured at high energy (above 790 cm{sup -1} for kappa and above 650 cm{sup -1} for alpha), can originate from either remnant chi-alumina or from surface modes. - Graphical abstract: Infrared spectra of the sequence Gibbsite ->chi->kappa->alpha-Al{sub 2}O{sub 3} obtained from 24 h calcinations of Gibbsite at 773 K, 1173 K
Operator evolution for ab initio electric dipole transitions of 4He
Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; ...
2015-07-24
A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less
Three-cluster dynamics within an ab initio framework
Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr
2013-09-26
In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to a ^{4}He+n+n description of ^{6}He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (^{4}He) polarization effects.
Dual folding pathways of an α /β protein from all-atom ab initio folding simulations
NASA Astrophysics Data System (ADS)
Lei, Hongxing; Wang, Zhi-Xiang; Wu, Chun; Duan, Yong
2009-10-01
Successful ab initio folding of proteins with both α-helix and β-sheet requires a delicate balance among a variety of forces in the simulation model, which may explain that the successful folding of any α /β proteins to within experimental error has yet to be reported. Here we demonstrate that it is an achievable goal to fold α /β proteins with a force field emphasizing the balance between the two major secondary structures. Using our newly developed force field, we conducted extensive ab initio folding simulations on an α /β protein full sequence design (FSD) employing both conventional molecular dynamics and replica exchange molecular dynamics in combination with a generalized-Born solvation model. In these simulations, the folding of FSD to the native state with high population (>64.2%) and high fidelity (Cα-Root Mean Square Deviation of 1.29 Å for the most sampled conformation when compared to the experimental structure) was achieved. The folding of FSD was found to follow two pathways. In the major pathway, the folding started from the formation of the helix. In the minor pathway, however, folding of the β-hairpin started first. Further examination revealed that the helix initiated from the C-terminus and propagated toward the N-terminus. The formation of the hydrophobic contacts coincided with the global folding. Therefore the hydrophobic force does not appear to be the driving force of the folding of this protein.
Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system
Hormain, Laureline; Monnerville, Maurice Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón
2015-04-14
The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.
2014-08-20
Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules The focus of this research was to apply efficient...methods for using ab initio potential energy surfaces (PESs) computed with high levels of quantum chemistry theory to predict chemical reaction properties...in non peer-reviewed journals: Methods for Using Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules Report
2014-08-01
Technical Paper 3. DATES COVERED (From - To) December 2013- August 2014 4. TITLE AND SUBTITLE Ab initio Kinetics of Methylamine Radical Thermal...phase kinetics of H-abstraction reactions from CH3NHNH2 by H atoms was further investigated by ab initio second-order multireference perturbation...distribution unlimited Ab initio Kinetics of Methylamine Radical Thermal Decomposition and H-abstraction from Monomethylhydrazine by H Atom
Ulian, Gianfranco; Valdrè, Giovanni; Tosoni, Sergio
2013-11-28
The quantum chemical characterization of solid state systems is conducted with many different approaches, among which the adoption of periodic boundary conditions to deal with three-dimensional infinite condensed systems. This method, coupled to the Density Functional Theory (DFT), has been proved successful in simulating a huge variety of solids. Only in relatively recent years this ab initio quantum-mechanic approach has been used for the investigation of layer silicate structures and minerals. In the present work, a systematic comparison of different DFT functionals (GGA-PBEsol and hybrid B3LYP) and basis sets (plane waves and all-electron Gaussian-type orbitals) on the geometry, energy, and phonon properties of a model layer silicate, talc [Mg{sub 3}Si{sub 4}O{sub 10}(OH){sub 2}], is presented. Long range dispersion is taken into account by DFT+D method. Results are in agreement with experimental data reported in literature, with minimal deviation given by the GTO/B3LYP-D* method regarding both axial lattice parameters and interaction energy and by PW/PBE-D for the unit-cell volume and angular values. All the considered methods adequately describe the experimental talc infrared spectrum.
4He+n+n continuum within an ab initio framework
Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; ...
2014-07-16
In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known Jπ = 2+ resonance as well as a result consistent with a new low-lying second 2+ resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2–, 1+, and 0– channels, while no low-lying resonances are present in the 0+ and 1– channels.« less
An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry
Matthew Neurock
2005-06-13
As petroleum prices continue to rise and the United States seeks to reduce its dependency on foreign oil, there is a renewed interest in the research and development of more efficient and alternative energy sources, such as fuel cells. One approach is to utilize processes that can produce long-chain hydrocarbons from other sources. One such reaction is Fischer-Tropsch synthesis. Fischer-Tropsch synthesis is a process by which syngas (CO and H{sub 2}) is converted to higher molecular weight hydrocarbons. The reaction involves a complex set of bond-breaking and bond-making reactions, such as CO and H{sub 2} activation, hydrocarbon hydrogenation reactions, and hydrocarbon coupling reactions. This report details our initial construction of an ab initio based kinetic Monte Carlo code that can be used to begin to simulate Fischer-Tropsch synthesis over model Co(0001) surfaces. The code is based on a stochastic kinetic formalism that allows us to explicitly track the transformation of all reactants, intermediates and products. The intrinsic kinetics for the simulations were derived from the ab initio results that we reported in previous year summaries.
Ab initio study of the SeS local oscillator in zinc sulfide
NASA Astrophysics Data System (ADS)
Petzke, K.
1999-11-01
A method is presented to calculate the energy and symmetry of local vibrational modes (LVM's) at point defects in semiconductors from first principles. The force constants for the disturbed and undisturbed systems are calculated using a variant of the direct approach. The ab initio results are used as input parameters for a cluster simulation with up to 489 vibrating atoms, which accounts for hybridization effects between the LVM and the host lattice modes. The method is applied to the LVM of ZnS:SeS, which shows a pronounced fine structure due to both host and ligand induced isotope effects. The energy of the main peak, which represents the most abundant Selen isotope 80Se, is calculated as 229.6 cm-1. This agrees very well with the result of 229.2 cm-1 from Fourier transform infrared experiments found in the literature. It is shown that the ab initio result improves the understanding of the LVM, when compared to the previously used ad hoc model, especially in the low-energy region.
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.
2016-05-17
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO${}_{{\\rm{sat}}}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the ${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$ states in ${}^{\\mathrm{17,23,25}}$O, and—contrary to naive shell-model expectations—the level ordering of the ${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$ states in ${}^{\\mathrm{53,55,61}}$Ca.
Deviational simulation of phonon transport in graphene ribbons with ab initio scattering
Landon, Colin D.; Hadjiconstantinou, Nicolas G.
2014-10-28
We present a deviational Monte Carlo method for solving the Boltzmann-Peierls equation with ab initio 3-phonon scattering, for temporally and spatially dependent thermal transport problems in arbitrary geometries. Phonon dispersion relations and transition rates for graphene are obtained from density functional theory calculations. The ab initio scattering operator is simulated by an energy-conserving stochastic algorithm embedded within a deviational, low-variance Monte Carlo formulation. The deviational formulation ensures that simulations are computationally feasible for arbitrarily small temperature differences, while the stochastic treatment of the scattering operator is both efficient and exhibits no timestep error. The proposed method, in which geometry and phonon-boundary scattering are explicitly treated, is extensively validated by comparison to analytical results, previous numerical solutions and experiments. It is subsequently used to generate solutions for heat transport in graphene ribbons of various geometries and evaluate the validity of some common approximations found in the literature. Our results show that modeling transport in long ribbons of finite width using the homogeneous Boltzmann equation and approximating phonon-boundary scattering using an additional homogeneous scattering rate introduces an error on the order of 10% at room temperature, with the maximum deviation reaching 30% in the middle of the transition regime.
Hayashi, Shigehiko; Tajkhorshid, Emad; Schulten, Klaus
2003-01-01
Retinal proteins are photoreceptors found in many living organisms. They possess a common chromophore, retinal, that upon absorption of light isomerizes and thereby triggers biological functions ranging from light energy conversion to phototaxis and vision. The photoisomerization of retinal is extremely fast, highly selective inside the protein matrix, and characterized through optimal sensitivity to incoming light. This article describes the first report of an ab initio quantum mechanical description of the in situ isomerization dynamics of retinal in bacteriorhodopsin, a microbial retinal protein that functions as a light-driven proton pump. The description combines ab initio multi-electronic state molecular dynamics of a truncated retinal chromophore model (N-methyl-γ-methylpenta-2,4-dieniminium cation fragment) with molecular mechanics of the protein motion and unveils in complete detail the photoisomerization process. The results illustrate the essential role of the protein for the characteristic kinetics and high selectivity of the photoisomerization: the protein arrests inhomogeneous photoisomerization paths and funnels them into a single path that initiates the functional process. Supported by comparison with dynamic spectral modulations observed in femtosecond spectroscopy, the results identify the principal molecular motion during photoisomerization. PMID:12944261
Ab initio study of the structure and dynamics of bulk liquid Fe
NASA Astrophysics Data System (ADS)
Marqués, M.; González, L. E.; González, D. J.
2015-10-01
Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the structure factor which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, with an associated dispersion relation which closely follows the experimental data. The dynamic structure factors S (q ,ω ) show a good agreement with their experimental counterparts which have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and the results are compared with the available experimental data.
Surface segregation in AuPd alloys: Ab initio analysis of the driving forces
NASA Astrophysics Data System (ADS)
Creuze, Jérôme; Guesmi, Hazar; Mottet, Christine; Zhu, Beien; Legrand, Bernard
2015-09-01
In order to determine the energetic driving forces for surface segregation in AuPd alloys, we use a combined approach coupling ab initio calculations and an analysis via an effective Ising model. Previously, this approach has been used successfully in the framework of N-body interatomic potentials to study the surface segregation in both semi-infinite alloys and nanoparticles, allowing one to determine the relative contributions of the different elementary driving forces. Here, we go beyond the use of N-body interatomic potentials by using ab initio calculations to evaluate the segregation enthalpy and the effective pair interactions, the contribution due to the size difference between the constituants being still obtained by N-body interatomic potentials. We show that the decomposition of the segregation enthalpy into its different elementary contributions is still valid at this level of description. This allows us to analyze the segregation driving forces in the two infinite dilute limits of the Au-Pd system, for both (100) and (111) surfaces. Finally, between the two infinite dilute limits, we find that our results are consistent with existing experimental data.
Emergent properties of nuclei from ab initio coupled-cluster calculations
NASA Astrophysics Data System (ADS)
Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.
2016-06-01
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).
NASA Astrophysics Data System (ADS)
Yin, Chih-Chien; Li, Arvin Huang-Te; Chao, Sheng D.
2013-11-01
We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform.
A toolbox for ab initio 3-D reconstructions in single-particle electron microscopy.
Voss, Neil R; Lyumkis, Dmitry; Cheng, Anchi; Lau, Pick-Wei; Mulder, Anke; Lander, Gabriel C; Brignole, Edward J; Fellmann, Denis; Irving, Christopher; Jacovetty, Erica L; Leung, Albert; Pulokas, James; Quispe, Joel D; Winkler, Hanspeter; Yoshioka, Craig; Carragher, Bridget; Potter, Clinton S
2010-03-01
Structure determination of a novel macromolecular complex via single-particle electron microscopy depends upon overcoming the challenge of establishing a reliable 3-D reconstruction using only 2-D images. There are a variety of strategies that deal with this issue, but not all of them are readily accessible and straightforward to use. We have developed a "toolbox" of ab initio reconstruction techniques that provide several options for calculating 3-D volumes in an easily managed and tightly controlled work-flow that adheres to standard conventions and formats. This toolbox is designed to streamline the reconstruction process by removing the necessity for bookkeeping, while facilitating transparent data transfer between different software packages. It currently includes procedures for calculating ab initio reconstructions via random or orthogonal tilt geometry, tomograms, and common lines, all of which have been tested using the 50S ribosomal subunit. Our goal is that the accessibility of multiple independent reconstruction algorithms via this toolbox will improve the ease with which models can be generated, and provide a means of evaluating the confidence and reliability of the final reconstructed map.
Ab initio structure prediction of the antibody hypervariable H3 loop.
Zhu, Kai; Day, Tyler
2013-06-01
Antibodies have the capability of binding a wide range of antigens due to the diversity of the six loops constituting the complementarity determining region (CDR). Among the six loops, the H3 loop is the most diverse in structure, length, and sequence identity. Prediction of the three-dimensional structures of antibodies, especially the CDR loops, is an important step in the computational design and engineering of novel antibodies for improved affinity and specificity. Although it has been demonstrated that the conformation of the five non-H3 loops can be accurately predicted by comparing their sequences against databases of canonical loop conformations, no such connection has been established for H3 loops. In this work, we present the results for ab initio structure prediction of the H3 loop using conformational sampling and energy calculations with the program Prime on a dataset of 53 loops ranging in length from 4 to 22 residues. When the prediction is performed in the crystal environment and including symmetry mates, the median backbone root mean square deviation (RMSD) is 0.5 Å to the crystal structure, with 91% of cases having an RMSD of less than 2.0 Å. When the prediction is performed in a noncrystallographic environment, where the scaffold is constructed by swapping the H3 loops between homologous antibodies, 70% of cases have an RMSD below 2.0 Å. These results show promise for ab initio loop predictions applied to modeling of antibodies.
Ab initio study of structural and magnetic properties of Si-doped Fe2P
NASA Astrophysics Data System (ADS)
Delczeg-Czirjak, E. K.; Delczeg, L.; Punkkinen, M. P. J.; Johansson, B.; Eriksson, O.; Vitos, L.
2010-08-01
Ab initio electronic-structure methods are used to study the properties of Fe2P1-xSix in ferromagnetic and paramagnetic states. The site preference and lattice relaxation are calculated with the projector augmented wave method as implemented in the Vienna ab initio simulation package. The paramagnetic state is modeled by the disordered local magnetic moment scheme, and the chemical and magnetic disorder is treated using the coherent potential approximation in combination with the exact muffin-tin orbital formalism. The calculated lattice parameters, atomic positions, and magnetic properties are in good agreement with the experimental and other theoretical results. In contrast to the observation, for the ferromagnetic state the body centered orthorhombic structure (bco, space group Imm2&barbelow; ) is predicted to have lower energy than the hexagonal structure (hex, space group P6¯2m ). The zero-point spin fluctuation energy difference is found to be large enough to stabilize the hex phase. For the paramagnetic state, the hex structure is calculated to be the stable phase and the computed total energy versus composition indicates a hex to bco crystallographic phase transition with increasing Si content. The phonon vibrational free energy, estimated from the theoretical equation of state, turns out to stabilize the hexagonal phase, whereas the electronic and magnetic entropies favor the low symmetry orthorhombic structure.
Ab initio study of the optical properties of carbon nanotubes
NASA Astrophysics Data System (ADS)
Chang, Eric
2006-03-01
We present an ab initio study of the optical properties of carbon nanotubes. We use state-of-the-art electronic structure methods based on many-body perturbation theory to compute the optical absorption and resonance Raman spectra of large tubes which have up to 200 atoms [1,2]. Our symmetry-based method makes the study of large tubes feasible within the many- body framework and also allows us to understand the symmetry properties of the excitons and selection rules. We include a study of the so-called dark excitons which are crucial for understanding luminescence efficiency in carbon nanotubes. The mechanism that explains the dark-bright splitting can be understood within our symmetry-based approach. Finally, we present an analysis of the two-photon spectra for several carbon nanotubes, a theoretical analysis which, in conjunction with combined one- and two-photon experiments, allows one to measure the binding energy of excitons. We find in all cases that the excitonic binding energy is large, ranging from 0.5 to 0.9 eV depending on the diameter of the tube, and that the excitonic wavefunction is Wannier-like and extended over many atoms. Our studies for the one- and two-photon absorption and resonance Raman spectra have been fruitful for understanding the corresponding experiments. In particular, our theoretical results are in good agreement with one- and two-photon absorption experiments [3-5]. The results for resonance Raman show that such a spectroscopic technique is a good alternative to optical absorption since it allows for the selection of tubes of a given diameter while probing the same excited states. 1. E.K. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. Lett. 92, 196401 (2004). 2. E.K. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. B 72, 195423 (2005). 3. M. Y. Sfeir et al., Science 306, 1540 (2004). 4. J. Maultzsch et al., to be published in Phys. Rev. B, see also cond-mat/0505150. 5. Z. M. Li et. al., Phys. Rev. Lett. 87, 127401 (2001).
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Dytrych, T.; Maris, Pieter; Launey, K. D.; Draayer, J. P.; Vary, James; Langr, D.; Saule, E.; Caprio, M. A.; Catalyurek, U.; Sosonkina, M.
2016-06-09
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for ^{6}Li and ^{12}C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.
NASA Astrophysics Data System (ADS)
Philipp, Dean Michael
Methodology is discussed for mixed ab initio quantum mechanics/molecular mechanics modeling of systems where the quantum mechanics (QM) and molecular mechanics (MM) regions are within the same molecule. The ab initio QM calculations are at the restricted Hartree-Fock level using the pseudospectral method of the Jaguar program while the MM part is treated with the OPLS force fields implemented in the IMPACT program. The interface between the QM and MM regions, in particular, is elaborated upon, as it is dealt with by ``breaking'' bonds at the boundaries and using Boys-localized orbitals found from model molecules in place of the bonds. These orbitals are kept frozen during QM calculations. The mixed modeling presented here can be used for single point energy calculations and geometry optimizations. Results from tests of the method to find relative conformational energies and geometries of alanine tetrapeptides are presented along with comparisons to pure QM and pure MM calculations.
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen
Huang, Ying; Chen, Shi-Yi; Deng, Feilong
2016-01-01
In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.
Ab initio calculation of (hyper)polarizabilities using a sum-over-states formalism.
NASA Astrophysics Data System (ADS)
Taylor, Caroline M.; Chaudhuri, Rajat K.; Potts, Davin M.; Freed, Karl F.
2001-03-01
Hyperpolarizabilities are relevant to a wide range of non-linear optical properties. Ab initio computations often require a high level of correlation for accurate determination of β and γ , and especially of thier frequency dependence. While sum-over-states methods are widely used within semi-empirical frameworks, they have not been employed with high level ab initio methods because of the computational costs associated with calculating a sufficient number of states. The effective valence shell Hamiltonian method (H^v) is a highly correlated, size-extensive, ab initio, multireference, perturbative (``perturb-then-diagonalize'') method. A single H^v calculation yields a large number of states, making it ideal for use with the sum-over-states fomalism for determination of molecular properties. The method has been used to calculate the (hyper)polarizabilities of small polyene systems.
Classical and ab-initio molecular dynamic simulation of an amorphous silica surface
NASA Astrophysics Data System (ADS)
Mischler, C.; Kob, W.; Binder, K.
2002-08-01
We present the results of a classical molecular dynamic simulation as well as of an ab-initio molecular dynamic simulation of an amorphous silica surface. In the case of the classical simulation we use the potential proposed by van Beest et al. (BKS) whereas the ab-initio simulation is done with a Car-Parrinello method (CPMD). We find that the surfaces generated by BKS have a higher concentration of defects (e.g., concentration of two-membered rings) than those generated with CPMD. In addition also the distribution functions of the angles and of the distances are different for the short rings. Hence we conclude that whereas the BKS potential is able to correctly reproduce the surface on the length scale beyond ≈5 Å, it is necessary to use an ab-initio method to reliably predict the structure at small scales.
Ab Initio potential grid based docking: From High Performance Computing to In Silico Screening
NASA Astrophysics Data System (ADS)
de Jonge, Marc R.; Vinkers, H. Maarten; van Lenthe, Joop H.; Daeyaert, Frits; Bush, Ian J.; van Dam, Huub J. J.; Sherwood, Paul; Guest, Martyn F.
2007-09-01
We present a new and completely parallel method for protein ligand docking. The potential of the docking target structure is obtained directly from the electron density derived through an ab initio computation. A large subregion of the crystal structure of Isocitrate Lyase, was selected as docking target. To allow the full ab initio treatment of this region special care was taken to assign optimal basis functions. The electrostatic potential is tested by docking a small charged molecule (succinate) into the binding site. The ab initio grid yields a superior result by producing the best binding orientation and position, and by recognizing it as the best. In contrast the same docking procedure, but using a classical point-charge based potential, produces a number of additional incorrect binding poses, and does not recognize the correct pose as the best solution.
Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang
2016-09-01
We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score = 0.736 and RMSD = 2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. Proteins 2016; 84(Suppl 1):76-86. © 2015 Wiley Periodicals, Inc.
Binding of TNT to amplifying fluorescent polymers: an ab initio and molecular dynamics study.
Enlow, Mark A
2012-03-01
Molecular modeling techniques were employed to study the interaction of trinitrotoluene with an amplifying fluorescent polymer used in explosive sensor devices. The pentiptycene moiety present in these polymers appears to be the most energetically favorable binding site for trinitrotoluene. Surface features of the polymer suggest that the small cavity feature of the pentiptycene moiety may be more available for binding to analyte compounds due to steric crowding about the large cavity. Binding energies between model binding sites of the polymer and various analyte compounds were more rigorously estimated by semiempirical and ab initio techniques. Binding energies were found to be largest with trinitrotoluene and other nitroaromatic compounds. Electrostatic and π-stacking interactions between trinitrotoluene and the model host were investigated by studying a series of modified host compounds.
NASA Astrophysics Data System (ADS)
Olsson, Pär A. T.; Kese, Kwadwo; Alvarez Holston, Anna-Maria
2015-12-01
In this work we report the results of an ab initio study of the influence of hydrogen filled vacancies on the mechanical properties of zirconium. The modelling shows that hydrogen filled vacancies contribute to a lowering of the surface energy and an increase in the unstable stacking fault energy, which implies a reduction in ductility. The increase in unstable stacking fault energy suggests that the defects promote a change in the dislocation glide mechanism from prismatic to basal slip. To investigate the cleavage energetics, we model the decohesion process. For describing the interplanar interaction we adopt an extended version of Rose's universal binding energy relation, which is found to reproduce the behaviour accurately. The results of the modelling imply that the work of fracture and peak stress decrease as a result of the presence of hydrogen filled vacancies.
Ab initio study of collective excitations in a disparate mass molten salt.
Bryk, Taras; Klevets, Ivan
2012-12-14
Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.
A density functional and ab initio investigation of the p-aminobenzoic acid molecule
NASA Astrophysics Data System (ADS)
Lago, A. F.; Dávalos, J. Z.; de Brito, A. Naves
2007-08-01
The p-aminobenzoic acid (C 7H 7NO 2) molecule has been investigated at different levels of theory. DFT methods (B3LYP and PBE1PBE), second order Møller-Plesset perturbation theory (MP2) and composite ab initio methods (G3MP2 and CBS) have been employed, in conjunction with large basis sets. Important informations on the electronic structure and thermochemistry of this molecule have been extracted, and the performance of the density functional and ab initio methods has been evaluated, based on the comparison of the calculated and the available experimental data.
Ab initio calculation of vibrational properties of a-Si:H with inner voids
NASA Astrophysics Data System (ADS)
Nakhmanson, S. M.; Drabold, D. A.
1998-05-01
We have performed an ab initio calculation of vibrational properties of hydrogenated amorphous silicon (a-Si:H) using a molecular dynamics method. A Wooten, Winer, Weaire (WWW) 216 atom model for pure amorphous silicon (a-Si) updated by Djordjevic, Thorpe and Wooten has been employed as a ``base'' for our a-Si:H models with voids that were made by removing a cluster of silicon atoms out of the bulk and terminating the resulting dangling bonds with hydrogens. Our calculation shows that the presence of voids leads to localized low energy (30-50 cm-1) states in vibrational spectrum of the system. The nature and localization properies of these states are carefully analysed by various visualization techniques. Web resources: http://www.phy.ohiou.edu/ ĩnakhmans/Professional/Bubbles/bubpr.htm
Ab initio tight-binding description of morphology-dependent resonance in a bisphere
NASA Astrophysics Data System (ADS)
Miyazaki, H.; Jimba, Y.
2000-09-01
Morphology-dependent resonance (MDR) of the electric field in a bisphere is investigated with respect to the electromagnetic energy stored within the spheres. The energy spectra clearly reveal the fine structure of the bonding and antibonding branches originating from the Mie resonance of a single sphere. The electric field distribution can directly provide information on the formation of the bonding and antibonding states. On the basis of this detailed information, we establish the ab initio tight-binding (TB) formalism of the MDR in a bishpere. The single-mode TB model combined with the linearization of the phase shift clarifies the meaning of the overlap integral. It also gives a qualitative explanation of the MDR. By dividing the Mie resonance modes into the relevant modes and the reservoir modes and incorporating the latter perturbationally, it is shown that the double-mode TB model can reproduce the exact numerical results fairly well.
Ab initio determination of the instability growth rate of warm dense beryllium-deuterium interface
Wang, Cong; Zhang, Ping; Li, Zi; Li, DaFang
2015-10-15
Accurate knowledge about the interfacial unstable growth is of great importance in inertial confinement fusion. During implosions, the deuterium-tritium capsule is driven by laser beams or X-rays to access the strongly coupled and partially degenerated warm dense matter regime. At this stage, the effects of dissipative processes, such as diffusion and viscosity, have significant impact on the instability growth rates. Here, we present ab initio molecular dynamics simulations to determine the equations of state and the transport coefficients. Several models are used to estimate the reduction in the growth rate dispersion curves of Rayleigh-Taylor and Richtmyer-Meshkov instabilities with considering the presence of these dissipative effects. We show that these instability growth rates are effectively reduced when considering diffusion. The findings provide significant insights into the microscopic mechanism of the instability growth at the ablator-fuel interface and will refine the models used in the laser-driven hydrodynamic instability experiments.
Ab initio based polarizable force field generation and application to liquid silica and magnesia
NASA Astrophysics Data System (ADS)
Beck, Philipp; Brommer, Peter; Roth, Johannes; Trebin, Hans-Rainer
2011-12-01
We extend the program potfit, which generates effective atomic interaction potentials from ab initio data, to electrostatic interactions and induced dipoles. The potential parametrization algorithm uses the Wolf direct, pairwise summation method with spherical truncation. The polarizability of oxygen atoms is modeled with the Tangney-Scandolo interatomic force field approach. Due to the Wolf summation, the computational effort in simulation scales linearly in the number of particles, despite the presence of electrostatic interactions. Thus, this model allows to perform large-scale molecular dynamics simulations of metal oxides with realistic potentials. Details of the implementation are given, and the generation of potentials for SiO2 and MgO is demonstrated. The approach is validated by simulations of microstructural, thermodynamic, and vibrational properties of liquid silica and magnesia.
Ab initio determination of the proton affinities of small neutral and anionic molecules
NASA Technical Reports Server (NTRS)
DeFrees, D. J.; McLean, A. D.
1986-01-01
The proton affinity of a molecule in the gas phase is a fundamental measure of its basicity and is the factor controlling the course of many ion-molecule reactions. In this article, ab initio molecular orbital theory at the MP4/6-311 ++ G(3df, 3pd) level of theory is demonstrated to predict proton affinities (PA's) for small neutral and anionic bases to within 2 kcal mol-1. Furthermore, the errors are random, indicating that there are likely no systematic errors in either the experimental or theoretical PA's. Also, this level of theory is used to calibrate less sophisticated theoretical models which are suitable for larger molecules; the MP4/6-311 ++ G(2d, 2p) and MP2/6-311 ++ G(d, p) theoretical models should be particularly useful. A procedure for predicting the vibrational frequencies for anion is proposed and applied to CH3-, NH2-, OH-, and CN-.
A-dependence of the Spectra of the F Isotopes from ab initio Calculations
NASA Astrophysics Data System (ADS)
Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.
2016-03-01
Using a succession of Okubo-Lee-Suzuki transformations within the No Core Shell Model (NCSM) formalism, we derive an ab initio, non-perturbative procedure for calculating the input for standard shell-model (SSM) calculations within one major shell. We have used this approach for calculating the spectra of the F isotopes from A=18 to A=25, so as to study the A-dependence of the results. In particular, we are interested in seeing if the theoretical input is weak enough, so that a single set of two-body effective interactions can be used for all of the F isotopes investigated. We will present results from SSM calculations based on input obtained with the JISP16 nucleon-nucleon interaction in an initial 4 ℏΩ NCSM basis space. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.
Many-body ab initio study of antiferromagnetic {Cr7M } molecular rings
NASA Astrophysics Data System (ADS)
Chiesa, A.; Carretta, S.; Santini, P.; Amoretti, G.; Pavarini, E.
2016-12-01
Antiferromagnetic molecular rings are widely studied both for fundamental quantum-mechanical issues and for technological applications, particularly in the field of quantum information processing. Here we present a detailed first-principles study of two families—purple and green—of {Cr7M } antiferromagnetic rings, where M is a divalent transition metal ion (M =Ni2 + , Mn2 +, and Zn2 +). We employ a recently developed flexible and efficient scheme to build ab initio system-specific Hubbard models. From such many-body models we systematically derive the low-energy effective spin Hamiltonian for the rings. Our approach allows us to calculate isotropic as well as anisotropic terms of the spin Hamiltonian, without any a priori assumption on its form. For each compound we calculate magnetic exchange couplings, zero-field splitting tensors, and gyromagnetic tensors, finding good agreement with experimental results.
Baroni, Simone; Navratil, Petr; Quaglioni, Sofia
2013-03-26
In this study, we introduce a unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model (NCSM), a bound-state technique, with the no-core shell model/resonating group method (NCSM/RGM), a nuclear scattering technique. This new ab initio method, no-core shell model with continuum (NCSMC), leads to convergence properties superior to either NCSM or NCSM/RGM while providing a balanced approach to different classes of states. In the NCSMC, the ansatz for the many-nucleon wave function includes (i) a square-integrable A-nucleon component expanded in a complete harmonic oscillator basis and (ii) a binary-cluster component with asymptotic boundary conditions that can properly describe weakly bound states, resonances, and scattering. The Schrödinger equation is transformed into a system of coupled-channel integral-differential equations that we solve using a modified microscopic R-matrix formalism within a Lagrange mesh basis. We demonstrate the usefulness of the approach by investigating the unbound ^{7}He nucleus.
Yu, Ling; Yang, Zhong-Zhi
2010-05-07
Structures, binding energies, and vibrational frequencies of (NH(3))(n) (n=2-5) isomers and dynamical properties of liquid ammonia have been explored using a transferable intermolecular potential eight point model including fluctuating charges and flexible body based on a combination of the atom-bond electronegativity equalization and molecular (ABEEM) mechanics (ABEEM ammonia-8P) in this paper. The important feature of this model is to divide the charge sites of one ammonia molecule into eight points region containing four atoms, three sigma bonds, and a lone pair, and allows the charges in system to fluctuate responding to the ambient environment. Due to the explicit descriptions of charges and special treatment of hydrogen bonds, the results of equilibrium geometries, dipole moments, cluster interaction energies, vibrational frequencies for the gas phase of small ammonia clusters, and radial distribution function for liquid ammonia calculated with the ABEEM ammonia-8P potential model are in good agreement with those measured by available experiments and those obtained from high level ab initio calculations. The properties of ammonia dimer are studied in detail involving the structure and one-dimensional, two-dimensional potential energy surface. As for interaction energies, the root mean square deviation is 0.27 kcal/mol, and the linear correlation coefficient reaches 0.994.
Ludwig, Jeffery; Vlachos, Dionisios G
2007-10-21
We outline a hybrid multiscale approach for the construction of ab initio potential energy surfaces (PESs) useful for performing six-dimensional (6D) classical or quantum mechanical molecular dynamics (MD) simulations of diatomic molecules reacting at single crystal surfaces. The algorithm implements concepts from the corrugation reduction procedure, which reduces energetic variation in the PES, and uses neural networks for interpolation of smoothed ab initio data. A novelty sampling scheme is implemented and used to identify configurations that are most likely to be predicted inaccurately by the neural network. This hybrid multiscale approach, which couples PES construction at the electronic structure level to MD simulations at the atomistic scale, reduces the number of density functional theory (DFT) calculations needed to specify an accurate PES. Due to the iterative nature of the novelty sampling algorithm, it is possible to obtain a quantitative measure of the convergence of the PES with respect to the number of ab initio calculations used to train the neural network. We demonstrate the algorithm by first applying it to two analytic potentials, which model the H2/Pt(111) and H2/Cu(111) systems. These potentials are of the corrugated London-Eyring-Polanyi-Sato form, which are based on DFT calculations, but are not globally accurate. After demonstrating the convergence of the PES using these simple potentials, we use DFT calculations directly and obtain converged semiclassical trajectories for the H2/Pt(111) system at the PW91/generalized gradient approximation level. We obtain a converged PES for a 6D hydrogen-surface dissociation reaction using novelty sampling coupled directly to DFT. These results, in excellent agreement with experiments and previous theoretical work, are compared to previous simulations in order to explore the sensitivity of the PES (and therefore MD) to the choice of exchange and correlation functional. Despite having a lower energetic
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
2014-03-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic
NASA Astrophysics Data System (ADS)
Jameson, Cynthia J.; de Dios, Angel C.
1992-07-01
The chemical shifts observed in nuclear magnetic resonance experiments are the differences in shielding of the nuclear spin in different electronic environments. These are known to depend on intermolecular interactions as evidenced by density-dependent chemical shifts in the gas phase, gas-to-liquid shifts, and adsorption shifts on surfaces. We present the results of the first ab initio intermolecular chemical shielding function calculated for a pair of interacting atoms for a wide range of internuclear separations. We used the localized orbital local origin (LORG) approach of Hansen and Bouman and also investigated the second-order electron correlation contributions using second-order LORG (SOLO). The 39Ar shielding in Ar2 passes through zero at some very short distance, going through a minimum, and asymptotically approaches zero at larger separations. The 21Ne shielding function in Ne2 has a similar shape. The Drude model suggests a method of scaling that portion of the shielding function that is weighted most heavily by exp[-V(R)/kT]. The scaling factors, which have been verified in the comparison of 21Ne in Ne2 against 39Ar in Ar2 ab initio results, allows us to project out from the same 39Ar in Ar2 ab initio values the appropriate 129Xe shielding functions in the Xe-Ar, Xe-Kr, and Xe-Xe interacting pairs. These functions lead to temperature-dependent second virial coefficients of chemical shielding which agree with experiments in the gas phase. Ab initio calculations of 39Ar shielding in clusters of argon are used to model the observed 129Xe chemical shifts of Xe, Xe2,...,Xe8 trapped in the cages of zeolite NaA.
Vibrational infrared spectrum of NH 3 adsorbed on MgO(100). I. Ab initio calculations
NASA Astrophysics Data System (ADS)
Allouche, A.; Corà, F.; Girardet, C.
1995-12-01
The perturbed cluster approach, previously devoted to the calculation of the stable adsorption site and energy for ammonia adsorbed on MgO(100), is used to determine the frequency and the intensity of the main peaks associated with the normal vibrational modes of the admolecule. The ab initio model based on a cluster embedded in an array of point charges is then compared to the perturbed cluster approach and used to investigate different molecular orientations and associations on the surface in order to give an interpretation to the occurrence of the infrared signals. Six normal modes for each admolecule are calculated due to the removing of internal degeneracy by adsorption. The characteristics of the calculated spectrum are compared to the experimental infrared data and it is shown that the set of selected situations is able to explain almost every band in the spectrum without implication of NH 3 dissociation on the surface.
Ab initio research of stopping power for energetic ions in solids
NASA Astrophysics Data System (ADS)
He, Bin; Meng, Xu-Jun; Wang, Jian-Guo
2017-03-01
A new physical scenario is suggested to estimate the stopping power of energetic α particles in solid-density Be, Na, and Al at room temperature in an ab initio way based on the average atom model. In the scenario the stopping power is caused by the transition of free electrons to higher energy states and the ionization of bound electrons of the atom. Our results are found generally in good agreement with the recommended data in Al, Be and Na as well as the experimental data in Al. A comparison of energy loss with the recent experiment of protons in Be indicates that the scenario is more reasonable than the local density approximation in this case.
Ab-initio study of quasi one-dimensional Br adsorption on Pt(110)
NASA Astrophysics Data System (ADS)
Franchini, Cesare; Redinger, Josef; Podloucky, Raimund
2001-03-01
Halogen atoms interact strongly with metal surfaces. For this reason they play an important role in many technologically important processes. The Pt(110) surface is known to reconstruct into an (1x2) structure of "missing-row" type (MR). Its strong anisotropic character can be used as template to prepare single crystal surfaces of Pt-Br-Pt chains, which exhibit quasi one-dimensional (1D) behavior. We present ab-initio investigations based on the Full-potential Linearized Augmented Plane Wave method (FLAPW), as implemented in the FLEUR package, and the Tersoff-Hamann model for simulating STM images. Structural and electronic properties of the Br/Pt(110) surface at half coverage and of the clean Pt(110) surface and its (1x2) MR reconstruction are studied in detail. Results are compared to available LEED and STM data.
Ab initio and density functional studies of hydrocarbon adsorption in zeolites.
Curtiss, L. A.
1998-08-21
The adsorption energies of methane and ethane in zeolites are investigated with ab initio molecular orbital theory and density functional theory. In this work we have used zeolite cluster models containing two, three, and five tetrahedral (Si, Al) atoms and have found equilibrium structures for complexes of methane, ethane, and propane with an acid site. If a large enough cluster is used and correlation effects are included via perturbation theory, the calculated adsorption energy for ethane is about 5 kcal/mol compared with the experimental value of 7.5 kcal/mol. The B3LYP density functional method gives a much smaller binding of {approximately}1 kcal/mol for ethane. The reason for the failure of density fictional theory is unclear.
Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides
NASA Astrophysics Data System (ADS)
Tiwald, Paul; Karsai, Ferenc; Laskowski, Robert; Gräfe, Stefanie; Blaha, Peter; Burgdörfer, Joachim; Wirtz, Ludger
2015-10-01
We revisit the well-known Mollwo-Ivey relation that describes the "universal" dependence of the absorption energies of F-type color centers on the lattice constant a of alkali-halide crystals, Eabs∝a-n. We perform both state-of-the-art ab initio quantum chemistry and post-DFT calculations of F-center absorption spectra. By "tuning" independently the lattice constant and the atomic species we show that the scaling with the lattice constant alone (keeping the elements fixed) would yield n =2 in agreement with the "particle-in-the-box" model. Keeping the lattice constant fixed and changing the atomic species enables us to quantify the ion-size effects which are shown to be responsible for the exponent n ≈1.8 .
Ab initio determination of effective electron-phonon coupling factor in copper
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-04-01
The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.
NASA Astrophysics Data System (ADS)
Mazzola, Guglielmo; Sorella, Sandro
2017-01-01
We propose an ab initio molecular dynamics method, capable of dramatically reducing the autocorrelation time required for the simulation of classical and quantum particles at finite temperatures. The method is based on an efficient implementation of a first order Langevin dynamics modified by means of a suitable, position dependent acceleration matrix S . Here, we apply this technique to both Lennard-Jones models, to demonstrate the accuracy and speeding-up of the sampling, and within a quantum Monte Carlo based wave function approach, for determining the phase diagram of high-pressure hydrogen with simulations much longer than the autocorrelation time. With the proposed method, we are able to equilibrate in a few hundred steps even close to the liquid-liquid phase transition (LLT). Within our approach, we find that the LLT transition is consistent with recent density functionals predicting a much larger transition pressure when the long range dispersive forces are taken into account.
Ab initio investigation of the sum-frequency hyperpolarizability of small chiral molecules
NASA Astrophysics Data System (ADS)
Champagne, Benoı̂t; Fischer, Peer; Buckingham, A. David
2000-11-01
Using a sum-over-states procedure based on configuration interaction singles /6-311++G **, we have computed the sum-frequency hyperpolarizability βijk(-3 ω;2 ω, ω) of two small chiral molecules, R-monofluoro-oxirane and R-(+)-propylene oxide. Excitation energies were scaled to fit experimental UV-absorption data and checked with ab initio values from time-dependent density functional theory. The isotropic part of the computed hyperpolarizabilities, β¯(-3ω;2ω,ω) , is much smaller than that reported previously from sum-frequency generation experiments on aqueous solutions of arabinose. Comparison is made with a single-centre chiral model.
Electronic states of lithium passivated germanium nanowires: An ab-initio study
Trejo, A.; Carvajal, E.; Vázquez-Medina, R.; Cruz-Irisson, M.
2014-05-15
A study of the electronic and structural properties of germanium nanowires (GeNWs) was performed using the ab-initio Density Functional Theory within the generalized gradient approximation where electron-ion interactions are described by ultrasoft pseudopotentials. To study the effects of the lithium in the surface of the GeNWs we compare the electronic band structures of Hydrogen passivated GeNWs with those of partial and totally Li passivated GeNWs. The nanowires were constructed in the [001], [111] and [110] directions, using the supercell model to create different wire diameters. The results show that in the case of partial Li passivation there are localized orbitals near the valence band maximum, which would create a p-doped-kind of state. The total Li passivation created metallic states for all the wires.
Equation of state and phase diagram of ammonia at high pressures from ab initio simulations.
Bethkenhagen, Mandy; French, Martin; Redmer, Ronald
2013-06-21
We present an equation of state as well as a phase diagram of ammonia at high pressures and high temperatures derived from ab initio molecular dynamics simulations. The predicted phases of ammonia are characterized by analyzing diffusion coefficients and structural properties. Both the phase diagram and the subsequently computed Hugoniot curves are compared to experimental results. Furthermore, we discuss two methods that allow us to take into account nuclear quantum effects, which are of considerable importance in molecular fluids. Our data cover pressures up to 330 GPa and a temperature range from 500 K to 10,000 K. This regime is of great interest for interior models of the giant planets Uranus and Neptune, which contain, besides water and methane, significant amounts of ammonia.
Trends in magnetism of free Rh clusters via relativistic ab-initio calculations.
Šipr, O; Ebert, H; Minár, J
2015-02-11
A fully relativistic ab-initio study on free Rh clusters of 13-135 atoms is performed to identify general trends concerning their magnetism and to check whether concepts which proved to be useful in interpreting magnetism of 3d metals are applicable to magnetism of 4d systems. We found that there is no systematic relation between local magnetic moments and coordination numbers. On the other hand, the Stoner model appears well-suited both as a criterion for the onset of magnetism and as a guide for the dependence of local magnetic moments on the site-resolved density of states at the Fermi level. Large orbital magnetic moments antiparallel to spin magnetic moments were found for some sites. The intra-atomic magnetic dipole Tz term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of x-ray magnetic circular dichroism experiments based on the sum rules.
Ortiz-Sánchez, Juan Manuel; Bucher, Denis; Pierce, Levi C T; Markwick, Phineus R L; McCammon, J Andrew
2012-08-14
In the present work, we employ excited state accelerated ab initio molecular dynamics (A-AIMD) to efficiently study the excited state energy landscape and photophysical topology of a variety of molecular systems. In particular, we focus on two important challenges for the modeling of excited electronic states: (i) the identification and characterization of conical intersections and crossing seams, in order to predict different and often competing radiationless decay mechanisms, and (ii) the description of the solvent effect on the absorption and emission spectra of chemical species in solution. In particular, using as examples the Schiff bases formaldimine and salicylidenaniline, we show that A-AIMD can be readily employed to explore the conformational space around crossing seams in molecular systems with very different photochemistry. Using acetone in water as an example, we demonstrate that the enhanced configurational space sampling may be used to accurately and efficiently describe both the prominent features and line-shapes of absorption and emission spectra.
Ab initio based understanding of diffusion mechanisms of hydrogen in liquid aluminum
NASA Astrophysics Data System (ADS)
Jakse, N.; Pasturel, A.
2014-04-01
Ab initio molecular dynamics simulations are used to describe the diffusion of hydrogen in liquid aluminum at different temperatures. We show that the hydrogen motion does not follow a Brownian motion caused by a broad distribution of spatial jumps that can exceed 15 times the interatomic AlH distance. This breakdown is also evidenced in the calculation of the self-part of the van Hove distribution function that is not the Gaussian expected for a Fickian process. We show that the hydrogen motion can be described well by a generalized continuous time random walk model leading to computed self-diffusion coefficients of H in liquid aluminum in good agreement with experimental ones. Finally, the impact of impurities and alloying elements is discussed.
Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; ...
2016-03-11
Full Multiple Spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio Multiple Spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. Lastly, the results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalismmore » and its implementation.« less
Ab initio electron scattering cross-sections and transport in liquid xenon
NASA Astrophysics Data System (ADS)
Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.
2016-09-01
Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10-4-1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.
Impact of oxygen on the 300-K isotherm of Laser Megajoule ablator using ab initio simulation
NASA Astrophysics Data System (ADS)
Colin-Lalu, P.; Recoules, V.; Salin, G.; Huser, G.
2015-11-01
The ablator material for inertial confinement fusion (ICF) capsules on the Laser Mégajoule is a glow-discharge polymer (GDP) plastic. Its equation of state (EOS) is of primary importance for the design of such capsules, since it has direct consequences on shock timing and is essential to mitigate hydrodynamic instabilities. Using ab initio molecular dynamics (AIMD), we have investigated the 300-K isotherm of amorphous CH1.37O0.08 plastic, whose structure is close to GDP plastic. The 300-K isotherm, which is often used as a cold curve within tabular EOS, is an important contribution of the EOS in the multimegabar pressure range. AIMD results are compared to analytic models within tabular EOS, pointing out large discrepancies. In addition, we show that the effect of oxygen decreases 300-K isotherm pressure by 10%-15%. The implication of these observations is the ability to improve ICF target performance, which is essential to achieve fusion ignition.
Harding, M. E.; Vazquez, J.; Ruscic, B.; Wilson, A. K.; Gauss, J.; Stanton, J. F.; Chemical Sciences and Engineering Division; Univ. t Mainz; The Univ. of Texas; Univ. of North Texas
2008-01-01
Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate additive treatments of the two effects have limitations that are significant in the realm of <1 kJ mol{sup -1} theoretical thermochemistry.
Quantum fluctuations and isotope effects in ab initio descriptions of water
Wang, Lu; Markland, Thomas E.; Ceriotti, Michele
2014-09-14
Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.
Quantum fluctuations and isotope effects in ab initio descriptions of water.
Wang, Lu; Ceriotti, Michele; Markland, Thomas E
2014-09-14
Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.
High-throughput ab initio screening for two-dimensional electride materials.
Tada, Tomofumi; Takemoto, Seiji; Matsuishi, Satoru; Hosono, Hideo
2014-10-06
High-throughput ab initio screening of approximately 34000 materials in the Materials Project was conducted to identify two-dimensional (2D) electride materials, which are composed of cationic layers and anionic electrons confined in a 2D empty space. The screening was based on three indicators: (1) a positive total formal charge per formula unit; (2) layered structures for two-dimensionality; (3) empty spaces between the layer units. Three nitrides, Ca2N, Sr2N, and Ba2N, and the carbide Y2C were identified as 2D electrides, where Ca2N is the only experimentally confirmed 2D electride (Lee, K.; et al. Nature 2013, 494, 336-341). Electron density analysis using ionic radii revealed a smaller number of anionic electrons in Y2C than those in the three nitrides as a result of the partial occupation of the anionic electrons in the d orbitals of Y. In addition, no candidates were identified from the p-block elements, and thus the ab initio screening indicates that the s-block elements (i.e., alkali or alkaline-earth metals) are highly preferable as cation elements. To go beyond the database screening, a tailored modeling was conducted to determine unexplored compounds including the s-block elements that are suitable for 2D electrides. The tailored modeling found that (1) K2Cl, K2Br, Rb2Cl, and Rb2Br dialkali halides are highly plausible candidates, (2) Li2F and Na2Cl dialkali halides are highly challenging candidates, and (3) the Cs2O(1-x)F(x) halogen-doped dialkali oxide is a promising candidate.
NASA Astrophysics Data System (ADS)
Navratil, Petr; Langhammer, Joachim; Hupin, Guillaume; Quaglioni, Sofia; Calci, Angelo; Roth, Robert; Soma, Vittorio; Cipollone, Andrea; Barbieri, Carlo; Duguet, T.
2014-09-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In recent years, a significant progress has been made in developing ab initio many-body approaches capable of describing both bound and scattering states in light and medium mass nuclei based on input from QCD employing Hamiltonians constructed within chiral effective field theory. We will present calculations of proton-10C scattering and resonances of the exotic nuclei 11N and 9He within the no-core shell model with continuum. Also, we will discuss calculations of binding and separation energies of neutron rich isotopes of Ar, K, Ca, Sc and Ti within the self-consistent Gorkov-Green's function approach. The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In recent years, a significant progress has been made in developing ab initio many-body approaches capable of describing both bound and scattering states in light and medium mass nuclei based on input from QCD employing Hamiltonians constructed within chiral effective field theory. We will present calculations of proton-10C scattering and resonances of the exotic nuclei 11N and 9He within the no-core shell model with continuum. Also, we will discuss calculations of binding and separation energies of neutron rich isotopes of Ar, K, Ca, Sc and Ti within the self-consistent Gorkov-Green's function approach. Support from the NSERC Grant No. 401945-2011 is acknowledged. This work was prepared in part by the LLNL under Contract No. DE-AC52-07NA27344.
An efficient method for electron-atom scattering using ab-initio calculations
NASA Astrophysics Data System (ADS)
Xu, Yuan; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang
2017-02-01
We present an efficient method based on ab-initio calculations to investigate electron-atom scatterings. Those calculations profit from methods implemented in standard quantum chemistry programs. The new approach is applied to electron-helium scattering. The results are compared with experimental and other theoretical references to demonstrate the efficiency of our method.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.
Ab initio molecular dynamics simulations of a binary system of ionic liquids.
Brüssel, Marc; Brehm, Martin; Voigt, Thomas; Kirchner, Barbara
2011-08-14
This work presents first insights into the structural properties of a binary mixture of ionic liquids from the perspective of ab initio molecular dynamics simulations. Simulations were carried out for a one-to-one mixture of 1-ethyl-3-methyl-imidazolium thiocyanate and 1-ethyl-3-methyl-imidazolium chloride and compared to pure 1-ethyl-3-methyl-imidazolium thiocyanate.
Computer simulation of acetonitrile and methanol with ab initio-based pair potentials
NASA Astrophysics Data System (ADS)
Hloucha, M.; Sum, A. K.; Sandler, S. I.
2000-10-01
This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-07
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Ab initio calculations on the inclusion complexation of cyclobis(paraquat- p-phenylene)
NASA Astrophysics Data System (ADS)
Zhang, Ke-Chun; Liu, Lei; Mu, Ting-Wei; Guo, Qing-Xiang
2001-01-01
Semiempirical PM3, ab initio HF/3-21g ∗, and DFT B3LYP/6-31g ∗ calculations in vacuum and in solution were performed on the inclusion complexation of cyclobis(paraquat- p-phenylene) with nine symmetric aromatic substrates. A good correlation was found between the theoretical stabilization energies and experimental free energy changes upon complexation.
Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods
ERIC Educational Resources Information Center
Halpern, Arthur M.
2011-01-01
A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
An efficient and accurate molecular alignment and docking technique using ab initio quality scoring
Füsti-Molnár, László; Merz, Kenneth M.
2008-01-01
An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561
Ab-initio kinetics and thermodynamics studies of ammonia-borane for hydrogen storage
NASA Astrophysics Data System (ADS)
Miranda, Caetano R.; Ceder, Gerbrand
2007-03-01
Ammonia-borane (BH3NH3) is a promising chemical hydrogen storage material given its high gravimetry and volumetric properties. However, the ammonia-borane (AB) thermal hydrogen release is not very efficient, being mainly limited by the kinetics of hydrogenation. Using ab initio calculations, we have investigated the thermodynamics and kinetics of hydrogen release on AB by calculating the free energies of the H2 release reactions for different possible decomposition products. Our results indicate that AB regeneration through the ammonia-borane polymeric and borazine-cyclotriborazane cycles is very unlikely due to the strong exothermic character of the reactions. The kinetics of hydrogen release is further investigated with the recently developed metadynamics method. This method allows us to calculate the multidimensional free energy surface of hydrogen release on AB. Our simulations reveal the atomistic mechanism of hydrogenation and provide the free energies barriers and transition states involved in inter and intramolecule H2 release on AB.
Raimondi, Francesco; Hupin, Guillaume; Navratil, Petr; ...
2016-05-10
Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Here, ab initio approaches have been successfully applied to describe the 3H(d,n)4He and 3He(d,p)4He fusion processes. An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d,p) reactions to processes with light p-shell nuclei. As a firstmore » application, we study the elastic scattering of deuterium on 7Li and the 7Li(d,p)8Li transfer reaction based on a two-body Hamiltonian. We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d–7Li and p–8Li particle-decay channels determines some features of the 9Be spectrum above the d+7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Deuteron stripping reactions with p-shell targets can now be computed ab initio, but calculations are very demanding. Finally, a quantitative description of the 7Li(d,p)8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.« less
NASA Technical Reports Server (NTRS)
Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)
2000-01-01
The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.
Yao, Yongxin
2009-01-01
also plays an important role, as it may directly track the movement of every atom. Simulation time is a major limit for molecular dynamics, not only because of “slow” computer speed, but also because of the accumulation error in the numerical treatment of the motion equations. There is also a great concern about the reliability of the emperical potentials if using classical molecular dynamics. Ab initio methods based on density functional theory(DFT) do not have this problem, however, it suffers from small simulation cells and is more demanding computationally. When crystal phase is involved, size effect of the simulation cell is more pronounced since long-range elastic energy would be established. Simulation methods which are more efficient in computation but yet have similar reliability as the ab initio methods, like tight-binding method, are highly desirable. While the complexity of metallic glasses comes from the atomistic level, there is also a large field which deals with the complexity from electronic level. The only “ab initio” method applicable to solid state systems is density functional theory with local density approximation( LDA) or generalized gradient approximation(GGA) for the exchange-correlation energy. It is very successful for simple sp element, where it reaches an high accuracy for determining the surface reconstruction. However, there is a large class of materials with strong electron correlation, where DFT based on LDA or GGA fails in a fundamental way. An “ab initio” method which can generally apply to correlated materials, as LDA for simple sp element, is still to be developed. The thesis is prepared to address some of the above problems.
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; ...
2016-05-17
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less
Martonak; Molteni; Parrinello
2000-01-24
We present a new constant-pressure ab initio molecular dynamics method suitable for studying, e.g., pressure-induced structural transformations in finite nonperiodic systems such as clusters. We immerse an ab initio treated cluster into a model classical liquid, described by a soft-sphere potential, which acts as a pressure reservoir. The pressure is varied by tuning the parameter of the liquid potential. We apply the method to a Si35H36 cluster, which undergoes a pressure-induced amorphization at approximately 35 GPa, and remains in a disordered state even upon pressure release.
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-03-01
On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.
Melting of sodium under high pressure. An ab-initio study
González, D. J.; González, L. E.
2015-08-17
We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Ab initio study of AlxMoNbTiV high-entropy alloys.
Cao, Peiyu; Ni, Xiaodong; Tian, Fuyang; Varga, Lajos K; Vitos, Levente
2015-02-25
The Al(x)MoNbTiV (x = 0-1.5) high-entropy alloys (HEAs) adopt a single solid-solution phase, having the body centered cubic (bcc) crystal structure. Here we employ the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation to investigate the equilibrium volume, elastic constants, and polycrystalline elastic moduli of Al(x)MoNbTiV HEAs. A comparison between the ab initio and experimental equilibrium volumes demonstrates the validity and accuracy of the present approach. Our results indicate that Al addition decreases the thermodynamic stability of the bcc structure with respect to face-centered cubic and hexagonal close packed lattices. For the elastically isotropic Al(0.4)MoNbTiV HEAs, the valence electron concentration (VEC) is about 4.82, which is slightly different from VEC ∼ 4.72 obtained for the isotropic Gum metals and refractory--HEAs.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
B28: the smallest all-boron cage from an ab initio global search
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce
2015-09-01
Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e
Ab initio electron mobility and polar phonon scattering in GaAs
NASA Astrophysics Data System (ADS)
Zhou, Jin-Jian; Bernardi, Marco
2016-11-01
In polar semiconductors and oxides, the long-range nature of the electron-phonon (e -ph ) interaction is a bottleneck to compute charge transport from first principles. Here, we develop an efficient ab initio scheme to compute and converge the e -ph relaxation times (RTs) and electron mobility in polar materials. We apply our approach to GaAs, where by using the Boltzmann equation with state-dependent RTs, we compute mobilities in excellent agreement with experiment at 250 -500 K . The e -ph RTs and the phonon contributions to intravalley and intervalley e -ph scattering are also analyzed. Our work enables efficient ab initio computations of transport and carrier dynamics in polar materials.
NASA Astrophysics Data System (ADS)
Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.
2015-02-01
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study
Rio, B. G. del; González, L. E.
2015-08-17
Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.
Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.
2015-02-27
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
Properties of metals during the heating by intense laser irradiation using ab initio simulations
NASA Astrophysics Data System (ADS)
Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane
2011-10-01
Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.
Theoretical method for full ab initio calculation of DNA/RNA-ligand interaction energy
NASA Astrophysics Data System (ADS)
Chen, Xi H.; Zhang, John Z. H.
2004-06-01
In this paper, we further develop the molecular fractionation with conjugate caps (MFCC) scheme for quantum mechanical computation of DNA-ligand interaction energy. We study three oligonuclear acid interaction systems: dinucleotide dCG/water, trinucleotide dCGT/water, and a Watson-Crick paired DNA segment, dCGT/dGCA. Using the basic MFCC approach, the nucleotide chains are cut at each phosphate group and a pair of conjugate caps (concaps) are inserted. Five cap molecules have been tested among which the dimethyl phosphate anion is proposed to be the standard concap for application. For each system, one-dimensional interaction potential curves are computed using the MFCC method and the calculated interaction energies are found to be in excellent agreement with corresponding results obtained from the full system ab initio calculations. The current study extends the application of the MFCC method to ab initio calculations for DNA- or RNA-ligand interaction energies.
Pospíšil, Miroslav; Kovář, Petr; Vácha, Robert; Svoboda, Michal
2012-01-01
Ab initio and molecular simulation methods were used in calculations of the neutral individual betulin molecule, and molecular simulations were used to optimize the betulin molecule immersed in various amounts of water. Individual betulin was optimized in different force fields to find the one exhibiting best agreement with ab initio calculations obtained in the Gaussian03 program. Dihedral torsions of active groups of betulin were determined for both procedures, and related calculated structures were compared successfully. The selected force field was used for subsequent optimization of betulin in a water environment, and a conformational search was performed using quench molecular dynamics. The total energies of betulin and its interactions in water bulk were calculated, and the influence of water on betulin structure was investigated.
Ab initio studies of equations of state and chemical reactions of reactive structural materials
NASA Astrophysics Data System (ADS)
Zaharieva, Roussislava
subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated
Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.
Yang, Jianjun; Tse, John S
2011-11-17
The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.
The Pu-U-Am system: An ab initio informed CALPHAD thermodynamic study
NASA Astrophysics Data System (ADS)
Perron, A.; Turchi, P. E. A.; Landa, A.; Söderlind, P.; Ravat, B.; Oudot, B.; Delaunay, F.
2015-03-01
Phase diagram and thermodynamic properties of the Am-U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu-U and Am-Pu thermodynamic assessments are combined to build a Pu-U-Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies.
Ab initio simulation of atomic-scale imaging in noncontact atomic force microscopy.
Caciuc, V; Hölscher, H
2009-07-01
In this paper, we summarize some results of our ab initio simulations aimed at investigating the mechanism of the NC-AFM image contrast on semiconductor and metallic surfaces. We start with an introduction into the basic ideas behind the ab initio simulation process of the NC-AFM experimental results. Our simulations reveal that the interaction of a clean silicon tip with a semiconductor surface like InAs(110) might lead to bond-formation and bond-breaking processes during the approach and retraction of the tip. This imaging mechanism is very similar to that observed on a metallic surface like Ag(110). Interestingly, a clean silicon tip can become contaminated with Ag surface atoms. On both types of surface we observe a significant energy dissipation which is caused by a hysteresis in the tip-sample force curves calculated on the approach and retraction path.
[Photoelectron Spectra of CCl2-: Ab Initio Calculation and Franck-Condon Analysis].
Wu, Jun
2015-12-01
Geometry optimization and harmonic vibrational frequency calculations were performed on the X¹A₁ state of CCl₂ and X²B₁ state of CCl₂⁻ at the B3LYP, MP2, CCSD levels. Franck-Condon analysis and spectral simulations were carried out on the photoelectron band of CCl₂⁻ including Duschinsky effects. The simulated spectra obtained are in excellent agreement with the experiment. Note that Duschinsky effect between bending vibration and the symmetric stretch modes should be considered in the CCl₂ (X¹A₁)-CCl₂⁻ (X²B₁) photodetachment process. By combining ab initio calculations with Franck-Condon analyses, the assignment of spectrum observed is firmly established to the X¹A₁-X²B₁ photodetachment process of the CCl₂⁻ radical, and the recommended geometric parameters of which in the literature are confirmed again base on ab initio theory and IFCA process.
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
NASA Astrophysics Data System (ADS)
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
Ab-initio molecular dynamics simulations of liquid Hg-Pb alloys
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2014-04-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-Pb alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-Pb mixtures (Hg30Pb70, Hg50Pb50 and Hg90Pb10) at 600K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and lead (l-Pb). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered three alloys. Among the all considered alloys, Hg50Pb50 alloy shows presence of more chemical ordering and presence of hetero-coordination.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2015-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.
Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective
NASA Astrophysics Data System (ADS)
Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge
2013-03-01
Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.
NASA Astrophysics Data System (ADS)
French, Martin
2010-11-01
Since the interior structure of giant planets inside or outside our solar system cannot be probed directly by experiments, planetary models have been developed to gain further insight. Such models require accurate equations of state (EOS) for the major components (H, He, and heavier compounds like water) up to extreme thermodynamic conditions (pressures of several ten megabars and temperatures of more than ten thousand degrees Kelvin) [1]. Ab initio methods that combine finite temperature density functional theory (FT-DFT) for the electrons with classical molecular dynamics (MD) for the ions have proven to be a powerful tool to calculate such accurate EOS data. In addition, the FT-DFT-MD also generates structural information, transport and optical properties and, most important, information on phase diagrams and demixing regions. Based on our recently calculated ab initio data for H, He, and water, we derive interior models of Saturn and Jupiter and discuss the role of H-He demixing [2] and of the plasma phase transition in hydrogen on the planetary interiors. We also present new models for Uranus and Neptune which offer conditions to allow the formation of the exotic superionic phase of water [3]. The ab initio data can also be applied in planetary evolution scenarios and dynamo simulations of solar and extrasolar planets.[4pt] [1] J. J. Fortney, N. Nettelmann, Space Sci. Rev. 152, 423 (2010)[0pt] [2] W. Lorenzen, B. Holst, R. Redmer, Phys. Rev. Lett. 102, 115701 (2009)[0pt] [3] M. French, T. R. Mattsson, N. Nettelmann, R. Redmer, Phys. Rev. B 79, 054107 (2009)
Halasyamani, Shiv; Fennie, Craig
2016-11-03
We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per
2006-09-01
We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.
Ab initio potential energy surface for the highly nonlinear dynamics of the KCN molecule
Párraga, H.; Arranz, F. J. Benito, R. M.; Borondo, F.
2013-11-21
An accurate ab initio quantum chemistry study at level of quadratic configuration interaction method of the electronic ground state of the KCN molecule is presented. A fitting of the results to an analytical series expansion was performed to obtain a global potential energy surface suitable for the study of the associated vibrational dynamics. Additionally, classical Poincaré surfaces of section for different energies and quantum eigenstates were calculated, showing the highly nonlinear behavior of this system.
First fully ab initio potential energy surface of methane with a spectroscopic accuracy
NASA Astrophysics Data System (ADS)
Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.
2016-09-01
Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.
Ab initio equation of state of hydrogen for inertial fusion applications
NASA Astrophysics Data System (ADS)
Benedict, Lorin X.; Morales, Miguel A.; Schwegler, Eric; Tamblyn, Isaac; Bonev, Stanimir A.; Correa, Alfredo A.; Clark, Daniel S.; Haan, Steven W.; LLNL Collaboration
2011-06-01
We describe ab initio electronic structure calculations (DFT molecular dynamics and quantum Monte Carlo) of the equation of state of hydrogen in a regime relevant for ICF applications. We find the computed EOS to be quite close to that of the most recent SESAME table (constructed by G. Kerley, 2004). A simple density-dependent correction brings the recent SESAME EOS into nearly perfect agreement with ours in the chosen region. Simulations of ICF applications with this corrected SESAME table are discussed.
Ab initio study of optical absorption spectra of semiconductors and conjugated polymers
Tiago, M.L.; Chang, Eric K.; Rohlfing, Michael; Louie, Steven G.
2000-04-30
The effects of electron-hole interaction on the optical properties of a variety of materials have been calculated using an ab initio method based on solving the Bethe-Salpeter equation. Results on selected semiconductors, insulators, and semiconducting polymers are presented. In the cases of alpha-quartz (SiO2) and poly-phenylene-vinylene, resonant excitonic states qualitatively alter the absorption spectra.
Sibambo, Sibongile R; Pillay, Viness; Choonara, Yahya E; Khan, Riaz A; Sweet, Joe L
2007-09-01
This study elucidated the in vitro physicomechanical transitions of a crosslinked polylactic-co-glycolic acid (PLGA) scaffold, utilizing quantum mechanics to compute the ab initio energy requirements of a salted-out and subsequently crosslinked PLGA scaffold interacting with simulated physiological fluid, phosphate buffered saline (PBS) (pH 7.4, 37 degrees C) at a molecular level. Twenty-six salted-out PLGA scaffolds were formulated using a four factor, two centerpoint quadratic Face-Centered Central Composite Design (FCCD). PLGA molecular mass, PLGA concentration, water volume and salting-out reaction time were the dependant formulation variables. Subsequent to PLGA solubilization in dimethyl formamide (DMF), protonated water was added to induce salting-out of PLGA into a scaffolds that were immersed in PBS, oscillated at 100 rpm, and analyzed at pre-determined time intervals for their physicomechanical and ab initio quantum energy transitions. Results indicated that the matrix resilience (MR) decreased with longer incubation periods (MR=35-45%) at day 30. Scaffolds salted-out using higher PLGA concentrations exhibited minimal changes in MR and the matrix ability to absorb energy was found to closely correlate with the scaffold residence time in PBS. Spartan-based ab initio quantum energy predictions elucidated the potential scaffold stability from a molecular viewpoint and its suitability for use in rate-modulated drug delivery.
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
NASA Astrophysics Data System (ADS)
Jensen, Per; Bunker, P. R.; Epa, V. C.; Karpfen, A.
1992-02-01
We have previously determined an analytical ab initio six-dimensional potential energy surface for the HCl dimer, and have used it to determine the minimum energy path for the trans-tunneling motion. In the present paper we refine this path by fitting to data. We calculate a further 178 ab initio points in order to determine the HCl stretching energies, and HCl stretching dipole moment functions, at eight positions along the minimum energy path. We use these ab initio results to compute the stretching wavenumbers and transition moments from the v1 = v2 = 0 state to all states of (HCl) 2 that have v1 + v2 ≤ 3, where v1 and v2 are the local mode quantum numbers for the HCl stretching vibrations. In doing this calculation we have assumed an adiabatic separation of the HCl stretching motion from the other vibrational motions in the dimer, and have used the semirigid bender Hamiltonian to average over the trans-tunneling motion. We obtain the fundamental "free-H" stretch v1 at 2877 cm -1 and the fundamental "bound-H" stretch v2 at 2861 cm -1; the experimental values are 2880 and 2854 cm -1, respectively.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Yang, Lina; Minnich, Austin J.
2017-03-01
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
NASA Astrophysics Data System (ADS)
Tachikawa, Masanori; Shiga, Motoyuki
2004-09-01
We have applied the ab initio path integral molecular dynamics simulation to study hydronium ion and its isotopes, which are the simplest systems for hydrated proton and deuteron. In this simulation, all the rotational and vibrational degrees of freedom are treated fully quantum mechanically, while the potential energies of the respective atomic configurations are calculated "on the fly" using ab initio quantum chemical approach. With the careful treatment of the ab initio electronic structure calculation by relevant choices in electron correlation level and basis set, this scheme is theoretically quite rigorous except for Born-Oppenheimer approximation. This accurate calculation allows a close insight into the structural shifts for the isotopes of hydronium ion by taking account of both quantum mechanical and thermal effects. In fact, the calculation is shown to be successful to quantitatively extract the geometrical isotope effect with respect to the Walden inversion. It is also shown that this leads to the isotope effect on the electronic structure as well as the thermochemical properties.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
Yang, Lina; Minnich, Austin J.
2017-01-01
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Geng, Hua Y.
2015-02-15
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.
Ab initio molecular dynamics simulation of pressure-induced phase transformation in BeO
Xiao, Haiyan; Duan, G; Zu, X T; Weber, William J
2011-01-01
Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ {yields} RS and ZB {yields} RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ {yields} RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchange-correlation functional employed and the way of applying pressure.
Spectra of water dimer from a new ab initio potential with flexible monomers
NASA Astrophysics Data System (ADS)
Leforestier, Claude; Szalewicz, Krzysztof; van der Avoird, Ad
2012-07-01
We report the definition and testing of a new ab initio 12-dimensional potential for the water dimer with flexible monomers. Using our recent accurate CCpol-8s rigid water pair potential [W. Cencek, K. Szalewicz, C. Leforestier, R. van Harrevelt, and A. van der Avoird, Phys. Chem. Chem. Phys. 10, 4716 (2008), 10.1039/b809435g] as a reference for the undistorted monomers' geometries, a distortion correction has been added, which was taken from a former flexible-monomer ab initio potential. This correction allows us to retrieve the correct binding energy D_e = 21.0{kJ mol}^{-1}, and leads to an equilibrium geometry in close agreement with the one obtained from benchmark calculations. The kinetic energy operator describing the flexible-monomer water dimer has been expressed in terms of Radau coordinates for each monomer and a recent general cluster polyspherical formulation describing their relative motions. Within this formulation, an adiabatic scheme has been invoked in order to decouple fast (intramolecular) modes and slow (intermolecular) ones. Different levels of approximation were tested, which differ in the way in which the residual potential coupling between the intramolecular modes located on different monomers and the dependence of the monomer rotational constants on the dimer geometry are handled. Accurate calculations of the vibration-rotation-tunneling levels of (H2O)2 and (D2O)2 were performed, which show the best agreement with experiments achieved so far for any water potential. Intramolecular excitations of the two monomers were calculated within two limiting cases, to account for the lack of non-adiabatic coupling between intramolecular modes due to the intermolecular motion. In the first model, the excitation was assumed to stay either on the donor or the acceptor molecule, and to hop between the two moieties upon donor-acceptor interchange. In the second model, the excitation remains on the same molecule whatever is the dimer geometry. Marginal
An ab initio HCN/HNC rotational-vibrational line list and opacity function for astronomy
NASA Astrophysics Data System (ADS)
Harris, Gregory John
HCN/HNC is an important molecule which is found throughout the universe. For example HCN/HNC is known to exist in comets, planetary atmospheres and the interstellar medium. HCN is also an important opacity source in carbon rich stars (C-stars). HCN masers have been observed in the circumstellar material around these C-stars and also in galaxies. Jorgensen and co-workers investigated model carbon star atmospheres in which they included HCN as an opacity source. They found that including a HCN opacity function had a remarkable effect: the atmosphere expanded by five times and the pressure of the atmosphere in the surface layers dropped by one or two orders of magnitude. This suggests that a full and detailed treatment of the rotational-vibrational spectrum of HCN/HNC could have a profound effect on the models of carbon stars, this provides the main motivation in this work. The temperatures of the stars in which HCN is an important opacity source Teff = 2000 - 3000 K. If HCN and HNC are in thermodynamic equilibrium it would be expected that HNC as well as HCN are found in significant populations. The transition dipoles of the fundamental bands of HNC are more than twice as strong as their HCN counter parts. These factors mean that both HCN and HNC will be considered, which makes a semiglobal treatment of the [H,C,N] system necessary. In this thesis an ab initio HCN/HNC linelist, from which accurate spectra and opacity functions can be calculated, is computed. Within this thesis I present least squares fits for ab initio semiglobal potential energy, dipole moment, relativistic correction and adiabatic correction surfaces. The potential energy surface (PES) is morphed for HNC geometries of the potential to improve the HNC representation of the surface. The PES and dipole moment surface (DMS) are used to perform quantum mechanical nuclear motion (rotational-vibrational) calculations with the DVR3D suite of codes. Preliminary calculations are made to optimise a ro
Yamaji, Youhei
2015-12-31
Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.
Ab initio study of hydrogen migration across n-alkyl radicals.
Davis, Alexander C; Francisco, Joseph S
2011-04-14
A thorough ab initio investigation is conducted on all possible hydrogen migration pathways for the 1-ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl, 1-heptyl, and 1-octyl radicals in order to determine underlying trends in reaction enthalpies, activation energies, Arrhenius A-factors, tunneling, and rate coefficients. The G4, G2, and CBS-Q composite methods are used to determine the enthalpy of reaction and activation energy barrier for each reaction. Each method shows excellent agreement with eight experimental enthalpy of reaction values, with root mean squared values of 0.8, 0.9, and 0.6 kcal mol(-1) for CBS-Q, G2, and G4, respectively. Differences in barrier heights, A-factors, tunneling, and rate coefficients are observed for axial and equatorial arrangements as well as between secondary hydrogen migration sites, depending on the location of the secondary site relative to the terminal carbon. The validity of using cycloalkane model systems to estimate rate parameters is also assessed. The failure of two key assumptions inherent to the cycloalkane models, resulting in a breakdown in the accuracy of these methods for larger transition states, is discussed. This study has significant ramifications for future theoretical, experimental, and modeling studies involving the decomposition of n-alkanes.
NASA Astrophysics Data System (ADS)
Gallegos-Cuellar, A. A.; Licona-Ibarra, R.; Rivas-Silva, J. F.; Flores-Riveros, A.; Azorín Nieto, J.; Casco-Vásquez, J. F.
2013-11-01
High frequency absorption spectral lines not matching any of the chemical constituents were observed while analyzing the infrared experimental spectrum of a K2YF5:Tb+3 sample. We ascribe these lines to the presence of impurities that inadvertently contaminated the crystal compound during synthesis, whose mass and electronegativity apparently indicate OH substitutional ions occupying fluorine sites. In this report we have performed ab initio calculations by means of a solid state computational code, applied to a model consisting of a potassium-yttrium-double fluoride structure where OH ion aggregates are introduced on F sites, which indeed confirm such assignment.
2014-01-01
Background Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. Results SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. Conclusions SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/. PMID:24980894
NASA Astrophysics Data System (ADS)
Avram, N. M.; Brik, M. G.; Andreici, E.-L.
2014-09-01
In this paper we calculated the spin-Hamiltonian parameters (g factors {{g}||}, {{g}\\bot } and zero field splitting parameter D) for Fe6+ ions doped in K2MO4 (M = S, Cr, Se) crystals, taking into account the actual site symmetry of the Fe6+ impurity ion. The suggested method is based on the successful application of two different approaches: the crystal field theory (CFT) and density functional based (DFT). Within the CFT model we used the cluster approach and the perturbation theory method, based on the crystal field parameters, which were calculated in the superposition model. Within the DFT approach the calculations were done at the self-consistent field (SCF) by solving the coupled perturbed SCF equations. Comparison with experimental data shows that the obtained results are quite satisfactory, which proves applicability of the suggested calculating technique.
Pisani, Cesare; Erba, Alessandro; Ferrabone, Matteo; Dovesi, Roberto
2012-07-28
In the frame of the Born-Oppenheimer approximation, nuclear motions in crystals can be simulated rather accurately using a harmonic model. In turn, the electronic first-order density matrix (DM) can be expressed as the statistically weighted average over all its determinations each resulting from an instantaneous nuclear configuration. This model has been implemented in a computational scheme which adopts an ab initio one-electron (Hartree-Fock or Kohn-Sham) Hamiltonian in the CRYSTAL program. After selecting a supercell of reasonable size and solving the corresponding vibrational problem in the harmonic approximation, a Metropolis algorithm is adopted for generating a sample of nuclear configurations which reflects their probability distribution at a given temperature. For each configuration in the sample the "instantaneous" DM is calculated, and its contribution to the observables of interest is extracted. Translational and point symmetry of the crystal as reflected in its average DM are fully exploited. The influence of zero-point and thermal motion of nuclei on such important first-order observables as x-ray structure factors and Compton profiles can thus be estimated.
Ab initio investigation of the first hydration shell of protonated glycine
Wei, Zhichao; Chen, Dong E-mail: boliu@henu.edu.cn; Zhao, Huiling; Li, Yinli; Zhu, Jichun; Liu, Bo E-mail: boliu@henu.edu.cn
2014-02-28
The first hydration shell of the protonated glycine is built up using Monte Carlo multiple minimum conformational search analysis with the MMFFs force field. The potential energy surfaces of the protonated glycine and its hydration complexes with up to eight water molecules have been scanned and the energy-minimized structures are predicted using the ab initio calculations. First, three favorable structures of protonated glycine were determined, and the micro-hydration processes showed that water can significantly stabilize the unstable conformers, and then their first hydration shells were established. Finally, we found that seven water molecules are required to fully hydrate the first hydration shell for the most stable conformer of protonated glycine. In order to analyse the hydration process, the dominant hydration sites located around the ammonium and carboxyl groups are studied carefully and systemically. The results indicate that, water molecules hydrate the protonated glycine in an alternative dynamic hydration process which is driven by the competition between different hydration sites. The first three water molecules are strongly attached by the ammonium group, while only the fourth water molecule is attached by the carboxyl group in the ultimate first hydration shell of the protonated glycine. In addition, the first hydration shell model has predicted most identical structures and a reasonable accord in hydration energy and vibrational frequencies of the most stable conformer with the conductor-like polarizable continuum model.
Enthalpy of the gas-phase CO2 + Mg reaction from ab initio total energies.
Lesar, Antonija; Prebil, Sasa; Hodoscek, Milan
2002-01-01
Various highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3(MP2), G3//B3LYP, G3(MP2)//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction enthalpies of the ground-state reaction of CO2 with Mg. All model chemistries predict highly endothermic reactions, with DeltaH(298) = 63.6-69.7 kcal x mol(-1). The difference between the calculated reaction enthalpies and the experimental value, evaluated with recommended experimental standard enthalpies of formation for products and reactants, is more than 20 kcal x mol(-1) for all methods. This difference originates in the incorrect experimental enthalpy of formation of gaseous MgO given in thermochemical databases. When the theoretical formation enthalpy for MgO calculated by a particular method is used, the deviation is reduced to 1.3 kcal x mol(-1). The performance of the methodologies used to calculate the heat of this particular reaction and the enthalpy of formation of MgO are discussed.
Ab initio Mapping of Interlayer Coupling in Transition Metal Dichalcogenides and Graphene
NASA Astrophysics Data System (ADS)
Fang, Shiang; Kaxiras, Efthimios
Two-dimensional layered materials cover a wide variety of physics phenomena, such as topological phases, superconductivity, magnetism and charge density waves. Owing to the layered geometry and the van der Waals interactions in between, stacks of these van der Waals layered materials provide a venue to create a heterostructure with various physics properties. The interaction between different physics properties is particular interesting to engineer the material with the desired properties. One of the crucial ingredient in understanding the heterostructure is the interlayer coupling in between. In the literature, such kind of coupling has been proposed in various empirical forms. However, a true ab initio coupling model is still lacking. For the first time, here we have derived such interlayer coupling model from the first principle calculations based on the Wannier transformation of graphene stacks. We further investigate the Fermi velocity renormalization, van Hove singularities and the moire pattern for electron localization. Such microscopic understanding of the interlayer coupling would shed light on orbital hybridization and transport in multilayer stacks. This work was supported by the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319, and by ARO MURI Award No. W911NF-14-0247.
Biswas, Parthapratim; Drabold, D. A.; Atta-Fynn, Raymond
2014-12-28
A study of the formation of voids and molecular hydrogen in hydrogenated amorphous silicon is presented based upon a hybrid approach that involves inversion of experimental nuclear magnetic resonance data in conjunction with ab initio total-energy relaxations in an augmented solution space. The novelty of this approach is that the voids and molecular hydrogen appear naturally in the model networks unlike conventional approaches, where voids are created artificially by removing silicon atoms from the networks. Two representative models with 16 and 18 at. % of hydrogen are studied in this work. The result shows that the microstructure of the a-Si:H network consists of several microvoids and few molecular hydrogen for concentration above 15 at. % H. The microvoids are highly irregular in shape and size, and have a linear dimension of 5–7 Å. The internal surface of a microvoid is found to be decorated with 4–9 hydrogen atoms in the form of monohydride Si–H configurations as observed in nuclear magnetic resonance experiments. The microstructure consists of (0.9–1.4)% hydrogen molecules of total hydrogen in the networks. These observations are consistent with the outcome of infrared spectroscopy, nuclear magnetic resonance, and calorimetry experiments.
NASA Astrophysics Data System (ADS)
Hallberg, Håkan; Olsson, Pär A. T.
2016-05-01
Microstructure evolution in thin Cu films during room temperature self-annealing is investigated by means of a mesoscale level set model. The model is formulated such that the relative, or collective, influence of anisotropic grain boundary energy, mobility and heterogeneously distributed stored energy can be investigated. Density functional theory (DFT) calculations are performed in the present work to provide the variation of grain boundary energy for different grain boundary configurations. The stability of the predominant (111) fiber texture in the as-deposited state is studied as well as the stability of some special low-Σ grain boundaries. Further, the numerical model allows tracing of the grain size distribution and occurrence of abnormal grain growth during self-annealing. It is found that abnormal grain growth depends mainly on the presence of stored energy variations, whereas anisotropic grain boundary energy or mobility is insufficient to trigger any abnormal growth in the model. However, texture dependent grain boundary properties, mobility in particular, contribute to an increased content of low-Σ boundaries in the annealed microstructure. The increased presence of such boundaries is also promoted by stored energy variations. In addition, if the stored energy variations are sufficient the coexisting (111) and (001) texture components in the as-deposited state will evolve into a (001) dominated texture during annealing. Further, it is found that whereas stored energy variations promote the stability of the (001) texture component, anisotropic grain boundary energy and mobility tend to work the other way and stabilize the (111) component at the expense of (001) grains.
Misquitta, Alston J; Stone, Anthony J
2016-09-13
Creating accurate, analytic atom-atom potentials for small organic molecules from first principles can be a time-consuming and computationally intensive task, particularly if we also require them to include explicit polarization terms, which are essential in many systems. We describe how the CamCASP suite of programs can be used to generate such potentials using some of the most accurate electronic structure methods currently applicable. We derive the long-range terms from monomer properties and determine the short-range anisotropy parameters by a novel and robust method based on the iterated stockholder atom approach. Using these techniques, we develop distributed multipole models for the electrostatic, polarization, and dispersion interactions in the pyridine dimer and develop a series of many-body potentials for the pyridine system. Even the simplest of these potentials exhibits root mean square errors of only about 0.6 kJ mol(-1) for the low-energy pyridine dimers, significantly surpassing the best empirical potentials. Our best model is shown to support eight stable minima, four of which have not been reported before in the literature. Further, the functional form can be made systematically more elaborate so as to improve the accuracy without a significant increase in the human-time spent in their generation. We investigate the effects of anisotropy, rank of multipoles, and choice of polarizability and dispersion models.
Gosse, Laurent . E-mail: mauser@univie.ac.at
2006-01-01
This work is concerned with the semiclassical approximation of the Schroedinger-Poisson equation modeling ballistic transport in a 1D periodic potential by means of WKB techniques. It is derived by considering the mean-field limit of a N-body quantum problem, then K-multivalued solutions are adapted to the treatment of this weakly nonlinear system obtained after homogenization without taking into account for Pauli's exclusion principle. Numerical experiments display the behaviour of self-consistent wave packets and screening effects.
Sugden, Isaac; Adjiman, Claire S.; Pantelides, Constantinos C.
2016-01-01
The global search stage of crystal structure prediction (CSP) methods requires a fine balance between accuracy and computational cost, particularly for the study of large flexible molecules. A major improvement in the accuracy and cost of the intramolecular energy function used in the CrystalPredictor II [Habgood et al. (2015 ▸). J. Chem. Theory Comput. 11, 1957–1969] program is presented, where the most efficient use of computational effort is ensured via the use of adaptive local approximate model (LAM) placement. The entire search space of the relevant molecule’s conformations is initially evaluated using a coarse, low accuracy grid. Additional LAM points are then placed at appropriate points determined via an automated process, aiming to minimize the computational effort expended in high-energy regions whilst maximizing the accuracy in low-energy regions. As the size, complexity and flexibility of molecules increase, the reduction in computational cost becomes marked. This improvement is illustrated with energy calculations for benzoic acid and the ROY molecule, and a CSP study of molecule (XXVI) from the sixth blind test [Reilly et al. (2016 ▸). Acta Cryst. B72, 439–459], which is challenging due to its size and flexibility. Its known experimental form is successfully predicted as the global minimum. The computational cost of the study is tractable without the need to make unphysical simplifying assumptions. PMID:27910837
NASA Astrophysics Data System (ADS)
Kontsevoi, O. Yu.
2005-03-01
Alloys based on Pt-group metals are promising materials for ultra-high temperature applications. Among them, Rh-based alloys are attractive due to a combination of high melting point, strength and superior oxidation resistance. Unfortunately, there is no information about dislocation properties and mechanisms driving their mechanical behavior. We analyzed the structure and mobility of dislocations in Rh3X, where X = Ti, Zr, Hf, V, Nb, Ta, within the modified Peierls-Nabarro model with generalized stacking fault energetics calculated using the FLAPW methodootnotetextWimmer, Krakauer, Weinert, and Freeman, PRB 24, 864 (1981). Superdislocations with type I core structure (APB-bounded) are preferred in Rh3Ti and Rh3Ta, whereas superdislocations with type II core (SISF-bounded) are predicted in Rh3V and Rh3Nb. An unusual superdislocation core structure (SISF-bounded type II^' with different sequence of Shockley partials), resulting from the unstable APB energy, was found in Rh3Hf and Rh3Zr. Based on our analysis of dislocation structure and mobility, we provide predictions of temperature yield stress behavior of Rh-based intermetallics, and show that their dislocation properties are closely connected with features of the electronic structure and the instability of the L12 phase with respect to D019 and D024.
Morrison, Adrian F; Herbert, John M
2015-11-05
We introduce a charge-embedding scheme for an excited-state quantum chemistry method aimed at weakly interacting molecular aggregates. The Hamiltonian matrix for the aggregate is constructed in a basis of direct products of configuration-state functions for the monomers, and diagonalization of this matrix affords excitation energies within ∼0.2 eV of the corresponding supersystem calculation. Both the basis states and the coupling matrix elements can be computed in a distributed way, resulting in an algorithm whose time-to-solution is independent of the number of chromophores, and we report calculations on systems with almost 55 000 basis functions using fewer than 450 processors. In a semiconducting organic nanotube, we find evidence of ultrafast, coherent dynamics followed by energy localization driven by static disorder. Truncation of the model system has a qualitative effect on the energy-transfer dynamics, demonstrating the importance of simulating an extended portion of the nanotube, which is not feasible using traditional quantum chemistry.
Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12--25 Solar Mass Stars
Bruenn, S. W.; Mezzacappa, Anthony; Hix, William Raphael; Lentz, E. J.; Messer, Bronson; Lingerfelt, Eric J; Blondin, J. M.; Endeve, Eirik; Marronetti, Pedro; Yakunin, Konstantin
2013-01-01
We present an overview of four ab initio axisymmetric core-collapse supernova simulations employing detailed spectral neutrino transport computed with our CHIMERA code and initiated from Woosley & Heger (2007) progenitors of mass 12, 15, 20, and 25 M_sun. All four models exhibit shock revival over ~ 200 ms (leading to the possibility of explosion), driven by neutrino energy deposition. Hydrodynamic instabilities that impart substantial asymmetries to the shock aid these revivals, with convection appearing first in the 12 solar mass model and the standing accretion shock instability (SASI) appearing first in the 25 solar mass model. Three of the models have developed pronounced prolate morphologies (the 20 solar mass model has remained approximately spherical). By 500 ms after bounce the mean shock radii in all four models exceed 3,000 km and the diagnostic explosion energies are 0.33, 0.66, 0.65, and 0.70 Bethe (B=10^{51} ergs) for the 12, 15, 20, and 25 solar mass models, respectively, and are increasing. The three least massive of our models are already sufficiently energetic to completely unbind the envelopes of their progenitors (i.e., to explode), as evidenced by our best estimate of their explosion energies, which first become positive at 320, 380, and 440 ms after bounce. By 850 ms the 12 solar mass diagnostic explosion energy has saturated at 0.38 B, and our estimate for the final kinetic energy of the ejecta is ~ 0.3 B, which is comparable to observations for lower-mass progenitors.
Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces
Hupin, Guillaume; Langhammer, Joachim; Navratil, Petr; ...
2013-11-27
We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects from themore » inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2– and 1/2– resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. As a result, we find remarkably good agreement with measured differential cross sections at various energies below the d+3H threshold, while analyzing powers manifest larger deviations from experiment for certain energies and angles.« less
Ab initio lattice stability of fcc and hcp Fe-Mn random alloys.
Gebhardt, T; Music, D; Hallstedt, B; Ekholm, M; Abrikosov, I A; Vitos, L; Schneider, J M
2010-07-28
We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Néel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Néel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.
Ab initio Approach to Effective Single-Particle Energies in Doubly Closed Shell Nuclei
Duguet, T.
2012-01-01
The present work discusses, from an ab initio standpoint, the definition, the meaning, and the usefulness of effective single-particle energies (ESPEs) in doubly closed shell nuclei. We perform coupled-cluster calculations to quantify to what extent selected closed-shell nuclei in the oxygen and calcium isotopic chains can effectively be mapped onto an effective independent-particle picture. To do so, we revisit in detail the notion of ESPEs in the context of strongly correlated many-nucleon systems and illustrate the necessity of extracting ESPEs through the diagonalization of the centroid matrix, as originally argued by Baranger. For the purpose of illustration, we analyze the impact of correlations on observable one-nucleon separation energies and nonobservable ESPEs in selected closed-shell oxygen and calcium isotopes. We then state and illustrate the nonobservability of ESPEs. Similarly to spectroscopic factors, ESPEs can indeed be modified by a redefinition of inaccessible quantities while leaving actual observables unchanged. This leads to the absolute necessity of employing consistent structure and reaction models based on the same nuclear Hamiltonian to extract the shell structure in a meaningful fashion from experimental data.
Ab initio study of the Br(2P)-HBr van der Waals complex.
Toboła, R; Chałasiński, G; Kłos, J; Szcześniak, M M
2009-05-14
This study reports an ab initio characterization of a prereactive van der Waals complex between an open-shell atom Br((2)P) and a closed shell molecule HBr. The three adiabatic potential surfaces 1 (2)A('), 2 (2)A('), and 1 (2)A("), which result from the splitting of degenerate P state of Br are obtained from coupled cluster calculations. The coupling between same-symmetry states is calculated by multireference configuration-interaction method. A transformation to a diabatic representation and inclusion of the spin-orbit coupling effects on the interactions are also discussed. Bound states are calculated using an adiabatic bender model. The global minimum on the lowest adiabatic potential surface corresponds to a T-shaped geometry and has a well depth of D(e)=762.5 cm(-1) at R(e)=3.22 A. A secondary minimum occurs for a hydrogen-bonded geometry with D(e)=445.3 cm(-1) at R(e)=4.24 A. Upon inclusion of spin-orbit coupling the hydrogen-bonded minimum remains at the same depth, but the T-shaped minimum washes out to less than half of its spin-free value. The lowest bound state is localized in the linear minimum. The spin-orbit coupling plays a very important role in shaping of the potential energy surfaces of Br-HBr.
High-level ab initio computations of the absorption spectra of organic iridium complexes.
Plasser, Felix; Dreuw, Andreas
2015-02-12
The excited states of fac-tris(phenylpyridinato)iridium [Ir(ppy)3] and the smaller model complex Ir(C3H4N)3 are computed using a number of high-level ab initio methods, including the recently implemented algebraic diagrammatic construction method to third-order ADC(3). A detailed description of the states is provided through advanced analysis methods, which allow a quantification of different charge transfer and orbital relaxation effects and give extended insight into the many-body wave functions. Compared to the ADC(3) benchmark an unexpected striking difference of ADC(2) is found for Ir(C3H4N)3, which derives from an overstabilization of charge transfer effects. Time-dependent density functional theory (TDDFT) using the B3LYP functional shows an analogous but less severe error for charge transfer states, whereas the ωB97 results are in good agreement with ADC(3). Multireference configuration interaction computations, which are in reasonable agreement with ADC(3), reveal that static correlation does not play a significant role. In the case of the larger Ir(ppy)3 complex, results at the TDDFT/B3LYP and TDDFT/ωB97 levels of theory are presented. Strong discrepancies between the two functionals, which are found with respect to the energies, characters, as well as the density of the low lying states, are discussed in detail and compared to experiment.
Ab initio study of several static and dynamic properties of bulk liquid Ni near melting
NASA Astrophysics Data System (ADS)
del Rio, B. G.; González, L. E.; González, D. J.
2017-01-01
Several static and dynamic properties of bulk liquid Ni at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the static structure factor, which underlines a marked local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, and the calculated dynamic structure factors, S (q ,ω ) , show a good agreement with the inelastic x-ray scattering measurements. The obtained dispersion relation closely follows that obtained from the inelastic x-ray scattering measurements; moreover we analyze the possible reasons behind its discrepancy with respect to the dispersion relation derived from the inelastic neutron scattering data. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. We have found that the transverse current spectral functions exhibit some features which, so far, had previously been shown by high pressure liquid metals only. Furthermore, the calculated S (q ,ω ) show, within some q-range, the appearance of transverse-like excitation modes, similar to those recently found in other liquid metals. Finally, results are also reported for several transport coefficients.
High-level ab initio studies of hydrogen abstraction from prototype hydrocarbon systems.
Temelso, Berhane; Sherrill, C David; Merkle, Ralph C; Freitas, Robert A
2006-09-28
Symmetric and nonsymmetric hydrogen abstraction reactions are studied using state-of-the-art ab initio electronic structure methods. Second-order Møller-Plesset perturbation theory (MP2) and the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] methods with large correlation consistent basis sets (cc-pVXZ, where X = D,T,Q) are used in determining the transition-state geometries, activation barriers, and thermodynamic properties of several representative hydrogen abstraction reactions. The importance of basis set, electron correlation, and choice of zeroth-order reference wave function in the accurate prediction of activation barriers and reaction enthalpies are also investigated. The ethynyl radical (*CCH), which has a very high affinity for hydrogen atoms, is studied as a prototype hydrogen abstraction agent. Our high-level quantum mechanical computations indicate that hydrogen abstraction using the ethynyl radical has an activation energy of less than 3 kcal mol(-1) for hydrogens bonded to an sp(2) or sp(3) carbon. These low activation barriers further corroborate previous studies suggesting that ethynyl-type radicals would make good tooltips for abstracting hydrogens from diamondoid surfaces during mechanosynthesis. Modeling the diamond C(111) surface with isobutane and treating the ethynyl radical as a tooltip, hydrogen abstraction in this reaction is predicted to be barrierless.
Codina, Antonio; Fernández, Eduardo J; Jones, Peter G; Laguna, Antonio; López-De-Luzuriaga, José M; Monge, Miguel; Olmos, M Elena; Pérez, Javier; Rodríguez, Miguel A
2002-06-12
[M(C6F5)(N(H)=CPh2)] (M = Ag (1) and Au (2)) complexes have been synthesized and characterized by X-ray diffraction analysis. Complex 1 shows a ladder-type structure in which two [Ag(C6F5)(N(H)=CPh2)] units are linked by a Ag(I)-Ag(I) interaction in an antiparallel disposition. The dimeric units are associated through hydrogen bonds of the type N-H...F(ortho). On the other hand, gold(I) complex 2 displays discrete dimers also in an antiparallel conformation in which both Au(I)-Au(I) interactions and N-H.F(ortho) hydrogen bonds appear within the dimeric units. The features of these coexisting interactions have been theoretically studied by ab initio calculations based on four different model systems in order to analyze them separately. The interactions have been analyzed at HF and MP2 levels of theory showing that, in this case, even at larger distances. The Au(I)-Au(I) interaction is stronger than Ag(I)-Ag(I) and that N-H.F hydrogen bonding and Au(I)-Au(I) contacts have a similar strength in the same molecule, which permits a competition between these two structural motifs giving rise to different structural arrangements.
Ab initio study for the hydrogen abstraction reactions on toluene and tetralin.
Beste, Ariana; Harrison, Robert J; Britt, Phillip F; Buchanan III, A C
2006-01-01
Hydrogen abstraction reactions play a key role in many thermal and catalytic processes involved in the production of fuels and chemicals. In this paper, the hydrogen abstraction reactions on toluene and tetralin by the benzyl radical are investigated by ab initio methods. These reactions are representatives of similar reactions occurring in the thermolysis of lignin model compounds containing the phenethyl phenyl ether (PPE) structural moiety. The title reactions serve to calibrate the theoretical methods to be used in the study of PPE pyrolysis through comparison of the reaction barriers with reliable experimental values. We used two different hybrid density functionals (BHandHLYP, B3LYP) and second-order perturbation theory to obtain equilibrium and transition state geometries. We recomputed selected energy barriers at the B3LYP geometries with the coupled cluster singles and doubles (CCSD) method. Multiple transition states were found for both reactions. BHandHLYP underestimates and second-order perturbation theory overestimates the reaction barriers; B3LYP energy barriers agree well with experiment and the corresponding CCSD energy barriers. The flat potential energy surface around the saddle points causes numerical inaccuracies. We observe the break down of the harmonic approximation in the calculation of low frequencies.
Jacob, Rebecca; Tate, Margaret; Banti, Yididya; Rix, Colin; Mainwaring, David E
2008-01-17
Despite the complex phenomena involved in encoding template molecule information within stable synthetic polymers to yield selective and efficient molecular recognition processes, molecularly imprinted polymers (MIP) are increasingly finding broad areas of application. Molecular interactions, both during the polymerization of the functional monomers in the presence of the template and during the processes of specific recognition after template removal, are key determinants of an effective MIP. Covalent and noncovalent template imprinting have been employed to achieve specific recognition sites. In the present study, a molecularly imprinted biocompatible polymer, having a high capacity and affinity for the dye template, nickel(II) phthalocyanine tetrasulfonic acid, has been prepared. UV-visible spectroscopy, FTIR spectroscopy, and ICP analysis were used to investigate the aspects of the synthesis, binding capacity, and adsorption kinetics of the system. Poly(allylamine) cross-linked with epichlorohydrin has been used to represent an amino-functional receptor. Binding isotherms and capacities were correlated with the degree of template removal. Kinetic studies of binding allowed diffusion mechanisms to be evaluated for the fine particulate MIP. Ab initio molecular orbital calculations were performed using Hartree-Fock, MP2, and density functional theory methods to determine the most likely mechanisms of molecular imprinting. Suitable theoretical models have been constructed to mimic the interactions between the template molecule and the polymer. Simulation of the vibrational spectra was also undertaken to make meaningful assignments to experimentally determined spectral bands resulting from these template MIP receptor interactions.
Unified ab initio formulation of flexoelectricity and strain-gradient elasticity
NASA Astrophysics Data System (ADS)
Stengel, Massimiliano
2016-06-01
The theory of flexoelectricity and that of nonlocal elasticity are closely related, and are often considered together when modeling strain-gradient effects in solids. Here I show, based on a first-principles lattice-dynamical analysis, that their relationship is much more intimate than previously thought, and their consistent simultaneous treatment is crucial for obtaining correct physical answers. In particular, I identify a gauge invariance in the theory, whereby the energies associated to strain-gradient elasticity and flexoelectrically induced electric fields are individually reference dependent, and only when summed up they yield a well-defined result. To illustrate this, I construct a minimal thermodynamic functional incorporating strain-gradient effects, and establish a formal link between the continuum description and ab initio phonon dispersion curves to calculate the relevant tensor quantities. As a practical demonstration, I apply such a formalism to bulk SrTiO3, where I find an unusually strong contribution of nonlocal elasticity, mediated by the interaction between the ferroelectric soft mode and the transverse acoustic branches. These results have important implications towards the construction of well-defined thermodynamic theories where flexoelectricity and ferroelectricity coexist. More generally, they open exciting new avenues for the implementation of hierarchical multiscale concepts in the first-principles simulation of crystalline insulators.
Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface
Valentini, Paolo Schwartzentruber, Thomas E. Bender, Jason D. Nompelis, Ioannis Candler, Graham V.
2015-08-15
The direct molecular simulation (DMS) approach is used to predict the internal energy relaxation and dissociation dynamics of high-temperature nitrogen. An ab initio potential energy surface (PES) is used to calculate the dynamics of two interacting nitrogen molecules by providing forces between the four atoms. In the near-equilibrium limit, it is shown that DMS reproduces the results obtained from well-established quasiclassical trajectory (QCT) analysis, verifying the validity of the approach. DMS is used to predict the vibrational relaxation time constant for N{sub 2}–N{sub 2} collisions and its temperature dependence, which are in close agreement with existing experiments and theory. Using both QCT and DMS with the same PES, we find that dissociation significantly depletes the upper vibrational energy levels. As a result, across a wide temperature range, the dissociation rate is found to be approximately 4–5 times lower compared to the rates computed using QCT with Boltzmann energy distributions. DMS calculations predict a quasi-steady-state distribution of rotational and vibrational energies in which the rate of depletion of high-energy states due to dissociation is balanced by their rate of repopulation due to collisional processes. The DMS approach simulates the evolution of internal energy distributions and their coupling to dissociation without the need to precompute rates or cross sections for all possible energy transitions. These benchmark results could be used to develop new computational fluid dynamics models for high-enthalpy flow applications.
Ab Initio ONIOM-Molecular Dynamics (MD) Study on the Deamination Reaction by Cytidine Deaminase
Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako
2007-08-23
We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket of the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determing step is the release of the NH3 molecule. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.
An ab initio molecular dynamics analysis of lignin as a potential antioxidant for hydrocarbons.
Pan, Tongyan; Cheng, Cheng
2015-11-01
Lignins are complex phenolic polymers with limited industrial uses. To identify new applications of lignins, this study aims to evaluate the conifer alcohol lignin as a potential antioxidant for hydrocarbons, using the petroleum asphalt as an example. Using the ab initio molecular dynamics (AIMD) method, the evaluation is accomplished by tracking the generation of critical species in a lignin-asphalt mixture under a simulated oxidative condition. The generation of new species was detected using nuclear magnetic resonance and four analytical methods including density of states analysis, highest occupied molecular orbital and lowest unoccupied molecular orbital analyses, bonding and energy level analysis, and electrostatic potential energy analysis. Results of the analyses show that the chemical radicals of carbon, nitrogen and sulfur generated in the oxidation process could enhance the agglomeration and/or decomposition tendency of asphalt. The effectiveness of lignins as an antioxidant depends on their chemical compositions. Lignins with a HOMO-LUMO gap larger than the HOMO-LUMO gap of the hydrocarbon system to be protected, such as the conifer alcohol lignin to protect petroleum asphalt as was studied in this work, do not demonstrate beneficial anti-oxidation capacity. Lignins, however, may be effective oxidants for hydrocarbon systems with a larger HOMO-LUMO gap. In addition, lignins may contain more polar sites than the hydrocarbons to be protected; thus the lignins' hydrophobicity and compatibility with the host hydrocarbons need to be well evaluated. The developed AIMD model provides a useful tool for developing antioxidants for generic hydrocarbons.
Ab initio quasiparticle bandstructure of ABA and ABC-stacked graphene trilayers
NASA Astrophysics Data System (ADS)
Menezes, Marcos; Capaz, Rodrigo; Louie, Steven
2013-03-01
We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the quasiparticle corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher energy bands, which is proportional to the nearest neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the quasiparticle corrections. Finally, other effects, such as trigonal warping, electron-hole assymetry and energy gaps are discussed in terms of the associated parameters. This work was supported by the Brazilian funding agencies: CAPES, CNPq, FAPERJ and INCT-Nanomateriais de Carbono. It was also supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231.
Ottonello, G; Zuccolini, M Vetuschi; Belmonte, D
2010-09-14
We present the results of a computational investigation with ab initio procedures of the structure-energy and vibrational properties of silica clusters in a dielectric continuum with dielectric constant ε=3.8, through density functional theory/B3LYP gas phase calculations coupled with a polarized continuum model approach [integral equation formalism applied to a polarized continuum (IEFPCM)] and those of the periodical structure D(6h) which leads to the α-cristobalite polymorph of silica when subjected to symmetry operations with the same functional within the linear combination of atomic orbitals (LCAO) approximation and in the framework of Bloch's theorem. Based on the computed energies and vibrational features, an aggregate of the D(6h) network and the monomer locally ordered in the short-medium range and both present in the glass in a mutual arrangement lacking of spatial continuity reproduces satisfactorily the experimentally observed low T heat capacity and the deviation from the Debye T(3) law. Above T(g), the experimental heat capacity of the liquid is perfectly reproduced summing to the internal modes the translational and rotational contributions to the bulk heat capacity and subtracting the (acoustic) terms arising from coherent motion (no longer existent).
Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel
2009-05-13
Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.
Ab initio calculation of the electronic absorption spectrum of liquid water
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Ab initio calculation of the electronic absorption spectrum of liquid water.
Martiniano, Hugo F M C; Galamba, Nuno; Cabral, Benedito J Costa
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
An ab initio molecular dynamics study of iron phases at high pressure and temperature
NASA Astrophysics Data System (ADS)
Belonoshko, A. B.; Arapan, S.; Rosengren, A.
2011-12-01
The crystal structure of iron, the major component of the Earth’s inner core (IC), is unknown for the IC high pressure (P; 3.3-3.6 Mbar) and temperature (T; 5000-7000 K). There is mounting evidence that the hexagonal close-packed (hcp) phase of iron, stable at the high P of the IC and a low T, might be unstable under the IC conditions due to the impact of high T and impurities. Experiments at the IC P and T are difficult and do not provide a conclusive answer as regards the iron stability at the pressure of the IC and temperatures close to the iron melting curve. Recent theory provides contradictory results regarding the nature of the stable Fe phase. We investigated the possibility of body-centered cubic (bcc) phase stabilization at the P and T in the vicinity of the Fe melting curve by using ab initio molecular dynamics. Thermodynamic calculations, relying on the model of uncorrelated harmonic oscillators, provide nearly identical free energies within the error bars of our calculations. However, direct simulation of iron crystallization demonstrates that liquid iron freezes in the bcc structure at the P of the IC and T = 6000 K. All attempts to grow the hcp phase from the liquid failed. The mechanism of bcc stabilization is explained. This resolves most of the earlier confusion.
Ab initio molecular dynamics of the reaction of quercetin with superoxide radical
NASA Astrophysics Data System (ADS)
Lespade, Laure
2016-08-01
Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car-Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.
PSI3: an open-source Ab Initio electronic structure package.
Crawford, T Daniel; Sherrill, C David; Valeev, Edward F; Fermann, Justin T; King, Rollin A; Leininger, Matthew L; Brown, Shawn T; Janssen, Curtis L; Seidl, Edward T; Kenny, Joseph P; Allen, Wesley D
2007-07-15
PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis-set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file-system-sizes), especially multi-index quantities such as electron repulsion integrals. This platform is useful for the rapid implementation of both standard quantum chemical methods, as well as the development of new models. Features that have already been implemented include Hartree-Fock, multiconfigurational self-consistent-field, second-order Møller-Plesset perturbation theory, coupled cluster, and configuration interaction wave functions. Distinctive capabilities include the ability to employ Gaussian basis functions with arbitrary angular momentum levels; linear R12 second-order perturbation theory; coupled cluster frequency-dependent response properties, including dipole polarizabilities and optical rotation; and diagonal Born-Oppenheimer corrections with correlated wave functions. This article describes the programming infrastructure and main features of the package. PSI3 is available free of charge through the open-source, GNU General Public License.
NASA Astrophysics Data System (ADS)
Mullaney, John C.; Zaleski, Daniel P.; Tew, David Peter; Walker, Nick; Legon, Anthony
2016-06-01
An isolated, gas-phase dimer of imidazole is generated through laser vaporisation of a solid rod containing a 1:1 mixture of imidazole and copper in the presence of an argon buffer gas undergoing supersonic expansion. The complex is characterised through broadband rotational spectroscopy and is shown to have a twisted, hydrogen-bonded geometry. Calculations at the CCSD(T)(F12*)/cc-pVDZ-F12 level of theory confirm this to be the lowest-energy conformer of the imidazole dimer. The distance between the respective centres of mass of the imidazole monomer subunits is determined to be 5.2751(1) Å, and the twist angle γ describing rotation of one monomer with respect to the other about a line connecting the centres of mass of the monomers is determined to be 87.9(4)o. Four out of six intermolecular parameters in the model geometry are precisely determined from the experimental rotational constants and are consistent with results calculated ab initio.
Kinetic approach with ab initio MO method on ionic selectivity and size in sodium channel.
Tani, S; Imamura, A; Kanda, K
1989-10-23
Three kinds of models for ionic selectivity and size of the filter in sodium channel have been treated by using ab initio molecular orbital (MO) calculations with MINI-3 and MIDI-3* basis sets. A three-components system, HCO2M-H2O (M = Li+, Na+ or K+), is acceptable for describing experimental facts well. Thermochemical parameters obtained from harmonic vibrational analysis with MINI-3 basis sets, for the translocation of the permeant metal cations in the HCO2M-H2O system, are that the activation enthalpies for Li+, Na+ and K+ are 7.0, 6.4 and 23.4 kJ/mol, and also the free energies of activation are 10.6, 1.5 and 19.0 kJ/mol, respectively. These results are qualitatively in good correspondence with experimental facts of the ion selectivity of the channel. One of water molecule was found to have a key role in the translocation of the permeant cations.
Ab initio calculation of the electronic absorption spectrum of liquid water
NASA Astrophysics Data System (ADS)
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-01
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Ab initio transition state searching in complex systems: fatty acid decarboxylation in minerals.
Geatches, Dawn L; Greenwell, H Christopher; Clark, Stewart J
2011-03-31
Because of the importance of mineral catalyzed decarboxylation reactions in both crude oil formation and, increasingly, biofuel production, we present a model study into the decarboxylation of the shortest fatty acid, propionic acid C(2)H(5)COOH, into an alkane and CO(2) catalyzed by a pyrophillite-like, phyllosilicate clay. To identify the decarboxylation pathway, we searched for a transition state between the reactant, comprised of the clay plus interlayer fatty acid, and the product, comprised of the clay plus interlayer alkane and carbon dioxide. Using linear and quadratic synchronous transit mechanisms we searched for a transition state followed by vibrational analysis to verify the intermediate found as a transition state. We employed a periodic cell, planewave, ab initio density functional theory computation to examine total energy differences, Mulliken charges, vibrational frequencies, and the frontier orbitals of the reactants, intermediates, and products. The results show that interpretation of vibrational data, Mulliken charges and Fermi-level orbital occupancies is necessary for the classification of a transition state in this type of mixed bulk surface plus interlayer species, clay-organic system.
van der Linden, Marx Gomes; Ferreira, Diogo César; de Oliveira, Leandro Cristante; Onuchic, José N; de Araújo, Antônio F Pereira
2014-07-01
The three-dimensional structure of proteins is determined by their linear amino acid sequences but decipherment of the underlying protein folding code has remained elusive. Recent studies have suggested that burials, as expressed by atomic distances to the molecular center, are sufficiently informative for structural determination while potentially obtainable from sequences. Here we provide direct evidence for this distinctive role of burials in the folding code, demonstrating that burial propensities estimated from local sequence can indeed be used to fold globular proteins in ab initio simulations. We have used a statistical scheme based on a Hidden Markov Model (HMM) to classify all heavy atoms of a protein into a small number of burial atomic types depending on sequence context. Molecular dynamics simulations were then performed with a potential that forces all atoms of each type towards their predicted burial level, while simple geometric constraints were imposed on covalent structure and hydrogen bond formation. The correct folded conformation was obtained and distinguished in simulations that started from extended chains for a selection of structures comprising all three folding classes and high burial prediction quality. These results demonstrate that atomic burials can act as informational intermediates between sequence and structure, providing a new conceptual framework for improving structural prediction and understanding the fundamentals of protein folding.
Sum, A.K.; Sandler, S.I.
2000-02-17
The results of ab initio calculations for cyclic clusters of methanol, ethanol, 1-propanol, and methanethiol are presented. Dimer, trimer, and tetramer clusters of all four compounds are studied, as are pentamer and hexamer clusters of methanol. From optimized clusters at HG/6--31G**, total energies and binding energies were calculated with both the HF and MP2 theories using the aug-cc-pVDZ basis set. Accurate binding energies were also calculated for the dimer and trimer of methanol using symmetry-adapted perturbation theory with the same basis set. Intermolecular and intramolecular distances, charge distribution of binding sites, binding energies, and equilibrium constants were computed to determine the hydrogen bond cooperativity effect for each species. The cooperativity effect, exclusive to hydrogen bonding systems, results form specific forces among the molecules, in particular charge-transfer processes and the greater importance of interactions between molecules not directly hydrogen bonded because of the longer range of the interactions. The ratios of equilibrium constants for forming multimer hydrogen bonds to that for dimer hydrogen bond formation increase rapidly with the cluster size, in contrast to the constant value commonly used in thermodynamic models for hydrogen bonding liquids.
Marrying ab initio calculations and Halo-EFT: 7Li and 7Be radiative nucleon captures
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Nollett, Kenneth; Phillips, Daniel
2013-10-01
We combine ab initio quantum-Monte-Carlo (QMC) calculations with the Halo-Effective-Field-Theory (Halo-EFT) framework, in order to study low-energy radiative nucleon capture to a weakly bound (halo) nucleus. Here we focus on the reactions 7Li(n, γ)8Li and 7Be(p, γ)8B, which are subjects of long-standing interest for astrophysics. In the low-energy region we can approximate 8Li (8B) as composed of a 7Li (7Be) core (and also its excitation), and a neutron (proton) with an anomalously extended wave function. The scattering and bound states can be studied in Halo-EFT, in which both core and the nucleon are treated as fundamental degrees of freedom. In our leading order calculation, we use asymptotic normalization coefficients from QMC calculations to fix the parameters in the Lagrangian, which we then apply to study radiative captures. This obviates computing the captures by directly using numerically intensive QMC methods, while still incorporating the nuclear dynamics that these methods provide. In addition, the model-independent EFT framework provides novel insights into the manner in which these two nucleon-capture processes are related to one another. This work is supported by US Department of Energy under grant DE-FG02-93ER-40756.
Ab initio calculation of the crystalline structure and IR spectrum of polymers: nylon 6 polymorphs.
Quarti, Claudio; Milani, Alberto; Civalleri, Bartolomeo; Orlando, Roberto; Castiglioni, Chiara
2012-07-19
State-of-the-art computational methods in solid-state chemistry were applied to predict the structural and spectroscopic properties of the α and γ crystalline polymorphs of nylon 6. Density functional theory calculations augmented with an empirical dispersion correction (DFT-D) were used for the optimization of the two different crystal structures and of the isolated chains, characterized by a different regular conformation and described as one-dimensional infinite chains. The structural parameters of both crystalline polymorphs were correctly predicted, and new insight into the interplay of conformational effects, hydrogen bonding, and van der Waals interactions in affecting the properties of the crystal structures of polyamides was obtained. The calculated infrared spectra were compared to experimental data; based on computed vibrational eigenvectors, assignment of the infrared absorptions of the two nylon 6 polymorphs was carried out and critically analyzed in light of previous investigations. On the basis of a comparison of the computed and experimental IR spectra, a set of marker bands was identified and proposed as a tool for detecting and quantifying the presence of a given polymorph in a real sample: several marker bands employed in the past were confirmed, whereas some of the previous assignments are criticized. In addition, some new marker bands are proposed. The results obtained demonstrate that accurate computational techniques are now affordable for polymers characterization, opening the way to several applications of ab initio modeling to the study of many families of polymeric materials.