Science.gov

Sample records for ab initio potentials

  1. Ab initio interatomic potentials and the thermodynamic properties of fluids

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-07-01

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  2. Ab initio interatomic potentials and the thermodynamic properties of fluids.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-07-14

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  3. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  4. Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄

    SciTech Connect

    Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping

    2006-03-09

    Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less

  5. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  6. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  7. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  8. Ab initio calculation of the potential bubble nucleus 34Si

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.

    2017-03-01

    Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to

  9. Reactive Monte Carlo sampling with an ab initio potential

    DOE PAGES

    Leiding, Jeff; Coe, Joshua D.

    2016-05-04

    Here, we present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We also discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH 3 to those of ab initio molecular dynamics (AIMD). Furthermore, we find that there are regions of state spacemore » for which RxMC sampling is much more efficient than AIMD due to the “rare-event” character of chemical reactions.« less

  10. Reactive Monte Carlo sampling with an ab initio potential

    NASA Astrophysics Data System (ADS)

    Leiding, Jeff; Coe, Joshua D.

    2016-05-01

    We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the "rare-event" character of chemical reactions.

  11. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-06-01

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  12. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-06-28

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  13. Ab initio calculations of potential energy curves of Hg/sub 2/ and TlHg

    SciTech Connect

    Celestino, K.C.; Ermler, W.C.

    1984-08-15

    Potential energy curves for electronic states of Hg/sub 2/ and TlHg are presented and analyzed. They are derived using large scale configuration interaction procedures for the valence electrons, with the core electrons represented by ab initio relativistic effective potentials. The effect of spin-orbit coupling are investigated for the low-lying excimer states. It is determined that neither system possesses strongly bound electronic states for which transitions to the repulsive ground states are optically allowed.

  14. Ab initio optical potentials and nucleon scattering on medium mass nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Barbieri, C.; Navrátil, P.

    2018-03-01

    We show first results for the elastic scattering of neutrons off oxygen and calcium isotopes obtained from ab initio optical potentials. The potential is derived using self-consistent Green’s function theory (SCGF) with the saturating chiral interaction NNLOsat. Calculations are compared to available scattering data and show that it is possible to reproduce low energy scattering observables in medium mass nuclei from first principles.

  15. Approximate Quantum Dynamics using Ab Initio Classical Separable Potentials: Spectroscopic Applications.

    PubMed

    Hirshberg, Barak; Sagiv, Lior; Gerber, R Benny

    2017-03-14

    Algorithms for quantum molecular dynamics simulations that directly use ab initio methods have many potential applications. In this article, the ab initio classical separable potentials (AICSP) method is proposed as the basis for approximate algorithms of this type. The AICSP method assumes separability of the total time-dependent wave function of the nuclei and employs mean-field potentials that govern the dynamics of each degree of freedom. In the proposed approach, the mean-field potentials are determined by classical ab initio molecular dynamics simulations. The nuclear wave function can thus be propagated in time using the effective potentials generated "on the fly". As a test of the method for realistic systems, calculations of the stationary anharmonic frequencies of hydrogen stretching modes were carried out for several polyatomic systems, including three amino acids and the guanine-cytosine pair of nucleobases. Good agreement with experiments was found. The method scales very favorably with the number of vibrational modes and should be applicable for very large molecules, e.g., peptides. The method should also be applicable for properties such as vibrational line widths and line shapes. Work in these directions is underway.

  16. A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment

    NASA Technical Reports Server (NTRS)

    Bentley, Joseph A.; Bowman, Joel M.; Gazdy, Bela; Lee, Timothy J.; Dateo, Christopher E.

    1992-01-01

    An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.

  17. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    PubMed

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  18. An ab initio-based Er–He interatomic potential in hcp Er

    SciTech Connect

    Yang, Li; ye, Yeting; Fan, K. M.

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations.more » The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.« less

  19. Ab initio SCF calculations on the potential energy surface of potassium cyanide (KCN)

    NASA Astrophysics Data System (ADS)

    Wormer, Paul E. S.; Tennyson, Jonathan

    1981-08-01

    The potential energy surface of KCN has been generated by ab initio SCF calculations in the region of equilibrium bond distances. An analytic representation of the surface is presented. The calculations show that the bonding between K and CN is ionic, and that the structure of KCN is triangular, which confirms recent experimental findings. The computed geometry is &KCN = 62.4°, rCK = 5.492a0, and rCN = 2.186a0.

  20. Ab initio calculation of finite-temperature charmonium potentials

    NASA Astrophysics Data System (ADS)

    Evans, P. W. M.; Allton, C. R.; Skullerud, J.-I.

    2014-04-01

    The interquark potential in charmonium states is calculated in both the zero and nonzero temperature phases from a first-principles lattice QCD calculation. Simulations with two dynamical quark flavors are used with temperatures T in the range 0.4Tc≲T≲1.7Tc, where Tc is the deconfining temperature. The correlators of point-split operators are analyzed to gain spatial information about the charmonium states. A method introduced by the HAL QCD Collaboration and based on the Schrödinger equation is applied to obtain the interquark potential. We find a clear temperature dependence with the central potential agreeing with the Cornell potential in the confined phase and becoming flatter (more screened) as the temperature increases past the deconfining temperature. This is the first time the interquark potential has been calculated for realistic quarks at finite temperature.

  1. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y., E-mail: huay.geng@gmail.com; Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate ismore » about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.« less

  2. A general method for constructing multidimensional molecular potential energy surfaces from {ital ab} {ital initio} calculations

    SciTech Connect

    Ho, T.; Rabitz, H.

    1996-02-01

    A general interpolation method for constructing smooth molecular potential energy surfaces (PES{close_quote}s) from {ital ab} {ital initio} data are proposed within the framework of the reproducing kernel Hilbert space and the inverse problem theory. The general expression for an {ital a} {ital posteriori} error bound of the constructed PES is derived. It is shown that the method yields globally smooth potential energy surfaces that are continuous and possess derivatives up to second order or higher. Moreover, the method is amenable to correct symmetry properties and asymptotic behavior of the molecular system. Finally, the method is generic and can be easilymore » extended from low dimensional problems involving two and three atoms to high dimensional problems involving four or more atoms. Basic properties of the method are illustrated by the construction of a one-dimensional potential energy curve of the He{endash}He van der Waals dimer using the exact quantum Monte Carlo calculations of Anderson {ital et} {ital al}. [J. Chem. Phys. {bold 99}, 345 (1993)], a two-dimensional potential energy surface of the HeCO van der Waals molecule using recent {ital ab} {ital initio} calculations by Tao {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 8680 (1994)], and a three-dimensional potential energy surface of the H{sup +}{sub 3} molecular ion using highly accurate {ital ab} {ital initio} calculations of R{umlt o}hse {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 2231 (1994)]. In the first two cases the constructed potentials clearly exhibit the correct asymptotic forms, while in the last case the constructed potential energy surface is in excellent agreement with that constructed by R{umlt o}hse {ital et} {ital al}. using a low order polynomial fitting procedure. {copyright} {ital 1996 American Institute of Physics.}« less

  3. Molecular dynamics simulations of fluid methane properties using ab initio intermolecular interaction potentials.

    PubMed

    Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D

    2009-09-01

    Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.

  4. Photodissociation of phenol via nonadiabatic tunneling: Comparison of two ab initio based potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Changjian; Guo, Hua

    2017-09-01

    The nonadiabatic tunneling-facilitated photodissociation of phenol is investigated using a reduced-dimensional quantum model on two ab initio-based coupled potential energy surfaces (PESs). Although dynamics occurs largely on the lower adiabat, the proximity to a conical intersection between the S1 and S2 states requires the inclusion of both the geometric phase (GP) and diagonal Born-Oppenheimer correction (DBOC). The lifetime of the lowest-lying vibronic state is computed using the diabatic and various adiabatic models. The GP and DBOC terms are found to be essential on one set of PESs, but have a small impact on the other.

  5. Vibrational energy levels for CH4 from an ab initio potential

    NASA Technical Reports Server (NTRS)

    Schwenke, D. W.; Partridge, H.

    2001-01-01

    Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.

  6. A new ab initio potential energy surface for the Ne-H 2 interaction

    NASA Astrophysics Data System (ADS)

    Lique, François

    2009-03-01

    A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.

  7. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  8. Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH

    SciTech Connect

    Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy

    2006-09-20

    Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. Themore » structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.« less

  9. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect

    Han, Huixian; School of Physics, Northwest University, Xi’an, Shaanxi 710069; Li, Anyang

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies upmore » to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.« less

  10. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    NASA Astrophysics Data System (ADS)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-01

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S0) electronic state has been constructed by fitting ˜37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm-1. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm-1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  11. Dynamics and Novel Mechanisms of SN2 Reactions on ab Initio Analytical Potential Energy Surfaces.

    PubMed

    Szabó, István; Czakó, Gábor

    2017-11-30

    We describe a novel theoretical approach to the bimolecular nucleophilic substitution (S N 2) reactions that is based on analytical potential energy surfaces (PESs) obtained by fitting a few tens of thousands high-level ab initio energy points. These PESs allow computing millions of quasi-classical trajectories thereby providing unprecedented statistical accuracy for S N 2 reactions, as well as performing high-dimensional quantum dynamics computations. We developed full-dimensional ab initio PESs for the F - + CH 3 Y [Y = F, Cl, I] systems, which describe the direct and indirect, complex-forming Walden-inversion, the frontside attack, and the new double-inversion pathways as well as the proton-transfer channels. Reaction dynamics simulations on the new PESs revealed (a) a novel double-inversion S N 2 mechanism, (b) frontside complex formation, (c) the dynamics of proton transfer, (d) vibrational and rotational mode specificity, (e) mode-specific product vibrational distributions, (f) agreement between classical and quantum dynamics, (g) good agreement with measured scattering angle and product internal energy distributions, and (h) significant leaving group effect in accord with experiments.

  12. Lattice dynamics of solid N2 with an ab initio intermolecular potential

    NASA Astrophysics Data System (ADS)

    Luty, T.; van der Avoird, A.; Berns, R. M.

    1980-11-01

    We have performed harmonic and self-consistent phonon lattice dynamics calculations for α and γ N2 crystals using an intermolecular potential from ab initio calculations. This potential contains electrostatic (multipole) interactions, up to all R-9 terms inclusive, anisotropic dispersion interactions up to all R-10 terms inclusive, and anisotropic overlap interactions caused by charge penetration and exchange between the molecules. The lattice constants, cohesion energy, the frequencies of the translational phonon modes and the Grüneisen parameters for the librational modes are in good agreement with experimental values, confirming the quality of the potential. The frequencies of the librational modes and those of the mixed modes are less well reproduced, especially at temperatures near the α-β phase transition. Probably, the self-consistent phonon method used does not fully account for the anharmonicity in the librations.

  13. A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface

    NASA Technical Reports Server (NTRS)

    Koizumi, Hiroyasu; Schatz, George C.; Walch, Stephen P.

    1991-01-01

    The unimolecular decay lifetimes of several vibrational states of HN2 are determined on the basis of an accurate coupled channel dynamics study using a global analytical potential surface. The surface reproduces the ab initio points with an rms error of 0.08 kcal/mol for energies below 20 kcal/mol. Modifications to the potential that describe the effect of improving the basis set in the ab initio calculations are provided. Converged coupled channel calculations are performed for the ground rotational state of HN2 to determine the lifetimes of the lowest ten vibrational states. Only the ground vibrational state (000) and first excited bend (001) are found to have lifetimes longer than 1 ps. The lifetimes of these states are estimated at 3 x 10 to the -9th and 2 x 10 to the -10th s, respectively. Variation of these results with quality of the ab initio calculations is not more than a factor of 5.

  14. Ab initio potential energy and dipole moment surfaces of the F(-)(H2O) complex.

    PubMed

    Kamarchik, Eugene; Toffoli, Daniele; Christiansen, Ove; Bowman, Joel M

    2014-02-05

    We present full-dimensional, ab initio potential energy and dipole moment surfaces for the F(-)(H2O) complex. The potential surface is a permutationally invariant fit to 16,114 coupled-cluster single double (triple)/aVTZ energies, while the dipole surface is a covariant fit to 11,395 CCSD(T)/aVTZ dipole moments. Vibrational self-consistent field/vibrational configuration interaction (VSCF/VCI) calculations of energies and the IR-spectrum are presented both for F(-)(H2O) and for the deuterated analog, F(-)(D2O). A one-dimensional calculation of the splitting of the ground state, due to equivalent double-well global minima, is also reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Quantum transition state dynamics of the cyclooctatetraene unimolecular reaction on ab initio potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Tokizaki, Chihiro; Yoshida, Takahiko; Takayanagi, Toshiyuki

    2016-05-01

    The cyclooctatetraene (COT) anion has a stable D4h structure that is similar to the transition state configurations of the neutral C-C bond-alternation (D4h ↔ D8h ↔ D4h) and ring-inversion (D2d ↔ D4h ↔ D2d) unimolecular reactions. The previously measured photodetachment spectrum of COT- revealed the reaction dynamics in the vicinity of the two transition states on the neutral potential energy surface. In this work, the photodetachment spectrum is calculated quantum mechanically on ab initio-level potential energy surfaces within a three degree-of-freedom reduced-dimensionality model. Very good agreement has been obtained between theory and experiment, providing reliable interpretations for the experimental spectrum. A detailed picture of the reactive molecular dynamics of the COT unimolecular reaction in the transition state region is also discussed.

  16. Classical trajectory studies of gas phase reaction dynamics and kinetics using ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Pattengill, Merle D.; Schwenke, David W.

    1989-01-01

    Strategies for constructing global potential energy surfaces from a limited number of accurate ab initio electronic energy calculations are discussed. Generally, these data are concentrated in small regions of configuration space (e.g., in the vicinity of saddle points and energy minima) and difficulties arise in generating a potential function that is globally well-behaved. Efficient computer codes for carrying out classical trajectory calculations on vector and parallel processors are also described. Illustrations are given from recent work on the following chemical systems: Ca + HF yields CaF + H, H + H + H2 yields H2 + H2, N + O2 yields NO + O and O + N2 yields NO + N. The dynamics and kinetics of metathesis, dissociation, recombination, energy transfer and complex formation processes will be discussed.

  17. Efficient multidimensional free energy calculations for ab initio molecular dynamics using classical bias potentials

    NASA Astrophysics Data System (ADS)

    VandeVondele, Joost; Rothlisberger, Ursula

    2000-09-01

    We present a method for calculating multidimensional free energy surfaces within the limited time scale of a first-principles molecular dynamics scheme. The sampling efficiency is enhanced using selected terms of a classical force field as a bias potential. This simple procedure yields a very substantial increase in sampling accuracy while retaining the high quality of the underlying ab initio potential surface and can thus be used for a parameter free calculation of free energy surfaces. The success of the method is demonstrated by the applications to two gas phase molecules, ethane and peroxynitrous acid, as test case systems. A statistical analysis of the results shows that the entire free energy landscape is well converged within a 40 ps simulation at 500 K, even for a system with barriers as high as 15 kcal/mol.

  18. Ab Initio Potential Energy Surfaces and Quantum Dynamics for Polyatomic Bimolecular Reactions.

    PubMed

    Fu, Bina; Zhang, Dong H

    2018-05-08

    There has been great progress in the development of potential energy surfaces (PESs) and quantum dynamics calculations in the gas phase. The establishment of a fitting procedure for highly accurate PESs and new developments in quantum reactive scattering on reliable PESs allow accurate characterization of reaction dynamics beyond triatomic systems. This review will give the recent development in our group in constructing ab initio PESs based on neural networks and the time-dependent wave packet calculations for bimolecular reactions beyond three atoms. Bimolecular reactions of current interest to the community, namely, OH + H 2 , H + H 2 O, OH + CO, H + CH 4 , and Cl + CH 4 , are focused on. Quantum mechanical characterization of these reactions uncovers interesting dynamical phenomena with an unprecedented level of sophistication and has greatly advanced our understanding of polyatomic reaction dynamics.

  19. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  20. Lanthanide complex coordination polyhedron geometry prediction accuracies of ab initio effective core potential calculations.

    PubMed

    Freire, Ricardo O; Rocha, Gerd B; Simas, Alfredo M

    2006-03-01

    lanthanide coordination compounds efficiently and accurately is central for the design of new ligands capable of forming stable and highly luminescent complexes. Accordingly, we present in this paper a report on the capability of various ab initio effective core potential calculations in reproducing the coordination polyhedron geometries of lanthanide complexes. Starting with all combinations of HF, B3LYP and MP2(Full) with STO-3G, 3-21G, 6-31G, 6-31G* and 6-31+G basis sets for [Eu(H2O)9]3+ and closing with more manageable calculations for the larger complexes, we computed the fully predicted ab initio geometries for a total of 80 calculations on 52 complexes of Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III) and Tm(III), the largest containing 164 atoms. Our results indicate that RHF/STO-3G/ECP appears to be the most efficient model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. Moreover, both augmenting the basis set and/or including electron correlation generally enlarged the deviations and aggravated the quality of the predicted coordination polyhedron crystallographic geometry. Our results further indicate that Cosentino et al.'s suggestion of using RHF/3-21G/ECP geometries appears to be indeed a more robust, but not necessarily, more accurate recommendation to be adopted for the general lanthanide complex case. [Figure: see text].

  1. Water trimer torsional spectrum from accurate ab initio and semiempirical potentials

    NASA Astrophysics Data System (ADS)

    van der Avoird, Ad; Szalewicz, Krzysztof

    2008-01-01

    The torsional levels of (H2O)3 and (D2O)3 were calculated in a restricted dimensionality (three-dimensional) model with several recently proposed water potentials. Comparison with the experimental data provides a critical test, not only of the pair interactions that have already been probed on the water dimer spectra, but also of the nonadditive three-body contributions to the potential. The purely ab initio CC-pol and HBB potentials that were previously shown to yield very accurate water dimer levels, also reproduce the trimer levels well when supplemented with an appropriate three-body interaction potential. The TTM2.1 potential gives considerably less good agreement with experiment. Also the semiempirical VRT(ASP-W)III potential, fitted to the water dimer vibration-rotation-tunneling levels, gives substantial disagreement with the measured water trimer levels, which shows that the latter probe the potential for geometries other than those probed by the dimer spectrum. Although the three-body nonadditive interactions significantly increase the stability of the water trimer, their effect on the torsional energy barriers and vibration-tunneling frequencies is less significant.

  2. Ab initio vel ex eventu

    NASA Astrophysics Data System (ADS)

    Thiessen, P. A.; Treder, H.-J.

    Der gegenwärtige Stand der physikalischen Erkenntnis, in Sonderheit die Atomistik und die Quantentheorie, ermöglicht (in wohldefinierten Energie-Bereichen) eine ab initio-Berechnung aller physikalischen und chemischen Prozesse und Strukturen. Die Schrödinger-Gleichung erlaubt zusammen mit den Prinzipien der Quantenstatistik (Pauli-Prinzip) aus dem Planckschen Wirkungsquantum h und den atomischen Konstanten die Berechnung aller Energieumsätze, Zeitabläufe etc., die insbesondere die chemische Physik bestimmen. Die Rechenresultate gelten auch quantitativ bis auf die unvermeidliche Stochastik.Die ab initio-Berechnungen korrespondieren einerseits und sind andererseits komplementär zu den auf den Methoden der theoretischen Chemie und der klassischen Thermodynamik beruhenden Ergebnissen ex eventu. Die theoretische Behandlung ab initio führt zu mathematischen Experimenten, die die Laboratoriums-Experimente ergänzen oder auch substituieren.Translated AbstractAb initio vel ex eventuThe present state of physical knowledge, in peculiar atomistic and quantum theory, makes an ab initio calculation of all physical and chemical processes and structures possible (in well defined reaches of energy). The Schrödinger equation together with the principles of quantum statistics (Pauli principle) permits from the Planck and atomistic constants to calculate all exchanges of energy, courses of time, etc. which govern chemical physics. The calculated results are valid even quantitatively apart from the unavoidable stochastics.These ab initio calculations on the one hand correspond and are on the other complimentary to results ex eventu based on the methods of theoretical chemistry and classical thermodynamics. Theoretical treatment ab initio leads to mathematical experiments which add to or even substitute experiments in the laboratory.

  3. Ab Initio -Based Bond Order Potential to Investigate Low Thermal Conductivity of Stanene Nanostructures

    SciTech Connect

    Cherukara, Mathew J.; Narayanan, Badri; Kinaci, Alper

    2016-08-28

    We introduce a bond order potential (BOP) for stanene based on an ab initio derived training data set. The potential is optimized to accurately describe the energetics, as well as thermal and mechanical properties of a free-standing sheet, and used to study diverse nanostructures of stanene, including tubes and ribbons. As a representative case study, using the potential, we perform molecular dynamics simulations to study stanene’s structure and temperature-dependent thermal conductivity. We find that the structure of stanene is highly rippled, far in excess of other 2-D materials (e.g., graphene), owing to its low in-plane stiffness (stanene: ~ 25 N/m;more » graphene: ~ 480 N/ m). The extent of stanene’s rippling also shows stronger temperature dependence compared to that in graphene. Furthermore, we find that stanene based nanostructures have significantly lower thermal conductivity compared to graphene based structures owing to their softness (i.e., low phonon group velocities) and high anharmonic response. Our newly developed BOP will facilitate the exploration of stanene based low dimensional heterostructures for thermoelectric and thermal management applications.« less

  4. Potentials of Mean Force With Ab Initio Mixed Hamiltonian Models of Solvation

    SciTech Connect

    Dupuis, Michel; Schenter, Gregory K.; Garrett, Bruce C.

    2003-08-01

    We give an account of a computationally tractable and efficient procedure for the calculation of potentials of mean force using mixed Hamiltonian models of electronic structure where quantum subsystems are described with computationally intensive ab initio wavefunctions. The mixed Hamiltonian is mapped into an all-classical Hamiltonian that is amenable to a thermodynamic perturbation treatment for the calculation of free energies. A small number of statistically uncorrelated (solute-solvent) configurations are selected from the Monte Carlo random walk generated with the all-classical Hamiltonian approximation. Those are used in the averaging of the free energy using the mixed quantum/classical Hamiltonian. The methodology ismore » illustrated for the micro-solvated SN2 substitution reaction of methyl chloride by hydroxide. We also compare the potential of mean force calculated with the above protocol with an approximate formalism, one in which the potential of mean force calculated with the all-classical Hamiltonian is simply added to the energy of the isolated (non-solvated) solute along the reaction path. Interestingly the latter approach is found to be in semi-quantitative agreement with the full mixed Hamiltonian approximation.« less

  5. Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities

    NASA Astrophysics Data System (ADS)

    Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr

    2018-03-01

    Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of He 4 ,6 ,8 , 12C, and 16O are calculated and applied to optical potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality and the COM removal is discussed. Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves agreement with experiment in comparison to results generated with the local densities especially for light nuclei. For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the data although a more sophisticated model for the optical potential is required to properly describe the

  6. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  7. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment.

    PubMed

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  8. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Bich, Eckard

    2017-06-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.

  9. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    PubMed Central

    2017-01-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411

  10. Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.

    PubMed

    Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin

    2011-01-14

    Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.

  11. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Raff, L. M.; Malshe, M.; Hagan, M.; Doughan, D. I.; Rockley, M. G.; Komanduri, R.

    2005-02-01

    A neural network/trajectory approach is presented for the development of accurate potential-energy hypersurfaces that can be utilized to conduct ab initio molecular dynamics (AIMD) and Monte Carlo studies of gas-phase chemical reactions, nanometric cutting, and nanotribology, and of a variety of mechanical properties of importance in potential microelectromechanical systems applications. The method is sufficiently robust that it can be applied to a wide range of polyatomic systems. The overall method integrates ab initio electronic structure calculations with importance sampling techniques that permit the critical regions of configuration space to be determined. The computed ab initio energies and gradients are then accurately interpolated using neural networks (NN) rather than arbitrary parametrized analytical functional forms, moving interpolation or least-squares methods. The sampling method involves a tight integration of molecular dynamics calculations with neural networks that employ early stopping and regularization procedures to improve network performance and test for convergence. The procedure can be initiated using an empirical potential surface or direct dynamics. The accuracy and interpolation power of the method has been tested for two cases, the global potential surface for vinyl bromide undergoing unimolecular decomposition via four different reaction channels and nanometric cutting of silicon. The results show that the sampling methods permit the important regions of configuration space to be easily and rapidly identified, that convergence of the NN fit to the ab initio electronic structure database can be easily monitored, and that the interpolation accuracy of the NN fits is excellent, even for systems involving five atoms or more. The method permits a substantial computational speed and accuracy advantage over existing methods, is robust, and relatively easy to implement.

  12. Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry

    DTIC Science & Technology

    2015-07-15

    There are two prime objectives of the research. One is to develop and apply efficient methods for using ab initio potential energy surfaces (PESs...31-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ab Initio -Based Predictions of Hydrocarbon Combustion Chemistry The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hydrocarbon combustion, ab initio quantum chemistry, potential energy surfaces, chemical

  13. Spectroscopic and Ab Initio Determination of the Ring-Twisting Potential Energy Function for 1,3-Cyclohexadiene

    NASA Astrophysics Data System (ADS)

    Autrey, Daniel; Choo, Jaebum; Laane, Jaan

    2000-10-01

    The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.

  14. Collisional Dissociation of CO: ab initio Potential Energy Surfaces and Quasiclassical Trajectory Rate Coefficients

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.

    2016-01-01

    We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.

  15. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  16. Intermolecular Potentials of Methane Assessed by Second Virial Coefficients, ab Initio Dimer Interaction Energies, and Aggregate Cohesive Energies.

    PubMed

    Ribeiro, Douglas S

    2017-06-01

    This study presents computations of three energy related properties for 26 previously published multisite intermolecular potentials of methane: MM2, MM3, MM2en, MM3en, MM2mc, MM3mc, MM3envir, RMK, OPLS all-atom, MUB-2, AMBER, BOYD, Williams, Sheikh, MG, Tsuzuki, E2-Gay, E4-Gay, MP4exp-6(iii), MP4exp-6(iv), Rowley-A, Rowley-B, TraPPE-EH, Ouyang, CLC, and Chao and three united atom potentials: Saager-Fischer (SF), OPLS united atom, and HFD. The three properties analyzed are the second virial coefficients for 14 temperature points in the range of 110 to 623.15 K, the interaction energies for 12 orientations of the methane dimer as a function of distance followed by a comparison to three ab initio data sets and the cohesive energy of the aggregate of 512 methane molecules. The latter computed energies are correlated to latent heat of evaporation of 11 potentials and are proposed as surrogate approximate parameters for ΔH vap for the studied potentials. The 10 best performing potentials are selected by rms order in each one of the properties and three of them are found to be present simultaneously in the three sets: Tsuzuki, MM3mc, and MM2mc. On the basis of the cohesive energy of the aggregate, a quantitative measure of the anisotropy of the potentials is proposed. The results are discussed on the basis of anisotropy, nonadditivity and ability of the potentials to reproduce ab initio data. It is concluded that the nonadditivity of the pair potentials holds and the available ab initio data did not lead to pair potentials that are cohesive enough to reproduce accurately the second virial coefficients.

  17. Fourfold Clusters of Rovibrational Energies in H2Te Studied With an Ab Initio Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.

  18. Cost-Effective Method for Free-Energy Minimization in Complex Systems with Elaborated Ab Initio Potentials.

    PubMed

    Bistafa, Carlos; Kitamura, Yukichi; Martins-Costa, Marilia T C; Nagaoka, Masataka; Ruiz-López, Manuel F

    2018-06-12

    We describe a method to locate stationary points in the free-energy hypersurface of complex molecular systems using high-level correlated ab initio potentials. In this work, we assume a combined QM/MM description of the system although generalization to full ab initio potentials or other theoretical schemes is straightforward. The free-energy gradient (FEG) is obtained as the mean force acting on relevant nuclei using a dual level strategy. First, a statistical simulation is carried out using an appropriate, low-level quantum mechanical force-field. Free-energy perturbation (FEP) theory is then used to obtain the free-energy derivatives for the target, high-level quantum mechanical force-field. We show that this composite FEG-FEP approach is able to reproduce the results of a standard free-energy minimization procedure with high accuracy, while simultaneously allowing for a drastic reduction of both computational and wall-clock time. The method has been applied to study the structure of the water molecule in liquid water at the QCISD/aug-cc-pVTZ level of theory, using the sampling from QM/MM molecular dynamics simulations at the B3LYP/6-311+G(d,p) level. The obtained values for the geometrical parameters and for the dipole moment of the water molecule are within the experimental error, and they also display an excellent agreement when compared to other theoretical estimations. The developed methodology represents therefore an important step toward the accurate determination of the mechanism, kinetics, and thermodynamic properties of processes in solution, in enzymes, and in other disordered chemical systems using state-of-the-art ab initio potentials.

  19. New ab initio potential surfaces and three-dimensional quantum dynamics for transition state spectroscopy in ozone photodissociation

    NASA Astrophysics Data System (ADS)

    Yamashita, Koichi; Morokuma, Keiji; Le Quéré, Frederic; Leforestier, Claude

    1992-04-01

    New ab initio potential energy surfaces (PESs) of the ground and B ( 1B 2) states of ozone have been calculated with the CASSCF-SECI/DZP method to describe the three-dimensional photodissociation process. The dissociation energy of the ground state and the vertical barrier height of the B PES are obtained to be 0.88 and 1.34 eV, respectively, in better agreement with the experimental values than the previous calculation. The photodissociation autocorrelation function, calculated on the new B PES, based on exact three-dimensional quantum dynamics, reproduces well the main recurrence feature extracted from the experimental spectra.

  20. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction.

    PubMed

    Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J

    2013-02-28

    A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.

  1. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    SciTech Connect

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previousmore » spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.« less

  2. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State

    PubMed Central

    2018-01-01

    We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT).1−5 Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron–photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron–photon systems in quantum cavities. PMID:29594185

  3. A full-dimensional ab initio potential energy surface and rovibrational energies of the Ar–HF complex

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Zhou, Yanzi; Xie, Daiqian

    2018-04-01

    We report a new full-dimensional ab initio potential energy surface for the Ar-HF van der Waals complex at the level of coupled-cluster singles and doubles with noniterative inclusion of connected triples levels [CCSD(T)] using augmented correlation-consistent quintuple-zeta basis set (aV5Z) plus bond functions. Full counterpoise correction was employed to correct the basis-set superposition error. The hypersurface was fitted using artificial neural network method with a root mean square error of 0.1085 cm-1 for more than 8000 ab initio points. The complex was found to prefer a linear Ar-H-F equilibrium structure. The three-dimensional discrete variable representation method and the Lanczos propagation algorithm were then employed to calculate the rovibrational states without separating inter- and intra- molecular nuclear motions. The calculated vibrational energies of Ar-HF differ from the experiment values within about 1 cm-1 on the first four HF vibrational states, and the predicted pure rotational energies on (0000) and (1000) vibrational states are deviated from the observed value by about 1%, which shows the accuracy of our new PES.

  4. Comparing ab initio density-functional and wave function theories: the impact of correlation on the electronic density and the role of the correlation potential.

    PubMed

    Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J

    2011-09-21

    The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of

  5. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  6. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  7. The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states

    NASA Astrophysics Data System (ADS)

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-01

    The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.

  8. The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.

    PubMed

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-07

    The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.

  9. Fit Point-Wise AB Initio Calculation Potential Energies to a Multi-Dimension Long-Range Model

    NASA Astrophysics Data System (ADS)

    Zhai, Yu; Li, Hui; Le Roy, Robert J.

    2016-06-01

    A potential energy surface (PES) is a fundamental tool and source of understanding for theoretical spectroscopy and for dynamical simulations. Making correct assignments for high-resolution rovibrational spectra of floppy polyatomic and van der Waals molecules often relies heavily on predictions generated from a high quality ab initio potential energy surface. Moreover, having an effective analytic model to represent such surfaces can be as important as the ab initio results themselves. For the one-dimensional potentials of diatomic molecules, the most successful such model to date is arguably the ``Morse/Long-Range'' (MLR) function developed by R. J. Le Roy and coworkers. It is very flexible, is everywhere differentiable to all orders. It incorporates correct predicted long-range behaviour, extrapolates sensibly at both large and small distances, and two of its defining parameters are always the physically meaningful well depth {D}_e and equilibrium distance r_e. Extensions of this model, called the Multi-Dimension Morse/Long-Range (MD-MLR) function, linear molecule-linear molecule systems and atom-non-linear molecule system. have been applied successfully to atom-plus-linear molecule, linear molecule-linear molecule and atom-non-linear molecule systems. However, there are several technical challenges faced in modelling the interactions of general molecule-molecule systems, such as the absence of radial minima for some relative alignments, difficulties in fitting short-range potential energies, and challenges in determining relative-orientation dependent long-range coefficients. This talk will illustrate some of these challenges and describe our ongoing work in addressing them. Mol. Phys. 105, 663 (2007); J. Chem. Phys. 131, 204309 (2009); Mol. Phys. 109, 435 (2011). Phys. Chem. Chem. Phys. 10, 4128 (2008); J. Chem. Phys. 130, 144305 (2009) J. Chem. Phys. 132, 214309 (2010) J. Chem. Phys. 140, 214309 (2010)

  10. Collisional excitation of interstellar PO(X2Π) by He: new ab initio potential energy surfaces and scattering calculations

    NASA Astrophysics Data System (ADS)

    Lique, François; Jiménez-Serra, Izaskun; Viti, Serena; Marinakis, Sarantos

    2018-01-01

    We present the first ab initio potential energy surfaces (PESs) for the PO(X2Π)-He van der Waals system. The PESs were obtained using the open-shell partially spin-restricted coupled cluster approach with single, double and perturbative triple excitations [UCCSD(T)]. The augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set was employed supplemented by mid-bond functions. Integral and differential cross sections for the rotational excitation in PO-He collisions were calculated using the new PES and compared with results in similar systems. Finally, our work presents the first hyperfine-resolved cross sections for this system that are needed for accurate modelling in astrophysical environments.

  11. Metallic VS2 Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching.

    PubMed

    Putungan, Darwin Barayang; Lin, Shi-Hsin; Kuo, Jer-Lai

    2016-07-27

    We systematically investigated the potential of single-layer VS2 polytypes as Na-battery anode materials via density functional theory calculations. We found that sodiation tends to inhibit the 1H-to-1T structural phase transition, in contrast to lithiation-induced transition on monolayer MoS2. Thus, VS2 can have better structural stability in the cycles of charging and discharging. Diffussion of Na atom was found to be very fast on both polytypes, with very small diffusion barriers of 0.085 eV (1H) and 0.088 eV (1T). Ab initio random structure searching was performed in order to explore stable configurations of Na on VS2. Our search found that both the V top and the hexagonal center sites are preferred adsorption sites for Na, with the 1H phase showing a relatively stronger binding. Notably, our random structures search revealed that Na clusters can form as a stacked second layer at full Na concentration, which is not reported in earlier works wherein uniform, single-layer Na adsorption phases were assumed. With reasonably high specific energy capacity (232.91 and 116.45 mAh/g for 1H and 1T phases, respectively) and open-circuit voltage (1.30 and 1.42 V for 1H and 1T phases, respectively), VS2 is a promising alternative material for Na-ion battery anodes with great structural sturdiness. Finally, we have shown the capability of the ab initio random structure searching in the assessment of potential materials for energy storage applications.

  12. Topological Semimetals Studied by Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Okugawa, Ryo; Murakami, Shuichi

    2018-04-01

    In topological semimetals such as Weyl, Dirac, and nodal-line semimetals, the band gap closes at points or along lines in k space which are not necessarily located at high-symmetry positions in the Brillouin zone. Therefore, it is not straightforward to find these topological semimetals by ab initio calculations because the band structure is usually calculated only along high-symmetry lines. In this paper, we review recent studies on topological semimetals by ab initio calculations. We explain theoretical frameworks which can be used for the search for topological semimetal materials, and some numerical methods used in the ab initio calculations.

  13. Torsion-wagging tunneling and vibrational states in hydrazine determined from its ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Łodyga, Wiesław; Makarewicz, Jan

    2012-05-01

    Geometries, anharmonic vibrations, and torsion-wagging (TW) multiplets of hydrazine and its deuterated species are studied using high-level ab initio methods employing the second-order Møller-Plesset perturbation theory (MP2) as well as the coupled cluster singles and doubles model including connected triple corrections, CCSD(T), in conjunction with extended basis sets containing diffuse and core functions. To describe the splitting patterns caused by tunneling in TW states, the 3D potential energy surface (PES) for the large-amplitude TW modes is constructed. Stationary points in the 3D PES, including equivalent local minima and saddle points are characterized. Using this 3D PES, a flexible Hamiltonian is built numerically and then employed to solve the vibrational problem for TW coupled motion. The calculated ground state rav structure is expected to be more reliable than the experimental one that has been determined using a simplified structural model. The calculated fundamental frequencies allowed resolution of the assignment problems discussed earlier in the literature. The determined energy barriers, including the contributions from the small-amplitude vibrations, to the tunneling of the symmetric and antisymmetric wagging mode of 1997 cm-1 and 3454 cm-1, respectively, are in reasonable agreement with the empirical estimates of 2072 cm-1 and 3312 cm-1, respectively [W. Łodyga et al. J. Mol. Spectrosc. 183, 374 (1997), 10.1006/jmsp.1997.7271]. However, the empirical torsion barrier of 934 cm-1 appears to be overestimated. The ab initio calculations yield two torsion barriers: cis and trans of 744 cm-1 and 2706 cm-1, respectively. The multiplets of the excited torsion states are predicted from the refined 3D PES.

  14. IR Spectra of (HCOOH)2 and (DCOOH)2: Experiment, VSCF/VCI, and Ab Initio Molecular Dynamics Calculations Using Full-Dimensional Potential and Dipole Moment Surfaces.

    PubMed

    Qu, Chen; Bowman, Joel M

    2018-05-17

    We report quantum VSCF/VCI and ab initio molecular dynamics (AIMD) calculations of the IR spectra of (HCOOH) 2 and (DCOOH) 2 , using full-dimensional, ab initio potential energy and dipole moment surfaces (PES and DMS). These surfaces are fits, using permutationally invariant polynomials, to 13 475 ab initio CCSD(T)-F12a electronic energies and MP2 dipole moments. Here "AIMD" means using these ab initio potential and dipole moment surfaces in the MD calculations. The VSCF/VCI calculations use all (24) normal modes for coupling, with a four-mode representation of the potential. The quantum spectra align well with jet-cooled and room-temperature experimental spectra over the spectral range 600-3600 cm -1 . Analyses of the complex O-H and C-H stretch bands are made based on the mixing of the VSCF/VCI basis functions. The comparisons of the AIMD IR spectra with both experimental and VSCF/VCI ones provide tests of the accuracy of the AIMD approach. These indicate good accuracy for simple bands but not for the complex O-H stretch band, which is upshifted from experimental and VSCF/VCI bands by roughly 300 cm -1 . In addition to testing the AIMD approach, the PES, DMS, and VSCF/VCI calculations for formic acid dimer provide opportunities for testing other methods to represent high-dimensional data and other methods that perform postharmonic vibrational calculations.

  15. Ab Initio and Improved Empirical Potentials for the Calculation of the Anharmonic Vibrational States and Intramolecular Mode Coupling of N-Methylacetamide

    NASA Technical Reports Server (NTRS)

    Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)

    2001-01-01

    The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have

  16. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H2

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, Otoniel; Kalugina, Yulia; Stoecklin, Thierry; Vera, Mario Hernández; Lique, François

    2013-12-01

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H2. Ab initio calculations of the HCN-H2 van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN-H2 with the nitrogen pointing towards H2 at an intermolecular separation of 7.20 a0. The corresponding well depth is -195.20 cm-1. A secondary minimum of -183.59 cm-1 was found for a T-shape configuration with the H of HCN pointing to the center of mass of H2. We also determine the rovibrational energy levels of the HCN-para-H2 and HCN-ortho-H2 complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm-1 and 60.26 cm-1, respectively. The calculated ro-vibrational transitions in the HCN-H2 complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.

  17. Ab initio study of potential ultrafast internal conversion routes in oxybenzone, caffeic acid, and ferulic acid: implications for sunscreens.

    PubMed

    Karsili, Tolga N V; Marchetti, Barbara; Ashfold, Michael N R; Domcke, Wolfgang

    2014-12-26

    Oxybenzone (OB) and ferulic acid (FA) both find use in commercial sunscreens; caffeic acid (CA) differs from FA by virtue of an -OH group in place of a -OCH3 group on the aromatic ring. We report the results of ab initio calculations designed to explore the excited state nonradiative relaxation pathways that provide photostability to these molecules and the photoprotection they offer toward UV-A and UV-B radiation. In the case of OB, internal conversion (IC) is deduced to occur on ultrafast time scales, via a barrierless electron-driven H atom transfer pathway from the S1(1(1)nπ*) state to a conical intersection (CI) with the ground (S0) state potential energy surface (PES). The situation with respect to CA and FA is somewhat less clear-cut, with low energy CIs identified by linking excited states to the S0 state following photoexcitation and subsequent evolution along (i) a ring centered out-of-plane deformation coordinate, (ii) the E/Z isomerism coordinate and, in the case of CA, (iii) an O-H stretch coordinate. Analogy with catechol suggests that the last of these processes (if active) would lead to radical formation (and thus potential phototoxicity), encouraging a suggestion that FA might be superior to CA as a sunscreen ingredient.

  18. Ab initio intermolecular potential energy surface for the CO2—N2 system and related thermophysical properties

    NASA Astrophysics Data System (ADS)

    Crusius, Johann-Philipp; Hellmann, Robert; Castro-Palacio, Juan Carlos; Vesovic, Velisa

    2018-06-01

    A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site-site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.

  19. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  20. An ab initio study of the potential energy surface in the S 1 state of 2-hydroxypyridine

    NASA Astrophysics Data System (ADS)

    Sobolewski, Andrzej L.; Adamowicz, Ludwik

    1996-12-01

    The potential energy (PE) surface of the lowest excited singlet state relevant to the photophysics of interconversion of the 2-hydroxypyridine/2 (1H)-pyridinone (2HP/2PY) system is characterized by ab initio calculations. The geometry optimizations in the S 1 state performed at the CIS/6-31G (d,p) level confirm the experimental findings that the 2HP form is planar in this state whereas the 2PY form is significantly out-of-plane distorted. The lowest-energy first-order saddle-points which are relevant to the photophysics of the "mobile" hydrogen atom on the S 1 PE surface lead toward its dissociation from the molecule. There is no saddle-point for a "direct" proton transfer reaction on the S 1 PE surface leading from the 2HP form to the 2PY form. The results confirm the hypothesis that the photo-induced dissociation-association (PIDA) mechanism is probably responsible for the excited-state tautomerization observed in this system.

  1. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    PubMed

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  2. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    SciTech Connect

    Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu; Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000more » coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.« less

  3. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions.

    PubMed

    Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  4. Ab initio study of the electrostatic multipole nature of torsional potentials in CH3SSCH3, CH3SSH, and HOOH

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Lai, J.; Luo, N.; Sun, S.; Shibata, M.; Ornstein, R.; Rein, R.

    1991-01-01

    The origin of torsional potentials in H3CSSCH3, H3CSSH, and HOOH and the anisotropy of the local charge distribution has been analyzed in terms of atomic multipoles calculated from the ab initio LCAO-MO-SCF wave function in the 6-31G* basis set. The results indicate that for longer -S-S-bonds the major contribution to these torsional barriers are electrostatic interactions of the atomic multipoles located on two atoms forming the rotated bond. This finding demonstrates the important role of electrostatic 1-2 interatomic interactions, usually neglected in conformational studies. It also opens the possibility to derive directly from accurate ab initio wave functions a simple nonempirical torsional potential involving atomic multipoles of two bonded atoms defining the torsional angle. For shorter -O-O- bonds, use of more precise models and inclusion of 1-3 interactions seems to be necessary.

  5. A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH{sub 4} system

    SciTech Connect

    Li, Jun, E-mail: jli15@cqu.edu.cn, E-mail: zhangdh@dicp.ac.cn; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131; Chen, Jun

    2015-05-28

    We report a permutationally invariant global potential energy surface (PES) for the H + CH{sub 4} system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (J{sub tot} = 0) including themore » abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].« less

  6. Embedding Fragment ab Initio Model Potentials in CASSCF/CASPT2 Calculations of Doped Solids: Implementation and Applications.

    PubMed

    Swerts, Ben; Chibotaru, Liviu F; Lindh, Roland; Seijo, Luis; Barandiaran, Zoila; Clima, Sergiu; Pierloot, Kristin; Hendrickx, Marc F A

    2008-04-01

    In this article, we present a fragment model potential approach for the description of the crystalline environment as an extension of the use of embedding ab initio model potentials (AIMPs). The biggest limitation of the embedding AIMP method is the spherical nature of its model potentials. This poses problems as soon as the method is applied to crystals containing strongly covalently bonded structures with highly nonspherical electron densities. The newly proposed method addresses this problem by keeping the full electron density as its model potential, thus allowing one to group sets of covalently bonded atoms into fragments. The implementation in the MOLCAS 7.0 quantum chemistry package of the new method, which we call the embedding fragment ab inito model potential method (embedding FAIMP), is reported here, together with results of CASSCF/CASPT2 calculations. The developed methodology is applied for two test problems: (i) the investigation of the lowest ligand field states (2)A1 and (2)B1 of the Cr(V) defect in the YVO4 crystal and (ii) the investigation of the lowest ligand field and ligand-metal charge transfer (LMCT) states at the Mn(II) substitutional impurity doped into CaCO3. Comparison with similar calculations involving AIMPs for all environmental atoms, including those from covalently bounded units, shows that the FAIMP treatment of the YVO4 units surrounding the CrO4(3-) cluster increases the excitation energy (2)B1 → (2)A1 by ca. 1000 cm(-1) at the CASSCF level of calculation. In the case of the Mn(CO3)6(10-) cluster, the FAIMP treatment of the CO3(2-) units of the environment give smaller corrections, of ca. 100 cm(-1), for the ligand-field excitation energies, which is explained by the larger ligands of this cluster. However, the correction for the energy of the lowest LMCT transition is found to be ca. 600 cm(-1) for the CASSCF and ca. 1300 cm(-1) for the CASPT2 calculation.

  7. Ab initio theory and modeling of water

    PubMed Central

    Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C.; Calegari Andrade, Marcos F.; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L.; Perdew, John P.; Wu, Xifan

    2017-01-01

    Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice Ih at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner. PMID:28973868

  8. Ab initio theory and modeling of water.

    PubMed

    Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C; Calegari Andrade, Marcos F; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L; Perdew, John P; Wu, Xifan

    2017-10-10

    Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice I h at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner.

  9. Theoretical determination of molecular structure and conformation. Part X. Geometry and puckering potential of azetidine, (CH 2) 3NH, combination of electron diffraction and ab initio studies

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.

    1981-09-01

    Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.

  10. Ab initio relativistic effective potentials with spin--orbit operators. III. Rb through Xe

    SciTech Connect

    LaJohn, L.A.; Christiansen, P.A.; Ross, R.B.

    A refined version of the ''shape consistent'' effective potential procedure of Christiansen, Lee, and Pitzer was used to compute averaged relativistic effective potentials (AREP) and spin--orbit operators for the elements Rb through Xe. Particular attention was given to the partitioning of the core and valence space and, where appropriate, more than one set of potentials is provided. These are tabulated in analytic form. Gaussian basis sets with contraction coefficients for the lowest energy state of each atom are given. The reliability of the transition metal AREPs was examined by comparing computed atomic excitation energies with accurate all-electron relativistic values. Themore » spin--orbit operators were tested in calculations on selected atoms.« less

  11. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    SciTech Connect

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  12. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE PAGES

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  13. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  14. The hydrogen abstraction reaction O({sup 3}P) + CH{sub 4}: A new analytical potential energy surface based on fit to ab initio calculations

    SciTech Connect

    González-Lavado, Eloisa; Corchado, Jose C.; Espinosa-Garcia, Joaquin, E-mail: joaquin@unex.es

    2014-02-14

    Based exclusively on high-level ab initio calculations, a new full-dimensional analytical potential energy surface (PES-2014) for the gas-phase reaction of hydrogen abstraction from methane by an oxygen atom is developed. The ab initio information employed in the fit includes properties (equilibrium geometries, relative energies, and vibrational frequencies) of the reactants, products, saddle point, points on the reaction path, and points on the reaction swath, taking especial caution respecting the location and characterization of the intermediate complexes in the entrance and exit channels. By comparing with the reference results we show that the resulting PES-2014 reproduces reasonably well the whole setmore » of ab initio data used in the fitting, obtained at the CCSD(T) = FULL/aug-cc-pVQZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical surface we perform an extensive dynamics study using quasi-classical trajectory calculations, comparing the results with recent experimental and theoretical data. The excitation function increases with energy (concave-up) reproducing experimental and theoretical information, although our values are somewhat larger. The OH rotovibrational distribution is cold in agreement with experiment. Finally, our results reproduce experimental backward scattering distribution, associated to a rebound mechanism. These results lend confidence to the accuracy of the new surface, which substantially improves the results obtained with our previous surface (PES-2000) for the same system.« less

  15. A new ab initio potential energy surface for the NH-He complex

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Kłos, J.; Lique, F.

    2018-02-01

    We present a new three-dimensional potential energy surface (PES) for the NH(X3Σ-)-He van der Waals system, which explicitly takes into account the NH vibrational motion. The NH-He PES was obtained using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations. The augmented correlation-consistent aug-cc-pVXZ (X = Q, 5, 6) basis sets were employed, and the energies obtained were then extrapolated to the complete basis set limit. Using this new PES, we have studied the spectroscopy of the NH-He complex and we have determined a new rotational constant that agrees well with the available experimental data. Collisional excitation of NH(X3Σ-) by He was also studied at the close-coupling level. Calculations of the collisional excitation cross sections of the fine-structure levels of NH by He were performed for energies up to 3500 cm-1, which yield, after thermal average, rate coefficients up to 350 K. The calculated rate coefficients are compared with available experimental measurements at room temperature, and a reasonably good agreement is found between experimental and theoretical data.

  16. Ab Initio Characterization of Triatomic Bromine Molecules of Potential Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.

    1995-01-01

    The equilibrium structures, harmonic vibrational frequencies, quadratic force fields, dipole moments, and IR intensities of several triatomic bromine compounds of known or potential importance in stratospheric ozone depletion chemistry have been determined using the CCSD(T) electron correlation method in conjunction with a basis set of triple zeta double polarized (TZ2P) quality. Specifically, the molecules included in the present study are HOBr, HBrO, FOBr, FBrO, BrNO, BrON, Br2O, BrBrO, BrCN, BrNC, ClOBr, ClBrO, and BrClO. Very accurate isomeric energy differences have also been determined at the CCSD(T) level with atomic natural orbital basis sets that include through g-type functions. In most cases, the isomer with a normal neutral Lewis dot structure is the lowest energy form, with the single exception that FBrO is predicted to be 11.1 kcal/mol (0 K) lower in energy than FOBr. In all cases, however, the hypervalent isomer is more stable relative to the isomer with a normal Lewis dot structure as compared to the chlorine analogs. Consistent with this observation, the energy of the last three molecules given above increases in the order ClOBr less than ClBrO less than BrClO. The CCSD(T)/TZ2P geometries and vibrational frequencies are in good agreement with the available experimental data. Heats of formation are determined for all species using a combination of theoretical isomeric, homodesmic, and isodesmic reaction energies. The accuracy of these quantities is ultimately dependent on the reliability of the experimental heat of formation of HOBr.

  17. Ab Initio Characterization of Triatomic Bromine Molecules of Potential Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee. Timothy J.

    1995-01-01

    The equilibrium structures, harmonic vibrational frequencies, quadratic force fields, dipole moments, and IR intensities of several triatomic bromine compounds of known or potential importance in stratospheric ozone depletion chemistry have been determined using the CCSD(T) electron correlation method in conjunction with a basis set of triple zeta double polarized (TZ2P) quality. Specifically, the molecules included in the present study are HOBr, HBrO, FOBr, FBrO, BrNO, BrON, Br2O, BrBrO, BrCN, BrNC, ClOBr, ClBrO, and BrClO. Very accurate isomeric energy differences have also been determined at the CCSD(T) level with atomic natural orbital basis sets that include through g-type functions. In most cases, the isomer with a normal neutral Lewis dot structure is the lowest energy form, with the single exception that FBRO is predicted to be 11.1 kcal/mol (0 K) lower in energy than FOBr. In all cases, however, the hypervalent isomer is more stable relative to the isomer with a normal Lewis dot structure as compared to the chlorine analogs. Consistent with this observation, the energy of the last three molecules given above increases in the order ClOBr less than ClBrO less than BrClO. The CCSD(T)/TZ2P geometries and vibrational frequencies are in good agreement with the available experimental data. Heats of formation are determined for all species using a combination of theoretical isomeric, homodesmic, and isodesmic reaction energies. The accuracy of these quantities is ultimately dependent on the reliability of the experimental heat of formation of HOBr.

  18. Ab initio CI study of the electronic spectrum of bismuth iodide employing relativistic effective core potentials

    NASA Astrophysics Data System (ADS)

    Alekseyev, Aleksey B.; Das, Kalyan K.; Liebermann, Heinz-Peter; Buenker, Robert J.; Hirsch, Gerhard

    1995-09-01

    A relativistic CI treatment including spin-orbit coupling has been carried out for the low-lying electronic states of bismuth iodide, employing effective core potentials for both atoms. The X 3Σ- ground state is computed to have a zero-field splitting of 5096 cm -1, 1086 cm -1 less than the most recent measured values. The a 1Δ state is predicted to have a Te value of 12336 cm -1, and it is suggested on the basis of correlation effects that the true value should lie about 1000 cm -1 lower. This conclusion is also based in part on the finding that the computed BO +Te value of 24148 cm -1 overestimates the measured result by 759 cm -1. The latter state is shown to arise from an avoided crossing between the 1Σ + and 5ΠΛ- S states, which produces only a relatively shollow well and a slight barrier to dissociation. Because the 3Π state is repulsive, no other low-lying Ω = 0 + state is found in the spectrum, similarly as in SbI but in contrast to BiF. Due to the much greater spin-orbit effects in BiI, the composition of the lowest two excited 0 + states in terms of 1Σ+ and 3ΠΛ- S states is notably different than in SbI and this fact is important in understanding why the Te value of the lowest bound 0 + states of these two systems are so different. Transition probabilities have also been computed for various pairs of vibrational states. The radiative lifetime of the X 21 fine structure component is calculated to be 20.7 ms, which agrees well with a recent measured value of 20 ± 4 ms by Fink and Shestakov. In agreement with Colin et al.'s emperical rule, it is found that the b-X 2 transition is stronger than b-X 1, and this result also confirms an earlier theoretical analysis of this general phenomenon given by the authors.

  19. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity

    NASA Astrophysics Data System (ADS)

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(XΠ2)-Kr and NO(AΣ+2)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1A'2 state [NO(XΠ2)-Kr ] and the multireference singles and doubles configuration interaction method for the excited 2A'2 state [NO(AΣ+2)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic

  20. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    SciTech Connect

    Jäger, Benjamin, E-mail: benjamin.jaeger@uni-rostock.de; Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only atmore » a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.« less

  1. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  2. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    PubMed

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  3. Thermal Rate Coefficients and Kinetic Isotope Effects for the Reaction OH + CH4 → H2O + CH3 on an ab Initio-Based Potential Energy Surface.

    PubMed

    Li, Jun; Guo, Hua

    2018-03-15

    Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.

  4. Multiple time step integrators in ab initio molecular dynamics.

    PubMed

    Luehr, Nathan; Markland, Thomas E; Martínez, Todd J

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  5. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface.

    PubMed

    Yu, Hua-Gen; Han, Huixian; Guo, Hua

    2016-04-14

    Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).

  6. Ab Initio Crystal Field for Lanthanides.

    PubMed

    Ungur, Liviu; Chibotaru, Liviu F

    2017-03-13

    An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc) 2 ] - (Pc=phthalocyanine) and Dy 4 K 2 ([Dy 4 K 2 O(OtBu) 12 ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H 3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Communication: Prediction of the rate constant of bimolecular hydrogen exchange in the water dimer using an ab initio potential energy surface.

    PubMed

    Wang, Yimin; Bowman, Joel M; Huang, Xinchuan

    2010-09-21

    We report the properties of two novel transition states of the bimolecular hydrogen exchange reaction in the water dimer, based on an ab initio water dimer potential [A. Shank et al., J. Chem. Phys. 130, 144314 (2009)]. The realism of the two transition states is assessed by comparing structures, energies, and harmonic frequencies obtained from the potential energy surface and new high-level ab initio calculations. The rate constant for the exchange is obtained using conventional transition state theory with a tunneling correction. We employ a one-dimensional approach for the tunneling calculations using a relaxed potential from the full-dimensional potential in the imaginary-frequency normal mode of the saddle point, Q(im). The accuracy of this one-dimensional approach has been shown for the ground-state tunneling splittings for H and D-transfer in malonaldehyde and for the D+H(2) reaction [Y. Wang and J. M. Bowman, J. Chem. Phys. 129, 121103 (2008)]. This approach is applied to calculate the rate constant for the H(2)O+H(2)O exchange and also for H(2)O+D(2)O→2HOD. The local zero-point energy is also obtained using diffusion Monte Carlo calculations in the space of real-frequency-saddle-point normal modes, as a function of Q(im).

  8. Character of intermolecular interaction in pyridine-argon complex: Ab initio potential energy surface, internal dynamics, and interrelations between SAPT energy components.

    PubMed

    Makarewicz, Jan; Shirkov, Leonid

    2016-05-28

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm(-1) is close to that of 387 cm(-1) calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.

  9. Vibration-Rotation-Tunneling Levels of the Water Dimer from an ab Initio Potential Surface with Flexible Monomers

    NASA Astrophysics Data System (ADS)

    Leforestier, Claude; van Harrevelt, Rob; van der Avoird, Ad

    2009-05-01

    The 12-dimensional ab initio potential for the water dimer with flexible monomers from Huang et al. (J. Chem. Phys. 2008, 128, 034312) was used in accurate calculations of the vibration-rotation-tunneling (VRT) levels of (H2O)2 and (D2O)2 involving the intermolecular rovibrational and tunneling states as well as the intramolecular vibrations. For the intermolecular VRT levels we used a 6 + 6d model in which the fast intramolecular vibrations are adiabatically separated from the much slower intermolecular vibrations, tunneling motions, and overall rotations. We also tested two six-dimensional (6d) rigid monomer models in which the monomers were frozen either at their equilibrium geometry or at their ground state vibrationally averaged geometry. All the results from the 6 + 6d model agree well with the large amount of detailed experimental data available from high-resolution spectroscopy. For most of the parameters characterizing the spectra the results of the two 6d rigid monomer models do not significantly differ from the 6 + 6d results. An exception is the relatively large acceptor tunneling splitting, which was the only quantity for which the 6d model with the monomers frozen at their equilibrium geometry was not in good agreement with the experimental data. The 6d model with monomers at their vibrationally averaged geometry performs considerably better, and the full 6 + 6d results agree with the measurements also for this quantity. For the excited intramolecular vibrations we tested two 6 + 6d models. In the first model the excitation was assumed to be either on the donor in the hydrogen bond or on the acceptor, and to hop from one monomer to the other upon donor-acceptor interchange. In the second model the monomer excitation remains localized on a given monomer for all dimer geometries. Almost the same frequencies of the intramolecular vibrations were found for the two models. The calculations show considerable variations in the frequencies of the

  10. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G

    2013-10-07

    An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.

  11. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  12. Study of hydrogen-molecule guests in type II clathrate hydrates using a force-matched potential model parameterised from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Burnham, Christian J.; Futera, Zdenek; English, Niall J.

    2018-03-01

    The force-matching method has been applied to parameterise an empirical potential model for water-water and water-hydrogen intermolecular interactions for use in clathrate-hydrate simulations containing hydrogen guest molecules. The underlying reference simulations constituted ab initio molecular dynamics (AIMD) of clathrate hydrates with various occupations of hydrogen-molecule guests. It is shown that the resultant model is able to reproduce AIMD-derived free-energy curves for the movement of a tagged hydrogen molecule between the water cages that make up the clathrate, thus giving us confidence in the model. Furthermore, with the aid of an umbrella-sampling algorithm, we calculate barrier heights for the force-matched model, yielding the free-energy barrier for a tagged molecule to move between cages. The barrier heights are reasonably large, being on the order of 30 kJ/mol, and are consistent with our previous studies with empirical models [C. J. Burnham and N. J. English, J. Phys. Chem. C 120, 16561 (2016) and C. J. Burnham et al., Phys. Chem. Chem. Phys. 19, 717 (2017)]. Our results are in opposition to the literature, which claims that this system may have very low barrier heights. We also compare results to that using the more ad hoc empirical model of Alavi et al. [J. Chem. Phys. 123, 024507 (2005)] and find that this model does very well when judged against the force-matched and ab initio simulation data.

  13. A nine-dimensional ab initio global potential energy surface for the H2O+ + H2 → H3O+ + H reaction

    NASA Astrophysics Data System (ADS)

    Li, Anyang; Guo, Hua

    2014-06-01

    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm-1. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H4O+ well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H2O+ rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H2O+ reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.

  14. Kinetics study of the CN + CH4 hydrogen abstraction reaction based on a new ab initio analytical full-dimensional potential energy surface.

    PubMed

    Espinosa-Garcia, Joaquin; Rangel, Cipriano; Suleimanov, Yury V

    2017-07-26

    We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane. This surface is fitted using high-level ab initio information as input. Using the PES-2017 surface, a kinetics study was performed via two theoretical approaches: variational transition-state theory with multidimensional tunnelling (VTST-MT) and ring polymer molecular dynamics (RPMD). The results are compared with the experimental data. In the whole temperature range analysed, 300-1500 K, both theories agree within a factor of <2, reproducing the experimental behaviour taking into account the experimental uncertainties. At high temperatures, where the recrossing effects dominate and the RPMD theory is exact, both theories differ by a factor of about 20%; while at low temperatures this difference is larger, 45%. Note that in this temperature regime, the tunnelling effect is negligible. The CN + CH 4 /CD 4 kinetic isotope effects are important, reproducing the scarce experimental evidence. The good agreement with the ab initio information used in the fitting process (self-consistency test) and with the kinetic behaviour in a wide temperature range gives confidence and strength to the new surface.

  15. Ab initio study of the CO-N2 complex: a new highly accurate intermolecular potential energy surface and rovibrational spectrum.

    PubMed

    Cybulski, Hubert; Henriksen, Christian; Dawes, Richard; Wang, Xiao-Gang; Bora, Neha; Avila, Gustavo; Carrington, Tucker; Fernández, Berta

    2018-05-09

    A new, highly accurate ab initio ground-state intermolecular potential-energy surface (IPES) for the CO-N2 complex is presented. Thousands of interaction energies calculated with the CCSD(T) method and Dunning's aug-cc-pVQZ basis set extended with midbond functions were fitted to an analytical function. The global minimum of the potential is characterized by an almost T-shaped structure and has an energy of -118.2 cm-1. The symmetry-adapted Lanczos algorithm was used to compute rovibrational energies (up to J = 20) on the new IPES. The RMSE with respect to experiment was found to be on the order of 0.038 cm-1 which confirms the very high accuracy of the potential. This level of agreement is among the best reported in the literature for weakly bound systems and considerably improves on those of previously published potentials.

  16. Relaxation of structural parameters and potential coefficients of nonrigid molecules. General symmetry properties and application to ab initio study of 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Ha, T.-K.; Günthard, H. H.

    1989-07-01

    Structural parameters like bond length, bond angles, etc. and harmonic and anharmonic potential coefficients of molecules with internal rotation, inversion or puckering modes are generally assumed to vary with the large amplitude internal coordinates in a concerted manner (relaxation). Taking the coordinate vectors of the nuclear configuration of semirigid molecules with relaxation (SRMRs) as functions of relaxing structural parameters and finite amplitude internal coordinate, the isometric group of SRMRs is discussed and the irreducible representations of the latter are shown to classify into engendered and nonengendered ones. On this basis a concept of equivalent sets of nuclei SRMRs is introduced and an analytical expression is derived which defines the most general functional form of relaxation increments of all common types of structural parameters compatible with isometric symmetry. This formula is shown to be a close analog of an analytical expression defining the transformations induced by the isometric group of infinitesimal internal coordinates associated with typical structural parameters. Furthermore analogous formulae are given for the most general form of the relaxation of harmonic potential coefficients as a function of finite internal coordinates. The general relations are illustrated by ab initio calculations for 1,2-difluoroethane at the MP4/DZP//HF/4-31G* level for twelve values of the dihedral angle including complete structure optimization. The potential to internal rotation is found to be in essential agreement with experimentally derived data. For a complete set of ab initio structural parameters the associated relaxation increments are represented as Fourier series, which are shown to confirm the form predicted by the general formula and the isometric group of 1,2-difluoroethane. Depending on type of the structural parameters (bond length, bond angles, etc.), the associated relaxation increments appear to follow some simple rules. Similarly

  17. Ab initio quantum chemistry: methodology and applications.

    PubMed

    Friesner, Richard A

    2005-05-10

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller-Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly.

  18. On the incorporation of the geometric phase in general single potential energy surface dynamics: A removable approximation to ab initio data.

    PubMed

    Malbon, Christopher L; Zhu, Xiaolei; Guo, Hua; Yarkony, David R

    2016-12-21

    For two electronic states coupled by conical intersections, the line integral of the derivative coupling can be used to construct a complex-valued multiplicative phase factor that makes the real-valued adiabatic electronic wave function single-valued, provided that the curl of the derivative coupling is zero. Unfortunately for ab initio determined wave functions, the curl is never rigorously zero. However, when the wave functions are determined from a coupled two diabatic state Hamiltonian H d (fit to ab initio data), the resulting derivative couplings are by construction curl free, except at points of conical intersection. In this work we focus on a recently introduced diabatization scheme that produces the H d by fitting ab initio determined energies, energy gradients, and derivative couplings to the corresponding H d determined quantities in a least squares sense, producing a removable approximation to the ab initio determined derivative coupling. This approach and related numerical issues associated with the nonremovable ab initio derivative couplings are illustrated using a full 33-dimensional representation of phenol photodissociation. The use of this approach to provide a general framework for treating the molecular Aharonov Bohm effect is demonstrated.

  19. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  20. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  1. Towards ab initio Calculations with the Dynamical Vertex Approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Kaufmann, Josef; Gunacker, Patrik; Pickem, Matthias; Thunström, Patrik; Tomczak, Jan M.; Held, Karsten

    2018-04-01

    While key effects of the many-body problem — such as Kondo and Mott physics — can be understood in terms of on-site correlations, non-local fluctuations of charge, spin, and pairing amplitudes are at the heart of the most fascinating and unresolved phenomena in condensed matter physics. Here, we review recent progress in diagrammatic extensions to dynamical mean-field theory for ab initio materials calculations. We first recapitulate the quantum field theoretical background behind the two-particle vertex. Next we discuss latest algorithmic advances in quantum Monte Carlo simulations for calculating such two-particle quantities using worm sampling and vertex asymptotics, before giving an introduction to the ab initio dynamical vertex approximation (AbinitioDΓA). Finally, we highlight the potential of AbinitioDΓA by detailing results for the prototypical correlated metal SrVO3.

  2. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  3. NH2- in a cold ion trap with He buffer gas: Ab initio quantum modeling of the interaction potential and of state-changing multichannel dynamics

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Yurtsever, Ersin; Wester, Roland; Gianturco, Franco A.

    2018-05-01

    We present an extensive range of accurate ab initio calculations, which map in detail the spatial electronic potential energy surface that describes the interaction between the molecular anion NH2 - (1A1) in its ground electronic state and the He atom. The time-independent close-coupling method is employed to generate the corresponding rotationally inelastic cross sections, and then the state-changing rates over a range of temperatures from 10 to 30 K, which is expected to realistically represent the experimental trapping conditions for this ion in a radio frequency ion trap filled with helium buffer gas. The overall evolutionary kinetics of the rotational level population involving the molecular anion in the cold trap is also modelled during a photodetachment experiment and analyzed using the computed rates. The present results clearly indicate the possibility of selectively detecting differences in behavior between the ortho- and para-anions undergoing photodetachment in the trap.

  4. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum

    NASA Technical Reports Server (NTRS)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.

    1993-01-01

    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  5. Full-dimensional quantum calculations of vibrational levels of NH 4 + and isotopomers on an accurate ab initio potential energy surface

    DOE PAGES

    Hua -Gen Yu; Han, Huixian; Guo, Hua

    2016-03-29

    Vibrational energy levels of the ammonium cation (NH 4 +) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH 4 + and ND 4 + exhibit a polyad structure, characterized by a collective quantum number P = 2(v 1 + v 3) + v 2 + v 4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data ismore » better than 1 cm –1.« less

  6. Analytical ab initio potential-energy surfaces for the ground and the first singlet excited states of HeH 2

    NASA Astrophysics Data System (ADS)

    Farantos, Stavros C.; Murrell, J. N.; Carter, S.

    1984-07-01

    Analytical potential-energy surfaces have been constructed for the ground and the first excited states of HeH 2. The functions fit ab initio MRD CI calculations with standard deviations of 0.05 and 0.13 eV for the ground and the excited surface respectively. Classical trajectory calculations for collisions of 4Hc with HD(B 1Σ u+, υ = 3, J = 2) at the temperature T = 297 K yields the electronic quenching cross section σ Q = 6.5 A 2 and the vibrational cross section σ 3→2 = 3.8 A 2. The results are in qualitative agreement with the experimental values of Fink, Akins and Moore.

  7. Dynamics of the O(3P) + CHD3(vCH = 0,1) reactions on an accurate ab initio potential energy surface

    PubMed Central

    Czakó, Gábor; Bowman, Joel M.

    2012-01-01

    Recent experimental and theoretical studies on the dynamics of the reactions of methane with F and Cl atoms have modified our understanding of mode-selective chemical reactivity. The O + methane reaction is also an important candidate to extend our knowledge on the rules of reactivity. Here, we report a unique full-dimensional ab initio potential energy surface for the O(3P) + methane reaction, which opens the door for accurate dynamics calculations using this surface. Quasiclassical trajectory calculations of the angular and vibrational distributions for the ground state and CH stretching excited O + CHD3(v1 = 0,1) → OH + CD3 reactions are in excellent agreement with the experiment. Our theory confirms what was proposed experimentally: The mechanistic origin of the vibrational enhancement is that the CH-stretching excitation enlarges the reactive cone of acceptance. PMID:22566657

  8. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Carter, Stuart; Tew, David P.

    2008-06-01

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and ``exact'' full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased ``fixed-node'' diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm-1 in Cartesian coordinates and 22.6 cm-1 in normal coordinates, with an uncertainty of 2-3 cm-1. This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm-1. The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm-1. These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm-1, and agree well with the experimental values of 21.6 and 2.9 cm-1 for the H and D transfer, respectively.

  9. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.

    PubMed

    Wang, Yimin; Braams, Bastiaan J; Bowman, Joel M; Carter, Stuart; Tew, David P

    2008-06-14

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.

  10. Distributed approximating functional fit of the H{sub 3} {ital ab initio} potential-energy data of Liu and Siegbahn

    SciTech Connect

    Frishman, A.; Hoffman, D.K.; Kouri, D.J.

    1997-07-01

    We report a distributed approximating functional (DAF) fit of the {ital ab initio} potential-energy data of Liu [J. Chem. Phys. {bold 58}, 1925 (1973)] and Siegbahn and Liu [{ital ibid}. {bold 68}, 2457 (1978)]. The DAF-fit procedure is based on a variational principle, and is systematic and general. Only two adjustable parameters occur in the DAF leading to a fit which is both accurate (to the level inherent in the input data; RMS error of 0.2765 kcal/mol) and smooth ({open_quotes}well-tempered,{close_quotes} in DAF terminology). In addition, the LSTH surface of Truhlar and Horowitz based on this same data [J. Chem. Phys.more » {bold 68}, 2466 (1978)] is itself approximated using only the values of the LSTH surface on the same grid coordinate points as the {ital ab initio} data, and the same DAF parameters. The purpose of this exercise is to demonstrate that the DAF delivers a well-tempered approximation to a known function that closely mimics the true potential-energy surface. As is to be expected, since there is only roundoff error present in the LSTH input data, even more significant figures of fitting accuracy are obtained. The RMS error of the DAF fit, of the LSTH surface at the input points, is 0.0274 kcal/mol, and a smooth fit, accurate to better than 1cm{sup {minus}1}, can be obtained using more than 287 input data points. {copyright} {ital 1997 American Institute of Physics.}« less

  11. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  12. Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark

    In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.

  13. Ab Initio Reactive Computer Aided Molecular Design

    DOE PAGES

    Martínez, Todd J.

    2017-03-21

    Few would dispute that theoretical chemistry tools can now provide keen insights into chemical phenomena. Yet the holy grail of efficient and reliable prediction of complex reactivity has remained elusive. Fortunately, recent advances in electronic structure theory based on the concepts of both element- and rank-sparsity, coupled with the emergence of new highly parallel computer architectures, have led to a significant increase in the time and length scales which can be simulated using first principles molecular dynamics. This then opens the possibility of new discovery-based approaches to chemical reactivity, such as the recently proposed ab initio nanoreactor. Here, we arguemore » that due to these and other recent advances, the holy grail of computational discovery for complex chemical reactivity is rapidly coming within our reach.« less

  14. Ab Initio Reactive Computer Aided Molecular Design

    SciTech Connect

    Martínez, Todd J.

    Few would dispute that theoretical chemistry tools can now provide keen insights into chemical phenomena. Yet the holy grail of efficient and reliable prediction of complex reactivity has remained elusive. Fortunately, recent advances in electronic structure theory based on the concepts of both element- and rank-sparsity, coupled with the emergence of new highly parallel computer architectures, have led to a significant increase in the time and length scales which can be simulated using first principles molecular dynamics. This then opens the possibility of new discovery-based approaches to chemical reactivity, such as the recently proposed ab initio nanoreactor. Here, we arguemore » that due to these and other recent advances, the holy grail of computational discovery for complex chemical reactivity is rapidly coming within our reach.« less

  15. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  16. Discovering chemistry with an ab initio nanoreactor

    DOE PAGES

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  17. Discovering chemistry with an ab initio nanoreactor

    SciTech Connect

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  18. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  19. Ab initio study of C + H3+ reactions

    NASA Technical Reports Server (NTRS)

    Talbi, D.; DeFrees, D. J.

    1991-01-01

    The reaction C + H3+ --> CH(+) + H2 is frequently used in models of dense interstellar cloud chemistry with the assumption that it is fast, i.e. there are no potential energy barriers inhibiting it. Ab initio molecular orbital study of the triplet CH3+ potential energy surface (triplet because the reactant carbon atom is a ground state triplet) supports this hypothesis. The reaction product is 3 pi CH+; the reaction is to exothermic even though the product is not in its electronic ground state. No path has been found on the potential energy surface for C + H3+ --> CH2(+) + H reaction.

  20. Ab initio calculation of potential energy surfaces for the three lowest triplet states (1 3A'',1 3A,2 3A'') of PH(X,A)-He

    NASA Astrophysics Data System (ADS)

    Kolczewski, Ch.; Fink, K.; Staemmler, V.; Neitsch, L.

    1997-05-01

    Quantum chemical ab initio calculations at the complete active space SCF level and with inclusion of correlation effects have been performed for the potential energy surfaces of PH in its X 3Σ- ground state and its first excited triplet state, A 3Π, colliding with He atoms. The PH distance was fixed at its experimental value (of the A 3Π state), the PH-He distance and the HePH angle were varied. All three potential energy surfaces [1 3A'' for PH(X)-He and 1 3A,2 3A'' for the two components of PH(A)-He] are purely repulsive, except for very shallow van der Waals minima with well depths of about 15-40 cm-1. The interaction potentials decay approximately exponentially with increasing PH-He distance and show large angular anisotropies. Legendre expansions for the angular dependence of the potential surfaces converge slowly for V(1 3A'') and the sum potential 1/2[V(2 3A'')+V(1 3A)], but rapidly for the corresponding difference potential 1/2[V(2 3A'')-V(1 3A)]. The present PH(A)-He potentials have been used in the companion paper by Neitsch et al. [J. Chem. Phys. 106, 7642 (1997)], for the calculation of thermal state-to-state rate constants for inelastic PH(A)-He collisions.

  1. Molecular Spectroscopy by Ab Initio Methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Due to recent advances in methods and computers, the accuracy of ab calculations has reached a point where these methods can be used to provide accurate spectroscopic constants for small molecules; this will be illustrated with several examples. We will show how ab initio calculations where used to identify the Hermann infrared system in N2 and two band systems in CO. The identification of all three of these band systems relied on very accurate calculations of quintet states. The analysis of the infrared spectra of cool stars requires knowledge of the intensity of vibrational transitions in SiO for high nu and J levels. While experiment can supply very accurate dipole moments for nu = 0 to 3, this is insufficient to construct a global dipole moment function. We show how theory, combined by the experiment, can be used to generate the line intensities up to nu = 40 and J = 250. The spectroscopy of transition metal containing systems is very difficult for both theory and experiment. We will discuss the identification of the ground state of Ti2 and the spectroscopy of AlCu as examples of how theory can contribute to the understanding of these complex systems.

  2. Ab Initio: And a New Era of Airline Pilot Training.

    ERIC Educational Resources Information Center

    Gesell, Laurence E.

    1995-01-01

    Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)

  3. Proton--H/sub 2/ scattering on an ab initio CI potential energy surface. II. Combined vibrational--rotational excitation at 4. 67 and 6 eV

    SciTech Connect

    Schinke, R.

    1980-04-01

    Infinite-order-sudden calculations have been performed at 4.67 and 6 eV on the ab initio CI potential energy surface determined recently by Schinke, Dupuis, and Lester. The vibrational degree of freedom has been treated exactly by solving vibrationally coupled radial equations. The rotationally summed differential cross sections for vibrational excitation are in good agreement with the measurements of Schmidt, Hermann, and Linder. It is shown that the rotational excitation cross sections in the vibrational ground state near the rainbow angle are almost exclusively determined by the potential between 2.5a/sub 0/ and 5a/sub 0/ proton--H/sub 2/ separations. In this region only themore » V/sub 2/ term of an expansion into Legendre polynomials is nonvanishing and is a factor of approx.3 smaller for the new surface than for the Giese and Gentry analytic potential. These differences result in a dramatic decrease of the rotational excitation cross sections in the rainbow region so that the present theoretical transition probabilities are in much better agreement with the experiments than our previous sudden vib--rotor calculations utilizing Giese and Gentry's surface.« less

  4. Accurate virial coefficients of gaseous krypton from state-of-the-art ab initio potential and polarizability of the krypton dimer

    NASA Astrophysics Data System (ADS)

    Song, Bo; Waldrop, Jonathan M.; Wang, Xiaopo; Patkowski, Konrad

    2018-01-01

    We have developed a new krypton-krypton interaction-induced isotropic dipole polarizability curve based on high-level ab initio methods. The determination was carried out using the coupled-cluster singles and doubles plus perturbative triples method with very large basis sets up to augmented correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence correlation and relativistic effects. The analytical function of polarizability and our recently constructed reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure, acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K-5000 K using classical statistical mechanics supplemented with high-order quantum corrections. The virial coefficients calculated were compared with the generally less precise available experimental data as well as with values computed from other potentials in the literature {in particular, the recent highly accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination in this work suggests that the present theoretical prediction can be applied as reference values in disciplines involving thermophysical and electromagnetic properties of krypton gas.

  5. Ab initio molecular dynamics in a finite homogeneous electric field.

    PubMed

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  6. Molecular dynamics investigations of ozone on an ab initio potential energy surface with the utilization of pattern-recognition neural network for accurate determination of product formation.

    PubMed

    Le, Hung M; Dinh, Thach S; Le, Hieu V

    2011-10-13

    The singlet-triplet transformation and molecular dissociation of ozone (O(3)) gas is investigated by performing quasi-classical molecular dynamics (MD) simulations on an ab initio potential energy surface (PES) with visible and near-infrared excitations. MP4(SDQ) level of theory with the 6-311g(2d,2p) basis set is executed for three different electronic spin states (singlet, triplet, and quintet). In order to simplify the potential energy function, an approximation is adopted by ignoring the spin-orbit coupling and allowing the molecule to switch favorably and instantaneously to the spin state that is more energetically stable (lowest in energy among the three spin states). This assumption has previously been utilized to study the SiO(2) system as reported by Agrawal et al. (J. Chem. Phys. 2006, 124 (13), 134306). The use of such assumption in this study probably makes the upper limits of computed rate coefficients the true rate coefficients. The global PES for ozone is constructed by fitting 5906 ab initio data points using a 60-neuron two-layer feed-forward neural network. The mean-absolute error and root-mean-squared error of this fit are 0.0446 eV (1.03 kcal/mol) and 0.0756 eV (1.74 kcal/mol), respectively, which reveal very good fitting accuracy. The parameter coefficients of the global PES are reported in this paper. In order to identify the spin state with high confidence, we propose the use of a pattern-recognition neural network, which is trained to predict the spin state of a given configuration (with a prediction accuracy being 95.6% on a set of testing data points). To enhance the prediction effectiveness, a buffer series of five points are validated to confirm the spin state during the MD process to gain better confidence. Quasi-classical MD simulations from 1.2 to 2.4 eV of total internal energy (including zero-point energy) result in rate coefficients of singlet-triplet transformation in the range of 0.027 ps(-1) to 1.21 ps(-1). Also, we find very

  7. A note on AB INITIO semiconductor band structures

    NASA Astrophysics Data System (ADS)

    Fiorentini, Vincenzo

    1992-09-01

    We point out that only the internal features of the DFT ab initio theoretical picture of a crystal should be used in a consistent ab initio calculation of the band structure. As a consequence, we show that ground-state band structure calculations should be performed for the system in equilibrium at zero pressure, i.e. at the computed equilibrium cell volume ω th. Examples of consequences of this attitude are considered.

  8. Ab initio gene identification in metagenomic sequences

    PubMed Central

    Zhu, Wenhan; Lomsadze, Alexandre; Borodovsky, Mark

    2010-01-01

    We describe an algorithm for gene identification in DNA sequences derived from shotgun sequencing of microbial communities. Accurate ab initio gene prediction in a short nucleotide sequence of anonymous origin is hampered by uncertainty in model parameters. While several machine learning approaches could be proposed to bypass this difficulty, one effective method is to estimate parameters from dependencies, formed in evolution, between frequencies of oligonucleotides in protein-coding regions and genome nucleotide composition. Original version of the method was proposed in 1999 and has been used since for (i) reconstructing codon frequency vector needed for gene finding in viral genomes and (ii) initializing parameters of self-training gene finding algorithms. With advent of new prokaryotic genomes en masse it became possible to enhance the original approach by using direct polynomial and logistic approximations of oligonucleotide frequencies, as well as by separating models for bacteria and archaea. These advances have increased the accuracy of model reconstruction and, subsequently, gene prediction. We describe the refined method and assess its accuracy on known prokaryotic genomes split into short sequences. Also, we show that as a result of application of the new method, several thousands of new genes could be added to existing annotations of several human and mouse gut metagenomes. PMID:20403810

  9. Ab initio simulations of molten Ni alloys

    NASA Astrophysics Data System (ADS)

    Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano

    2010-06-01

    Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.

  10. Ab initio calculation of proton-coupled electron transfer rates using the external-potential representation: A ubiquinol complex in solution

    SciTech Connect

    Yamamoto, Takeshi; Kato, Shigeki

    2007-06-14

    In quantum-mechanical/molecular-mechanical (QM/MM) treatment of chemical reactions in condensed phases, one solves the electronic Schroedinger equation for the solute (or an active site) under the electrostatic field from the environment. This Schroedinger equation depends parametrically on the solute nuclear coordinates R and the external electrostatic potential V. This fact suggests that one may use R and V as natural collective coordinates for describing the entire system, where V plays the role of collective solvent variables. In this paper such an (R,V) representation of the QM/MM canonical ensemble is described, with particular focus on how to treat charge transfer processes inmore » this representation. As an example, the above method is applied to the proton-coupled electron transfer of a ubiquinol analog with phenoxyl radical in acetonitrile solvent. Ab initio free-energy surfaces are calculated as functions of R and V using the reference interaction site model self-consistent field method, the equilibrium points and the minimum free-energy crossing point are located in the (R,V) space, and then the kinetic isotope effects (KIEs) are evaluated approximately. The results suggest that a stiffer proton potential at the transition state may be responsible for unusual KIEs observed experimentally for related systems.« less

  11. High-level ab initio potential energy surface and dynamics of the F- + CH3I SN2 and proton-transfer reactions.

    PubMed

    Olasz, Balázs; Szabó, István; Czakó, Gábor

    2017-04-01

    Bimolecular nucleophilic substitution (S N 2) and proton transfer are fundamental processes in chemistry and F - + CH 3 I is an important prototype of these reactions. Here we develop the first full-dimensional ab initio analytical potential energy surface (PES) for the F - + CH 3 I system using a permutationally invariant fit of high-level composite energies obtained with the combination of the explicitly-correlated CCSD(T)-F12b method, the aug-cc-pVTZ basis, core electron correlation effects, and a relativistic effective core potential for iodine. The PES accurately describes the S N 2 channel producing I - + CH 3 F via Walden-inversion, front-side attack, and double-inversion pathways as well as the proton-transfer channel leading to HF + CH 2 I - . The relative energies of the stationary points on the PES agree well with the new explicitly-correlated all-electron CCSD(T)-F12b/QZ-quality benchmark values. Quasiclassical trajectory computations on the PES show that the proton transfer becomes significant at high collision energies and double-inversion as well as front-side attack trajectories can occur. The computed broad angular distributions and hot internal energy distributions indicate the dominance of indirect mechanisms at lower collision energies, which is confirmed by analyzing the integration time and leaving group velocity distributions. Comparison with available crossed-beam experiments shows usually good agreement.

  12. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  13. State of the art for ab initio vs empirical potentials for HeH+ (2e-), BeH+ (4e-), BeH (5e-), Li2 (6e-) and BH (6e-)

    NASA Astrophysics Data System (ADS)

    Dattani, Nike

    For large internuclear distances, the potential energy between two atoms is known analytically, based on constants that are calculated from atomic ab initio rather than molecular ab initio. This analytic form can be built into models for molecular potentials that are fitted to spectroscopic data. Such empirical potentials constitute the most accurate molecular potentials known. For HeH+, and BeH+, the long-range form of the potential is based only on the polarizabilities for He and H respectively, for which we have included up to 4th order QED corrections. For BeH, the best ab initio potential matches all but one observed vibrational spacing to < 1 cm- accuracy, and for Li2 the discrepancy in the spacings is < 0.08 cm-1 for all vibrational levels. But experimental methods such as photoassociation require the absolute energies, not spacings, and these are still several in several cm-1 disagreement. So empirical potentials are still the only reliable way to predict energies for few-electron systems. We also give predictions for various unobserved ''halo nucleonic molecules'' containing the ''halo'' isotopes: 6,8He, 11Li, 11,14Be and 8 , 17 , 19B.

  14. Study of gas-phase O-H bond dissociation enthalpies and ionization potentials of substituted phenols - Applicability of ab initio and DFT/B3LYP methods

    NASA Astrophysics Data System (ADS)

    Klein, Erik; Lukeš, Vladimír

    2006-11-01

    In this paper, the study of phenol and 37 compounds representing various ortho-, para-, and meta-substituted phenols is presented. Molecules and their radical structures were studied using ab initio methods with inclusion of correlation energy and DFT in order to calculate the O-H bond dissociation enthalpies (BDEs) and vertical ionization potentials (IPs). Calculated BDEs and IPs were compared with available experimental values to ascertain the suitability of used methods, especially for the description of the substituent induced changes in BDE and IP. MP2, MP3, and MP4 methods do not give reliable results, since they significantly underestimate substituent induced changes in BDE and do not reflect distinct effect of substituents related to para and meta position correctly. DFT/B3LYP method reflects the effect of substituents on BDE satisfactorily, though ΔBDEs are in narrower range than experimental values. BDE of phenol was calculated also using CCSD(T) method in various basis sets. Both, DFT and HF methods describe the effect of substituents on IP identically. However, DFT considerably underestimates individual values. HF method gives IPs in very good agreement with experimental data. Obtained results show that dependences of BDEs and IPs on Hammett constants of the substituents are linear. Linearity of DFT BDE vs. IP dependence is even better than the dependences on Hammett constants and obtained equations allow estimating of O-H BDEs of meta- and para-substituted phenols from calculated IPs.

  15. From ab Initio Potential Energy Surfaces to State-Resolved Reactivities: X + H 2O ↔ HX + OH [X = F, Cl, and O( 3P)] Reactions

    DOE PAGES

    Li, Jun; Jiang, Bin; Song, Hongwei; ...

    2015-04-17

    Here, we survey the recent advances in theoretical understanding of quantum state resolved dynamics, using the title reactions as examples. It is shown that the progress was made possible by major developments in two areas. First, an accurate analytical representation of many high-level ab initio points over a large configuration space can now be made with high fidelity and the necessary permutation symmetry. The resulting full-dimensional global potential energy surfaces enable dynamical calculations using either quasi-classical trajectory or more importantly quantum mechanical methods. The second advance is the development of accurate and efficient quantum dynamical methods, which are necessary formore » providing a reliable treatment of quantum effects in reaction dynamics such as tunneling, resonances, and zero-point energy. The powerful combination of the two advances has allowed us to achieve a quantitatively accurate characterization of the reaction dynamics, which unveiled rich dynamical features such as steric steering, strong mode specificity, and bond selectivity. The dependence of reactivity on reactant modes can be rationalized by the recently proposed sudden vector projection model, which attributes the mode specificity and bond selectivity to the coupling of reactant modes with the reaction coordinate at the relevant transition state. The deeper insights provided by these theoretical studies have advanced our understanding of reaction dynamics to a new level.« less

  16. Mode-specific multi-channel dynamics of the F- + CHD2Cl reaction on a global ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Szabó, István; Czakó, Gábor

    2016-10-01

    We report a detailed quasiclassical trajectory study for the dynamics of the ground-state and CH/CD stretching-excited F- + CHD2Cl(vCH/CD = 0, 1) → Cl- + CHD2F, HF + CD2Cl-, and DF + CHDCl- SN2, proton-, and deuteron-abstraction reactions using a full-dimensional global ab initio analytical potential energy surface. The simulations show that (a) CHD2Cl(vCH/CD = 1), especially for vCH = 1, maintains its mode-specific excited character prior to interaction, (b) the SN2 reaction is vibrationally mode-specific, (c) double inversion can occur and is enhanced upon CH/CD stretching excitations, (d) in the abstraction reactions the HF channel is preferred and the vCH/CD = 1 excitations significantly promote the HF/DF channels, (e) back-side rebound, back-side stripping, and front-side stripping are the dominant direct abstraction mechanisms based on correlated scattering- and attack-angle distributions, (f) the exact classical vibrational energy-based Gaussian binning (1GB) provides realistic mode-specific polyatomic product state distributions, (g) in the abstraction reactions CH and CD stretchings are not pure spectator modes and mainly ground-state products are produced, thus most of the initial energy transfers into product translation, and (h) the HF and DF product molecules are rotationally cold without any significant dependence on the reactant's and HF/DF vibrational states.

  17. Three-cluster dynamics within an ab initio framework

    DOE PAGES

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core ( 4He) polarization effects.« less

  18. Ab-initio calculations on melting of thorium

    SciTech Connect

    Mukherjee, D., E-mail: debojyoti@barc.gov.in; Sahoo, B. D.; Joshi, K. D.

    2016-05-23

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a{sub 0}){sup 3} and (1.02a{sub 0}){sup 3} and (1.04a{sub 0}){sup 3} increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a{sub 0} = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures asmore » melting point. The melting point of 2100 K is close to the experimental value of 2023 K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.« less

  19. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    PubMed

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  20. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  1. Communication: A new ab initio potential energy surface for HCl-H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction.

    PubMed

    Mancini, John S; Bowman, Joel M

    2013-03-28

    We report a global, full-dimensional, ab initio potential energy surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44,000 CCSD(T)-F12b∕aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm(-1). The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm(-1), in good agreement with the recent experimentally reported value of 1334 ± 10 cm(-1) [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010)]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C(2v) double-well saddle point and not the C(s) global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm(-1) above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm(-1), which we hope will stand as a benchmark for future experimental work.

  2. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H{sub 2}

    SciTech Connect

    Denis-Alpizar, Otoniel, E-mail: otonieldenisalpizar@gmail.com; Departamento de Física, Universidad de Matanzas, Matanzas 40100; Kalugina, Yulia

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H{sub 2}. Ab initio calculations of the HCN–H{sub 2} van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN–H{sub 2} with the nitrogen pointing towards H{sub 2} at an intermolecular separation of 7.20 a{sub 0}. The corresponding well depth is −195.20 cm{sup −1}. A secondary minimum of −183.59 cm{sup −1}more » was found for a T-shape configuration with the H of HCN pointing to the center of mass of H{sub 2}. We also determine the rovibrational energy levels of the HCN–para-H{sub 2} and HCN–ortho-H{sub 2} complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm{sup −1} and 60.26 cm{sup −1}, respectively. The calculated ro-vibrational transitions in the HCN–H{sub 2} complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.« less

  3. Metal complexes of a new potentially heptadentate(N 7) tripodal Schiff base ligand. Synthesis, NMR studies and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Salehzadeh, Sadegh; Javarsineh, Seyed Amrollah; Keypour, Hassan

    2006-03-01

    Tris(3-aminopropyl)amine, 2-pyridinecarboxaldehyde and a number of metal ions were used to prepare metal complexes of a new fully condensed potentially heptadentate(N 7) tripodal Schiff base ligand (L 333). The resulting complexes, [M(L 333)](ClO 4) 2 {M= Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); L 333=[N(CH 2CH 2CH 2N dbnd6 CH(C 5H 4N)) 3]}, were characterized by microanalysis, IR and electronic spectra in all cases and by NMR spectra in the case of Zn(II) and Cd(II) complexes: these two are both seven-co-ordinate. The 1H NMR, COSY and HMQC spectra of these complexes show two kinds of protons for each methylene group. The COSY spectrum confirms the geminal coupling of the two protons of each methylene group, indicating that the protons are diastereotopic in rigid six-membered rings. In the 1H NMR spectrum of the cadmium complex the signal of the imine proton has two clear satellites peaks ( 3J=41.9 Hz) with intensities in the ratio 1:6:1 due to coupling with neighbouring 111/113Cd. This coupling constant was confirmed by 113Cd NMR spectroscopy. Ab initio studies on [Fe(L 333)] 2+, [Zn(L 333)] 2+ and [Cd(L 333)] 2+ and also on the previously known complex, [Cd(L Me333)] 2+ are also reported. The results show that the shortest bonding interaction between the metal ion and the bridging tertiary nitrogen atom of the ligand is occurs in the Cd(II) complexes.

  4. Ab initio single and multideterminant methods used in the determination of reduction potentials and magnetic properties of Rieske ferredoxins

    NASA Astrophysics Data System (ADS)

    Powers, Nathan Lee

    2008-10-01

    The [Fe2S2]2+/[Fe2S 2]+ electronic structure of seven Rieske protein active sites (bovine mitochondrial cytochrome bc1 complex, spinach chloroplast cytochrome b6f complex, Rieske-type ferredoxin associated with biphenyl dioxygenase from Burkholderia cepacia, yeast cytochrome bcl complex from Saccharomyces cerevisiae, Rieske subunit of arsenite oxidase from Alcaligenes faecalis, respiratory-type Rieske protein from Thermus thermophilus, and Rieske protein II (soxF) from Sulfolobus acidocaldarius), which lie in a reduction potential range from -150 mV to 375 mV, have been studied by both single and multi-determinant quantum mechanical methods. Calculated reduction potentials and magnetic properties are found comparable to experimental values.

  5. Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes

    NASA Astrophysics Data System (ADS)

    Saieswari, A.; Kumar, Sanjay

    2007-12-01

    An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.

  6. Potential energy curves of the Na2+ molecular ion from all-electron ab initio relativistic calculations

    NASA Astrophysics Data System (ADS)

    Bewicz, Anna; Musiał, Monika; Kucharski, Stanisław A.

    2017-11-01

    The equation-of-motion coupled-cluster method for electron affinity calculations has been used to study potential energy curves (PECs) for the Na+2 molecular ion. Although the studied molecule represents the open shell system the applied approach employs the closed shell Na+ 22 ion as the reference. In addition the Na+ 22 system dissociates into the closed shell fragments; hence, the restricted Hartree-Fock scheme can be used within the whole range of interatomic distances, from 2 to 45 Å. We used large basis set engaging 268 basis functions with all 21 electrons correlated. The relativistic effects are included via second-order Douglas-Kroll method. The computed PECs, spectroscopic molecular constants and vibrational energy levels agree well with experimental values if the latter are available or with other theoretical data.

  7. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  8. Ab initio calculation of one-nucleon halo states

    NASA Astrophysics Data System (ADS)

    Rodkin, D. M.; Tchuvil'sky, Yu M.

    2018-02-01

    We develop an approach to microscopic and ab initio description of clustered systems, states with halo nucleon and one-nucleon resonances. For these purposes a basis combining ordinary shell-model components and cluster-channel terms is built up. The transformation of clustered wave functions to the uniform Slater-determinant type is performed using the concept of cluster coefficients. The resulting basis of orthonormalized wave functions is used for calculating the eigenvalues and the eigenvectors of Hamiltonians built in the framework of ab initio approaches. Calculations of resonance and halo states of 5He, 9Be and 9B nuclei demonstrate that the approach is workable and labor-saving.

  9. Anharmonic Rovibrational Calculations of Singlet Cyclic C4 Using a New Ab Initio Potential and a Quartic Force

    NASA Technical Reports Server (NTRS)

    Wang, Xiaohong; Huang, Xinchuan; Bowman, Joel M.; Lee, Timothy J.

    2013-01-01

    We report a CCSD(T)/cc-pCV5Z quartic force field (QFF) and a semi-global CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (PES) for singlet, cyclic C4. Vibrational fundamentals, combinations and overtones are obtained using vibrational second-order perturbation theory (VPT2) and the vibrational configurationinteraction (VCI) approach. Agreement is within 10 cm(exp -1) between the VCI calculated fundamentals on the QFF and PES using the MULTIMODE (MM) program, and VPT2 and VCI results agree for the fundamentals. The agreement between VPT2- QFF and MM-QFF results is also good for the C4 combinations and overtones. The J = 1 and J = 2 rovibrational energies are reported from both VCI (MM) on the PES and VPT2 on the QFF calculations. The spectroscopic constants of (12)C4 and two C(sub 2v)-symmetry, single (13)C-substituted isotopologues are presented, which may help identification of cyclic C4 in future experimental analyses or astronomical observations.

  10. Ab initio reaction pathways for photodissociation and isomerization of nitromethane on four singlet potential energy surfaces with three roaming paths

    SciTech Connect

    Isegawa, Miho; Liu, Fengyi; Morokuma, Keiji

    2014-06-28

    Photodissociation pathways of nitromethane following π → π{sup *} electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH{sub 3} and NO{sub 2} ({sup 2}B{sub 2}) is formed by direct dissociation from the S{sub 1} state. Importantmore » pathways involving S{sub 1} and S{sub 0} states for production of various dissociation products CH{sub 3}NO + O ({sup 1}D), CH{sub 3}O(X{sup 2}E) + NO (X{sup 2}Π), CH{sub 2}NO + OH, and CH{sub 2}O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH{sub 3}NO{sub 2}, the OH radical roaming in OH dissociation from CH{sub 2}N(O)(OH), and the NO roaming in NO dissociation from CH{sub 3}ONO.« less

  11. Ab initio reaction pathways for photodissociation and isomerization of nitromethane on four singlet potential energy surfaces with three roaming paths

    NASA Astrophysics Data System (ADS)

    Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji

    2014-06-01

    Photodissociation pathways of nitromethane following π → π* electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH3 and NO2 (2B2) is formed by direct dissociation from the S1 state. Important pathways involving S1 and S0 states for production of various dissociation products CH3NO + O (1D), CH3O(X2E) + NO (X2Π), CH2NO + OH, and CH2O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH3NO2, the OH radical roaming in OH dissociation from CH2N(O)(OH), and the NO roaming in NO dissociation from CH3ONO.

  12. Ab initio reaction pathways for photodissociation and isomerization of nitromethane on four singlet potential energy surfaces with three roaming paths.

    PubMed

    Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji

    2014-06-28

    Photodissociation pathways of nitromethane following π → π(*) electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH3 and NO2 ((2)B2) is formed by direct dissociation from the S1 state. Important pathways involving S1 and S0 states for production of various dissociation products CH3NO + O ((1)D), CH3O(X(2)E) + NO (X(2)Π), CH2NO + OH, and CH2O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH3NO2, the OH radical roaming in OH dissociation from CH2N(O)(OH), and the NO roaming in NO dissociation from CH3ONO.

  13. An Ab Initio Full Potential Fully Relativistic Study of the (0001) Surface of Double Hexagonal Close Packed Americium*

    NASA Astrophysics Data System (ADS)

    Gao, Da; Ray, Asok

    2007-03-01

    The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of both bulk and the (0001) surface of dhcp Am with the 5f electrons primarily localized. Our results show that magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Quantum size effects are found to be more pronounced in work functions than in surface energies. *This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy and the Welch Foundation, Houston, Texas.

  14. A walk through the approximations of ab initio multiple spawning

    NASA Astrophysics Data System (ADS)

    Mignolet, Benoit; Curchod, Basile F. E.

    2018-04-01

    Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.

  15. Ab initio calculations of the lattice dynamics of silver halides

    NASA Astrophysics Data System (ADS)

    Gordienko, A. B.; Kravchenko, N. G.; Sedelnikov, A. N.

    2010-12-01

    Based on ab initio pseudopotential calculations, the results of investigations of the lattice dynamics of silver halides AgHal (Hal = Cl, Br, I) are presented. Equilibrium lattice parameters, phonon spectra, frequency densities and effective atomic-charge values are obtained for all types of crystals under study.

  16. The application of ab initio calculations to molecular spectroscopy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1989-01-01

    The state of the art in ab initio molecular structure calculations is reviewed with an emphasis on recent developments, such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is found that new developments in methodology, combined with improvements in computer hardware, are leading to unprecedented accuracy in solving problems in spectroscopy.

  17. The application of ab initio calculations to molecular spectroscopy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1989-01-01

    The state of the art in ab initio molecular structure calculations is reviewed, with an emphasis on recent developments such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is shown that new developments in methodology combined with improvements in computer hardware are leading to unprecedented accuracy in solving problems in spectroscopy.

  18. A walk through the approximations of ab initio multiple spawning.

    PubMed

    Mignolet, Benoit; Curchod, Basile F E

    2018-04-07

    Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.

  19. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models.

    PubMed

    Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J

    2015-02-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  20. Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2013-06-01

    The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.

  1. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

    PubMed Central

    Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.

    2015-01-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected. PMID:25664744

  2. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  3. Perspective: Ab initio force field methods derived from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.

    2018-03-01

    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  4. Ab Initio Calculations of Water Line Strengths

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry

    1998-01-01

    We report on the determination of a high quality ab initiu potential energy surface (PES) and dipole moment function for water. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base with J less than 6 for H2O. The changes in the PES are small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Using this adjusted PES, we can match 30,092 of the 30,117 transitions in the HITRAN 96 data base for H2O with theoretical lines. The 10,25,50,75, and 90 percentiles of the difference between the calculated and tabulated line positions are -0.11, -0.04, -0.01, 0.02, and 0.07 l/cm. Non-adiabatic effects are not explicitly included. About 3% of the tabulated line positions appear to be incorrect. Similar agreement using this adjusted PES is obtained for the oxygen 17 and oxygen 18 isotopes. For HDO, the agreement is not as good, with root-mean-square error of 0.25 l/cm for lines with J less than 6. This error is reduced to 0.02 l/cm by including a small asymmetric correction to the PES, which is parameterized by simultaneously fitting to HDO md D2O data. Scaling this correction by mass factors yields good results for T2O and HTO. The intensities summed over vibrational bands are usually in good agreement between the calculations and the tabulated results, but individual lines strengths can differ greatly. A high temperature list consisting of 307,721,352 lines is generated for H2O using our PES and dipole moment function.

  5. Ab Initio Infrared and Raman Spectra.

    DTIC Science & Technology

    1982-08-01

    equilibrium and non -equilibrium systems. It b pointed out that a similar ab !ni- te QFC molecular dynamic approach could be used to compute other types of...applied to -2- equilibrium and non -equilibrium system. It is pointed out that a similar oh im- ib QFCT molecular dynamic approach could be used to...desire to be able to experimentally identify and understand transient species or states (such as those existing during the course of chemical

  6. Ab Initio Study of KCl and AgCl Clusters.

    NASA Astrophysics Data System (ADS)

    McKeough, James; Hira, Ajit; Cathey, Tommy; Valdez, Alexandra

    This paper presents a theoretical study of molecular clusters that examines the chemical and physical properties of small KnCln and AgnCln clusters (n = 2 - 24). Due to combinations of attractive and repulsive long-range forces, such clusters exhibit structural and dynamical behavior different from that of homogeneous clusters. The potentially important role of these molecular species in biochemical and medicinal processes is widely known. This work applies the hybrid ab initio methods to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations were performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. Potential design of new medicinal drugs is explored. We will also investigate model and material dependence of the results. AMP program of the National Science Foundation.

  7. Ab initio theories for light nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Gezerlis, Alexandros

    2016-09-01

    In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).

  8. Ab initio structures and polarizabilities of sodium clusters

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Vasiliev, Igor; Jain, Manish; Chelikowsky, James R.

    2001-09-01

    We present quantitative ab initio calculations for Na cluster structures and polarizabilities, for all cluster sizes up to 20 atoms. Our calculations are performed by combining an ab initio core-corrected pseudopotential and a gradient-corrected density functional within a real space approach. We find the cluster bonding to be very floppy and catalog a host of low-energy quasi-degenerate isomers for all second-decade clusters. The existence of these isomers results in a band of polarizability values for each cluster size even at zero temperature. This eliminates any finer structure in the polarizability curve. We further show that the experimental polarizability values are consistently underestimated by calculations at zero temperature. By computing the effects of structure expansion and distortion due to a finite temperature we arrive at a quantitative agreement between theory and experiment.

  9. Ab Initio Protein Structure Prediction Using Chunk-TASSER

    PubMed Central

    Zhou, Hongyi; Skolnick, Jeffrey

    2007-01-01

    We have developed an ab initio protein structure prediction method called chunk-TASSER that uses ab initio folded supersecondary structure chunks of a given target as well as threading templates for obtaining contact potentials and distance restraints. The predicted chunks, selected on the basis of a new fragment comparison method, are folded by a fragment insertion method. Full-length models are built and refined by the TASSER methodology, which searches conformational space via parallel hyperbolic Monte Carlo. We employ an optimized reduced force field that includes knowledge-based statistical potentials and restraints derived from the chunks as well as threading templates. The method is tested on a dataset of 425 hard target proteins ≤250 amino acids in length. The average TM-scores of the best of top five models per target are 0.266, 0.336, and 0.362 by the threading algorithm SP3, original TASSER and chunk-TASSER, respectively. For a subset of 80 proteins with predicted α-helix content ≥50%, these averages are 0.284, 0.356, and 0.403, respectively. The percentages of proteins with the best of top five models having TM-score ≥0.4 (a statistically significant threshold for structural similarity) are 3.76, 20.94, and 28.94% by SP3, TASSER, and chunk-TASSER, respectively, overall, while for the subset of 80 predominantly helical proteins, these percentages are 2.50, 23.75, and 41.25%. Thus, chunk-TASSER shows a significant improvement over TASSER for modeling hard targets where no good template can be identified. We also tested chunk-TASSER on 21 medium/hard targets <200 amino-acids-long from CASP7. Chunk-TASSER is ∼11% (10%) better than TASSER for the total TM-score of the first (best of top five) models. Chunk-TASSER is fully automated and can be used in proteome scale protein structure prediction. PMID:17496016

  10. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  11. A Complete and Accurate Ab Initio Repeat Finding Algorithm.

    PubMed

    Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua

    2016-03-01

    It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy.

  12. Ab-Initio Interfacial Studies of Cobalt/Copper Multilayers

    NASA Astrophysics Data System (ADS)

    Villagonzalo, Cristine; Setty, Arun K.; Muratov, Leonid; Cooper, Bernard R.

    2002-03-01

    We present a study of the interface of cobalt/copper (Co/Cu) multilayrs. For its potential in giant magnetoresistance (GMR) device applications,(S.S.Parkin, et al.), Appl. Phys. Lett. 58 (1991) 2710 the Co/Cu system has been studied extensively. The magnitude of GMR is found to depend sensitively on the nature of the interface, however, the underlying mechanism is not well understood. Therefore, we focus on the energy-configuration of Co/Cu multilayers (of 1-4 monolayers for each element) and on the effects of interpenetration. Using an ab-initio full-potential Linear Muffin-Tin Orbital (FP-LMTO) electronic structure method, we seek a stable interfacial structure. Unlike prior studies, our computations are for the experimentally relevant (111) direction. Our preliminary results indicate that Co impurities in bulk Cu are not energetically favorable, in accord with the experimentally observed immiscibility of Co and Cu. Studies in progress of interfacial relaxation in prelude to consideration of interdiffusion and lattice buckling will also be presented.

  13. Carbene-aerogen bonds: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Sabouri, Ayda

    2017-04-01

    Through the use of ab initio calculations, the possibility of formation of σ-hole interaction between ZO3 (Z = Ar, Kr and Xe) and carbene species is investigated. Since singlet carbenes show a negative electrostatic potential on their divalent carbon atom, they can favourably interact with the positive electrostatic potential generated by the σ-hole of Z atom of ZO3. The characteristic of this interaction, termed as 'carbene-aerogen' bond, is analysed in terms of geometric, interaction energies and electronic features. The energy decomposition analysis indicates that for all complexes analysed here, the electrostatic energy is more negative than the polarisation or dispersion energy term. According to the electron density analysis, some partial covalent character can be ascribed to XeṡṡṡC interactions. In addition, the carbene-aerogen bond exhibits cooperative effects with the HṡṡṡO hydrogen-bonding interaction in ternary complexes where both interactions coexist. For a given carbene, the amount of these cooperative effects increases with the size of the Z atom. The results obtained in this work may be helpful for the extension and future application of σ-hole intermolecular interactions as well as coordination chemistry.

  14. Physical properties of molybdenum monoboride: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-02-01

    The Ab initio investigations on structural, electronic, optical and thermal properties of MoB have been reported using full potential linearised-augmented plane wave method within the framework of density functional theory. The exchange and correlation potentials were calculated using the Perdew-Burke-Ernzerhof-Sol generalised gradient approximation. The calculated equilibrium lattice constants and cell volume are in excellent agreement with the experimental results as compared to the available theoretical data. Electronic band structure shows that MoB is metallic in nature. From the partial densities of states of MoB it has been found that major contribution on the Fermi level is due to Mo-4d states. Among the reported optical parameters the large value of reflectivity at low energy shows that MoB can be used as a coating material in IR region. Maximum absorption in extreme UV region shows that it can be used in production of electricity through solar power in space vehicles. Various thermal properties have been calculated in a wide temperature range at high pressures. Change in thermal expansion coefficient with respect to temperature shows that anharmonic effect in MoB is very weak at high temperature. The optical and thermal properties of MoB are presented for the first time in this work.

  15. Benchmark ab Initio Characterization of the Complex Potential Energy Surfaces of the X- + NH2Y [X, Y = F, Cl, Br, I] Reactions.

    PubMed

    Hajdu, Bálint; Czakó, Gábor

    2018-02-22

    We report a comprehensive high-level explicitly correlated ab initio study on the X - + NH 2 Y [X,Y = F, Cl, Br, I] reactions characterizing the stationary points of the S N 2 (Y - + NH 2 X) and proton-transfer (HX + NHY - ) pathways as well as the reaction enthalpies of various endothermic additional product channels such as H - + NHXY, XY - + NH 2 , XY + NH 2 - , and XHY - + NH. Benchmark structures and harmonic vibrational frequencies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory, followed by CCSD(T)-F12b/aug-cc-pVnZ(-PP) [n = Q and 5] and core correlation energy computations. In the entrance and exit channels we find two equivalent hydrogen-bonded C 1 minima, X - ···HH'NY and X - ···H'HNY connected by a C s first-order saddle point, X - ···H 2 NY, as well as a halogen-bonded front-side complex, X - ···YNH 2 . S N 2 reactions can proceed via back-side attack Walden inversion and front-side attack retention pathways characterized by first-order saddle points, submerged [X-NH 2 -Y] - and high-energy [H 2 NXY] - , respectively. Product-like stationary points below the HX + NHY - asymptotes are involved in the proton-transfer processes.

  16. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  17. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction

    PubMed Central

    Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian

    2017-01-01

    Abstract Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Contact: deane@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28453681

  18. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.

    PubMed

    Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian; Deane, Charlotte M

    2017-05-01

    Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  19. Selenoglycosides in silico: ab initio-derived reparameterization of MM4, conformational analysis using histo-blood group ABH antigens and lectin docking as indication for potential of bioactivity

    NASA Astrophysics Data System (ADS)

    Strino, Francesco; Lii, Jenn-Huei; Koppisetty, Chaitanya A. K.; Nyholm, Per-Georg; Gabius, Hans-Joachim

    2010-12-01

    The identification of glycan epitopes such as the histo-blood group ABH determinants as docking sites for bacterial/viral infections and signals in growth regulation fuels the interest to develop non-hydrolysable mimetics for therapeutic applications. Inevitably, the required substitution of the linkage oxygen atom will alter the derivative's topology. Our study addresses the question of the impact of substitution of oxygen by selenium. In order to characterize spatial parameters and flexibility of selenoglycosides, we first performed ab initio calculations on model compounds to refine the MM4 force field. The following application of the resulting MM4R version appears to reduce the difference to ab initio data when compared to using the MM4 estimator. Systematic conformational searches on the derivatives of histo-blood group ABH antigens revealed increased flexibility with acquisition of additional low-energy conformer(s), akin to the behavior of S-glycosides. Docking analysis using the Glide program for eight test cases indicated potential for bioactivity, giving further experimental investigation a clear direction to testing Se-glycosides as lectin ligands.

  20. A new ab initio potential energy surface of LiClH (1A') system and quantum dynamics calculation for Li + HCl (v = 0, j = 0-2) → LiCl + H reaction

    NASA Astrophysics Data System (ADS)

    Tan, Rui Shan; Zhai, Huan Chen; Yan, Wei; Gao, Feng; Lin, Shi Ying

    2017-04-01

    A new ab initio potential energy surface (PES) for the ground state of Li + HCl reactive system has been constructed by three-dimensional cubic spline interpolation of 36 654 ab initio points computed at the MRCI+Q/aug-cc-pV5Z level of theory. The title reaction is found to be exothermic by 5.63 kcal/mol (9 kcal/mol with zero point energy corrections), which is very close to the experimental data. The barrier height, which is 2.99 kcal/mol (0.93 kcal/mol for the vibrationally adiabatic barrier height), and the depth of van der Waals minimum located near the entrance channel are also in excellent agreement with the experimental findings. This study also identified two more van der Waals minima. The integral cross sections, rate constants, and their dependence on initial rotational states are calculated using an exact quantum wave packet method on the new PES. They are also in excellent agreement with the experimental measurements.

  1. Ab initio calculations of ionic hydrocarbon compounds with heptacoordinate carbon.

    PubMed

    Wang, George; Rahman, A K Fazlur; Wang, Bin

    2018-04-25

    Ionic hydrocarbon compounds that contain hypercarbon atoms, which bond to five or more atoms, are important intermediates in chemical synthesis and may also find applications in hydrogen storage. Extensive investigations have identified hydrocarbon compounds that contain a five- or six-coordinated hypercarbon atom, such as the pentagonal-pyramidal hexamethylbenzene, C 6 (CH 3 ) 6 2+ , in which a hexacoordinate carbon atom is involved. It remains challenging to search for further higher-coordinated carbon in ionic hydrocarbon compounds, such as seven- and eight-coordinated carbon. Here, we report ab initio density functional calculations that show a stable 3D hexagonal-pyramidal configuration of tropylium trication, (C 7 H 7 ) 3+ , in which a heptacoordinate carbon atom is involved. We show that this tropylium trication is stable against deprotonation, dissociation, and structural deformation. In contrast, the pyramidal configurations of ionic C 8 H 8 compounds, which would contain an octacoordinate carbon atom, are unstable. These results provide insights for developing new molecular structures containing hypercarbon atoms, which may have potential applications in chemical synthesis and in hydrogen storage. Graphical abstract Possible structural transformations of stable configurations of (C 7 H 7 ) 3+ , which may result in the formation of the pyramidal structure that involves a heptacoordinate hypercarbon atom.

  2. Ab initio model potential calculations on the electronic spectrum of Ni2 + -doped MgO including correlation, spin-orbit and embedding effects

    NASA Astrophysics Data System (ADS)

    Llusar, Rosa; Casarrubios, Marcos; Barandiarán, Zoila; Seijo, Luis

    1996-10-01

    An ab initio theoretical study of the optical absorption spectrum of Ni2+-doped MgO has been conducted by means of calculations in a MgO-embedded (NiO6)10-cluster. The calculations include long- and short-range embedding effects of electrostatic and quantum nature brought about by the MgO crystalline lattice, as well as electron correlation and spin-orbit effects within the (NiO6)10- cluster. The spin-orbit calculations have been performed using the spin-orbit-CI WB-AIMP method [Chem. Phys. Lett. 147, 597 (1988); J. Chem. Phys. 102, 8078 (1995)] which has been recently proposed and is applied here for the first time to the field of impurities in crystals. The WB-AIMP method is extended in order to handle correlation effects which, being necessary to produce accurate energy differences between spin-free states, are not needed for the proper calculation of spin-orbit couplings. The extension of the WB-AIMP method, which is also aimed at keeping the size of the spin-orbit-CI within reasonable limits, is based on the use of spin-free-state shifting operators. It is shown that the unreasonable spin-orbit splittings obtained for MgO:Ni2+ in spin-orbit-CI calculations correlating only 8 electrons become correct when the proposed extension is applied, so that the same CI space is used but energy corrections due to correlating up to 26 electrons are included. The results of the ligand field spectrum of MgO:Ni2+ show good overall agreement with the experimental measurements and a reassignment of the observed Eg(b3T1g) excited state is proposed and discussed.

  3. An ab initio global potential-energy surface for NH2(A(2)A') and vibrational spectrum of the Renner-Teller A(2)A'-X(2)A" system.

    PubMed

    Zhou, Shulan; Li, Zheng; Xie, Daiqian; Lin, Shi Ying; Guo, Hua

    2009-05-14

    A global potential-energy surface for the first excited electronic state of NH(2)(A(2)A(')) has been constructed by three-dimensional cubic spline interpolation of more than 20,000 ab initio points, which were calculated at the multireference configuration-interaction level with the Davidson correction using the augmented correlation-consistent polarized valence quadruple-zeta basis set. The (J=0) vibrational energy levels for the ground (X(2)A(")) and excited (A(2)A(')) electronic states of NH(2) were calculated on our potential-energy surfaces with the diagonal Renner-Teller terms. The results show a good agreement with the experimental vibrational frequencies of NH(2) and its isotopomers.

  4. Ab Initio Studies of Metal Hexaboride Materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Kevin M.

    Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron

  5. Two-component, ab initio potential energy surface for CO2—H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both

    NASA Astrophysics Data System (ADS)

    Wang, Qingfeng Kee; Bowman, Joel M.

    2017-10-01

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO2—H2O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D0, of 787 cm-1 is obtained using that ZPE, De, and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm-1. Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO2 hydrate clathrate CO2(H2O)20(512 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO2.

  6. Two-component, ab initio potential energy surface for CO2-H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both.

    PubMed

    Wang, Qingfeng Kee; Bowman, Joel M

    2017-10-28

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO 2 -H 2 O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D 0 , of 787 cm -1 is obtained using that ZPE, D e , and the rigorous ZPEs of the monomers. Using a benchmark D e , D 0 is 758 cm -1 . Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO 2 hydrate clathrate CO 2 (H 2 O) 20 (5 12 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO 2 .

  7. Ab Initio Computation of Dynamical Properties: Pressure Broadening

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, Laurent; Drouin, Brian

    2014-06-01

    Rotational spectroscopy of polar molecules is the main observational tool in many areas of astrophysics, for gases of low densities (n ˜ 102 - 108 cm-3). Spectral line shapes in astrophysical media are largely dominated by turbulence-induced Doppler effects and natural line broadening are negligible. However line broadening remains an important tool for denser gases, like planetary high atmospheres. Understanding the excitation schemes of polar molecules requires the knowledge of excitation transfer rate due to collisional excitation, between the polar molecule and the ambient gas, usually H2. Transport properties in ionized media also require a precise knowledge of momentum transfer rates by elastic collisions. In order to assess the theoretically computed cross section and energy/momentum transfer rates, direct absolute experiments are scarce. The best way is to measure not individual scattering events but rather the global effect of the buffer gas, thanks to the pressure broadening cross sections, whose magnitude can be measured without any scaling parameters. At low temperatures, both elastic and inelastic scattering amplitudes are tested. At higher temperature, depending on the interaction strength, only inelastic scattering cross section are shown to play a significant role 1 ,2. Thanks to the advances of computer capabilities, it has become practical to compute spectral line parameters fromab initio quantum chemistry. In particular, the theory of rotational line broadening is readily incorporated into scattering quantum dynamical theory, like close-coupling schemes. The only approximations used in the computation are the isolated collision/isolated line approximations. We compute the non-binding interaction potential with high precision quantum chemistry and fit the resulting ab initio points onto a suitable functional. We have recently computed several such systems, for molecules in H2 buffer gas: H2O,3 H2CO,4 HCO+ .5 Detailed computations taking into

  8. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.

  9. Cooperative effects in spherical spasers: Ab initio analytical model

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.

    2017-06-01

    A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.

  10. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  11. Graphitic nanofilms of zinc-blende materials: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hu, San-Lue; Zhao, Li; Li, Yan-Li

    2017-12-01

    Ab initio calculations on ultra-thin nanofilms of 25 kinds of zinc-blende semiconductors demonstrate their stable geometry structures growth along (1 1 1) surface. Our results show that the (1 1 1) surfaces of 9 kinds of zinc-blende semiconductors can transform into a stable graphitelike structure within a certain thickness. The tensile strain effect on the thickness of graphitic films is not obvious. The band gaps of stable graphitic films can be tuned over a wide range by epitaxial tensile strain, which is important for applications in microelectronic devices, solar cells and light-emitting diodes.

  12. Pseudopotential for ab initio calculations of uranium compounds

    NASA Astrophysics Data System (ADS)

    Smirnov, G. S.; Pisarev, V. V.; Stegailov, V. V.

    2018-01-01

    The density functional theory (DFT) is a research tool of the highest importance for electronic structure calculations. It is often the only affordable method for ab initio calculations of complex materials. The pseudopotential approach allows reducing the total number of electrons in the model that speeds up calculations. However, there is a lack of pseudopotentials for heavy elements suitable for condensed matter DFT models. In this work, we present a pseudopotential for uranium developed in the Goedecker-Teter-Hutter form. Its accuracy is illustrated using several molecular and solid-state calculations.

  13. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  14. Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-05-01

    Ab initio molecular dynamics simulations are used to describe the diffusion of hydrogen in liquid aluminum at different temperatures. Quasi-instantaneous jumps separating periods of localized vibrations around a mean position are found to characterize the hydrogen motion at the microscopic scale. The hydrogen motion is furthermore analyzed using the van Hove function. We highlight a non-Fickian behavior for the hydrogen diffusion due to a large spatial distribution of hydrogen jumps. We show that a generalized continuous time random walk (CTRW) model describes the experimental diffusion coefficients in a satisfactory manner. Finally, the impact of impurities and alloying elements on hydrogen diffusion in aluminum is discussed.

  15. Iterative projection algorithms for ab initio phasing in virus crystallography.

    PubMed

    Lo, Victor L; Kingston, Richard L; Millane, Rick P

    2016-12-01

    Iterative projection algorithms are proposed as a tool for ab initio phasing in virus crystallography. The good global convergence properties of these algorithms, coupled with the spherical shape and high structural redundancy of icosahedral viruses, allows high resolution phases to be determined with no initial phase information. This approach is demonstrated by determining the electron density of a virus crystal with 5-fold non-crystallographic symmetry, starting with only a spherical shell envelope. The electron density obtained is sufficiently accurate for model building. The results indicate that iterative projection algorithms should be routinely applicable in virus crystallography, without the need for ancillary phase information. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Automated generation of radical species in crystalline carbohydrate using ab initio MD simulations.

    PubMed

    Aalbergsjø, Siv G; Pauwels, Ewald; Van Yperen-De Deyne, Andy; Van Speybroeck, Veronique; Sagstuen, Einar

    2014-08-28

    As the chemical structures of radiation damaged molecules may differ greatly from their undamaged counterparts, investigation and description of radiation damaged structures is commonly biased by the researcher. Radical formation from ionizing radiation in crystalline α-l-rhamnose monohydrate has been investigated using a new method where the selection of radical structures is unbiased by the researcher. The method is based on using ab initio molecular dynamics (MD) studies to investigate how ionization damage can form, change and move. Diversity in the radical production is gained by using different points on the potential energy surface of the intact crystal as starting points for the ionizations and letting the initial velocities of the nuclei after ionization be generated randomly. 160 ab initio MD runs produced 12 unique radical structures for investigation. Out of these, 7 of the potential products have never previously been discussed, and 3 products are found to match with radicals previously observed by electron magnetic resonance experiments.

  17. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    NASA Astrophysics Data System (ADS)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  18. Machine Learning Force Field Parameters from Ab Initio Data

    SciTech Connect

    Li, Ying; Li, Hui; Pickard, Frank C.

    Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor duringmore » the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.« less

  19. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.

    PubMed

    Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H

    2015-12-08

    Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.

  20. A fragmentation and reassembly method for ab initio phasing.

    PubMed

    Shrestha, Rojan; Zhang, Kam Y J

    2015-02-01

    Ab initio phasing with de novo models has become a viable approach for structural solution from protein crystallographic diffraction data. This approach takes advantage of the known protein sequence information, predicts de novo models and uses them for structure determination by molecular replacement. However, even the current state-of-the-art de novo modelling method has a limit as to the accuracy of the model predicted, which is sometimes insufficient to be used as a template for successful molecular replacement. A fragment-assembly phasing method has been developed that starts from an ensemble of low-accuracy de novo models, disassembles them into fragments, places them independently in the crystallographic unit cell by molecular replacement and then reassembles them into a whole structure that can provide sufficient phase information to enable complete structure determination by automated model building. Tests on ten protein targets showed that the method could solve structures for eight of these targets, although the predicted de novo models cannot be used as templates for successful molecular replacement since the best model for each target is on average more than 4.0 Å away from the native structure. The method has extended the applicability of the ab initio phasing by de novo models approach. The method can be used to solve structures when the best de novo models are still of low accuracy.

  1. Unified ab initio approaches to nuclear structure and reactions

    DOE PAGES

    Navratil, Petr; Quaglioni, Sofia; Hupin, Guillaume; ...

    2016-04-13

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Bemore » $${({\\rm{p}},\\gamma )}^{8}{\\rm{B}}$$ radiative capture. Lastly, we highlight our efforts to describe transfer reactions including the 3H$${({\\rm{d}},{\\rm{n}})}^{4}$$He fusion.« less

  2. Towards accurate ab initio predictions of the vibrational spectrum of methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    2002-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born-Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  3. Ab initio and empirical energy landscapes of (MgF2)n clusters (n = 3, 4).

    PubMed

    Neelamraju, S; Schön, J C; Doll, K; Jansen, M

    2012-01-21

    We explore the energy landscape of (MgF(2))(3) on both the empirical and ab initio level using the threshold algorithm. In order to determine the energy landscape and the dynamics of the trimer we investigate not only the stable isomers but also the barriers separating these isomers. Furthermore, we study the probability flows in order to estimate the stability of all the isomers found. We find that there is reasonable qualitative agreement between the ab initio and empirical potential, and important features such as sub-basins and energetic barriers follow similar trends. However, we observe that the energies are systematically different for the less compact clusters, when comparing empirical and ab initio energies. Since the underlying motivation of this work is to identify the possible clusters present in the gas phase during a low-temperature atom beam deposition synthesis of MgF(2), we employ the same procedure to additionally investigate the energy landscape of the tetramer. For this case, however, we use only the empirical potential.

  4. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  5. Ab initio determination of mode coupling in HSSH - The torsional splitting in the first excited S-S stretching state

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Winnewisser, G.; Yamada, K. M. T.; Defrees, D. J.; Mclean, A. D.

    1989-01-01

    A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.

  6. Ab Initio Predictions of Hexagonal Zr(B,C,N) Polymorphs for Coherent Interface Design

    SciTech Connect

    Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G.

    2017-10-27

    Density functional theory calculations are used to explore hexagonal (HX) NiAs-like polymorphs of Zr(B,C,N) and compare with corresponding Zr(B,C,N) Hagg-like face-centered cubic rocksalt (B1) phases. While all predicted compounds are mechanically stable according to the Born-Huang criteria, only HX Zr(C,N) are found dynamically stable from ab initio molecular dynamics simulations and lattice dynamics calculations. HX ZrN emerges as a candidate structure with ground state energy, elastic constants, and extrinsic mechanical parameters comparable with those of B1 ZrN. Ab initio band structure and semi-classical Boltzmann transport calculations predict a metallic character and a monotonic increase in electrical conductivity with the numbermore » of valence electrons. Electronic structure calculations indicate that the HX phases gain their stability and mechanical attributes by Zr d- non-metal p hybridization and by broadening of Zr d bands. Furthermore, it is shown that the HX ZrN phase provides a low-energy coherent interface model for connecting B1 ZrN domains, with significant energetic advantage over an atomistic interface model derived from high resolution transmission electron microscopy images. The ab initio characterizations provided herein should aid the experimental identification of non-Hagg-like hard phases. Furthermore, the results can also enrich the variety of crystalline phases potentially available for designing coherent interfaces in superhard nanostructured materials and in materials with multilayer characteristics.« less

  7. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  8. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.

    PubMed

    Ching, W Y; Rulis, Paul; Misra, A

    2009-10-01

    We report elastic constant calculation and a "theoretical" tensile experiment on stoichiometric hydroxyapatite (HAP) crystal using an ab initio technique. These results compare favorably with a variety of measured data. Theoretical tensile experiments are performed on the orthorhombic cell of HAP for both uniaxial and biaxial loading. The results show considerable anisotropy in the stress-strain behavior. It is shown that the failure behavior of the perfect HAP crystal is brittle for tension along the z-axis with a maximum stress of 9.6 GPa at 10% strain. Biaxial failure envelopes from six "theoretical" loading tests show a highly anisotropic pattern. Structural analysis of the crystal under various stages of tensile strain reveals that the deformation behavior manifests itself mainly in the rotation of the PO(4) tetrahedron with concomitant movements of both the columnar and axial Ca ions. These results are discussed in the context of mechanical properties of bioceramic composites relevant to mineralized tissues.

  9. Quantitative verification of ab initio self-consistent laser theory.

    PubMed

    Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E

    2008-10-13

    We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

  10. Molybdenum-titanium phase diagram evaluated from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Barzilai, Shmuel; Toher, Cormac; Curtarolo, Stefano; Levy, Ohad

    2017-07-01

    The design of next generation β -type titanium implants requires detailed knowledge of the relevant stable and metastable phases at temperatures where metallurgical heat treatments can be performed. Recently, a standard specification for surgical implant applications was established for Mo-Ti alloys. However, the thermodynamic properties of this binary system are not well known and two conflicting descriptions of the β -phase stability have been presented in the literature. In this study, we use ab initio calculations to investigate the Mo-Ti phase diagram. These calculations predict that the β phase is stable over a wide concentration range, in qualitative agreement with one of the reported phase diagrams. In addition, they predict stoichiometric compounds, stable at temperatures below 300 ∘C , which have not yet been detected by experiments. The resulting solvus, which defines the transition to the β -phase solid solution, therefore occurs at lower temperatures and is more complex than previously anticipated.

  11. Ab Initio energetics of SiO bond cleavage.

    PubMed

    Hühn, Carolin; Erlebach, Andreas; Mey, Dorothea; Wondraczek, Lothar; Sierka, Marek

    2017-10-15

    A multilevel approach that combines high-level ab initio quantum chemical methods applied to a molecular model of a single, strain-free SiOSi bridge has been used to derive accurate energetics for SiO bond cleavage. The calculated SiO bond dissociation energy and the activation energy for water-assisted SiO bond cleavage of 624 and 163 kJ mol -1 , respectively, are in excellent agreement with values derived recently from experimental data. In addition, the activation energy for H 2 O-assisted SiO bond cleavage is found virtually independent of the amount of water molecules in the vicinity of the reaction site. The estimated reaction energy for this process including zero-point vibrational contribution is in the range of -5 to 19 kJ mol -1 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features

    NASA Astrophysics Data System (ADS)

    Sanna, Antonio; Flores-Livas, José A.; Davydov, Arkadiy; Profeta, Gianni; Dewhurst, Kay; Sharma, Sangeeta; Gross, E. K. U.

    2018-04-01

    We present an application of Eliashberg theory of superconductivity to study a set of novel superconducting systems with a wide range of structural and chemical properties. The set includes three intercalated group-IV honeycomb layered structures, SH3 at 200 GPa (the superconductor with the highest measured critical temperature), the similar system SeH3 at 150 GPa, and a lithium doped mono-layer of black phosphorus. The theoretical approach we adopt is a recently developed, fully ab initio Eliashberg approach that takes into account the Coulomb interaction in a full energy-resolved fashion avoiding any free parameters like μ*. This method provides reasonable estimations of superconducting properties, including TC and the excitation spectra of superconductors.

  13. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  14. Simple calculation of ab initio melting curves: Application to aluminum.

    PubMed

    Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean

    2015-03-01

    We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003)] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.

  15. Ab Initio Multiple Spawning Photochemical Dynamics of DMABN Using GPUs

    DOE PAGES

    Curchod, Basile F. E.; Sisto, Aaron; Martinez, Todd J.

    2016-12-15

    The ultrafast decay dynamics of 4-( N,N-dimethylamino)benzonitrile (DMABN) following photoexcitation was studied with the ab initio multiple spawning (AIMS) method, combined with GPU-accelerated linear-response time-dependent density functional theory (LR-TDDFT). We validate the LR-TDDFT method for this case and then present a detailed analysis of the first ≈200 fs of DMABN excited-state dynamics. Almost complete nonadiabatic population transfer from S 2 (the initially populated bright state) to S 1 takes place in less than 50 fs, without significant torsion of the dimethylamino (DMA) group. Significant torsion of the DMA group is only observed after the nuclear wavepacket reaches S 1 andmore » acquires locally excited electronic character. Here, our results show that torsion of the DMA group is not prerequisite for nonadiabatic transitions in DMABN, although such motion is indeed relevant on the lowest excited state (S 1).« less

  16. Efficient Ab initio Modeling of Random Multicomponent Alloys

    DOE PAGES

    Jiang, Chao; Uberuaga, Blas P.

    2016-03-08

    Here, we present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multi-component alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we also demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high entropy alloy chemistries. Furthermore, the SSOS methodmore » developed here can be broadly useful for the rapid computational design of multi-component materials, especially those with a large number of alloying elements, a challenging problem for other approaches.« less

  17. Ab initio study of II-(VI)2 dichalcogenides.

    PubMed

    Olsson, P; Vidal, J; Lincot, D

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.

  18. The ab-initio density matrix renormalization group in practice.

    PubMed

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  19. High-throughput ab-initio dilute solute diffusion database.

    PubMed

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-19

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  20. Ab Initio Analysis of Auger-Assisted Electron Transfer.

    PubMed

    Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V

    2015-01-15

    Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.

  1. Fabrication and ab initio study of downscaled graphene nanoelectronic devices

    NASA Astrophysics Data System (ADS)

    Mizuta, Hiroshi; Moktadir, Zakaria; Boden, Stuart A.; Kalhor, Nima; Hang, Shuojin; Schmidt, Marek E.; Cuong, Nguyen Tien; Chi, Dam Hieu; Otsuka, Nobuo; Muruganathan, Manoharan; Tsuchiya, Yoshishige; Chong, Harold; Rutt, Harvey N.; Bagnall, Darren M.

    2012-09-01

    In this paper we first present a new fabrication process of downscaled graphene nanodevices based on direct milling of graphene using an atomic-size helium ion beam. We address the issue of contamination caused by the electron-beam lithography process to pattern the contact metals prior to the ultrafine milling process in the helium ion microscope (HIM). We then present our recent experimental study of the effects of the helium ion exposure on the carrier transport properties. By varying the time of helium ion bombardment onto a bilayer graphene nanoribbon transistor, the change in the transfer characteristics is investigated along with underlying carrier scattering mechanisms. Finally we study the effects of various single defects introduced into extremely-scaled armchair graphene nanoribbons on the carrier transport properties using ab initio simulation.

  2. An Ab Initio Study of Alkali-C60 Complexes

    NASA Astrophysics Data System (ADS)

    Frick, Nathan; Hira, A. S.; Ray, A. K.

    2003-03-01

    We extend our previous work on fullerene-alkali complexes1-2 by presenting the results of an ab initio theoretical study of the alkali LiC60+, LiC60, NaC60+, NaC60, KC60+, and KC60 complexes. In the endohedral complexes for Li and Na, there is displacement of the adatom from the center. Of the ions, exohedral Li+ will sit closest to the cage, and among the neutrals, exohedral K remains closest. Bond lengths are consistently longer for the fivefold and threefold approaches. Adsorbates inside the fullerene donate negative charge to the carbons, but ions outside obtain a small amount, resulting in a polarization of the molecule. In the ion complexes, there is lowering of the orbital energy levels by 3 to 4 eV, resulting in an increase in the number of bound, but unoccupied, electronic orbitals. The HOMO-LUMO gap, of interest in superconductivity studies, is reduced by about 50 1. A.S. Hira and A.K. Ray, Phys. Rev. A 52, 141(1995); A 54, 2205(1996). 2. Ajit Hira and A. K. Ray, "An Initio Modeling of the Endohedral and Exohedral Complexes of C60Na2+ Complexes", Bull. Am. Phys. Soc. 47 (March 2002).

  3. Analytic Empirical Potential and its Comparison to State of the Art ab initio Calculations for the 6e^- Excited b(1^3Π_u)-STATE of Li_2.

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.; Le Roy, Robert J.

    2015-06-01

    Despite only having 6e^-, the most sophisticated Li_2(b,1^3Π_u) calculation has an r_e that disagrees with the empirical value by over 1500% of the latter's uncertainty, and energy spacings that disagree with those of the empirical potential by up to over 1.5cm-1. The discrepancy here is far more than for the ground state of the 5e^- system BeH, for which the best ab initio calculation gives an r_e which disagrees with the empirical value by less than 200% of the latter's uncertainty. In addition to this discrepancy, other reasons motivating the construction of an analytic empirical potential for Li_2(b,1^3Π_u) include (1) the fact that it is the most deeply bound Li_2 state, (2) it is the only Li_2 state out of the lowest five, for which no analytic empirical potential has yet been built, (3) the state it mixes with, the A(1^1σ_u)-state, is one of the most thoroughly characterized molecular states, but has a small gap of missing data in part of the region where it mixes with the b-state, and (4) it is one of the states accessible by new ultra-high precision techniques based on photoassociation. Finally (5) there is currently a discrepancy between the most sophisticated 3e- ab initio calculation, and the most current empirical value, for the first Li(^2S)-Li(^2P) interaction term (C_3), despite the latter being the most precise experimentally determined oscillator strength for any system, by an order of magnitude^e. The b-state is one of the states that has this exact C_3 interaction term. Musial & Kucharski (2014) J. Chem. Theor. Comp. 10, 1200. Dattani N. S. (2015) J. Mol. Spec. http://dx.doi.org/10.1016/j.jms.2014.09.005. Semczuk M., Li X., Gunton W., Haw M., Dattani N. S., Witz J., Mills A., Jones D. J., Madison K. W. (2013) Phys. Rev. A 87, 052505 Gunton W., Semczuk M., Dattani N. S., Madison K. W. (2013) Phys. Rev. A 88, 062510 Tang L.-Y., Yan Z.-C., Shi T.-Y., Mitroy J (2011) Phys. Rev. A 84, 052502. Le Roy R. J., Dattani N. S., Coxon J. A., Ross A. J

  4. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.

    PubMed

    Rana, Malay Kumar; Chandra, Amalendu

    2013-05-28

    The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.

  5. Revisiting the Electronic Structure of FeS Monomers Using ab Initio Ligand Field Theory and the Angular Overlap Model.

    PubMed

    Chilkuri, Vijay Gopal; DeBeer, Serena; Neese, Frank

    2017-09-05

    Iron-sulfur (FeS) proteins are universally found in nature with actives sites ranging in complexity from simple monomers to multinuclear sites from two up to eight iron atoms. These sites include mononuclear (rubredoxins), dinuclear (ferredoxins and Rieske proteins), trinuclear (e.g., hydrogenases), and tetranuclear (various ferredoxins and high-potential iron-sulfur proteins). The electronic structure of the higher-nuclearity clusters is inherently extremely complex. Hence, it is reasonable to take a bottom-up approach in which clusters of increasing nuclearity are analyzed in terms of the properties of their lower nuclearity constituents. In the present study, the first step is taken by an in-depth analysis of mononuclear FeS systems. Two different FeS molecules with phenylthiolate and methylthiolate as ligands are studied in their oxidized and reduced forms using modern wave function-based ab initio methods. The ab initio electronic spectra and wave function are presented and analyzed in detail. The very intricate electronic structure-geometry relationship in these systems is analyzed using ab initio ligand field theory (AILFT) in conjunction with the angular overlap model (AOM) parametrization scheme. The simple AOM model is used to explain the effect of geometric variations on the electronic structure. Through a comparison of the ab initio computed UV-vis absorption spectra and the available experimental spectra, the low-energy part of the many-particle spectrum is carefully analyzed. We show ab initio calculated magnetic circular dichroism spectra and present a comparison with the experimental spectrum. Finally, AILFT parameters and the ab initio spectra are compared with those obtained experimentally to understand the effect of the increased covalency of the thiolate ligands on the electronic structure of FeS monomers.

  6. Study on structures and properties of ammonia clusters (NH3)n (n=1-5) and liquid ammonia in terms of ab initio method and atom-bond electronegativity equalization method ammonia-8P fluctuating charge potential model.

    PubMed

    Yu, Ling; Yang, Zhong-Zhi

    2010-05-07

    Structures, binding energies, and vibrational frequencies of (NH(3))(n) (n=2-5) isomers and dynamical properties of liquid ammonia have been explored using a transferable intermolecular potential eight point model including fluctuating charges and flexible body based on a combination of the atom-bond electronegativity equalization and molecular (ABEEM) mechanics (ABEEM ammonia-8P) in this paper. The important feature of this model is to divide the charge sites of one ammonia molecule into eight points region containing four atoms, three sigma bonds, and a lone pair, and allows the charges in system to fluctuate responding to the ambient environment. Due to the explicit descriptions of charges and special treatment of hydrogen bonds, the results of equilibrium geometries, dipole moments, cluster interaction energies, vibrational frequencies for the gas phase of small ammonia clusters, and radial distribution function for liquid ammonia calculated with the ABEEM ammonia-8P potential model are in good agreement with those measured by available experiments and those obtained from high level ab initio calculations. The properties of ammonia dimer are studied in detail involving the structure and one-dimensional, two-dimensional potential energy surface. As for interaction energies, the root mean square deviation is 0.27 kcal/mol, and the linear correlation coefficient reaches 0.994.

  7. Full-dimensional quantum calculations of the dissociation energy, zero-point, and 10 K properties of H7+/D7+ clusters using an ab initio potential energy surface.

    PubMed

    Barragán, Patricia; Pérez de Tudela, Ricardo; Qu, Chen; Prosmiti, Rita; Bowman, Joel M

    2013-07-14

    Diffusion Monte Carlo (DMC) and path-integral Monte Carlo computations of the vibrational ground state and 10 K equilibrium state properties of the H7 (+)/D7 (+) cations are presented, using an ab initio full-dimensional potential energy surface. The DMC zero-point energies of dissociated fragments H5 (+)(D5 (+))+H2(D2) are also calculated and from these results and the electronic dissociation energy, dissociation energies, D0, of 752 ± 15 and 980 ± 14 cm(-1) are reported for H7 (+) and D7 (+), respectively. Due to the known error in the electronic dissociation energy of the potential surface, these quantities are underestimated by roughly 65 cm(-1). These values are rigorously determined for first time, and compared with previous theoretical estimates from electronic structure calculations using standard harmonic analysis, and available experimental measurements. Probability density distributions are also computed for the ground vibrational and 10 K state of H7 (+) and D7 (+). These are qualitatively described as a central H3 (+)/D3 (+) core surrounded by "solvent" H2/D2 molecules that nearly freely rotate.

  8. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces.

    PubMed

    Qu, Chen; Bowman, Joel M

    2016-09-14

    We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm -1 and the barrier for the double-proton transfer on the PES is 2848 cm -1 , in good agreement with the directly-calculated ab initio value of 2853 cm -1 . The zero-point vibrational energy of 15 337 ± 7 cm -1 is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm -1 , which is roughly twice the experimental value. The tunneling splittings of (DCOOH) 2 and (DCOOD) 2 from one to three mode calculations are, as expected, smaller than that for (HCOOH) 2 and consistent with experiment.

  9. Ab-initio study of electronic, magnetic and thermoelectric behaviors of LiV2O4 and LiCr2O4 using modified Becke-Johson (mBJ) potential

    NASA Astrophysics Data System (ADS)

    Ali, Saima; Rashid, Muhammad; Hassan, M.; Noor, N. A.; Mahmood, Q.; Laref, A.; Haq, Bakhtiar Ul

    2018-05-01

    Owing to the large energy storage capacity and higher working voltage, the spinel oxides LiV2O4 and LiCr2O4, have remained under intense research attention for utilization as electrode materials in lithium-ion batteries. In this study, we explore the half-metallic nature and thermoelectric response in both LiV2O4 and LiCr2O4 spinel oxides using ab-initio density functional theory (DFT) based computations. The ground-state energies of these compounds have been studied at the optimized structural parameters in the ferromagnetic phase. In order to obtain a correct picture of the electronic structure and magnetic properties, the modified Becke-Johnson (mBJ) potential is applied to compute the electronic structures. The half-metallic behavior is confirmed by the spin-polarized electronic band structures and density of state plots. The magnetic nature is elucidated by computing the John-Teller energy, direct and indirect exchange and crystal field splitting energies. Our computations indicate strong hybridization decreasing the V/Cr site magnetic moments and increasing magnetic momenta at the nonmagnetic atomic sites. We also present the computed parameters significant for expressing the thermoelectric response, which are electrical conductivity, thermal conductivity, See-beck coefficient and power factor. The computed properties are of immense interest owing to the potential spintronics and Li-ion battery applications of the studied spinel materials.

  10. Ab initio study of the ground and excited electronic states of the methyl radical

    PubMed Central

    Zanchet, A.; Bañares, L.; Senent, M. L.; García-Vela, A.

    2016-01-01

    The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states. PMID:27892569

  11. Towards an ab initio description of correlated materials

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls

  12. Ab initio molecular crystal structures, spectra, and phase diagrams.

    PubMed

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  13. Multipole-Based Force Fields from ab Initio Interaction Energies and the Need for Jointly Refitting All Intermolecular Parameters.

    PubMed

    Kramer, Christian; Gedeck, Peter; Meuwly, Markus

    2013-03-12

    Distributed atomic multipole (MTP) moments promise significant improvements over point charges (PCs) in molecular force fields, as they (a) more realistically reproduce the ab initio electrostatic potential (ESP) and (b) allow to capture anisotropic atomic properties such as lone pairs, conjugated systems, and σ holes. The present work focuses on the question of whether multipolar electrostatics instead of PCs in standard force fields leads to quantitative improvements over point charges in reproducing intermolecular interactions. To this end, the interaction energies of two model systems, benzonitrile (BZN) and formamide (FAM) homodimers, are characterized over a wide range of dimer conformations. It is found that although with MTPs the monomer ab initio ESP can be captured better by about an order of magnitude compared to point charges (PCs), this does not directly translate into better describing ab initio interaction energies compared to PCs. Neither ESP-fitted MTPs nor refitted Lennard-Jones (LJ) parameters alone demonstrate a clear superiority of atomic MTPs. We show that only if both electrostatic and LJ parameters are jointly optimized in standard, nonpolarizable force fields, atomic are MTPs clearly beneficial for reproducing ab initio dimerization energies. After an exhaustive exponent scan, we find that for both BZN and FAM, atomic MTPs and a 9-6 LJ potential can reproduce ab initio interaction energies with ∼30% (RMSD 0.13 vs 0.18 kcal/mol) less error than point charges (PCs) and a 12-6 LJ potential. We also find that the improvement due to using MTPs with a 9-6 LJ potential is considerably more pronounced than with a 12-6 LJ potential (≈ 10%; RMSD 0.19 versus 0.21 kcal/mol).

  14. Scattering study of the Ne + NeH+(v0 = 0, j0 = 0) → NeH+ + Ne reaction on an ab initio based analytical potential energy surface

    NASA Astrophysics Data System (ADS)

    Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N.

    2016-01-01

    Initial state selected dynamics of the Ne + NeH+(v0 = 0, j0 = 0) → NeH+ + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]+ structure lying 0.72 eV below the Ne + NeH+ asymptote is found to be the most stable geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.

  15. Scattering study of the Ne + NeH{sup +}(v{sub 0} = 0, j{sub 0} = 0) → NeH{sup +} + Ne reaction on an ab initio based analytical potential energy surface

    SciTech Connect

    Koner, Debasish; Panda, Aditya N., E-mail: adi07@iitg.ernet.in; Barrios, Lizandra

    2016-01-21

    Initial state selected dynamics of the Ne + NeH{sup +}(v{sub 0} = 0, j{sub 0} = 0) → NeH{sup +} + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]{sup +} structure lying 0.72 eV below the Ne + NeH{sup +} asymptote is found to be the most stablemore » geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.« less

  16. Nitrogen vacancy, self-interstitial diffusion, and Frenkel-pair formation/dissociation in B 1 TiN studied by ab initio and classical molecular dynamics with optimized potentials

    NASA Astrophysics Data System (ADS)

    Sangiovanni, D. G.; Alling, B.; Steneteg, P.; Hultman, L.; Abrikosov, I. A.

    2015-02-01

    We use ab initio and classical molecular dynamics (AIMD and CMD) based on the modified embedded-atom method (MEAM) potential to simulate diffusion of N vacancy and N self-interstitial point defects in B 1 TiN. TiN MEAM parameters are optimized to obtain CMD nitrogen point-defect jump rates in agreement with AIMD predictions, as well as an excellent description of Ti Nx(˜0.7

  17. Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  18. The molecular structure and conformation of tetrabromoformaldazine: ab initio and DFT calculations

    NASA Astrophysics Data System (ADS)

    Jeong, Myongho; Kwon, Younghi

    2000-06-01

    Ab initio and density functional theory methods are applied to investigate the molecular structure and conformational nature of tetrabromoformaldazine. The calculations including the effects of the electron correlation at the B3LYP and MP2 levels with the basis set 6-311+G(d) can reproduce the experimental geometrical parameters at the skew conformation. The N-N bond torsional angle φ calculated at the MP2/6-311+G(d) level is found to be closest to the observed angle. The scanning of the potential energy surface suggests that the anti-conformation is at a saddle point corresponding to the transition state.

  19. Ab initio Kinetics and Thermal Decomposition Mechanism of Mononitrobiuret and 1,5-Dinitrobiuret

    DTIC Science & Technology

    2016-03-14

    Journal Article 3. DATES COVERED (From - To) Feb 2015-May 2015 4. TITLE AND SUBTITLE Ab initio Kinetics and Thermal Decomposition Mechanism of 5a...tetrazole-free, nitrogen-rich, energetic compounds. For the first time, the thermal decomposition mechanisms of MNB and DNB have been investigated...potential energy surfaces for thermal decomposition of MNB and DNB were characterized at the RCCSD(T)/cc-pV∞Z//M06-2X/aug- cc-pVTZ level of theory

  20. Curved-line search algorithm for ab initio atomic structure relaxation

    NASA Astrophysics Data System (ADS)

    Chen, Zhanghui; Li, Jingbo; Li, Shushen; Wang, Lin-Wang

    2017-09-01

    Ab initio atomic relaxations often take large numbers of steps and long times to converge, especially when the initial atomic configurations are far from the local minimum or there are curved and narrow valleys in the multidimensional potentials. An atomic relaxation method based on on-the-flight force learning and a corresponding curved-line search algorithm is presented to accelerate this process. Results demonstrate the superior performance of this method for metal and magnetic clusters when compared with the conventional conjugate-gradient method.

  1. High order discretization techniques for real-space ab initio simulations

    NASA Astrophysics Data System (ADS)

    Anderson, Christopher R.

    2018-03-01

    In this paper, we present discretization techniques to address numerical problems that arise when constructing ab initio approximations that use real-space computational grids. We present techniques to accommodate the singular nature of idealized nuclear and idealized electronic potentials, and we demonstrate the utility of using high order accurate grid based approximations to Poisson's equation in unbounded domains. To demonstrate the accuracy of these techniques, we present results for a Full Configuration Interaction computation of the dissociation of H2 using a computed, configuration dependent, orbital basis set.

  2. Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2

    NASA Technical Reports Server (NTRS)

    Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.

    1976-01-01

    The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.

  3. Ab initio Quantum Chemical and Experimental Reaction Kinetics Studies in the Combustion of Bipropellants

    DTIC Science & Technology

    2017-03-24

    NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for

  4. Introducing ab initio based neural networks for transition-rate prediction in kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär

    2017-02-01

    The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.

  5. Ab initio description of p-shell hypernuclei.

    PubMed

    Wirth, Roland; Gazda, Daniel; Navrátil, Petr; Calci, Angelo; Langhammer, Joachim; Roth, Robert

    2014-11-07

    We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction. We validate the approach for s-shell hypernuclei and apply it to p-shell hypernuclei, in particular to (Λ)(7)Li, (Λ)(9)Be, and (Λ)(13)C. We show that the chiral hyperon-nucleon interactions provide ground-state and excitation energies that generally agree with experiment within the cutoff dependence. At the same time we demonstrate that hypernuclear spectroscopy provides tight constraints on the hyperon-nucleon interactions.

  6. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  7. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.; Hillman, J. J.

    1982-04-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  8. Ab initio solution of macromolecular crystal structures without direct methods.

    PubMed

    McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J

    2017-04-04

    The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.

  9. Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs.

    PubMed

    Bruni, Giovanna; Gozzo, Fabia; Capsoni, Doretta; Bini, Marcella; Macchi, Piero; Simoncic, Petra; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Ferrari, Stefania; Marini, Amedeo

    2011-06-01

    Commercial and recrystallized polycrystalline samples of carprofen, a nonsteroidal anti-inflammatory drug, were studied by thermal, spectroscopic, and structural techniques. Our investigations demonstrated that recrystallized sample, stable at room temperature (RT), is a single polymorphic form of carprofen (polymorph I) that undergoes an isostructural polymorphic transformation by heating (polymorph II). Polymorph II remains then metastable at ambient conditions. Commercial sample is instead a mixture of polymorphs I and II. The thermodynamic relationships between the two polymorphs were determined through the construction of an energy/temperature diagram. The ab initio structural determination performed on synchrotron X-Ray powder diffraction patterns recorded at RT on both polymorphs allowed us to elucidate, for the first time, their crystal structure. Both crystallize in the monoclinic space group type P2(1) /c, and the unit cell similarity index and the volumetric isostructurality index indicate that the temperature-induced polymorphic transformation I → II is isostructural. Polymorphs I and II are conformational polymorphs, sharing a very similar hydrogen bond network, but with different conformation of the propanoic skeleton, which produces two different packing. The small conformational change agrees with the low value of transition enthalpy obtained by differential scanning calorimetry measurements and the small internal energy computed with density functional methods. Copyright © 2011 Wiley-Liss, Inc.

  10. Domain Wall Formation in Ferromagnetic Layers: An Ab Initio Study

    NASA Astrophysics Data System (ADS)

    Herper, Heike C.

    Domain walls are an inherent feature of ferromagnetic (FM) films consisting of layers with different magnetic orientations. Since FM films are used in electrical devices the question of the influence of domain walls on, e.g., the magnetoresistance has attracted much interest. Besides discussing the resistance contribution of domain walls, it is appropriate to study different types of domain walls and their energy of formation. The behaviour of domain walls is usually discussed within model calculations. In the present paper it is done within an ab initio Green's function technique for layered systems, i.e., the fully relativistic, spin-polarized screened Korringa-Kohn Rostoker method. Results are presented for fcc Co layers covered by two semi-infinite fcc Pt(001) bulk systems or by bulk fcc Co(001), respectively. The resistance, which is caused by the different types of domain walls is discussed within a Kubo-Greenwood approach considering Co(001)/Co24/Co(001) as an example.

  11. Ab-Initio Molecular Dynamics Simulation of Graphene Sheet

    NASA Astrophysics Data System (ADS)

    Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.

    2017-01-01

    The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.

  12. Engineering Room-temperature Superconductors Via ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen

    The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.

  13. Double-walled silicon nanotubes: an ab initio investigation

    NASA Astrophysics Data System (ADS)

    Lima, Matheus P.

    2018-02-01

    The synthesis of silicon nanotubes realized in the last decade demonstrates multi-walled tubular structures consisting of Si atoms in {{sp}}2 and the {{sp}}3 hybridizations. However, most of the theoretical models were elaborated taking as the starting point {{sp}}2 structures analogous to carbon nanotubes. These structures are unfavorable due to the natural tendency of the Si atoms to undergo {{sp}}3. In this work, through ab initio simulations based on density functional theory, we investigated double-walled silicon nanotubes proposing layered tubes possessing most of the Si atoms in an {{sp}}3 hybridization, and with few {{sp}}2 atoms localized at the outer wall. The lowest-energy structures have metallic behavior. Furthermore, the possibility to tune the band structure with the application of a strain was demonstrated, inducing a metal-semiconductor transition. Thus, the behavior of silicon nanotubes differs significantly from carbon nanotubes, and the main source of the differences is the distortions in the lattice associated with the tendency of Si to make four chemical bonds.

  14. Ab initio predictions of the symmetry energy and recent constraints

    NASA Astrophysics Data System (ADS)

    Sammarruca, Francesca

    2017-01-01

    The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.

  15. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  16. Experimental and ab initio structure of BrNO2

    NASA Astrophysics Data System (ADS)

    Kwabia Tchana, F.; Orphal, J.; Kleiner, I.; Rudolph, H. D.; Willner, H.; Garcia, P.; Bouba, O.; Demaison, J.; Redlich, B.

    The ν2 fundamental bands of different isotopomers of BrNO2 (79Br15N16O2, 81Br15N16O2, 79Br14N18O2 and 79Br14N16O18O) located around 13 µm were recorded using high-resolution Fourier transform infrared spectrometry. More than 8000 lines of all these isotopomers were reproduced using a Watson-type A-reduced Hamiltonian with a root-mean-square deviation of better than 7 × 10-4 cm-1 for the four isotopomers. Rotational and centrifugal distortion constants for the ν2 = 1 states as well as for the vibrational ground states of these isotopomers were determined. For the first time, an analysis of the ground-state rotational constants obtained in this study combined with the constants obtained in our previous work on the ν2 bands of 79Br14N16O2 and 81Br14N16O2 has allowed us to calculate the rm structure of nitryl bromide. The structural parameters obtained were rm(Br-N) = 2.0118(16) Å, rm(N-O) = 1.1956(12) Å and α(O-N-O) = 131.02(12) Å. A new ab initio structure of nitryl bromide calculated at the CCSD(T)/SDB-aug-cc-pVQZ level of theory is presented and was found to be in fair agreement with the experimental structure.

  17. Ab initio calculations of the absorption spectrum of chalcone

    NASA Astrophysics Data System (ADS)

    Oumi, Manabu; Maurice, David; Head-Gordon, Martin

    1999-03-01

    The excitation energies and excited states of trans-chalcone ( trans-( s-cis)-1,3-diphenylpropenone), and several related molecules ( trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone, propenal, trans-( s-cis)-1-(4-hydroxyphenyl)-3-phenylpropenone, trans-( s-cis)3-(4-hydroxyphenyl)-1-phenylpropenone) have been calculated using single reference ab initio molecular orbital methods, and characterized by attachment-detachment density analysis. The results suggest assignments for the lowest three electronic transitions observed experimentally for trans-( s-cis)-chalcone in solution. The extent of localization of the electronic transitions is established by calculations on the excited states of trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone and propenal, as well as analysis of the chalcone calculations. Contrary to some previous work, none of these excitations are strongly delocalized over the entire molecule. Calculated substituent shifts for the hydroxy chalcones are in qualitative agreement with experimental data, and support the localized interpretation of the main π→ π* transition.

  18. Ab initio correlated calculations of rare-gas dimer quadrupoles

    SciTech Connect

    Donchev, Alexander G.

    2007-10-15

    This paper reports ab initio calculations of rare gas (RG=Kr, Ar, Ne, and He) dimer quadrupoles at the second order of Moeller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG{sub 2} quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG{sub 2}more » quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG{sub 3} quadrupoles is discussed.« less

  19. Ab initio thermodynamic results for warm dense matter

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael

    2016-10-01

    Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.

  20. Exploring the free energy surface using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  1. The AB Initio Mia Method: Theoretical Development and Practical Applications

    NASA Astrophysics Data System (ADS)

    Peeters, Anik

    The bottleneck in conventional ab initio Hartree -Fock calculations is the storage of the electron repulsion integrals because their number increases with the fourth power of the number of basis functions. This problem can be solved by a combination of the multiplicative integral approximation (MIA) and the direct SCF method. The MIA approach was successfully applied in the geometry optimisation of some biologically interesting compounds like the neurolepticum Haloperidol and two TIBO derivatives, inactivators of HIV1. In this thesis the potency of the MIA-method is shown by the application of this method in the calculation of the forces on the nuclei. In addition, the MIA method enabled the development of a new model for performing crystal field studies: the supermolecule model. The results for this model are in better agreement with experimental data than the results for the point charge model. This is illustrated by the study of some small molecules in the solid state: 2,3-diketopiperazine, formamide oxime and two polymorphic forms of glycine, alpha-glycine and beta-glycine.

  2. Ab Initio Values of the Thermophysical Properties of Helium as Standards

    PubMed Central

    Hurly, John J.; Moldover, Michael R.

    2000-01-01

    Recent quantum mechanical calculations of the interaction energy of pairs of helium atoms are accurate and some include reliable estimates of their uncertainty. We combined these ab initio results with earlier published results to obtain a helium-helium interatomic potential that includes relativistic retardation effects over all ranges of interaction. From this potential, we calculated the thermophysical properties of helium, i.e., the second virial coefficients, the dilute-gas viscosities, and the dilute-gas thermal conductivities of 3He, 4He, and their equimolar mixture from 1 K to 104 K. We also calculated the diffusion and thermal diffusion coefficients of mixtures of 3He and 4He. For the pure fluids, the uncertainties of the calculated values are dominated by the uncertainties of the potential; for the mixtures, the uncertainties of the transport properties also include contributions from approximations in the transport theory. In all cases, the uncertainties are smaller than the corresponding experimental uncertainties; therefore, we recommend the ab initio results be used as standards for calibrating instruments relying on these thermophysical properties. We present the calculated thermophysical properties in easy-to-use tabular form. PMID:27551630

  3. Phenolic Polymer Solvation in Water and Ethylene Glycol, II: Ab Initio Computations.

    PubMed

    Bauschlicher, Charles W; Bucholz, Eric W; Haskins, Justin B; Monk, Joshua D; Lawson, John W

    2017-04-06

    Ab initio techniques are used to study the interaction of ethylene glycol and water with a phenolic polymer. The water bonds more strongly with the phenolic OH than with the ring. The phenolic OH groups can form hydrogen bonds between themselves. For more than one water molecule, there is a competition between water-water and water-phenolic interactions. Ethylene glycol shows the same effects as those of water, but the potential energy surface is further complicated by CH 2 -phenolic interactions, different conformers of ethylene glycol, and two OH groups on each molecule. Thus, the ethylene glycol-phenolic potential is more complicated than the water-phenolic potential. The results of the ab initio calculations are compared to those obtained using a force field. These calibration studies show that the water system is easier to describe than the ethylene glycol system. The calibration studies confirm the reliability of force fields used in our companion molecular dynamics study of a phenolic polymer in water and ethylene solutions.

  4. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    NASA Astrophysics Data System (ADS)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  5. Ab Initio Calculation of Accurate Vibrational Frequencies for Molecules of Interest in Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within +/- 8 cm(sup -1) on average, and molecular bond distances are accurate to within +/- 0.001-0.003 A, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as rovibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy win be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  6. High pressure stability of lithium metatitanate and metazirconate: Insight from experiments & ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Chitnis, Abhishek; Chakraborty, B.; Tripathi, B. M.; Tyagi, A. K.; Garg, Nandini

    2018-02-01

    Lithium metatitanate (LTO) and lithium metazirconate (LZO) are lithium rich ceramics which can be used as tritium breeder materials for thermonuclear reactors. In-situ x-ray diffraction and ab-initio studies at high pressure show that LTO has a higher bulk modulus than that of LZO. In fact these studies indicate that they are the least compressible of the known lithium rich ceramics like Li2O or Li4SiO4, which are potential candidates for blanket materials. These studies show that the TiO6 octahedra are responsible for the higher bulk modulus of LTO when compared to that of LZO. It has also been shown that the compressibility and distortion of the softer LiO6 octahedra can be controlled by altering the stacking sequence of the more rigid covalently bonded octahedra. This knowledge can be used by chemists to design new lithium based ceramics with higher bulk modulus. It was observed that LTO was stable upto 34 GPa. Ab initio DFT calculations helped to understand the anisotropy in compressibility of both LZO and LTO. This study also shows, that even though the empirical potentials developed by Vijaykumar et al. successfully determine the ambient pressure structure of lithium metatitanate, they cannot be used at non ambient conditions like high pressure [1].

  7. Optical properties of highly compressed polystyrene: An ab initio study

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Colgan, J. P.; Goncharov, V. N.; Kilcrease, D. P.

    2017-10-01

    Using all-electron density functional theory, we have performed an ab initio study on x-ray absorption spectra of highly compressed polystyrene (CH). We found that the K -edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K -edge shift in warm, dense CH, we have developed a model designated as "single mixture in a box" (SMIAB), which incorporates both the lowering of the continuum and the rising of the Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K -edge shift of carbon in highly compressed CH in good agreement with results from quantum molecular dynamics (QMD) calculations. Traditional opacity models failed to give the proper K -edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [ρ =0.1 -100 g /c m3 and T =2000 -1 000 000 K ]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity-patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos atomic model for moderately compressed CH (ρCH≤10 g /c m3 ), but remains a factor of 2 to 3 higher at extremely high densities (ρCH≥50 g /c m3 ). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K -edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.

  8. Optical properties of highly compressed polystyrene: An ab initio study

    SciTech Connect

    Hu, S. X.; Collins, L. A.; Colgan, J. P.

    Using all-electron density functional theory, we have performed an ab initio study on x ray absorption spectra of highly compressed polystyrene (CH). Here, we found that the K-edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K edge shift in warm, dense CH, we have developed a model designated as “single-mixture-in-a-box” (SMIAB), which incorporates both the lowering of continuum and the rising of Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K-edge shift of carbon in highly compressed CH inmore » good agreement with results from quantum-molecular-dynamics (QMD) calculations. Traditional opacity models failed to give the proper K-edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [p = 0.1 to 100 g/cm 3 and T = 2000 to 1,000,000 K]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity–patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos ATOMIC model for moderately compressed CH (pCH ≤10 g/cm 3) but remains a factor of 2 to 3 higher at extremely high densities (pCH ≥ 50 g/cm 3). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K-edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.« less

  9. Optical properties of highly compressed polystyrene: An ab initio study

    DOE PAGES

    Hu, S. X.; Collins, L. A.; Colgan, J. P.; ...

    2017-10-16

    Using all-electron density functional theory, we have performed an ab initio study on x ray absorption spectra of highly compressed polystyrene (CH). Here, we found that the K-edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K edge shift in warm, dense CH, we have developed a model designated as “single-mixture-in-a-box” (SMIAB), which incorporates both the lowering of continuum and the rising of Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K-edge shift of carbon in highly compressed CH inmore » good agreement with results from quantum-molecular-dynamics (QMD) calculations. Traditional opacity models failed to give the proper K-edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [p = 0.1 to 100 g/cm 3 and T = 2000 to 1,000,000 K]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity–patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos ATOMIC model for moderately compressed CH (pCH ≤10 g/cm 3) but remains a factor of 2 to 3 higher at extremely high densities (pCH ≥ 50 g/cm 3). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K-edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.« less

  10. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.

  11. Ab initio kinetics of gas phase decomposition reactions.

    PubMed

    Sharia, Onise; Kuklja, Maija M

    2010-12-09

    The thermal and kinetic aspects of gas phase decomposition reactions can be extremely complex due to a large number of parameters, a variety of possible intermediates, and an overlap in thermal decomposition traces. The experimental determination of the activation energies is particularly difficult when several possible reaction pathways coexist in the thermal decomposition. Ab initio calculations intended to provide an interpretation of the experiment are often of little help if they produce only the activation barriers and ignore the kinetics of the decomposition process. To overcome this ambiguity, a theoretical study of a complete picture of gas phase thermo-decomposition, including reaction energies, activation barriers, and reaction rates, is illustrated with the example of the β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule by means of quantum-chemical calculations. We study three types of major decomposition reactions characteristic of nitramines: the HONO elimination, the NONO rearrangement, and the N-NO(2) homolysis. The reaction rates were determined using the conventional transition state theory for the HONO and NONO decompositions and the variational transition state theory for the N-NO(2) homolysis. Our calculations show that the HMX decomposition process is more complex than it was previously believed to be and is defined by a combination of reactions at any given temperature. At all temperatures, the direct N-NO(2) homolysis prevails with the activation barrier at 38.1 kcal/mol. The nitro-nitrite isomerization and the HONO elimination, with the activation barriers at 46.3 and 39.4 kcal/mol, respectively, are slow reactions at all temperatures. The obtained conclusions provide a consistent interpretation for the reported experimental data.

  12. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments.

    PubMed

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  13. Single-ion 4f element magnetism: an ab-initio look at Ln(COT)2(-).

    PubMed

    Gendron, Frédéric; Pritchard, Benjamin; Bolvin, Hélène; Autschbach, Jochen

    2015-12-14

    The electron densities associated with the Ln 4f shell, and spin and orbital magnetizations ('magnetic moment densities'), are investigated for the Ln(COT)2(-) series. The densities are obtained from ab-initio calculations including spin-orbit coupling. For Ln = Ce, Pr the magnetizations are also derived from crystal field models and shown to agree with the ab-initio results. Analysis of magnetizations from ab-initio calculations may be useful in assisting research on single molecule magnets.

  14. Communication: Rigorous quantum dynamics of O + O{sub 2} exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    SciTech Connect

    Li, Yaqin; Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: dawesr@mst.edu, E-mail: hguo@unm.edu; Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026

    2014-08-28

    The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributionsmore » of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.« less

  15. Quasiclassical trajectory studies of the O(3P) + CX4(vk = 0, 1) → OXv + CX3(n1n2n3n4) [X = H and D] reactions on an ab initio potential energy surface.

    PubMed

    Czakó, Gábor; Liu, Rui; Yang, Minghui; Bowman, Joel M; Guo, Hua

    2013-08-01

    We report quasiclassical trajectory calculations of the integral and differential cross sections and the mode-specific product state distributions for the "central-barrier" O((3)P) + CH4/CD4(vk = 0, 1) [k = 1, 2, 3, 4] reactions using a full-dimensional ab initio potential energy surface. The mode-specific vibrational distributions for the polyatomic methyl products are obtained by doing a normal-mode analysis in the Eckart frame, followed by standard histogram binning (HB) and energy-based Gaussian binning (1GB). The reactant bending excitations slightly enhance the reactivity, whereas stretching excitations activate the reaction more efficiently. None of the reactant vibrational excitations is as efficient as an equivalent amount of translational energy to promote the reactions. The excitation functions without product zero-point energy (ZPE) constraint are in good agreement with previous 8-dimensional quantum mechanical (QM) results for the ground-state and stretching-excited O + CH4 reactions, whereas for the bending-excited reactions the soft ZPE constraint, which is applied to the sum of the product vibrational energies, provides better agreement with the QM cross sections. All angular distributions show the dominance of backward scattering indicating a direct rebound mechanism, in agreement with experiment. The title reactions produce mainly OH/OD(v = 0) products for all the initial states. HB significantly overestimates the populations of OH/OD(v = 1), especially in the energetic threshold regions, whereas 1GB provides physically correct results. The CH3/CD3 vibrational distributions show dominant populations for ground (v = 0), umbrella-excited (v2 = 1, 2), in-plane-bending-excited (v4 = 1), and v2 + v4 methyl product states. Neither translational energy nor reactant vibrational excitation transfers significantly into product vibrations.

  16. Full-dimensional quantum dynamics study of the H{sub 2} + C{sub 2}H → H + C{sub 2}H{sub 2} reaction on an ab initio potential energy surface

    SciTech Connect

    Chen, Liuyang; University of Chinese Academy of Sciences, Beijing 100049; Shao, Kejie

    2016-05-21

    This work performs a time-dependent wavepacket study of the H{sub 2} + C{sub 2}H → H + C{sub 2}H{sub 2} reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H{sub 2} + C{sub 2}H↔H + C{sub 2}H{sub 2}, H + C{sub 2}H{sub 2} → HCCH{sub 2}, and HCCH{sub 2} radial isomerization reaction regions. The reaction dynamics of H{sub 2} + C{sub 2}H → H + C{sub 2}H{sub 2} are investigated using full-dimensional quantum dynamics method. The initial-state selected reactionmore » probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H{sub 2} vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C{sub 2}H slightly inhibits the reaction. The excitations of two stretching modes of C{sub 2}H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.« less

  17. Beyond Born-Oppenheimer theory for ab initio constructed diabatic potential energy surfaces of singlet H3+ to study reaction dynamics using coupled 3D time-dependent wave-packet approach.

    PubMed

    Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2017-08-21

    The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H 3 + system (1 1 A ' , 2 1 A ' , and 3 1 A ' ) using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D + + H 2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H 3 + . We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H 2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.

  18. Ab initio calculation of the rotational spectrum of methane vibrational ground state

    NASA Astrophysics Data System (ADS)

    Cassam-Chenaï, P.; Liévin, J.

    2012-05-01

    In a previous article we have introduced an alternative perturbation scheme to the traditional one starting from the harmonic oscillator, rigid rotator Hamiltonian, to find approximate solutions of the spectral problem for rotation-vibration molecular Hamiltonians. The convergence of our method for the methane vibrational ground state rotational energy levels was quicker than that of the traditional method, as expected, and our predictions were quantitative. In this second article, we study the convergence of the ab initio calculation of effective dipole moments for methane within the same theoretical frame. The first order of perturbation when applied to the electric dipole moment operator of a spherical top gives the expression used in previous spectroscopic studies. Higher orders of perturbation give corrections corresponding to higher centrifugal distortion contributions and are calculated accurately for the first time. Two potential energy surfaces of the literature have been used for solving the anharmonic vibrational problem by means of the vibrational mean field configuration interaction approach. Two corresponding dipole moment surfaces were calculated in this work at a high level of theory. The predicted intensities agree better with recent experimental values than their empirical fit. This suggests that our ab initio dipole moment surface and effective dipole moment operator are both highly accurate.

  19. Ab initio many-body calculations of nucleon scattering on ^16O

    NASA Astrophysics Data System (ADS)

    Navratil, Petr; Quaglioni, Sofia; Roth, Robert

    2008-10-01

    We develop a new ab initio many-body approachootnotetextS. Quaglioni and P. Navratil, arXiv:0804.1560. capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group methodootnotetextY. C. Tang et al., Phys. Rep. 47, 167 (1978); K. Langanke and H. Friedrich, Advances in Nuclear Physics, Plenum, New York, 1987. with the ab initio no-core shell model (NCSM).ootnotetextP. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000). In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, while preserving Pauli principle and translational symmetry. We will present results for low-energy nucleon scattering on ^16O and for A=17 bound states obtained using realistic nucleon-nucleon potentials. The ^16O wave functions are calculated within the importance-truncated NCSMootnotetextR. Roth and P. Navratil, Phys. Rev. Lett. 99, 092501 (2007). that allows the use of model spaces up to 18φ and ultimately enables to reach convergence of phase-shifts and other observables. Prepared by LLNL under Contract DE-AC52-07NA27344. Support from the U.S. DOE/SC/NP (Work Proposal No. SCW0498), and from the U. S. Department of Energy Grant DE-FC02-07ER41457 is acknowledged.

  20. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP).

    PubMed

    Aryal, Sitaram; Matsunaga, Katsuyuki; Ching, Wai-Yim

    2015-07-01

    Hydroxyapatite (HAP) is an important bioceramic which constitutes the mineral components of bones and hard tissues in mammals. It is bioactive and used as bioceramic coatings for metallic implants and bone fillers. HAP readily absorbs a large amount of impurities. Knowledge on the elastic and mechanical properties of impurity-doped HAP is a subject of great importance to its potential for biomedical applications. Zn and Mg are the most common divalent cations HAP absorbs. Using density function theory based ab initio methods, we have carried out a large number of ab initio calculations to obtain the bulk elastic and mechanical properties of HAP with Zn or Mg doped in different concentration at the Ca1 and Ca2 sites using large 352-atom supercells. Detailed information on their dependece on the concetraion of the substitued impurity is obtained. Our results show that Mg enhances overall elastic and bulk mechanical properties whereas Zn tends to degrade except at low concentrations. At a higher concentration, the mechanical properties of Zn and Mg doped HAP also depend significantly on impurity distribution between the Ca1 and Ca2 sites. There is a strong evidence that Zn prefers Ca2 site for substituion whereas Mg has no such preference. These results imply that proper control of dopant concentration and their site preference must carefully considered in using doped HAP for specific biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. 4He+n+n continuum within an ab initio framework

    DOE PAGES

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; ...

    2014-07-16

    In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known J π = 2 + resonance as well as a result consistent with a new low-lying second 2 + resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2 –, 1 +, and 0 – channels, while no low-lying resonances are present in the 0 + and 1 – channels.« less

  2. Ab initio conformational analysis of N-formyl ?-alanine amide including electron correlation

    NASA Astrophysics Data System (ADS)

    Yu, Ching-Hsing; Norman, Mya A.; Schäfer, Lothar; Ramek, Michael; Peeters, Anik; van Alsenoy, Christian

    2001-06-01

    The conformational properties of N-formyl L-alanine amide (ALA) were investigated using RMP2/6-311G∗∗ ab initio gradient geometry optimization. One hundred forty four structures of ALA were optimized at 30° grid points in its φ(N-C(α)), ψ(C(α)-C‧) conformational space. Using cubic spline functions, the grid structures were then used to construct analytical representations of complete surfaces, in φ,ψ-space, of bond lengths, bond angles, torsional sensitivity and electrostatic atomic charges. Analyses show that, in agreement with previous studies, the right-handed helical conformation, αR, is not a local energy minimum of the potential energy surface of ALA. Comparisons with protein crystallographic data show that the characteristic differences between geometrical trends in dipeptides and proteins, previously found for ab initio dipeptide structures obtained without electron correlation, are also found in the electron-correlated geometries. In contrast to generally accepted features of force fields used in empirical molecular modeling, partial atomic charges obtained by the CHELPG method are found to be not constant, but to vary significantly throughout the φ,ψ-space. By comparing RHF and MP2 structures, the effects of dispersion forces on ALA were studied, revealing molecular contractions for those conformations, in which small adjustments of torsional angles entail large changes in non-bonded distances.

  3. Fourier transform microwave spectra and ab initio calculation of N-ethylformamide

    NASA Astrophysics Data System (ADS)

    Ohba, Keisuke; Usami, Tsuyoshi; Kawashima, Yoshiyuki; Hirota, Eizi

    2005-06-01

    A peptide molecule: N-ethylformamide HCONHCH 2CH 3 (NEFA) was investigated by Fourier transform microwave spectroscopy in order to determine molecular structure, potential barrier to methyl internal rotation, and nuclear quadrupole coupling constant of the nitrogen atom. All the three ( a, b and c) types of transitions were observed; they were split into hyperfine structure components due to nitrogen nuclear quadrupole coupling. The rotational constants of NEFA were determined to be A=9904.8373(6), B=3521.0995(2) and C=2984.9808(2) MHz, with three standard deviations in parentheses. The inertial defect Δ= Icc- Iaa- Ibb was calculated from the rotational constants to be -25.24492(2) uÅ 2, which indicates the ethyl group to be bent out of the peptide linkage plane. A comparison of the observed rotational constants with those calculated by an ab initio molecular orbital method also led us to conclude that the most stable form of NEFA is trans- sc, a conformer with a nonplanar heavy atom skeleton. No evidence has so far been obtained for the existence of other conformers, as was the case for a related molecule: N-ethylacetamide. We have also observed spectra of five singly substituted isotopomers, three 13C and one for each of 15N and 18O, from which we derived a partial rs structure, in fair agreement with an ab initio result.

  4. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces

    DOE PAGES

    Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-08

    Using ab initio molecular dynamics (as implemented in periodic, self-consistent (GGA-PBE) density functional theory (DFT) we investigated the mechanism of methanol electro-oxidation on Pt(111). We investigated the role of solvation and electrode potential on the energetics of the first proton transfer step, methanol electro-oxidation to methoxy (CH 3O) or hydroxymethyl (CH 2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), while the binding energy of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrainedmore » ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Solvation reduces the barrier for both C-H and O-H bond activation steps with respect to their vapor phase values, though the effect is more pronounced for C-H bond activation due to less disruption of the hydrogen-bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased, or uncharged Pt(111). Furthermore, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.« less

  5. Ab Initio Classical Dynamics Simulations of CO_2 Line-Mixing Effects in Infrared Bands

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Hartmann, Jean-Michel; Tran, Ha; Snels, Marcel; Stefani, Stefania; Piccioni, Giuseppe

    2013-06-01

    Ab initio calculations of line-mixing effects in CO_2 infrared bands are presented and compared with experiments. The predictions were carried using requantized Classical Dynamics Molecular Simulations (rCDMS) based on an approach previously developed and successfully tested for CO_2 isolated line shapes. Using classical dynamics equations, the force and torque applied to each molecule by the surrounding molecules (described by an ab initio intermolecular potential) are computed at each time step. This enables, using a requantization procedure, to predict dipole and isotropic polarizability auto-correlation functions whose Fourier-Laplace transforms yield the spectra. The quality of the rCDMS calculations is demonstrated by comparisons with measured spectra in the spectral regions of the 3ν_3 and 2ν_1+2ν_2+ν_3 Infrared bands. J.-M. Hartmann, H. Tran, N. H. Ngo, et al., Phys. Rev. Lett. A {87} (2013), 013403. H. Tran, C. Boulet, M. Snels, S. Stefani, J. Quant. Spectrosc. Radiat. Transfer {112} (2011), 925-936.

  6. Ab initio effective core potentials including relativistic effects and their application to the electronic structure calculations of heavy atoms and molecules

    SciTech Connect

    Lee, Y.S.

    1977-11-01

    The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed inmore » detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.« less

  7. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    disciplines in coordination networks, especially porous coordination networks, the ability to determine crystal structures when the crystals are not suitable for single crystal X-ray analysis is of paramount importance. In this Account, we report the potential of kinetic control to synthesize new coordination networks and we describe ab initio XRPD structure determination to characterize these networks' crystal structures. We describe our recent work on selective instant synthesis to yield kinetically controlled porous coordination networks. We demonstrate that instant synthesis can selectively produce metastable networks that are not possible to synthesize by conventional solution chemistry. Using kinetic products, we provide mechanistic insights into thermally induced (573-723 K) (i.e., annealing method) structural transformations in porous coordination networks as well as examples of guest exchange/inclusion reactions. Finally, we describe a memory effect that allows the transfer of structural information from kinetic precursor structures to thermally stable structures through amorphous intermediate phases. We believe that ab initio XRPD structure determination will soon be used to investigate chemical processes that lead intrinsically to microcrystalline solids, which up to now have not been fully understood due to the unavailability of single crystals. For example, only recently have researchers used single-crystal X-ray diffraction to elucidate crystal-to-crystal chemical reactions taking place in the crystalline scaffold of coordination networks. The potential of ab initio X-ray powder diffraction analysis goes beyond single-crystal-to-single-crystal processes, potentially allowing members of this field to study intriguing in situ reactions, such as reactions within pores.

  8. A comment on "Ab initio study: the potential energy curves and ro-vibrational spectrum of low-lying excited states of HCl+ cation"

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Jun; Cheng, Xin-Lu; Chen, Hua-Jun; Cheng, Jun-Xia; Song, Xiao-Shu

    2018-02-01

    Since the 2Π state in HCl+ is an inverted doublet, the energy of the 2Π1/2 state is higher than the 2Π3/2. Therefore, the larger value of intensity correspond to the transition of 2Π3/2. We calculated the Einstein A coefficients and radiation lifetimes for the A2Σ+-X2Π transition. Our results are in good agreement with the experimental data and theoretical values. Then the ro-vibrational line intensities of the 1-0 band were calculated for the 2Π3/2 and 2Π1/2 states of HCl+. Employing the RKR potential, the predicted band origins for Δν=1-0 are 2569.3 and 2568.55 cm-1 for 2Π3/2 and 2Π1/2, respectively.

  9. Collisions of excited Na atoms with H/sub 2/ molecules. I. Ab initio potential energy surfaces and qualitative discussion of the quenching process

    SciTech Connect

    Botschwina, P.; Meyer, W.; Hertel, I.V.

    Potential energy surfaces have been calculated for the four lowest electronic states of Na (3 /sup 2/S, 3 /sup 2/P)+H/sub 2/(/sup 1/..sigma../sup +//sub g/) by means of the RHF--SCF and PNO--CEPA methods. For the so-called quenching process of Na (3 /sup 2/P) by H/sub 2/ at low initial translational energies (E--VRT energy transfer) the energetically most favorable path occurs in C/sub 2v/ symmetry, since: at intermediate Na--H/sub 2/ separation: the A /sup 2/B/sub 2/ potential energy surface is attractive. From the CEPA calculations, the crossing point of minimal energy between the X /sup 2/A/sub 1/ and A /sup 2/B/sub 2/more » surfaces is obtained at R/sub c/ = 3.57 a.u. and r/sub c/ = 2.17 a.u. with an energy difference to the asymptotic limit (R = infinity, r = r/sub e/) of -0.06 eV. It is thus classically accessible without any initial translational energy, but at low initial translational energies (approx.0.1 eV) quenching will be efficient only for arrangements of collision partners close to C/sub 2v/ symmetry. There is little indication of an avoiding crossing with an ionic intermediate correlating asymptotically with Na/sup +/ and H/sub 2//sup -/ as was assumed in previous discussions of the quenching process. The dependence of the total quenching cross sections on the initial translational energy is discussed by means of the ''absorbing sphere'' model, taking the initial zero-point vibrational energy of the hydrogen molecule into account. New experimental data of the product channel distribution in H/sub 2/ for center-of-mass forward scattering are presented. The final vibrational states v' = 3, 2, 1, and 0 of H/sub 2/ are populated to about 26%, 61%, 13%, and 0%, respectively. The observed distributions in H/sub 2/ (and D/sub 2/) may be rationalized by simple dynamic considerations on the basis of the calculated surfaces.« less

  10. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.

    PubMed

    Xu, Mingyuan; Zhu, Tong; Zhang, John Z H

    2018-01-01

    A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  11. Identification and Characterization of Molecular Bonding Structures by ab initio Quasi-Atomic Orbital Analyses.

    PubMed

    West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus

    2017-11-22

    The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.

  12. Proton--H/sub 2/ scattering on an ab initio CI potential energy surface. I. Vibrational excitation at 10 eV

    SciTech Connect

    Schinke, R.; Dupuis, M.; Lester, W.A. Jr.

    1980-04-01

    A complete configuration interaction (CI) ground state surface for the H/sub 3//sup +/ system has been calculated using 5S and 3(P/sub x/,P/sub y/,P/sub x/) basis functions at each center. A total of 650 nuclear geometries has been considered which makes the new surface appropriate not only for scattering calculations, but also for the evaluation of the vibrational--rotational spectrum of the H/sub 3//sup +/ molecule. Significant deviations are found from the analytic Giese and Gentry potential used in many previous theoretical studies, especially for large and small nonequilibrium H--H separations which are important for vibrational excitation of the H/sub 2/ molecule.more » Vibrational--rotational excitation cross sections have been calculated in the rotational sudden approximation where the vibrational degree of freedom is treated exactly by solving seven vibrationally coupled radial equations. The use of the new surface leads to increased vibrational excitation compared to previous calculations utilizing the same scattering approximation and to excellent agreement at 10 eV with the angle-dependent measurements of Hermann, Schmidt, and Linder.« less

  13. Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Frisch, Michael J.; Binkley, J. Stephen; Schaefer, Henry F., III

    1984-08-01

    The relative energies of the stationary points on the FH2 and H2CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Møller-Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H2→FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol-1 of the experimental value using the largest basis set considered. The qualitative features of the H2CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended.

  14. Monte Carlo simulations on atropisomerism of thienotriazolodiazepines applicable to slow transition phenomena using potential energy surfaces by ab initio molecular orbital calculations.

    PubMed

    Morikami, Kenji; Itezono, Yoshiko; Nishimoto, Masahiro; Ohta, Masateru

    2014-01-01

    Compounds with a medium-sized flexible ring often show atropisomerism that is caused by the high-energy barriers between long-lived conformers that can be isolated and often have different biological properties to each other. In this study, the frequency of the transition between the two stable conformers, aS and aR, of thienotriazolodiazepine compounds with flexible 7-membered rings was estimated computationally by Monte Carlo (MC) simulations and validated experimentally by NMR experiments. To estimate the energy barriers for transitions as precisely as possible, the potential energy (PE) surfaces used in the MC simulations were calculated by molecular orbital (MO) methods. To accomplish the MC simulations with the MO-based PE surfaces in a practical central processing unit (CPU) time, the MO-based PE of each conformer was pre-calculated and stored before the MC simulations, and then only referred to during the MC simulations. The activation energies for transitions calculated by the MC simulations agreed well with the experimental ΔG determined by the NMR experiments. The analysis of the transition trajectories of the MC simulations revealed that the transition occurred not only through the transition states, but also through many different transition paths. Our computational methods gave us quantitative estimates of atropisomerism of the thienotriazolodiazepine compounds in a practical period of time, and the method could be applicable for other slow-dynamics phenomena that cannot be investigated by other atomistic simulations.

  15. Ab initio full-potential fully relativistic study of atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of δ-Pu

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Ray, Asok K.

    2007-05-01

    First-principles total-energy calculations within the framework of generalized gradient approximation to density-functional theory have been performed for atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of δ-Pu . The full-potential all-electron linearized augmented plane wave plus local orbitals method with the Perdew-Burke-Ernzerhof exchange-correlation functional has been employed. Chemisorption energies have been optimized with respect to the distance of the adatom from the Pu surface for four adsorption sites, namely, the top, bridge, hollow fcc, and hollow hcp sites, with the adlayer structure corresponding to a coverage of 0.50 of a monolayer in all cases. Computations were carried out at two theoretical levels, one without spin-orbit coupling (NSOC) and one with spin-orbit coupling (SOC). For NSOC calculations, the hollow fcc adsorption site was found to be the most stable site for C and N with chemisorption energies of 6.272 and 6.504eV , respectively, while the hollow hcp adsorption site was found to be the most stable site for O with chemisorption energy of 8.025eV . For SOC calculations, the hollow fcc adsorption site was found to be the most stable site in all cases with chemisorption energies for C, N, and O being 6.539, 6.714, and 8.2eV , respectively. The respective distances of the C, N, and O adatoms from the surface were found to be 1.16, 1.08, and 1.25Å . Our calculations indicate that SOC has negligible effect on the chemisorption geometries, but energies with SOC are more stable than the cases with NSOC within a range of 0.05-0.27eV . The work function and net magnetic moments, respectively, increased and decreased in all cases upon chemisorption compared with the bare δ-Pu (111) surface. The partial charges inside the muffin tins, difference charge-density distributions, and the local density of states have been used to analyze the Pu-adatom bond interactions.

  16. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F(-) + CH3F SN2 and proton-abstraction reactions.

    PubMed

    Szabó, István; Telekes, Hajnalka; Czakó, Gábor

    2015-06-28

    We develop a full-dimensional global analytical potential energy surface (PES) for the F(-) + CH3F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller-Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are -0.45(-0.61), 46.07(45.16), and 29.18(26.07) kcal mol(-1), respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol(-1), respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol(-1). Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F(-) + CH3F(v = 0) reaction using the new PES. Apart from low collision energies (Ecoll), the SN2 excitation function is nearly constant, the abstraction cross sections rapidly increase with Ecoll from a threshold of ∼40 kcal mol(-1), and retention trajectories via double inversion are found above Ecoll = ∼ 30 kcal mol(-1), and at Ecoll = ∼ 50 kcal mol(-1), the front-side attack cross sections start to increase very rapidly. At

  17. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F- + CH3F SN2 and proton-abstraction reactions

    NASA Astrophysics Data System (ADS)

    Szabó, István; Telekes, Hajnalka; Czakó, Gábor

    2015-06-01

    We develop a full-dimensional global analytical potential energy surface (PES) for the F- + CH3F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller-Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are -0.45(-0.61), 46.07(45.16), and 29.18(26.07) kcal mol-1, respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol-1, respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol-1. Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F- + CH3F(v = 0) reaction using the new PES. Apart from low collision energies (Ecoll), the SN2 excitation function is nearly constant, the abstraction cross sections rapidly increase with Ecoll from a threshold of ˜40 kcal mol-1, and retention trajectories via double inversion are found above Ecoll = ˜ 30 kcal mol-1, and at Ecoll = ˜ 50 kcal mol-1, the front-side attack cross sections start to increase very rapidly. At low Ecoll, the

  18. ab initio MD simulations of geomaterials with ~1000 atoms

    NASA Astrophysics Data System (ADS)

    Martin, G. B.; Kirtman, B.; Spera, F. J.

    2009-12-01

    In the last two decades, ab initio studies of materials using Density Functional Theory (DFT) have increased exponentially in popularity. DFT codes are now used routinely to simulate properties of geomaterials--mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only ~100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it is statistically marginal for duplicating physical properties of the liquid state like transport and structure. In MD simulations in the NEV ensemble, temperature (T), and pressure (P) fluctuations scale as N-1/2; small particle number (N) systems are therefore characterized by greater statistical state point location uncertainty than large N systems. Previous studies have used codes such as VASP where CPU time increases with N2, making calculations with N much greater than 100 impractical. SIESTA (Soler, et al. 2002) is a DFT code that enables electronic structure and MD computations on larger systems (N~103) by making some approximations, such as localized numerical orbitals, that would be useful in modeling some properties of geomaterials. Here we test the applicability of SIESTA to simulate geosilicates, both hydrous and anhydrous, in the solid and liquid state. We have used SIESTA for lattice calculations of brucite, Mg(OH)2, that compare very well to experiment and calculations using CRYSTAL, another DFT code. Good agreement between more classical DFT calculations and SIESTA is needed to justify study of geosilicates using SIESTA across a range of pressures and temperatures relevant to the Earth’s interior. Thus, it is useful to adjust parameters in

  19. Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4

    NASA Astrophysics Data System (ADS)

    Mishra, S. B.; Nanda, B. R. K.

    2017-05-01

    Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.

  20. Many-body optimization using an ab initio monte carlo method.

    PubMed

    Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J

    2003-01-01

    Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.

  1. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.

  2. An ab initio study of the conformational energy map of acetylcholine

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Boyes, R. N.

    An ab initio density functional theory study is reported of the conformational energy map of acetylcholine, with respect to the two central dihedral angles of the molecule. The acetylcholine molecule pays a central role in neurotransmission and has been studied widely using semi-empirical computational modelling. The ab initio results are compared with a number of previous investigations and with experiment. The ab initio data indicate that the most stable conformation of acetylcholine is the trans , gauche arrangement of the central dihedral angles. Furthermore, Mulliken population analysis of the electronic structure of the molecule in this conformation indicates that the positive charge of the molecule is spread over the exterior of the cationic head of the molecule.

  3. Multiobjective evolutionary algorithm with many tables for purely ab initio protein structure prediction.

    PubMed

    Brasil, Christiane Regina Soares; Delbem, Alexandre Claudio Botazzo; da Silva, Fernando Luís Barroso

    2013-07-30

    This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment-based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well-designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with β-sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called "Multiobjective evolutionary algorithms with many tables" (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG , I-PAES, and Quark) that use different levels of earlier knowledge. Copyright © 2013 Wiley Periodicals, Inc.

  4. Consistent force field modeling of matrix isolated molecules. V. Minimum energy path potential to the conformer conversion of 1,2-difluoroethane: Ar 364, ab initio calculation of electric multipole moments and electric polarization contribution to the conversion barrier

    NASA Astrophysics Data System (ADS)

    Gunde, R.; Ha, T.-K.; Günthard, H. H.

    1990-08-01

    In this paper results of consistent force field modeling (CFF) of the potential function to conversion of the gauche (g) to the trans (t) conformer of 1,2-difluoroethane (DFE) isolated in an argon matrix will be reported. Starting point are locally stable configurations gDFE:Ar 364 (defect GH1) and tDFE:Ar 364 (TH1) obtained in previous work from CFF modeling of a cube shaped Ar 364 fragment containing one DFE molecule in its center. Using the dihedral angle of DFE as an independent parameter the minimum energy path of the conversion process gDFE:Ar 364→tDFE:Ar 364 will be determined by CFF energy minimization. Determination of the minimum energy path is found to require large numbers of energy minimization steps and to lead to a rather complicated motion of the molecule with respect to the crystal fragment. Surprisingly the molecule-matrix interactions lead to a reduction of the g-t barrier by ≈500 cal/mol and to a stabilization of the trans species by ≈500 cal/mol. This finding is a consequence of a delicate interplay of matrix-molecule and matrix-matrix interactions. Calculation of the electric polarization energy (induced dipole-first-order polarization approximation) is based on extended ab initio calculations of dipole and quadrupole moments and a bond polarizability estimate of the first-order polarizability of DFE as a function of the internal rotation angle, on Fourier expansion of multipole components and use of symmetry for reduction of the order of the linear system defining the (self-consistent) induced dipole moments of all Ar atoms. Electric polarization is found to alter the potential function of the conversion process in a profound way: the g-t barrier and the t-g energy difference are increased to ≈3000 cal/mol and to ≈1500 cal/mol respectively (≈2500 and ≈530 cal/mol respectively for free DFE). Further applications of the technique developed in this work to related problems of matrix isolated molecules, e.g., vibrational matrix

  5. Assessing the accuracy of improved force-matched water models derived from Ab initio molecular dynamics simulations.

    PubMed

    Köster, Andreas; Spura, Thomas; Rutkai, Gábor; Kessler, Jan; Wiebeler, Hendrik; Vrabec, Jadran; Kühne, Thomas D

    2016-07-15

    The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural properties. It is found that although the resulting force-matched water models are typically less accurate than fully empirical force fields in predicting thermodynamic properties, they are nevertheless much more accurate than generally appreciated in reproducing the structure of liquid water and in fact superseding most of the commonly used empirical water models. This development demonstrates the feasibility to routinely parametrize computationally efficient yet predictive potential energy functions based on accurate ab initio molecular dynamics simulations for a large variety of different systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Accurate ab initio quartic force fields for borane and BeH2

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.

    1992-01-01

    The quartic force fields of BH3 and BeH2 have been computed ab initio using an augmented coupled cluster (CCSD(T)) method and basis sets of spdf and spdfg quality. For BH3, the computed spectroscopic constants are in very good agreement with recent experimental data, and definitively confirm misassignments in some older work, in agreement with recent ab initio studies. Using the computed spectroscopic constants, the rovibrational partition function for both molecules has been constructed using a modified direct numerical summation algorithm, and JANAF-style thermochemical tables are presented.

  7. AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.

    2007-12-01

    We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.

  8. Ab initio study of collective excitations in a disparate mass molten salt.

    PubMed

    Bryk, Taras; Klevets, Ivan

    2012-12-14

    Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.

  9. Coupling of ab initio density functional theory and molecular dynamics for the multiscale modeling of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ng, T. Y.; Yeak, S. H.; Liew, K. M.

    2008-02-01

    A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.

  10. Ab initio Study on Ionization Energies of 3-Amino-1-propanol

    NASA Astrophysics Data System (ADS)

    Wang, Ke-dong; Jia, Ying-bin; Lai, Zhen-jiang; Liu, Yu-fang

    2011-06-01

    Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH···N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.

  11. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    NASA Technical Reports Server (NTRS)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  12. An ab initio variationally computed room-temperature line list for (32)S(16)O3.

    PubMed

    Underwood, Daniel S; Tennyson, Jonathan; Yurchenko, Sergei N

    2013-07-07

    Ab initio potential energy and dipole moment surfaces are computed for sulfur trioxide (SO3) at the CCSD(T)-F12b level of theory with appropriate triple-zeta basis sets. The analytical representations of these surfaces are used, with a slight correction, to compute pure rotational and rotation-vibration spectra of (32)S(16)O3 using the variational nuclear motion program TROVE. The calculations considered transitions in the region 0-4000 cm(-1) with rotational states up to J = 85. The resulting line list of 174,674,257 transitions is appropriate for modelling room temperature (32)S(16)O3 spectra. Good agreement is found with the observed infrared absorption spectra and the calculations are used to place the measured relative intensities on an absolute scale. A list of 10,878 experimental transitions is provided in a form suitable for inclusion in standard atmospheric and planetary spectroscopic databases.

  13. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.

    PubMed

    Müller, Julian; Hartke, Bernd

    2016-08-09

    Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.

  14. Magnetic properties of vanadium doped CdTe: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Goumrhar, F.; Bahmad, L.; Mounkachi, O.; Benyoussef, A.

    2017-04-01

    In this paper, we are applying the ab initio calculations to study the magnetic properties of vanadium doped CdTe. This study is based on the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA), within the local density approximation (LDA). This method is called KKR-CPA-LDA. We have calculated and plotted the density of states (DOS) in the energy diagram for different concentrations of dopants. We have also investigated the magnetic and half-metallic properties of this compound and shown the mechanism of exchange interaction. Moreover, we have estimated the Curie temperature Tc for different concentrations. Finally, we have shown how the crystal field and the exchange splittings vary as a function of the concentrations.

  15. Dielectric Response and Born Dynamic Charge of BN Nanotubes from Ab Initio Finite Electric Field Calculations

    NASA Astrophysics Data System (ADS)

    Guo, Guang-Yu; Ishibashi, Shoji; Tamura, Tomoyuki; Terakura, Kiyoyuki

    2007-03-01

    Since the discovery of carbon nanotubes (CNTs) in 1991 by Iijima, carbon and other nanotubes have attracted considerable interest worldwide because of their unusual properties and also great potentials for technological applications. Though CNTs continue to attract great interest, other nanotubes such as BN nanotubes (BN-NTs) may offer different opportunities that CNTs cannot provide. In this contribution, we present the results of our recent systematic ab initio calculations of the static dielectric constant, electric polarizability, Born dynamical charge, electrostriction coefficient and piezoelectric constant of BN-NTs using the latest crystalline finite electric field theory [1]. [1] I. Souza, J. Iniguez, and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002); P. Umari and A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002).

  16. Ab Initio Vibrational Levels For HO2 and Vibrational Splittings for Hydrogen Atom Transfer

    NASA Technical Reports Server (NTRS)

    Barclay, V. J.; Dateo, Christopher E.; Hamilton, I. P.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We calculate vibrational levels and wave functions for HO2 using the recently reported ab initio potential energy surface of Walch and Duchovic. There is intramolecular hydrogen atom transfer when the hydrogen atom tunnels through a T-shaped saddle point separating two equivalent equilibrium geometries, and correspondingly, the energy levels are split. We focus on vibrational levels and wave functions with significant splitting. The first three vibrational levels with splitting greater than 2/cm are (15 0), (0 7 1) and (0 8 0) where V(sub 2) is the O-O-H bend quantum number. We discuss the dynamics of hydrogen atom transfer; in particular, the O-O distances at which hydrogen atom transfer is most probable for these vibrational levels. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  17. FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine.

    PubMed

    Sundaraganesan, N; Ayyappan, S; Umamaheswari, H; Joshua, B Dominic

    2007-01-01

    The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.

  18. FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine

    NASA Astrophysics Data System (ADS)

    Sundaraganesan, N.; Ayyappan, S.; Umamaheswari, H.; Dominic Joshua, B.

    2007-01-01

    The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50 cm -1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.

  19. Ab initio study on the molecular recognition by metalloporphyrins: CO interaction with iron porphyrin

    NASA Astrophysics Data System (ADS)

    Han, Seungwu; Cho, Kyeongjae; Ihm, Jisoon

    1999-02-01

    We have performed ab initio pseudopotential calculations to study the effects of structural deformations of iron porphyrin on the configuration of a carbon monoxide (CO) attached to it. We have considered two proximal deformations around the heme group: (i) rotation of a pyrrole ring in the iron porphyrin, and (ii) rotation of the imidazole side chain bound to the iron atom. We have identified induced changes of the atomic geometry and the electronic structure of the iron porphyrin-CO complex, and the results elucidate the microscopic nature of the CO interaction with the iron porphyrin. Implications on the controversies over the binding angle of the CO molecule on the iron porphyrin under different circumstances are discussed. A potential application to the simulation-based chemical sensor design is also discussed.

  20. i-PI: A Python interface for ab initio path integral molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ceriotti, Michele; More, Joshua; Manolopoulos, David E.

    2014-03-01

    Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic

  1. Ab initio investigation of barium-scandium-oxygen coatings on tungsten for electron emitting cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Booske, John H.; Morgan, Dane

    2010-02-01

    a stable and low work function Ba0.25Sc0.25O structure suggests that addition of Sc to the B-type cathode surface could form this alloy structure under operating conditions, leading to improved cathode performance and stability. Detailed comparison to previous experimental results of BaxScyOz on W surface coatings are made to both validate the modeling and aid in interpretation of experimental data. The studies presented here demonstrate that ab initio methods are powerful for understanding the fundamental physics of electron emitting materials systems and can potentially aid in the development of improved cathodes.

  2. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches

    NASA Astrophysics Data System (ADS)

    Ramírez-Solís, A.; Poteau, R.; Vela, A.; Daudey, J. P.

    2005-04-01

    The XΠg2-Σg +2, XΠg2-Δg2, XΠg2-Σu +2, XΠg2-Πu2 transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the XΠg2-Σg +2 and XΠg2-Δg2 transition energies, many of them even placing the Δg2 ligand field state above the charge transfer Πu2 and Σu +2 states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the ΛSΣ density defined by the orientation of the 3d hole (σ, π, or δ) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the XΠg2 state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio values. These findings show that not only large

  3. Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes

    PubMed Central

    Hu, Hao; Yang, Weitao

    2013-01-01

    Determining the free energies and mechanisms of chemical reactions in solution and enzymes is a major challenge. For such complex reaction processes, combined quantum mechanics/molecular mechanics (QM/MM) method is the most effective simulation method to provide an accurate and efficient theoretical description of the molecular system. The computational costs of ab initio QM methods, however, have limited the application of ab initio QM/MM methods. Recent advances in ab initio QM/MM methods allowed the accurate simulation of the free energies for reactions in solution and in enzymes and thus paved the way for broader application of the ab initio QM/MM methods. We review here the theoretical developments and applications of the ab initio QM/MM methods, focusing on the determination of reaction path and the free energies of the reaction processes in solution and enzymes. PMID:24146439

  4. Experimental and Ab Initio Studies of the HDO Absorption Spectrum in the 13165-13500 1/cm Spectral Region

    NASA Technical Reports Server (NTRS)

    Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)

    2000-01-01

    The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.

  5. Steel — ab Initio: Quantum Mechanics Guided Design of New Fe-Based Materials

    NASA Astrophysics Data System (ADS)

    Prahl, Ulrich; Bleck, Wolfgang; Saeed-Akbari, Alireza

    This contribution reports the results of the collaborative research unit SFB 761 "Steel — ab initio", a cooperative project between RWTH Aachen University and the Max-Planck-Institute for Iron Research in Düsseldorf (MPIE) financed by the German Research Foundation (DFG). For the first time, it is exploited how ab initio approaches may lead to a detailed understanding and thus to a specific improvement of material development. The challenge lies in the combination of abstract natural science theories with rather engineering-like established concepts. Aiming at the technological target of the development of a new type of structural materials based on Fe-Mn-C alloys, the combination of ab initio and engineering methods is new, but could be followed quite successfully. Three major topics are treated in this research unit: a) development of a new method for material- and process-development based on ab initio calculations; b) design of a new class of structural materials with extraordinary property combinations; c) acceleration of development time and reduction of experimental efforts and complexity for material- and process-development. In the present work, an overview of the results of the first five years as well as an outlook for the upcoming three-year period is given.

  6. Vibrational modes in thymine molecule from an ab initio MO calculation

    NASA Astrophysics Data System (ADS)

    Aida, Misako; Kaneko, Motohisa; Dupuis, Michel; Ueda, Toyotoshi; Ushizawa, Koichi; Ito, Gen; Kumakura, Akiko; Tsuboi, Masamichi

    1997-03-01

    Ab initio self-consistent field molecular orbital (SCF MO) calculations have been made of the thymine molecule for the equilibrium geometry, harmonic force constants, vibrational frequencies, vibrational modes, infrared intensities, and Raman intensities. The results have been correlated with the observed Raman and infrared spectra of thymine crystalline powder.

  7. Ab initio theory of noble gas atoms in bcc transition metals

    DOE PAGES

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; ...

    2018-01-01

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe).

  8. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  9. One Size Fits All? Learning Conditions and Working Memory Capacity in "Ab Initio" Language Development

    ERIC Educational Resources Information Center

    Sanz, Cristina; Lin, Hui-Ju; Lado, Beatriz; Stafford, Catherine A.; Bowden, Harriet W.

    2016-01-01

    The article summarizes results from two experimental studies (N = 23, N = 21) investigating the extent to which working memory capacity (WMC) intervenes in "ab initio" language development under two pedagogical conditions [± grammar lesson + input-based practice + explicit feedback]. The linguistic target is the use of morphosyntax to…

  10. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  11. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  12. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  13. On the photoisomerization of 5-hydroxytropolone: An ab initio and nuclear wave function study

    NASA Astrophysics Data System (ADS)

    Paz, Juan J.; Moreno, Miquel; Lluch, José M.

    1997-10-01

    In this paper we perform ab initio calculations for the stable conformations and the transition states for the isomerization processes in 5-hydroxytropolone in both the ground (S0) and first excited (S1) singlet electronic states. The Hartree-Fock self-consistent field (SCF) level and a complete active space SCF (CASSCF) level for S0 are considered, whereas the configuration interaction all single excitation method (CIS) and the CASSCF levels are used to deal with the S1 state. Energies are reevaluated at all levels through perturbation theory up to second order: Møller-Plesset for the Hartree-Fock and CIS methods, and the CASPT2 method for CAS results. The ab initio results are then used to perform different monodimensional fits to the potential energy surfaces in order to analyze the wave functions for the nuclear motions in both electronic states. Our best results predict that for the S0 state two stable conformers, syn and anti, can exist in thermal equilibrium. In accordance with experimental expectations the syn isomer is the most stable. As for the S1 state, and again in accord with experimental spectroscopical data, the order of stability reverses, the anti being the most stable. A more interesting result is that analysis of the nuclear wave functions shows an important syn-anti mixing in the S1 state that does not appear in S0. This result explains the appearance of syn-anti and anti-syn crossover transitions observed in the electronic spectra of 5-hydroxytropolone so that syn-anti reaction may take place through photoisomerization.

  14. Ab initio study of thermoelectric properties of doped SnO{sub 2} superlattices

    SciTech Connect

    Borges, P.D., E-mail: pdborges@gmail.com; Silva, D.E.S.; Castro, N.S.

    2015-11-15

    Transparent conductive oxides, such as tin dioxide (SnO{sub 2}), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO{sub 2}, as well as of Sb and Zn planar (or delta)-doped layers in SnO{sub 2} forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modificationmore » in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO{sub 2} SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO{sub 2}-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO{sub 2} superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.« less

  15. Ab initio calculation of the shear viscosity of neon in the liquid and hypercritical state over a wide pressure and temperature range

    NASA Astrophysics Data System (ADS)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-08-01

    The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.

  16. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    PubMed

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  17. Electronic and mechanical properties of ZnX (X = S, Se and Te)—An ab initio study

    NASA Astrophysics Data System (ADS)

    Verma, Ajay Singh; Sharma, Sheetal; Sarkar, Bimal Kumar; Jindal, Vijay Kumar

    2011-12-01

    Zinc chalcogenides (ZnX, X = S, Se and Te) have been increasing attention as wide and direct band gap semiconductor for blue and ultraviolet optical devices. This paper analyzes electronic and mechanical properties of these materials by ab initio pseudo-potential method that uses non conserving pseudopotentials in fully nonlocal form, as implemented in SIESTA code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. The calculations are given for band gap, elastic constants (C11, C12 and C44), shear modulus, and Young's modulus. The results are in very good agreement with previous theoretical calculations and available experimental data.

  18. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    PubMed

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  19. Exploring the Nature of the H[subscript 2] Bond. 2. Using Ab Initio Molecular Orbital Calculations to Obtain the Molecular Constants

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Glendening, Eric D.

    2013-01-01

    A project for students in an upper-level course in quantum or computational chemistry is described in which they are introduced to the concepts and applications of a high quality, ab initio treatment of the ground-state potential energy curve (PEC) for H[subscript 2] and D[subscript 2]. Using a commercial computational chemistry application and a…

  20. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  1. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations.

    PubMed

    Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel

    2009-05-13

    Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.

  2. Controlling Magnetic and Ferroelectric Order Through Geometry: Synthesis, Ab Initio Theory, Characterization of New Multi-Ferric Fluoride Materials

    SciTech Connect

    Halasyamani, Shiv; Fennie, Craig

    2016-11-03

    We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.

  3. Atomic defects in monolayer WSe2 tunneling FETs studied by systematic ab initio calculations

    NASA Astrophysics Data System (ADS)

    Wu, Jixuan; Fan, Zhiqiang; Chen, Jiezhi; Jiang, Xiangwei

    2018-05-01

    Atomic defects in monolayer WSe2 tunneling FETs (TFETs) are studied through systematic ab initio calculations aiming at performance predictions and enhancements. The effects of various defect positions and different passivation atoms are characterized in WSe2 TFETs by rigorous ab initio quantum transport simulations. It is suggested that the Se vacancy (VSe) defect located in the gate-controlled channel region tends to increase the OFF current (I off), whereas it can be well suppressed by oxygen passivation. It is demonstrated that chlorine (Cl) passivation at the source-side tunneling region can largely suppress I off, leading to an impressively improved on–off ratio (I on/I off) compared with that without any defect. However, it is also observed that randomly positioned atomic defects tend to induce significant fluctuation of the TFET output. Further discussions are made with focus on the performance-variability trade-off for robust circuit design.

  4. Crossover of cation partitioning in olivines: a combination of ab initio and Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Chatterjee, Swastika; Bhattacharyya, Sirshendu; Sengupta, Surajit; Saha-Dasgupta, Tanusri

    2011-04-01

    We report studies based on a combination of ab initio electronic structure and Monte Carlo (MC) technique on the problem of cation partitioning among inequivalent octahedral sites, M1 and M2 in mixed olivines containing Mg2+ and Fe2+ ions. Our MC scheme uses interactions derived out of ab initio, density functional calculations carried out on measured crystal structure data. Our results show that there is no reversal of the preference of Fe for M1 over M2 as a function of temperature. Our findings do not agree with the experimental findings of Redfern et al. (Phys Chem Miner 27:630-637, 2000), but are in agreement with those of Heinemann et al. (Eur J Mineral 18:673-689, 2006) and Morozov et al. (Eur J Mineral 17:495-500, 2005).

  5. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    NASA Astrophysics Data System (ADS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-02-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  6. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    SciTech Connect

    Sharma, Nalini, E-mail: nalini-2808@yahoo.co.in; Ahluwalia, P. K.; Thakur, Anil

    2016-05-23

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70,.} Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30}, and Hg{sub 90}Pb{sub 10}) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the localmore » arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.« less

  7. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2016-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  8. Ab-initio molecular dynamics simulations of liquid Hg-Pb alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2014-04-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-Pb alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-Pb mixtures (Hg30Pb70, Hg50Pb50 and Hg90Pb10) at 600K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and lead (l-Pb). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered three alloys. Among the all considered alloys, Hg50Pb50 alloy shows presence of more chemical ordering and presence of hetero-coordination.

  9. {bold {ital Ab initio}} studies of the structural and electronic properties of solid cubane

    SciTech Connect

    Richardson, S.L.; Martins, J.L.

    1998-12-01

    In this paper, we report {ital ab initio} calculation of the structural and electronic properties of solid cubane (s-C{sub 8}H{sub 8}) in the local-density approximation. By using an {ital ab initio} constant pressure extended molecular dynamics method with variable cell shape proposed by Wentzcovitch, Martins, and Price, we compute a lattice parameter {ital a} and a bond angle {alpha} for the rhombohedral Bravais lattice and compare it with experimental x-ray data. We obtain bond lengths for the mononuclear C{sub 8}H{sub 8} unit of basis atoms, as well as a density of states and heat of formation. {copyright} {ital 1998} {italmore » The American Physical Society}« less

  10. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    SciTech Connect

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factormore » shows the presence of liquid state in the considered alloys.« less

  11. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2015-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  12. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  13. Ab initio theoretical calculations of the electronic excitation energies of small water clusters.

    PubMed

    Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro

    2011-12-14

    A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.

  14. Ab initio simulations of iron-nickel alloys at Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Côté, Alexander S.; Vočadlo, Lidunka; Brodholt, John P.

    2012-09-01

    We report ab initio density functional theory calculations on iron-nickel (FeNi) alloys at conditions representative of the Earth's inner core. We test different concentrations of Ni, up to ∼39 wt% using ab initio lattice dynamics, and investigate the thermodynamic and vibrational stability of the three candidate crystal structures (bcc, hcp and fcc). First of all, at inner core pressures, we find that pure Fe transforms from the hcp to the fcc phase at around 6000 K. Secondly, in agreement with low pressure experiments on Fe-Ni alloys, we find the fcc structure is stabilised by the incorporation of Ni under core pressures and temperatures. Our results show that the fcc structure may, therefore, be stable under core conditions depending on the temperature in the inner core and the Ni content. Lastly, we find that within the quasi-harmonic approximation, there is no stability field for FeNi alloys in the bcc structure under core conditions.

  15. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  16. Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS)

    NASA Astrophysics Data System (ADS)

    Liborio, Leandro; Sturniolo, Simone; Jochym, Dominik

    2018-04-01

    The stopping site of the muon in a muon-spin relaxation experiment is in general unknown. There are some techniques that can be used to guess the muon stopping site, but they often rely on approximations and are not generally applicable to all cases. In this work, we propose a purely theoretical method to predict muon stopping sites in crystalline materials from first principles. The method is based on a combination of ab initio calculations, random structure searching, and machine learning, and it has successfully predicted the MuT and MuBC stopping sites of muonium in Si, diamond, and Ge, as well as the muonium stopping site in LiF, without any recourse to experimental results. The method makes use of Soprano, a Python library developed to aid ab initio computational crystallography, that was publicly released and contains all the software tools necessary to reproduce our analysis.

  17. An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic

    NASA Astrophysics Data System (ADS)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-04-01

    The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.

  18. Approaches to ab initio molecular replacement of α-helical transmembrane proteins.

    PubMed

    Thomas, Jens M H; Simkovic, Felix; Keegan, Ronan; Mayans, Olga; Zhang, Chengxin; Zhang, Yang; Rigden, Daniel J

    2017-12-01

    α-Helical transmembrane proteins are a ubiquitous and important class of proteins, but present difficulties for crystallographic structure solution. Here, the effectiveness of the AMPLE molecular replacement pipeline in solving α-helical transmembrane-protein structures is assessed using a small library of eight ideal helices, as well as search models derived from ab initio models generated both with and without evolutionary contact information. The ideal helices prove to be surprisingly effective at solving higher resolution structures, but ab initio-derived search models are able to solve structures that could not be solved with the ideal helices. The addition of evolutionary contact information results in a marked improvement in the modelling and makes additional solutions possible.

  19. AB Initio Study of the Structure and Spectroscopic Properties of Halogenated Thioperoxy Radicals

    NASA Technical Reports Server (NTRS)

    Munoz, Luis A.; Binning, R. C., Jr.; Weiner, Brad R.; Ishikawa, Yasuyuki

    1997-01-01

    Thioperoxy (XSO or XOS) radicals exist in a variety of chemical environments, and they have as a consequence drawn some interest. HSO, an important species in the chemistry of the troposphere, has been examined both experimentally. The halogenated (X = F, Cl or Br) peroxy species and isovalent thioperoxy species have been studied less, but they too are potentially interesting because oxidized sulfur species and halogen sources are present in the atmosphere. Learning the fate of XSO and XOS radicals is important to understanding the atmospheric oxidation chemistry of sulfur compounds. Of these, FSO and ClSO are particularly interesting because they have been directly detected spectroscopically. Recent studies in our laboratory on the photochemistry of thionyl halides (X2SO; where X = F or Cl) have suggested new ways to generate XSO species. The laser-induced photodissociation of thionyl fluoride, F2SO, at 193 nm and thionyl chloride, ClSO, at 248 nm is characterized by a radical mechanism, X2SO -> XSO + X. The structure of FSO has been characterized experimentally by Endo et cd. employing microwave spectroscopy. Using the unrestricted Hartree-Fock (UHF) self-consistent field (SCF) method, Sakai and Morokuma computed the electronic structure of the ground (sup 2)A" and the first excited (sup 2)A' states of FSO. Electron correlation was not taken into account in their study. In a laser photodissociation experiment, Huber et al. identified ClSO mass spectromctrically. ClSO has also been detected in low temperature matrices by EPR and in the gas phase by far IR laser magnetic resonance. Although the structure of FSO is known in detail, the only study, experimental or theoretical, of CISO has been an ab initio HFSCF study by Hinchliffe. Electron correlation corrections were also excluded from this study. In order to better understand the isomerization and dissociation dynamics of the radical species, we have performed ab initio correlated studies of the potential energy

  20. Kinetics of Electrocatalytic Reactions from First-Principles: A Critical Comparison with the Ab Initio Thermodynamics Approach.

    PubMed

    Exner, Kai S; Over, Herbert

    2017-05-16

    Multielectron processes in electrochemistry require the stabilization of reaction intermediates (RI) at the electrode surface after every elementary reaction step. Accordingly, the bond strengths of these intermediates are important for assessing the catalytic performance of an electrode material. Current understanding of microscopic processes in modern electrocatalysis research is largely driven by theory, mostly based on ab initio thermodynamics considerations, where stable reaction intermediates at the electrode surface are identified, while the actual free energy barriers (or activation barriers) are ignored. This simple approach is popular in electrochemistry in that the researcher has a simple tool at hand in successfully searching for promising electrode materials. The ab initio TD approach allows for a rough but fast screening of the parameter space with low computational cost. However, ab initio thermodynamics is also frequently employed (often, even based on a single binding energy only) to comprehend on the activity and on the mechanism of an electrochemical reaction. The basic idea is that the activation barrier of an endergonic reaction step consists of a thermodynamic part and an additional kinetically determined barrier. Assuming that the activation barrier scales with thermodynamics (so-called Brønsted-Polanyi-Evans (BEP) relation) and the kinetic part of the barrier is small, ab initio thermodynamics may provide molecular insights into the electrochemical reaction kinetics. However, for many electrocatalytic reactions, these tacit assumptions are violated so that ab initio thermodynamics will lead to contradictions with both experimental data and ab initio kinetics. In this Account, we will discuss several electrochemical key reactions, including chlorine evolution (CER), oxygen evolution reaction (OER), and oxygen reduction (ORR), where ab initio kinetics data are available in order to critically compare the results with those derived from a

  1. Ab initio theory of the N2V defect in diamond for quantum memory implementation

    NASA Astrophysics Data System (ADS)

    Udvarhelyi, Péter; Thiering, Gergő; Londero, Elisa; Gali, Adam

    2017-10-01

    The N2V defect in diamond is characterized by means of ab initio methods relying on density functional theory calculated parameters of a Hubbard model Hamiltonian. It is shown that this approach appropriately describes the energy levels of correlated excited states induced by this defect. By determining its critical magneto-optical parameters, we propose to realize a long-living quantum memory by N2V defect, i.e., H 3 color center in diamond.

  2. Atomistic and Ab Initio Calculations or Ternary II-IV-V2 Semiconductors

    DTIC Science & Technology

    1999-12-07

    consisting of two- and three-body terms is developed reproducing crystal lattice constants, elastic and dielectric constants very well. The calculated...the lattice . This difference may well be due to defect-induced lattice distortion which plays a key role in stabilizing the hole states in the... lattice . 15. SUBJECT TERMS Chalcopyrites, Defects, Atomistic and AB Initio Calculations 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT U

  3. Ab initio calculations for the elastic properties of magnesium under pressure

    NASA Astrophysics Data System (ADS)

    Sin'Ko, G. V.; Smirnov, N. A.

    2009-09-01

    Results of ab initio calculations of the elastic constants for the hcp, bcc, double hcp (dhcp), and fcc magnesium in a wide range of pressures are presented. The calculated elastic constants are compared with available experimental and theoretical data. We discuss the effect of the electron topological transition that occurs when the hcp structure is compressed on results of calculations and consider possibility of observing the hcp→dhcp transition on the magnesium Hugoniot.

  4. Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies.

    PubMed

    Zeng, Lu; Kortschak, R Daniel; Raison, Joy M; Bertozzi, Terry; Adelson, David L

    2018-01-01

    Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.

  5. Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies

    PubMed Central

    Zeng, Lu; Kortschak, R. Daniel; Raison, Joy M.

    2018-01-01

    Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package. PMID:29538441

  6. Decohesion models informed by first-principles calculations: The ab initio tensile test

    NASA Astrophysics Data System (ADS)

    Enrique, Raúl A.; Van der Ven, Anton

    2017-10-01

    Extreme deformation and homogeneous fracture can be readily studied via ab initio methods by subjecting crystals to numerical "tensile tests", where the energy of locally stable crystal configurations corresponding to elongated and fractured states are evaluated by means of density functional method calculations. The information obtained can then be used to construct traction curves of cohesive zone models in order to address fracture at the macroscopic scale. In this work, we perform an in depth analysis of traction curves and how ab initio calculations must be interpreted to rigorously parameterize an atomic scale cohesive zone model, using crystalline Ag as an example. Our analysis of traction curves reveal the existence of two qualitatively distinct decohesion criteria: (i) an energy criterion whereby the released elastic energy equals the energy cost of creating two new surfaces and (ii) an instability criterion that occurs at a higher and size independent stress than that of the energy criterion. We find that increasing the size of the simulation cell renders parts of the traction curve inaccessible to ab initio calculations involving the uniform decohesion of the crystal. We also find that the separation distance below which a crack heals is not a material parameter as has been proposed in the past. Finally, we show that a large energy barrier separates the uniformly stressed crystal from the decohered crystal, resolving a paradox predicted by a scaling law based on the energy criterion that implies that large crystals will decohere under vanishingly small stresses. This work clarifies confusion in the literature as to how a cohesive zone model is to be parameterized with ab initio "tensile tests" in the presence of internal relaxations.

  7. Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.

    PubMed

    Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim

    2016-10-26

    For CO and N 2 on Mg 2+ sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.

  8. 7Be(p,gamma)8B S-factor from Ab Initio Wave Functions

    SciTech Connect

    Navratil, P; Bertulani, C A; Caurier, E

    2006-10-12

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) predicts low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. We present here a brief overview of the first steps taken toward nuclear reaction applications. In particular, we discuss our calculation of the {sup 7}Be(p,{gamma}){sup 8}B S-factor. We also present our first results of the {sup 3}He({alpha},{gamma}){sup 7}Be S-factor and of the S-factor of the mirror reaction {sup 3}H({alpha},{gamma}){sup 7}Li.more » The {sup 7}Be(p,{gamma}){sup 8}B and {sup 3}He({alpha},{gamma}){sup 7}Be reactions correspond to the most important uncertainties in solar model predictions of neutrino fluxes.« less

  9. Ab initio Studies of Magnetism in the Iron Chalcogenides FeTe and FeSe

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Misawa, Takahiro; Miyake, Takashi; Imada, Masatoshi

    2015-09-01

    The iron chalcogenides FeTe and FeSe belong to the family of iron-based superconductors. We study the magnetism in these compounds in the normal state using the ab initio downfolding scheme developed for strongly correlated electron systems. In deriving ab initio low-energy effective models, we employ the constrained GW method to eliminate the double counting of electron correlations originating from the exchange correlations already taken into account in the density functional theory. By solving the derived ab initio effective models, we reveal that the elimination of the double counting is important in reproducing the bicollinear antiferromagnetic order in FeTe, as is observed in experiments. We also show that the elimination of the double counting induces a unique degeneracy of several magnetic orders in FeSe, which may explain the absence of the magnetic ordering. We discuss the relationship between the degeneracy and the recently found puzzling phenomena in FeSe as well as the magnetic ordering found under pressure.

  10. Common lines modeling for reference free Ab-initio reconstruction in cryo-EM.

    PubMed

    Greenberg, Ido; Shkolnisky, Yoel

    2017-11-01

    We consider the problem of estimating an unbiased and reference-free ab initio model for non-symmetric molecules from images generated by single-particle cryo-electron microscopy. The proposed algorithm finds the globally optimal assignment of orientations that simultaneously respects all common lines between all images. The contribution of each common line to the estimated orientations is weighted according to a statistical model for common lines' detection errors. The key property of the proposed algorithm is that it finds the global optimum for the orientations given the common lines. In particular, any local optima in the common lines energy landscape do not affect the proposed algorithm. As a result, it is applicable to thousands of images at once, very robust to noise, completely reference free, and not biased towards any initial model. A byproduct of the algorithm is a set of measures that allow to asses the reliability of the obtained ab initio model. We demonstrate the algorithm using class averages from two experimental data sets, resulting in ab initio models with resolutions of 20Å or better, even from class averages consisting of as few as three raw images per class. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods.

    PubMed

    Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Madsen, Georg K H; Mingo, Natalio

    2018-01-18

    Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71 178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high-throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.

  12. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    PubMed

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  13. Resolution of ab initio shapes determined from small-angle scattering.

    PubMed

    Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I

    2016-11-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.

  14. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

    PubMed Central

    Yang, Lina; Minnich, Austin J.

    2017-01-01

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484

  15. Resolution of ab initio shapes determined from small-angle scattering

    PubMed Central

    Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.

    2016-01-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683

  16. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less

  17. Amino acid anions in organic ionic compounds. An ab initio study of selected ion pairs.

    PubMed

    Benedetto, A; Bodo, E; Gontrani, L; Ballone, P; Caminiti, R

    2014-03-06

    The combination of amino acids in their deprotonated and thus anionic form with a choline cation gives origin to a new and potentially important class of organic ionic compounds. A series of such neutral ion pairs has been investigated by first principle methods. The results reveal intriguing structural motives as well as regular patterns in the charge distribution and predict a number of vibrational and optical properties that could guide the experimental investigation of these compounds. The replacement of choline with its phosphocholine analogue causes the spontaneous reciprocal neutralization of cations and anions, taking place through the transfer of a proton between the two ions. Systems of this kind, therefore, provide a wide and easily accessible playground to probe the ionic/polar transition in organic systems, while the easy transfer of H(+) among neutral and ionic species points to their potential application as proton conductors. The analysis of the ab initio data highlights similarities as well as discrepancies from the rigid-ions force-field picture and suggests directions for the improvement of empirical models.

  18. Spectroscopic fingerprints of toroidal nuclear quantum delocalization via ab initio path integral simulations.

    PubMed

    Schütt, Ole; Sebastiani, Daniel

    2013-04-05

    We investigate the quantum-mechanical delocalization of hydrogen in rotational symmetric molecular systems. To this purpose, we perform ab initio path integral molecular dynamics simulations of a methanol molecule to characterize the quantum properties of hydrogen atoms in a representative system by means of their real-space and momentum-space densities. In particular, we compute the spherically averaged momentum distribution n(k) and the pseudoangular momentum distribution n(kθ). We interpret our results by comparing them to path integral samplings of a bare proton in an ideal torus potential. We find that the hydroxyl hydrogen exhibits a toroidal delocalization, which leads to characteristic fingerprints in the line shapes of the momentum distributions. We can describe these specific spectroscopic patterns quantitatively and compute their onset as a function of temperature and potential energy landscape. The delocalization patterns in the projected momentum distribution provide a promising computational tool to address the intriguing phenomenon of quantum delocalization in condensed matter and its spectroscopic characterization. As the momentum distribution n(k) is also accessible through Nuclear Compton Scattering experiments, our results will help to interpret and understand future measurements more thoroughly. Copyright © 2012 Wiley Periodicals, Inc.

  19. New Approach for Investigating Reaction Dynamics and Rates with Ab Initio Calculations.

    PubMed

    Fleming, Kelly L; Tiwary, Pratyush; Pfaendtner, Jim

    2016-01-21

    Herein, we demonstrate a convenient approach to systematically investigate chemical reaction dynamics using the metadynamics (MetaD) family of enhanced sampling methods. Using a symmetric SN2 reaction as a model system, we applied infrequent metadynamics, a theoretical framework based on acceleration factors, to quantitatively estimate the rate of reaction from biased and unbiased simulations. A systematic study of the algorithm and its application to chemical reactions was performed by sampling over 5000 independent reaction events. Additionally, we quantitatively reweighed exhaustive free-energy calculations to obtain the reaction potential-energy surface and showed that infrequent metadynamics works to effectively determine Arrhenius-like activation energies. Exact agreement with unbiased high-temperature kinetics is also shown. The feasibility of using the approach on actual ab initio molecular dynamics calculations is then presented by using Car-Parrinello MD+MetaD to sample the same reaction using only 10-20 calculations of the rare event. Owing to the ease of use and comparatively low-cost of computation, the approach has extensive potential applications for catalysis, combustion, pyrolysis, and enzymology.

  20. Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI.

    PubMed

    Antipova, Valeriya N; Zheleznaya, Lyudmila A; Zyrina, Nadezhda V

    2014-08-01

    In the absence of added DNA, thermophilic DNA polymerases synthesize double-stranded DNA from free dNTPs, which consist of numerous repetitive units (ab initio DNA synthesis). The addition of thermophilic restriction endonuclease (REase), or nicking endonuclease (NEase), effectively stimulates ab initio DNA synthesis and determines the nucleotide sequence of reaction products. We have found that NEases Nt.AlwI, Nb.BbvCI, and Nb.BsmI with non-palindromic recognition sites stimulate the synthesis of sequences organized mainly as palindromes. Moreover, the nucleotide sequence of the palindromes appeared to be dependent on NEase recognition/cleavage modes. Thus, the heterodimeric Nb.BbvCI stimulated the synthesis of palindromes composed of two recognition sites of this NEase, which were separated by AT-reach sequences or (A)n (T)m spacers. Palindromic DNA sequences obtained in the ab initio DNA synthesis with the monomeric NEases Nb.BsmI and Nt.AlwI contained, along with the sites of these NEases, randomly synthesized sequences consisted of blocks of short repeats. These findings could help investigation of the potential abilities of highly productive ab initio DNA synthesis for the creation of DNA molecules with desirable sequence. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations.

    PubMed

    Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo

    2016-10-27

    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.

  2. Room temperature linelists for CO2 asymmetric isotopologues with ab initio computed intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil J.; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergei A.; Perevalov, Valery I.

    2017-12-01

    The present paper reports room temperature line lists for six asymmetric isotopologues of carbon dioxide: 16O12C18O (628), 16O12C17O (627), 16O13C18O (638),16O13C17O (637), 17O12C18O (728) and 17O13C18O (738), covering the range 0-8000 cm-1. Variational rotation-vibration wavefunctions and energy levels are computed using the DVR3D software suite and a high quality semi-empirical potential energy surface (PES), followed by computation of intensities using an ab initio dipole moment surface (DMS). A theoretical procedure for quantifying sensitivity of line intensities to minor distortions of the PES/DMS renders our theoretical model as critically evaluated. Several recent high quality measurements and theoretical approaches are discussed to provide a benchmark of our results against the most accurate available data. Indeed, the thesis of transferability of accuracy among different isotopologues with the use of mass-independent PES is supported by several examples. Thereby, we conclude that the majority of line intensities for strong bands are predicted with sub-percent accuracy. Accurate line positions are generated using an effective Hamiltonian, constructed from the latest experiments. This study completes the list of relevant isotopologues of carbon dioxide; these line lists are available to remote sensing studies and inclusion in databases.

  3. Ab-initio Electronic, Transport and Related Properties of Zinc Blende Boron Arsenide (zb-BAs)

    NASA Astrophysics Data System (ADS)

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola

    We present results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide (zb-BAs). We utilized a local density approximation (LDA) potential and the linear combination of atomic orbital (LCAO) formalism. Our computational technique follows the Bagayoko, Zhao, and Williams method, as enhanced by Ekuma and Franklin. Our results include electronic energy bands, densities of states, and effective masses. We explain the agreement between these findings, including the indirect band gap, and available, corresponding, experimental ones. This work confirms the capability of DFT to describe accurately properties of materials, provided the computations adhere to the conditions of validity of DFT [AIP Advances, 4, 127104 (2014)]. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  4. Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys

    NASA Astrophysics Data System (ADS)

    Turek, I.; Kudrnovský, J.; Drchal, V.

    2015-12-01

    We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula and which can be formulated within the atomic-sphere approximation. The formalism is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA). The resulting nonlocal torques are represented by nonrandom, non-site-diagonal, and spin-independent matrices, which simplifies the configuration averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its exact equivalence to other first-principles approaches based on the random local torques. This equivalence is also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L 10 atomic long-range order.

  5. Structure and Magnetic Properties in Ruthenium-Based Full-Heusler Alloys: AB INITIO Calculations

    NASA Astrophysics Data System (ADS)

    Bahlouli, S.; Aarizou, Z.; Elchikh, M.

    2013-12-01

    In this paper, we present ab initio calculations within density functional theory (DFT) to investigate structure, electronic and magnetic properties of Ru2CrZ (Z = Si, Ge and Sn) full-Heusler alloys. We have used the developed full-potential linearized muffin tin orbitals (FP-LMTO) based on the local spin density approximation (LSDA) with the PLane Wave expansion (PLW). In particular, we found that these Ruthenium-based Heusler alloys have the antiferromagnetic (AFM) type II as ground state. Then, we studied and discussed the magnetic properties belonging to our different magnetic structures: AFM type II, AFM type I and ferromagnetic (FM) phase. We also found that Ru2CrSi and Ru2CrGe exhibit a semiconducting behavior whereas Ru2CrSn has a semimetallic-like behavior as it is experimentally found. We made an estimation of Néel temperatures (TN) in the framework of the mean-field theory and used the energy differences approach to deduce the relevant short-range nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions. The calculated TN are somewhat overestimated to the available experimental ones.

  6. Ab initio molecular dynamics simulation of LiBr association in water

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Philpott, Michael R.

    2000-12-01

    A computationally economical scheme which unifies the density functional description of an ionic solute and the classical description of a solvent was developed. The density functional part of the scheme comprises Car-Parrinello and related formalisms. The substantial saving in the computer time is achieved by performing the ab initio molecular dynamics of the solute electronic structure in a relatively small basis set constructed from lowest energy Kohn-Sham orbitals calculated for a single anion in vacuum, instead of using plane wave basis. The methodology permits simulation of an ionic solution for longer time scales while keeping accuracy in the prediction of the solute electronic structure. As an example the association of the Li+-Br- ion-pair system in water is studied. The results of the combined molecular dynamics simulation are compared with that obtained from the classical simulation with ion-ion interaction described by the pair potential of Born-Huggins-Mayer type. The comparison reveals an important role played by the polarization of the Br- ion in the dynamics of ion pair association.

  7. Ab initio molecular orbital calculations on the associated complexes of lithium cyanide with ammonia

    SciTech Connect

    Mohandas, P.; Shivaglal, M.C.; Chandrasekhar, J.

    Ab initio molecular orbital (MO) calculations with the 3-21G and 6-31G basis sets are carried out on a series of complexes of NH{sub 3} with Li{sup +}, C{triple_bond}N{sup -}, LiCN, and its isomer LiNC. The BSSE-corrected interaction energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies are evaluated for 15 species. Complexes with trifurcated (C{sub 3v}) structures are calculated to be saddle points on the potential energy surfaces and have one imaginary frequency each. Calculated energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies of the various species considered are discussed in terms of the nature of associationmore » of LiCN with ammonia. The vibrational frequencies of the relevant complexed species are compared with the experimental frequencies reported earlier for solutions of lithium cyanide in liquid ammonia. 40 refs., 1 fig., 4 tabs.« less

  8. Ab initio study of charge transfer in B2+ low-energy collisions with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Turner, A. R.; Cooper, D. L.; Wang, J. G.; Stancil, P. C.

    2003-07-01

    Charge transfer processes due to collisions of ground state B2+(2s 2S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with the existing experiments shows our results to be in good agreement. When E<80 eV/u, the differences between the current total MOCC cross sections with and without rotational coupling are small (<3%). Rotational coupling becomes more important with increasing energy: for collision energies E>400 eV/u, inclusion of rotational coupling increases the total cross section by 50% 80%, improving the agreement between the current calculations and experiments. For state-selective cross sections, rotational coupling induces mixing between different symmetries; however, its effect, especially at low collision energies, is not as important as had been suggested in previous work.

  9. Ab-initio Computation of the Electronic, transport, and Bulk Properties of Calcium Oxide.

    NASA Astrophysics Data System (ADS)

    Mbolle, Augustine; Banjara, Dipendra; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    We report results from ab-initio, self-consistent, local Density approximation (LDA) calculations of electronic and related properties of calcium oxide (CaO) in the rock salt structure. We employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. Our calculations are non-relativistic. We implemented the LCAO formalism following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method involves a methodical search for the optimal basis set that yields the absolute minima of the occupied energies, as required by density functional theory (DFT). Our calculated, indirect band gap of 6.91eV, from towards the L point, is in excellent agreement with experimental value of 6.93-7.7eV, at room temperature (RT). We have also calculated the total (DOS) and partial (pDOS) densities of states as well as the bulk modulus. Our calculated bulk modulus is in excellent agreement with experiment. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.

  10. Ab initio investigation of the first hydration shell of protonated glycine

    SciTech Connect

    Wei, Zhichao; Chen, Dong, E-mail: dongchen@henu.edu.cn, E-mail: boliu@henu.edu.cn; Zhao, Huiling

    2014-02-28

    The first hydration shell of the protonated glycine is built up using Monte Carlo multiple minimum conformational search analysis with the MMFFs force field. The potential energy surfaces of the protonated glycine and its hydration complexes with up to eight water molecules have been scanned and the energy-minimized structures are predicted using the ab initio calculations. First, three favorable structures of protonated glycine were determined, and the micro-hydration processes showed that water can significantly stabilize the unstable conformers, and then their first hydration shells were established. Finally, we found that seven water molecules are required to fully hydrate the firstmore » hydration shell for the most stable conformer of protonated glycine. In order to analyse the hydration process, the dominant hydration sites located around the ammonium and carboxyl groups are studied carefully and systemically. The results indicate that, water molecules hydrate the protonated glycine in an alternative dynamic hydration process which is driven by the competition between different hydration sites. The first three water molecules are strongly attached by the ammonium group, while only the fourth water molecule is attached by the carboxyl group in the ultimate first hydration shell of the protonated glycine. In addition, the first hydration shell model has predicted most identical structures and a reasonable accord in hydration energy and vibrational frequencies of the most stable conformer with the conductor-like polarizable continuum model.« less

  11. Ab initio many-body calculations of nucleon- 4He scattering with three-nucleon forces

    DOE PAGES

    Hupin, Guillaume; Langhammer, Joachim; Navratil, Petr; ...

    2013-11-27

    We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon- 4He elastic scattering using similarity-renormalization-group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects frommore » the inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2 – and 1/2 – resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. As a result, we find remarkably good agreement with measured differential cross sections at various energies below the d+ 3H threshold, while analyzing powers manifest larger deviations from experiment for certain energies and angles.« less

  12. Ab initio study of the temperature-dependent structural properties of Al(110)

    NASA Astrophysics Data System (ADS)

    Scharoch, Pawel

    2009-09-01

    Temperature-dependent structural properties of Al(110) surface have been studied ab initio employing the concepts of the potential-energy surface (PES) and the free-energy surface (FES), with the latter based on the harmonic approximation for lattice dynamics. Three effects have been identified as contributing to the temperature-dependent multilayer relaxation: the bulk-substrate thermal expansion, the effect of asymmetry of PESs, and the entropy-driven shift of the minima of FESs. Thanks to the proper choice of constraints for PESs and FESs, it was possible to find relative contribution of the three effects to variation with temperature of the first three interlayer distances. A very satisfactory agreement of the calculation results with experimental data has been obtained. Also, a reference of the theoretical data to the experimentally observed anisotropic surface melting has been noticed. A softening phonon mode has been identified which is responsible for both: the entropy-driven spectacular expansion of the second interlayer distance and the loss of the surface stability. The latter can be associated with the anisotropic surface melting. The methodology applied has been found to be complementary to previous theoretical works [N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999); S. Narasimhan, Phys. Rev. B 64, 125409 (2001)], by offering another point of view and additional insight into the relative contribution of different physical effects to the temperature-dependent structural phenomena in Al(110) surface.

  13. Ab initio chemical kinetic study on Cl + ClO and related reverse processes.

    PubMed

    Xu, Z F; Lin, M C

    2010-11-04

    The reaction of ClO with Cl and its related reverse processes have been studied theoretically by ab initio quantum chemical and statistical mechanical calculations. The geometric parameters of the reactants, products, and transition states are optimized by both UMPW1PW91 and unrestricted coupled-cluster single and double excitation (UCCSD) methods with the 6-311+G(3df) basis set. The potential energy surface has been further refined (with triple excitations, T) at the UCCSD(T)/6-311+G(3df) level of theory. The results show that Cl(2) and O ((3)P) can be produced by chlorine atom abstraction via a tight transition state, while ClOCl ((1)A(1)) and ClClO ((1)A') can be formed by barrierless association processes with exothermicities of 31.8 and 16.0 kcal/mol, respectively. In principle the O ((1)D) atom can be generated with a large endothermicity of 56.9 kcal/mol; on the other hand, its barrierless reaction with Cl(2) can readily form ClClO ((1)A'), which fragments rapidly to give ClO + Cl. The rate constants of both forward and reverse processes have been predicted at 150-2000 K by the microcanonical variational transition state theory (VTST)/Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The predicted rate constants are in good agreement with available experimental data within reported errors.

  14. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    PubMed

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. An equilibrium ab initio atomistic thermodynamics study of chlorine adsorption on the Cu(001) surface.

    PubMed

    Suleiman, Ibrahim A; Radny, Marian W; Gladys, Michael J; Smith, Phillip V; Mackie, John C; Kennedy, Eric M; Dlugogorski, Bogdan Z

    2011-06-07

    The effect of chlorine (Cl) chemisorption on the energetics and atomic structure of the Cu(001) surface over a wide range of chlorine pressures and temperatures has been studied using equilibrium ab initio atomistic thermodynamics to elucidate the formation of cuprous chloride (CuCl) as part of the Deacon reaction on copper metal. The calculated surface free energies show that the 1/2 monolayer (ML) c(2 × 2)-Cl phase with chlorine atoms adsorbed at the hollow sites is the most stable structure for a wide range of Cl chemical potential, in agreement with experimental observations. It is also found that at very low pressure and exposure, but elevated temperature, the 1/9 ML and 1/4 ML phases become the most stable. By contrast, a high coverage of Cl does not lead to thermodynamically stable geometries. The subsurface adsorption of Cl atoms, however, dramatically increases the stability of the 1 ML and 2 ML adsorption configurations providing a possible pathway for the formation of the bulk-chloride surface phases in the kinetic regime.

  16. Beyond Born-Mayer: Improved models for short-range repulsion in ab initio force fields

    DOE PAGES

    Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.; ...

    2016-06-23

    Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less

  17. Perpendicular magnetic anisotropy in Mn2VIn (001) films: An ab initio study

    NASA Astrophysics Data System (ADS)

    Zipporah, Muthui; Robinson, Musembi; Julius, Mwabora; Arti, Kashyap

    2018-05-01

    First principles study of the magnetic anisotropy of Mn2VIn (001) films show perpendicular magnetic anisotropy (PMA), which increases as a function of the thickness of the film. Density functional theory (DFT) as implemented in the Vienna Ab initio simulation package (VASP) is employed here to perform a comprehensive theoretical investigation of the structural, electronic and magnetic properties of the Mn2VIn(001) films of varying thickness. Our calculations were performed on fully relaxed structures, with five to seventeen mono layers (ML). The degree of spin polarization is higher in the (001) Mn2VIn thin films as compared to the bulk in contrast to what is usually the case and as in Mn2VAl, which is isoelectronic to Mn2VIn as well as inCo2VIn (001) films studied for comparison. Tetragonal distortions are found in all the systems after relaxation. The distortion in the Mn2VIn system persists even for the 17ML thin film, resulting in PMA in the Mn2VIn system. This significant finding has potential to contribute to spin transfer torque (STT) and magnetic random access memory MRAM applications, as materials with PMA derived from volume magnetocrystalline anisotropy are being proposed as ideal magnetic electrodes.

  18. Design of two-photon molecular tandem architectures for solar cells by ab initio theory

    DOE PAGES

    Ornso, Kristian B.; Garcia-Lastra, Juan M.; De La Torre, Gema; ...

    2015-03-04

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is amore » molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed.« less

  19. Ab-initio Calculation of Optoelectronic and Structural Properties of Cubic Lithium Oxide (Li2O)

    NASA Astrophysics Data System (ADS)

    Ziegler, Joshua; Polin, Daniel; Malozovsky, Yuriy; Bagayoko, Diola

    Using the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), we performed ab-initio, density functional theory (DFT) calculations of optoelectronic, transport, and bulk properties of Li2S. In so doing, we avoid ``band gap'' and problems plaguing many DET calculations [AIP Advances 4, 127104 (2014)]. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). With the BZW-EF method, our results possess the full, physical content of DFT and agree with available, corresponding experimental ones. In particular, we found a room temperature indirect band gap of 6.659 eV that compares favorably with experimental values ranging from 5 to 7.99 eV. We also calculated total and partial density of states (DOS and PDOS), effective masses of charge carriers, the equilibrium lattice constant, and the bulk modulus. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.

  20. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED

    DOE PAGES

    Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; ...

    2016-09-19

    Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstaclemore » is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined.We showwith four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.« less

  1. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED

    SciTech Connect

    Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio

    Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstaclemore » is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined.We showwith four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.« less

  2. Born-Oppenheimer ab initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions

    PubMed Central

    Zhou, Yanzi; Wang, Shenglong; Li, Yongle; Zhang, Yingkai

    2016-01-01

    There are two key requirements for reliably simulating enzyme reactions: one is a reasonably accurate potential energy surface to describe the bond forming/breaking process as well as to adequately model the heterogeneous enzyme environment; the other is to perform extensive sampling since an enzyme system consists of at least thousands of atoms and its energy landscape is very complex. One attractive approach to meet both daunting tasks is Born-Oppenheimer ab initio QM/MM molecular dynamics simulation (aiQM/MM-MD) with umbrella sampling. In this chapter, we describe our recently developed pseudobond Q-Chem–Amber interface, which employs a combined electrostatic-mechanical embedding scheme with periodic boundary condition and the particle mesh Ewald method for long-range electrostatics interactions. In our implementation, Q-Chem and the sander module of Amber are combined at the source code level without using system calls, and all necessary data communications between QM and MM calculations are achieved via computer memory. We demonstrate the applicability of this pseudobond Q-Chem–Amber interface by presenting two examples, one reaction in aqueous solution and one enzyme reaction. Finally, we describe our established aiQM/MM-MD enzyme simulation protocol, which has been successfully applied to study more than a dozen enzymes. PMID:27498636

  3. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED

    PubMed Central

    Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; Collazo, Michael J.; Shi, Dan; Reyes, Francis E.; Gonen, Tamir; Eisenberg, David S.

    2016-01-01

    Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstacle is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined. We show with four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods. PMID:27647903

  4. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    SciTech Connect

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus,more » 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.« less

  5. Conformational study of glyoxal bis(amidinohydrazone) by ab initio methods

    NASA Astrophysics Data System (ADS)

    Mannfors, B.; Koskinen, J. T.; Pietilä, L.-O.

    1997-08-01

    We report the first ab initio molecular orbital study on the ground state of the endiamine tautomer of glyoxal bis(amidinohydrazone) (or glyoxal bis(guanylhydrazone), GBG) free base. The calculations were performed at the following levels of theory: Hartree-Fock, second-order Møller-Plesset perturbation theory and density functional theory (B-LYP and B3-LYP) as implemented in the Gaussian 94 software. The standard basis set 6-31G(d) was found to be sufficient. The default fine grid of Gaussian 94 was used in the density functional calculations. Molecular properties, such as optimized structures, total energies and the electrostatic potential derived (CHELPG) atomic charges, were studied as functions of C-C and N-N conformations. The lowest energy conformation was found to be all- trans, in agreement with the experimental solid-state structure. The second conformer with respect to rotation around the central C-C bond was found to be the cis conformer with an MP2//HF energy of 4.67 kcal mol -1. For rotation around the N-N bond the energy increased monotonically from the trans conformation to the cis conformation, the cis energy being very high, 22.01 kcal mol -1 (MP2//HF). The atomic charges were shown to be conformation dependent, and the bond charge increments and especially the conformational changes of the bond charge increments were found to be easily transferable between structurally related systems.

  6. Exploring oxidative ageing behaviour of hydrocarbons using ab initio molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Pan, Tongyan; Cheng, Cheng

    2016-06-01

    With a proper approximate solution to the Schrödinger Equation of a multi-electron system, the method of ab initio molecular dynamics (AIMD) performs first-principles molecular dynamics analysis without pre-defining interatomic potentials as are mandatory in traditional molecular dynamics analyses. The objective of this study is to determine the oxidative-ageing pathway of petroleum asphalt as a typical hydrocarbon system, using the AIMD method. This objective was accomplished in three steps, including (1) identifying a group of representative asphalt molecules to model, (2) determining an atomistic modelling method that can effectively simulate the production of critical functional groups in oxidative ageing of hydrocarbons and (3) evaluating the oxidative-ageing pathway of a hydrocarbon system. The determination of oxidative-ageing pathway of hydrocarbons was done by tracking the generations of critical functional groups in the course of oxidative ageing. The chemical elements of carbon, nitrogen and sulphur all experience oxidative reactions, producing polarised functional groups such as ketones, aldehydes or carboxylic acids, pyrrolic groups and sulphoxides. The electrostatic forces of the polarised groups generated in oxidation are responsible for the behaviour of aged hydrocarbons. The developed AIMD model can be used for modelling the ageing of generic hydrocarbon polymers and developing antioxidants without running expensive experiments.

  7. Ab initio DFT+U study of He atom incorporation into UO(2) crystals.

    PubMed

    Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene

    2009-09-07

    We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.

  8. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  9. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure.

    PubMed

    Hoy, Erik P; Mazziotti, David A

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  10. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A

    2017-02-14

    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16 O 3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV 3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν 3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm -1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  11. Sampling the potential energy surface of a DNA duplex damaged by a food carcinogen: Force field parameterization by ab initio quantum calculations and conformational searching using molecular mechanics computations

    NASA Astrophysics Data System (ADS)

    Wu, Xiangyang

    1999-07-01

    The heterocyclic amine 2-amino-3-methylimidazo (4, 5-f) quinoline (IQ) is one of a number of carcinogens found in barbecued meat and fish. It induces tumors in mammals and is probably involved in human carcinogenesis, because of great exposure to such food carcinogens. IQ is biochemically activated to a derivative which reacts with DNA to form a covalent adduct. This adduct may deform the DNA and consequently cause a mutation. which may initiate carcinogenesis. To understand this cancer initiating event, it is necessary to obtain atomic resolution structures of the damaged DNA. No such structures are available experimentally due to synthesis difficulties. Therefore, we employ extensive molecular mechanics and dynamics calculations for this purpose. The major IQ-DNA adduct in the specific DNA sequence d(5'G1G2C G3CCA3') - d(5'TGGCGCC3') with IQ modified at G3 is studied. The d(5'G1G2C G3CC3') sequence has recently been shown to be a hot-spot for mutations when IQ modification is at G3. Although this sequence is prone to -2 deletions via a ``slippage mechanism'' even when unmodified, a key question is why IQ increases the mutation frequency of the unmodified DNA by about 104 fold. Is there a structural feature imposed by IQ that is responsible? The molecular mechanics and dynamics program AMBER for nucleic acids with the latest force field was chosen for this work. This force field has been demonstrated to reproduce well the B-DNA structure. However, some parameters, the partial charges, bond lengths and angles, dihedral parameters of the modified residue, are not available in the AMBER database. We parameterized the force field using high level ab initio quantum calculations. We created 800 starting conformations which uniformly sampled in combination at 18° intervals three torsion angles that govern the IQ-DNA orientations, and energy minimized them. The most important structures are abnormal; the IQ damaged guanine is rotated out of its standard B

  12. Electronic Excitations of Alkali-Alkaline Earth Diatomic Molecules - Results from AB Initio Calculations

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E.

    2014-06-01

    Recently interest in polar diatomic molecules with a magnetic dipole moment has been growing. An example for such molecules is the combination of an alkali metal atom and an alkaline earth metal atom. These systems are quite small, containing only three valence electrons. Nevertheless calculations of excited states are challenging. Ab initio calculations for two sample systems, LiCa and RbSr, will be presented. The potential energy curves and transition dipole moments for the ground state and several excited states were determined, up to 25000 wn for LiCa and up to 22000 wn for RbSr. Multireference configuration interaction calculations (MRCI) based on complete active space self-consistent field wave functions (CASSCF) were used to determine the properties of the system as implemented in the MOLPRO software package. Effective core potentials (ECPs) and core polarization potentials (CCPs) were applied to reduce the computational effort, while retaining accuracy. The similarities and differences of the two systems will be discussed. In both systems the accurate description of the asymptotic values of the PECs corresponding to atomic D-states proved to be difficult. The results will be compared to recent experiments, showing that a combination of theory and experiment gives a reliable description of the systems. G. Krois, J.V. Pototschnig, F. Lackner and W.E. Ernst, J. Phys. Chem. A, 117, 13719-13731 (2013) H.-J. Werner and P. J. Knowles and G. Knizia and F. R. Manby and M. {Schütz} et al., MOLPRO, version 2010.1, see http://www.molpro.net/

  13. Equilibrium and Dynamics Properties of Poly(oxyethylene) Melts and Related Poly(alkylethers) from Simulations and Ab Initio Calculations

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Molecular dynamics simulations of POE melts have been performed utilizing a potential force field parameterized to reproduce conformer energies and rotational energy barriers in dimethoxyethane as determined from ab initio electronic structure calculations. Chain conformations and dimensions of POE from the simulations were found to be in good agreement with predictions of a rotational isomeric state (RIS) model based upon the ab initio conformational. energies. The melt chains were found to be somewhat extended relative to chains at theta conditions. This effect will be discussed in light of neutron scattering experiments which indicate that POE chains are extended in the melt relative to theta solutions. The conformational characteristics of POE chains will also be compared with those of other poly (alkylethers), namely poly(oxymethylene), poly(oxytrimethylene) and poly(oxytetramethylene). Local conformational dynamics were found to be more rapid than in polymethylene. Calculated C-H vector correlation times were found to be in reasonable agreement with experimental values from C-13 NMR spin-lattice relaxation times. The influence of ionic salts on local conformations and dynamics will also be discussed.

  14. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction

    PubMed Central

    Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam

    2015-01-01

    Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568

  15. Car and Parrinello meet Green and Kubo: simulating atomic heat transport from equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Baroni, Stefano

    Modern simulation methods based on electronic-structure theory have long been deemed unfit to compute heat transport coefficients within the Green-Kubo formalism. This is so because the quantum-mechanical energy density from which the heat flux is derived is inherently ill defined, thus allegedly hampering the use of the Green-Kubo formula. While this objection would actually apply to classical systems as well, I will demonstrate that the thermal conductivity is indeed independent of the specific microscopic expression for the energy density and current from which it is derived. This fact results from a kind of gauge invariance stemming from energy conservation and extensivity, which I will illustrate numerically for a classical Lennard-Jones fluid. I will then introduce an expression for the adiabatic energy flux, derived within density-functional theory, that allows simulating atomic heat transport using equilibrium ab initio molecular dynamics. The resulting methodology is demonstrated by comparing results from ab-initio and classical molecular-dynamics simulations of a model liquid-Argon system, for which accurate inter-atomic potentials are derived by the force-matching method, and applied to compute the thermal conductivity of heavy water at ambient conditions. The problem of evaluating transport coefficients along with their accuracy from relatively short trajectories is finally addressed and discussed with a few representative examples. Partially funded by the European Union through the MaX Centre of Excellence (Grant No. 676598).

  16. An ab initio chemical reaction model for the direct simulation Monte Carlo study of non-equilibrium nitrogen flows.

    PubMed

    Mankodi, T K; Bhandarkar, U V; Puranik, B P

    2017-08-28

    A new ab initio based chemical model for a Direct Simulation Monte Carlo (DSMC) study suitable for simulating rarefied flows with a high degree of non-equilibrium is presented. To this end, Collision Induced Dissociation (CID) cross sections for N 2 +N 2 →N 2 +2N are calculated and published using a global complete active space self-consistent field-complete active space second order perturbation theory N 4 potential energy surface and quasi-classical trajectory algorithm for high energy collisions (up to 30 eV). CID cross sections are calculated for only a selected set of ro-vibrational combinations of the two nitrogen molecules, and a fitting scheme based on spectroscopic weights is presented to interpolate the CID cross section for all possible ro-vibrational combinations. The new chemical model is validated by calculating equilibrium reaction rate coefficients that can be compared well with existing shock tube and computational results. High-enthalpy hypersonic nitrogen flows around a cylinder in the transition flow regime are simulated using DSMC to compare the predictions of the current ab initio based chemical model with the prevailing phenomenological model (the total collision energy model). The differences in the predictions are discussed.

  17. Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques

    NASA Astrophysics Data System (ADS)

    Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano

    2017-12-01

    There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.

  18. Ab-Initio Description and Prediction of Properties of Carbon-Based and Other Non-Metallic Materials

    NASA Technical Reports Server (NTRS)

    Bagayoko, D.; Zhao, G. L.; Hasan, S.

    2001-01-01

    We have resolved the long-standing problem consisting of 30%-50% theoretical underestimates of the band gaps of non-metallic materials. We describe the Bagayoko, Zhao, and Williams (BZW) method that rigorously circumvents the basis-set and variational effect presumed to be a cause of these underestimates. We present ab-initio, computational results that are in agreement with experiment for diamond (C), silicon (Si), silicon carbides (3C-SiC and 4H-SiC), and other semiconductors (GaN, BaTiO3, AlN, ZnSe, ZnO). We illustrate the predictive capability of the BZW method in the case of the newly discovered cubic phase of silicon nitride (c-Si3N4) and of selected carbon nanotabes [(10,0), and (8,4)]. Our conclusion underscores the inescapable need for the BZW method in ab-initio calculations that employ a basis set in a variational approach. Current nanoscale trends amplify this need. We estimate that the potential impact of applications of the BZW method in advancing our understanding of nonmetallic materials, in informing experiment, and particularly in guiding device design and fabrication is simply priceless.

  19. Comparative semiempirical and ab initio study of the structural and chemical properties of uric acid and its anions

    NASA Astrophysics Data System (ADS)

    Altarsha, Muhannad; Monard, Gérald; Castro, Bertrand

    Semiempirical, density functional theory (DFT), and ab initio calculations have been performed to assess the relative stabilities of 15 possible tautomer forms of neutral uric acid, and of the different urate mono- and dianion forms. These methods have also been used to compute ionization potentials (IPs) for uric acid and its derived anions. Overall, we have found that semiempirical calculations, in particular PM3, perform well as compared with B3LYP or MP2 computations toward these different structural and chemical properties of uric acid: the triketo form of uric acid is the most stable tautomer form of neutral uric acid. Three other tautomer forms are relatively close in energy, within the range 2-6 kcal/mol above the triketo form, with a mean energy deviation of only 1.3 kcal/mol between PM3 and DFT or ab initio results; the monoanion form of uric acid obtained by abstracting one proton in position 3 (denoted UAN3-) is the most stable form among all four possible urate monoanions both in gas phase and in solution; the dianion form of uric acid obtained by abstracting two protons, respectively, in positions 3 and 9 of uric acid (denoted UAN3-N9-) is the most stable urate dianion form both in gas phase and in solution. However, these two most stable species do not have the lowest IPs in solution: among monoanions and dianions, respectively, the species with the lowest IPs are UAN7- and UAN7-N9-.

  20. HO + CO reaction rates and H/D kinetic isotope effects: master equation models with ab initio SCTST rate constants.

    PubMed

    Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R

    2013-02-07

    Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.

  1. Ab Initio Study of Ultracold Polar Molecules in Optical Lattices

    DTIC Science & Technology

    2010-01-01

    collisions of Li and alkaline-earth or rare- earth atoms, such LiSr and LiYb. Finally, we calculated the isotropic and anisotropic interaction potentials... LiSr and LiYb molecules. To the best of our knowledge, only LiMg was experimentally investigated [3], which allowed us to compare our predictions...alkaline-earth or rare-earth atoms. Interest in the LiSr and LiYb molecules stems from prospects to achieve optical Feshbach tuning of scattering properties

  2. Ab initio method for calculating total cross sections

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Schneider, B. I.; Temkin, A.

    1993-01-01

    A method for calculating total cross sections without formally including nonelastic channels is presented. The idea is to use a one channel T-matrix variational principle with a complex correlation function. The derived T matrix is therefore not unitary. Elastic scattering is calculated from T-parallel-squared, but total scattering is derived from the imaginary part of T using the optical theorem. The method is applied to the spherically symmetric model of electron-hydrogen scattering. No spurious structure arises; results for sigma(el) and sigma(total) are in excellent agreement with calculations of Callaway and Oza (1984). The method has wide potential applicability.

  3. Ab-initio modeling of electromechanical coupling at Si surfaces

    SciTech Connect

    Hoppe, Sandra; Müller, Stefan, E-mail: stefan.mueller@tuhh.de; Michl, Anja

    The electromechanical coupling at the silicon (100) and (111) surfaces was studied via density functional theory by calculating the response of the ionization potential and the electron affinity to different types of strain. We find a branched strain response of those two quantities with different coupling coefficients for negative and positive strain values. This can be attributed to the reduced crystal symmetry due to anisotropic strain, which partially lifts the degeneracy of the valence and conduction bands. Only the Si(111) electron affinity exhibits a monotonously linear strain response, as the conduction band valleys remain degenerate under strain. The strain responsemore » of the surface dipole is linear and seems to be dominated by volume changes. Our results may help to understand the mechanisms behind electromechanical coupling at an atomic level in greater detail and for different electronic and atomic structures.« less

  4. Ab initio chemical kinetics for the HCCO + OH reaction

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Raghunath, P.; Le, Xuan T.; Huynh, Lam K.; Nam, Pham-Cam; Lin, M. C.

    2014-01-01

    The mechanism for the reaction of HCCO and OH has been investigated at different high-levels of theory. The reaction was found to occur on singlet and triplet potential energy surfaces with multiple accessible paths. Rate constants predicted by variational RRKM/ME calculations show that the reaction on both surfaces occurs primarily by barrierless OH attack at both C atoms producing excited intermediates which fragment to produce predominantly CO and 1,3HCOH with kS = 3.12 × 10-8T-0.59exp[-73.0/T] and kT = 6.29 × 10-11T0.13exp[108/T] cm3 molecule-1 s-1 at T = 300-2000 K, independent of pressure at P < 76 000 Torr.

  5. Ab initio study on structural stability of uranium carbide

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.

    2013-06-01

    First principles calculations have been performed using plane wave pseudopotential and full potential linearized augmented plane wave (FP-LAPW) methods to analyze structural, elastic and dynamic stability of UC under hydrostatic compression. Our calculations within pseudopotential method suggest that the rocksalt (B1) structure will transform to body centered orthorhombic (bco) structure at ˜21.5 GPa. The FP-LAPW calculations put this transition at 23 GPa. The transition pressures determined from our calculations though agree reasonably with the experimental value of 27 GPa, the high pressure bco structure suggested by theory differs slightly from the experimentally reported pseudo bco phase. The elastic stability analysis of B1 phase suggests that the B1 to bco transition is driven by the failure of C44 modulus. This finding is further substantiated by the lattice dynamic calculations which demonstrate that the B1 phase becomes dynamically unstable around the transition pressure and the instability is of long wavelength nature.

  6. Towards ab initio extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-12-01

    Extremely metal-poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal-enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 M⊙ Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051 erg and injected an ample metal mass of 6 M⊙, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 2-5 × 10-4 Z⊙, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.

  7. Information flow and causality as rigorous notions ab initio

    NASA Astrophysics Data System (ADS)

    Liang, X. San

    2016-11-01

    Information flow or information transfer the widely applicable general physics notion can be rigorously derived from first principles, rather than axiomatically proposed as an ansatz. Its logical association with causality is firmly rooted in the dynamical system that lies beneath. The principle of nil causality that reads, an event is not causal to another if the evolution of the latter is independent of the former, which transfer entropy analysis and Granger causality test fail to verify in many situations, turns out to be a proven theorem here. Established in this study are the information flows among the components of time-discrete mappings and time-continuous dynamical systems, both deterministic and stochastic. They have been obtained explicitly in closed form, and put to applications with the benchmark systems such as the Kaplan-Yorke map, Rössler system, baker transformation, Hénon map, and stochastic potential flow. Besides unraveling the causal relations as expected from the respective systems, some of the applications show that the information flow structure underlying a complex trajectory pattern could be tractable. For linear systems, the resulting remarkably concise formula asserts analytically that causation implies correlation, while correlation does not imply causation, providing a mathematical basis for the long-standing philosophical debate over causation versus correlation.

  8. Accurate ab initio binding energies of the benzene dimer.

    PubMed

    Park, Young Choon; Lee, Jae Shin

    2006-04-20

    Accurate binding energies of the benzene dimer at the T and parallel displaced (PD) configurations were determined using the single- and double-coupled cluster method with perturbative triple correction (CCSD(T)) with correlation-consistent basis sets and an effective basis set extrapolation scheme recently devised. The difference between the estimated CCSD(T) basis set limit electronic binding energies for the T and PD shapes appears to amount to more than 0.3 kcal/mol, indicating the PD shape is a more stable configuration than the T shape for this dimer in the gas phase. This conclusion is further strengthened when a vibrational zero-point correction to the electronic binding energies of this dimer is made, which increases the difference between the two configurations to 0.4-0.5 kcal/mol. The binding energies of 2.4 and 2.8 kcal/mol for the T and PD configurations are in good accord with the previous experimental result from ionization potential measurement.

  9. Ab initio design of laser pulses to control molecular motion

    NASA Astrophysics Data System (ADS)

    Balint-Kurti, Gabriel; Ren, Qinghua; Manby, Frederick; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel; Zou, Shiyang; Singh, Harjinder

    2007-03-01

    Our recent attempts to design laser pulses entirely theoretically, in a quantitative and accurate manner, so as to fully understand the underlying mechanisms active in the control process will be outlined. We have developed a new Born-Oppenheimer like separation called the electric-nuclear Born-Oppenheimer (ENBO) approximation. In this approximation variations of both the nuclear geometry and of the external electric field are assumed to be slow compared with the speed at which the electronic degrees of freedom respond to these changes. This assumption permits the generation of a potential energy surface that depends not only on the relative geometry of the nuclei, but also on the electric field strength and on the orientation of the molecule with respect to the electric field. The range of validity of the ENBO approximation is discussed. Optimal control theory is used along with the ENBO approximation to design laser pulses for exciting vibrational and rotational motion in H2 and CO molecules. Progress on other applications, including controlling photodissociation processes, isotope separation, stabilization of molecular Bose-Einstein condensates as well as applications to biological molecules also be presented. *Support acknowledged from EPSRC.

  10. Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.

    PubMed

    Zhang, Dawei; Liu, Chungen

    2016-04-12

    The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.

  11. Using Ab-Initio Calculations to Appraise Stm-Based - and Kink-Formation Energies

    NASA Astrophysics Data System (ADS)

    Feibelman, Peter J.

    2001-03-01

    Ab-initio total energies can and should be used to test the typically model-dependent results of interpreting STM morphologies. The benefits of such tests are illustrated here by ab-initio energies of step- and kink-formation on Pb and Pt(111) which show that the STM-based values of the kink energies must be revised. On Pt(111), the computed kink-energies for (100)- and (111)-microfacet steps are about 0.25 and 0.18 eV. These results imply a specific ratio of formation energies for the two step types, namely 1.14, in excellent agreement with experiment. If kink-formation actually cost the same energy on the two step types, an inference drawn from scanning probe observations of step wandering,(M. Giesen et al., Surf. Sci. 366, 229(1996).) this ratio ought to be 1. In the case of Pb(111), though computed energies to form (100)- and (111)-microfacet steps agree with measurement, the ab-initio kink-formation energies for the two step types, 41 and 60 meV, are 40-50% below experimental values drawn from STM images.(K. Arenhold et al., Surf. Sci. 424, 271(1999).) The discrepancy results from interpreting the images with a step-stiffness vs. kink-energy relation appropriate to (100) but not (111) surfaces. Good agreement is found when proper account of the trigonal symmetry of Pb(111) is taken in reinterpreting the step-stiffness data.

  12. On the Use of Accelerated Molecular Dynamics to Enhance Configurational Sampling in Ab Initio Simulations.

    PubMed

    Bucher, Denis; Pierce, Levi C T; McCammon, J Andrew; Markwick, Phineus R L

    2011-04-12

    We have implemented the accelerated molecular dynamics approach (Hamelberg, D.; Mongan, J.; McCammon, J. A. J. Chem. Phys. 2004, 120 (24), 11919) in the framework of ab initio MD (AIMD). Using three simple examples, we demonstrate that accelerated AIMD (A-AIMD) can be used to accelerate solvent relaxation in AIMD simulations and facilitate the detection of reaction coordinates: (i) We show, for one cyclohexane molecule in the gas phase, that the method can be used to accelerate the rate of the chair-to-chair interconversion by a factor of ∼1 × 10(5), while allowing for the reconstruction of the correct canonical distribution of low-energy states; (ii) We then show, for a water box of 64 H(2)O molecules, that A-AIMD can also be used in the condensed phase to accelerate the sampling of water conformations, without affecting the structural properties of the solvent; and (iii) The method is then used to compute the potential of mean force (PMF) for the dissociation of Na-Cl in water, accelerating the convergence by a factor of ∼3-4 compared to conventional AIMD simulations.(2) These results suggest that A-AIMD is a useful addition to existing methods for enhanced conformational and phase-space sampling in solution. While the method does not make the use of collective variables superfluous, it also does not require the user to define a set of collective variables that can capture all the low-energy minima on the potential energy surface. This property may prove very useful when dealing with highly complex multidimensional systems that require a quantum mechanical treatment.

  13. Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...

    2018-01-30

    Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. Here, the results show that the threshold displacement energies, E d, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum E d values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [more » $$\\overline{11}20$$] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between E d and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. In conclusion, these findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.« less

  14. Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation

    SciTech Connect

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen

    Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. Here, the results show that the threshold displacement energies, E d, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum E d values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [more » $$\\overline{11}20$$] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between E d and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. In conclusion, these findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.« less

  15. Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation

    NASA Astrophysics Data System (ADS)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2018-01-01

    Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. The results show that the threshold displacement energies, Ed, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum Ed values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [ 1 ¯ 1 ¯ 20 ] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between Ed and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. These findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.

  16. New insights into mechanistic photoisomerization of ethylene-bridged azobenzene from ab initio multiple spawning simulation.

    PubMed

    Liu, Lihong; Wang, Yating; Fang, Qiu

    2017-02-14

    Ethylene-bridged azobenzene (br-AB) has aroused broad interests due to its unique photoswitching properties. Numerous dynamical simulations have been performed for the br-AB photoisomerization, which focused mainly on the conformational effect and the funnel role of minimum-energy conical intersection (MECI) on the mechanism. In the present work, we use the "full quantum" ab initio multiple spawning method to simulate the br-AB photoisomerization, which provides new insights into the mechanism. Upon irradiation of br-AB to the first excited singlet state (S 1 ), most of the excess energies are trapped in the azo-moiety. Since the intramolecular vibrational energy redistribution is slower than the S 1 relaxation processes, the nonadiabatic transition from S 1 to the ground state (S 0 ) occurs in the vicinity of high-energy crossing seam and even the largest probabilities of the S 1 → S 0 transition are not distributed in the MECI regions. Once decaying to the S 0 state through the high-energy region, the subsequent isomerization and re-formation of the initial isomer are ultrafast processes in the S 0 state. It is the nonergodic behavior of the S 1 and S 0 dynamics that is mainly responsible for the unique photoswitching properties of the ethylene-bridged azobenzene, which will be discussed in detail.

  17. Evaluating High-Throughput Ab Initio Gene Finders to Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques

    PubMed Central

    Goodswen, Stephen J.; Kennedy, Paul J.; Ellis, John T.

    2012-01-01

    Next generation sequencing technology is advancing genome sequencing at an unprecedented level. By unravelling the code within a pathogen’s genome, every possible protein (prior to post-translational modifications) can theoretically be discovered, irrespective of life cycle stages and environmental stimuli. Now more than ever there is a great need for high-throughput ab initio gene finding. Ab initio gene finders use statistical models to predict genes and their exon-intron structures from the genome sequence alone. This paper evaluates whether existing ab initio gene finders can effectively predict genes to deduce proteins that have presently missed capture by laboratory techniques. An aim here is to identify possible patterns of prediction inaccuracies for gene finders as a whole irrespective of the target pathogen. All currently available ab initio gene finders are considered in the evaluation but only four fulfil high-throughput capability: AUGUSTUS, GeneMark_hmm, GlimmerHMM, and SNAP. These gene finders require training data specific to a target pathogen and consequently the evaluation results are inextricably linked to the availability and quality of the data. The pathogen, Toxoplasma gondii, is used to illustrate the evaluation methods. The results support current opinion that predicted exons by ab initio gene finders are inaccurate in the absence of experimental evidence. However, the results reveal some patterns of inaccuracy that are common to all gene finders and these inaccuracies may provide a focus area for future gene finder developers. PMID:23226328

  18. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    SciTech Connect

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-06-15

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  19. Ab initio simulation of particle momentum distributions in high-pressure water

    NASA Astrophysics Data System (ADS)

    Ceriotti, M.

    2014-12-01

    Applying pressure to water reduces the average oxygen-oxygen distance, and facilitates the delocalisation of protons along the hydrogen bond. This pressure-induced delocalisation is further enhanced by the quantum nature of hydrogen nuclei, which is very significant even well above room temperature. Here we will evaluate the quantum kinetic energy and the particle momentum distribution of hydrogen and oxygen nuclei in water at extreme pressure, using ab initio path integral molecular dynamics. We will show that (transient) dissociation of water molecules induce measurable changes in the kinetic energy hydrogen atoms, although current deep inelastic scattering experiments are probably unable to capture the heterogeneity of the sample.

  20. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  1. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  2. Site occupancy trend of Co in Ni{sub 2}MnIn: Ab initio approach

    SciTech Connect

    Pal, Soumyadipta, E-mail: soumyadipta.pal@gmail.com; Mahadevan, Priya; Biswas, C.

    2015-06-24

    The trend of site occupation of Co at Ni sites of Ni{sub 2}MnIn system is studied in austenitic phase having L2{sub 1} structure by ab initio density functional theory (DFT) calculation. The Co atoms prefer to be at Ni sites rather than Mn site and are ferromagetically coupled with Ni and Mn. The ground state has tetragonal structure for Ni{sub 1.5}Co{sub 0.5}MnIn and Ni{sub 1.25}Co{sub 0.75}MnIn. The Co tends to form cluster.

  3. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives.

    PubMed

    Bernstein, Jonathan

    2018-02-28

    Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.

  4. FTIR cryospectroscopic and ab initio studies of desflurane-dimethyl ether H-bonded complexes.

    PubMed

    Melikova, S M; Rutkowski, K S; Rospenk, M

    2017-09-05

    The IR spectra of mixtures of desflurane and dimethyl ether are studied with the help of FTIR cryospectroscopy in liquefied Kr at T~118-158K. Comparative analysis of the experimental data and results of ab initio calculations show that either of the two C-H groups of desflurane is involved in heterodimer formation of comparable strengths. The blue frequency shift is found for stretching vibrations of those C-H donors which directly participate in H-bond formation. Additionally the complexes are stabilized by weaker contacts between hydrogen atoms of dimethyl ether and fluorine atoms of desflurane. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  6. Stabilization of flat aromatic Si6 rings analogous to benzene: ab initio theoretical prediction.

    PubMed

    Zdetsis, Aristides D

    2007-12-07

    It is shown by ab initio calculations, based on density functional (DFT/B3LYP), and high level coupled-cluster [CCSD(T)] and quadratic CI [QCISD(T)] methods, that flat aromatic silicon structures analogous to benzene (C6H6) can be stabilized in the presence of lithium. The resulting planar Si6Li6 structure is both stable and aromatic, sharing many key characteristics with benzene. To facilitate possible synthesis and characterization of these species, routes of formation with high exothermicity are suggested and several spectral properties (including optical absorption, infrared, and Raman) are calculated.

  7. Ab-initio study of several static and dynamic properties of liquid palladium and platinum

    NASA Astrophysics Data System (ADS)

    González, L. E.; González, D. J.; Molla, Mohammad Riazuddin; Ahmed, A. Z. Ziauddin; Bhuiyan, G. M.

    2017-08-01

    We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data.

  8. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules.

    PubMed

    Maluendes, S A; McLean, A D

    1992-12-18

    We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.

  9. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules

    NASA Technical Reports Server (NTRS)

    Maluendes, S. A.; McLean, A. D.; Loew, G. H. (Principal Investigator)

    1992-01-01

    We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.

  10. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    PubMed Central

    Xiao, H. Y.; Weber, W. J.; Zhang, Y.; Zu, X. T.; Li, S.

    2015-01-01

    The response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations. PMID:25660219

  11. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study.

    PubMed

    Xiao, H Y; Weber, W J; Zhang, Y; Zu, X T; Li, S

    2015-02-09

    The response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations.

  12. Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states

    NASA Astrophysics Data System (ADS)

    Venâncio, Mateus F.; Rocha, Willian R.

    2015-10-01

    Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.

  13. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations.

    PubMed

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-12

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. We also show that the proposed functions for lattice QCD calculation of PDFs in the literature are special cases of these good LCSs.

  14. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  15. Analysis of Borderline Substitution/Electron Transfer Pathways from Direct ab initio MD Simulations

    SciTech Connect

    Yamataka, H; Aida, M A.; Dupuis, Michel

    Ab initio molecular dynamics simulations were carried out for the borderline reaction pathways in the reaction of CH2O?- with CH3Cl. The simulations reveal distinctive features of three types of mechanisms passing through the SN2-like transition state (TS): (i) a direct formation of SN2 products, (ii) a direct formation of ET products, and (iii) a 2-step formation of ET products via the SN2 valley. The direct formation of the ET product through the SN2-like TS appears to be more favorable at higher temperatures. The 2-step process depends on the amount of energy that goes into the C-C stretching mode.

  16. Ab initio study of the alkaline hydrolysis of a thio-β-lactam structure

    NASA Astrophysics Data System (ADS)

    Coll, Miguel; Frau, Juan; Vilanova, Bartolomé; Donoso, Josefa; Muñoz, Francisco

    2000-08-01

    The alkaline hydrolysis of a thio-β-lactam in the gas phase was examined in the light of RHF and DFT ab initio calculations. The solvent effect was considered via IPCM computations. The tetrahedral intermediate for the thio-β-lactam studied is unstable, so the compound evolves directly to the corresponding thio-azethidin-2-one open ring with cleavage of the C-S bond. The end-products obtained bear a carbamate group, which suggests that the thio-β-lactam might be an effective inhibitor for β-lactamases.

  17. Ab initio R-matrix calculations of e+-molecule scattering

    NASA Technical Reports Server (NTRS)

    Danby, Grahame; Tennyson, Jonathan

    1990-01-01

    The adaptation of the molecular R-matrix method, originally developed for electron-molecule collision studies, to positron scattering is discussed. Ab initio R-matrix calculations are presented for collisions of low energy positrons with a number of diatomic systems including H2, HF and N2. Differential elastic cross sections for positron-H2 show a minimum at about 45 deg for collision energies between 0.3 and 0.5 Ryd. The calculations predict a bound state of positronHF. Calculations on inelastic processes in N2 and O2 are also discussed.

  18. Cobalt-doped ZnO nanocrystals: quantum confinement and surface effects from ab initio methods.

    PubMed

    Schoenhalz, Aline L; Dalpian, Gustavo M

    2013-10-14

    Cobalt-doped ZnO nanocrystals were studied through ab initio methods based on the Density Functional Theory. Both quantum confinement and surface effects were explicitly taken into account. When only quantum confinement effects are considered, Co atoms interact through a superexchange mechanism, stabilizing an antiferromagnetic ground state. Usually, this is the case for high quality nanoparticles with perfect surface saturation. When the surfaces were considered, a strong hybridization between the Co atoms and surfaces was observed, strongly changing their electronic and magnetic properties. Our results indicated that the surfaces might qualitatively change the properties of impurities in semiconductor nanocrystals.

  19. Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method

    NASA Astrophysics Data System (ADS)

    Li, Ailin; Yan, Tianying; Shen, Panwen

    Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer.

  20. Characteristics of Raman spectra for graphene oxide from ab initio simulations.

    PubMed

    Wang, Lu; Zhao, Jijun; Sun, Yi-Yang; Zhang, Shengbai B

    2011-11-14

    The Raman spectra of several locally stable structures of the graphene oxide (GO) have been simulated by ab initio calculations. Compared to graphite, the G band of GO is broadened and blueshifted due to the emergence of a series of new Raman peaks. The Raman intensities and positions of the D and G bands depend sensitively on the local atomic configurations. In addition to the normal epoxy and hydroxyl groups, other oxidation groups such as epoxy pairs are also studied. Epoxy pairs induce large blueshift of G band with respect to that of the graphite. © 2011 American Institute of Physics

  1. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  2. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives

    NASA Astrophysics Data System (ADS)

    Bernstein, Jonathan

    2018-02-01

    Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.

  3. Electronic structure and magnetism of titanium substituted Cd3P2: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Jaiganesh, G.; Jaya, S. Mathi

    2018-05-01

    Using the ab-initio computations that are based on the density functional theory, we have investigated the magnetism and electronic properties of one and two Ti atom substituted Cd3P2 compound. The magnetic stability of the substituted compounds was obtained by analyzing the minimum total energies in nonmagnetic, ferromagnetic and antiferromagnetic phases. Our results indicated the formation of magnetic order in one and two Ti atom substituted Cd3P2 as well as metallic characteristics in these systems. A significant value of the magnetic moment of Ti atom is observed from our calculations. We further find that the neighboring Cd and P atoms too acquire a small magnetic moment.

  4. Structure of alcohol cluster ions in the gas phase, according to spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.

    2017-01-01

    Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.

  5. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    DOE PAGES

    Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; ...

    2015-06-29

    relatively constant for all five nuclei, in both the Hartree-Fock-Bogoliubov and BCCD approximations. Conclusions: The newly developed many-body formalism increases the potential span of ab initio calculations based on single-reference coupled cluster techniques tremendously, i.e., potentially to reach several hundred additional midmass nuclei. The new formalism offers a wealth of potential applications and further extensions dedicated to the description of ground and excited states of open-shell nuclei. Short-term goals include the implementation of three-nucleon forces at the normal-ordered two-body level. Midterm extensions include the approximate treatment of triples corrections and the development of the equation-of-motion methodology to treat both excited states and odd nuclei. Long-term extensions include exact restoration of U(1) and SU(2) symmetries.« less

  6. Bridging a gap between continuum-QCD and ab initio predictions of hadron observables

    DOE PAGES

    Binosi, Daniele; Chang, Lei; Papavassiliou, Joannis; ...

    2015-03-01

    Within contemporary hadron physics there are two common methods for determining the momentum- dependence of the interaction between quarks: the top-down approach, which works toward an ab initiocomputation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD’s gauge sector coincides with that required in order to describe ground-state hadron observables usingmore » a nonperturbative truncation of QCD’s Dyson–Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.« less

  7. The Conformational Landscape of L-Threonine Matrix Isolation Infrared and {AB-INITIO Studies

    NASA Astrophysics Data System (ADS)

    Dubey, Pankaj; Mukhopadhyay, Anamika; Viswanathan, K. S.

    2017-06-01

    Amino acids, containing hydroxy side chains such as L-threonine and tyrosine play an important role in molecular recognition, such as in the docking of propofol, which is a commonly used anaesthetic. A rich conformational landscape of these amino acids makes them interesting candidates in the study of intra and intermolecular interactions. In this work, the conformational landscape of L-threonine was studied, as it can be expected to serve as a basis for understanding structure and functions of polypeptides and other biomolecules. The matrix isolation technique (MI) coupled with a high temperature effusive molecular beam (EMB) nozzle was used to trap conformers of amino acid, which were then characterized using FTIR spectroscopy. The usefulness of MI-EMB-FTIR spectroscopy is that it can trap structures corresponding to the local minima along with the global minimum and hence allows for a better exploration of the potential energy surface. A major challenge in conformational analysis of amino acids using matrix isolation FTIR arises from its non-volatile nature. A home built heating system which was mounted close to the cryotip, was used to evaporate the non-volatile amino acids. Our infrared spectra show that three conformations were trapped in the matrix. Experimental results were supported by {ab-initio calculations performed using the CCSD(T), MP2 and M06-2X methods together with 6-311++G(d,p) and aug/cc-pVDZ basis sets. The side chains of the amino acids appeared to have an influence on the preferential stabilisation of a particular backbone structure of amino acids. Factors such as entropy, anomeric effect and intramolecular H-bonding were also found to play an important role in determining conformal preferences, which will be discussed.

  8. Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations

    NASA Astrophysics Data System (ADS)

    Luo, Han; Kulakhmetov, Marat; Alexeenko, Alina

    2017-02-01

    Quasi-classical trajectory (QCT) calculations are used in this work to calculate state-specific N2(X1Σ ) +O(3P ) →2 N(4S ) +O(3P ) dissociation and N2(X1Σ ) +O(3P ) →NO(X2Π ) +N(4S ) exchange cross sections and rates based on the 13A″ and 13A' ab initio potential energy surface by Gamallo et al. [J. Chem. Phys. 119, 2545-2556 (2003)]. The calculations consider translational energies up to 23 eV and temperatures between 1000 K and 20 000 K. Vibrational favoring is observed for dissociation reaction at the whole range of collision energies and for exchange reaction around the dissociation limit. For the same collision energy, cross sections for v = 30 are 4 to 6 times larger than those for the ground state. The exchange reaction has an effective activation energy that is dependent on the initial rovibrational level, which is different from dissociation reaction. In addition, the exchange cross sections have a maximum when the total collision energy (TCE) approaches dissociation energy. The calculations are used to generate compact QCT-derived state-specific dissociation (QCT-SSD) and QCT-derived state-specific exchange (QCT-SSE) models, which describe over 1 × 106 cross sections with about 150 model parameters. The models can be used directly within direct simulation Monte Carlo and computational fluid dynamics simulations. Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model, Macheret's exchange model, and Park's two-temperature model. The new models match QCT-calculated and experimental rates within 30% under nonequilibrium conditions while other models under predict by over an order of magnitude under vibrationally-cold conditions.

  9. Intermolecular interactions of trifluorohalomethanes with Lewis bases in the gas phase: an ab initio study.

    PubMed

    Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D

    2014-10-07

    We perform an ab initio computational study of molecular complexes with the general formula CF3X-B that involve one trifluorohalomethane CF3X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH3 and PH3), two n-pairs (H2O and H2S), two n-pairs with an unsaturated bond (H2CO and H2CS), and a single π-pair (C2H4) and two π-pairs (C2H2). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C-X bond lengths shorten, while the C-X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.

  10. An ab initio study of intermolecular interactions of nitromethane dimer and nitromethane trimer.

    PubMed

    Li, Jinshan; Zhao, Feng; Jing, Fuqian

    2003-02-01

    Different geometries of nitromethane dimer and nitromethane trimer have been fully optimized employing the density functional theory B3LYP method and the 6-31++G** basis set. Three-body interaction energy has been obtained with the ab initio supermolecular approach at the levels of MP2/6-31++G**//B3LYP/6-31++G** and MP2/aug-cc-pVDZ//B3LYP/6-31++G**. The internal rotation of methyl group induced by intermolecular interaction has been observed theoretically. For the optimized structures of nitromethane dimer, the strength of C--H...O--N H-bond ranges from -9.0 to -12.4 kJ mol(-1) at the MP2/aug-cc-pVDZ//B3LYP/6-31++G** level, and the B3LYP method underestimates the interaction strength compared with the MP2 method, while MP2/6-31++G**//B3LYP/6-31++G** calculated DeltaE(C) is within 2.5 kJ mol(-1) of the corresponding value at the MP4(SDTQ)/6-31G**//B3LYP/6-31++G** level. The analytic atom-atom intermolecular potential has been successfully regressed by using the MP2/6-31++G**//B3LYP/6-31++G** calculated interaction energies of nitromethane dimer. For the optimized structures of nitromethane trimer the three-body interaction energies occupy small percentage of corresponding total binding energies, but become important for the compressed nitromethane explosive. In addition, it has been discovered that the three-body interaction energy in the cyclic nitromethane trimer is more and more negative as intermolecular distances decrease from 2.2 to 1.7 A. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 345-352, 2003

  11. Acetonitrile-water hydrogen-bonded interaction: Matrix-isolation infrared and ab initio computation

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2015-08-01

    The 1:1 hydrogen-bonded complex of acetonitrile (CH3CN) and water (H2O) was trapped in Ar and N2 matrices and studied using infrared technique. Ab initio computations showed two types of complexes formed between CH3CN and H2O, a linear complex A with a Ctbnd N⋯H interaction between nitrogen of CH3CN and hydrogen of H2O and a cyclic complex B, in which the interactions are between the hydrogen of CH3CN with oxygen of H2O and hydrogen of H2O with π cloud of sbnd Ctbnd N of CH3CN. Vibrational wavenumber calculations revealed that both the complexes A and B were minima on the potential energy surface. Interaction energies computed at B3LYP/6-311++G(d,p) showed that linear complex A is more stable than cyclic complex B. Computations identified a blue shift of ∼11.5 cm-1 and a red shift of ∼6.5 cm-1 in the CN stretching mode for the complexes A and B, respectively. Experimentally, we observed a blue shift of ∼15.0 and ∼8.3 cm-1 in N2 and Ar matrices, respectively, in the CN stretching mode of CH3CN, which supports the formation of complex A. The Onsager Self Consistent Reaction Field (SCRF) model was used to explain the influence of matrices on the complexes A and B. To understand the nature of the interactions, Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were carried out for the complexes A and B.

  12. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit

    DOE PAGES

    Dornheim, Tobias; Groth, Simon; Sjostrom, Travis; ...

    2016-10-07

    Here we perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N = 1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy F xc of the macroscopic electron gas withmore » an unprecedented accuracy of | Δ V | / | V | , | Δ F xc | / | F | xc ~ 10 $-$3. Finally, a comparison of our new data to the recent parametrization of F xc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.« less

  13. {ITALIC AB INITIO} Large-Basis no-Core Shell Model and its Application to Light Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Navratil, Petr; Ormand, W. E.; Vary, James P.

    2002-01-01

    We discuss the {ITALIC ab initio} No-Core Shell Model (NCSM). In this method the effective Hamiltonians are derived microscopically from realistic nucleon-nucleon (NN) potentials, such as the CD-Bonn and the Argonne AV18 NN potentials, as a function of the finite Harmonic Oscillator (HO) basis space. We present converged results, i.e. , up to 50 Ω and 18 Ω HO excitations, respectively, for the A=3 and 4 nucleon systems. Our results for these light systems are in agreement with results obtained by other exact methods. We also calculate properties of 6Li and 6He in model spaces up to 10 Ω and of 12C up to 6 Ω. Binding energies, rms radii, excitation spectra and electromagnetic properties are discussed. The favorable comparison with available data is a consequence of the underlying NN interaction rather than a phenomenological fit.

  14. Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.

    PubMed

    Varandas, A J C

    2011-05-28

    The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative

  15. Estudio ab initio del mecanismo de la reacción HSO + O3

    NASA Astrophysics Data System (ADS)

    Nebot Gil, I.

    La reacción entre el radical HSO y el ozono ha sido ampliamente estudiada desde el punto de vista experimental debido a la importancia que tiene el radical HSO en la oxidación de los compuestos de azufre reductores y a que puede contribuir a la producción de H2SO4 [1-4]. Se realizaron diversos estudios teóricos sobre la cinética de la reacción entre el radical HSO y el ozono. La reacción del HSO con el ozono presenta tres canales diferentes : HSO + O3 &rightarrow &HSO2 + O2 &rightarrow &HS + 2 O2 &rightarrow &SO + OH + O2 La controversia existente entre los grupos experimentales sobre cuál de las tres vías es la predominante, se ha resuelto mediante un estudio teórico de todas ellas utilizando métodos ab initio. La estructura de todos los reactivos, productos, intermedios y estados de transición ha sido optimizada a nivel ab initio utilizando los métodos UMP2 /6-31G** y QCISD/6-31G**.

  16. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE PAGES

    Polanco, Carlos A.; Lindsay, Lucas R.

    2018-01-04

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  17. Comparative study of ab initio nonradiative recombination rate calculations under different formalisms

    NASA Astrophysics Data System (ADS)

    Shi, Lin; Xu, Ke; Wang, Lin-Wang

    2015-05-01

    Nonradiative carrier recombination is of both great applied and fundamental importance, but the correct ab initio approaches to calculate it remain to be inconclusive. Here we used five different approximations to calculate the nonradiative carrier recombinations of two complex defect structures GaP :Z nGa-OP and GaN :Z nGa-VN , and compared the results with experiments. In order to apply different multiphonon assisted electron transition formalisms, we have calculated the electron-phonon coupling constants by ab initio density functional theory for all phonon modes. Compared with different methods, the capture coefficients calculated by the static coupling theory are 4.30 ×10-8 and 1.46 ×10-7c m3/s for GaP :Z nGa-OP and GaN :Z nGa-VN , which are in good agreement with the experiment results, (4-1+2) ×10-8 and 3.0 ×10-7c m3/s , respectively. We also provided arguments for why the static coupling theory should be used to calculate the nonradiative decays of semiconductors.

  18. Ab Initio Design of Potent Anti-MRSA Peptides based on Database Filtering Technology

    PubMed Central

    Mishra, Biswajit; Wang, Guangshun

    2012-01-01

    To meet the challenge of antibiotic resistance worldwide, a new generation of antimicrobials must be developed.1 This communication demonstrates ab initio design of potent peptides against methicillin-resistant Staphylococcus aureus (MRSA). Our idea is that the peptide is very likely to be active when most probable parameters are utilized in each step of the design. We derived the most probable parameters (e.g. amino acid composition, peptide hydrophobic content, and net charge) from the antimicrobial peptide database2 by developing a database filtering technology (DFT). Different from classic cationic antimicrobial peptides usually with high cationicity, DFTamP1, the first anti-MRSA peptide designed using this technology, is a short peptide with high hydrophobicity but low cationicity. Such a molecular design made the peptide highly potent. Indeed, the peptide caused bacterial surface damage and killed community-associated MRSA USA300 in 60 minutes. Structural determination of DFTamP1 by NMR spectroscopy revealed a broad hydrophobic surface, providing a basis for its potency against MRSA known to deploy positively charged moieties on the surface as a mechanism for resistance. A combination of our ab initio design with database screening3 led to yet another peptide with enhanced potency. Because of simple composition, short length, stability to proteases, and membrane targeting, the designed peptides are attractive leads for developing novel anti-MRSA therapeutics. Our database-derived design concept can be applied to the design of peptide mimicries to combat MRSA as well. PMID:22803960

  19. Ab initio design of potent anti-MRSA peptides based on database filtering technology.

    PubMed

    Mishra, Biswajit; Wang, Guangshun

    2012-08-01

    To meet the challenge of antibiotic resistance worldwide, a new generation of antimicrobials must be developed. This communication demonstrates ab initio design of potent peptides against methicillin-resistant Staphylococcus aureus (MRSA). Our idea is that the peptide is very likely to be active when the most probable parameters are utilized in each step of the design. We derived the most probable parameters (e.g., amino acid composition, peptide hydrophobic content, and net charge) from the antimicrobial peptide database by developing a database filtering technology (DFT). Different from classic cationic antimicrobial peptides usually with high cationicity, DFTamP1, the first anti-MRSA peptide designed using this technology, is a short peptide with high hydrophobicity but low cationicity. Such a molecular design made the peptide highly potent. Indeed, the peptide caused bacterial surface damage and killed community-associated MRSA USA300 in 60 min. Structural determination of DFTamP1 by NMR spectroscopy revealed a broad hydrophobic surface, providing a basis for its potency against MRSA known to deploy positively charged moieties on the surface as a mechanism for resistance. Our ab initio design combined with database screening led to yet another peptide with enhanced potency. Because of the simple composition, short length, stability to proteases, and membrane targeting, the designed peptides are attractive leads for developing novel anti-MRSA therapeutics. Our database-derived design concept can be applied to the design of peptide mimicries to combat MRSA as well.

  20. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.