NASA Astrophysics Data System (ADS)
Thakur, Anil; Sharma, Nalini; Chandel, Surjeet; Ahluwalia, P. K.
2013-02-01
The electrical resistivity (ρL) of Rb1-XCsX binary alloys has been made calculated using Troullier Martins ab-initio pseudopotentials. The present results of the electrical resistivity (ρL) of Rb1-XCsX binary alloys have been found in good agreement with the experimental results. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys. Hence ab-initio pseudopotentials can be used instead of model pseudopotentials having problem of transferability.
Pseudopotential for ab initio calculations of uranium compounds
NASA Astrophysics Data System (ADS)
Smirnov, G. S.; Pisarev, V. V.; Stegailov, V. V.
2018-01-01
The density functional theory (DFT) is a research tool of the highest importance for electronic structure calculations. It is often the only affordable method for ab initio calculations of complex materials. The pseudopotential approach allows reducing the total number of electrons in the model that speeds up calculations. However, there is a lack of pseudopotentials for heavy elements suitable for condensed matter DFT models. In this work, we present a pseudopotential for uranium developed in the Goedecker-Teter-Hutter form. Its accuracy is illustrated using several molecular and solid-state calculations.
NASA Astrophysics Data System (ADS)
Gornostyrev, Yu. N.; Katsnelson, M. I.; Mryasov, Oleg N.; Freeman, A. J.; Trefilov, M. V.
1998-03-01
Theoretical analysis of the fracture behaviour of fcc Au, Ir and Al have been performed within various brittle/ductile criteria (BDC) with ab-initio, embedded atom (EAM), and pseudopotential parameterizations. We systematically examined several important aspects of the fracture behaviour: (i) dislocation structure, (ii) energetics of the cleavage decohesion and (iii) character of the interatomic interactions. Unit dislocation structures were analyzed within a two dimensional generalization of the Peierls-Nabarro model with restoring forces determined from ab-initio total energy calculations and found to be split with well defined highly mobile partials for all considered metals. We find from ab-initio and pseudopotential that in contrast with most of fcc metals, cleavage decohesion curve for Al appreciably differs from UBER relation. Finally, using ab-initio, EAM and pseudopotential parameterizations, we demonstrate that (i) Au (as a typical example of a ductile metal) is well described within existing BDC's, (ii) anomalous cleavage-like crack propagation of Ir is driven predominantly by it's high elastic modulus and (iii) Al is not described within BDC due to it's long-range interatomic interactions (and hence requires adjustments of the brittle/ductile criteria).
Ab initio calculations of the lattice dynamics of silver halides
NASA Astrophysics Data System (ADS)
Gordienko, A. B.; Kravchenko, N. G.; Sedelnikov, A. N.
2010-12-01
Based on ab initio pseudopotential calculations, the results of investigations of the lattice dynamics of silver halides AgHal (Hal = Cl, Br, I) are presented. Equilibrium lattice parameters, phonon spectra, frequency densities and effective atomic-charge values are obtained for all types of crystals under study.
Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Electronic and mechanical properties of ZnX (X = S, Se and Te)—An ab initio study
NASA Astrophysics Data System (ADS)
Verma, Ajay Singh; Sharma, Sheetal; Sarkar, Bimal Kumar; Jindal, Vijay Kumar
2011-12-01
Zinc chalcogenides (ZnX, X = S, Se and Te) have been increasing attention as wide and direct band gap semiconductor for blue and ultraviolet optical devices. This paper analyzes electronic and mechanical properties of these materials by ab initio pseudo-potential method that uses non conserving pseudopotentials in fully nonlocal form, as implemented in SIESTA code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. The calculations are given for band gap, elastic constants (C11, C12 and C44), shear modulus, and Young's modulus. The results are in very good agreement with previous theoretical calculations and available experimental data.
Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-06-01
The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.
Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-02-01
The electrical resistivity of compound forming liquid alloy HgPb is studied as a function of concentration. Hard sphere diameters of Hg and Pb are obtained through the inter-ionic pair potential evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. The concentration dependence in resistivity occurs due to preferential ordering of unlike atoms as nearest neighbours with help of complex formation model. Though the compound HgiPbi as per structure peaks is found to be less stable. However it contributes significantly to resistivity as compared to bare ions.
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2015-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Ab-initio molecular dynamics simulations of liquid Hg-Pb alloys
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2014-04-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-Pb alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-Pb mixtures (Hg30Pb70, Hg50Pb50 and Hg90Pb10) at 600K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and lead (l-Pb). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered three alloys. Among the all considered alloys, Hg50Pb50 alloy shows presence of more chemical ordering and presence of hetero-coordination.
Determination of NMR chemical shifts for cholesterol crystals from first-principles
NASA Astrophysics Data System (ADS)
Kucukbenli, Emine; de Gironcoli, Stefano
2011-03-01
Solid State Nuclear Magnetic Resonance (NMR) is a powerful tool in crystallography when combined with theoretical predictions. So far, empirical calculations of spectra have been employed for an unambiguous identification. However, many complex systems are outside the scope of these methods. Our implementation of ultrasoft and projector augmented wave pseudopotentials within ab initio gauge including projector augmented plane wave (GIPAW) method in Quantum Espresso simulation package allows affordable calculations of NMR spectra for systems of thousands of electrons. We report here the first ab initio determination of NMR spectra for several crystal structures of cholesterol. Cholesterol crystals, the main component of human gallstones, are of interest to medical research as their structural properties can shed light on the pathologies of gallbladder. With our application we show that ab initio calculations can be employed to aid NMR crystallography.
Ab initio structures and polarizabilities of sodium clusters
NASA Astrophysics Data System (ADS)
Kronik, Leeor; Vasiliev, Igor; Jain, Manish; Chelikowsky, James R.
2001-09-01
We present quantitative ab initio calculations for Na cluster structures and polarizabilities, for all cluster sizes up to 20 atoms. Our calculations are performed by combining an ab initio core-corrected pseudopotential and a gradient-corrected density functional within a real space approach. We find the cluster bonding to be very floppy and catalog a host of low-energy quasi-degenerate isomers for all second-decade clusters. The existence of these isomers results in a band of polarizability values for each cluster size even at zero temperature. This eliminates any finer structure in the polarizability curve. We further show that the experimental polarizability values are consistently underestimated by calculations at zero temperature. By computing the effects of structure expansion and distortion due to a finite temperature we arrive at a quantitative agreement between theory and experiment.
Diffusion in liquid Germanium using ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.
1996-03-01
We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factormore » shows the presence of liquid state in the considered alloys.« less
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Nalini, E-mail: nalini-2808@yahoo.co.in; Ahluwalia, P. K.; Thakur, Anil
2016-05-23
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70,.} Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30}, and Hg{sub 90}Pb{sub 10}) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the localmore » arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strubbe, David
Octopus is a scientific program aimed at the ab initio virtual experimentation on a hopefully ever-increasing range of system types. Electrons are described quantum-mechanically within density-functional theory (DFT), in its time-dependent form (TDDFT) when doing simulations in time. Nuclei are described classically as point particles. Electron-nucleus interaction is described within the pseudopotential approximation.
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex J.; Sakai, Yuki; Chelikowsky, James R.
2017-02-01
Atomic force microscopy (AFM) measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. We find that the inversion is tip height dependent and not observed when using less reactive CO-functionalized tips.
The PSEUDODOJO: Training and grading a 85 element optimized norm-conserving pseudopotential table
NASA Astrophysics Data System (ADS)
van Setten, M. J.; Giantomassi, M.; Bousquet, E.; Verstraete, M. J.; Hamann, D. R.; Gonze, X.; Rignanese, G.-M.
2018-05-01
First-principles calculations in crystalline structures are often performed with a planewave basis set. To make the number of basis functions tractable two approximations are usually introduced: core electrons are frozen and the diverging Coulomb potential near the nucleus is replaced by a smoother expression. The norm-conserving pseudopotential was the first successful method to apply these approximations in a fully ab initio way. Later on, more efficient and more exact approaches were developed based on the ultrasoft and the projector augmented wave formalisms. These formalisms are however more complex and developing new features in these frameworks is usually more difficult than in the norm-conserving framework. Most of the existing tables of norm-conserving pseudopotentials, generated long ago, do not include the latest developments, are not systematically tested or are not designed primarily for high precision. In this paper, we present our PSEUDODOJO framework for developing and testing full tables of pseudopotentials, and demonstrate it with a new table generated with the ONCVPSP approach. The PSEUDODOJO is an open source project, building on the ABIPY package, for developing and systematically testing pseudopotentials. At present it contains 7 different batteries of tests executed with ABINIT, which are performed as a function of the energy cutoff. The results of these tests are then used to provide hints for the energy cutoff for actual production calculations. Our final set contains 141 pseudopotentials split into a standard and a stringent accuracy table. In total around 70,000 calculations were performed to test the pseudopotentials. The process of developing the final table led to new insights into the effects of both the core-valence partitioning and the non-linear core corrections on the stability, convergence, and transferability of norm-conserving pseudopotentials. The PSEUDODOJO hence provides a set of pseudopotentials and general purpose tools for further testing and development, focusing on highly accurate calculations and their use in the development of ab initio packages. The pseudopotential files are available on the PSEUDODOJO web-interface pseudo-dojo.org under the name NC (ONCVPSP) v0.4 in the psp8, UPF2, and PSML 1.1 formats. The webinterface also provides the inputs, which are compatible with the 3.3.1 and higher versions of ONCVPSP. All tests have been performed with ABINIT 8.4.
First-Principle Calculation of Quasiparticle Excitations and Optical Absorption in NiO
NASA Astrophysics Data System (ADS)
Li, Je-Luen; Rignanese, Gian-Marco; Louie, Steven G.
2001-03-01
We present a first-principle study of the quasiparticle excitations and optical absorption spectrum in NiO. The ground state electronic structure is calculated with the generalized gradient approximation in density functional theory and ab initio pseudopotential. The quasiparticle energies are then computed employing the GW approximation. In addition to comparing to photoemisson result, comparison between the measured and calculated complex dielectric function helps to identify the onset of excitations in this system. We illustrate some subtleties of pseudopotential calculations: the effect of including 3 s and 3p electrons in Ni pseudopotential; the difference between using velocity and momentum operators in the RPA dielectric function. Finally, we discuss a recent effort to solve the Bethe-Salpeter equation for the optical spectrum in this spin polarized system to address the remaining discrepancy between theory and experiment.
NASA Astrophysics Data System (ADS)
Han, Seungwu; Cho, Kyeongjae; Ihm, Jisoon
1999-02-01
We have performed ab initio pseudopotential calculations to study the effects of structural deformations of iron porphyrin on the configuration of a carbon monoxide (CO) attached to it. We have considered two proximal deformations around the heme group: (i) rotation of a pyrrole ring in the iron porphyrin, and (ii) rotation of the imidazole side chain bound to the iron atom. We have identified induced changes of the atomic geometry and the electronic structure of the iron porphyrin-CO complex, and the results elucidate the microscopic nature of the CO interaction with the iron porphyrin. Implications on the controversies over the binding angle of the CO molecule on the iron porphyrin under different circumstances are discussed. A potential application to the simulation-based chemical sensor design is also discussed.
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex; Sakai, Yuki; Chelikowsky, James
Atomic force microscopy measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. The inversion is tip height dependent and not observed when using less reactive CO-functionalized tips. Work is supported by the DOE under DOE/DE-FG02-06ER46286 and by the Welch Foundation under Grant F-1837. Computational resources were provided by NERSC and XSEDE.
Lattice dynamics of Cs2NaYbF6 and Cs2NaYF6 elpasolites: Ab initio calculation
NASA Astrophysics Data System (ADS)
Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.
2015-06-01
The ab initio calculations of the crystal structure and the phonon spectrum of Cs2NaYbF6 and Cs2NaYF6 crystals with the elpasolite structure have been performed. The frequencies and types of fundamental vibrations have been determined. The calculations have been performed in the framework of the density functional theory using the molecular orbital method with hybrid functionals in the CRYSTAL09 program developed for the simulation of periodic structures. The outer 5 s and 5 p shells of the rare-earth ion have been described in Gaussian-type basis sets. The influence of inner shells, including 4 f electron shells, on the outer shells has been described using the pseudopotential. It has been shown that this approach allows the description of the phonon spectrum with the inclusion of the splitting of the longitudinal and transverse optical modes.
Electronic structure and equation of state of Sm2Co17 from first-principles DFT+ U
NASA Astrophysics Data System (ADS)
Huang, Patrick; Butch, Nicholas P.; Jeffries, Jason R.; McCall, Scott K.
2013-03-01
Rare-earth intermetallics have important applications as permanent magnet materials, and the rational optimization of their properties would benefit greatly from guidance from ab initio modeling. However, these systems are particularly challenging for current electronic structure methods. Here, we present an ab initio study of the prototype material Sm2Co17 and related compounds, using density functional theory with a Hubbard correction for the Sm 4 f-electrons (DFT+ U method) and ultrasoft pseudopotentials. The Hubbard U parameter is derived from first principles [Cococcioni and de Gironcoli, PRB 71, 035105 (2005)], not fit to experiment. Our calculations are in good agreement with recent photoemission measurements at ambient pressure and the equation of state up to 40 GPa, thus supporting the validity of our DFT+ U model. Prepared by LLNL under Contract DE-AC52-07NA27344.
A Converse Approach to NMR Chemical Shifts for Norm-Conserving Pseudopotentials
NASA Astrophysics Data System (ADS)
Lopez, Graham; Ceresoli, Davide; Marzari, Nicola; Thonhauser, Timo
2010-03-01
Building on the recently developed converse approach for the ab-initio calculation of NMR chemical shifts [1], we present a corresponding framework that is suitable in connection with norm-conserving pseudopotentials. Our approach uses the GIPAW transformation [2] to set up a formalism where the derivative of the orbital magnetization [3] is taken with respect to a microscopic, localized magnetic dipole in the presence of pseudopotentials. The advantages of our method are that it is conceptually simple, the need for a linear-response framework is avoided, and it is applicable to large systems. We present results for calculations of several well-studied systems, including the carbon, hydrogen, fluorine, and phosphorus shifts in various molecules and solids. Our results are in very good agreement with both linear-response calculations and experimental results.[4pt] [1] T. Thonhauser et al., J. Chem. Phys. 131, 101101 (2009).[2] C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001).[3] T. Thonhauser et al., Phys. Rev. Lett. 95, 137205 (2005).
Predicting lanthanide cluster properties: a comparison with the observed optical spectra of HO 2
NASA Astrophysics Data System (ADS)
Nemukhin, A. V.; Ermilov, A. Yu.; Petrukhina, M. A.; Klotzbücher, W. E.; Smets, J.
1997-10-01
Ab initio pseudopotential calculations for HO and HO 2 have been carried out in order to support an assignment of the bands observed in UV-visible spectra of matrix isolated holmium species. SCF, MCSCF and configuration interaction (CI) procedures have been used with quasirelativistic pseudopotentials to compute the ground and excited state energies of HO and HO 2, together with the dipole transition moments. For HO 2, using a Q = 11 pseudopotential (describing the holmium atom in the 4f 106s 25d 1 electronic state), two transitions from the ground state σg2σu2πu2 to the states with principal excitations σu → πg and π u → σ g∗ are predicted at 499 and 524 nm. These two lines, with predicted close intensities, correlate nicely with the observed features at 498/504 and 558/563nm in the spectrum of matrix-isolated HO 2.
Interface-induced localization in AlSb/InAs heterostructures
NASA Astrophysics Data System (ADS)
Shaw, M. J.; Briddon, P. R.; Jaros, M.
1995-12-01
The existence of localized states at perfect InSb-like interfaces in AlSb/InAs superlattices is predicted from ab initio pseudopotential calculations. Localized states are predicted in both the valence and conduction bands, the former being identifiable with the interface states proposed by Kroemer, Nguyen, and Brar [J. Vac. Sci. Technol. 10, 1769 (1990)]. The existence of these interface localized states is invoked to explain the reported experimental dependence of the band gap upon interface types in such superlattices.
Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition
NASA Astrophysics Data System (ADS)
Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.
1999-05-01
In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.
Ab initio study of Pd carbonyls and CO/Pd(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramprasad, R.; Glassford, K.M.; Adams, J.B.
1994-12-31
Carbon monoxide chemisorption on transition metal surfaces has been one of the most extensively studied in surface science in past years due to its importance in a variety of catalytic processes, especially, automotive catalytic converters using Pt or Pd. The authors have performed ab initio studies to understand the electronic and geometric aspects of the Pd-CO bond in small carbonyl clusters and the CO covered (2 x 1)p2mg superstructure of the Pd(110) surface. They have used the standard quantum chemistry package Gaussian to study the former system and a LDA (local density approximation) formalism using ab initio pseudopotentials and amore » plane wave basis to study the latter. The latter results are preliminary; the authors intended to study thicker slabs in the future. The organization of the paper is as follows. The authors describe the methods used in their calculation in Sec. 2. In Sec. 3, they present results and discussion; here, they first look at the smallest possible clusters, viz, Pd{sub 2} and PdCO, take a brief look at the orbital chemistry involved and then move on to the study of the CO covered Pd(110) surface and examine the geometry of the near equilibrium structure.« less
NASA Astrophysics Data System (ADS)
Makinistian, Leonardo; Albanesi, Eduardo A.
2013-06-01
We present ab initio calculations of magnetoelectronic and transport properties of the interface of hcp Cobalt (001) and the intrinsic narrow-gap semiconductor germanium selenide (GeSe). Using a norm-conserving pseudopotentials scheme within DFT, we first model the interface with a supercell approach and focus on the spin-resolved densities of states and the magnetic moment (spin and orbital components) at the different atomic layers that form the device. We also report a series of cuts (perpendicular to the plane of the heterojunction) of the electronic and spin densities showing a slight magnetization of the first layers of the semiconductor. Finally, we model the device with a different scheme: using semiinfinite electrodes connected to the heterojunction. These latter calculations are based upon a nonequilibrium Green's function approach that allows us to explore the spin-resolved electronic transport under a bias voltage (spin-resolved I-V curves), revealing features of potential applicability in spintronics.
Band structure and phonon properties of lithium fluoride at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, J. M., E-mail: amitjignesh@yahoo.co.in; Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat; Joshi, Mitesh
2016-05-23
High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.
2015-05-08
around errors ENMAX=560 # 1.4*ENMAX (400) of pseudopotentials LREAL=.FALSE. # reciprocal space projection technique EDIFF=1E-6 # high accuracy...required ALGO=Fast # ALGO = Fast SYMPREC=1e-7 # Precise Symmetry ISPIN=1 # SPIN=OFF ISMEAR=-1 # Fermi broadening SIGMA =0.0272 # About 0.002 Ry The vdW-DF29...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S
Ab initio study on structural stability of uranium carbide
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.
2013-06-01
First principles calculations have been performed using plane wave pseudopotential and full potential linearized augmented plane wave (FP-LAPW) methods to analyze structural, elastic and dynamic stability of UC under hydrostatic compression. Our calculations within pseudopotential method suggest that the rocksalt (B1) structure will transform to body centered orthorhombic (bco) structure at ˜21.5 GPa. The FP-LAPW calculations put this transition at 23 GPa. The transition pressures determined from our calculations though agree reasonably with the experimental value of 27 GPa, the high pressure bco structure suggested by theory differs slightly from the experimentally reported pseudo bco phase. The elastic stability analysis of B1 phase suggests that the B1 to bco transition is driven by the failure of C44 modulus. This finding is further substantiated by the lattice dynamic calculations which demonstrate that the B1 phase becomes dynamically unstable around the transition pressure and the instability is of long wavelength nature.
Atomic and electronic structure of Pd40Ni40P20 bulk metallic glass from ab initio simulations
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Fujita, T.; Konno, K.; Matsuura, M.; Chen, M. W.; Inoue, A.; Kawazoe, Y.
2011-10-01
The atomic structure of Pd40Ni40P20 bulk metallic glass has been simulated using an ab initio molecular dynamics method with projector-augmented wave pseudopotentials for electron-ion interaction and generalized gradient approximation for exchange-correlation energy. The calculated extended x-ray absorption fine structure (EXAFS) spectra of Pd-K and Ni-K edges, the mass density, and the electronic structure agree remarkably well with the available experimental data and the EXAFS spectra measured at the SPring-8 synchrotron radiation facility. Our results show that the atomic structure can be described in terms of P-centered polyhedra. There are no two P atoms that are nearest neighbors at this composition, and this could be a reason for the observed optimal P concentration of about 20 at.%. The neighboring polyhedra share metal (M) atoms and form a polar covalently bonded random network of P-M-P favoring certain angles. The remaining M atoms act as metallic glue with a tendency of nanoscale clustering of Pd-Pd and Ni-Ni atoms.
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, E; Kowalski, Karol
The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less
Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys
NASA Astrophysics Data System (ADS)
Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet
2018-02-01
The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.
Effect on magnetic properties of germanium encapsulated C60 fullerene
NASA Astrophysics Data System (ADS)
Umran, Nibras Mossa; Kumar, Ranjan
2013-02-01
Structural and electronic properties of Gen(n = 1-4) doped C60 fullerene are investigated with ab initio density functional theory calculations by using an efficient computer code, known as SIESTA. The pseudopotentials are constructed using a Trouiller-Martins scheme, to describe the interaction of valence electrons with the atomic cores. In endohedral doped embedding of more germanium atoms complexes we have seen that complexes are stable and thereafter cage break down. We have also investigated that binding energy, electronic affinity increases and magnetic moment oscillating behavior as the number of semiconductor atoms in C60 fullerene goes on increasing.
Mott Transition in GdMnO3: an Ab Initio Study
NASA Astrophysics Data System (ADS)
Ferreira, W. S.; Moreira, E.; Frazão, N. F.
2018-04-01
Orthorhombic GdMnO3 is studied using density functional theory considering the pseudo-potential plane-wave method within local-spin-density approximation, LSDA. The electronic band structure and density of states, for several hydrostatic pressures, are studied. The Mott transition was observed at 60 GPa. Calculated lattice parameters are close to the experimental measurements, and some indirect band gaps (S→Γ) were obtained within the LSDA level of calculation, between the occupied O-2 p and unoccupied Gd-4 f states. The variation of the gap reduces with increasing pressure, being well fitted to a quadratic function.
Pereira, Douglas Henrique; Rocha, Carlos Murilo Romero; Morgon, Nelson Henrique; Custodio, Rogério
2015-08-01
The compact effective potential (CEP) pseudopotential was adapted to the G3(MP2) theory, herein referred to as G3(MP2)-CEP, and applied to the calculation of enthalpies of formation, ionization energies, atomization energies, and electron and proton affinities for 446 species containing elements of the 1st, 2nd, and 3rd rows of the periodic table. A total mean absolute deviation of 1.67 kcal mol(-1) was achieved with G3(MP2)-CEP, compared with 1.47 kcal mol(-1) for G3(MP2). Electron affinities and enthalpies of formation are the properties exhibiting the lowest deviations with respect to the original G3(MP2) theory. The use of pseudopotentials and composite theories in the framework of the G3 theory is feasible and compatible with the all electron approach. Graphical Abstract Application of composite methods in high-level ab initio calculations.
Chaudret, Robin; Gresh, Nohad; Narth, Christophe; Lagardère, Louis; Darden, Thomas A; Cisneros, G Andrés; Piquemal, Jean-Philip
2014-09-04
We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles. To understand the benefits of the use of Gaussian electrostatics, we evaluate first the accuracy of GEM, which is a pure density-based Gaussian electrostatics model on a test Ca(II)-H2O complex. GEM is shown to further improve the agreement of MM polarization with ab initio reference results. Indeed, GEM introduces nonclassical effects by modeling the short-range quantum behavior of electric fields and therefore enables a straightforward (and selective) inclusion of the sole overlap-dependent exchange-polarization repulsive contribution by means of a Gaussian damping function acting on the GEM fields. The S/G-1 scheme is then introduced. Upon limiting the use of Gaussian electrostatics to metal centers only, it is shown to be able to capture the dominant quantum effects at play on the metal coordination sphere. S/G-1 is able to accurately reproduce ab initio total interaction energies within closed-shell metal complexes regarding each individual contribution including the separate contributions of induction, polarization, and charge-transfer. Applications of the method are provided for various systems including the HIV-1 NCp7-Zn(II) metalloprotein. S/G-1 is then extended to heavy metal complexes. Tested on Hg(II) water complexes, S/G-1 is shown to accurately model polarization up to quadrupolar response level. This opens up the possibility of embodying explicit scalar relativistic effects in molecular mechanics thanks to the direct transferability of ab initio pseudopotentials. Therefore, incorporating GEM-like electron density for a metal cation enable the introduction of nonambiguous short-range quantum effects within any point-dipole based polarizable force field without the need of an extensive parametrization.
NASA Astrophysics Data System (ADS)
Titantah, John T.; Karttunen, Mikko
2016-05-01
Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.
NASA Astrophysics Data System (ADS)
Saidi, F.; Sebaa, N.; Mahmoudi, A.; Aourag, H.; Merad, G.; Dergal, M.
2018-06-01
We performed first-principle calculations to investigate structural, phase stability, electronic and mechanical properties for the Laves phases YM2 (M = Mn, Fe, Co) with C15, C14 and C36 structures. We used the density functional theory within the framework of both pseudo-potentials and plane wave basis using VASP (Vienna Ab Initio Software Package). The calculated equilibrium structural parameters are in accordance with available theoretical values. Mechanical properties were calculated, discussed, and analyzed with data mining approach in terms of structure stability. The results reveal that YCo2 is harder than YFe2 and YMn2.
Adhesion of a bimetallic interface. Ph.D. Thesis - Case Western Reserve Univ.; [for Al, Mg, and Zn
NASA Technical Reports Server (NTRS)
Ferrante, J.
1978-01-01
The Hohenberg-Kohn and Kohn-Sham formalisms are used to examine binding (binding energy as a function of separation) for combinations of the simple metals Al(111), Zn(0001), Mg(0001), and Na(110) in contact. Similar metal contacts between Al, Zn, Mg, and Na are examined self-consistently in an ab initio calculation using the Kohn-Sham formalism. Crystallinity is included using the Aschroft pseudopotential via first order perturbation theory for the electron-ion interaction; and the ion-ion interaction is included exactly via a lattice sum. Binding energy was determined both in the local-density approximation and including gradient corrections to the exchange and correlation energy. Binding was found in all cases. In dissimilar metal contacts, interfacial bonding was greater than that in the weaker material predicting the possibility of metallic transfer. The nonzero position of the energy minimum in like metal contacts is explained in terms of consistency between the Ashcroft pseudopotential and the bulk charge density. Good agreement with experimental surface energies is obtained in the self-consistent calculation when nonlocal terms are included.
NASA Astrophysics Data System (ADS)
Pala, M. G.; Esseni, D.
2018-03-01
This paper presents the theory, implementation, and application of a quantum transport modeling approach based on the nonequilibrium Green's function formalism and a full-band empirical pseudopotential Hamiltonian. We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling between the device and the leads. After discussing the theory and the implementation of the new simulation methodology, we report results for complete, self-consistent simulations of different electron devices, including a silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.
NASA Astrophysics Data System (ADS)
Morales-Cifuentes, Josue; Wang, Yilin; Reutt-Robey, Janice; Einstein, T. L.
2014-03-01
An effective pseudopotential mechanism for breaking the inherent sub-lattice symmetry of graphene has been studied using DFT calculations on hexagonal boron nitride. Electrical detection of CF3Cl phase transitions on graphene shows the existence of a commensurate ordered phase in which this can be tested. We study the electronic properties of this phase using VASP ver 5.3.3, with ab initio van der Waals density functionals (vdW-DF1 and vdW-DF2). Consistent with a physisorbed phase, binding energies and charge transfer per CF3Cl molecule are calculated to be on the order of 280meV and 0.01e, respectively. By exploring different coverages and orientations of this ordered phase we are able to open a band gap in some configurations; said gap is in the range of 8 to 80meV depending on the strength of the effective pseudopotential. Furthermore, we calculate the screening of these effects in bi-layer and tri-layer graphene. Work supported by NSF-MRSEC at UMD, grant DMR 05-20471 and NSF-CHE 13-05892.
Quasiparticle semiconductor band structures including spin-orbit interactions.
Malone, Brad D; Cohen, Marvin L
2013-03-13
We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.
NASA Astrophysics Data System (ADS)
Wahnón, P.; Tablero, C.
2002-04-01
A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Alex J.; Sakai, Yuki; Kim, Minjung
2016-05-09
Experimental atomic force microscopy (AFM) studies have reported distinct features in regions with little electron density for various organic systems. These unexpected features have been proposed to be a direct visualization of intermolecular hydrogen bonding. Here, we apply a computational method using ab initio real-space pseudopotentials along with a scheme to account for tip tilting to simulate AFM images of the 8-hydroxyquinoline dimer and related systems to develop an understanding of the imaging mechanism for hydrogen bonds. We find that contrast for the observed “hydrogen bond” feature comes not from the electrostatic character of the bonds themselves but rather frommore » repulsive tip tilting induced by neighboring electron-rich atoms.« less
Optical properties of LiGaS2: an ab initio study and spectroscopic ellipsometry measurement
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Lin, Z. S.; Isaenko, L. I.; Kesler, V. G.; Kruchinin, V. N.; Lobanov, S. I.
2009-11-01
Electronic and optical properties of lithium thiogallate crystal, LiGaS2, have been investigated by both experimental and theoretical methods. The plane-wave pseudopotential method based on DFT theory has been used for band structure calculations. The electronic parameters of Ga 3d orbitals have been corrected by the DFT+U methods to be consistent with those measured with x-ray photoemission spectroscopy. Evolution of optical constants of LiGaS2 over a wide spectral range was determined by developed first-principles theory and dispersion curves were compared with optical parameters defined by spectroscopic ellipsometry in the photon energy range 1.2-5.0 eV. Good agreement has been achieved between theoretical and experimental results.
Calculation of NMR chemical shifts in organic solids: accounting for motional effects.
Dumez, Jean-Nicolas; Pickard, Chris J
2009-03-14
NMR chemical shifts were calculated from first principles for well defined crystalline organic solids. These density functional theory calculations were carried out within the plane-wave pseudopotential framework, in which truly extended systems are implicitly considered. The influence of motional effects was assessed by averaging over vibrational modes or over snapshots taken from ab initio molecular dynamics simulations. It is observed that the zero-point correction to chemical shifts can be significant, and that thermal effects are particularly noticeable for shielding anisotropies and for a temperature-dependent chemical shift. This study provides insight into the development of highly accurate first principles calculations of chemical shifts in solids, highlighting the role of motional effects on well defined systems.
NASA Astrophysics Data System (ADS)
Barabash, Sergey V.; Pramanik, Dipankar
2015-03-01
Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.
NASA Astrophysics Data System (ADS)
McConnell, J. D. C.; De Vita, A.; Kenny, S. D.; Heine, V.
Ab initio total energy calculations based on a new optimised oxygen pseudopotential has been used to determine the enthalpy of disorder for the exchange of Al and Si in tetrahedral coordination in simple derivative aluminosilicate structures based on the high temperature tridymite structure. The problem has been studied as a function of defect interaction, and defect concentration, and the results indicate that the energy for Al/Al neighbouring tetrahedra can be assigned primarily to two effects, the first, a coulombic effect, associated with the disturbed charge distribution, and the second associated with the strain related to misfit due to the very different dimensions of the Si and Al containing tetrahedra. In practice each of these effects contributes approximately 0.2 eV per Al-Al neighbour to the overal disorder enthalpy. These simple results were obtained after a careful study of possible chemical interaction between adjacent Al/Si containing tetrahedra which showed that chemical interaction was effectively absent. Since individual Al/Si tetrahedra proved to be discrete entities that are individually heavily screened by the shared oxygens it follows that coulombic and strain effects in disorder effectively account for the whole of the disorder enthalpy. The complete set of results have been used to establish new criteria for the structure and disorder enthalpies of the feldspar group of minerals and their long period derivatives.
NASA Astrophysics Data System (ADS)
Ertürk, Esra; Gürel, Tanju
2018-05-01
We present an ab initio study of structural, elastic and vibrational properties of transition-metal disilicides NbSi2 and TaSi2. The calculations have been carried out within the density-functional theory and linear-response formalism using norm-conserving pseudopotentials and a plane-wave basis. The calculated lattice parameters, bulk moduli, and elastic constants agree well with previous theoretical and experimental results. The calculated phonon frequencies at the Brillouin zone center are in good agreement with the reported Raman spectra and provide reference values for the future infrared and neutron phonon measurements. Phonon dispersion relations, mode Grüneisen parameters, and total and partial phonon density of states are also discussed. Mode Grüneisen parameters of NbSi2 and TaSi2 at Brillouin zone center show similar trends and all values are found to be positive. From phonon dispersion relations and phonon density of states, we have found a gap around 200 cm-1 for TaSi2, where the frequencies below this gap mainly belong to Ta vibrations and frequencies above the gap is mainly related with Si vibrations. In the case of NbSi2, there is no such gap and both Nb and Si atoms contribute to the phonon density of states in an energy range of 150-270 cm-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacquelin, Mathias; De Jong, Wibe A.; Bylaska, Eric J.
2017-07-03
The Ab Initio Molecular Dynamics (AIMD) method allows scientists to treat the dynamics of molecular and condensed phase systems while retaining a first-principles-based description of their interactions. This extremely important method has tremendous computational requirements, because the electronic Schr¨odinger equation, approximated using Kohn-Sham Density Functional Theory (DFT), is solved at every time step. With the advent of manycore architectures, application developers have a significant amount of processing power within each compute node that can only be exploited through massive parallelism. A compute intensive application such as AIMD forms a good candidate to leverage this processing power. In this paper, wemore » focus on adding thread level parallelism to the plane wave DFT methodology implemented in NWChem. Through a careful optimization of tall-skinny matrix products, which are at the heart of the Lagrange multiplier and nonlocal pseudopotential kernels, as well as 3D FFTs, our OpenMP implementation delivers excellent strong scaling on the latest Intel Knights Landing (KNL) processor. We assess the efficiency of our Lagrange multiplier kernels by building a Roofline model of the platform, and verify that our implementation is close to the roofline for various problem sizes. Finally, we present strong scaling results on the complete AIMD simulation for a 64 water molecules test case, that scales up to all 68 cores of the Knights Landing processor.« less
First Principles Study of Chemically Functionalized Graphene
NASA Astrophysics Data System (ADS)
Jha, Sanjiv; Vasiliev, Igor
2015-03-01
The electronic, structural and vibrational properties of carbon nanomaterials can be affected by chemical functionalization. We applied ab initio computational methods based on density functional theory to study the covalent functionalization of graphene with benzyne, carboxyl groups and tetracyanoethylene oxide (TCNEO). Our calculations were carried out using the SIESTA and Quantum-ESPRESSO electronic structure codes combined with the local density and generalized gradient approximations for the exchange correlation functional and norm-conserving Troullier-Martins pseudopotentials. The simulated Raman and infrared spectra of graphene functionalized with carboxyl groups and TCNEO were consistent with the available experimental results. The computed vibrational spectra of graphene functionalized with carboxyl groups showed that the presence of point defects near the functionalization site affects the Raman and infrared spectroscopic signatures of functionalized graphene. Supported by NSF CHE-1112388.
NASA Astrophysics Data System (ADS)
Mokhtari, Ali; Alidoosti, Mohammad
2014-11-01
In the present work, we have performed first principles calculations to study the structural and electronic properties of the MgFBrxCl1-x quaternary alloys using the pseudo-potential plane wave approach within the framework of density functional theory. By using the optimized initial parameters, we have obtained the physical quantities such as equilibrium lattice constants a and c, cohesive energy and band gap and then fitted the results by a quadratic expression for all x compositions. The results of bulk modulus exhibit nearly linear concentration dependence (LCD) but other quantities show nonlinear dependence. Finally, we have calculated the total and angular momentum decomposed (partial) density of states and determined the contributions of different orbitals of each atoms.
NASA Astrophysics Data System (ADS)
Kılıçarslan, Aynur; Salmankurt, Bahadır; Duman, Sıtkı
2017-02-01
We have performed an ab initio study of the structural, electronic, dynamical and thermal properties of the cubic AuCu3-type YSn3 and YPb3 by using the density functional theory, plane-wave pseudopotential method and a linear response scheme, within the generalized gradient approximation. An analysis of the electronic density of states at the Fermi level is found to be governed by the p states of Sn and Pb atoms with some contributions from the d states of Y atoms. The obtained phonon figures indicate that these material are dynamically stable in the cubic structure. Due to the metallic behavior of the compounds, the calculated zone-center phonon modes are triply degenerate. Also the thermal properties have been examined.
NASA Astrophysics Data System (ADS)
Saib, S.; Bouarissa, N.
2017-10-01
In this study we report on the influence of hydrostatic pressure on structural, elastic, lattice dynamical and thermal properties of Li2S in the anti-fluorite structure using ab initio pseudopotential approach based on the density functional perturbation theory. Our results are found to be in good agreement with those existing in the literature. The present phonon dispersion spectra, dielectric constants and Born effective charges may be seen as the first investigation for the material under load. The pressure dependence of all features of interest has been examined and discussed. Besides, the temperature dependence of the lattice parameter and bulk modulus is predicted. The generalized elastic stability criteria showed that the material of interest is mechanically unstable for pressures beyond 55 GPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
Thermal Conductivity of Metallic Uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hin, Celine
This project has developed a modeling and simulation approaches to predict the thermal conductivity of metallic fuels and their alloys. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Bothmore » methods were complementary. The models incorporated both phonon and electron contributions. Good agreement with experimental data over a wide temperature range were found. The models also provided insight into the different physical factors that govern the thermal conductivity under different temperatures. The models were general enough to incorporate more complex effects like additional alloying species, defects, transmutation products and noble gas bubbles to predict the behavior of complex metallic alloys like U-alloy fuel systems under burnup. 3 Introduction Thermal conductivity is an important thermal physical property affecting the performance and efficiency of metallic fuels [1]. Some experimental measurement of thermal conductivity and its correlation with composition and temperature from empirical fitting are available for U, Zr and their alloys with Pu and other minor actinides. However, as reviewed in by Kim, Cho and Sohn [2], due to the difficulty in doing experiments on actinide materials, thermal conductivities of metallic fuels have only been measured at limited alloy compositions and temperatures, some of them even being negative and unphysical. Furthermore, the correlations developed so far are empirical in nature and may not be accurate when used for prediction at conditions far from those used in the original fitting. Moreover, as fuels burn up in the reactor and fission products are built up, thermal conductivity is also significantly changed [3]. Unfortunately, fundamental understanding of the effect of fission products is also currently lacking. In this project, we probe thermal conductivity of metallic fuels with ab initio calculations, a theoretical tool with the potential to yield better accuracy and predictive power than empirical fitting. This work will both complement experimental data by determining thermal conductivity in wider composition and temperature ranges than is available experimentally, and also develop mechanistic understanding to guide better design of metallic fuels in the future. So far, we focused on α-U perfect crystal, the ground-state phase of U metal. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary and very helpful to understand the physics behind the thermal conductivity in metallic uranium and other materials with similar characteristics. In Section I, the combined model developed at UWM is explained. In Section II, the ab-initio method developed at VT is described along with the uranium pseudo-potential and its validation. Section III is devoted to the work done by Jianguo Yu at INL. Finally, we will present the performance of the project in terms of milestones, publications, and presentations.« less
Theoretical evaluation of the radiative lifetimes of LiCs and NaCs in the A1Σ+ state
NASA Astrophysics Data System (ADS)
Mabrouk, N.; Berriche, H.
2017-08-01
Calculations of the adiabatic potential energy curves and the transition dipole moments between the ground (A1Σ+) and the first excited (A1Σ+) states have been determined for the LiCs and NaCs molecules. The calculations are performed using an ab initio approach based on non-empirical pseudopotentials for Cs+, Li+ and Na+ cores, parameterized l-dependent polarization potentials and full configuration interaction calculations. The potential energy curves and the transition dipole moment are used to estimate the radiative lifetimes of the vibrational levels of the A+Σ+ state using the Franck-Condon (FC) approximation and the approximate sum rule method. The radiative lifetimes associated with the A+Σ+ state are presented here for the first time. These data can help experimentalists to optimize photoassociative formation of ultracold molecules and their longevity in a trap or in an optical lattice.
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, Edoardo; Kowalski, Karol
The NorthWest Chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers[6, 28, 49]. It contains an umbrella of modules that today includes Self Consistent Field (SCF), second order Mller-Plesset perturbation theory (MP2), Coupled Cluster, multi-conguration selfconsistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics, Car-Parrinello molecular dynamics, classical molecular dynamics (MD), QM/MM,more » AIMD/MM, GIAO NMR, COSMO, COSMO-SMD, and RISM solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities[ 22]. Moreover new capabilities continue to be added with each new release.« less
NASA Astrophysics Data System (ADS)
Dilmi, S.; Saib, S.; Bouarissa, N.
2018-06-01
Structural, electronic, electron-phonon coupling and superconducting properties of the intermetallic compound LuC2 are investigated by means of ab initio pseudopotential plane wave method within the generalized gradient approximation. The calculated equilibrium lattice parameters yielded a very good accord with experiment. There is no imaginary phonon frequency in the whole Brillouin zone supporting thus the dynamical stability in the material of interest. The average electron-phonon coupling parameter is found to be 0.59 indicating thus a weak-coupling BCS superconductor. Using a reasonable value of μ* = 0.12 for the effective Coulomb repulsion parameter, the superconducting critical temperature Tc is found to be 3.324 which is in excellent agreement with the experimental value of 3.33 K. The effect of the spin-orbit coupling on the superconducting properties of the material of interest has been examined and found to be weak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattsson, Ann E.
Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia’s capabilities to support engineering sciences. This capability is based on augmenting experimental data with information gained from computational investigations, especially in those parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A key part of the success of the Sandia approach is the fundamental science work supporting the computational capability. Not only does this work enhance the capability to perform highly accurate calculations but it also provides crucial insight into the limitations of the computational tools, providing highmore » confidence in the results even where results cannot be, or have not yet been, validated by experimental data. This report concerns the key ingredient of projector augmented-wave (PAW) potentials for use in pseudo-potential computational codes. Using the tools discussed in SAND2012-7389 we assess the standard Vienna Ab-initio Simulation Package (VASP) PAWs for Molybdenum.« less
Ab initio simulations of subatomic resolution images in noncontact atomic force microscopy
NASA Astrophysics Data System (ADS)
Kim, Minjung; Chelikowsky, James R.
2015-03-01
Direct imaging of polycyclic aromatic molecules with a subatomic resolution has recently been achieved with noncontact atomic force microscopy (nc-AFM). Specifically, nc-AFM employing a CO functionalized tip has provided details of the chemical bond in aromatic molecules, including the discrimination of bond order. However, the underlying physics of such high resolution imaging remains problematic. By employing new, efficient algorithms based on real space pseudopotentials, we calculate the forces between the nc-AFM tip and specimen. We simulate images of planar organic molecules with two different approaches: 1) with a chemically inert tip and 2) with a CO functionalized tip. We find dramatic differences in the resulting images, which are consistent with recent experimental work. Our work is supported by the DOE under DOE/DE-FG02-06ER46286 and by the Welch Foundation under Grant F-1837. Computational resources were provided by NERSC and XSEDE.
Lattice dynamical and dielectric properties of L-amino acids
NASA Astrophysics Data System (ADS)
Tulip, P. R.; Clark, S. J.
2006-08-01
We present the results of ab initio calculations of the lattice dynamical and dielectric properties of the L-amino acids L-alanine, L-leucine, and L-isoleucine. Normal-mode frequencies and dielectric permittivity tensors are obtained using density-functional perturbation theory implemented within the plane-wave pseudopotential approximation. IR spectra are calculated and are used to analyze the effects of intermolecular interactions and zwitterionization upon the lattice dynamics. It is found that vibronic modes associated with the carboxy and amino functional groups undergo modification from their free-molecule values due to the presence of hydrogen bonds. The role of macroscopic electric fields set up by zone-center normal modes in the lattice dynamics is investigated by analysis of the Born effective charge. Calculated permittivity tensors are found to be greater than would be obtained by a naive use of the isolated molecular values, indicating the role of intermolecular interactions in increasing molecular polarizability.
Haghighi Mood, Kaveh; Lüchow, Arne
2017-08-17
Diffusion quantum Monte Carlo calculations with partial and full optimization of the guide function are carried out for the dissociation of the FeS molecule. For the first time, quantum Monte Carlo orbital optimization for transition metal compounds is performed. It is demonstrated that energy optimization of the orbitals of a complete active space wave function in the presence of a Jastrow correlation function is required to obtain agreement with the experimental dissociation energy. Furthermore, it is shown that orbital optimization leads to a 5 Δ ground state, in agreement with experiments but in disagreement with other high-level ab initio wave function calculations which all predict a 5 Σ + ground state. The role of the Jastrow factor in DMC calculations with pseudopotentials is investigated. The results suggest that a large Jastrow factor may improve the DMC accuracy substantially at small additional cost.
Harbour, L; Dharma-Wardana, M W C; Klug, D D; Lewis, L J
2016-11-01
Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.
NASA Astrophysics Data System (ADS)
Marini, Andrea
Density functional theory and many-body perturbation theory methods (such as GW and Bethe-Selpether equation) are standard approaches to the equilibrium ground and excited state properties of condensed matter systems, surfaces, molecules and other several kind of materials. At the same time ultra-fast optical spectroscopy is becoming a widely used and powerful tool for the observation of the out-of-equilibrium dynamical processes. In this case the theoretical tools (such as the Baym-Kadanoff equation) are well known but, only recently, have been merged with the ab-Initio approach. And, for this reason, highly parallel and efficient codes are lacking. Nevertheless, the combination of these two areas of research represents, for the ab-initio community, a challenging prespective as it requires the development of advanced theoretical, methodological and numerical tools. Yambo is a popular community software implementing the above methods using plane-waves and pseudo-potentials. Yambo is available to the community as open-source software, and oriented to high-performance computing. The Yambo project aims at making the simulation of these equilibrium and out-of-equilibrium complex processes available to a wide community of users. Indeed the code is used, in practice, in many countries and well beyond the European borders. Yambo is a member of the suite of codes of the MAX European Center of Excellence (Materials design at the exascale) . It is also used by the user facilities of the European Spectroscopy Facility and of the NFFA European Center (nanoscience foundries & fine analysis). In this talk I will discuss some recent numerical and methodological developments that have been implemented in Yambo towards to exploitation of next generation HPC supercomputers. In particular, I will present the hybrid MPI+OpenMP parallelization and the specific case of the response function calculation. I will also discuss the future plans of the Yambo project and its potential use as tool for science dissemination, also in third world countries. Etsf, MAX European Center of Excellence and NFFA European Center.
Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry
2015-07-15
There are two prime objectives of the research. One is to develop and apply efficient methods for using ab initio potential energy surfaces (PESs...31-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ab Initio -Based Predictions of Hydrocarbon Combustion Chemistry The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hydrocarbon combustion, ab initio quantum chemistry, potential energy surfaces, chemical
Energy bands and acceptor binding energies of GaN
NASA Astrophysics Data System (ADS)
Xia, Jian-Bai; Cheah, K. W.; Wang, Xiao-Liang; Sun, Dian-Zhao; Kong, Mei-Ying
1999-04-01
The energy bands of zinc-blende and wurtzite GaN are calculated with the empirical pseudopotential method, and the pseudopotential parameters for Ga and N atoms are given. The calculated energy bands are in agreement with those obtained by the ab initio method. The effective-mass theory for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN for both structures are given. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor are 24 and 142 meV for the zinc-blende structure, 20 and 131, and 97 meV for the wurtzite structure, respectively, which are consistent with recent experimental results. It is proposed that there are two kinds of acceptor in wurtzite GaN. One kind is the general acceptor such as C, which substitutes N, which satisfies the effective-mass theory. The other kind of acceptor includes Mg, Zn, Cd, etc., the binding energy of these acceptors is deviated from that given by the effective-mass theory. In this report, wurtzite GaN is grown by the molecular-beam epitaxy method, and the photoluminescence spectra were measured. Three main peaks are assigned to the donor-acceptor transitions from two kinds of acceptors. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turi, László, E-mail: turi@chem.elte.hu
2016-04-21
We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions withmore » n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.« less
NASA Astrophysics Data System (ADS)
Turi, László
2016-04-01
We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.
40 CFR 89.126 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certificate void ab initio. (d) When the Administrator denies, suspends, revokes, or voids ab initio a... such fraud or other misconduct that makes the certification invalid ab initio. [59 FR 31335, June 17...
40 CFR 89.126 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... certificate void ab initio. (d) When the Administrator denies, suspends, revokes, or voids ab initio a... such fraud or other misconduct that makes the certification invalid ab initio. [59 FR 31335, June 17...
40 CFR 89.126 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... certificate void ab initio. (d) When the Administrator denies, suspends, revokes, or voids ab initio a... such fraud or other misconduct that makes the certification invalid ab initio. [59 FR 31335, June 17...
40 CFR 89.126 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... certificate void ab initio. (d) When the Administrator denies, suspends, revokes, or voids ab initio a... such fraud or other misconduct that makes the certification invalid ab initio. [59 FR 31335, June 17...
40 CFR 89.126 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... certificate void ab initio. (d) When the Administrator denies, suspends, revokes, or voids ab initio a... such fraud or other misconduct that makes the certification invalid ab initio. [59 FR 31335, June 17...
Hu, Hao; Yang, Weitao
2013-01-01
Determining the free energies and mechanisms of chemical reactions in solution and enzymes is a major challenge. For such complex reaction processes, combined quantum mechanics/molecular mechanics (QM/MM) method is the most effective simulation method to provide an accurate and efficient theoretical description of the molecular system. The computational costs of ab initio QM methods, however, have limited the application of ab initio QM/MM methods. Recent advances in ab initio QM/MM methods allowed the accurate simulation of the free energies for reactions in solution and in enzymes and thus paved the way for broader application of the ab initio QM/MM methods. We review here the theoretical developments and applications of the ab initio QM/MM methods, focusing on the determination of reaction path and the free energies of the reaction processes in solution and enzymes. PMID:24146439
Siu, Chi-Kit; Liu, Zhi-Feng; Tse, John S
2002-09-11
We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations at the MP2/6-31G** level. Finally, the switch-off of the H(2) elimination for n > 24 is explored and attributed to the diffusion of protons through enlarged hydrogen bonded H(2)O networks, which reduces the probability of finding a proton near the Al-H bond.
Liu, Hanchao; Wang, Yimin; Bowman, Joel M
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
NASA Astrophysics Data System (ADS)
Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
2015-05-01
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
Dynamics and Structure of Point Defects in Forsterite: ab initio calculations
NASA Astrophysics Data System (ADS)
Churakov, S.; Khisina, N.; Urusov, V.; Wirth, R.
2001-12-01
OH-bearing fluid inclusions in Fo92 forsterite samples from peridotite nodule 9206 (Udachnaja kimberlite pipe)[1] were documented recently based on TEM and IR studies. The Fourier transform of diffraction pattern from the inclusions exhibited a pattern, which is interpreted as ordered planar (2H)xMg defects. In this study the structure and dynamics of protons associated with Mg(1), Mg(2) vacancies and interstitial polyhedrons ordered in a (100) plane corresponding to double unite cell periodicity of the forsterite lattice has been investigated by ab initio quantum mechanic calculations. Static structure optimizations and ab-initio molecular dynamics (MD) simulations have been performed using the CPMD density functional code[2]. The calculations were accomplished with the BLYP-functional utilizing the generalized gradient approximation. Non-local Goedecker-type pseudopotentials[3] have been applied to account for core electrons. Valence electron orbitals were approximated by plane wave expansion up to 70 Ry energy cutoff. The energy of static structures was sampled on 2x2x2 Monkhorst-Pack mesh[4]. During the structure relaxation parameters of an orthorhombic 2x1x2 supercell contaning 116 atoms corresponding to Mg28Si16O64H8 hydrous olivine was fixed at experimental values of a=9.524Å b=10.225Å and c=11.988Å relative to the Pbnm space group. Series of NVT-MD calculations were performed at 1000 K on 2x1x1 supercell with 58 atoms using four chain Nose thermostat. Randomly disturbed optimized structures were used as initial configuration for MD runs. The 1ps system equilibration is followed by trajectory production over 5 ps interval. A point energy sampling was applied in all MD calculations. A series of geometry optimizations, starting with various initial position of protons in Mg(1), Mg(2) and interstitial sites were carried out to obtain a structure with the lowest lattice energy. It was found that structures with protons completely located within the M1-polyhedron vacancies have lower energies then any other associated with M2 and interstitial polyhedrons. For protons associated with vacancies several configurations with small energy difference have been found. These configurations suggest a possible binding of the protons to O1, O2 and O3 sites including the formation of water-like HOH complexes. The MD simulations shows that protons can move easily within the vacant polyhedron to form covalent OH bonds at various oxygen sites. The protons initially located in interstitial positions of fosterite lattice were found to migrate in vacant polyhedra. References [1] Khisina, N.R. & Wirth, R. (2001): Hydrous olivine (Mg,Fe)2-xvxSiO4H2x - a new DHMS phase of variable composition observed as nanometer-size precipitation in mantle olivine. PCM, submitted [2] Hutter J. et al.: CPMD v. 4.0, MPI fuer Festkoerperforschung and IBM Zuerich Research Laboratory 1995-2000 [3] Goedecker S., Teter M. and Hutter J. (1996) Separable dual-space Gaussian pseudopotentials. Phys.Rev. B, 54(3) 1703-1710 [4] Monkhorst H.J. and Pack D. 1975 Special points for Brellouin-zone intagration. Phys. Rev B,13,5188-5192
Single-ion 4f element magnetism: an ab-initio look at Ln(COT)2(-).
Gendron, Frédéric; Pritchard, Benjamin; Bolvin, Hélène; Autschbach, Jochen
2015-12-14
The electron densities associated with the Ln 4f shell, and spin and orbital magnetizations ('magnetic moment densities'), are investigated for the Ln(COT)2(-) series. The densities are obtained from ab-initio calculations including spin-orbit coupling. For Ln = Ce, Pr the magnetizations are also derived from crystal field models and shown to agree with the ab-initio results. Analysis of magnetizations from ab-initio calculations may be useful in assisting research on single molecule magnets.
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2010 CFR
2010-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2013 CFR
2013-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2011 CFR
2011-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2012 CFR
2012-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2014 CFR
2014-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 86.004-30 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing... the certificate was issued, and the certificate may be deemed void ab initio. (C) The manufacturer... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing...
40 CFR 86.004-30 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing... the certificate was issued, and the certificate may be deemed void ab initio. (C) The manufacturer... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing...
40 CFR 86.007-30 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... certificate may be deemed void ab initio. (C) The manufacturer shall bear the burden of establishing to the... be deemed void ab initio. (C) The manufacturer shall bear the burden of establishing to the... of conformity, the Administrator may deem such certificate void ab initio. (4) In any case in which...
40 CFR 86.004-30 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing... the certificate was issued, and the certificate may be deemed void ab initio. (C) The manufacturer... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing...
Opletal, George; Drumm, Daniel W; Wang, Rong P; Russo, Salvy P
2014-07-03
Ternary glass structures are notoriously difficult to model accurately, and yet prevalent in several modern endeavors. Here, a novel combination of Reverse Monte Carlo (RMC) modeling and ab initio molecular dynamics (MD) is presented, rendering these complicated structures computationally tractable. A case study (Ge6.25As32.5Se61.25 glass) illustrates the effects of ab initio MD quench rates and equilibration temperatures, and the combined approach's efficacy over standard RMC or random insertion methods. Submelting point MD quenches achieve the most stable, realistic models, agreeing with both experimental and fully ab initio results. The simple approach of RMC followed by ab initio geometry optimization provides similar quality to the RMC-MD combination, for far fewer resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previousmore » spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.« less
Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J
2011-09-21
The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.
NASA Astrophysics Data System (ADS)
Thiessen, P. A.; Treder, H.-J.
Der gegenwärtige Stand der physikalischen Erkenntnis, in Sonderheit die Atomistik und die Quantentheorie, ermöglicht (in wohldefinierten Energie-Bereichen) eine ab initio-Berechnung aller physikalischen und chemischen Prozesse und Strukturen. Die Schrödinger-Gleichung erlaubt zusammen mit den Prinzipien der Quantenstatistik (Pauli-Prinzip) aus dem Planckschen Wirkungsquantum h und den atomischen Konstanten die Berechnung aller Energieumsätze, Zeitabläufe etc., die insbesondere die chemische Physik bestimmen. Die Rechenresultate gelten auch quantitativ bis auf die unvermeidliche Stochastik.Die ab initio-Berechnungen korrespondieren einerseits und sind andererseits komplementär zu den auf den Methoden der theoretischen Chemie und der klassischen Thermodynamik beruhenden Ergebnissen ex eventu. Die theoretische Behandlung ab initio führt zu mathematischen Experimenten, die die Laboratoriums-Experimente ergänzen oder auch substituieren.Translated AbstractAb initio vel ex eventuThe present state of physical knowledge, in peculiar atomistic and quantum theory, makes an ab initio calculation of all physical and chemical processes and structures possible (in well defined reaches of energy). The Schrödinger equation together with the principles of quantum statistics (Pauli principle) permits from the Planck and atomistic constants to calculate all exchanges of energy, courses of time, etc. which govern chemical physics. The calculated results are valid even quantitatively apart from the unavoidable stochastics.
Towards Accurate Ab Initio Predictions of the Spectrum of Methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2001-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.
Xu, Mingyuan; Zhu, Tong; Zhang, John Z H
2018-01-01
A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.
Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Sergeyev, Ivan; Moyna, Guillermo
2005-05-02
A novel method for the determination of the three-dimensional (3D) structure of oligosaccharides in the solid state using experimental 13C NMR data is presented. The approach employs this information, combined with 13C chemical shift surfaces (CSSs) for the glycosidic bond carbons in the generation of NMR pseudopotential energy functions suitable for use as constraints in molecular modeling simulations. Application of the method to trehalose, cellobiose, and cellotetraose produces 3D models that agree remarkably well with the reported X-ray structures, with phi and psi dihedral angles that are within 10 degrees from the ones observed in the crystals. The usefulness of the approach is further demonstrated in the determination of the 3D structure of the cellohexaose, an hexasaccharide for which no X-ray data has been reported, as well as in the generation of accurate structural models for cellulose II and amylose V6.
Ospina, C A; Terra, J; Ramirez, A J; Farina, M; Ellis, D E; Rossi, A M
2012-01-01
High-resolution transmission electron microscopy (HRTEM) and ab initio quantum-mechanical calculations of electronic structure were combined to investigate the structure of the hydroxyapatite (HA) (010) surface, which plays an important role in HA interactions with biological media. HA was synthesized by in vitro precipitation at 37°C. HRTEM images revealed thin elongated rod nanoparticles with preferential growth along the [001] direction and terminations parallel to the (010) plane. The focal series reconstruction (FSR) technique was applied to develop an atomic-scale structural model of the high-resolution images. The HRTEM simulations identified the coexistence of two structurally distinct terminations for (010) surfaces: a rather flat Ca(II)-terminated surface and a zig-zag structure with open OH channels. Density functional theory (DFT) was applied in a periodic slab plane-wave pseudopotential approach to refine details of atomic coordination and bond lengths of Ca(I) and Ca(II) sites in hydrated HA (010) surfaces, starting from the HRTEM model. Copyright © 2011 Elsevier B.V. All rights reserved.
Near transferable phenomenological n-body potentials for noble metals
NASA Astrophysics Data System (ADS)
Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David
2017-09-01
We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.
Near transferable phenomenological n-body potentials for noble metals.
Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David
2017-09-06
We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.
Thermal, electronic and ductile properties of lead-chalcogenides under pressure.
Gupta, Dinesh C; Bhat, Idris Hamid
2013-09-01
Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.
NASA Astrophysics Data System (ADS)
Sharma, Manu; Resta, Raffaele; Car, Roberto
2004-03-01
We have implemented a modified Car-Parrinello molecular dynamics scheme in which maximally localized Wannier functions, instead of delocalized Bloch orbitals, are used to represent ``on the fly'' the electronic wavefunction of an insulating system. Within our scheme, we account for the effects of a finite homogeneous field applied to the simulation cell; we then use the ideas of the modern theory of polarization to investigate the system's response. The dielectric response (linear and nonlinear) of a given material is thus directly accessible at a reasonable computational cost. We have performed a thorough study of the behavior of a computational sample of liquid water under the effect of an electric field. We used norm-conserving pseudopotentials, the PBE exchange-correlation potential, and supercell containing water 64 molecules. Besides providing the static response of the liquid at a given temperature, our simulations yield microscopic insight into features wich are not easily measured in experiments, particularly regarding relaxation phenomena.
Topological Semimetals Studied by Ab Initio Calculations
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Okugawa, Ryo; Murakami, Shuichi
2018-04-01
In topological semimetals such as Weyl, Dirac, and nodal-line semimetals, the band gap closes at points or along lines in k space which are not necessarily located at high-symmetry positions in the Brillouin zone. Therefore, it is not straightforward to find these topological semimetals by ab initio calculations because the band structure is usually calculated only along high-symmetry lines. In this paper, we review recent studies on topological semimetals by ab initio calculations. We explain theoretical frameworks which can be used for the search for topological semimetal materials, and some numerical methods used in the ab initio calculations.
Exner, Kai S; Over, Herbert
2017-05-16
Multielectron processes in electrochemistry require the stabilization of reaction intermediates (RI) at the electrode surface after every elementary reaction step. Accordingly, the bond strengths of these intermediates are important for assessing the catalytic performance of an electrode material. Current understanding of microscopic processes in modern electrocatalysis research is largely driven by theory, mostly based on ab initio thermodynamics considerations, where stable reaction intermediates at the electrode surface are identified, while the actual free energy barriers (or activation barriers) are ignored. This simple approach is popular in electrochemistry in that the researcher has a simple tool at hand in successfully searching for promising electrode materials. The ab initio TD approach allows for a rough but fast screening of the parameter space with low computational cost. However, ab initio thermodynamics is also frequently employed (often, even based on a single binding energy only) to comprehend on the activity and on the mechanism of an electrochemical reaction. The basic idea is that the activation barrier of an endergonic reaction step consists of a thermodynamic part and an additional kinetically determined barrier. Assuming that the activation barrier scales with thermodynamics (so-called Brønsted-Polanyi-Evans (BEP) relation) and the kinetic part of the barrier is small, ab initio thermodynamics may provide molecular insights into the electrochemical reaction kinetics. However, for many electrocatalytic reactions, these tacit assumptions are violated so that ab initio thermodynamics will lead to contradictions with both experimental data and ab initio kinetics. In this Account, we will discuss several electrochemical key reactions, including chlorine evolution (CER), oxygen evolution reaction (OER), and oxygen reduction (ORR), where ab initio kinetics data are available in order to critically compare the results with those derived from a simple ab initio thermodynamics treatment. We show that ab initio thermodynamics leads to erroneous conclusions about kinetic and mechanistic aspects for the CER over RuO 2 (110), while the kinetics of the OER over RuO 2 (110) and ORR over Pt(111) are reasonably well described. Microkinetics of an electrocatalyzed reaction is largely simplified by the quasi-equilibria of the RI preceding the rate-determining step (rds) with the reactants. Therefore, in ab initio kinetics the rate of an electrocatalyzed reaction is governed by the transition state (TS) with the highest free energy G rds # , defining also the rate-determining step (rds). Ab initio thermodynamics may be even more powerful, when using the highest free energy of an reaction intermediate G max (RI) rather than the highest free energy difference between consecutive reaction intermediates, ΔG loss , as a descriptor for the kinetics.
Towards accurate ab initio predictions of the vibrational spectrum of methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.
2002-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born-Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
Shen, Lin; Wu, Jingheng; Yang, Weitao
2016-10-11
Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.
Torsional anharmonicity in the conformational thermodynamics of flexible molecules
NASA Astrophysics Data System (ADS)
Miller, Thomas F., III; Clary, David C.
We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule.
HPAM: Hirshfeld Partitioned Atomic Multipoles
Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.
2011-01-01
An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274
Malbon, Christopher L; Zhu, Xiaolei; Guo, Hua; Yarkony, David R
2016-12-21
For two electronic states coupled by conical intersections, the line integral of the derivative coupling can be used to construct a complex-valued multiplicative phase factor that makes the real-valued adiabatic electronic wave function single-valued, provided that the curl of the derivative coupling is zero. Unfortunately for ab initio determined wave functions, the curl is never rigorously zero. However, when the wave functions are determined from a coupled two diabatic state Hamiltonian H d (fit to ab initio data), the resulting derivative couplings are by construction curl free, except at points of conical intersection. In this work we focus on a recently introduced diabatization scheme that produces the H d by fitting ab initio determined energies, energy gradients, and derivative couplings to the corresponding H d determined quantities in a least squares sense, producing a removable approximation to the ab initio determined derivative coupling. This approach and related numerical issues associated with the nonremovable ab initio derivative couplings are illustrated using a full 33-dimensional representation of phenol photodissociation. The use of this approach to provide a general framework for treating the molecular Aharonov Bohm effect is demonstrated.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.
A note on AB INITIO semiconductor band structures
NASA Astrophysics Data System (ADS)
Fiorentini, Vincenzo
1992-09-01
We point out that only the internal features of the DFT ab initio theoretical picture of a crystal should be used in a consistent ab initio calculation of the band structure. As a consequence, we show that ground-state band structure calculations should be performed for the system in equilibrium at zero pressure, i.e. at the computed equilibrium cell volume ω th. Examples of consequences of this attitude are considered.
Computational Chemistry Comparison and Benchmark Database
National Institute of Standards and Technology Data Gateway
SRD 101 NIST Computational Chemistry Comparison and Benchmark Database (Web, free access) The NIST Computational Chemistry Comparison and Benchmark Database is a collection of experimental and ab initio thermochemical properties for a selected set of molecules. The goals are to provide a benchmark set of molecules for the evaluation of ab initio computational methods and allow the comparison between different ab initio computational methods for the prediction of thermochemical properties.
Brasil, Christiane Regina Soares; Delbem, Alexandre Claudio Botazzo; da Silva, Fernando Luís Barroso
2013-07-30
This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment-based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well-designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with β-sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called "Multiobjective evolutionary algorithms with many tables" (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG , I-PAES, and Quark) that use different levels of earlier knowledge. Copyright © 2013 Wiley Periodicals, Inc.
2017-03-24
NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for
An ab initio study of the conformational energy map of acetylcholine
NASA Astrophysics Data System (ADS)
Segall, M. D.; Payne, M. C.; Boyes, R. N.
An ab initio density functional theory study is reported of the conformational energy map of acetylcholine, with respect to the two central dihedral angles of the molecule. The acetylcholine molecule pays a central role in neurotransmission and has been studied widely using semi-empirical computational modelling. The ab initio results are compared with a number of previous investigations and with experiment. The ab initio data indicate that the most stable conformation of acetylcholine is the trans , gauche arrangement of the central dihedral angles. Furthermore, Mulliken population analysis of the electronic structure of the molecule in this conformation indicates that the positive charge of the molecule is spread over the exterior of the cationic head of the molecule.
Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1-6) clusters
NASA Astrophysics Data System (ADS)
Saidi, Sameh; Ghanmi, Chedli; Berriche, Hamid
2014-04-01
We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n ( n = 1-6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies ( D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters, our results are presented for the first time.
Rana, Malay Kumar; Chandra, Amalendu
2013-05-28
The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.
Chilkuri, Vijay Gopal; DeBeer, Serena; Neese, Frank
2017-09-05
Iron-sulfur (FeS) proteins are universally found in nature with actives sites ranging in complexity from simple monomers to multinuclear sites from two up to eight iron atoms. These sites include mononuclear (rubredoxins), dinuclear (ferredoxins and Rieske proteins), trinuclear (e.g., hydrogenases), and tetranuclear (various ferredoxins and high-potential iron-sulfur proteins). The electronic structure of the higher-nuclearity clusters is inherently extremely complex. Hence, it is reasonable to take a bottom-up approach in which clusters of increasing nuclearity are analyzed in terms of the properties of their lower nuclearity constituents. In the present study, the first step is taken by an in-depth analysis of mononuclear FeS systems. Two different FeS molecules with phenylthiolate and methylthiolate as ligands are studied in their oxidized and reduced forms using modern wave function-based ab initio methods. The ab initio electronic spectra and wave function are presented and analyzed in detail. The very intricate electronic structure-geometry relationship in these systems is analyzed using ab initio ligand field theory (AILFT) in conjunction with the angular overlap model (AOM) parametrization scheme. The simple AOM model is used to explain the effect of geometric variations on the electronic structure. Through a comparison of the ab initio computed UV-vis absorption spectra and the available experimental spectra, the low-energy part of the many-particle spectrum is carefully analyzed. We show ab initio calculated magnetic circular dichroism spectra and present a comparison with the experimental spectrum. Finally, AILFT parameters and the ab initio spectra are compared with those obtained experimentally to understand the effect of the increased covalency of the thiolate ligands on the electronic structure of FeS monomers.
West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus
2017-11-22
The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.
Ab initio interatomic potentials and the thermodynamic properties of fluids
NASA Astrophysics Data System (ADS)
Vlasiuk, Maryna; Sadus, Richard J.
2017-07-01
Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.
A walk through the approximations of ab initio multiple spawning
NASA Astrophysics Data System (ADS)
Mignolet, Benoit; Curchod, Basile F. E.
2018-04-01
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials
NASA Astrophysics Data System (ADS)
Vlasiuk, Maryna; Sadus, Richard J.
2017-06-01
The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.
Brønsted acidity of protic ionic liquids: a modern ab initio valence bond theory perspective.
Patil, Amol Baliram; Mahadeo Bhanage, Bhalchandra
2016-09-21
Room temperature ionic liquids (ILs), especially protic ionic liquids (PILs), are used in many areas of the chemical sciences. Ionicity, the extent of proton transfer, is a key parameter which determines many physicochemical properties and in turn the suitability of PILs for various applications. The spectrum of computational chemistry techniques applied to investigate ionic liquids includes classical molecular dynamics, Monte Carlo simulations, ab initio molecular dynamics, Density Functional Theory (DFT), CCSD(t) etc. At the other end of the spectrum is another computational approach: modern ab initio Valence Bond Theory (VBT). VBT differs from molecular orbital theory based methods in the expression of the molecular wave function. The molecular wave function in the valence bond ansatz is expressed as a linear combination of valence bond structures. These structures include covalent and ionic structures explicitly. Modern ab initio valence bond theory calculations of representative primary and tertiary ammonium protic ionic liquids indicate that modern ab initio valence bond theory can be employed to assess the acidity and ionicity of protic ionic liquids a priori.
Bicanonical ab Initio Molecular Dynamics for Open Systems.
Frenzel, Johannes; Meyer, Bernd; Marx, Dominik
2017-08-08
Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.
A walk through the approximations of ab initio multiple spawning.
Mignolet, Benoit; Curchod, Basile F E
2018-04-07
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
Ab initio interatomic potentials and the thermodynamic properties of fluids.
Vlasiuk, Maryna; Sadus, Richard J
2017-07-14
Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.
Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.
Vlasiuk, Maryna; Sadus, Richard J
2017-06-28
The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-07
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
An efficient and accurate molecular alignment and docking technique using ab initio quality scoring
Füsti-Molnár, László; Merz, Kenneth M.
2008-01-01
An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561
Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4
NASA Astrophysics Data System (ADS)
Mishra, S. B.; Nanda, B. R. K.
2017-05-01
Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.
Ab initio theory and modeling of water.
Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C; Calegari Andrade, Marcos F; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L; Perdew, John P; Wu, Xifan
2017-10-10
Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice I h at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner.
Ab initio theory and modeling of water
Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C.; Calegari Andrade, Marcos F.; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L.; Perdew, John P.; Wu, Xifan
2017-01-01
Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice Ih at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner. PMID:28973868
Ab initio study of friction of graphene flake on graphene/graphite or SiC surface
NASA Astrophysics Data System (ADS)
Gulseren, Oguz; Tayran, Ceren; Sayin, Ceren Sibel
Recently, the rich dynamics of graphene flake on graphite or SiC surfaces are revealed from atomic force microcopy experiments. The studies toward to the understanding of microscopic origin of friction are getting a lot of attention. Despite the several studies of these systems using molecular dynamics methods, density functional theory based investigations are limited because of the huge system sizes. In this study, we investigated the frictional force on graphene flake on graphite or SiC surfaces from pseudopotential planewave calculations based on density functional theory. In both cases, graphene flake (24 C) on graphite or SiC surface, bilayer flake is introduced by freezing the top layer as well as the bottom layer of the surface slab. After fixing the load with these frozen layers, we checked the relative motion of the flake over the surface. A minimum energy is reached when the flake is moved on graphene to attain AB stacking. We also conclude that edge reconstruction because of the finite size of the flake is very critical for frictional properties of the flake; therefore the saturation of dangling bonds with hydrogen is also addressed. Not only the symmetric configurations remaining parameter space is extensively studied. Supported by TUBITAK Project No: 114F162. This work is supported by TUBITAK Project No: 114F162.
40 CFR 92.306 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certificate of conformity for such engine families. The certificate of conformity may be voided ab initio for..., and the certificate may be deemed void ab initio. (3) The manufacturer or remanufacturer (as...
40 CFR 92.306 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... certificate of conformity for such engine families. The certificate of conformity may be voided ab initio for..., and the certificate may be deemed void ab initio. (3) The manufacturer or remanufacturer (as...
40 CFR 92.306 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... certificate of conformity for such engine families. The certificate of conformity may be voided ab initio for..., and the certificate may be deemed void ab initio. (3) The manufacturer or remanufacturer (as...
40 CFR 92.306 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... certificate of conformity for such engine families. The certificate of conformity may be voided ab initio for..., and the certificate may be deemed void ab initio. (3) The manufacturer or remanufacturer (as...
40 CFR 92.306 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... certificate of conformity for such engine families. The certificate of conformity may be voided ab initio for..., and the certificate may be deemed void ab initio. (3) The manufacturer or remanufacturer (as...
Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.
Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H
2011-01-28
Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.
NASA Astrophysics Data System (ADS)
Choi, Hyoung Joon; Cohen, Marvin L.; Louie, Steven G.
2003-03-01
The anisotropic Eliashberg formalism, employing results from the ab initio pseudopotential density functional calculations, is applied to study the superconducting properties of MgB 2. It is shown that the relatively high transition temperature of MgB 2 originates from strong electron-phonon coupling of the hole states in the boron σ-bonds although the coupling strength averaged over the Fermi surface is moderate, and the reduction of the isotope effect arises from the large anharmonicity of the relevant phonons. The superconducting energy gap is nodeless but its value varies strongly on different pieces of the Fermi surface. The gap values Δ( k) cluster into two groups at low temperature, a small value of ∼2 meV and a large value of ∼7 meV, resulting in two thresholds in the quasiparticle density of states and an increase in the specific heat at low temperature due to quasiparticle excitations over the small gap. All of these results are in good agreement with corresponding experiments and support the view that MgB 2 is a phonon-mediated multiple-gap superconductor.
Dissociation of water and Acetic acid on PbS from first principles
NASA Astrophysics Data System (ADS)
Satta, Alessandra; Ruggerone, Paolo; de Giudici, Giovanni
2008-03-01
The adsorption of complex molecules at mineral surfaces are crucial ingredients for understanding the mechanisms that rule the interaction between minerals and the biosphere and for predicting both the stability and the reactivity of minerals. The present work focuses mainly on the early stages of different adsorption reactions occurring at both the cleavage surface and a high-index vicinal surface of galena (PbS). We have studied the dissociation mechanism of water and acetic acid on the galena surfaces by means of ab initio calculations within the framework of the density functional theory in the generalized gradient approximation and of pseudopotential approach. The calculated adsorption energies of the molecules indicate the stepped surface as the most reactive, as expected. The free energy surface during the reaction process has been explored via metadynamics[1]. The optimized configurations of both reactants and products obtained, were then used to accurately calculate the dissociation energy via the Nudge Elastic Band method[2]. [1] A. Laio and M. Parrinello, PNAS 99, 12562 (2002). [2] G. Mills and H. Jonsson, Phys. Rev. Lett. 72, 1124 (1994).
NASA Astrophysics Data System (ADS)
Dima, R. S.; Maluta, N. E.; Maphanga, R. R.; Sankaran, V.
2017-10-01
Titanium dioxide (TiO2) polymorphs are widely used in many energy-related applications due to their peculiar electronic and physicochemical properties. The electronic structures of brookite TiO2 surfaces doped with transition metal ruthenium have been investigated by ab initio band calculations based on the density functional theory with the planewave ultrasoft pseudopotential method. The generalized gradient approximation (GGA) was used in the scheme of Perdew-Burke-Ernzerhof (PBE) to describe the exchange-correlation functional. All calculations were carried out with CASTEP (Cambridge Sequential Total EnergyPackage) code in Materials Studio of Accelrys Inc. The surface structures of Ru doped TiO2 were constructed by cleaving the 1 × 1 × 1 optimized bulk structure of brookite TiO2. The results indicate that Ru doping can narrow the band gap of TiO2, leading to the improvement in the photoreactivity of TiO2, and simultaneously maintain strong redox potential. The theoretical calculations could provide meaningful guide to develop more active photocatalysts with visible light response.
Spectroscopic and electric dipole properties of Sr+Ar and SrAr systems including high excited states
NASA Astrophysics Data System (ADS)
Hamdi, Rafika; Abdessalem, Kawther; Dardouri, Riadh; Al-Ghamdi, Attieh A.; Oujia, Brahim; Gadéa, Florent Xavier
2018-01-01
The spectroscopic properties of the fundamental and several excited states of Sr+Ar and SrAr, Van der Waals systems are investigated by employing an ab initio method in a pseudo-potential approach. The potential energy curves and the spectroscopic parameters are displayed for the 1-10 2Σ+, 1-6 2Π and 1-3 2Δ electronic states of the Sr+Ar molecule and for the 1-6 1Σ+, 1-4 3Σ+, 1-3 1,3Π and 1-3 1,3Δ states of the neutral molecule SrAr. In addition, from these curves, the vibrational levels and their energy spacing are deduced for Σ+, Π and Δ symmetries. The spectra of the permanent and transition dipole moments are studied for the 1,3Σ+ states of SrAr, which are considered to be two-electron systems and 2Σ+ states of the single electron Sr+Ar ion. The spectroscopic parameters obtained for each molecular system are compared with previous theoretical and experimental works. A significant correlation revealed the accuracy of our results.
Srinivasan, Aravind; Ray, Asok K
2006-01-01
Silicon fullerene like nanostructures with six carbon atoms on the surface of Si60 cages by substitution, as well as inside the cage at various symmetry orientations have been studied within the generalized gradient approximation to density functional theory. Full geometry optimizations have been performed without any symmetry constraints using the Gaussian 03 suite of programs and the LANL2DZ basis set. Thus, for the silicon atom, the Hay-Wadt pseudopotential with the associated basis set are used for the core electrons and the valence electrons, respectively. For the carbon atom, the Dunning/Huzinaga double zeta basis set is employed. Electronic and geometric properties of the nanostructures are presented and discussed in detail. It was found that optimized silicon-carbon fullerene like nanostructures have increased stability compared to bare Si60 cage and the stability depends on the orientation of carbon atoms, as well as on the nature of bonding between silicon and carbon atoms and also on the carbon-carbon bonding.
First-principles study of the structural properties of Ge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, K.J.; Cohen, M.L.
1986-12-15
With the use of an ab initio pseudopotential method, the structural properties of Ge are investigated at normal and high pressures. The pressure-induced structural phase transitions from cubic diamond to ..beta..-Sn, to simple hexagonal (sh), and to double hexagonal close packed (dhcp) are examined. With the possible exception of the dhcp structure, the calculated transition pressures, transition volumes, and axial ratios are in good agreement with experimental results. We find that sh Ge has characteristics similar to those of sh Si; the bonds between hexagonal layers are stronger than intralayer bonds and the transverse phonon modes become soft near themore » transitions from the sh to ..beta..-Sn and the sh to hcp structures. At normal pressures, we compare the crystal energies for the cubic diamond, hexagonal 2H, and hexagonal 4H structures. Because of the similar sp/sup 3/ bonds in these structures, the structural energy differences are less than about 14 meV, and the 2H and 4H phases are metastable with respect to the cubic diamond structure. The equation of state is also presented and compared with experiment.« less
21 CFR 201.150 - Drugs; processing, labeling, or repacking.
Code of Federal Regulations, 2010 CFR
2010-04-01
... part thereof, from such establishment, become void ab initio if the drug comprising such shipment... ab initio with respect to the person who introduced such shipment or delivery into interstate...
21 CFR 201.150 - Drugs; processing, labeling, or repacking.
Code of Federal Regulations, 2013 CFR
2013-04-01
... part thereof, from such establishment, become void ab initio if the drug comprising such shipment... ab initio with respect to the person who introduced such shipment or delivery into interstate...
40 CFR 86.094-30 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., the Administrator may deem such certificate void ab initio. (4) In any case in which certification of... fraud or other misconduct as makes the certification invalid ab initio. (6) The manufacturer may request...
21 CFR 201.150 - Drugs; processing, labeling, or repacking.
Code of Federal Regulations, 2012 CFR
2012-04-01
... part thereof, from such establishment, become void ab initio if the drug comprising such shipment... ab initio with respect to the person who introduced such shipment or delivery into interstate...
21 CFR 201.150 - Drugs; processing, labeling, or repacking.
Code of Federal Regulations, 2011 CFR
2011-04-01
... part thereof, from such establishment, become void ab initio if the drug comprising such shipment... ab initio with respect to the person who introduced such shipment or delivery into interstate...
21 CFR 201.150 - Drugs; processing, labeling, or repacking.
Code of Federal Regulations, 2014 CFR
2014-04-01
... part thereof, from such establishment, become void ab initio if the drug comprising such shipment... ab initio with respect to the person who introduced such shipment or delivery into interstate...
40 CFR 94.208 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ab initio. (5) In any case in which certification of an engine is to be withheld, denied, revoked or... makes the certification invalid ab initio. (7) The manufacturer may request, within 30 days of receiving...
40 CFR 92.208 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... such certificate void ab initio. (5) In any case in which certification of a locomotive or locomotive..., except in cases of such fraud or other misconduct that makes the certification invalid ab initio. (7) The...
40 CFR 94.208 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ab initio. (5) In any case in which certification of an engine is to be withheld, denied, revoked or... makes the certification invalid ab initio. (7) The manufacturer may request, within 30 days of receiving...
40 CFR 94.208 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ab initio. (5) In any case in which certification of an engine is to be withheld, denied, revoked or... makes the certification invalid ab initio. (7) The manufacturer may request, within 30 days of receiving...
40 CFR 92.208 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... such certificate void ab initio. (5) In any case in which certification of a locomotive or locomotive..., except in cases of such fraud or other misconduct that makes the certification invalid ab initio. (7) The...
40 CFR 94.208 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ab initio. (5) In any case in which certification of an engine is to be withheld, denied, revoked or... makes the certification invalid ab initio. (7) The manufacturer may request, within 30 days of receiving...
40 CFR 92.208 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... such certificate void ab initio. (5) In any case in which certification of a locomotive or locomotive..., except in cases of such fraud or other misconduct that makes the certification invalid ab initio. (7) The...
40 CFR 92.208 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... such certificate void ab initio. (5) In any case in which certification of a locomotive or locomotive..., except in cases of such fraud or other misconduct that makes the certification invalid ab initio. (7) The...
40 CFR 94.208 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ab initio. (5) In any case in which certification of an engine is to be withheld, denied, revoked or... makes the certification invalid ab initio. (7) The manufacturer may request, within 30 days of receiving...
Goodswen, Stephen J.; Kennedy, Paul J.; Ellis, John T.
2012-01-01
Next generation sequencing technology is advancing genome sequencing at an unprecedented level. By unravelling the code within a pathogen’s genome, every possible protein (prior to post-translational modifications) can theoretically be discovered, irrespective of life cycle stages and environmental stimuli. Now more than ever there is a great need for high-throughput ab initio gene finding. Ab initio gene finders use statistical models to predict genes and their exon-intron structures from the genome sequence alone. This paper evaluates whether existing ab initio gene finders can effectively predict genes to deduce proteins that have presently missed capture by laboratory techniques. An aim here is to identify possible patterns of prediction inaccuracies for gene finders as a whole irrespective of the target pathogen. All currently available ab initio gene finders are considered in the evaluation but only four fulfil high-throughput capability: AUGUSTUS, GeneMark_hmm, GlimmerHMM, and SNAP. These gene finders require training data specific to a target pathogen and consequently the evaluation results are inextricably linked to the availability and quality of the data. The pathogen, Toxoplasma gondii, is used to illustrate the evaluation methods. The results support current opinion that predicted exons by ab initio gene finders are inaccurate in the absence of experimental evidence. However, the results reveal some patterns of inaccuracy that are common to all gene finders and these inaccuracies may provide a focus area for future gene finder developers. PMID:23226328
77 FR 21154 - BNSF Railway Company-Abandonment Exemption-in Oklahoma County, OK
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... proceeding and reject BNSF's notice of exemption as void ab initio on the grounds that BNSF had provided... misleading information, the exemption is void ab initio. BNSF has filed a combined environmental and historic... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 6 (Sub-No. 480X)] BNSF...
NASA Astrophysics Data System (ADS)
Borges Sebastião, Israel; Kulakhmetov, Marat; Alexeenko, Alina
2017-01-01
This work evaluates high-fidelity vibrational-translational (VT) energy relaxation and dissociation models for pure O2 normal shockwave simulations with the direct simulation Monte Carlo (DSMC) method. The O2-O collisions are described using ab initio state-specific relaxation and dissociation models. The Macheret-Fridman (MF) dissociation model is adapted to the DSMC framework by modifying the standard implementation of the total collision energy (TCE) model. The O2-O2 dissociation is modeled with this TCE+MF approach, which is calibrated with O2-O ab initio data and experimental equilibrium dissociation rates. The O2-O2 vibrational relaxation is modeled via the Larsen-Borgnakke model, calibrated to experimental VT rates. All the present results are compared to experimental data and previous calculations available in the literature. It is found that, in general, the ab initio dissociation model is better than the TCE model at matching the shock experiments. Therefore, when available, efficient ab initio models are preferred over phenomenological models. We also show that the proposed TCE + MF formulation can be used to improve the standard TCE model results when ab initio data are not available or limited.
Multiple time step integrators in ab initio molecular dynamics.
Luehr, Nathan; Markland, Thomas E; Martínez, Todd J
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
21 CFR 701.9 - Exemptions from labeling requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., become void ab initio if the cosmetic comprising such shipment, delivery, or part is adulterated or... a cosmetic under paragraph (a)(2) of this section shall become void ab initio with respect to the...
21 CFR 801.150 - Medical devices; processing, labeling, or repacking.
Code of Federal Regulations, 2010 CFR
2010-04-01
... such shipment or delivery, or any part thereof, from such establishment, become void ab initio if the...)(2) of this section shall become void ab initio with respect to the person who introduced such...
40 CFR 86.442-78 - Denial, revocation, or suspension of certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ab initio. (d) In any case in which certification of a vehicle is proposed to be withheld, denied... fraud or other misconduct as makes the certification invalid ab initio. (f) The manufacturer may request...
40 CFR 86.442-78 - Denial, revocation, or suspension of certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ab initio. (d) In any case in which certification of a vehicle is proposed to be withheld, denied... fraud or other misconduct as makes the certification invalid ab initio. (f) The manufacturer may request...
40 CFR 86.442-78 - Denial, revocation, or suspension of certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ab initio. (d) In any case in which certification of a vehicle is proposed to be withheld, denied... fraud or other misconduct as makes the certification invalid ab initio. (f) The manufacturer may request...
40 CFR 86.442-78 - Denial, revocation, or suspension of certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ab initio. (d) In any case in which certification of a vehicle is proposed to be withheld, denied... fraud or other misconduct as makes the certification invalid ab initio. (f) The manufacturer may request...
40 CFR 86.442-78 - Denial, revocation, or suspension of certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ab initio. (d) In any case in which certification of a vehicle is proposed to be withheld, denied... fraud or other misconduct as makes the certification invalid ab initio. (f) The manufacturer may request...
21 CFR 501.100 - Animal food; exemptions from labeling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... become void ab initio if the food comprising such shipment, delivery, or part is adulterated or... a food under paragraph (d)(2) of this section shall become void ab initio with respect to the person...
21 CFR 801.150 - Medical devices; processing, labeling, or repacking.
Code of Federal Regulations, 2014 CFR
2014-04-01
... such shipment or delivery, or any part thereof, from such establishment, become void ab initio if the...)(2) of this section shall become void ab initio with respect to the person who introduced such...
21 CFR 801.150 - Medical devices; processing, labeling, or repacking.
Code of Federal Regulations, 2011 CFR
2011-04-01
... such shipment or delivery, or any part thereof, from such establishment, become void ab initio if the...)(2) of this section shall become void ab initio with respect to the person who introduced such...
21 CFR 801.150 - Medical devices; processing, labeling, or repacking.
Code of Federal Regulations, 2012 CFR
2012-04-01
... such shipment or delivery, or any part thereof, from such establishment, become void ab initio if the...)(2) of this section shall become void ab initio with respect to the person who introduced such...
21 CFR 801.150 - Medical devices; processing, labeling, or repacking.
Code of Federal Regulations, 2013 CFR
2013-04-01
... such shipment or delivery, or any part thereof, from such establishment, become void ab initio if the...)(2) of this section shall become void ab initio with respect to the person who introduced such...
Many-body optimization using an ab initio monte carlo method.
Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J
2003-01-01
Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.
Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY
NASA Astrophysics Data System (ADS)
Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi
2015-03-01
Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.
NASA Astrophysics Data System (ADS)
Kaur, Gagandeep; Gupta, Shuchi; Rani, Pooja; Dharamvir, Keya
2015-11-01
Extensive ab initio calculations have been performed to study the energetics of a sodium (Na) atom and its dimer adsorbed on graphene using the SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)-GGA (generalized gradient approximation) pseudopotential framework. The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS), partial density states (PDOS) of adatom/dimer-graphene system have been calculated. After considering various sites for adsorption of Na on graphene, the center of a hexagonal ring of carbon atoms is found to be the preferred site of adsorption while the Na2 dimer prefers to rest parallel to the graphene sheet. We find insignificant energy differences among adsorption configurations involving different possible sites in parallel orientation, which implies high mobility of the dimer on the graphene sheet. We also notice only a slight distortion of the graphene sheet perpendicular to its plane upon adatom adsorption. However, some lateral displacements seen are more perceptible. Summary The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS) and PDOS of adatom/dimer-graphene system have been calculated using SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)-GGA (generalized gradient approximation) pseudopotential framework. Preferred site for adsorption of a sodium atom on graphene is the hollow site. For the Na dimer adsorption, we found that horizontal orientation is favored over the vertical one. From DOS plots, it is clear that graphene's states are nearly unaffected by the adsorption of Na adatom and Interaction between sodium and graphene is predominantly ionic
Marsalek, Ondrej; Markland, Thomas E
2016-02-07
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
Ab Initio: And a New Era of Airline Pilot Training.
ERIC Educational Resources Information Center
Gesell, Laurence E.
1995-01-01
Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)
Accurate ab initio quartic force fields for borane and BeH2
NASA Technical Reports Server (NTRS)
Martin, J. M. L.; Lee, Timothy J.
1992-01-01
The quartic force fields of BH3 and BeH2 have been computed ab initio using an augmented coupled cluster (CCSD(T)) method and basis sets of spdf and spdfg quality. For BH3, the computed spectroscopic constants are in very good agreement with recent experimental data, and definitively confirm misassignments in some older work, in agreement with recent ab initio studies. Using the computed spectroscopic constants, the rovibrational partition function for both molecules has been constructed using a modified direct numerical summation algorithm, and JANAF-style thermochemical tables are presented.
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian
2017-01-01
Abstract Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Contact: deane@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28453681
Zhang, Yang
2014-01-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. PMID:23760925
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian; Deane, Charlotte M
2017-05-01
Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Zhang, Yang
2014-02-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. Copyright © 2013 Wiley Periodicals, Inc.
Steel — ab Initio: Quantum Mechanics Guided Design of New Fe-Based Materials
NASA Astrophysics Data System (ADS)
Prahl, Ulrich; Bleck, Wolfgang; Saeed-Akbari, Alireza
This contribution reports the results of the collaborative research unit SFB 761 "Steel — ab initio", a cooperative project between RWTH Aachen University and the Max-Planck-Institute for Iron Research in Düsseldorf (MPIE) financed by the German Research Foundation (DFG). For the first time, it is exploited how ab initio approaches may lead to a detailed understanding and thus to a specific improvement of material development. The challenge lies in the combination of abstract natural science theories with rather engineering-like established concepts. Aiming at the technological target of the development of a new type of structural materials based on Fe-Mn-C alloys, the combination of ab initio and engineering methods is new, but could be followed quite successfully. Three major topics are treated in this research unit: a) development of a new method for material- and process-development based on ab initio calculations; b) design of a new class of structural materials with extraordinary property combinations; c) acceleration of development time and reduction of experimental efforts and complexity for material- and process-development. In the present work, an overview of the results of the first five years as well as an outlook for the upcoming three-year period is given.
Antipova, Valeriya N; Zheleznaya, Lyudmila A; Zyrina, Nadezhda V
2014-08-01
In the absence of added DNA, thermophilic DNA polymerases synthesize double-stranded DNA from free dNTPs, which consist of numerous repetitive units (ab initio DNA synthesis). The addition of thermophilic restriction endonuclease (REase), or nicking endonuclease (NEase), effectively stimulates ab initio DNA synthesis and determines the nucleotide sequence of reaction products. We have found that NEases Nt.AlwI, Nb.BbvCI, and Nb.BsmI with non-palindromic recognition sites stimulate the synthesis of sequences organized mainly as palindromes. Moreover, the nucleotide sequence of the palindromes appeared to be dependent on NEase recognition/cleavage modes. Thus, the heterodimeric Nb.BbvCI stimulated the synthesis of palindromes composed of two recognition sites of this NEase, which were separated by AT-reach sequences or (A)n (T)m spacers. Palindromic DNA sequences obtained in the ab initio DNA synthesis with the monomeric NEases Nb.BsmI and Nt.AlwI contained, along with the sites of these NEases, randomly synthesized sequences consisted of blocks of short repeats. These findings could help investigation of the potential abilities of highly productive ab initio DNA synthesis for the creation of DNA molecules with desirable sequence. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge
2014-07-14
The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.
NASA Astrophysics Data System (ADS)
Kahros, Argyris
Incorporating quantum mechanics into an atomistic simulation necessarily involves solving the Schrodinger equation. Unfortunately, the computational expense associated with solving this equation scales miserably with the number of included quantum degrees of freedom (DOF). The situation is so dire, in fact, that a molecular dynamics (MD) simulation cannot include more than a small number of quantum DOFs before it becomes computationally intractable. Thus, if one were to simulate a relatively large system, such as one containing several hundred atoms or molecules, it would be unreasonable to attempt to include the effects of all of the electrons associated with all of the components of the system. The mixed quantum/classical (MQC) approach provides a way to circumvent this issue. It involves treating the vast majority of the system classically, which incurs minimal computational expense, and reserves the consideration of quantum mechanical effects for only the few degrees of freedom more directly involved in the chemical phenomenon being studied. For example, if one were to study the bonding of a single diatomic molecule in the gas phase, one could employ a MQC approach by treating the nuclei of the molecule's two atoms classically---including the deeply bound, low-energy electrons that change relatively little---and solving the Schrodinger equation only for the high energy electron(s) directly involved in the bonding of the classical cores. In such a way, one could study the bonding of this molecule in a rigorous fashion while treating only the directly related degrees of freedom quantum mechanically. Pseudopotentials are then responsible for dictating the interactions between the quantum and classical degrees of freedom. As these potentials are the sole link between the quantum and classical DOFs, their proper development is of the utmost importance. This Thesis is concerned primarily with my work on the development of novel, rigorous and dynamical pseudopotentials for use in mixed quantum/ classical simulations in the condensed phase. The pseudopotentials discussed within are constructed in an ab initio fashion, without the introduction of any empiricism, and are able to exactly reproduce the results of higher level, fully quantum mechanical Hartree-Fock calculations. A recurring theme in the following pages is overcoming the so-called frozen core approximation (FCA). This essentially comes down to creating pseudopotentials that are able to respond in some way to the local molecular environment in a rigorous fashion. The various methods and discussions that are part of this document are presented in the context of two particular systems. The first is the sodium dimer cation molecule, which serves as a proof of concept for the development of coordinate-dependent pseudopotentials and is the subject of Chapters 2 and 3. Next, the hydrated electron---the excess electron in liquid water---is tackled in an effort to address the recent controversy concerning its true structure and is the subject of Chapters 4 and 5. In essence, the work in this Dissertation is concerned with finding new ways to overcome the problem of a lack of infinite computer processing power.
Kramer, Christian; Gedeck, Peter; Meuwly, Markus
2013-03-12
Distributed atomic multipole (MTP) moments promise significant improvements over point charges (PCs) in molecular force fields, as they (a) more realistically reproduce the ab initio electrostatic potential (ESP) and (b) allow to capture anisotropic atomic properties such as lone pairs, conjugated systems, and σ holes. The present work focuses on the question of whether multipolar electrostatics instead of PCs in standard force fields leads to quantitative improvements over point charges in reproducing intermolecular interactions. To this end, the interaction energies of two model systems, benzonitrile (BZN) and formamide (FAM) homodimers, are characterized over a wide range of dimer conformations. It is found that although with MTPs the monomer ab initio ESP can be captured better by about an order of magnitude compared to point charges (PCs), this does not directly translate into better describing ab initio interaction energies compared to PCs. Neither ESP-fitted MTPs nor refitted Lennard-Jones (LJ) parameters alone demonstrate a clear superiority of atomic MTPs. We show that only if both electrostatic and LJ parameters are jointly optimized in standard, nonpolarizable force fields, atomic are MTPs clearly beneficial for reproducing ab initio dimerization energies. After an exhaustive exponent scan, we find that for both BZN and FAM, atomic MTPs and a 9-6 LJ potential can reproduce ab initio interaction energies with ∼30% (RMSD 0.13 vs 0.18 kcal/mol) less error than point charges (PCs) and a 12-6 LJ potential. We also find that the improvement due to using MTPs with a 9-6 LJ potential is considerably more pronounced than with a 12-6 LJ potential (≈ 10%; RMSD 0.19 versus 0.21 kcal/mol).
Perspective: Ab initio force field methods derived from quantum mechanics
NASA Astrophysics Data System (ADS)
Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.
2018-03-01
It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.
Timko, Jeff; Kuyucak, Serdar
2012-11-28
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halasyamani, Shiv; Fennie, Craig
2016-11-03
We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.
7Be(p,gamma)8B S-factor from Ab Initio Wave Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navratil, P; Bertulani, C A; Caurier, E
2006-10-12
There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) predicts low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. We present here a brief overview of the first steps taken toward nuclear reaction applications. In particular, we discuss our calculation of the {sup 7}Be(p,{gamma}){sup 8}B S-factor. We also present our first results of the {sup 3}He({alpha},{gamma}){sup 7}Be S-factor and of the S-factor of the mirror reaction {sup 3}H({alpha},{gamma}){sup 7}Li.more » The {sup 7}Be(p,{gamma}){sup 8}B and {sup 3}He({alpha},{gamma}){sup 7}Be reactions correspond to the most important uncertainties in solar model predictions of neutrino fluxes.« less
An ab initio-based Er–He interatomic potential in hcp Er
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; ye, Yeting; Fan, K. M.
2014-09-01
We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations.more » The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.« less
Ab initio Studies of Magnetism in the Iron Chalcogenides FeTe and FeSe
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Misawa, Takahiro; Miyake, Takashi; Imada, Masatoshi
2015-09-01
The iron chalcogenides FeTe and FeSe belong to the family of iron-based superconductors. We study the magnetism in these compounds in the normal state using the ab initio downfolding scheme developed for strongly correlated electron systems. In deriving ab initio low-energy effective models, we employ the constrained GW method to eliminate the double counting of electron correlations originating from the exchange correlations already taken into account in the density functional theory. By solving the derived ab initio effective models, we reveal that the elimination of the double counting is important in reproducing the bicollinear antiferromagnetic order in FeTe, as is observed in experiments. We also show that the elimination of the double counting induces a unique degeneracy of several magnetic orders in FeSe, which may explain the absence of the magnetic ordering. We discuss the relationship between the degeneracy and the recently found puzzling phenomena in FeSe as well as the magnetic ordering found under pressure.
NASA Astrophysics Data System (ADS)
Ng, T. Y.; Yeak, S. H.; Liew, K. M.
2008-02-01
A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.
Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Madsen, Georg K H; Mingo, Natalio
2018-01-18
Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71 178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high-throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.
Resolution of ab initio shapes determined from small-angle scattering.
Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I
2016-11-01
Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.
Huang, Ying; Chen, Shi-Yi; Deng, Feilong
2016-01-01
In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.
Resolution of ab initio shapes determined from small-angle scattering
Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.
2016-01-01
Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683
A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface
NASA Technical Reports Server (NTRS)
Koizumi, Hiroyasu; Schatz, George C.; Walch, Stephen P.
1991-01-01
The unimolecular decay lifetimes of several vibrational states of HN2 are determined on the basis of an accurate coupled channel dynamics study using a global analytical potential surface. The surface reproduces the ab initio points with an rms error of 0.08 kcal/mol for energies below 20 kcal/mol. Modifications to the potential that describe the effect of improving the basis set in the ab initio calculations are provided. Converged coupled channel calculations are performed for the ground rotational state of HN2 to determine the lifetimes of the lowest ten vibrational states. Only the ground vibrational state (000) and first excited bend (001) are found to have lifetimes longer than 1 ps. The lifetimes of these states are estimated at 3 x 10 to the -9th and 2 x 10 to the -10th s, respectively. Variation of these results with quality of the ab initio calculations is not more than a factor of 5.
A highly accurate ab initio potential energy surface for methane.
Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-09-14
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.
NASA Astrophysics Data System (ADS)
Kreye, W. C.
1996-07-01
Ab-initio computations at 298.15 K were made of the activation quantities ΔH ‡, ΔS ‡, and ΔG ‡ and of the reaction quantities ΔHr and ΔSr for CF3H + O( 3P) → CF3H … O → .CF3.OH. CF 3H … O is the transition state (TS). GAUSSIAN92 was used and energies computed at a slightly modified Gaussian-2 level. Two potential surfaces for the TS had symmetries 3A' and 3A″. The two rate constants included a semi-classical, quantum-mechanical-tunneling transmission coefficient. The ab-initio ΔH ‡and ΔH r values were in excellent agreement (± 1 kcal/mol) with experiment; but the ΔS ‡, ΔG ‡, and ΔS r values yielded somewhat poorer agreement. Experimental and ab-initio structures were in excellent agreement.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less
NASA Astrophysics Data System (ADS)
John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.
2016-04-01
We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Yukio; Sano, Tomokazu
A quadratic equation for the temperature-independent Grueneisen coefficient {gamma} was derived by a method in which the Walsh-Christian and Mie-Grueneisen equations are combined. Some previously existing ab initio temperature Hugoniots for hexagonal close-packed solid Fe are inaccurate because the constant-volume specific heats on the Hugoniots CVH, which are related uniquely to the solutions of the quadratic equation, have values that are too small. A CVH distribution in the solid phase range was demonstrated to agree approximately with a previous ab initio distribution. In contrast, the corresponding {gamma} distribution was significantly different from the ab initio distribution in the lower pressuremore » region. The causes of these disagreements are clarified.« less
Ab initio study of collective excitations in a disparate mass molten salt.
Bryk, Taras; Klevets, Ivan
2012-12-14
Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.
Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J
2015-02-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
NASA Astrophysics Data System (ADS)
Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel
2018-06-01
We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.
Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes
NASA Astrophysics Data System (ADS)
Saieswari, A.; Kumar, Sanjay
2007-12-01
An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.
Ab initio calculation of one-nucleon halo states
NASA Astrophysics Data System (ADS)
Rodkin, D. M.; Tchuvil'sky, Yu M.
2018-02-01
We develop an approach to microscopic and ab initio description of clustered systems, states with halo nucleon and one-nucleon resonances. For these purposes a basis combining ordinary shell-model components and cluster-channel terms is built up. The transformation of clustered wave functions to the uniform Slater-determinant type is performed using the concept of cluster coefficients. The resulting basis of orthonormalized wave functions is used for calculating the eigenvalues and the eigenvectors of Hamiltonians built in the framework of ab initio approaches. Calculations of resonance and halo states of 5He, 9Be and 9B nuclei demonstrate that the approach is workable and labor-saving.
40 CFR 86.096-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2010 CFR
2010-07-01
...] (ii) EPA may void ab initio a certificate for a 1994 or 1995 model year light-duty vehicle or light... Administrator upon request. (iii) Any voiding ab initio of a certificate under § 86.091-7(c)(6) and paragraph (h...
Code of Federal Regulations, 2010 CFR
2010-07-01
... section, will cause the exemption to be void ab initio. (6) If any information required under paragraph (c... void ab initio, and may make the party liable for a violation of this subpart. (f) Effects of exemption...
40 CFR 90.108 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the certificate may be determined to be void ab initio. (2) The manufacturer shall bear the burden of... certificates that failure to meet these conditions may result in suspension or revocation or the voiding ab initio of the certificate. [60 FR 34598, July 3, 1995, as amended at 64 FR 15238, Mar. 30, 1999] ...
The Band Structure of Polymers: Its Calculation and Interpretation. Part 2. Calculation.
ERIC Educational Resources Information Center
Duke, B. J.; O'Leary, Brian
1988-01-01
Details ab initio crystal orbital calculations using all-trans-polyethylene as a model. Describes calculations based on various forms of translational symmetry. Compares these calculations with ab initio molecular orbital calculations discussed in a preceding article. Discusses three major approximations made in the crystal case. (CW)
40 CFR 90.108 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the certificate may be determined to be void ab initio. (2) The manufacturer shall bear the burden of... certificates that failure to meet these conditions may result in suspension or revocation or the voiding ab initio of the certificate. [60 FR 34598, July 3, 1995, as amended at 64 FR 15238, Mar. 30, 1999] ...
40 CFR 90.108 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the certificate may be determined to be void ab initio. (2) The manufacturer shall bear the burden of... certificates that failure to meet these conditions may result in suspension or revocation or the voiding ab initio of the certificate. [60 FR 34598, July 3, 1995, as amended at 64 FR 15238, Mar. 30, 1999] ...
40 CFR 90.108 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the certificate may be determined to be void ab initio. (2) The manufacturer shall bear the burden of... certificates that failure to meet these conditions may result in suspension or revocation or the voiding ab initio of the certificate. [60 FR 34598, July 3, 1995, as amended at 64 FR 15238, Mar. 30, 1999] ...
40 CFR 90.108 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the certificate may be determined to be void ab initio. (2) The manufacturer shall bear the burden of... certificates that failure to meet these conditions may result in suspension or revocation or the voiding ab initio of the certificate. [60 FR 34598, July 3, 1995, as amended at 64 FR 15238, Mar. 30, 1999] ...
Ab Initio Theory of Nuclear Magnetic Resonance Shifts in Metals
NASA Astrophysics Data System (ADS)
D'Avezac, Mayeul; Marzari, Nicola; Mauri, Francesco
2005-03-01
A comprehensive approach for the first-principles determination of all-electron NMR shifts in metallic systems is presented. Our formulation is based on a combination of density-functional perturbation theory and all-electron wavefunction reconstruction, starting from periodic-boundary calculations in the pseudopotential approximation. The orbital contribution to the NMR shift (the chemical shift) is obtained by combining the gauge-including projector augmented-wave approach (GIPAW), originally developed for the case of insulatorsootnotetextC. J. Pickard, Francesco Mauri, Phys. Rev. B, 63, 245101(2001), with the extension of linear-response theory to the case of metallic systemsootnotetextS. de Gironcoli, Phys. Rev. B, 51, 6773(1995). The spin contribution (the Knight shift) is obtained as a response to a finite uniform magnetic field, and through reconstructing the hyperfine interaction between the electron-spin density and the nuclear spins with the projector augmented-wave method (PAWootnotetextC. G. Van de Walle, P. E. Blöchl, Phys. Rev. B, 47, 4244(1993)). Our method is validated with applications to the case of the homogeneous electron gas and of simple metals. (Work supported by MURI grant DAAD 19-03-1-0169 and MIT-France)
Computational mineral physics and the physical properties of perovskite.
Brodholt, John P; Oganov, A R; Price, G D
2002-11-15
The inherent uncertainties in modern first-principles calculations are reviewed using geophysically relevant examples. The elastic constants of perovskite at lower-mantle temperatures and pressures are calculated using ab initio molecular dynamics. These are used in conjunction with seismic tomographic models to estimate that the lateral temperature contrasts in the Earth's lower mantle are 800 K at a depth of 1000 km, and 1500 K at a depth of 2000 km. The effect of Al(3+) on the compressibility of MgSiO(3) perovskite is calculated using three different pseudopotentials. The results confirm earlier work and show that the compressibility of perovskites with Al(3+) substituted for both Si(4+) and Mg(2+) is very similar to the compressibility of Al(3+)-free perovskite. Even when 100% of the Si(4+) and Mg(2+) ions are replaced with Al(3+), the bulk modulus is only 7% less than that for Al(3+)-free perovskite. In contrast, perovskites where Al(3+) substitutes for Si(4+) only and that are charge balanced by oxygen vacancies do show higher compressibilities. When corrected to similar concentrations of Al(3+), the calculated compressibilities of the oxygen-vacancy-rich perovskites are in agreement with experimental results.
NASA Astrophysics Data System (ADS)
Latajka, Zdzislaw; Scheiner, Steve
1997-03-01
The title complexes are studied by correlated ab initio methods using a pseudopotential double-ζ basis set, augmented by diffuse sp and two sets of polarization functions. The binding energies of the complexes decrease in the order HCl > HBr > HI. In the mixed HX…HX' dimers, the nature of the proton-donor molecule is more important than is the proton-acceptor with respect to the strength of the interaction. Only one minimum is found on the potential energy surface of the trimers and tetramers, which corresponds to the C nh cyclic structure. Enlargement of the complex leads to progressively greater individual H-bond energy and HX bond stretch, coupled with reduced intermolecular separation and smaller nonlinearity of each H-bond. Electron correlation makes a larger contribution as the atomic number of X increases. The highest degree of cooperativity is noted for oligomers of HCl and HBr, as compared to HI. The nonadditivity is dominated by terms present at the SCF level. The vibrational frequencies exhibit trends that generally parallel the energetics and geometry patterns, particularly the red shifts of the HX stretches and the intermolecular modes.
Ab initio study of boron nitride lines on graphene
NASA Astrophysics Data System (ADS)
Mata-Carrizal, Berenice; Sanginés-Mendoza, Raúl; Martinez, Edgar
2013-03-01
Graphene has unusual electronic properties which make it a promising material for electronic devices. Neverthless, the absence of a band gap sets limitations on its practical applications. Thus, it is crucial to find methods to create and tune the band gap of systems based on graphene. In this way, we explore the modulation of the electronic properties of graphene through doping with boron nitride lines. In particular, we studied the electronic structure of graphene sheets doped with boron nitride lines armchair and zigzag type. The calculations were performed using the pseudopotential LCAO method with a Generalized Gradient Approximation (GGA) for the exchange-correlation energy functional. We found that both doping lines type induce a bandgap and that the energy gap increases as the length of doping lines increases. Accordingly to our DFT calculations, we found that the energy gap on graphene doped with armchair and zigzag lines is due to a two different mechanisms to drain charge from pi- to sigma- orbitals. Thus, we found that doping graphene with boron nitride lines is a useful way to induce and modulate the bandgap on graphene. This research was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt) under Grant No. 133022.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quashie, Edwin E.; Saha, Bidhan C.; Correa, Alfredo A.
Here, we present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities v = 0.02–10a.u. where we take into account nonlinear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results aremore » in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ~1.5) in the velocity range v = 0.07–0.3a.u., which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping v → 0 is not as simple as phenomenological models suggest and it is plagued by band-structure effects.« less
Ab initio theories for light nuclei and neutron stars
NASA Astrophysics Data System (ADS)
Gezerlis, Alexandros
2016-09-01
In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).
NASA Astrophysics Data System (ADS)
Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc
1992-08-01
The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.
NASA Technical Reports Server (NTRS)
Herbst, Eric; Winnewisser, G.; Yamada, K. M. T.; Defrees, D. J.; Mclean, A. D.
1989-01-01
A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.
NASA Astrophysics Data System (ADS)
Fujimori, Mitsuki; Sogawa, Haruki; Ota, Shintaro; Karpov, Pavel; Shulga, Sergey; Blume, Yaroslav; Kurita, Noriyuki
2018-01-01
Filamentous temperature-sensitive Z (FtsZ) protein plays essential role in bacteria cell division, and its inhibition prevents Mycobacteria reproduction. Here we adopted curcumin derivatives as candidates of novel inhibitors and investigated their specific interactions with FtsZ, using ab initio molecular simulations based on protein-ligand docking, classical molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. Based on FMO calculations, we specified the most preferable site of curcumin binding to FtsZ and highlighted the key amino acid residues for curcumin binding at an electronic level. The result will be useful for proposing novel inhibitors against FtsZ based on curcumin derivatives.
Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.
2015-01-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected. PMID:25664744
Approaches to ab initio molecular replacement of α-helical transmembrane proteins.
Thomas, Jens M H; Simkovic, Felix; Keegan, Ronan; Mayans, Olga; Zhang, Chengxin; Zhang, Yang; Rigden, Daniel J
2017-12-01
α-Helical transmembrane proteins are a ubiquitous and important class of proteins, but present difficulties for crystallographic structure solution. Here, the effectiveness of the AMPLE molecular replacement pipeline in solving α-helical transmembrane-protein structures is assessed using a small library of eight ideal helices, as well as search models derived from ab initio models generated both with and without evolutionary contact information. The ideal helices prove to be surprisingly effective at solving higher resolution structures, but ab initio-derived search models are able to solve structures that could not be solved with the ideal helices. The addition of evolutionary contact information results in a marked improvement in the modelling and makes additional solutions possible.
AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions
NASA Astrophysics Data System (ADS)
Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.
2007-12-01
We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.
ERIC Educational Resources Information Center
Sanz, Cristina; Lin, Hui-Ju; Lado, Beatriz; Stafford, Catherine A.; Bowden, Harriet W.
2016-01-01
The article summarizes results from two experimental studies (N = 23, N = 21) investigating the extent to which working memory capacity (WMC) intervenes in "ab initio" language development under two pedagogical conditions [± grammar lesson + input-based practice + explicit feedback]. The linguistic target is the use of morphosyntax to…
Ab initio theory of noble gas atoms in bcc transition metals
Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; ...
2018-01-01
Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe).
Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods
ERIC Educational Resources Information Center
Halpern, Arthur M.
2011-01-01
A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…
Infrared Emission Spectrum of the Hydroxyl Radical: A Novel Experiment in Molecular Spectroscopy.
ERIC Educational Resources Information Center
Henderson, Giles; And Others
1982-01-01
Describes an experiment in which parameters from an "ab-initio" potential are used to calculate vibrational-rotational energy levels and construct a "stick spectrum" for the overtone emission of the hydroxyl radical. Provides background information on ab-initio spectrum, experimental procedures, and analysis of data. (Author/JN)
Vibrational modes in thymine molecule from an ab initio MO calculation
NASA Astrophysics Data System (ADS)
Aida, Misako; Kaneko, Motohisa; Dupuis, Michel; Ueda, Toyotoshi; Ushizawa, Koichi; Ito, Gen; Kumakura, Akiko; Tsuboi, Masamichi
1997-03-01
Ab initio self-consistent field molecular orbital (SCF MO) calculations have been made of the thymine molecule for the equilibrium geometry, harmonic force constants, vibrational frequencies, vibrational modes, infrared intensities, and Raman intensities. The results have been correlated with the observed Raman and infrared spectra of thymine crystalline powder.
NSSEFF COMPUTATIONAL AND THEORETICAL DESIGN OF PHOTO AND MECHANORESPONSIVE MOLECULAR DEVICES
2016-11-10
R. McGibbon, F. Liu, V.S. Pande and T.J. Martinez, "Discovering Chemistry with an Ab Initio Nanoreactor," Nature Chem. 6, 1044 (2014...Pande and T.J. Martinez, "Discovering Chemistry with an Ab Initio Nanoreactor," Nature Chem. 6, 1044 (2014). New discoveries, inventions, or patent
Ab initio calculations for industrial materials engineering: successes and challenges.
Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul
2010-09-29
Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.
Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)
2002-01-01
The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.
Xu, Dong; Zhang, Yang
2013-01-01
Genome-wide protein structure prediction and structure-based function annotation have been a long-term goal in molecular biology but not yet become possible due to difficulties in modeling distant-homology targets. We developed a hybrid pipeline combining ab initio folding and template-based modeling for genome-wide structure prediction applied to the Escherichia coli genome. The pipeline was tested on 43 known sequences, where QUARK-based ab initio folding simulation generated models with TM-score 17% higher than that by traditional comparative modeling methods. For 495 unknown hard sequences, 72 are predicted to have a correct fold (TM-score > 0.5) and 321 have a substantial portion of structure correctly modeled (TM-score > 0.35). 317 sequences can be reliably assigned to a SCOP fold family based on structural analogy to existing proteins in PDB. The presented results, as a case study of E. coli, represent promising progress towards genome-wide structure modeling and fold family assignment using state-of-the-art ab initio folding algorithms. PMID:23719418
France-Lanord, Arthur; Soukiassian, Patrick; Glattli, Christian; Wimmer, Erich
2016-03-14
In an effort to extend the reach of current ab initio calculations to simulations requiring millions of configurations for complex systems such as heterostructures, we have parameterized the third-generation Charge Optimized Many-Body (COMB3) potential using solely ab initio total energies, forces, and stress tensors as input. The quality and the predictive power of the new forcefield are assessed by computing properties including the cohesive energy and density of SiO2 polymorphs, surface energies of alpha-quartz, and phonon densities of states of crystalline and amorphous phases of SiO2. Comparison with data from experiments, ab initio calculations, and molecular dynamics simulations using published forcefields including BKS (van Beest, Kramer, and van Santen), ReaxFF, and COMB2 demonstrates an overall improvement of the new parameterization. The computed temperature dependence of the thermal conductivity of crystalline alpha-quartz and the Kapitza resistance of the interface between crystalline Si(001) and amorphous silica is in excellent agreement with experiment, setting the stage for simulations of complex nanoscale heterostructures.
Ab initio and empirical energy landscapes of (MgF2)n clusters (n = 3, 4).
Neelamraju, S; Schön, J C; Doll, K; Jansen, M
2012-01-21
We explore the energy landscape of (MgF(2))(3) on both the empirical and ab initio level using the threshold algorithm. In order to determine the energy landscape and the dynamics of the trimer we investigate not only the stable isomers but also the barriers separating these isomers. Furthermore, we study the probability flows in order to estimate the stability of all the isomers found. We find that there is reasonable qualitative agreement between the ab initio and empirical potential, and important features such as sub-basins and energetic barriers follow similar trends. However, we observe that the energies are systematically different for the less compact clusters, when comparing empirical and ab initio energies. Since the underlying motivation of this work is to identify the possible clusters present in the gas phase during a low-temperature atom beam deposition synthesis of MgF(2), we employ the same procedure to additionally investigate the energy landscape of the tetramer. For this case, however, we use only the empirical potential.
Qu, Chen; Bowman, Joel M
2018-05-17
We report quantum VSCF/VCI and ab initio molecular dynamics (AIMD) calculations of the IR spectra of (HCOOH) 2 and (DCOOH) 2 , using full-dimensional, ab initio potential energy and dipole moment surfaces (PES and DMS). These surfaces are fits, using permutationally invariant polynomials, to 13 475 ab initio CCSD(T)-F12a electronic energies and MP2 dipole moments. Here "AIMD" means using these ab initio potential and dipole moment surfaces in the MD calculations. The VSCF/VCI calculations use all (24) normal modes for coupling, with a four-mode representation of the potential. The quantum spectra align well with jet-cooled and room-temperature experimental spectra over the spectral range 600-3600 cm -1 . Analyses of the complex O-H and C-H stretch bands are made based on the mixing of the VSCF/VCI basis functions. The comparisons of the AIMD IR spectra with both experimental and VSCF/VCI ones provide tests of the accuracy of the AIMD approach. These indicate good accuracy for simple bands but not for the complex O-H stretch band, which is upshifted from experimental and VSCF/VCI bands by roughly 300 cm -1 . In addition to testing the AIMD approach, the PES, DMS, and VSCF/VCI calculations for formic acid dimer provide opportunities for testing other methods to represent high-dimensional data and other methods that perform postharmonic vibrational calculations.
NASA Technical Reports Server (NTRS)
Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)
2001-01-01
The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have important implications for the anharmonic force fields of peptides, for which N-methylacetamide is a model.
Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A
2017-02-14
Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16 O 3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV 3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν 3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm -1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.
Kawashima, Yukio; Tachikawa, Masanori
2014-01-14
Ab initio path integral molecular dynamics (PIMD) simulation was performed to understand the nuclear quantum effect on the out-of-plane ring deformation of hydrogen maleate anion and investigate the existence of a stable structure with ring deformation, which was suggested in experimental observation (Fillaux et al., Chem. Phys. 1999, 120, 387-403). The isotope effect and the temperature effect are studied as well. We first investigated the nuclear quantum effect on the proton transfer. In static calculation and classical ab initio molecular dynamics simulations, the proton in the hydrogen bond is localized to either oxygen atom. On the other hand, the proton is located at the center of two oxygen atoms in quantum ab initio PIMD simulations. The nuclear quantum effect washes out the barrier of proton transfer. We next examined the nuclear quantum effect on the motion of hydrogen maleate anion. Principal component analysis revealed that the out-of-plane ring bending modes have dominant contribution to the entire molecular motion. In quantum ab initio PIMD simulations, structures with ring deformation were the global minimum for the deuterated isotope at 300 K. We analyzed the out-of-plane ring bending mode further and found that there are three minima along a ring distortion mode. We successfully found a stable structure with ring deformation of hydrogen maleate for the first time, to our knowledge, using theoretical calculation. The structures with ring deformation found in quantum simulation of the deuterated isotope allowed the proton transfer to occur more frequently than the planar structure. Static ab initio electronic structure calculation found that the structures with ring deformation have very small proton transfer barrier compared to the planar structure. We suggest that the "proton transfer driven" mechanism is the origin of stabilization for the structure with out-of-plane ring deformation.
NASA Technical Reports Server (NTRS)
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that contains the system and other systems evolves with the CAS as well. The effects of the emerging adaptation and co-evolution are difficult to capture with only combined mathematical and computational experimentation. Therefore, an ab initio flight simulation environment must accommodate individual vehicles, groups of self-organizing vehicles, and large-scale infrastructure behavior. Inspired by Massively Multiplayer Online Role Playing Games (MMORPG) and Serious Gaming, the proposed ab initio simulation environment is similar to online gaming environments in which player participants interact with each other, affect their environment, and expect the simulation to persist and change regardless of any individual player's active participation.
Vacuum Ultraviolet Laser Probe of Chemical Dynamics of Aerospace Relevance
2012-09-12
carbide cation”, J. Phys. Chem. A (invited), 113, 4242 (2009). 5. Kai-Chung Lau , Yih-Chung Chang, Chow-Sheng Lam , and C. Y. Ng, “High-level ab...Chem. A (invited), 113, 14321 (2009). 6. Kai-Chung Lau , Yih-Chung Chang, Chow-Sheng Lam , and C. Y. Ng, “High-level ab initio predictions of the...VI. Selected scientific findings 1. Kai-Chung Lau , Yih-Chung Chang, Xiaoyu Shi, and C. Y. Ng, “High-level ab initio predictions of the ionization
The application of ab initio calculations to molecular spectroscopy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1989-01-01
The state of the art in ab initio molecular structure calculations is reviewed with an emphasis on recent developments, such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is found that new developments in methodology, combined with improvements in computer hardware, are leading to unprecedented accuracy in solving problems in spectroscopy.
The application of ab initio calculations to molecular spectroscopy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1989-01-01
The state of the art in ab initio molecular structure calculations is reviewed, with an emphasis on recent developments such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is shown that new developments in methodology combined with improvements in computer hardware are leading to unprecedented accuracy in solving problems in spectroscopy.
{bold {ital Ab initio}} studies of the structural and electronic properties of solid cubane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, S.L.; Martins, J.L.
1998-12-01
In this paper, we report {ital ab initio} calculation of the structural and electronic properties of solid cubane (s-C{sub 8}H{sub 8}) in the local-density approximation. By using an {ital ab initio} constant pressure extended molecular dynamics method with variable cell shape proposed by Wentzcovitch, Martins, and Price, we compute a lattice parameter {ital a} and a bond angle {alpha} for the rhombohedral Bravais lattice and compare it with experimental x-ray data. We obtain bond lengths for the mononuclear C{sub 8}H{sub 8} unit of basis atoms, as well as a density of states and heat of formation. {copyright} {ital 1998} {italmore » The American Physical Society}« less
Einstein coefficients and oscillator strengths for low lying state of CO molecules
NASA Astrophysics Data System (ADS)
Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.
2018-04-01
Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.
Zeng, Lu; Kortschak, R Daniel; Raison, Joy M; Bertozzi, Terry; Adelson, David L
2018-01-01
Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.
Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene
2016-03-21
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.
Zeng, Lu; Kortschak, R. Daniel; Raison, Joy M.
2018-01-01
Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package. PMID:29538441
NASA Astrophysics Data System (ADS)
Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.
1998-08-01
A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.
Strategic L2 Lexical Innovation: Case Study of a University-Level Ab Initio Learner of German.
ERIC Educational Resources Information Center
Ridley, Jennifer; Singleton, David
1995-01-01
This article presents a case study of one English-speaking ab initio learner of German. It found that in target language production tasks performed over a two-year period, the subject exhibited a particular tendency toward lexical innovation as a strategy to cope with the lack of target language lexical knowledge. (38 references) (MDM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Binbin; Liu, Lihong; Cui, Ganglong
2015-11-21
In this work, the recently introduced quantum trajectory mean-field (QTMF) approach is implemented and employed to explore photodissociation dynamics of diazirinone (N{sub 2}CO), which are based on the high-level ab initio calculation. For comparison, the photodissociation process has been simulated as well with the fewest-switches surface hopping (FSSH) and the ab initio multiple spawning (AIMS) methods. Overall, the dynamical behavior predicted by the three methods is consistent. The N{sub 2}CO photodissociation at λ > 335 nm is an ultrafast process and the two C—N bonds are broken in a stepwise way, giving birth to CO and N{sub 2} as themore » final products in the ground state. Meanwhile, some noticeable differences were found in the QTMF, FSSH, and AIMS simulated time constants for fission of the C—N bonds, excited-state lifetime, and nonadiabatic transition ratios in different intersection regions. These have been discussed in detail. The present study provides a clear evidence that direct ab initio QTMF approach is one of the reliable tools for simulating nonadiabatic dynamics processes.« less
Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures
NASA Astrophysics Data System (ADS)
Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark
In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.
Common lines modeling for reference free Ab-initio reconstruction in cryo-EM.
Greenberg, Ido; Shkolnisky, Yoel
2017-11-01
We consider the problem of estimating an unbiased and reference-free ab initio model for non-symmetric molecules from images generated by single-particle cryo-electron microscopy. The proposed algorithm finds the globally optimal assignment of orientations that simultaneously respects all common lines between all images. The contribution of each common line to the estimated orientations is weighted according to a statistical model for common lines' detection errors. The key property of the proposed algorithm is that it finds the global optimum for the orientations given the common lines. In particular, any local optima in the common lines energy landscape do not affect the proposed algorithm. As a result, it is applicable to thousands of images at once, very robust to noise, completely reference free, and not biased towards any initial model. A byproduct of the algorithm is a set of measures that allow to asses the reliability of the obtained ab initio model. We demonstrate the algorithm using class averages from two experimental data sets, resulting in ab initio models with resolutions of 20Å or better, even from class averages consisting of as few as three raw images per class. Copyright © 2017 Elsevier Inc. All rights reserved.
Hirshberg, Barak; Sagiv, Lior; Gerber, R Benny
2017-03-14
Algorithms for quantum molecular dynamics simulations that directly use ab initio methods have many potential applications. In this article, the ab initio classical separable potentials (AICSP) method is proposed as the basis for approximate algorithms of this type. The AICSP method assumes separability of the total time-dependent wave function of the nuclei and employs mean-field potentials that govern the dynamics of each degree of freedom. In the proposed approach, the mean-field potentials are determined by classical ab initio molecular dynamics simulations. The nuclear wave function can thus be propagated in time using the effective potentials generated "on the fly". As a test of the method for realistic systems, calculations of the stationary anharmonic frequencies of hydrogen stretching modes were carried out for several polyatomic systems, including three amino acids and the guanine-cytosine pair of nucleobases. Good agreement with experiments was found. The method scales very favorably with the number of vibrational modes and should be applicable for very large molecules, e.g., peptides. The method should also be applicable for properties such as vibrational line widths and line shapes. Work in these directions is underway.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
Yang, Lina; Minnich, Austin J.
2017-01-01
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484
Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.
Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim
2016-10-26
For CO and N 2 on Mg 2+ sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.
Hagiwara, Yohsuke; Tateno, Masaru
2010-10-20
We review the recent research on the functional mechanisms of biological macromolecules using theoretical methodologies coupled to ab initio quantum mechanical (QM) treatments of reaction centers in proteins and nucleic acids. Since in most cases such biological molecules are large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Instead, simulations that are jointed with molecular mechanics (MM) calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. Thus, we focus our attention on the methodologies/schemes and applications of jointed QM/MM calculations, and discuss the critical issues to be elucidated in biological macromolecular systems. © 2010 IOP Publishing Ltd
Ab initio NMR parameters of BrCH3 and ICH3 with relativistic and vibrational corrections
NASA Astrophysics Data System (ADS)
Uhlíková, Tereza; Urban, Štěpán
2018-05-01
This study is focused on two effects identified when NMR parameters are calculated based on first principles. These effects are 1. vibrational correction of properties when using ab initio optimized equilibrium geometry; 2. relativistic effects and limits of using the Flygare equation. These effects have been investigated and determined for nuclear spin-rotation constants and nuclear magnetic shieldings for the CH3Br and CH3I molecules. The most significant result is the difference between chemical shieldings determined based on the ab initio relativistic four-component Dirac-Coulomb Hamiltonian and chemical shieldings calculated using experimental values and the Flygare equation. This difference is approximately 320 ppm and 1290 ppm for 79Br and 127I in the CH3X molecule, respectively.
An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic
NASA Astrophysics Data System (ADS)
Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.
2018-04-01
The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.
Köster, Andreas; Spura, Thomas; Rutkai, Gábor; Kessler, Jan; Wiebeler, Hendrik; Vrabec, Jadran; Kühne, Thomas D
2016-07-15
The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural properties. It is found that although the resulting force-matched water models are typically less accurate than fully empirical force fields in predicting thermodynamic properties, they are nevertheless much more accurate than generally appreciated in reproducing the structure of liquid water and in fact superseding most of the commonly used empirical water models. This development demonstrates the feasibility to routinely parametrize computationally efficient yet predictive potential energy functions based on accurate ab initio molecular dynamics simulations for a large variety of different systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Li, Yumin; Francisco, Joseph S
2005-08-31
There is uncertainty in the mechanism for the hydrolysis of peroxyacetyl nitrate (PAN), and experimental attempts to detect products of the direct reaction have been unsuccessful. Ab initio calculations are used to examine the energetics of water-mediated decomposition of gas-phase PAN into acetic acid and peroxynitric acid. On the basis of ab initio calculations, an alternative reaction mechanism for the decomposition of PAN is proposed. The calculations indicate that the barrier for one water addition to PAN is large. However, including additional water molecules reveals a substantially lower energy route. The calculations suggest that the formation of PAN hydrate complexes are energetically favorable and stable. Additional waters are increasingly efficient at stabilizing hydrated PAN.
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2009-10-29
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.
Weak interactions in Graphane/BN systems under static electric fields—A periodic ab-initio study.
Steinkasserer, Lukas Eugen Marsoner; Gaston, Nicola; Paulus, Beate
2015-04-21
Ab-initio calculations via periodic Hartree-Fock (HF) and local second-order Møller-Plesset perturbation theory (LMP2) are used to investigate the adsorption properties of combined Graphane/boron nitride systems and their response to static electric fields. It is shown how the latter can be used to alter both structural as well as electronic properties of these systems.
Shen, Lin; Yang, Weitao
2018-03-13
Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu; Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com
2016-03-21
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000more » coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.« less
Marques, Yuri Bento; de Paiva Oliveira, Alcione; Ribeiro Vasconcelos, Ana Tereza; Cerqueira, Fabio Ribeiro
2016-12-15
MicroRNAs (miRNAs) are key gene expression regulators in plants and animals. Therefore, miRNAs are involved in several biological processes, making the study of these molecules one of the most relevant topics of molecular biology nowadays. However, characterizing miRNAs in vivo is still a complex task. As a consequence, in silico methods have been developed to predict miRNA loci. A common ab initio strategy to find miRNAs in genomic data is to search for sequences that can fold into the typical hairpin structure of miRNA precursors (pre-miRNAs). The current ab initio approaches, however, have selectivity issues, i.e., a high number of false positives is reported, which can lead to laborious and costly attempts to provide biological validation. This study presents an extension of the ab initio method miRNAFold, with the aim of improving selectivity through machine learning techniques, namely, random forest combined with the SMOTE procedure that copes with imbalance datasets. By comparing our method, termed Mirnacle, with other important approaches in the literature, we demonstrate that Mirnacle substantially improves selectivity without compromising sensitivity. For the three datasets used in our experiments, our method achieved at least 97% of sensitivity and could deliver a two-fold, 20-fold, and 6-fold increase in selectivity, respectively, compared with the best results of current computational tools. The extension of miRNAFold by the introduction of machine learning techniques, significantly increases selectivity in pre-miRNA ab initio prediction, which optimally contributes to advanced studies on miRNAs, as the need of biological validations is diminished. Hopefully, new research, such as studies of severe diseases caused by miRNA malfunction, will benefit from the proposed computational tool.
Simkovic, Felix; Thomas, Jens M H; Keegan, Ronan M; Winn, Martyn D; Mayans, Olga; Rigden, Daniel J
2016-07-01
For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based) structure prediction. Such models can be used in structure solution by molecular replacement (MR) where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions ('decoys'), is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue-residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing.
Ohto, Tatsuhiko; Usui, Kota; Hasegawa, Taisuke; Bonn, Mischa; Nagata, Yuki
2015-09-28
Interfacial water structures have been studied intensively by probing the O-H stretch mode of water molecules using sum-frequency generation (SFG) spectroscopy. This surface-specific technique is finding increasingly widespread use, and accordingly, computational approaches to calculate SFG spectra using molecular dynamics (MD) trajectories of interfacial water molecules have been developed and employed to correlate specific spectral signatures with distinct interfacial water structures. Such simulations typically require relatively long (several nanoseconds) MD trajectories to allow reliable calculation of the SFG response functions through the dipole moment-polarizability time correlation function. These long trajectories limit the use of computationally expensive MD techniques such as ab initio MD and centroid MD simulations. Here, we present an efficient algorithm determining the SFG response from the surface-specific velocity-velocity correlation function (ssVVCF). This ssVVCF formalism allows us to calculate SFG spectra using a MD trajectory of only ∼100 ps, resulting in the substantial reduction of the computational costs, by almost an order of magnitude. We demonstrate that the O-H stretch SFG spectra at the water-air interface calculated by using the ssVVCF formalism well reproduce those calculated by using the dipole moment-polarizability time correlation function. Furthermore, we applied this ssVVCF technique for computing the SFG spectra from the ab initio MD trajectories with various density functionals. We report that the SFG responses computed from both ab initio MD simulations and MD simulations with an ab initio based force field model do not show a positive feature in its imaginary component at 3100 cm(-1).
Simkovic, Felix; Thomas, Jens M. H.; Keegan, Ronan M.; Winn, Martyn D.; Mayans, Olga; Rigden, Daniel J.
2016-01-01
For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based) structure prediction. Such models can be used in structure solution by molecular replacement (MR) where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions (‘decoys’), is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue–residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing. PMID:27437113
NASA Astrophysics Data System (ADS)
Despoja, Vito; Djordjević, Tijana; Karbunar, Lazar; Radović, Ivan; Mišković, Zoran L.
2017-08-01
The propagator of a dynamically screened Coulomb interaction W in a sandwichlike structure consisting of two graphene layers separated by a slab of Al2O3 (or vacuum) is derived from single-layer graphene response functions and by using a local dielectric function for the bulk Al2O3 . The response function of graphene is obtained using two approaches within the random phase approximation (RPA): an ab initio method that includes all electronic bands in graphene and a computationally less demanding method based on the massless Dirac fermion (MDF) approximation for the low-energy excitations of electrons in the π bands. The propagator W is used to derive an expression for the effective dielectric function of our sandwich structure, which is relevant for the reflection electron energy loss spectroscopy of its surface. Focusing on the range of frequencies from THz to mid-infrared, special attention is paid to finding an accurate optical limit in the ab initio method, where the response function is expressed in terms of a frequency-dependent conductivity of graphene. It was shown that the optical limit suffices for describing hybridization between the Dirac plasmons in graphene layers and the Fuchs-Kliewer phonons in both surfaces of the Al2O3 slab, and that the spectra obtained from both the ab initio method and the MDF approximation in the optical limit agree perfectly well for wave numbers up to about 0.1 nm-1. Going beyond the optical limit, the agreement between the full ab initio method and the MDF approximation was found to extend to wave numbers up to about 0.3 nm-1 for doped graphene layers with the Fermi energy of 0.2 eV.
NASA Astrophysics Data System (ADS)
Raff, L. M.; Malshe, M.; Hagan, M.; Doughan, D. I.; Rockley, M. G.; Komanduri, R.
2005-02-01
A neural network/trajectory approach is presented for the development of accurate potential-energy hypersurfaces that can be utilized to conduct ab initio molecular dynamics (AIMD) and Monte Carlo studies of gas-phase chemical reactions, nanometric cutting, and nanotribology, and of a variety of mechanical properties of importance in potential microelectromechanical systems applications. The method is sufficiently robust that it can be applied to a wide range of polyatomic systems. The overall method integrates ab initio electronic structure calculations with importance sampling techniques that permit the critical regions of configuration space to be determined. The computed ab initio energies and gradients are then accurately interpolated using neural networks (NN) rather than arbitrary parametrized analytical functional forms, moving interpolation or least-squares methods. The sampling method involves a tight integration of molecular dynamics calculations with neural networks that employ early stopping and regularization procedures to improve network performance and test for convergence. The procedure can be initiated using an empirical potential surface or direct dynamics. The accuracy and interpolation power of the method has been tested for two cases, the global potential surface for vinyl bromide undergoing unimolecular decomposition via four different reaction channels and nanometric cutting of silicon. The results show that the sampling methods permit the important regions of configuration space to be easily and rapidly identified, that convergence of the NN fit to the ab initio electronic structure database can be easily monitored, and that the interpolation accuracy of the NN fits is excellent, even for systems involving five atoms or more. The method permits a substantial computational speed and accuracy advantage over existing methods, is robust, and relatively easy to implement.
Decohesion models informed by first-principles calculations: The ab initio tensile test
NASA Astrophysics Data System (ADS)
Enrique, Raúl A.; Van der Ven, Anton
2017-10-01
Extreme deformation and homogeneous fracture can be readily studied via ab initio methods by subjecting crystals to numerical "tensile tests", where the energy of locally stable crystal configurations corresponding to elongated and fractured states are evaluated by means of density functional method calculations. The information obtained can then be used to construct traction curves of cohesive zone models in order to address fracture at the macroscopic scale. In this work, we perform an in depth analysis of traction curves and how ab initio calculations must be interpreted to rigorously parameterize an atomic scale cohesive zone model, using crystalline Ag as an example. Our analysis of traction curves reveal the existence of two qualitatively distinct decohesion criteria: (i) an energy criterion whereby the released elastic energy equals the energy cost of creating two new surfaces and (ii) an instability criterion that occurs at a higher and size independent stress than that of the energy criterion. We find that increasing the size of the simulation cell renders parts of the traction curve inaccessible to ab initio calculations involving the uniform decohesion of the crystal. We also find that the separation distance below which a crack heals is not a material parameter as has been proposed in the past. Finally, we show that a large energy barrier separates the uniformly stressed crystal from the decohered crystal, resolving a paradox predicted by a scaling law based on the energy criterion that implies that large crystals will decohere under vanishingly small stresses. This work clarifies confusion in the literature as to how a cohesive zone model is to be parameterized with ab initio "tensile tests" in the presence of internal relaxations.
Quashie, Edwin E.; Saha, Bidhan C.; Correa, Alfredo A.
2016-10-05
Here, we present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities v = 0.02–10a.u. where we take into account nonlinear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results aremore » in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ~1.5) in the velocity range v = 0.07–0.3a.u., which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping v → 0 is not as simple as phenomenological models suggest and it is plagued by band-structure effects.« less
NASA Astrophysics Data System (ADS)
Eryigit, Resul; Gurel, Tanju; Erturk, Esra; Lukoyanov, A. V.; Akcay, Guven; Anisimov, V. I.
2014-03-01
We present density functional theory calculations on iron-based pnictides RFeAsO (R = Pr, Nd, Sm, Gd). The calculations have been carried out using plane-waves and projector augmented wave (PAW) pseudopotential approach. Structural, magnetic and electronic properties are studied within generalized gradient approximation (GGA) and also within GGA+U in order to investigate the influence of electron correlation effects. Low-temperature Cmma structure is fully optimized by GGA considering both non-magnetic and magnetic cells. We have found that spin-polarized structure improves the agreement with experiments on equilibrium lattice parameters, particularly c lattice parameter and Fe-As bond-lengths. Electronic band structure, total density of states, and spin-dependent orbital-resolved density of states are also analyzed in the frameworks of GGA and GGA+U and discussed. For all materials, by including on-site Coulomb correction, rare earth 4f states move away from the Fermi level and the Fermi level features of the systems are found to be mostly defined by the 3d electron-electron correlations in Fe. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project No. TBAG-111T796) and the Russian Foundation for Basic Research (Project No. 12-02-91371-CT_a).
Towards ab initio Calculations with the Dynamical Vertex Approximation
NASA Astrophysics Data System (ADS)
Galler, Anna; Kaufmann, Josef; Gunacker, Patrik; Pickem, Matthias; Thunström, Patrik; Tomczak, Jan M.; Held, Karsten
2018-04-01
While key effects of the many-body problem — such as Kondo and Mott physics — can be understood in terms of on-site correlations, non-local fluctuations of charge, spin, and pairing amplitudes are at the heart of the most fascinating and unresolved phenomena in condensed matter physics. Here, we review recent progress in diagrammatic extensions to dynamical mean-field theory for ab initio materials calculations. We first recapitulate the quantum field theoretical background behind the two-particle vertex. Next we discuss latest algorithmic advances in quantum Monte Carlo simulations for calculating such two-particle quantities using worm sampling and vertex asymptotics, before giving an introduction to the ab initio dynamical vertex approximation (AbinitioDΓA). Finally, we highlight the potential of AbinitioDΓA by detailing results for the prototypical correlated metal SrVO3.
Crossover of cation partitioning in olivines: a combination of ab initio and Monte Carlo study
NASA Astrophysics Data System (ADS)
Chatterjee, Swastika; Bhattacharyya, Sirshendu; Sengupta, Surajit; Saha-Dasgupta, Tanusri
2011-04-01
We report studies based on a combination of ab initio electronic structure and Monte Carlo (MC) technique on the problem of cation partitioning among inequivalent octahedral sites, M1 and M2 in mixed olivines containing Mg2+ and Fe2+ ions. Our MC scheme uses interactions derived out of ab initio, density functional calculations carried out on measured crystal structure data. Our results show that there is no reversal of the preference of Fe for M1 over M2 as a function of temperature. Our findings do not agree with the experimental findings of Redfern et al. (Phys Chem Miner 27:630-637, 2000), but are in agreement with those of Heinemann et al. (Eur J Mineral 18:673-689, 2006) and Morozov et al. (Eur J Mineral 17:495-500, 2005).
NASA Astrophysics Data System (ADS)
Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito
2018-05-01
Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.
NASA Astrophysics Data System (ADS)
Briere, T. M.; Jeong, J.; Das, T. P.; Ohira, S.; Nagamine, K.
2000-08-01
The muon and muonium bonding sites of the 4-arylmethyleneamino-2,2,6,6-tetramethylpiperidin-1-yloxyl radical crystals with aryl groups consisting of biphenyl and 4-pyridyl were studied via ab initio Hartree-Fock theory. The hyperfine fields, including both intramolecular and intermolecular interactions, were calculated at the sites of interest and compared to zero field μSR results.
ERIC Educational Resources Information Center
Halpern, Arthur M.; Glendening, Eric D.
2013-01-01
A project for students in an upper-level course in quantum or computational chemistry is described in which they are introduced to the concepts and applications of a high quality, ab initio treatment of the ground-state potential energy curve (PEC) for H[subscript 2] and D[subscript 2]. Using a commercial computational chemistry application and a…
Atomistic and Ab Initio Calculations or Ternary II-IV-V2 Semiconductors
1999-12-07
consisting of two- and three-body terms is developed reproducing crystal lattice constants, elastic and dielectric constants very well. The calculated...the lattice . This difference may well be due to defect-induced lattice distortion which plays a key role in stabilizing the hole states in the... lattice . 15. SUBJECT TERMS Chalcopyrites, Defects, Atomistic and AB Initio Calculations 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT U
Martínez-Fernández, Lara; González, Leticia; Corral, Inés
2012-02-18
The deactivation mechanism of the cytotoxic 6-thioguanine, the 6-sulfur-substituted analogue of the canonical DNA base, is unveiled by ab initio calculations. Oxygen-by-sulfur substitution leads to efficient population of triplet states-the first step for generating singlet oxygen-which is responsible for its cytotoxicity. This journal is © The Royal Society of Chemistry 2012
Ab initio optical potentials and nucleon scattering on medium mass nuclei
NASA Astrophysics Data System (ADS)
Idini, A.; Barbieri, C.; Navrátil, P.
2018-03-01
We show first results for the elastic scattering of neutrons off oxygen and calcium isotopes obtained from ab initio optical potentials. The potential is derived using self-consistent Green’s function theory (SCGF) with the saturating chiral interaction NNLOsat. Calculations are compared to available scattering data and show that it is possible to reproduce low energy scattering observables in medium mass nuclei from first principles.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Huo, Winifred (Technical Monitor)
1998-01-01
We have carried out ab initio electronic structure calculations of the spin-orbit and rotation-orbit couplings among the 14 lowest electronic states of TiO and used them to predict ro-vibrational energy levels. We report on the qualitative results as well as our progress in optimizing our Hamiltonian parameters in order to improve agreement with experimental line positions,
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Huo, Winifred (Technical Monitor)
1998-01-01
We have carried out ab initio electronic structure calculations of the spin-orbit and rotation-orbit couplings among the 14 lowest electronic states of TiO and used them to predict ro-vibrational energy levels. We report on the qualitative results as well as our progress in optimizing our Hamiltonian parameters in order to improve agreement with experimental line positions.
NASA Astrophysics Data System (ADS)
Dattani, Nike
For large internuclear distances, the potential energy between two atoms is known analytically, based on constants that are calculated from atomic ab initio rather than molecular ab initio. This analytic form can be built into models for molecular potentials that are fitted to spectroscopic data. Such empirical potentials constitute the most accurate molecular potentials known. For HeH+, and BeH+, the long-range form of the potential is based only on the polarizabilities for He and H respectively, for which we have included up to 4th order QED corrections. For BeH, the best ab initio potential matches all but one observed vibrational spacing to < 1 cm- accuracy, and for Li2 the discrepancy in the spacings is < 0.08 cm-1 for all vibrational levels. But experimental methods such as photoassociation require the absolute energies, not spacings, and these are still several in several cm-1 disagreement. So empirical potentials are still the only reliable way to predict energies for few-electron systems. We also give predictions for various unobserved ''halo nucleonic molecules'' containing the ''halo'' isotopes: 6,8He, 11Li, 11,14Be and 8 , 17 , 19B.
Ab Initio Crystal Field for Lanthanides.
Ungur, Liviu; Chibotaru, Liviu F
2017-03-13
An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc) 2 ] - (Pc=phthalocyanine) and Dy 4 K 2 ([Dy 4 K 2 O(OtBu) 12 ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H 3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Won, Jonghun; Lee, Gyu Rie; Park, Hahnbeom; Seok, Chaok
2018-06-07
The second extracellular loops (ECL2s) of G-protein-coupled receptors (GPCRs) are often involved in GPCR functions, and their structures have important implications in drug discovery. However, structure prediction of ECL2 is difficult because of its long length and the structural diversity among different GPCRs. In this study, a new ECL2 conformational sampling method involving both template-based and ab initio sampling was developed. Inspired by the observation of similar ECL2 structures of closely related GPCRs, a template-based sampling method employing loop structure templates selected from the structure database was developed. A new metric for evaluating similarity of the target loop to templates was introduced for template selection. An ab initio loop sampling method was also developed to treat cases without highly similar templates. The ab initio method is based on the previously developed fragment assembly and loop closure method. A new sampling component that takes advantage of secondary structure prediction was added. In addition, a conserved disulfide bridge restraining ECL2 conformation was predicted and analytically incorporated into sampling, reducing the effective dimension of the conformational search space. The sampling method was combined with an existing energy function for comparison with previously reported loop structure prediction methods, and the benchmark test demonstrated outstanding performance.
A Complete and Accurate Ab Initio Repeat Finding Algorithm.
Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua
2016-03-01
It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy.
Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics
NASA Astrophysics Data System (ADS)
Zaharieva, Roussislava; Hanagud, Sathya
2009-06-01
Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.
NASA Astrophysics Data System (ADS)
Bacca, Sonia
2016-04-01
A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2009-12-01
By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.
NASA Astrophysics Data System (ADS)
Majoube, M.; Vergoten, G.
1993-03-01
FTR, Raman, FTIR spectra are obtained for polycrystalline uric acid and seven of its D-and 15N-substituted analogues. Assignments are given from a normal coordinate analysis carried out using a 3-21G ab initio force field. These are discussed by considering observed and calculated frequencies and D- and 15N-isotopic shifts.
Kubo–Greenwood approach to conductivity in dense plasmas with average atom models
Starrett, C. E.
2016-04-13
In this study, a new formulation of the Kubo–Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman–Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman–Evans formula. Again, results based on this expression are in good agreement withmore » ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollas, Daniel; Sistik, Lukas; Hohenstein, Edward G.
Here, we show that the floating occupation molecular orbital complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the widely used complete active space self-consistent field (CASSCF) method in direct nonadiabatic dynamics simulations. We have simulated photodynamics of three archetypal molecules in photodynamics: ethylene, methaniminium cation, and malonaldehyde. We compared the time evolution of electronic populations and reaction mechanisms as revealed by the FOMO-CASCI and CASSCF approaches. Generally, the two approaches provide similar results. Some dynamical differences are observed, but these can be traced back to energetically minor differences in the potential energy surfaces. We suggest thatmore » the FOMO-CASCI method represents, due to its efficiency and stability, a promising approach for direct ab initio dynamics in the excited state.« less
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Lai, J.; Luo, N.; Sun, S.; Shibata, M.; Ornstein, R.; Rein, R.
1991-01-01
The origin of torsional potentials in H3CSSCH3, H3CSSH, and HOOH and the anisotropy of the local charge distribution has been analyzed in terms of atomic multipoles calculated from the ab initio LCAO-MO-SCF wave function in the 6-31G* basis set. The results indicate that for longer -S-S-bonds the major contribution to these torsional barriers are electrostatic interactions of the atomic multipoles located on two atoms forming the rotated bond. This finding demonstrates the important role of electrostatic 1-2 interatomic interactions, usually neglected in conformational studies. It also opens the possibility to derive directly from accurate ab initio wave functions a simple nonempirical torsional potential involving atomic multipoles of two bonded atoms defining the torsional angle. For shorter -O-O- bonds, use of more precise models and inclusion of 1-3 interactions seems to be necessary.
NASA Astrophysics Data System (ADS)
Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.
2015-02-01
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
NASA Astrophysics Data System (ADS)
Caprio, Mark A.; McCoy, Anna E.; Dytrych, Tomas
2017-09-01
Rotational band structure is readily apparent as an emergent phenomenon in ab initio nuclear many-body calculations of light nuclei, despite the incompletely converged nature of most such calculations at present. Nuclear rotation in light nuclei can be analyzed in terms of approximate dynamical symmetries of the nuclear many-body problem: in particular, Elliott's SU (3) symmetry of the three-dimensional harmonic oscillator and the symplectic Sp (3 , R) symmetry of three-dimensional phase space. Calculations for rotational band members in the ab initio symplectic no-core configuration interaction (SpNCCI) framework allow us to directly examine the SU (3) and Sp (3 , R) nature of rotational states. We present results for rotational bands in p-shell nuclei. Supported by the US DOE under Award No. DE-FG02-95ER-40934 and the Czech Science Foundation under Grant No. 16-16772S.
Brela, Mateusz Z; Boczar, Marek; Malec, Leszek M; Wójcik, Marek J; Nakajima, Takahito
2018-05-15
Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers. Copyright © 2018 Elsevier B.V. All rights reserved.
Atomic defects in monolayer WSe2 tunneling FETs studied by systematic ab initio calculations
NASA Astrophysics Data System (ADS)
Wu, Jixuan; Fan, Zhiqiang; Chen, Jiezhi; Jiang, Xiangwei
2018-05-01
Atomic defects in monolayer WSe2 tunneling FETs (TFETs) are studied through systematic ab initio calculations aiming at performance predictions and enhancements. The effects of various defect positions and different passivation atoms are characterized in WSe2 TFETs by rigorous ab initio quantum transport simulations. It is suggested that the Se vacancy (VSe) defect located in the gate-controlled channel region tends to increase the OFF current (I off), whereas it can be well suppressed by oxygen passivation. It is demonstrated that chlorine (Cl) passivation at the source-side tunneling region can largely suppress I off, leading to an impressively improved on–off ratio (I on/I off) compared with that without any defect. However, it is also observed that randomly positioned atomic defects tend to induce significant fluctuation of the TFET output. Further discussions are made with focus on the performance-variability trade-off for robust circuit design.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Dytrych, T.; Maris, P.; Launey, K. D.; ...
2016-06-22
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU3-selected subspaces. We demonstrate LSU3shell’s strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and significant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calculations of states withmore » a fixed total angular momentum in large model spaces while exactly preserving translational invariance.« less
Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals
NASA Astrophysics Data System (ADS)
Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano
2015-03-01
Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.
Ab initio results for intermediate-mass, open-shell nuclei
NASA Astrophysics Data System (ADS)
Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.
2017-01-01
A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.
Ab initio theoretical calculations of the electronic excitation energies of small water clusters.
Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro
2011-12-14
A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, Hiroshi; Nakanishi, Akitaka; Uede, Hiroki; Takawashi, Yuki; Fukushima, Tetsuya; Sato, Kazunori
2014-03-01
Based upon ab initio electronic structure calculation, I will discuss the general rule of negative effective U system by (1) exchange-correlation-induced negative effective U caused by the stability of the exchange-correlation energy in Hund's rule with high-spin ground states of d5 configuration, and (2) charge-excitation-induced negative effective U caused by the stability of chemical bond in the closed-shell of s2, p6, and d10 configurations. I will show the calculated results of negative effective U systems such as hole-doped CuAlO2 and CuFeS2. Based on the total energy calculations of antiferromagnetic and ferromagnetic states, I will discuss the magnetic phase diagram and superconductivity upon hole doping. I also discuss the computational materials design method of high-Tc superconductors by ab initio calculation to go beyond LDA and multi-scale simulations.
A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment
NASA Technical Reports Server (NTRS)
Bentley, Joseph A.; Bowman, Joel M.; Gazdy, Bela; Lee, Timothy J.; Dateo, Christopher E.
1992-01-01
An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.
Alkorta, Ibon; Popelier, Paul L A
2015-02-02
Remarkably simple yet effective linear free energy relationships were discovered between a single ab initio computed bond length in the gas phase and experimental pKa values in aqueous solution. The formation of these relationships is driven by chemical features such as functional groups, meta/para substitution and tautomerism. The high structural content of the ab initio bond length makes a given data set essentially divide itself into high correlation subsets (HCSs). Surprisingly, all molecules in a given high correlation subset share the same conformation in the gas phase. Here we show that accurate pKa values can be predicted from such HCSs. This is achieved within an accuracy of 0.2 pKa units for 5 drug molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Autrey, Daniel; Choo, Jaebum; Laane, Jaan
2000-10-01
The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.
Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS)
NASA Astrophysics Data System (ADS)
Liborio, Leandro; Sturniolo, Simone; Jochym, Dominik
2018-04-01
The stopping site of the muon in a muon-spin relaxation experiment is in general unknown. There are some techniques that can be used to guess the muon stopping site, but they often rely on approximations and are not generally applicable to all cases. In this work, we propose a purely theoretical method to predict muon stopping sites in crystalline materials from first principles. The method is based on a combination of ab initio calculations, random structure searching, and machine learning, and it has successfully predicted the MuT and MuBC stopping sites of muonium in Si, diamond, and Ge, as well as the muonium stopping site in LiF, without any recourse to experimental results. The method makes use of Soprano, a Python library developed to aid ab initio computational crystallography, that was publicly released and contains all the software tools necessary to reproduce our analysis.
NASA Astrophysics Data System (ADS)
de P. R. Moreira, Ibério; Dovesi, Roberto; Roetti, Carla; Saunders, Victor R.; Orlando, Roberto
2000-09-01
The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed.
Nuclear shielding constants by density functional theory with gauge including atomic orbitals
NASA Astrophysics Data System (ADS)
Helgaker, Trygve; Wilson, Philip J.; Amos, Roger D.; Handy, Nicholas C.
2000-08-01
Recently, we introduced a new density-functional theory (DFT) approach for the calculation of NMR shielding constants. First, a hybrid DFT calculation (using 5% exact exchange) is performed on the molecule to determine Kohn-Sham orbitals and their energies; second, the constants are determined as in nonhybrid DFT theory, that is, the paramagnetic contribution to the constants is calculated from a noniterative, uncoupled sum-over-states expression. The initial results suggested that this semiempirical DFT approach gives shielding constants in good agreement with the best ab initio and experimental data; in this paper, we further validate this procedure, using London orbitals in the theory, having implemented DFT into the ab initio code DALTON. Calculations on a number of small and medium-sized molecules confirm that our approach produces shieldings in excellent agreement with experiment and the best ab initio results available, demonstrating its potential for the study of shielding constants of large systems.
Ab-initio calculations on melting of thorium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, D., E-mail: debojyoti@barc.gov.in; Sahoo, B. D.; Joshi, K. D.
2016-05-23
Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a{sub 0}){sup 3} and (1.02a{sub 0}){sup 3} and (1.04a{sub 0}){sup 3} increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a{sub 0} = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures asmore » melting point. The melting point of 2100 K is close to the experimental value of 2023 K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.« less
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dytrych, T.; Maris, Pieter; Launey, K. D.
2016-06-09
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations ofmore » states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.« less
NASA Astrophysics Data System (ADS)
Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi
2007-04-01
The intermolecular potentials for the NO(XΠ2)-Kr and NO(AΣ+2)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1A'2 state [NO(XΠ2)-Kr ] and the multireference singles and doubles configuration interaction method for the excited 2A'2 state [NO(AΣ+2)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic results. A general overall view of the results suggests that, when the Kr-NO interaction takes place inside the matrix, potentials are rather symmetric and less repulsive than those for the triatomic system. pectroscopy, yields a mean absolute deviation of about 5cm-1 over the 22 levels. The dissociation energy with respect to the lowest vibrational energy is calculated within 30cm-1 of the experimental value of 12953±8cm-1. The reported agreement of the theoretical spectrum and dissociation energy with experiment is contingent upon the inclusion of the effects of core-generated electron correlation, spin-orbit coupling, and scalar relativity. The Dunham analysis [Phys. Rev. 41, 721 (1932)] of the spectrum is found to be very accurate. New values are given for the spectroscopic constants.
Ab initio study of the ground and excited electronic states of the methyl radical
Zanchet, A.; Bañares, L.; Senent, M. L.; García-Vela, A.
2016-01-01
The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states. PMID:27892569
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto
2012-06-07
Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1) region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH(2)F(2) as a prototype molecule to test ab initio calculations and theoretical models.
NASA Astrophysics Data System (ADS)
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Charmet, Andrea Pietropolli; Gambi, Alberto
2012-06-01
Difluoromethane (CH2F2, HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH2F2, providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm-1. Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm-1 while intensities are predicted within few km mol-1 from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν1⟩, |2ν8⟩, |2ν2⟩ three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm-1 region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH2F2 as a prototype molecule to test ab initio calculations and theoretical models.
Investigations of Reactive Processes at Temperatures Relevant to the Hypersonic Flight Regime
2014-10-31
molecule is constructed based on high- level ab-initio calculations and interpolated using the reproducible kernel Hilbert space (RKHS) method and...a potential energy surface (PES) for the ground state of the NO2 molecule is constructed based on high- level ab initio calculations and interpolated...between O(3P) and NO(2Π) at higher temperatures relevant to the hypersonic flight regime of reentering space- crafts. At a more fundamental level , we
GAUSSIAN 76: An ab initio Molecular Orbital Program
DOE R&D Accomplishments Database
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
Ab initio calculations for the elastic properties of magnesium under pressure
NASA Astrophysics Data System (ADS)
Sin'Ko, G. V.; Smirnov, N. A.
2009-09-01
Results of ab initio calculations of the elastic constants for the hcp, bcc, double hcp (dhcp), and fcc magnesium in a wide range of pressures are presented. The calculated elastic constants are compared with available experimental and theoretical data. We discuss the effect of the electron topological transition that occurs when the hcp structure is compressed on results of calculations and consider possibility of observing the hcp→dhcp transition on the magnesium Hugoniot.
Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.
2017-04-26
Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Hua Y., E-mail: huay.geng@gmail.com; Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate ismore » about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.
Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less
NASA Technical Reports Server (NTRS)
Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)
2000-01-01
The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.
Vonci, Michele; Giansiracusa, Marcus J; Van den Heuvel, Willem; Gable, Robert W; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette
2017-01-03
Inelastic neutron scattering (INS) has been used to investigate the crystal field (CF) magnetic excitations of the analogs of the most representative lanthanoid-polyoxometalate single-molecule magnet family: Na 9 [Ln(W 5 O 18 ) 2 ] (Ln = Nd, Tb, Ho, Er). Ab initio complete active space self-consistent field/restricted active space state interaction calculations, extended also to the Dy analog, show good agreement with the experimentally determined low-lying CF levels, with accuracy better in most cases than that reported for approaches based only on simultaneous fitting to CF models of magnetic or spectroscopic data for isostructural Ln families. In this work we demonstrate the power of a combined spectroscopic and computational approach. Inelastic neutron scattering has provided direct access to CF levels, which together with the magnetometry data, were employed to benchmark the ab initio results. The ab initio determined wave functions corresponding to the CF levels were in turn employed to assign the INS transitions allowed by selection rules and interpret the observed relative intensities of the INS peaks. Ultimately, we have been able to establish the relationship between the wave function composition of the CF split Ln III ground multiplets and the experimentally measured magnetic and spectroscopic properties for the various analogs of the Na 9 [Ln(W 5 O 18 ) 2 ] family.
Dieterich, Johannes M; Werner, Hans-Joachim; Mata, Ricardo A; Metz, Sebastian; Thiel, Walter
2010-01-21
Energy and free energy barriers for acetaldehyde conversion in aldehyde oxidoreductase are determined for three reaction pathways using quantum mechanical/molecular mechanical (QM/MM) calculations on the solvated enzyme. Ab initio single-point QM/MM energies are obtained at the stationary points optimized at the DFT(B3LYP)/MM level. These ab initio calculations employ local correlation treatments [LMP2 and LCCSD(T0)] in combination with augmented triple- and quadruple-zeta basis sets, and the final coupled cluster results include MP2-based corrections for basis set incompleteness and for the domain approximation. Free energy perturbation (FEP) theory is used to generate free energy profiles at the DFT(B3LYP)/MM level for the most important reaction steps by sampling along the corresponding reaction paths using molecular dynamics. The ab initio and FEP QM/MM results are combined to derive improved estimates of the free energy barriers, which differ from the corresponding DFT(B3LYP)/MM energy barriers by about 3 kcal mol(-1). The present results confirm the qualitative mechanistic conclusions from a previous DFT(B3LYP)/MM study. Most favorable is a three-step Lewis base catalyzed mechanism with an initial proton transfer from the cofactor to the Glu869 residue, a subsequent nucleophilic attack that yields a tetrahedral intermediate (IM2), and a final rate-limiting hydride transfer. The competing metal center activated pathway has the same final step but needs to overcome a higher barrier in the initial step on the route to IM2. The concerted mechanism has the highest free energy barrier and can be ruled out. While confirming the qualitative mechanistic scenario proposed previously on the basis of DFT(B3LYP)/MM energy profiles, the present ab initio and FEP QM/MM calculations provide corrections to the barriers that are important when aiming at high accuracy.
Ndome, Hameth; Eisfeld, Wolfgang
2012-08-14
A new method has been reported recently [H. Ndome, R. Welsch, and W. Eisfeld, J. Chem. Phys. 136, 034103 (2012)] that allows the efficient generation of fully coupled potential energy surfaces (PESs) including derivative and spin-orbit (SO) coupling. The method is based on the diabatic asymptotic representation of the molecular fine structure states and an effective relativistic coupling operator and therefore is called effective relativistic coupling by asymptotic representation (ERCAR). The resulting diabatic spin-orbit coupling matrix is constant and the geometry dependence of the coupling between the eigenstates is accounted for by the diabatization. This approach allows to generate an analytical model for the fully coupled PESs without performing any ab initio SO calculations (except perhaps for the atoms) and thus is very efficient. In the present work, we study the performance of this new method for the example of hydrogen iodide as a well-established test case. Details of the diabatization and the accuracy of the results are investigated in comparison to reference ab initio calculations. The energies of the adiabatic fine structure states are reproduced in excellent agreement with reference ab initio data. It is shown that the accuracy of the ERCAR approach mainly depends on the quality of the underlying ab initio data. This is also the case for dissociation and vibrational level energies, which are influenced by the SO coupling. A method is presented how one-electron operators and the corresponding properties can be evaluated in the framework of the ERCAR approach. This allows the computation of dipole and transition moments of the fine structure states in good agreement with ab initio data. The new method is shown to be very promising for the construction of fully coupled PESs for more complex polyatomic systems to be used in quantum dynamics studies.
Raimondi, Francesco; Hupin, Guillaume; Navratil, Petr; ...
2016-05-10
Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Here, ab initio approaches have been successfully applied to describe the 3H(d,n) 4He and 3He(d,p) 4He fusion processes. An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d,p) reactions to processes with light p-shell nuclei. Asmore » a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d,p) 8Li transfer reaction based on a two-body Hamiltonian. We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d– 7Li and p– 8Li particle-decay channels determines some features of the 9Be spectrum above the d+ 7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Deuteron stripping reactions with p-shell targets can now be computed ab initio, but calculations are very demanding. Finally, a quantitative description of the 7Li(d,p) 8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.« less
Xia, Jiaqi; Peng, Zhenling; Qi, Dawei; Mu, Hongbo; Yang, Jianyi
2017-03-15
Protein fold classification is a critical step in protein structure prediction. There are two possible ways to classify protein folds. One is through template-based fold assignment and the other is ab-initio prediction using machine learning algorithms. Combination of both solutions to improve the prediction accuracy was never explored before. We developed two algorithms, HH-fold and SVM-fold for protein fold classification. HH-fold is a template-based fold assignment algorithm using the HHsearch program. SVM-fold is a support vector machine-based ab-initio classification algorithm, in which a comprehensive set of features are extracted from three complementary sequence profiles. These two algorithms are then combined, resulting to the ensemble approach TA-fold. We performed a comprehensive assessment for the proposed methods by comparing with ab-initio methods and template-based threading methods on six benchmark datasets. An accuracy of 0.799 was achieved by TA-fold on the DD dataset that consists of proteins from 27 folds. This represents improvement of 5.4-11.7% over ab-initio methods. After updating this dataset to include more proteins in the same folds, the accuracy increased to 0.971. In addition, TA-fold achieved >0.9 accuracy on a large dataset consisting of 6451 proteins from 184 folds. Experiments on the LE dataset show that TA-fold consistently outperforms other threading methods at the family, superfamily and fold levels. The success of TA-fold is attributed to the combination of template-based fold assignment and ab-initio classification using features from complementary sequence profiles that contain rich evolution information. http://yanglab.nankai.edu.cn/TA-fold/. yangjy@nankai.edu.cn or mhb-506@163.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raimondi, Francesco; Hupin, Guillaume; Navratil, Petr
Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Here, ab initio approaches have been successfully applied to describe the 3H(d,n) 4He and 3He(d,p) 4He fusion processes. An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d,p) reactions to processes with light p-shell nuclei. Asmore » a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d,p) 8Li transfer reaction based on a two-body Hamiltonian. We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d– 7Li and p– 8Li particle-decay channels determines some features of the 9Be spectrum above the d+ 7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Deuteron stripping reactions with p-shell targets can now be computed ab initio, but calculations are very demanding. Finally, a quantitative description of the 7Li(d,p) 8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.« less
Curved-line search algorithm for ab initio atomic structure relaxation
NASA Astrophysics Data System (ADS)
Chen, Zhanghui; Li, Jingbo; Li, Shushen; Wang, Lin-Wang
2017-09-01
Ab initio atomic relaxations often take large numbers of steps and long times to converge, especially when the initial atomic configurations are far from the local minimum or there are curved and narrow valleys in the multidimensional potentials. An atomic relaxation method based on on-the-flight force learning and a corresponding curved-line search algorithm is presented to accelerate this process. Results demonstrate the superior performance of this method for metal and magnetic clusters when compared with the conventional conjugate-gradient method.
Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.
Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin
2011-01-14
Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.
Ab initio theory of the N2V defect in diamond for quantum memory implementation
NASA Astrophysics Data System (ADS)
Udvarhelyi, Péter; Thiering, Gergő; Londero, Elisa; Gali, Adam
2017-10-01
The N2V defect in diamond is characterized by means of ab initio methods relying on density functional theory calculated parameters of a Hubbard model Hamiltonian. It is shown that this approach appropriately describes the energy levels of correlated excited states induced by this defect. By determining its critical magneto-optical parameters, we propose to realize a long-living quantum memory by N2V defect, i.e., H 3 color center in diamond.
Ab initio calculations of potential energy curves of Hg/sub 2/ and TlHg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celestino, K.C.; Ermler, W.C.
1984-08-15
Potential energy curves for electronic states of Hg/sub 2/ and TlHg are presented and analyzed. They are derived using large scale configuration interaction procedures for the valence electrons, with the core electrons represented by ab initio relativistic effective potentials. The effect of spin-orbit coupling are investigated for the low-lying excimer states. It is determined that neither system possesses strongly bound electronic states for which transitions to the repulsive ground states are optically allowed.
1996-12-01
ranging from academic to industrial demonstrated the utility of the developed procedure for ab initio surface meshing from discrete data, such as...academic to industrial demonstrate the utility of the pro- hypersonic reentry problems, where ray-tracing based on posed procedure for ab initio surface...data input within industrial simulations. The origi- nal CAD dataset had over 500 surface patches, many All of the surface grids shown were obtained
Ab initio SCF calculations on the potential energy surface of potassium cyanide (KCN)
NASA Astrophysics Data System (ADS)
Wormer, Paul E. S.; Tennyson, Jonathan
1981-08-01
The potential energy surface of KCN has been generated by ab initio SCF calculations in the region of equilibrium bond distances. An analytic representation of the surface is presented. The calculations show that the bonding between K and CN is ionic, and that the structure of KCN is triangular, which confirms recent experimental findings. The computed geometry is &KCN = 62.4°, rCK = 5.492a0, and rCN = 2.186a0.
Bisri, Satria Zulkarnaen; Degoli, Elena; Spallanzani, Nicola; Krishnan, Gopi; Kooi, Bart Jan; Ghica, Corneliu; Yarema, Maksym; Heiss, Wolfgang; Pulci, Olivia; Ossicini, Stefano; Loi, Maria Antonietta
2014-08-27
Colloidal nanocrystals electronic energy levels are determined by strong size-dependent quantum confinement. Understanding the configuration of the energy levels of nanocrystal superlattices is vital in order to use them in heterostructures with other materials. A powerful method is reported to determine the energy levels of PbS nanocrystal assemblies by combining the utilization of electric-double-layer-gated transistors and advanced ab-initio theory. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gorai, S.; Ghosh, P. S.; Bhattacharya, C.; Arya, A.
2018-04-01
The pressure evolution of phase stability, structural and mechanical properties of Fe3C in ferro-magnetic (FM) and high pressure non magnetic (NM) phase is investigated from first principle calculations. The 2nd order FM to NM phase transition of Fe3C is identified around 60 GPa. Pressure (or density) variation of sound velocities from our ab-initio calculated single crystal elastic constants are determined to predict these parameters at Earth's outer core pressure.
The study of molecular spectroscopy by ab initio methods
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1991-01-01
This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.
Ab initio Kinetics and Thermal Decomposition Mechanism of Mononitrobiuret and 1,5-Dinitrobiuret
2016-03-14
Journal Article 3. DATES COVERED (From - To) Feb 2015-May 2015 4. TITLE AND SUBTITLE Ab initio Kinetics and Thermal Decomposition Mechanism of 5a...tetrazole-free, nitrogen-rich, energetic compounds. For the first time, the thermal decomposition mechanisms of MNB and DNB have been investigated...potential energy surfaces for thermal decomposition of MNB and DNB were characterized at the RCCSD(T)/cc-pV∞Z//M06-2X/aug- cc-pVTZ level of theory
Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.
2016-11-29
Here, we present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of BCC Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT). All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP). The data is stored in the NIST dSpace repository.
NASA Astrophysics Data System (ADS)
Ching, W. Y.; Rulis, Paul; Ouyang, Lizhi; Misra, A.
2009-02-01
We report the results of a large-scale ab initio simulation of an intergranular glassy film (IGF) model in β-Si3N4. It is shown that the stress-strain behavior under uniaxial load in the model with prismatic surfaces and few defective bonds is very different from an earlier IGF model with basal planes. The results are explained by the fundamental electronic structure of the model.
Karamanis, Panaghiotis; Pouchan, Claude; Leszczynski, Jerzy
2008-12-25
A systematic ab initio comparative study of the (hyper)polarizabilities of selected III-V stoichiometric semiconductor clusters has been carried out. Our investigation focuses on the ground state structures of the dimers and on two dissimilar trimer configurations of aluminum, gallium, indium phosphide and arsenide. The basis set effect on both the polarizabilities and hyperpolarizabilities of the studied systems has been explicitly taken into account relying on the augmented correlation consistent aug-cc-pVnZ (n = D, T, Q, and 5) basis sets series. In addition, a rough estimation of the effects of the relativistic effects on the investigated properties is provided by extension of the study to include calculations performed with relativistic electron core potentials (or pseudopotentials). Electron correlation effects have been estimated utilizing methods of increasing predictive reliability, e.g., the Møller-Plesset many body perturbation theory and the couple cluster approach. Our results reveal that in the considered semiconductor species the Group III elements (Al, Ga, In) play a vital role on the values of their relative (hyper)polarizability. At all levels of theory employed the most hyperpolarizable clusters are the indium derivatives while the aluminum arsenide clusters also exhibit high, comparable hyperpolarizabilities. The less hyperpolarizable species are those composed of gallium and this is associated with the strong influence of the nuclear charge on the valence electrons of Ga due to the poor shielding that is provided by the semicore d electrons. In addition, the analysis of the electronic structure and the hyperpolarizability magnitudes reveals that clusters, in which their bonding is characterized by strong electron transfer from the electropositive to the electronegative atoms, are less hyperpolarizable than species in which the corresponding electron transfer is weaker. Lastly, from the methodological point of view our results point out that the hyperpolarizabilities of those species converge when an augmented triple-zeta quality basis set is used and, also, that the second order Møller-Plesset approximation (MP2) overestimates considerably their second hyperpolarizabilities with respect to the highest level of coupled cluster theory applied in this study (CCSD(T)).
NASA Astrophysics Data System (ADS)
Förner, Wolfgang
1992-03-01
Ab initio investigations of the bond alternation in butadiene are presented. The atomic basis sets applied range from minimal to split valence plus polarization quality. With the latter one the Hartree-Fock limit for the bond alternation is reached. Correlation is considered on Møller-Plesset many-body perturbation theory of second order (MP2), linear coupled cluster doubles (L-CCD) and coupled cluster doubles (CCD) level. For the smaller basis sets it is shown that for the bond alternation π-π correlations are essential while the effects of σ-σ and σ-π correlations are, though large, nearly independent of bond alternation. On MP2 level the variation of σ-π correlation with bond alternation is surprisingly large. This is discussed as an artefact of MP2. Comparative Su-Schrieffer-Heeger (SSH) and Pariser-Parr-Pople (PPP) calculations show that these models in their usual parametrizations cannot reproduce the ab initio results.
Operator evolution for ab initio electric dipole transitions of 4He
Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; ...
2015-07-24
A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less
Three-cluster dynamics within an ab initio framework
Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr
2013-09-26
In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core ( 4He) polarization effects.« less
Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides
NASA Astrophysics Data System (ADS)
Rosenow, Phil; Bannow, Lars C.; Fischer, Eric W.; Stolz, Wolfgang; Volz, Kerstin; Koch, Stephan W.; Tonner, Ralf
2018-02-01
While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The origin of the computational problems is the strong distortion exerted by the N atoms on most host materials. Here, these issues are resolved by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, it is shown that the distortion field of a single N atom must be allowed to decrease so far that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing us to compute band gaps in very good agreement with experimentally derived reference values. In addition to existing approaches, these results offer a promising ab initio avenue to the electronic structure of dilute nitride semiconductor compounds.
Ab Initio Classical Dynamics Simulations of CO_2 Line-Mixing Effects in Infrared Bands
NASA Astrophysics Data System (ADS)
Lamouroux, Julien; Hartmann, Jean-Michel; Tran, Ha; Snels, Marcel; Stefani, Stefania; Piccioni, Giuseppe
2013-06-01
Ab initio calculations of line-mixing effects in CO_2 infrared bands are presented and compared with experiments. The predictions were carried using requantized Classical Dynamics Molecular Simulations (rCDMS) based on an approach previously developed and successfully tested for CO_2 isolated line shapes. Using classical dynamics equations, the force and torque applied to each molecule by the surrounding molecules (described by an ab initio intermolecular potential) are computed at each time step. This enables, using a requantization procedure, to predict dipole and isotropic polarizability auto-correlation functions whose Fourier-Laplace transforms yield the spectra. The quality of the rCDMS calculations is demonstrated by comparisons with measured spectra in the spectral regions of the 3ν_3 and 2ν_1+2ν_2+ν_3 Infrared bands. J.-M. Hartmann, H. Tran, N. H. Ngo, et al., Phys. Rev. Lett. A {87} (2013), 013403. H. Tran, C. Boulet, M. Snels, S. Stefani, J. Quant. Spectrosc. Radiat. Transfer {112} (2011), 925-936.
Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models
NASA Technical Reports Server (NTRS)
Rammacher, W.; Cuntz, M.
1991-01-01
Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.
Hoy, Erik P; Mazziotti, David A
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.
Ab initio simulations of iron-nickel alloys at Earth's core conditions
NASA Astrophysics Data System (ADS)
Côté, Alexander S.; Vočadlo, Lidunka; Brodholt, John P.
2012-09-01
We report ab initio density functional theory calculations on iron-nickel (FeNi) alloys at conditions representative of the Earth's inner core. We test different concentrations of Ni, up to ∼39 wt% using ab initio lattice dynamics, and investigate the thermodynamic and vibrational stability of the three candidate crystal structures (bcc, hcp and fcc). First of all, at inner core pressures, we find that pure Fe transforms from the hcp to the fcc phase at around 6000 K. Secondly, in agreement with low pressure experiments on Fe-Ni alloys, we find the fcc structure is stabilised by the incorporation of Ni under core pressures and temperatures. Our results show that the fcc structure may, therefore, be stable under core conditions depending on the temperature in the inner core and the Ni content. Lastly, we find that within the quasi-harmonic approximation, there is no stability field for FeNi alloys in the bcc structure under core conditions.
NASA Astrophysics Data System (ADS)
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
Automated generation of radical species in crystalline carbohydrate using ab initio MD simulations.
Aalbergsjø, Siv G; Pauwels, Ewald; Van Yperen-De Deyne, Andy; Van Speybroeck, Veronique; Sagstuen, Einar
2014-08-28
As the chemical structures of radiation damaged molecules may differ greatly from their undamaged counterparts, investigation and description of radiation damaged structures is commonly biased by the researcher. Radical formation from ionizing radiation in crystalline α-l-rhamnose monohydrate has been investigated using a new method where the selection of radical structures is unbiased by the researcher. The method is based on using ab initio molecular dynamics (MD) studies to investigate how ionization damage can form, change and move. Diversity in the radical production is gained by using different points on the potential energy surface of the intact crystal as starting points for the ionizations and letting the initial velocities of the nuclei after ionization be generated randomly. 160 ab initio MD runs produced 12 unique radical structures for investigation. Out of these, 7 of the potential products have never previously been discussed, and 3 products are found to match with radicals previously observed by electron magnetic resonance experiments.
NASA Astrophysics Data System (ADS)
Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano
2017-12-01
There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.
NASA Technical Reports Server (NTRS)
Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray
2011-01-01
Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.
Phenolic Polymer Solvation in Water and Ethylene Glycol, II: Ab Initio Computations.
Bauschlicher, Charles W; Bucholz, Eric W; Haskins, Justin B; Monk, Joshua D; Lawson, John W
2017-04-06
Ab initio techniques are used to study the interaction of ethylene glycol and water with a phenolic polymer. The water bonds more strongly with the phenolic OH than with the ring. The phenolic OH groups can form hydrogen bonds between themselves. For more than one water molecule, there is a competition between water-water and water-phenolic interactions. Ethylene glycol shows the same effects as those of water, but the potential energy surface is further complicated by CH 2 -phenolic interactions, different conformers of ethylene glycol, and two OH groups on each molecule. Thus, the ethylene glycol-phenolic potential is more complicated than the water-phenolic potential. The results of the ab initio calculations are compared to those obtained using a force field. These calibration studies show that the water system is easier to describe than the ethylene glycol system. The calibration studies confirm the reliability of force fields used in our companion molecular dynamics study of a phenolic polymer in water and ethylene solutions.
NASA Astrophysics Data System (ADS)
Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin
2011-01-01
Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and/or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S1) as well as the second excited singlet (S2) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S1 state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S2 state. Ab initio calculations using the density functional theory at B3LYP/6-31G** level corroborate well with the experimental observations.
Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin
2011-01-28
Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and∕or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S(1)) as well as the second excited singlet (S(2)) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S(1) state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S(2) state. Ab initio calculations using the density functional theory at B3LYP∕6-31G∗∗ level corroborate well with the experimental observations.
Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study
NASA Astrophysics Data System (ADS)
Amaran, Saieswari; Kumar, Sanjay
2007-12-01
State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.
Nonconventional screening of the Coulomb interaction in FexOy clusters: An ab initio study
NASA Astrophysics Data System (ADS)
Peters, L.; Şaşıoǧlu, E.; Rossen, S.; Friedrich, C.; Blügel, S.; Katsnelson, M. I.
2017-04-01
From microscopic point-dipole model calculations of the screening of the Coulomb interaction in nonpolar systems by polarizable atoms, it is known that screening strongly depends on dimensionality. For example, in one-dimensional systems, the short-range interaction is screened, while the long-range interaction is antiscreened. This antiscreening is also observed in some zero-dimensional structures, i.e., molecular systems. By means of ab initio calculations in conjunction with the random-phase approximation (RPA) within the FLAPW method, we study screening of the Coulomb interaction in FexOy clusters. For completeness, these results are compared with their bulk counterpart magnetite. It appears that the on-site Coulomb interaction is very well screened both in the clusters and bulk. On the other hand, for the intersite Coulomb interaction, the important observation is made that it is almost constant throughout the clusters, while for the bulk it is almost completely screened. More precisely and interestingly, in the clusters antiscreening is observed by means of ab initio calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun, E-mail: jli15@cqu.edu.cn, E-mail: zhangdh@dicp.ac.cn; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131; Chen, Jun
2015-05-28
We report a permutationally invariant global potential energy surface (PES) for the H + CH{sub 4} system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (J{sub tot} = 0) including themore » abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].« less
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.
2016-05-01
We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.
Ab initio study of the structural properties of acetonitrile-water mixtures
NASA Astrophysics Data System (ADS)
Chen, Jinfan; Sit, Patrick H.-L.
2015-08-01
Structural properties of acetonitrile and acetonitrile-water mixtures are studied using Density Functional Theory (DFT) and ab initio molecular dynamics simulations. Stable molecular clusters consisted of several water and acetonitrile molecules are identified to provide microscopic understanding of the interaction among water and acetonitrile molecules. Ab initio molecular dynamics simulations are performed to study the liquid structure at the finite temperature. Three mixing compositions in which the mole fraction of acetonitrile equals 0.109, 0.5 and 0.891 are studied. These compositions correspond to three distinct structural regimes. At the 0.109 and 0.891 mole fraction of acetonitrile, the majority species are mostly connected among themselves and the minority species are either isolated or forming small clusters without disrupting the network of the majority species. At the 0.5 mole fraction of acetonitrile, large water and acetonitrile clusters persist throughout the simulation, exhibiting the microheterogeneous behavior in acetonitrile-water mixtures in the mid-range mixing ratio.
Using Ab-Initio Calculations to Appraise Stm-Based - and Kink-Formation Energies
NASA Astrophysics Data System (ADS)
Feibelman, Peter J.
2001-03-01
Ab-initio total energies can and should be used to test the typically model-dependent results of interpreting STM morphologies. The benefits of such tests are illustrated here by ab-initio energies of step- and kink-formation on Pb and Pt(111) which show that the STM-based values of the kink energies must be revised. On Pt(111), the computed kink-energies for (100)- and (111)-microfacet steps are about 0.25 and 0.18 eV. These results imply a specific ratio of formation energies for the two step types, namely 1.14, in excellent agreement with experiment. If kink-formation actually cost the same energy on the two step types, an inference drawn from scanning probe observations of step wandering,(M. Giesen et al., Surf. Sci. 366, 229(1996).) this ratio ought to be 1. In the case of Pb(111), though computed energies to form (100)- and (111)-microfacet steps agree with measurement, the ab-initio kink-formation energies for the two step types, 41 and 60 meV, are 40-50% below experimental values drawn from STM images.(K. Arenhold et al., Surf. Sci. 424, 271(1999).) The discrepancy results from interpreting the images with a step-stiffness vs. kink-energy relation appropriate to (100) but not (111) surfaces. Good agreement is found when proper account of the trigonal symmetry of Pb(111) is taken in reinterpreting the step-stiffness data.
Summary of Research/Publications
NASA Technical Reports Server (NTRS)
1997-01-01
Summary of research/publications include:(1) Comment on broadening of water microwave lines by collisions with helium atoms; (2) Calculations of ion-molecule deuterium fractionation reactions involving HD; (3) Ab initio predictions on the rotational spectra of carbon-chain carbene molecules; (4) Theoretical IR spectra of ionized naphthalene; (5) Improved collisional excitation rates for interstellar water; (6) Calculations on the competition between association and reaction for C3H+ + H2; (7) Theoretical infrared spectra of some model polycyclic aromatic hydrocarbons: effect of ionization; (8) Calculations concerning interstellar isomeric abundance ratios for C3H and C3H2; (9) New calculations on the ion-molecule processes C2H2+ + H2 C2H3+ + H and C2H2+ + H2 C2H4+; (10) Anisotropic rigid rotor potential energy function for H2O-H2; (11) A correlated ab initio study of linear carbon-chain radicals CnH (n=2-7); (12) Ab initio characterization of MgCCH, MgCCH+, and MgC2 and pathways to their formation in the interstellar medium; (13) Why HOC+ is detectable in interstellar clouds: The rate of the reaction between HOC+ and H2; (14) A correlated ab initio study of the X 2A 1 and A 2E states of MgCH3; (15) On the stability of interstellar carbon clusters: The rate of the reaction between C3 and O; and (16) The rate of the reaction between CN and C2H2 at interstellar temperatures.
Ab Initio Predictions of Hexagonal Zr(B,C,N) Polymorphs for Coherent Interface Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G.
2017-10-27
Density functional theory calculations are used to explore hexagonal (HX) NiAs-like polymorphs of Zr(B,C,N) and compare with corresponding Zr(B,C,N) Hagg-like face-centered cubic rocksalt (B1) phases. While all predicted compounds are mechanically stable according to the Born-Huang criteria, only HX Zr(C,N) are found dynamically stable from ab initio molecular dynamics simulations and lattice dynamics calculations. HX ZrN emerges as a candidate structure with ground state energy, elastic constants, and extrinsic mechanical parameters comparable with those of B1 ZrN. Ab initio band structure and semi-classical Boltzmann transport calculations predict a metallic character and a monotonic increase in electrical conductivity with the numbermore » of valence electrons. Electronic structure calculations indicate that the HX phases gain their stability and mechanical attributes by Zr d- non-metal p hybridization and by broadening of Zr d bands. Furthermore, it is shown that the HX ZrN phase provides a low-energy coherent interface model for connecting B1 ZrN domains, with significant energetic advantage over an atomistic interface model derived from high resolution transmission electron microscopy images. The ab initio characterizations provided herein should aid the experimental identification of non-Hagg-like hard phases. Furthermore, the results can also enrich the variety of crystalline phases potentially available for designing coherent interfaces in superhard nanostructured materials and in materials with multilayer characteristics.« less
Ramos, Patrícia; Schmitz, Marcos; Filgueira, Daza; Votto, Ana Paula; Durruthy, Michael; Gelesky, Marcos; Ruas, Caroline; Yunes, João; Tonel, Mariana; Fagan, Solange; Monserrat, José
2017-07-01
Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 10 4 cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL -1 ), STX (200 μg L -1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC. © 2016 SETAC.
A Model for Predicting Thermoelectric Properties of Bi2Te3
NASA Technical Reports Server (NTRS)
Lee, Seungwon; VonAllmen, Paul
2009-01-01
A parameterized orthogonal tight-binding mathematical model of the quantum electronic structure of the bismuth telluride molecule has been devised for use in conjunction with a semiclassical transport model in predicting the thermoelectric properties of doped bismuth telluride. This model is expected to be useful in designing and analyzing Bi2Te3 thermoelectric devices, including ones that contain such nano - structures as quantum wells and wires. In addition, the understanding gained in the use of this model can be expected to lead to the development of better models that could be useful for developing other thermoelectric materials and devices having enhanced thermoelectric properties. Bi2Te3 is one of the best bulk thermoelectric materials and is widely used in commercial thermoelectric devices. Most prior theoretical studies of the thermoelectric properties of Bi2Te3 have involved either continuum models or ab-initio models. Continuum models are computationally very efficient, but do not account for atomic-level effects. Ab-initio models are atomistic by definition, but do not scale well in that computation times increase excessively with increasing numbers of atoms. The present tight-binding model bridges the gap between the well-scalable but non-atomistic continuum models and the atomistic but poorly scalable ab-initio models: The present tight-binding model is atomistic, yet also computationally efficient because of the reduced (relative to an ab-initio model) number of basis orbitals and flexible parameterization of the Hamiltonian.
Acceleration of saddle-point searches with machine learning.
Peterson, Andrew A
2016-08-21
In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.
Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models
Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.
2010-01-01
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the current study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives ∂Dlm′m/∂Ω. The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. PMID:20839297
Acceleration of saddle-point searches with machine learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Andrew A., E-mail: andrew-peterson@brown.edu
In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the numbermore » of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.« less
NASA Astrophysics Data System (ADS)
Sun, Xiao-Wei; Liu, Zi-Jiang; Quan, Wei-Long; Song, Ting; Khenata, Rabah; Bin-Omran, Saad
2018-05-01
Using the revised Perdew-Burke-Ernzerhof generalized gradient approximation based on first-principles plane-wave pseudopotential density functional theory, the high-pressure structural phase transition of LiF is explored. From the analysis of Gibbs free energies, we find that no phase transition occurs for LiF in the presented pressure range from 0 to 1000 GPa, and this result is consistent with the theoretical prediction obtained via ab initio calculations [N.A. Smirnov, Phys. Rev. B 83 (2011) 014109]. Using the classical molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction, the melting phase diagram of LiF is determined. The obtained normalized volumes under pressure are in good agreement with our density functional theory results and the available experimental data. Meanwhile, with the help of the quasi-harmonic Debye model in which the phononic effects are considered, the thermodynamic properties of interest, including the volume thermal expansion coefficient, isothermal bulk modulus and its first and second pressure derivatives, heat capacity at constant volume, entropy, Debye temperature, and Grüneisen parameter of LiF are predicted systematically. All the properties of LiF with the stable NaCl-type structure in the temperature range of 0-4900 K and the pressure up to 1000 GPa are summarized.
Understanding Reflectance Anisotropy: Surface-structure signatures and bulk-related features
NASA Astrophysics Data System (ADS)
Gero Schmidt, W.
2000-03-01
Reflectance anisotropy spectroscopy (RAS) is becoming an increasingly important tool for in situ control of semiconductor processing with real-time feedback. The understanding and interpretation of the measured spectra, however, has been hampered by relatively slow theoretical progress. Using a massively parallel real-space multigrid technique [1] and ab initio pseudopotentials we calculated the optical spectra of a variety of III-V(001) growth structures and stepped Si(111):H surfaces. Our results agree well with experiment, notably with respect to the stoichiometric changes induced by different surface preparations. We identify two distinct sources for the optical anisotropy: (i) highly structure-dependent features are caused by transitions involving electronic surface states, and (ii) derivative-like oscillations or peaks at the bulk critical point energies arise from transitions between surface-modified bulk wave functions. The latter are nearly independent from the actual surface structure. The agreement between the calculated and measured spectra is further improved by applying quasi-particle corrections obtained from numerically efficient, simplified GW calculations [2]. The combination of converged first-principles calculations with an approximate treatment of many-particle effects allows the reliable identification of ``surface-structure fingerprints'' in the optical spectra, paving the way for the exploitation of their rich technological potential. [1ex] [1] EL Briggs, DJ Sullivan, J Bernholc, Phys. Rev. B 54, 14362 (1996). [2] F Bechstedt, R Del Sole, G Cappellini, L Reining, Solid State Commun. 84, 765 (1992).
Investigation of hydrogen interaction with defects in zirconia
NASA Astrophysics Data System (ADS)
Melikhova, O.; Kuriplach, J.; Čížek, J.; Procházka, I.; Brauer, G.; Anwand, W.
2010-04-01
Defect studies of a ZrO2 + 9 mol. % Y2O3 single crystal were performed in this work using a high resolution positron lifetime spectroscopy combined with slow positron implantation spectroscopy. In order to elucidate the nature of positron trapping sites observed experimentally, the structural relaxations of several types of vacancy-like defects in zirconia were performed and positron characteristics for them were calculated. Relaxed atomic configurations of studied defects were obtained by means of ab initio pseudopotential method within the supercell approach. Theoretical calculations indicated that neither oxygen vacancies nor their neutral complexes with substitute yttrium atoms are capable of positron trapping. On the other hand, zirconium vacancies are deep positron traps and are most probably responsible for the saturated positron trapping observed in yttria stabilized zirconia single crystals. However, the calculated positron lifetime for zirconium vacancy is apparently longer than the experimental value corresponding to a single-component spectrum measured for the cubic ZrO2 + 9 mol. % Y2O3 single crystal. It was demonstrated that this effect can be explained by hydrogen trapped in zirconium vacancies. On the basis of structure relaxations, we found that zirconium vacancy - hydrogen complexes represent deep positron traps with the calculated lifetime close to the experimental one. In zirconium vacancy - hydrogen complexes the hydrogen atom forms an O-H bond with one of the nearest neighbour oxygen atoms. The calculated bond length is close to 1 Å.
DFT +U Modeling of Hole Polarons in Organic Lead Halide Perovskites
NASA Astrophysics Data System (ADS)
Welch, Eric; Erhart, Paul; Scolfaro, Luisa; Zakhidov, Alex
Due to the ever present drive towards improved efficiencies in solar cell technology, new and improved materials are emerging rapidly. Organic halide perovskites are a promising prospect, yet a fundamental understanding of the organic perovskite structure and electronic properties is missing. Particularly, explanations of certain physical phenomena, specifically a low recombination rate and high mobility of charge carriers still remain controversial. We theoretically investigate possible formation of hole polarons adopting methodology used for oxide perovskites. The perovskite studied here is the ABX3structure, with A being an organic cation, B lead and C a halogen; the combinations studied allow for A1,xA2 , 1 - xBX1,xX2 , 3 - xwhere the alloy convention is used to show mixtures of the organic cations and/or the halogens. Two organic cations, methylammonium and formamidinium, and three halogens, iodine, chlorine and bromine are studied. Electronic structures and polaron behavior is studied through first principle density functional theory (DFT) calculations using the Vienna Ab Initio Simulation Package (VASP). Local density approximation (LDA) pseudopotentials are used and a +U Hubbard correction of 8 eV is added; this method was shown to work with oxide perovskites. It is shown that a localized state is realized with the Hubbard correction in systems with an electron removed, residing in the band gap of each different structure. Thus, hole polarons are expected to be seen in these perovskites.
Muon contact hyperfine field in metals: A DFT calculation
NASA Astrophysics Data System (ADS)
Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto
2018-05-01
In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.
Elastic constants of random solid solutions by SQS and CPA approaches: the case of fcc Ti-Al.
Tian, Li-Yun; Hu, Qing-Miao; Yang, Rui; Zhao, Jijun; Johansson, Börje; Vitos, Levente
2015-08-12
Special quasi-random structure (SQS) and coherent potential approximation (CPA) are techniques widely employed in the first-principles calculations of random alloys. Here we scrutinize these approaches by focusing on the local lattice distortion (LLD) and the crystal symmetry effects. We compare the elastic parameters obtained from SQS and CPA calculations, taking the random face-centered cubic (fcc) Ti(1-x)Al(x) (0 ≤ x ≤ 1) alloy as an example of systems with components showing different electronic structures and bonding characteristics. For the CPA and SQS calculations, we employ the Exact Muffin-Tin Orbitals (EMTO) method and the pseudopotential method as implemented in the Vienna Ab initio Simulation Package (VASP), respectively. We show that the predicted trends of the VASP-SQS and EMTO-CPA parameters against composition are in good agreement with each other. The energy associated with the LLD increases with x up to x = 0.625 ~ 0.750 and drops drastically thereafter. The influence of the LLD on the lattice constants and C12 elastic constant is negligible. C11 and C44 decrease after atomic relaxation for alloys with large LLD, however, the trends of C11 and C44 are not significantly affected. In general, the uncertainties in the elastic parameters associated with the symmetry lowering turn out to be superior to the differences between the two techniques including the effect of LLD.
Thermal conductivity of wurtzite and zinc blende cubic phases of BeO from ab initio calculations
NASA Astrophysics Data System (ADS)
Malakkal, Linu; Szpunar, Barbara; Siripurapu, Ravi Kiran; Zuniga, Juan Carlos; Szpunar, Jerzy A.
2017-03-01
The structural, mechanical, thermal and thermodynamic properties of Beryllium oxide (BeO) in the zinc blende (ZB) and wurtzite (WZ) form have been calculated using the density functional theory (DFT) in the general gradient approximation (GGA). The ground state structural and elastic properties of wurtzite BeO (w-BeO) is calculated using the new GGA ultrasoft pseudopotentials for solids (pbesol); the simulated results have shown excellent agreement with the experiments. The thermodynamic properties are studied using quasi-harmonic approximation (QHA), and the predicted properties agree well for the WZ phase for which the experimental data are available, while for ZB phase it remains to be validated with future experiments. Both Boltzmann transport equation (BTE) and Slack model were used to calculate the lattice thermal conductivity of wurtzite BeO (w-BeO). Furthermore, the thermal conductivity along the crystallographic 'a' and 'c' axis of wurtzite BeO is investigated using BTE. Our calculation of w-BeO agrees well with the available experimental measurements. Apart from these studies on w-BeO, we have also compared the mechanical, structural and phonon dispersions of z-BeO with previously reported theoretical studies. Additionally we report the volume thermal expansion and the heat capacity at constant pressure of z-BeO for the first time and the bulk thermal conductivity of zinc blende BeO (z-BeO) using BTE.
NASA Astrophysics Data System (ADS)
Pietrucci, Fabio; Andreoni, Wanda
2011-08-01
Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.
Ab-initio study of several static and dynamic properties of liquid palladium and platinum
NASA Astrophysics Data System (ADS)
González, L. E.; González, D. J.; Molla, Mohammad Riazuddin; Ahmed, A. Z. Ziauddin; Bhuiyan, G. M.
2017-08-01
We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data.
Midtvedt, Daniel; Croy, Alexander
2016-06-10
We compare the simplified valence-force model for single-layer black phosphorus with the original model and recent ab initio results. Using an analytic approach and numerical calculations we find that the simplified model yields Young's moduli that are smaller compared to the original model and are almost a factor of two smaller than ab initio results. Moreover, the Poisson ratios are an order of magnitude smaller than values found in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holst, Bastian; French, Martin; Redmer, Ronald
2011-06-15
Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.
High order discretization techniques for real-space ab initio simulations
NASA Astrophysics Data System (ADS)
Anderson, Christopher R.
2018-03-01
In this paper, we present discretization techniques to address numerical problems that arise when constructing ab initio approximations that use real-space computational grids. We present techniques to accommodate the singular nature of idealized nuclear and idealized electronic potentials, and we demonstrate the utility of using high order accurate grid based approximations to Poisson's equation in unbounded domains. To demonstrate the accuracy of these techniques, we present results for a Full Configuration Interaction computation of the dissociation of H2 using a computed, configuration dependent, orbital basis set.
Ab initio study of the alkaline hydrolysis of a thio-β-lactam structure
NASA Astrophysics Data System (ADS)
Coll, Miguel; Frau, Juan; Vilanova, Bartolomé; Donoso, Josefa; Muñoz, Francisco
2000-08-01
The alkaline hydrolysis of a thio-β-lactam in the gas phase was examined in the light of RHF and DFT ab initio calculations. The solvent effect was considered via IPCM computations. The tetrahedral intermediate for the thio-β-lactam studied is unstable, so the compound evolves directly to the corresponding thio-azethidin-2-one open ring with cleavage of the C-S bond. The end-products obtained bear a carbamate group, which suggests that the thio-β-lactam might be an effective inhibitor for β-lactamases.
Ab initio R-matrix calculations of e+-molecule scattering
NASA Technical Reports Server (NTRS)
Danby, Grahame; Tennyson, Jonathan
1990-01-01
The adaptation of the molecular R-matrix method, originally developed for electron-molecule collision studies, to positron scattering is discussed. Ab initio R-matrix calculations are presented for collisions of low energy positrons with a number of diatomic systems including H2, HF and N2. Differential elastic cross sections for positron-H2 show a minimum at about 45 deg for collision energies between 0.3 and 0.5 Ryd. The calculations predict a bound state of positronHF. Calculations on inelastic processes in N2 and O2 are also discussed.
Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2
NASA Technical Reports Server (NTRS)
Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.
1976-01-01
The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.
Vibrational energy levels for CH4 from an ab initio potential
NASA Technical Reports Server (NTRS)
Schwenke, D. W.; Partridge, H.
2001-01-01
Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.
Leung, Kevin; Budzien, Joanne L
2010-07-07
The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.
Hybrid classical/quantum simulation for infrared spectroscopy of water
NASA Astrophysics Data System (ADS)
Maekawa, Yuki; Sasaoka, Kenji; Ube, Takuji; Ishiguro, Takashi; Yamamoto, Takahiro
2018-05-01
We have developed a hybrid classical/quantum simulation method to calculate the infrared (IR) spectrum of water. The proposed method achieves much higher accuracy than conventional classical molecular dynamics (MD) simulations at a much lower computational cost than ab initio MD simulations. The IR spectrum of water is obtained as an ensemble average of the eigenvalues of the dynamical matrix constructed by ab initio calculations, using the positions of oxygen atoms that constitute water molecules obtained from the classical MD simulation. The calculated IR spectrum is in excellent agreement with the experimental IR spectrum.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... misleading information, the exemptions are void ab initio. Board decisions and notices are available on our... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 290 (Sub-No. 319X); Docket No. AB 1060X] Central of Georgia Railroad Company--Discontinuance of Service Exemption--Newton...
Relating Ab Initio Mechanical Behavior of Intergranular Glassy Films in Γ-Si3N4 to Continuum Scales
NASA Astrophysics Data System (ADS)
Ouyang, L.; Chen, J.; Ching, W.; Misra, A.
2006-05-01
Nanometer thin intergranular glassy films (IGFs) form in polycrystalline ceramics during sintering at high temperatures. The structure and properties of these IGFs are significantly changed by doping with rare earth elements. We have performed highly accurate large-scale ab initio calculations of the mechanical properties of both undoped and Yittria doped (Y-IGF) model by theoretical uniaxial tensile experiments. Uniaxial strain was applied by incrementally stretching the super cell in one direction, while the other two dimensions were kept constant. At each strain, all atoms in the model were fully relaxed using Vienna Ab initio Simulation Package VASP. The relaxed model at a given strain serves as the starting position for the next increment of strain. This process is carried on until the total energy (TE) and stress data show that the "sample" is fully fractured. Interesting differences are seen between the stress-strain response of undoped and Y-doped models. For the undoped model, the stress-strain behavior indicates that the initial atomic structure of the IGF is such that there is negligible coupling between the x- and the y-z directions. However, once the behavior becomes non- linear the lateral stresses increase, indicating that the atomic structure evolves with loading [1]. To relate the ab initio calculations to the continuum scales we analyze the atomic-scale deformation field under this uniaxial loading [1]. The applied strain in the x-direction is mostly accommodated by the IGF part of the model and the crystalline part experiences almost negligible strain. As the overall strain on the sample is incrementally increased, the local strain field evolves such that locations proximal to the softer spots attract higher strains. As the load progresses, the strain concentration spots coalesce and eventually form persistent strain localization zone across the IGF. The deformation pattern obtained through ab initio calculations indicates that it is possible to construct discrete grain-scale models that may be used to bridge these calculations to the continuum scale for finite element analysis. Reference: 1. J. Chen, L. Ouyang, P. Rulis, A. Misra, W. Y. Ching, Phys. Rev. Lett. 95, 256103 (2005)
NASA Astrophysics Data System (ADS)
Mei, Yuan; Sherman, David M.; Liu, Weihua; Etschmann, Barbara; Testemale, Denis; Brugger, Joël
2015-02-01
The solubility of zinc minerals in hydrothermal fluids is enhanced by chloride complexation of Zn2+. Thermodynamic models of these complexation reactions are central to models of Zn transport and ore formation. However, existing thermodynamic models, derived from solubility measurements, are inconsistent with spectroscopic measurements of Zn speciation. Here, we used ab initio molecular dynamics simulations (with the PBE exchange-correlation functional) to predict the speciation of Zn-Cl complexes from 25 to 600 °C. We also obtained in situ XAS measurements of Zn-Cl solutions at 30-600 °C. Qualitatively, the simulations reproduced the main features derived from in situ XANES and EXAFS measurements: octahedral to tetrahedral transition with increasing temperature and salinity, stability of ZnCl42- at high chloride concentration up to ⩾500 °C, and increasing stability of the trigonal planar [ZnCl3]- complex at high temperature. Having confirmed the dominant species, we directly determined the stability constants for the Zn-Cl complexes using thermodynamic integration along constrained Zn-Cl distances in a series of MD simulations. We corrected our stability constants to infinite dilution using the b-dot model for the activity coefficients of the solute species. In order to compare the ab initio results with experiments, we need to re-model the existing solubility data using the species we identified in our MD simulations. The stability constants derived from refitting published experimental data are in reasonable agreement with those we obtained using ab initio MD simulations. Our new thermodynamic model accurately predicts the experimentally observed changes in ZnO(s) and ZnCO3(s) solubility as a function of chloride concentration from 200 (Psat) to 600 °C (2000 bar). This study demonstrates that metal speciation and geologically useful stability constants can be derived for species in hydrothermal fluids from ab initio MD simulations even at the generalized gradient approximation for exchange-correlation. We caution, however, that simulations are mostly reliable at high T where ligand exchange is fast enough to yield thermodynamic averages over the timescales of the simulations.
ExoMol line list - XXI. Nitric Oxide (NO)
NASA Astrophysics Data System (ADS)
Wong, Andy; Yurchenko, Sergei N.; Bernath, Peter; Müller, Holger S. P.; McConkey, Stephanie; Tennyson, Jonathan
2017-09-01
Line lists for the X 2Π electronic ground state for the parent isotopologue of nitric oxide (14N16O) and five other major isotopologues (14N17O, 14N18O, 15N16O, 15N17O and 15N18O) are presented. The line lists are constructed using empirical energy levels (and line positions) and high-level ab initio intensities. The energy levels were obtained using a combination of two approaches, from an effective Hamiltonian and from solving the rovibronic Schrödinger equation variationally. The effective Hamiltonian model was obtained through a fit to the experimental line positions of NO available in the literature for all six isotopologues using the programs spfit and spcat. The variational model was built through a least squares fit of the ab initio potential and spin-orbit curves to the experimentally derived energies and experimental line positions of the main isotopologue only using the duo program. The ab initio potential energy, spin-orbit and dipole moment curves (PEC, SOC and DMC) are computed using high-level ab initio methods and the marvel method is used to obtain energies of NO from experimental transition frequencies. The line lists are constructed for each isotopologue based on the use of the most accurate energy levels and the ab initio DMC. Each line list covers a wavenumber range from 0 to 40 000 cm-1 with approximately 22 000 rovibronic states and 2.3-2.6 million transitions extending to Jmax = 184.5 and vmax = 51. Partition functions are also calculated up to a temperature of 5000 K. The calculated absorption line intensities at 296 K using these line lists show excellent agreement with those included in the HITRAN and HITEMP data bases. The computed NO line lists are the most comprehensive to date, covering a wider wavenumber and temperature range compared to both the HITRAN and HITEMP data bases. These line lists are also more accurate than those used in HITEMP. The full line lists are available from the CDS http://cdsarc.u-strasbg.fr and ExoMol www.exomol.com data bases; data will also be available from CDMS http://www.cdms.de.
Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J
2013-02-28
A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.
NASA Astrophysics Data System (ADS)
Martins, Luan Carvalho; Torres, Pedro Henrique Monteiro; de Oliveira, Renata Barbosa; Pascutti, Pedro Geraldo; Cino, Elio A.; Ferreira, Rafaela Salgado
2018-05-01
Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC50 = 15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure-activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Lavado, Eloisa; Corchado, Jose C.; Espinosa-Garcia, Joaquin, E-mail: joaquin@unex.es
2014-02-14
Based exclusively on high-level ab initio calculations, a new full-dimensional analytical potential energy surface (PES-2014) for the gas-phase reaction of hydrogen abstraction from methane by an oxygen atom is developed. The ab initio information employed in the fit includes properties (equilibrium geometries, relative energies, and vibrational frequencies) of the reactants, products, saddle point, points on the reaction path, and points on the reaction swath, taking especial caution respecting the location and characterization of the intermediate complexes in the entrance and exit channels. By comparing with the reference results we show that the resulting PES-2014 reproduces reasonably well the whole setmore » of ab initio data used in the fitting, obtained at the CCSD(T) = FULL/aug-cc-pVQZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical surface we perform an extensive dynamics study using quasi-classical trajectory calculations, comparing the results with recent experimental and theoretical data. The excitation function increases with energy (concave-up) reproducing experimental and theoretical information, although our values are somewhat larger. The OH rotovibrational distribution is cold in agreement with experiment. Finally, our results reproduce experimental backward scattering distribution, associated to a rebound mechanism. These results lend confidence to the accuracy of the new surface, which substantially improves the results obtained with our previous surface (PES-2000) for the same system.« less
NASA Astrophysics Data System (ADS)
Martins, Luan Carvalho; Torres, Pedro Henrique Monteiro; de Oliveira, Renata Barbosa; Pascutti, Pedro Geraldo; Cino, Elio A.; Ferreira, Rafaela Salgado
2018-03-01
Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC50 = 15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure-activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.
NASA Astrophysics Data System (ADS)
Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng
2016-05-01
A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol-1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).
Ab initio molecular simulations with numeric atom-centered orbitals
NASA Astrophysics Data System (ADS)
Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias
2009-11-01
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.
Martins, Luan Carvalho; Torres, Pedro Henrique Monteiro; de Oliveira, Renata Barbosa; Pascutti, Pedro Geraldo; Cino, Elio A; Ferreira, Rafaela Salgado
2018-05-01
Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC 50 = 15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure-activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.
Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.
Zhang, Dawei; Liu, Chungen
2016-04-12
The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.
Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D
2009-09-01
Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.
1981-09-01
Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.
NASA Astrophysics Data System (ADS)
Makhov, Dmitry V.; Symonds, Christopher; Fernandez-Alberti, Sebastian; Shalashilin, Dmitrii V.
2017-08-01
The Multiconfigurational Ehrenfest (MCE) method is a quantum dynamics technique which allows treatment of a large number of quantum nuclear degrees of freedom. This paper presents a review of MCE and its recent applications, providing a summary of the formalisms, including its ab initio direct dynamics versions and also giving a summary of recent results. Firstly, we describe the Multiconfigurational Ehrenfest version 2 (MCEv2) method and its applicability to direct dynamics and report new calculations which show that the approach converges to the exact result in model systems with tens of degrees of freedom. Secondly, we review previous ;on the fly; ab initio Multiple Cloning (AIMC-MCE) MCE dynamics results obtained for systems of a similar size, in which the calculations treat every electron and every nucleus of a polyatomic molecule on a fully quantum basis. We also review the Time Dependent Diabatic Basis (TDDB) version of the technique and give an example of its application. We summarise the details of the sampling techniques and interpolations used for calculation of the matrix elements, which make our approach efficient. Future directions of work are outlined.
Ab initio study of the structure and dynamics of bulk liquid Fe
NASA Astrophysics Data System (ADS)
Marqués, M.; González, L. E.; González, D. J.
2015-10-01
Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the structure factor which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, with an associated dispersion relation which closely follows the experimental data. The dynamic structure factors S (q ,ω ) show a good agreement with their experimental counterparts which have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and the results are compared with the available experimental data.
NASA Astrophysics Data System (ADS)
Tan, Rui Shan; Zhai, Huan Chen; Yan, Wei; Gao, Feng; Lin, Shi Ying
2017-04-01
A new ab initio potential energy surface (PES) for the ground state of Li + HCl reactive system has been constructed by three-dimensional cubic spline interpolation of 36 654 ab initio points computed at the MRCI+Q/aug-cc-pV5Z level of theory. The title reaction is found to be exothermic by 5.63 kcal/mol (9 kcal/mol with zero point energy corrections), which is very close to the experimental data. The barrier height, which is 2.99 kcal/mol (0.93 kcal/mol for the vibrationally adiabatic barrier height), and the depth of van der Waals minimum located near the entrance channel are also in excellent agreement with the experimental findings. This study also identified two more van der Waals minima. The integral cross sections, rate constants, and their dependence on initial rotational states are calculated using an exact quantum wave packet method on the new PES. They are also in excellent agreement with the experimental measurements.
Thermal Conductivities in Solids from First Principles: Accurate Computations and Rapid Estimates
NASA Astrophysics Data System (ADS)
Carbogno, Christian; Scheffler, Matthias
In spite of significant research efforts, a first-principles determination of the thermal conductivity κ at high temperatures has remained elusive. Boltzmann transport techniques that account for anharmonicity perturbatively become inaccurate under such conditions. Ab initio molecular dynamics (MD) techniques using the Green-Kubo (GK) formalism capture the full anharmonicity, but can become prohibitively costly to converge in time and size. We developed a formalism that accelerates such GK simulations by several orders of magnitude and that thus enables its application within the limited time and length scales accessible in ab initio MD. For this purpose, we determine the effective harmonic potential occurring during the MD, the associated temperature-dependent phonon properties and lifetimes. Interpolation in reciprocal and frequency space then allows to extrapolate to the macroscopic scale. For both force-field and ab initio MD, we validate this approach by computing κ for Si and ZrO2, two materials known for their particularly harmonic and anharmonic character. Eventually, we demonstrate how these techniques facilitate reasonable estimates of κ from existing MD calculations at virtually no additional computational cost.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L
2016-05-13
We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.
In search of a viable reaction pathway in the chelation of a metallo-protein
NASA Astrophysics Data System (ADS)
Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry
2010-03-01
Misfolded metallo-proteins are potential causal agents in the onset of neuro-degenerative diseases, such as Alzheimer's and Parkinson's Diseases (PD). Experimental results involving metal chelation have shown significant promise in symptom reduction and misfolding reversal. We explore, through atomistic simulations, potential reaction pathways for the chelation of Cu^2+ from the metal binding site in our representation of a partially misfolded α-synuclein, the protein implicated in PD. Our ab initio simulations use Density Functional Theory (DFT) and nudged elastic band to obtain the minimized energy coordinates of this reaction. Our simulations include ab initio water at the interaction site and in its first solvation shells, while the remainder is fully solvated with orbital-free DFT water representation [1]. Our ongoing studies of viable chelation agents include nicotine, caffeine and other potential reagents, we will review the best case agents in this presentation. [4pt] [1] Hodak M, Lu W, Bernholc J. Hybrid ab initio Kohn-Sham density functional theory/frozen-density orbital-free density functional theory simulation method suitable for biological systems. J. Chem. Phys. 2008 Jan;128(1):014101-9.
NASA Astrophysics Data System (ADS)
Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team
In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.
Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method
NASA Astrophysics Data System (ADS)
Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio
2015-04-01
We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.
Su, Zheng; Borho, Nicole; Xu, Yunjie
2006-12-27
In this report, we describe rotational spectroscopic and high-level ab initio studies of the 1:1 chiral molecular adduct of propylene oxide dimer. The complexes are bound by weak secondary hydrogen bonds, that is, the O(epoxy)...H-C noncovalent interactions. Six homochiral and six heterochiral conformers were predicted to be the most stable configurations where each monomer acts as a proton acceptor and a donor simultaneously, forming two six- or five-membered intermolecular hydrogen-bonded rings. Rotational spectra of six, that is, three homochiral and heterochiral conformer pairs, out of the eight conformers that were predicted to have sufficiently large permanent electric dipole moments were measured and analyzed. The relative conformational stability order and the signs of the chiral recognition energies of the six conformers were determined experimentally and were compared to the ab initio computational results. The experimental observations and the ab initio calculations suggest that the concerted effort of these weak secondary hydrogen bonds can successfully lock the subunits in a particular orientation and that the overall binding strength is comparable to a classic hydrogen bond.
A new ab initio potential energy surface for the Ne-H 2 interaction
NASA Astrophysics Data System (ADS)
Lique, François
2009-03-01
A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.
Zhang, Yi-Quan; Luo, Cheng-Lin; Zhang, Qiang
2014-05-05
The origin of the magnetic anisotropy energy barriers in a series of bpym(-) (bpym = 2,2'-bipyrimidine) radical-bridged dilanthanide complexes [(Cp*2Ln)2(μ-bpym)](+) [Cp* = pentamethylcyclopentadienyl; Ln = Gd(III) (1), Tb(III) (2), Dy(III) (3), Ho(III) (4), Er(III) (5)] has been explored using density functional theory (DFT) and ab initio methods. DFT calculations show that the exchange coupling between the two lanthanide ions for each complex is very weak, but the antiferromagnetic Ln-bpym(-) couplings are strong. Ab initio calculations show that the effective energy barrier of 2 or 3 mainly comes from the contribution of a single Tb(III) or Dy(III) fragment, which is only about one third of a single Ln energy barrier. For 4 or 5, however, both of the two Ho(III) or Er(III) fragments contribute to the total energy barrier. Thus, it is insufficient to only increase the magnetic anisotropy energy barrier of a single Ln ion, while enhancing the Ln-bpym(-) couplings is also very important. Copyright © 2014 Wiley Periodicals, Inc.
Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
NASA Astrophysics Data System (ADS)
Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2015-08-01
Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.
A Toolbox for Ab Initio 3-D Reconstructions in Single-particle Electron Microscopy
Voss, Neil R; Lyumkis, Dmitry; Cheng, Anchi; Lau, Pick-Wei; Mulder, Anke; Lander, Gabriel C; Brignole, Edward J; Fellmann, Denis; Irving, Christopher; Jacovetty, Erica L; Leung, Albert; Pulokas, James; Quispe, Joel D; Winkler, Hanspeter; Yoshioka, Craig; Carragher, Bridget; Potter, Clinton S
2010-01-01
Structure determination of a novel macromolecular complex via single-particle electron microscopy depends upon overcoming the challenge of establishing a reliable 3-D reconstruction using only 2-D images. There are a variety of strategies that deal with this issue, but not all of them are readily accessible and straightforward to use. We have developed a “toolbox” of ab initio reconstruction techniques that provide several options for calculating 3-D volumes in an easily managed and tightly controlled work-flow that adheres to standard conventions and formats. This toolbox is designed to streamline the reconstruction process by removing the necessity for bookkeeping, while facilitating transparent data transfer between different software packages. It currently includes procedures for calculating ab initio reconstructions via random or orthogonal tilt geometry, tomograms, and common lines, all of which have been tested using the 50S ribosomal subunit. Our goal is that the accessibility of multiple independent reconstruction algorithms via this toolbox will improve the ease with which models can be generated, and provide a means of evaluating the confidence and reliability of the final reconstructed map. PMID:20018246
Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo
2016-10-27
Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.
Structural phase transition of BeTe: an ab initio molecular dynamics study.
Alptekin, Sebahaddin
2017-08-11
Beryllium telluride (BeTe) with cubic zinc-blende (ZB) structure was studied using ab initio constant pressure method under high pressure. The ab initio molecular dynamics (MD) approach for constant pressure was studied and it was found that the first order phase transition occurs from the ZB structure to the nickel arsenide (NiAs) structure. It has been shown that the MD simulation predicts the transition pressure P T more than the value obtained by the static enthalpy and experimental data. The structural pathway reveals MD simulation such as cubic → tetragonal → orthorhombic → monoclinic → orthorhombic → hexagonal, leading the ZB to NiAs phase. The phase transformation is accompanied by a 10% volume drop and at 80 GPa is likely to be around 35 GPa in the experiment. In the present study, our obtained values can be compared with the experimental and theoretical results. Graphical abstract The energy-volume relation and ZB phase for the BeTe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine
Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less
NASA Astrophysics Data System (ADS)
Shi, Lin; Xu, Ke; Wang, Lin-Wang
2015-05-01
Nonradiative carrier recombination is of both great applied and fundamental importance, but the correct ab initio approaches to calculate it remain to be inconclusive. Here we used five different approximations to calculate the nonradiative carrier recombinations of two complex defect structures GaP :Z nGa-OP and GaN :Z nGa-VN , and compared the results with experiments. In order to apply different multiphonon assisted electron transition formalisms, we have calculated the electron-phonon coupling constants by ab initio density functional theory for all phonon modes. Compared with different methods, the capture coefficients calculated by the static coupling theory are 4.30 ×10-8 and 1.46 ×10-7c m3/s for GaP :Z nGa-OP and GaN :Z nGa-VN , which are in good agreement with the experiment results, (4-1+2) ×10-8 and 3.0 ×10-7c m3/s , respectively. We also provided arguments for why the static coupling theory should be used to calculate the nonradiative decays of semiconductors.
Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F
2008-02-13
Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.
NASA Astrophysics Data System (ADS)
Muchall, Heidi M.; Rademacher, Paul
1997-11-01
The photoelectron (PE) spectra of tetrahydro-1,2,3,4-tetrazines 1 and 2 and tetrahydro-1,2,4,5-tetrazines 3-5 have been recorded and their conformations have been investigated by ab initio SCF calculations. While v-tetrazine 2 is planar, tetrazines 1 and 3-5 each possess two low-energy conformations, according to ab initio HF and Becke3LYP methods. Attempts to assign ionization potentials to molecular orbitals obtained by semiempirical PM3 calculations indicate that this method is not suited for the compounds studied. Best results were obtained when the ab initio hybrid method Becke3LYP of the density functional theory was employed. Two conformers of 1 and 3-5 are present in the gas phase and their PE spectra are superimposed one upon the other. For v-tetrazine 1, ionizations arising from half-chair and unsymmetrical boat conformers have similar energies and cannot be separated in the PE spectrum. For s-tetrazine 3, on the other hand, the spectrum clearly shows different ionizations of both half-chairs, 3ee and 3ae.
Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface
NASA Astrophysics Data System (ADS)
Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.
2013-07-01
The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.
NASA Technical Reports Server (NTRS)
Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)
1994-01-01
Molecular dynamics simulations of POE melts have been performed utilizing a potential force field parameterized to reproduce conformer energies and rotational energy barriers in dimethoxyethane as determined from ab initio electronic structure calculations. Chain conformations and dimensions of POE from the simulations were found to be in good agreement with predictions of a rotational isomeric state (RIS) model based upon the ab initio conformational. energies. The melt chains were found to be somewhat extended relative to chains at theta conditions. This effect will be discussed in light of neutron scattering experiments which indicate that POE chains are extended in the melt relative to theta solutions. The conformational characteristics of POE chains will also be compared with those of other poly (alkylethers), namely poly(oxymethylene), poly(oxytrimethylene) and poly(oxytetramethylene). Local conformational dynamics were found to be more rapid than in polymethylene. Calculated C-H vector correlation times were found to be in reasonable agreement with experimental values from C-13 NMR spin-lattice relaxation times. The influence of ionic salts on local conformations and dynamics will also be discussed.
Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; ...
2016-05-11
Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less
Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid; Wu, Hao; Glarborg, Peter; Pelucchi, Matteo; Faravelli, Tiziano; Marshall, Paul
2018-04-25
Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride. In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4 for which data are scarce were studied by ab initio methods. The model was used to analyze the fate of methyl chloride in gasification processes. The results indicate that CH3Cl emissions will be negligible for most gasification technologies, but could be a concern for fluidized bed gasifiers, in particular in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale.
Dynamics and Novel Mechanisms of SN2 Reactions on ab Initio Analytical Potential Energy Surfaces.
Szabó, István; Czakó, Gábor
2017-11-30
We describe a novel theoretical approach to the bimolecular nucleophilic substitution (S N 2) reactions that is based on analytical potential energy surfaces (PESs) obtained by fitting a few tens of thousands high-level ab initio energy points. These PESs allow computing millions of quasi-classical trajectories thereby providing unprecedented statistical accuracy for S N 2 reactions, as well as performing high-dimensional quantum dynamics computations. We developed full-dimensional ab initio PESs for the F - + CH 3 Y [Y = F, Cl, I] systems, which describe the direct and indirect, complex-forming Walden-inversion, the frontside attack, and the new double-inversion pathways as well as the proton-transfer channels. Reaction dynamics simulations on the new PESs revealed (a) a novel double-inversion S N 2 mechanism, (b) frontside complex formation, (c) the dynamics of proton transfer, (d) vibrational and rotational mode specificity, (e) mode-specific product vibrational distributions, (f) agreement between classical and quantum dynamics, (g) good agreement with measured scattering angle and product internal energy distributions, and (h) significant leaving group effect in accord with experiments.
Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.
Wang, Linjun; Long, Run; Prezhdo, Oleg V
2015-04-01
Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.
Ab initio study of the effects of thin CsI coatings on the work function of graphite cathodes
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Booske, John H.; Morgan, Dane
2007-10-01
Cesium-iodide (CsI)-coated graphite cathodes are promising electron sources for high power microwave generators, but the mechanism driving the improved emission is not well understood. Therefore, an ab initio modeling investigation on the effects of thin CsI coatings on graphite has been carried out. It is demonstrated that the CsI coatings reduce the work function of the system significantly through a mechanism of induced dipoles. The results suggest that work function modification is a major contribution to the improved emission seen when CsI coatings are applied to C.
Ab-initio study of high temperature lattice dynamics of BCC zirconium (β-Zr) and uranium (γ-U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Partha S., E-mail: parthasarathi13@gmail.com; Arya, A., E-mail: parthasarathi13@gmail.com; Dey, G. K., E-mail: parthasarathi13@gmail.com
2014-04-24
Using self consistent ab-initio lattice dynamics calculations, we show that bcc structures of Zr and U phases become stable at high temperature by phonon-phonon interactions. The calculated temperature dependent phonon dispersion curve (PDC) of β-Zr match excellently with experimental PDC. But the calculated PDC for γ-U shows negative phonon frequencies even at solid to liquid transition temperature. We show that this discrepancy is due to an overestimation of instability depth of bcc U phase which is removed by incorporation of spin-orbit coupling in the electronic structure calculations.
NASA Astrophysics Data System (ADS)
Imandi, Venkataramana; Nair, Nisanth N.
2016-09-01
The absence of isotope scrambling observed by Henry and coworkers in the Wacker oxidation of deuterated allylic alcohol was used by them as support for the inner-sphere mechanism hydroxypalladation mechanism. One of the assumptions used to interpret their experimental data was that allyl alcohol oxidation takes place through non-cyclic intermediate routes as in the case of ethene. Here we verify this assumption through ab initio metadynamics simulations of the Wacker oxidation of allyl alcohol in explicit solvent. Importance of our results in interpreting the isotope scrambling experiments is discussed.
The HCO+-H2 van der Waals interaction: Potential energy and scattering
NASA Astrophysics Data System (ADS)
Massó, H.; Wiesenfeld, L.
2014-11-01
We compute the rigid-body, four-dimensional interaction potential between HCO+ and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO+ and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.
The HCO⁺-H₂ van der Waals interaction: potential energy and scattering.
Massó, H; Wiesenfeld, L
2014-11-14
We compute the rigid-body, four-dimensional interaction potential between HCO(+) and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO(+) and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.
Site occupancy trend of Co in Ni{sub 2}MnIn: Ab initio approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Soumyadipta, E-mail: soumyadipta.pal@gmail.com; Mahadevan, Priya; Biswas, C.
2015-06-24
The trend of site occupation of Co at Ni sites of Ni{sub 2}MnIn system is studied in austenitic phase having L2{sub 1} structure by ab initio density functional theory (DFT) calculation. The Co atoms prefer to be at Ni sites rather than Mn site and are ferromagetically coupled with Ni and Mn. The ground state has tetragonal structure for Ni{sub 1.5}Co{sub 0.5}MnIn and Ni{sub 1.25}Co{sub 0.75}MnIn. The Co tends to form cluster.
Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides
NASA Astrophysics Data System (ADS)
Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki
2012-09-01
Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.
Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method
NASA Astrophysics Data System (ADS)
Li, Ailin; Yan, Tianying; Shen, Panwen
Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer.
The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Jakse, N.; Pasturel, A.
2014-09-01
We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.
Graphitic nanofilms of zinc-blende materials: ab initio calculations
NASA Astrophysics Data System (ADS)
Hu, San-Lue; Zhao, Li; Li, Yan-Li
2017-12-01
Ab initio calculations on ultra-thin nanofilms of 25 kinds of zinc-blende semiconductors demonstrate their stable geometry structures growth along (1 1 1) surface. Our results show that the (1 1 1) surfaces of 9 kinds of zinc-blende semiconductors can transform into a stable graphitelike structure within a certain thickness. The tensile strain effect on the thickness of graphitic films is not obvious. The band gaps of stable graphitic films can be tuned over a wide range by epitaxial tensile strain, which is important for applications in microelectronic devices, solar cells and light-emitting diodes.
Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M
2013-06-19
The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.
Stabilization of flat aromatic Si6 rings analogous to benzene: ab initio theoretical prediction.
Zdetsis, Aristides D
2007-12-07
It is shown by ab initio calculations, based on density functional (DFT/B3LYP), and high level coupled-cluster [CCSD(T)] and quadratic CI [QCISD(T)] methods, that flat aromatic silicon structures analogous to benzene (C6H6) can be stabilized in the presence of lithium. The resulting planar Si6Li6 structure is both stable and aromatic, sharing many key characteristics with benzene. To facilitate possible synthesis and characterization of these species, routes of formation with high exothermicity are suggested and several spectral properties (including optical absorption, infrared, and Raman) are calculated.
HeI photoelectron spectroscopic studies on the electronic structure of alkyl nitrosamines
NASA Astrophysics Data System (ADS)
Jiang, Peng; Qian, Ximei; Li, Chunhui; Qiao, Chunhua; Wang, Dianxun
1997-10-01
HeI photoelectron spectroscopic (PES) studies on the electronic structure of alkyl nitrosamines R 2N 2O (R = CH 3-, CH 3CH 2-, and CH 3CH 2CH 2-) are reported. The assignment of the PES bands for this series of compounds has been made with the aid of the band shapes, the band intensity and ab initio SCF MO calculations based on the 631 ∗ G basis sets. Both PES experiment and the ab initio SCF MO calculations show that the detoxification ability of nitrosamine with longer alkyl chain is stronger.
Ab initio study of C + H3+ reactions
NASA Technical Reports Server (NTRS)
Talbi, D.; DeFrees, D. J.
1991-01-01
The reaction C + H3+ --> CH(+) + H2 is frequently used in models of dense interstellar cloud chemistry with the assumption that it is fast, i.e. there are no potential energy barriers inhibiting it. Ab initio molecular orbital study of the triplet CH3+ potential energy surface (triplet because the reactant carbon atom is a ground state triplet) supports this hypothesis. The reaction product is 3 pi CH+; the reaction is to exothermic even though the product is not in its electronic ground state. No path has been found on the potential energy surface for C + H3+ --> CH2(+) + H reaction.
NASA Astrophysics Data System (ADS)
Mikaeilzadeh, L.; Pirgholi, M.; Tavana, A.
2018-05-01
Based on the ab-initio non-equilibrium Green's function (NEGF) formalism based on the density functional theory (DFT), we have studied the electron transport in the all-Heusler device Co2CrSi/Cu2CrAl/Co2CrSi. Results show that the calculated transmission spectra is very sensitive to the structural parameters and the interface. Also, we obtain a range for the thickness of the spacer layer for which the MR effect is optimum. Calculations also show a perfect GMR effect in this device.
78 FR 36301 - CSX Transportation, Inc.-Discontinuance of Service Exemption-in Oswego County, NY
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 55 (Sub-No. 731X)] CSX..., MD 21204. If the verified notice contains false or misleading information, the exemption is void ab initio. [[Page 36302
NASA Astrophysics Data System (ADS)
Dahlqvist, Martti; Hotokka, Matti; Räsänen, Markku
1998-04-01
The infrared spectra of monomeric pinacol molecules (2,3-dimethyl-2,3-butanediol; (CH 3) 2C(OH)C(OH)(CH 3) 2) have been recorded in the gas phase and dilute nonpolar solutions, and in an argon matrix. The vibrational data are consistent with the intramolecularly hydrogen-bonded G-type (gauche with respect to the central C-C bond) conformers and there is no evidence for the T-type (trans with respect to the central C-C bond) conformers, which have been observed in the condensed phases. This was confirmed by studying the infrared region 835-815 cm -1, which was found to be the most indicative to show spectral changes within the type of the conformers. In this region the band of the T-type conformers (assigned to the hybridized asymmetric vibration of the central CC and CO stretching modes) disappears when going from the condensed phases to phases, where pinacol molecules are monomeric. Ab initio HF/6-311G** (MP2/6-311G**) calculations support the experimental findings; the calculated relative energies for the tGg', gGg', g'Gg', tTt, and gTg' conformers are 0.0 (0.0), 3.4 (3.4), 5.1 (5.9), 7.9 (11.3), and 12.0 (14.0) kJ mol -1, respectively. Consequently, only the G-type conformers are sufficiently populated to give rise to observable spectral lines. Both experimental findings and theoretical calculations demonstrated that the bands in the argon matrix spectrum of pinacol are due to the most stable tGg' conformer. Although the ab initio calculations predict that also the gGg' and g'Gg' conformers are present in the gas phase and in dilute nonpolar solutions their existence could not be confirmed experimentally. Hence, we conclude that the conformation sensitive bands may coincide in the spectra. The HF/6-311G** ab initio calculations for vibrational frequencies of pinacol are consistent with this conclusion, suggesting only small differences between the wavenumbers of the G-type conformers. Pinacol does not show infrared-induced photorotamerization in the low-temperature argon matrix. This is due to the high energy barrier to internal rotation around the central C-C bond as demonstrated by ab initio calculations. Assignments of the vibrational bands were made with the aid of computer animations of the ab initio calculated harmonic vibrations, common group frequencies, and analogy conclusions from related compounds. The deuterium derivatives [(CD 3) 2C(OH)C(OH)(CD 3) 2 and (CH 3) 2C(OD)C(OD)(CH 3) 2] of pinacol were also utilized even though their spectra were recorded only in the condensed phases.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... contains false or misleading information, the exemption is void ab initio. Petitions to revoke the... Discontinuance Exemption-- in Greenville County, S.C., Docket No. AB 490 (Sub-No. 1X) (STB served Oct. 12, 2005...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... contains false or misleading information, the exemption is void ab initio. Petitions to revoke the.... Exemption--in Belfast, Me., Docket No. AB 1109X. The City states that it acquired the Line from Unity...
Bistafa, Carlos; Kitamura, Yukichi; Martins-Costa, Marilia T C; Nagaoka, Masataka; Ruiz-López, Manuel F
2018-06-12
We describe a method to locate stationary points in the free-energy hypersurface of complex molecular systems using high-level correlated ab initio potentials. In this work, we assume a combined QM/MM description of the system although generalization to full ab initio potentials or other theoretical schemes is straightforward. The free-energy gradient (FEG) is obtained as the mean force acting on relevant nuclei using a dual level strategy. First, a statistical simulation is carried out using an appropriate, low-level quantum mechanical force-field. Free-energy perturbation (FEP) theory is then used to obtain the free-energy derivatives for the target, high-level quantum mechanical force-field. We show that this composite FEG-FEP approach is able to reproduce the results of a standard free-energy minimization procedure with high accuracy, while simultaneously allowing for a drastic reduction of both computational and wall-clock time. The method has been applied to study the structure of the water molecule in liquid water at the QCISD/aug-cc-pVTZ level of theory, using the sampling from QM/MM molecular dynamics simulations at the B3LYP/6-311+G(d,p) level. The obtained values for the geometrical parameters and for the dipole moment of the water molecule are within the experimental error, and they also display an excellent agreement when compared to other theoretical estimations. The developed methodology represents therefore an important step toward the accurate determination of the mechanism, kinetics, and thermodynamic properties of processes in solution, in enzymes, and in other disordered chemical systems using state-of-the-art ab initio potentials.
Vanduyfhuys, Louis; Vandenbrande, Steven; Verstraelen, Toon; Schmid, Rochus; Waroquier, Michel; Van Speybroeck, Veronique
2015-05-15
QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal-organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three-step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal-organic frameworks (MOFs), QuickFF is used to determine force fields for MIL-53(Al) and MOF-5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär
2017-02-01
The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Stocks, George Malcolm; Zhang, Yanwen
2016-08-03
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. In this study, using ab initio calculations based on density functional theory and special quasirandom structure, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni 0.5Co 0.5, Nimore » 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atomic size in the structure, which further determines the elemental diffusion properties. In conclusion, different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.« less
NASA Astrophysics Data System (ADS)
Čermák, P.; Karlovets, E. V.; Mondelain, D.; Kassi, S.; Perevalov, V. I.; Campargue, A.
2018-03-01
The very weak absorption spectrum of natural CO2 near 1.74 μm (5702-5879 cm-1) is studied at high sensitivity. The investigated region corresponds to a transparency window of very weak opacity which is of particular interest for Venus. Very weak lines with intensity value as low as 10-30 cm/molecule at 296 K are detected by Cavity Ring Down Spectroscopy. On the basis of the predictions of effective Hamiltonian models, 1135 lines of six carbon dioxide isotopologues - 12C16O2, 13C16O2, 16O12C18O, 16O12C17O, 16O13C18O and 16O13C17O - were rovibrationnally assigned to 26 bands. The accurate spectroscopic parameters of 16 bands are determined from standard band-by-band analysis (typical rms deviations of the line positions are 8 × 10-4 cm-1). These newly observed bands include perturbed bands, weak hot bands and bands of minor isotopologues (in particular 16O12C18O in natural abundance) and provide critical validation tests for the most recent spectroscopic databases. The comparison to the Carbon Dioxide Spectroscopic Databank (CDSD), HITRAN2016 database and recent ab initio line lists is presented. Deficiencies are evidenced for some weak perpendicular bands of the HITRAN2016 list and identified as due to inaccurate CDSD intensities which were preferred to ab initio intensities. While Ames and UCL ab initio intensities are believed to be accurate within a few % for the strong unperturbed bands, the reported measurements allow testing important (>50%) differences between ab initio values of some weak perturbed bands.
NASA Astrophysics Data System (ADS)
Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.
2018-05-01
Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.
Ribeiro, Douglas S
2017-06-01
This study presents computations of three energy related properties for 26 previously published multisite intermolecular potentials of methane: MM2, MM3, MM2en, MM3en, MM2mc, MM3mc, MM3envir, RMK, OPLS all-atom, MUB-2, AMBER, BOYD, Williams, Sheikh, MG, Tsuzuki, E2-Gay, E4-Gay, MP4exp-6(iii), MP4exp-6(iv), Rowley-A, Rowley-B, TraPPE-EH, Ouyang, CLC, and Chao and three united atom potentials: Saager-Fischer (SF), OPLS united atom, and HFD. The three properties analyzed are the second virial coefficients for 14 temperature points in the range of 110 to 623.15 K, the interaction energies for 12 orientations of the methane dimer as a function of distance followed by a comparison to three ab initio data sets and the cohesive energy of the aggregate of 512 methane molecules. The latter computed energies are correlated to latent heat of evaporation of 11 potentials and are proposed as surrogate approximate parameters for ΔH vap for the studied potentials. The 10 best performing potentials are selected by rms order in each one of the properties and three of them are found to be present simultaneously in the three sets: Tsuzuki, MM3mc, and MM2mc. On the basis of the cohesive energy of the aggregate, a quantitative measure of the anisotropy of the potentials is proposed. The results are discussed on the basis of anisotropy, nonadditivity and ability of the potentials to reproduce ab initio data. It is concluded that the nonadditivity of the pair potentials holds and the available ab initio data did not lead to pair potentials that are cohesive enough to reproduce accurately the second virial coefficients.
Macromolecular ab initio phasing enforcing secondary and tertiary structure.
Millán, Claudia; Sammito, Massimo; Usón, Isabel
2015-01-01
Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.
Clerc, Daryl G
2016-07-21
An ab initio approach was used to study the molecular-level interactions that connect gene-mutation to changes in an organism׳s phenotype. The study provides new insights into the evolutionary process and presents a simplification whereby changes in phenotypic properties may be studied in terms of the binding affinities of the chemical interactions affected by mutation, rather than by correlation to the genes. The study also reports the role that nonlinear effects play in the progression of organs, and how those effects relate to the classical theory of evolution. Results indicate that the classical theory of evolution occurs as a special case within the ab initio model - a case having two attributes. The first attribute: proteins and promoter regions are not shared among organs. The second attribute: continuous limiting behavior exists in the physical properties of organs as well as in the binding affinity of the associated chemical interactions, with respect to displacements in the chemical properties of proteins and promoter regions induced by mutation. Outside of the special case, second-order coupling contributions are significant and nonlinear effects play an important role, a result corroborated by analyses of published activity levels in binding and transactivation assays. Further, gradations in the state of perfection of an organ may be small or large depending on the type of mutation, and not necessarily closely-separated as maintained by the classical theory. Results also indicate that organs progress with varying degrees of interdependence, the likelihood of successful mutation decreases with increasing complexity of the affected chemical system, and differences between the ab initio model and the classical theory increase with increasing complexity of the organism. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
Zhao, Shijun; Stocks, G Malcolm; Zhang, Yanwen
2016-09-14
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. Using ab initio calculations based on density functional theory and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atoms in the structure, which further determines the elemental diffusion properties. Different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.
NASA Technical Reports Server (NTRS)
Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayhurst, Thomas Laine
1980-08-06
Techniques for applying ab-initio calculations to the is of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e. wavefunctions with radial correlations betweenmore » electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to "screen" the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K 0+ through Fe 7+, fitting to experimental levels for V 4+, and Cr 5+; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: Energy levels of the Uranium hexahalide complexes, (UX 6) 2- for X= F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O h symmetry) with corrections proposed by Brian Judd.« less
NASA Astrophysics Data System (ADS)
Torres, V. J. B.; Hajj Hussein, R.; Pagès, O.; Rayson, M. J.
2017-02-01
We test a presumed ability behind the phenomenological percolation scheme used for the basic description of the multi-mode Raman spectra of mixed crystals at one dimension along the linear chain approximation, to determine, via the Raman intensities, the nature of the atom substitution, as to whether this is random or due to local clustering/anticlustering. For doing so, we focus on the model percolation-type GeySi1-y system characterized by six oscillators { 1 × ( G e - G e ) , 3 × ( G e - S i ) , 2 × ( S i - S i ) } and place the study around the critical compositions y ˜ (0.16, 0.71, and 0.84) corresponding to nearly matching of intensities between the like Raman modes from a given multiplet ( G e - S i triplet or S i - S i doublet). The interplay between the GeySi1-y Raman intensities predicted by the percolation scheme depending on a suitable order parameter κ of local clustering/anticlustering is found to be consistent with ab initio calculations of the GeySi1-y Raman spectra done with the Ab Initio Modeling PROgram code using large (64-, 216-, and 512-atoms) disordered cubic supercells matching the required ( y , κ ) values. The actual "percolation vs. ab initio" comparative insight at moderate/dilute-(Ge,Si) limits, with an emphasis on the κ -induced intra-bond transfer of oscillator strength, extends a pioneering one earlier achieved at an intermediate composition ( y ˜ 0.50) by using small (32-atom) supercells [O. Pagès et al., J. Appl. Phys. 114, 033513 (2013)], mainly concerned with the inter-bond transfer of oscillator strength, providing altogether a complete picture.
Abramov, Pavel A; Gritsan, Nina P; Suturina, Elizaveta A; Bogomyakov, Artem S; Sokolov, Maxim N
2015-07-20
Reaction of [ReOCl3(PPh3)2] with 3,5-di-tert-butyl-1,2-benzoquinone (3,5-DTBQ) in hot toluene produces a new complex [(3,5-di-tert-Bu2C6H2O2)Re(OPPh3)Cl3] (1), which was isolated and characterized by elemental analysis, IR, UV-vis spectroscopy, and cyclic voltammetry. In order to clarify the charge state of rhenium and the coordinated dioxolene ligand, X-ray experiments at 150 and 290 K were carried out. The C-O, C-C, and Re-O bond distances at both 150 and 290 K fall between those for semiquinolate (3,5-DTBSQ) and catecholate (3,5-DTBCat) forms; an empirical "metrical oxidation state" of the dioxolene ligand was estimated to be -1.5. High-level ab initio calculations (SOC-CASSCF/NEVPT2) revealed a mixed valence nature of the triplet ground state of complex 1 corresponding to a superposition of the Re(IV)-SQ and Re(V)-cat forms. In agreement with the high-level ab initio and DFT calculations, the temperature dependence of the magnetic susceptibility (5-300 K) is well described in the assumption of the triplet ground state, with the anomalously large zero-field splitting (ZFS) arising from the spin-orbit coupling. According to the ab initio calculations, all absorption bands in the visible region of the electronic absorptions spectrum are assigned to the LMCT bands, with significant contribution of the intraligand transition in the most intense band at 555 nm.
Lin, Yu; Welchman, Evan; Thonhauser, Timo; ...
2017-03-15
Combining X-ray diffraction, Raman spectroscopy, and ab initio simulations we characterize an extremely hydrogen-rich phase with the chemical formula (NH 3BH 3)(H 2) x (x = 1.5). This phase was formed by compressing ammonia borane (AB, NH 3BH 3) in an environment with an excess of molecular hydrogen (H 2). This compound can store a total of 26.8 wt% hydrogen, both as molecular hydrogen and chemically bonded hydrogen in AB, making it one of the most hydrogen-rich solids currently known. The new compound possesses a layered AB structure where additional H 2 molecules reside in channels created through the weavingmore » of AB layers. The unconventional dihydrogen bonding network of the new compound is significantly modified from its parent AB phase and contains H•••H contacts between adjacent AB molecules and between AB and H 2 molecules. H–H can be either a proton donor or a proton acceptor that forms new types of dihydrogen bonding with the host AB molecules, which are depicted as H–H•••H–B or H–H•••H–N, respectively. Furthermore, this study not only demonstrates the strategy and the promise of using pressure for new material synthesis, but also unleashes the power of combining experiments and ab initio calculations for elucidating novel structures and unusual bonding configurations in dense low-Z materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yu; Welchman, Evan; Thonhauser, Timo
Combining X-ray diffraction, Raman spectroscopy, and ab initio simulations we characterize an extremely hydrogen-rich phase with the chemical formula (NH 3BH 3)(H 2) x (x = 1.5). This phase was formed by compressing ammonia borane (AB, NH 3BH 3) in an environment with an excess of molecular hydrogen (H 2). This compound can store a total of 26.8 wt% hydrogen, both as molecular hydrogen and chemically bonded hydrogen in AB, making it one of the most hydrogen-rich solids currently known. The new compound possesses a layered AB structure where additional H 2 molecules reside in channels created through the weavingmore » of AB layers. The unconventional dihydrogen bonding network of the new compound is significantly modified from its parent AB phase and contains H•••H contacts between adjacent AB molecules and between AB and H 2 molecules. H–H can be either a proton donor or a proton acceptor that forms new types of dihydrogen bonding with the host AB molecules, which are depicted as H–H•••H–B or H–H•••H–N, respectively. Furthermore, this study not only demonstrates the strategy and the promise of using pressure for new material synthesis, but also unleashes the power of combining experiments and ab initio calculations for elucidating novel structures and unusual bonding configurations in dense low-Z materials.« less
Efficient implementation of core-excitation Bethe-Salpeter equation calculations
NASA Astrophysics Data System (ADS)
Gilmore, K.; Vinson, John; Shirley, E. L.; Prendergast, D.; Pemmaraju, C. D.; Kas, J. J.; Vila, F. D.; Rehr, J. J.
2015-12-01
We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including X-ray absorption (XAS), X-ray emission (XES), and both resonant and non-resonant inelastic X-ray scattering spectra (N/RIXS). Calculations are based on density functional theory (DFT) electronic structures generated either by ABINIT or QuantumESPRESSO, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as OCEAN (Obtaining Core Excitations from Ab initio electronic structure and NBSE) (Vinson et al., 2011). Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible; containing up to a few thousand electrons. These improvements include the implementation of optimal basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the screening calculation and of the action of the BSE Hamiltonian, and various memory reductions. Scaling is demonstrated on supercells of SrTiO3 and example spectra for the organic light emitting molecule Tris-(8-hydroxyquinoline)aluminum (Alq3) are presented. The ability to perform large-scale spectral calculations is particularly advantageous for investigating dilute or non-periodic systems such as doped materials, amorphous systems, or complex nano-structures.
Investigation of the structural, mechanical, dynamical and thermal properties of CsCaF3 and CsCdF3
NASA Astrophysics Data System (ADS)
Salmankurt, Bahadır; Duman, Sıtkı
2016-04-01
The structural, mechanical, dynamical and thermal properties of CsCaF3 and CsCdF3 are presented by using an ab initio pseudopotential method and a linear response scheme, within the generalized gradient approximation. The obtained structural and mechanical properties are in good agreement with other available theoretical and experimental studies. The calculated elastic constants of these materials obey the cubic stability conditions. It has been found that CsCaF3 is brittle whereas CsCdF3 has ductile manner. The full phonon dispersion curves of these materials are reported for the first time in the literature. We have found that calculated phonon modes are positive along the all symmetry directions, indicating that these materials are dynamically stable at the cubic structure. The obtained zone-center phonon modes for CsCaF3 (IR data) are found to be 83 (98) cm-1, 104 (115) cm-1, 120 cm-1, 180 (192) cm-1, 231 (250.5) cm-1, 361 (374) cm-1, 446 (449) cm-1. Also, we have calculated internal energy, Helmholtz free energy, constant-volume specific heat, entropy and Debye temperature as function of temperature. At the 300 K, specific heats are calculated to be 113.36 J mol-1 K-1 and 115.58 J mol-1 K-1 for CsCaF3 and CsCdF3 ,respectively, which are lower than Doulong-Petit limit (12 472 J mol-1 K-1).
Ab initio molecular dynamics in a finite homogeneous electric field.
Umari, P; Pasquarello, Alfredo
2002-10-07
We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.
NASA Astrophysics Data System (ADS)
Kalita, M. R.; Behr, J. A.; Gorelov, A.; Pearson, M. R.; DeHart, A. C.; Gwinner, G.; Kossin, M. J.; Orozco, L. A.; Aubin, S.; Gomez, E.; Safronova, M. S.; Dzuba, V. A.; Flambaum, V. V.
2018-04-01
We observe the electric-dipole forbidden 7 s →8 s transition in the francium isotopes Fr-211208 and 213Fr using a two-photon excitation scheme. We collect the atoms online from an accelerator and confine them in a magneto-optical trap for the measurements. In combination with previous measurements of the 7 s →7 p1 /2 transition we perform a King plot analysis. We compare the thus-determined ratio of the field shift constants (1.228 ± 0.019) to results obtained from new ab initio calculations (1.234 ± 0.010).
Ab initio quantum chemistry: methodology and applications.
Friesner, Richard A
2005-05-10
This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller-Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly.
NASA Astrophysics Data System (ADS)
Xie, Changjian; Guo, Hua
2017-09-01
The nonadiabatic tunneling-facilitated photodissociation of phenol is investigated using a reduced-dimensional quantum model on two ab initio-based coupled potential energy surfaces (PESs). Although dynamics occurs largely on the lower adiabat, the proximity to a conical intersection between the S1 and S2 states requires the inclusion of both the geometric phase (GP) and diagonal Born-Oppenheimer correction (DBOC). The lifetime of the lowest-lying vibronic state is computed using the diabatic and various adiabatic models. The GP and DBOC terms are found to be essential on one set of PESs, but have a small impact on the other.
Cooperative effects in spherical spasers: Ab initio analytical model
NASA Astrophysics Data System (ADS)
Bordo, V. G.
2017-06-01
A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.
Wigner-Eisenbud-Smith photoionization time delay due to autoioinization resonances
NASA Astrophysics Data System (ADS)
Deshmukh, P. C.; Kumar, A.; Varma, H. R.; Banerjee, S.; Manson, Steven T.; Dolmatov, V. K.; Kheifets, A. S.
2018-03-01
An empirical ansatz for the complex photoionization amplitude and Wigner-Eisenbud-Smith time delay in the vicinity of a Fano autoionization resonance are proposed to evaluate and interpret the time delay in the resonant region. The utility of this expression is evaluated in comparison with accurate numerical calculations employing the ab initio relativistic random phase approximation and relativistic multichannel quantum defect theory. The indisputably good qualitative agreement (and semiquantitative agreement) between corresponding results of the proposed model and results produced by the ab initio theories proves the usability of the model. In addition, the phenomenology of the time delay in the vicinity of multichannel autoionizing resonances is detailed.
Ab initio predictions on the rotational spectra of carbon-chain carbene molecules.
Maluendes, S A; McLean, A D
1992-12-18
We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.
Ab initio predictions on the rotational spectra of carbon-chain carbene molecules
NASA Technical Reports Server (NTRS)
Maluendes, S. A.; McLean, A. D.; Loew, G. H. (Principal Investigator)
1992-01-01
We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.
The molecular structure and conformation of tetrabromoformaldazine: ab initio and DFT calculations
NASA Astrophysics Data System (ADS)
Jeong, Myongho; Kwon, Younghi
2000-06-01
Ab initio and density functional theory methods are applied to investigate the molecular structure and conformational nature of tetrabromoformaldazine. The calculations including the effects of the electron correlation at the B3LYP and MP2 levels with the basis set 6-311+G(d) can reproduce the experimental geometrical parameters at the skew conformation. The N-N bond torsional angle φ calculated at the MP2/6-311+G(d) level is found to be closest to the observed angle. The scanning of the potential energy surface suggests that the anti-conformation is at a saddle point corresponding to the transition state.
Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives.
Bernstein, Jonathan
2018-02-28
Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.