Exploring complex chemical reactions by ab-initio simulation
NASA Astrophysics Data System (ADS)
Parrinello, Michele
1998-03-01
Recent progress in the ab-initio molecular dynamics method and the power of parallel computing, allow the detailed study of complex chemical reaction of great industrial relevance. We illustrate this unprecedented capability by investigating the second generation Ziegler-Natta catalytic process. In this inhomogeneous catalyst, a polymerization reaction is induced by TiCl4 molecules deposited on an MgCl2 solid support. A density functional based ab-initio molecular dynamics calculation conducted with a minimum of initial assumption allows to understand the nature of the catalytic center and to determine the reaction path with the associated free energy barrier. Furthermore our calculation can explain in a nontrivial way the stereo-selectivity of the process.
Ab Initio Calculations Of Light-Ion Reactions
Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W
2012-03-12
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Draayer, Jerry P.
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab initio calculations of reactions with light nuclei
NASA Astrophysics Data System (ADS)
Quaglioni, Sofia; Hupin, Guillaume; Calci, Angelo; Navrátil, Petr; Roth, Robert
2016-03-01
An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review ab initio calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the ab initio no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the A-nucleon system are coupled to (A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.
Unified ab initio approaches to nuclear structure and reactions
NASA Astrophysics Data System (ADS)
Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-05-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C
2015-01-01
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
NASA Astrophysics Data System (ADS)
Elenewski, Justin E.; Hackett, John C.
2015-02-01
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C
2015-02-14
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Ab initio study of ice catalyzation of HOCl + HCl reaction
Zhou, Y.F.; Liu, C.B.
2000-06-15
The observations by Farman et al. revealed remarkable depletions in the total atmospheric ozone content in Antarctica. The observed total ozone decreased smoothing during the spring season from about 1975. Satellite observations have proved Antarctic ozone depletions over a very extended region, in general agreement with the local ground-based data of Farman et al. It was suggested that heterogeneous reactions occurring on particles in polar stratospheric clouds (PSCs) play a central role in the depletion of stratospheric ozone. Experiments proved that the reaction of HOCl + HCl was very slow in the gas phase, but on ice surface it was rapid. In this work the ice catalysis of HOCl + HCl reaction was investigated by using ab initio molecular orbital theory. The authors applied the Hartree-Fock self-consistent field and the second-order Moeller-Plesset perturbation theory with the basis sets of 6-31G* to the model system. The complexes and transition state were obtained along the reaction with and without the presence of ice surface. By comparing the results, a possible catalyzation mechanism of ice on the reaction is proposed.
Comparison of DFT and ab initio QM/MM methods for modelling reaction in chorismate synthase
NASA Astrophysics Data System (ADS)
Lawan, Narin; Ranaghan, Kara E.; Manby, Frederick R.; Mulholland, Adrian J.
2014-07-01
Quantum mechanics/molecular mechanics (QM/MM) methods are a popular tool in the investigation of enzyme reactions. Here, we compare B3LYP density functional theory (DFT) and ab initio QM/MM methods for modelling the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate in chorismate synthase. Good agreement with experimental data is only obtained at the SCS-MP2/CHARMM27 level for a reaction mechanism in which phosphate elimination precedes proton transfer. B3LYP predicts reaction energetics that are qualitatively wrong, stressing the need for ab initio QM/MM methods, and caution in interpretation of DFT results for this enzyme.
Hu, Hao; Yang, Weitao
2013-01-01
Determining the free energies and mechanisms of chemical reactions in solution and enzymes is a major challenge. For such complex reaction processes, combined quantum mechanics/molecular mechanics (QM/MM) method is the most effective simulation method to provide an accurate and efficient theoretical description of the molecular system. The computational costs of ab initio QM methods, however, have limited the application of ab initio QM/MM methods. Recent advances in ab initio QM/MM methods allowed the accurate simulation of the free energies for reactions in solution and in enzymes and thus paved the way for broader application of the ab initio QM/MM methods. We review here the theoretical developments and applications of the ab initio QM/MM methods, focusing on the determination of reaction path and the free energies of the reaction processes in solution and enzymes. PMID:24146439
Ab initio studies of equations of state and chemical reactions of reactive structural materials
NASA Astrophysics Data System (ADS)
Zaharieva, Roussislava
subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated
Knockout reactions from p-shell nuclei : tests of ab initio structure models.
Grinyer, G. F.; Bazin, D.; Gade, A.; Tostevin, J. A.; Adrich, P.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Navratil, P.; Obertelli, A.; Quaglioni, S.; Siwek, K.; Terry, J. R.; Weisshaar, D.; Wiringa, R. B.
2011-04-22
Absolute cross sections have been determined following single neutron knockout reactions from {sup 10}Be and {sup 10}C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for {sup 10}Be and by 40% to 50% for {sup 10}C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.
Knockout Reactions from p-Shell Nuclei: Tests of Ab Initio Structure Models
Grinyer, G. F.; Bazin, D.; Adrich, P.; Obertelli, A.; Weisshaar, D.; Gade, A.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Siwek, K.; Terry, J. R.; Tostevin, J. A.; Navratil, P.; Quaglioni, S.; Wiringa, R. B.
2011-04-22
Absolute cross sections have been determined following single neutron knockout reactions from {sup 10}Be and {sup 10}C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for {sup 10}Be and by 40% to 50% for {sup 10}C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.
An ab initio molecular dynamics study of the roaming mechanism of the H2+HOC+ reaction
NASA Astrophysics Data System (ADS)
Yu, Hua-Gen
2011-08-01
We report here a direct ab initio molecular dynamics study of the p-/o-H2+HOC+ reaction on the basis of the accurate SAC-MP2 potential energy surface. The quasi-classical trajectory method was employed. This work largely focuses on the study of reaction mechanisms. A roaming mechanism was identified for this molecular ion-molecule reaction. The driving forces behind the roaming mechanism were thoroughly investigated by using a trajectory dynamics approach. In addition, the thermal rate coefficients of the H2+HOC+ reaction were calculated in the temperature range [25, 300] K and are in good agreement with experiments.
Ab initio chemical kinetics for the HCCO + OH reaction
NASA Astrophysics Data System (ADS)
Mai, Tam V.-T.; Raghunath, P.; Le, Xuan T.; Huynh, Lam K.; Nam, Pham-Cam; Lin, M. C.
2014-01-01
The mechanism for the reaction of HCCO and OH has been investigated at different high-levels of theory. The reaction was found to occur on singlet and triplet potential energy surfaces with multiple accessible paths. Rate constants predicted by variational RRKM/ME calculations show that the reaction on both surfaces occurs primarily by barrierless OH attack at both C atoms producing excited intermediates which fragment to produce predominantly CO and 1,3HCOH with kS = 3.12 × 10-8T-0.59exp[-73.0/T] and kT = 6.29 × 10-11T0.13exp[108/T] cm3 molecule-1 s-1 at T = 300-2000 K, independent of pressure at P < 76 000 Torr.
Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics
NASA Astrophysics Data System (ADS)
Zaharieva, Roussislava; Hanagud, Sathya
2009-06-01
Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.
Ab Initio Calculations Of Nuclear Reactions And Exotic Nuclei
Quaglioni, S.
2014-05-05
Our ultimate goal is to develop a fundamental theory and efficient computational tools to describe dynamic processes between nuclei and to use such tools toward supporting several DOE milestones by: 1) performing predictive calculations of difficult-to-measure landmark reactions for nuclear astrophysics, such as those driving the neutrino signature of our sun; 2) improving our understanding of the structure of nuclei near the neutron drip line, which will be the focus of the DOE’s Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University; but also 3) helping to reveal the true nature of the nuclear force. Furthermore, these theoretical developments will support plasma diagnostic efforts at facilities dedicated to the development of terrestrial fusion energy.
Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface
NASA Astrophysics Data System (ADS)
Gajewski, Grzegorz; Pao, Chun-Wei
2011-08-01
Growth of large-area, few-layer graphene has been reported recently through the catalytic decomposition of methane (CH4) over a Cu surface at high temperature. In this study, we used ab initio calculations to investigate the minimum energy pathways of successive dehydrogenation reactions of CH4 over the Cu (111) surface. The geometries and energies of all the reaction intermediates and transition states were identified using the climbing image nudged elastic band method. The activation barriers for CH4 decomposition over this Cu surface are much lower than those in the gas phase; furthermore, analysis of electron density differences revealed significant degrees of charge transfer between the adsorbates and the Cu atoms along the reaction path; these features reveal the role of Cu as the catalytic material for graphene growth. All the dehydrogenation reactions are endothermic, except for carbon dimer (C2) formation, which is, therefore, the most critical step for subsequent graphene growth, in particular, on Cu (111) surface.
Kinetics of reaction with water vapor and ab initio study of titanium beryllide
NASA Astrophysics Data System (ADS)
Munakata, K.; Kawamura, H.; Uchida, M.
2007-08-01
Beryllium is one of the candidate materials of the neutron multiplier in the tritium-breeding blanket. Titanium beryllides such as Be 12Ti are known to have advantages over beryllium from the perspectives of higher melting point, lower chemical reactivity, lower swelling and so forth. The reaction of titanium beryllides with water vapor was investigated. The sample disks of Be 12Ti were exposed to an argon gas with 10 000 ppm of water vapor, and the sample temperature was raised to 1000 °C. However, the chaotic breakaway reaction was not observed. The kinetics of oxidation on the surface of Be 12Ti by water vapor was investigated using a model differential equation, and the reaction constant was quantified. Furthermore, to know the electron state in Be 12Ti, ab initio calculations of quantum chemistry were performed using CRYSTAL 98. The structure optimization of Be 12Ti crystal was attempted, and an electron density map was generated.
NASA Astrophysics Data System (ADS)
Tokizaki, Chihiro; Yoshida, Takahiko; Takayanagi, Toshiyuki
2016-05-01
The cyclooctatetraene (COT) anion has a stable D4h structure that is similar to the transition state configurations of the neutral C-C bond-alternation (D4h ↔ D8h ↔ D4h) and ring-inversion (D2d ↔ D4h ↔ D2d) unimolecular reactions. The previously measured photodetachment spectrum of COT- revealed the reaction dynamics in the vicinity of the two transition states on the neutral potential energy surface. In this work, the photodetachment spectrum is calculated quantum mechanically on ab initio-level potential energy surfaces within a three degree-of-freedom reduced-dimensionality model. Very good agreement has been obtained between theory and experiment, providing reliable interpretations for the experimental spectrum. A detailed picture of the reactive molecular dynamics of the COT unimolecular reaction in the transition state region is also discussed.
Ab initio study for the hydrogen abstraction reactions on toluene and tetralin.
Beste, Ariana; Harrison, Robert J; Britt, Phillip F; Buchanan III, A C
2006-01-01
Hydrogen abstraction reactions play a key role in many thermal and catalytic processes involved in the production of fuels and chemicals. In this paper, the hydrogen abstraction reactions on toluene and tetralin by the benzyl radical are investigated by ab initio methods. These reactions are representatives of similar reactions occurring in the thermolysis of lignin model compounds containing the phenethyl phenyl ether (PPE) structural moiety. The title reactions serve to calibrate the theoretical methods to be used in the study of PPE pyrolysis through comparison of the reaction barriers with reliable experimental values. We used two different hybrid density functionals (BHandHLYP, B3LYP) and second-order perturbation theory to obtain equilibrium and transition state geometries. We recomputed selected energy barriers at the B3LYP geometries with the coupled cluster singles and doubles (CCSD) method. Multiple transition states were found for both reactions. BHandHLYP underestimates and second-order perturbation theory overestimates the reaction barriers; B3LYP energy barriers agree well with experiment and the corresponding CCSD energy barriers. The flat potential energy surface around the saddle points causes numerical inaccuracies. We observe the break down of the harmonic approximation in the calculation of low frequencies.
On Possible Pitfalls in ab initio QM/MM Minimization Approaches For Studies of Enzymatic Reactions
Klähn, Marco; Braun-Sand, Sonja; Rosta, Edina; Warshel, Arieh
2006-01-01
Reliable studies of enzymatic reactions by combined quantum mechanics /molecular mechanics (QM/MM) approaches, with an ab initio description of the quantum region, presents a major challenge to computational chemists. The main problem is the need for a very large computer time for the evaluation of the QM energy, which in turn makes it extremely challenging to perform proper configurational sampling. A seemingly reasonable alternative is to perform energy minimization studies of the type used in gas phase ab initio studies. However, it is hard to see why such an approach should give reliable results in protein active sites. In order to examine the problems with energy minimization QM/MM approaches we chose the hypothetical reaction of a metaphosphate ion with water in the Ras•GAP complex. This hypothetical reaction served as a simple benchmark reaction. The possible problems with the QM/MM minimization were explored by generating several protein configurations from long MD simulations and using energy minimization and scanning of the reaction coordinates to evaluate the corresponding potential energy surfaces of the reaction for each of these different protein configurations. Comparing these potential energy surfaces, we found major variations of the minima of the different total potential energy surfaces. Furthermore, the reaction energies and activation energies also varied significantly even for similar protein configurations. The specific coordination of a magnesium ion, present in the active center of the protein complex, turned out to influence the energetics of the reaction in a major way and a direct coordination to the reactant leads to an increase of the activation energy by 17 kcal/mol. This study demonstrates that energy minimizations starting from a single protein structure could lead to major errors in calculations of activation free energies and binding free energies. Thus we believe that extensive samplings of the configurational space of the
New Approach for Investigating Reaction Dynamics and Rates with Ab Initio Calculations.
Fleming, Kelly L; Tiwary, Pratyush; Pfaendtner, Jim
2016-01-21
Herein, we demonstrate a convenient approach to systematically investigate chemical reaction dynamics using the metadynamics (MetaD) family of enhanced sampling methods. Using a symmetric SN2 reaction as a model system, we applied infrequent metadynamics, a theoretical framework based on acceleration factors, to quantitatively estimate the rate of reaction from biased and unbiased simulations. A systematic study of the algorithm and its application to chemical reactions was performed by sampling over 5000 independent reaction events. Additionally, we quantitatively reweighed exhaustive free-energy calculations to obtain the reaction potential-energy surface and showed that infrequent metadynamics works to effectively determine Arrhenius-like activation energies. Exact agreement with unbiased high-temperature kinetics is also shown. The feasibility of using the approach on actual ab initio molecular dynamics calculations is then presented by using Car-Parrinello MD+MetaD to sample the same reaction using only 10-20 calculations of the rare event. Owing to the ease of use and comparatively low-cost of computation, the approach has extensive potential applications for catalysis, combustion, pyrolysis, and enzymology. PMID:26690335
Ab Initio QM/MM Study of the Ester-hydrolysis Reaction Mechanism in Haloalkane Dehalogenase
NASA Astrophysics Data System (ADS)
Zhang, Yiming; Zhou, Yu; Nayak, Saroj; Garcia, Angel
2006-03-01
Ab Initio QM/MM calculations are used to investigate the ester-hydrolysis step of dichloroethane hydrolysis catalyzed by haloalkane dehalogenase. Amino acids around the active site (which includes ASP124, HIS289, ASP260, TRP125, TRP175), dichoroethane and water are treated by QM at a level of HF/6-31G(d,p). The remainder of the protein and solvent are treated classically. Two scenarios of hydrolysis mechanism for the alkyl-enzyme intermediate have been considered. In one, the HIS289-catalyzed water oxygen could be incorporated in the carboxylate group of ASP124, leading the cleavage of one of the original carbonyl bonds on ASP124. In the other, the ASP124 and HIS289 as general base, activate water as the nucleophilic agent, which attacks the alkyl carbon in substrate. The reaction paths and potential energy profiles are compared for both mechanisms.
Ab initio study of the kinetics of hydrogen abstraction reactions on toluene and tetralin
Beste, Ariana; Britt, Phillip F; Buchanan III, A C; Harrison, Robert J; Hathorn, Bryan C
2008-01-01
Hydrogen abstraction reactions play a key role in many thermal and catalytic processes involved in the production of fuels and chemicals. In this paper, the reaction barriers and rate constants for the hydrogen abstraction reactions on toluene and tetralin by the benzyl radical are calculated by ab initio methods. These reactions are representatives of similar reactions occurring in the thermolysis of lignin model compounds containing the phenethyl phenyl ether (PPE) structural moiety. Thermolysis of PPE occurs by a free radical chain mechanism in which the product selectivity arises from competitive hydrogen abstraction at the benzylic and nonbenzylic methylen sites by chain carrying benzyl and phenoxyl radicals. The title reactions serve to calibrate the theoretical methods to be used in the study of PPE through comparison of the rate constants and the reaction enthalpies with reliable experimental values. In this study, we used two different hybrid density functionals (BHandHLYP, B3LYP) and second-order perturbation theory to obtain equilibrium and transition state geometries. Multiple transition states were found for both reactions. BHandHLYP underestimates and second-order perturbation theory overestimates the reaction barriers; B3LYP energy barriers agree well with experiment. Absolute and relative rate constants were calculated using transition state theory. We found that the relative rate constant using the B3LYP functional agrees within a factor of 2.0 with experiment at the experimental temperature of 333 K, indicating that the B3LYP functional will be successful in predicting relative rate constants for hydrogen abstraction reactions participating in the pyrolysis of PPE.
Jiang, Lei; Lan, Ru; Xu, Yi-Sheng; Zhang, Wen-Jie; Yang, Wen
2013-01-01
The mechanism of the chemical reaction of H2O with three stabilized Criegee intermediates (stabCI-OO, stabCI-CH3-OO and stabCIx-OO) produced via the limonene ozonolysis reaction has been investigated using ab initio and DFT (Density Functional Theory) methods. It has been shown that the formation of the hydrogen-bonded complexes is followed by two different reaction pathways, leading to the formation of either OH radicals via water-catalyzed H migration or of α-hydroxy hydroperoxide. Both pathways were found to be essential sources of atmospheric OH radical and H2O2 making a significant contribution to the formation of secondary aerosols in the Earth’s atmosphere. The activation energies at the CCSD(T)/6-31G(d) + CF level of theory were found to be in the range of 14.70–21.98 kcal mol−1. The formation of α-hydroxy hydroperoxide for the reaction of stabCIx-OO and H2O with the activation energy of 14.70 kcal mol−1 is identified as the most favorable pathway. PMID:23481640
Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface.
Gajewski, Grzegorz; Pao, Chun-Wei
2011-08-14
Growth of large-area, few-layer graphene has been reported recently through the catalytic decomposition of methane (CH(4)) over a Cu surface at high temperature. In this study, we used ab initio calculations to investigate the minimum energy pathways of successive dehydrogenation reactions of CH(4) over the Cu (111) surface. The geometries and energies of all the reaction intermediates and transition states were identified using the climbing image nudged elastic band method. The activation barriers for CH(4) decomposition over this Cu surface are much lower than those in the gas phase; furthermore, analysis of electron density differences revealed significant degrees of charge transfer between the adsorbates and the Cu atoms along the reaction path; these features reveal the role of Cu as the catalytic material for graphene growth. All the dehydrogenation reactions are endothermic, except for carbon dimer (C(2)) formation, which is, therefore, the most critical step for subsequent graphene growth, in particular, on Cu (111) surface. PMID:21842949
Born-Oppenheimer Ab Initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions.
Zhou, Y; Wang, S; Li, Y; Zhang, Y
2016-01-01
There are two key requirements for reliably simulating enzyme reactions: one is a reasonably accurate potential energy surface to describe the bond-forming/breaking process as well as to adequately model the heterogeneous enzyme environment; the other is to perform extensive sampling since an enzyme system consists of at least thousands of atoms and its energy landscape is very complex. One attractive approach to meet both daunting tasks is Born-Oppenheimer ab initio QM/MM molecular dynamics (aiQM/MM-MD) simulation with umbrella sampling. In this chapter, we describe our recently developed pseudobond Q-Chem-Amber interface, which employs a combined electrostatic-mechanical embedding scheme with periodic boundary condition and the particle mesh Ewald method for long-range electrostatics interactions. In our implementation, Q-Chem and the sander module of Amber are combined at the source code level without using system calls, and all necessary data communications between QM and MM calculations are achieved via computer memory. We demonstrate the applicability of this pseudobond Q-Chem-Amber interface by presenting two examples, one reaction in aqueous solution and one enzyme reaction. Finally, we describe our established aiQM/MM-MD enzyme simulation protocol, which has been successfully applied to study more than a dozen enzymes. PMID:27498636
Ab initio molecular dynamics of the reaction of quercetin with superoxide radical
NASA Astrophysics Data System (ADS)
Lespade, Laure
2016-08-01
Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car-Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.
Ab initio study of the H + HONO reaction: Direct abstraction versus indirect exchange processes
Hsu, C.C.; Lin, M.C.; Mebel, A.M.; Melius, C.F.
1997-01-02
The mechanism of the H + HONO reaction (for which no experimental data are available) has been elucidated by ab initio molecular orbital calculations using modified G2 and BAC-MP4 methods. These results indicate that the reaction occurs predominantly by two indirect metathetical processes. One produces OH + HNO and H{sub 2}O + NO from the decomposition of vibrationally excited hydroxyl nitroxide, HN(O)OH, formed by H atom addition to the N atom of HONO. The other produces H{sub 2}O + NO from the decomposition of vibrationally excited dihydroxylamino radical, N(OH){sub 2}, formed by H atom addition to the terminal O atom. These indirect displacement processes are much more efficient than the commonly assumed, direct H-abstraction reaction producing H{sub 2} + NO{sub 2}. A transition-state theory calculation for the direct abstraction reaction and RRKM calculations for the two indirect displacement processes give rise to the following rate constants, in units of cm{sup 3} molecule{sup -1} s{sup -1} for the 300-3500 K temperature range under atmospheric conditions: k{sub H(2)} = 3.33 x 10{sup -16}T{sup 1.55} exp(-3328.5/T), k{sub OH} = 9.36 x 10{sup -14}T{sup 0.86} exp(-2500.8/T), k{sub H(2)O} = 1.35 x 10{sup -17}T{sup 1.89} exp-(-1935.7/T), where the rate constant for H{sub 2}O production represents the sum from both indirect displacement reactions. 32 refs., 3 figs., 7 tabs.
NASA Astrophysics Data System (ADS)
Raimondi, Francesco; Hupin, Guillaume; Navrátil, Petr; Quaglioni, Sofia
2016-05-01
Background: Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Ab initio approaches have been successfully applied to describe the 3H (d ,n )4He and 3He(d ,p )4He fusion processes. Purpose: An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d ,p ) reactions to processes with light p -shell nuclei. As a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d ,p )8Li transfer reaction based on a two-body Hamiltonian. Methods: We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. Results: The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d -7Li and p -8Li particle-decay channels determines some features of the 9Be spectrum above the d +7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Conclusions: Deuteron stripping reactions with p -shell targets can now be computed ab initio, but calculations are very demanding. A quantitative description of the 7Li(d ,p )8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1985-01-01
Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.
Ab Initio ONIOM-Molecular Dynamics (MD) Study on the Deamination Reaction by Cytidine Deaminase
Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako
2007-08-23
We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket of the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determing step is the release of the NH3 molecule. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.
Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)
2002-01-01
The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.
An ab initio potential energy surface and dynamics of the Ar+H2+ → ArH + + H reaction
NASA Astrophysics Data System (ADS)
Liu, Xinguo; Liu, Huirong; Zhang, Qinggang
2011-04-01
An ab initio potential energy surface (PES) for the ground state (1 2A') of the chemical reaction Ar+H2+ → ArH + + H has been constructed from a set of accurate ab initio data, which we have computed using the coupled-cluster theory including all single and double excitations plus perturbative corrections for the triples UCCSD(T) with a large orbital basis set of aug-cc-pV5Z. The new PES has a root-mean-square (rms) error of 0.5341 kcal/mol. The total integral reaction cross-sections have been calculated at three collision energies by means of the quasi-classical trajectory (QCT) calculation based on the new PES and compared with previous TSH results.
Wiebeler, Christian; Schumacher, Stefan
2014-09-11
Photochromism is a light-induced molecular process that is likely to find its way into future optoelectronic devices. In further optimization of photochromic materials, light-induced conversion efficiencies as well as reaction times can usually only be determined once a new molecule was synthesized. Here we use nonadiabatic ab initio molecular dynamics to study the electrocyclic reaction of diarylethenes, comparing normal- and inverse-type systems. Our study highlights that reaction quantum yields can be successfully predicted in accord with experimental findings. In particular, we find that inverse-type diarylethenes show a significantly higher reaction quantum yield and cycloreversion on times typically as short as 100 fs. PMID:25140609
NASA Astrophysics Data System (ADS)
Dieterich, Johannes M.; Werner, Hans-Joachim; Mata, Ricardo A.; Metz, Sebastian; Thiel, Walter
2010-01-01
Energy and free energy barriers for acetaldehyde conversion in aldehyde oxidoreductase are determined for three reaction pathways using quantum mechanical/molecular mechanical (QM/MM) calculations on the solvated enzyme. Ab initio single-point QM/MM energies are obtained at the stationary points optimized at the DFT(B3LYP)/MM level. These ab initio calculations employ local correlation treatments [LMP2 and LCCSD(T0)] in combination with augmented triple- and quadruple-zeta basis sets, and the final coupled cluster results include MP2-based corrections for basis set incompleteness and for the domain approximation. Free energy perturbation (FEP) theory is used to generate free energy profiles at the DFT(B3LYP)/MM level for the most important reaction steps by sampling along the corresponding reaction paths using molecular dynamics. The ab initio and FEP QM/MM results are combined to derive improved estimates of the free energy barriers, which differ from the corresponding DFT(B3LYP)/MM energy barriers by about 3 kcal mol-1. The present results confirm the qualitative mechanistic conclusions from a previous DFT(B3LYP)/MM study. Most favorable is a three-step Lewis base catalyzed mechanism with an initial proton transfer from the cofactor to the Glu869 residue, a subsequent nucleophilic attack that yields a tetrahedral intermediate (IM2), and a final rate-limiting hydride transfer. The competing metal center activated pathway has the same final step but needs to overcome a higher barrier in the initial step on the route to IM2. The concerted mechanism has the highest free energy barrier and can be ruled out. While confirming the qualitative mechanistic scenario proposed previously on the basis of DFT(B3LYP)/MM energy profiles, the present ab initio and FEP QM/MM calculations provide corrections to the barriers that are important when aiming at high accuracy.
NASA Astrophysics Data System (ADS)
Liu, Haiyan; Lu, Zhenyu; Cisneros, G. Andrés; Yang, Weitao
2004-07-01
The determination of reaction paths for enzyme systems remains a great challenge for current computational methods. In this paper we present an efficient method for the determination of minimum energy reaction paths with the ab initio quantum mechanical/molecular mechanical approach. Our method is based on an adaptation of the path optimization procedure by Ayala and Schlegel for small molecules in gas phase, the iterative quantum mechanical/molecular mechanical (QM/MM) optimization method developed earlier in our laboratory and the introduction of a new metric defining the distance between different structures in the configuration space. In this method we represent the reaction path by a discrete set of structures. For each structure we partition the atoms into a core set that usually includes the QM subsystem and an environment set that usually includes the MM subsystem. These two sets are optimized iteratively: the core set is optimized to approximate the reaction path while the environment set is optimized to the corresponding energy minimum. In the optimization of the core set of atoms for the reaction path, we introduce a new metric to define the distances between the points on the reaction path, which excludes the soft degrees of freedom from the environment set and includes extra weights on coordinates describing chemical changes. Because the reaction path is represented by discrete structures and the optimization for each can be performed individually with very limited coupling, our method can be executed in a natural and efficient parallelization, with each processor handling one of the structures. We demonstrate the applicability and efficiency of our method by testing it on two systems previously studied by our group, triosephosphate isomerase and 4-oxalocrotonate tautomerase. In both cases the minimum energy paths for both enzymes agree with the previously reported paths.
NASA Astrophysics Data System (ADS)
Pham, Thi Nu; Ono, Shota; Ohno, Kaoru
2016-04-01
Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronic excited state configuration.
Ab initio pressure-dependent reaction kinetics of methyl propanoate radicals.
Tan, Ting; Yang, Xueliang; Ju, Yiguang; Carter, Emily A
2015-12-14
The unimolecular dissociation and isomerization kinetics of the three methyl propanoate (MP) radicals, CH3CH2C(=O)OĊH2 (MP-m), CH3ĊHC(=O)OCH3 (MP-α), and ĊH2CH2C(=O)OCH3 (MP-β), are theoretically investigated using high-level ab initio methods and the Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation (ME) theory. Stationary-point energies are obtained using the coupled cluster singles and doubles with perturbative triples correction (CCSD(T)), multi-reference singles and doubles configuration interaction (MRSDCI) with the Davidson-Silver (DS) correction, and multi-reference averaged coupled pair functional (MRACPF2) theories. The isomerization barriers between the three radicals are predicted to be generally lower than the corresponding bond dissociation channels, leading to a strongly coupled reaction system in subsequent kinetics studies. The phenomenological temperature- and pressure-dependent rate coefficients are computed using the RRKM/ME theory over a temperature range of 500 to 2000 K and at a pressure range of 0.01 atm to the high-pressure limit, which are then fitted to modified Arrhenius expressions. The β-scission rate coefficients of MP-α to CH3CHC(=O) and CH3O[combining dot above] are predicted to be the smallest because of its highest activation energy among all studied unimolecular reactions channels. Analysis of branching fractions shows that both MP-m and MP-α radicals mainly decompose to the bimolecular products CH3CH2Ċ(=O) and H2CO, whereas the MP-β radical primarily decomposes via cleavage of a C-C bond to form C2H4 and CH3OĊ(=O). The isomerization channels dominate at low temperatures, the branching fractions of which decrease with increasing temperature and become very minor at about 2000 K. Our accurate rate coefficients and branching fractions help to illuminate the unique combustion properties of MP. PMID:26536041
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.
2000-01-01
The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. Favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH-, SH-, NO3 -, HCO3 -, HSO3 -, HSO4 -, H2PO4 -, and F-) that can occur in natural waters with the chlorinated methanes, CCl4, CCl3H, CCl2H2, and CClH3. The results of this investigation show that nucleophilic substitution reactions of OH-, SH-, HCO3 -, and F- are significantly exothermic for chlorine displacement, NO3 - reactions are slightly exothermic to thermoneutral, HSO3
Matsubara, Hiroshi; Schiesser, Carl H
2003-12-01
Ab initio calculations using the 6-311G**, cc-pVDZ, and (valence) double-zeta pseudopotential (DZP) basis sets, with (MP2, QCISD, CCSD(T)) and without (UHF) the inclusion of electron correlation, and density functional (BHandHLYP, B3LYP) calculations predict that homolytic substitution reactions of acetyl radicals at the silicon atoms in disilane can proceed via both backside and frontside attack mechanisms. At the highest level of theory (CCSD(T)/cc-pVDZ//MP2/cc-pVDZ), energy barriers (deltaE double dagger) of 77.2 and 81.9 kJ mol(-1) are calculated for the backside and frontside reactions respectively. Similar results are obtained for reactions involving germanium and tin with energy barriers (deltaE double dagger) of 53.7-84.2, and 55.0-89.7 kJ mol(-1) for the backside and frontside mechanisms, respectively. These data suggest that both homolytic substitution mechanisms are feasible for homolytic substitution reactions of acetyl radicals at silicon, germanium, and tin. BHandHLYP calculations provide geometries and energy barriers for backside and frontside transition states in good agreement with those obtained by traditional ab initio techniques. PMID:14685338
NASA Technical Reports Server (NTRS)
Jaffe, Richard L.; Pattengill, Merle D.; Schwenke, David W.
1989-01-01
Strategies for constructing global potential energy surfaces from a limited number of accurate ab initio electronic energy calculations are discussed. Generally, these data are concentrated in small regions of configuration space (e.g., in the vicinity of saddle points and energy minima) and difficulties arise in generating a potential function that is globally well-behaved. Efficient computer codes for carrying out classical trajectory calculations on vector and parallel processors are also described. Illustrations are given from recent work on the following chemical systems: Ca + HF yields CaF + H, H + H + H2 yields H2 + H2, N + O2 yields NO + O and O + N2 yields NO + N. The dynamics and kinetics of metathesis, dissociation, recombination, energy transfer and complex formation processes will be discussed.
Ab initio atomic recombination reaction energetics on model heat shield surfaces
NASA Technical Reports Server (NTRS)
Senese, Fredrick; Ake, Robert
1992-01-01
Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.
NASA Astrophysics Data System (ADS)
Yu, Li-Juan; Sarrami, Farzaneh; O'Reilly, Robert J.; Karton, Amir
2015-09-01
We introduce a database of 20 accurate cycloreversion barrier heights of 5-membered heterocyclic rings (to be known as the CRBH20 database). In these reactions, dioxazole and oxathiazole rings are fragmented to form isocyanates, isothiocyanates, and carbonyls. The reference reaction barrier heights are obtained by means of the high-level, ab initio W1-F12 and W1w thermochemical protocols. We evaluate the performance of 65 contemporary density functional theory (DFT) and double-hybrid DFT (DHDFT) procedures. The CRBH20 database represents an extremely challenging test for these methods. Most of the conventional DFT functionals (74%) result in root-mean-square deviations (RMSDs) between 10 and 81 kJ mol-1. The rest of the DFT functionals attain RMSDs = 5 - 10 kJ mol-1. Of the 12 tested DHDFT functionals, only five result in RMSDs < 10 kJ mol-1. The CRBH20 dataset also proves to be a surprisingly challenging target for composite and standard ab initio procedures.
NASA Astrophysics Data System (ADS)
Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2014-03-01
In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.
Ab initio no core full configuration approach for light nuclei
NASA Astrophysics Data System (ADS)
Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy
2014-07-01
Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.
Ab initio no core full configuration approach for light nuclei
NASA Astrophysics Data System (ADS)
Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy
2015-10-01
Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Rice, Julia E.
1993-01-01
Ab initio quantum mechanical methods, including coupled-cluster theory, are used to determine the equilibrium geometries, dipole moments, and harmonic vibrational frequencies of ClONO2, NO2(+), and four isomers of protonated ClONO2. It was found that, for the equilibrium structures and harmonic frequencies of ClONO2, HOCl, and NO2(+), the highest-level theoretical predictions are consistent with the available experimental information concerning the reactions of ClONO2 and HOCl with HCl on the surface of polar stratospheric clouds (PSCs). The study supports a recent hypothesis that the reaction of ClONO2 on the surface of PSCs is proton catalyzed, although the mechanism is different.
Bylaska, E.J.; Dixon, D.A.; Felmy, A.R.
2000-01-27
The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH{sup {minus}}, SH{sup {minus}}, NO{sub 3}{sup {minus}}, HCO{sub 3}{sup {minus}}, HSO{sub 3}{sup {minus}}, HSO{sub 4}{sup {minus}}, H{sub 2}PO{sub 4}{sup {minus}}, and F{sup {minus}}) that can occur in natural waters with the chlorinated methanes, CCk{sub 4}, CCl{sub 3}H, CCl{sub 2}H{sub 2}, and CClH{sub 3}. The results of this investigation show that nucleophilic substitution reactions of OH{sup {minus}}, SH{sup {minus}}, HCO{sub 3}{sup {minus}}, and F{sup {minus}} are significantly exothermic for chlorine displacement, NO{sub 3}{sup {minus}} reactions are slightly exothermic to the thermoneutral, HSO{sub 3}{sup {minus}} reactions are slightly endothermic to thermoneutral and HSO{sub 4}{sup {minus}}, and H{sub 2}PO{sub 4}{sup {minus}} reactions are significantly endothermic. In the case of OH{sup {minus}}, SH{sup {minus}}, and F{sup {minus}} where there are limited experimental data, these results agree well with experiment. The results for HCO{sub 3}{sup {minus}} are potentially important given the near ubiquitous occurrence of carbonate species in natural waters. The calculations reveal that the degree of chlorination, with the exception of substitution of OH{sup {minus}}, does not have a large effect on the Gibbs free energies of the substitution reactions. These results demonstrate that ab initio electronic structure methods can be used to calculate the reaction energetics of a potentially large number of organic compounds with other aqueous species in natural waters and can be used to help identify
NASA Astrophysics Data System (ADS)
Farahani, Pooria; Lundberg, Marcus; Karlsson, Hans O.
2013-11-01
The SN2 substitution reactions at phosphorus play a key role in organic and biological processes. Quantum molecular dynamics simulations have been performed to study the prototype reaction Cl-+PH2Cl→ClPH2+Cl-, using one and two-dimensional models. A potential energy surface, showing an energy well for a transition complex, was generated using ab initio electronic structure calculations. The one-dimensional model is essentially reflection free, whereas the more realistic two-dimensional model displays involved resonance structures in the reaction probability. The reaction rate is almost two orders of magnitude smaller for the two-dimensional compared to the one-dimensional model. Energetic errors in the potential energy surface is estimated to affect the rate by only a factor of two. This shows that for these types of reactions it is more important to increase the dimensionality of the modeling than to increase the accuracy of the electronic structure calculation.
N2O + CO reaction over Si- and Se-doped graphenes: An ab initio DFT study
NASA Astrophysics Data System (ADS)
Gholizadeh, Reza; Yu, Yang-Xin
2015-12-01
Catalytic conversion of non-CO2 green house gases and other harmful gases is a promising way to protect the atmospheric environment. Non-metal atom-doped graphene is attractive for use as a catalyst in the conversion due to its unique electronic properties, relatively low price and leaving no burden to the environment. To make an attempt on the development of green catalysts for the conversion, ab initio density functional theory is used to investigate the mechanisms of N2O reduction by CO on Si- and Se-doped graphenes. We have calculated the geometries and adsorption energies of reaction species (N2O, CO, N2 and CO2) as well as energy profiles along the reaction pathways. The activation energies of N2O decomposition and CO oxidation on both Si- and Se-doped graphenes have been obtained. Our calculated results indicate that the catalytic activity of Si-doped graphene is better than the Fe+ in gas phase and comparable to the single Fe atom embedded on graphene. In the calculations, we found that van der Waals interactions and zero-point energy are two non-negligible factors for the predictions of the activation energies. Further discussion shows that Si-doped graphene can be one of efficient green catalysts for conversion of the airborne pollutants and Se-doped graphene can be a candidate for oxidizing CO by atomic oxygen.
Zhou, Yanzi; Wang, Shenglong; Zhang, Yingkai
2010-01-01
Acetylcholinesterase (AChE) is a remarkably efficient serine hydrolase responsible for the termination of impulse signaling at cholinergic synapses. By employing Born-Oppenheimer molecular dynamics simulations with B3LYP/6-31G(d) QM/MM potential and the umbrella sampling method, we have characterized its complete catalytic reaction mechanism for hydrolyzing neurotransmitter acetylcholine (ACh) and determined its multi-step free energy reaction profiles for the first time. In both acylation and deacylation reaction stages, the first step involves the nucleophilic attack to the carbonyl carbon with the triad His447 serving as the general base, and leads to a tetrahedral covalent intermediate stabilized by the oxyanion hole. From the intermediate to the product, the orientation of His447 ring needs to be adjusted very slightly, and then the proton transfers from His447 to the product and the break of the scissile bond happen spontaneously. For the three-pronged oxyanion hole, it only makes two hydrogen bonds with the carbonyl oxygen at either the initial reactant or the final product state, but the third hydrogen bond is formed and stable at all transition and intermediate states during the catalytic process. At the intermediate state of the acylation reaction, a short and low-barrier hydrogen bond (LBHB) is found to be formed between two catalytic triad residues His447 and Glu334, and the spontaneous proton transfer between two residues has been observed. However, it is only about 1 ~ 2 kcal/mol stronger than the normal hydrogen bond. In comparison with previous theoretical investigations of the AChE catalytic mechanism, our current study clearly demonstrates the power and advantages of employing Born-Oppenheimer ab initio QM/MM MD simulations in characterizing enzyme reaction mechanisms. PMID:20550161
Bylaska, Eric J.; Glaesemann, Kurt R.; Felmy, Andrew R.; Vasiliu, Monica; Dixon, David A.; Tratnyek, P. G.
2010-11-25
Electronic structure methods were used to calculate the gas-phase and aqueous phase reaction energies for reductive dechlorination (i.e. hydrogenolysis), reductive Beta-elimination, dehydrochlorination, and nucleophilic substitution by OH- of 1,2,3-trichloropropane. The thermochemical properties Delta Hof(298.15K), So(298.15K,1 bar), and Delta GS(298.15K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely metabolites. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive Beta-elimination (Delta Gorxn ≈ -32 kcal/mol), followed closely by reductive dechlorination (Delta Gorxn ≈ -27 kcal/mol), dehydrochlorination (Delta Gorxn ≈ -27kcal/mol), and nucleophilic substitution by OH- (Delta Gorxn ≈ -25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate CH2-CHCl-CH2Cl , and CH2Cl-CH-CH2Cl species, was not favorable in the standard state (Delta Gorxn ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.
Jiang, Lei; Xu, Yi-sheng; Ding, Ai-zhong
2010-12-01
The mechanism of the reaction of the sulfur dioxide (SO(2)) with four stabilized Criegee intermediates (stabCI-CH(3)-OO, stabCI-OO, stabCIx-OO, and stabCH(2)OO) produced via the ozonolysis of limonene have been investigated using ab initio and DFT (density functional theory) methods. It has been shown that the intermediate adduct formed by the initiation of these reactions may be followed by two different reaction pathways such as H migration reaction to form carboxylic acids and rearrangement of oxygen to produce the sulfur trioxide (SO(3)) from the terminal oxygen of the COO group and SO(2). We found that the reaction of stabCI-OO and stabCH(2)OO with SO(2) can occur via both the aforementioned scenarios, whereas that of stabCI-CH(3)-OO and stabCIx-OO with SO(2) is limited to the second pathway only due to the absence of migrating H atoms. It has been shown that at the CCSD(T)/6-31G(d) + CF level of theory the activation energies of six reaction pathways are in the range of 14.18-22.59 kcal mol(-1), with the reaction between stabCIx-OO and SO(2) as the most favorable pathway of 14.18 kcal mol(-1) activation energy and that the reaction of stabCI-OO and stabCH(2)OO with SO(2) occurs mainly via the second reaction path. The thermochemical analysis of the reaction between SO(2) and stabilized Criegee intermediates indicates that the reaction of SO(2) and stabilized Criegee intermediates formed from the exocyclic primary ozonide decomposition is the main pathway of the SO(3) formation. This is likely to explain the large (~100%) difference in the production rate in the favor of the exocyclic compounds observed in recent experiments on the formation of H(2)SO(4) from exocyclic and endocyclic compounds. PMID:21053959
AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS
Turchi, P A
2004-04-14
Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.
NASA Astrophysics Data System (ADS)
Raghunath, P.; Lin, M. C.
2012-07-01
The kinetics and mechanism for the reaction of ClOO with NO have been investigated by ab initio molecular orbital theory calculations based on the CCSD(T)/6-311+G(3df)//PW91PW91/6-311+G(3df) method, employed to evaluate the energetics for the construction of potential energy surfaces and prediction of reaction rate constants. The results show that the reaction can produce two key low energy products ClNO + 3O2 via the direct triplet abstraction path and ClO + NO2 via the association and decomposition mechanism through long-lived singlet pc-ClOONO and ClONO2 intermediates. The yield of ClNO + O2 (1△) from any of the singlet intermediates was found to be negligible because of their high barriers and tight transition states. As both key reactions initially occur barrierlessly, their rate constants were evaluated with a canonical variational approach in our transition state theory and Rice-Ramspergen-Kassel-Marcus/master equation calculations. The rate constants for ClNO + 3O2 and ClO + NO2 production from ClOO + NO can be given by 2.66 × 10-16 T1.91 exp(341/T) (200-700 K) and 1.48 × 10-24 T3.99 exp(1711/T) (200-600 K), respectively, independent of pressure below atmospheric pressure. The predicted total rate constant and the yields of ClNO and NO2 in the temperature range of 200-700 K at 10-760 Torr pressure are in close agreement with available experimental results.
NASA Astrophysics Data System (ADS)
Churakov, S. V.; Parrinello, M.
2003-04-01
The carbonation of brucite (Mg(OH)2) has been considered as a potential technology for cleaning industrial carbon dioxide waste. The kinetics of the reaction Mg(OH)2 + CO2 -> MgCO3 + H2O have been studied experimentally at 573°C by Bearat at al. [1]. Their experiments suggest that the carbonation of magnesium hydroxide proceeds by the reaction Mg(OH)2 -> MgO + H2O followed by the adsorption of CO2 molecules on the dehydrated brucite surface. Due to the large difference in volumes between Mg(OH)2 and MgO, dehydration causes the formation of dislocations and cracks, allowing water molecules to leave the brucite surface and facilitating the advance of the carbonation front in the bulk solid. The detailed mechanism of this process is however unknown. We used the Car-Parrinello ab initio molecular dynamics method to study the structure and dynamics of the (0001), (1-100) and (11-20) surfaces of brucit and calculated the enthalpy and activation barrier of H2O nucleation and dehydration on different surfaces. The results obtained are in agreement with previous studies of brucite dehydration by Masini and Bernasconi [2]. The reactive Car-Parrinello molecular dynamics method [3] has been applied to investigate the detailed mechanism of the dehydration-carbonation reaction at the (1-100) interface of brucite with the gas phase. Based on the results of our MD simulations and the calculated enthalpy of CO2 adsorption on the dehydrated brucite surfaces we propose a mechanism for the dehydration/carbonation reaction. [1] Bearat H, McKelvy MJ, Chizmeshya AVG, Sharma R, Carpenter RW (2002) J. Amer. Ceram. Soc. 85(4):742 [2] Masini P and Bernasconi M (2001) J. Phys. Cond. Mat. 13: 1-12 [3] Iannuzzi M, Laio A and Parrinello M (2003) Phys. Rev. Lett. (submitted)
NASA Astrophysics Data System (ADS)
Buchachenko, A. A.; Stolyarov, A. V.; Szczȩśniak, M. M.; Chałasiński, G.
2012-09-01
The coefficients at the lowest-order electrostatic, induction, and dispersion terms of the anisotropic long-range potential between the two KRb(1Σ+) molecules are evaluated through the static and dynamic molecular properties using the ab initio coupled cluster techniques. Adiabatic channel potentials for the ground-state molecules are obtained and used for the numerical quantum capture probability calculations in the spirit of the statistical adiabatic channel models. Capture rate coefficients for indistinguishable (polarized) and distinguishable (unpolarized) molecules at temperatures below 10 μK agree well with those computed with the simple isotropic dispersion R-6 potential, but underestimate the measured ones [Ospelkaus et al., Science 327, 853 (2010), 10.1126/science.1184121] up to a factor of 3. Preliminary assessment of the effects of higher-order long-range terms, retardation of dispersion forces, and magnetic dipole-dipole interaction does not offer any clear perspectives for drastic improvement of the capture approximation for the reactions studied.
SurfKin: an ab initio kinetic code for modeling surface reactions.
Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K
2014-10-01
In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. PMID:25111729
Varandas, A J C
2013-04-01
The Combined-Hyperbolic-Inverse-Power-Representation method, which treats evenly both short- and long-range interactions, is used to fit an extensive set of ab initio points for HO2 previously utilized [Xu et al., J. Chem. Phys. 122, 244305 (2005)] to develop a spline interpolant. The novel form is shown to perform accurately when compared with others, while quasiclassical trajectory calculations of the O + OH reaction clearly pinpoint the role of long-range forces at low temperatures. PMID:23574218
Ab Initio and RRKM Study of the Reaction of ClO with HOCO Radicals
NASA Astrophysics Data System (ADS)
Yu, Hua-Gen; Francisco, Joseph S.
2009-10-01
The reaction pathways for the ClO + HOCO reaction have been explored using the coupled-cluster method to locate and optimize the critical points on the ground-state potential-energy surface. Results show that the ClO + HOCO reaction can produce Cl + HOC(O)O, HOCl + CO2, HCl + CO3, and HClO + CO2 via an addition or a direct hydrogen abstraction reaction mechanism. The reaction kinetics has been studied using the variational RRKM theory. It is found that the ClO + HOCO reaction is fast and has a negative temperature dependence at low temperatures. At room temperature, the thermal rate coefficient is obtained as 4.26 × 10-12 cm3 molecules-1 s-1 with product branching fractions of Cl (0.518), HOCl (0.469), HCl (0.01), and HClO (0.003) at zero pressure. The Cl + HOC(O)O products are major, compared to the HOCl + CO2 products, because of the loose transition state along the dissociation pathway to eliminate Cl. In addition, the RRKM/master equation simulations indicate that the stabilization of the HOC(O)OCl intermediates is noticeable at moderate pressures as its thermal rate constants reach about 6.0 × 10-13 cm3 molecules-1 s-1. In contrast, the other product branching ratios for the ClO + HOCO reaction are weakly dependent on pressure.
Mechanisms of branching reactions in melanin formation - Ab initio quantum engineering approach -
NASA Astrophysics Data System (ADS)
Kishida, Ryo; Menez Aspera, Susan; Kasai, Hideaki
Melanin, a pigment found in animals, consists of two types of oligomeric unit: eumelanin and pheomelanin. The color of the skin, the hair, and the eyes is controlled by the ratio of eumelanin/pheomelanin production. Especially, dopachrome and dopaquinone are the precursor molecules of melanin which directly affect the composition of melanin through their branching reactions. Dopachrome is converted into two possible monomers of eumelanin. Dopaquinone can undergo both eumelanin and pheomelanin synthesis. To understand the mechanisms and controlling factors that govern the conversions, reactions of the two molecules are investigated using density functional theory-based first-principles calculations. Our results deepen mechanistic understanding of the reactions and open possibilities to design properties and functions of melanin. In this talk, we will discuss about the competitions of the branching reactions.
Bylaska, Eric J; Glaesemann, Kurt R; Felmy, Andrew R; Vasiliu, Monica; Dixon, David A; Tratnyek, Paul G
2010-11-25
Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely. PMID:21038905
An ab initio benchmark study of the H + CO --> HCO reaction
NASA Technical Reports Server (NTRS)
Woon, D. E.
1996-01-01
The H + CO --> HCO reaction has been characterized with correlation consistent basis sets at five levels of theory in order to benchmark the sensitivities of the barrier height and reaction ergicity to the one-electron and n-electron expansions of the electronic wave function. Single and multireference methods are compared and contrasted. The coupled cluster method RCCSD(T) was found to be in very good agreement with Davidson-corrected internally-contracted multireference configuration interaction (MRCI+Q). Second-order Moller-Plesset perturbation theory (MP2) was also employed. The estimated complete basis set (CBS) limits for the barrier height (in kcal/mol) for the five methods, including harmonic zero-point energy corrections, are MP2, 4.66; RCCSD, 4.78; RCCSD(T), 4.15; MRCI, 5.10; and MRCI+Q, 4.07. Similarly, the estimated CBS limits for the ergicity of the reaction are: MP2, -17.99; RCCSD, -13.34; RCCSD(T), -13.79; MRCI, -11.46; and MRCI+Q, -13.70. Additional basis set explorations for the RCCSD(T) method demonstrate that aug-cc-pVTZ sets, even with some functions removed, are sufficient to reproduce the CBS limits to within 0.1-0.3 kcal/mol.
Discovering chemistry with an ab initio nanoreactor
NASA Astrophysics Data System (ADS)
Martinez, Todd
Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.
NASA Astrophysics Data System (ADS)
Xia, W. S.; Lin, M. C.
2001-03-01
The mechanism for the OH+HNO3 reaction has been studied by ab initio molecular orbital calculations at the G2M(cc3) level of theory. Four complexes and four transition states have been found and confirmed by intrinsic reaction coordinate analyses. The commonly assumed six-membered ring complex formed by hydrogen bonding of the OH radical with HNO3, -ON(O)OH…OH-, was found to be stable by 8.1 kcal/mol; its decomposition producing NO3+H2O was predicted to have a barrier of 11.6 kcal/mol. A five-membered ring complex, -ON(O)OH…O(H)-, with the H atom of the OH radical placed out of the ring plane, was found to have a stability of 5.3 kcal/mol; it fragments to form NO3+H2O with a barrier of 6.6 kcal/mol. Two additional complexes, which are the mirror image of each other with a 7.4 kcal/mol binding energy, were found to be related to the OH exchange reaction with a 13.3 kcal/mol barrier above the complexes. The direct abstraction process producing H2O2 and NO2 was predicted to have a large barrier of 24.4 kcal/mol, insignificant to atmospheric chemistry. The rate constant has been calculated at 200-1500 K and 0-760 Torr. The results show that the reaction has strong pressure and tunneling effects below room temperature. In addition, the rate constants for the decay of OH and OD (in OD+DNO3) evaluated by kinetic modeling compare reasonably well with experimental data below room temperature. The unusually pronounced kinetic isotope effect observed experimentally, kH/kD⩾10, could be accounted for by the combination of the greater tunneling rate in the H system and the large redissociation rate of stabilized complexes in the D system. The rate constant predicted for the production of H2O and NO3 in the temperature range 750-1500 K can be effectively represented by the expression k=1.45×10-23 T3.5 exp(+839/T) cm3/s.
Ab initio Study of Ultrafast Photochemical Ring-Opening Reaction of 1,3-Cyclohexadiene
Kobayashi, Takao; Murakami, Akinori; Nakamura, Shinichiro; Shiga, Motoyuki
2007-12-26
The mechanism of ultrafast photochemical ring-opening reaction of 1,3-cyclohexadiene (CHD), which has been inferred based on CASPT2//CASSCF(6,6) calculations of potential energy surfaces (PESs) by Garavelli et al. (J. Phys. Chem. A, 105, 4458-4469 (2001)), has not been fully understood. The unsolved problem is that within the framework of the CASPT2//CASSCF(6,6) method the S{sub 1}/S{sub 0} conical intersection (CI) is located too far from a pericyclic minimum of the S{sub 1} state (S{sub 1} pmin) for the photochemical ring-opening reaction of CHD to proceed to produce cZc-1,3,5-hexatriene (cZc-HT) on a ultrafast time scale of around 200 fs. In this study, it has been shown that the PESs obtained by the CASPT2//CASPT2 calculations give a reasonable explanation to why the photochemical ring-opening reation of CHD proceeds on the ultrafast time scale. The most important and remarkable feature of the CASPT2//CASPT2 PESs is that both energetic and structural distances between the S{sub 1} pmin and the S{sub 1}/S{sub 0} CI, both of which have structures largely breaking from C{sub 2} symmetry, are small enough for a nonadiabatic transition to occur in the vicinity of the S{sub 1} pmin.
Ab initio quantum chemistry: Methodology and applications
Friesner, Richard A.
2005-01-01
This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller–Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly. PMID:15870212
Du Weina; Luo Cheng; Li Zesheng
2008-11-07
The dissociations of CH{sub 2}CHCN into CH{sub 2}CH+CN and CH{sub 2}C+HCN in the S{sub 0}, T{sub 1}, and {sup 1}{pi}{sub 2}{pi}{sub C{identical_to}}{sub N}* (definitions of {pi} orbitals can refer to computational details) states, have been explored at the complete active space self-consistent field level of theory employing the Dunning correlation consistent triple-zeta basis set. The lowest energy points of the surface crossing seams have been searched. Two conical intersections, from {sup 1}{pi}{sub C{identical_to}}{sub N}{pi}{sub 1}* to {sup 1}{pi}{sub 2}{pi}{sub 1}* (CI{sub 1}) and from {sup 1}{pi}{sub 2}{pi}{sub 1}* to S{sub 0} (CI{sub 2}), and one intersystem crossing point (T{sub 1}/S{sub 0}) have been located. The energies of all critical points have been recomputed with the multiconfigurational second-order perturbation method. At each conical intersection, derivative coupling and unscaled gradient difference vectors have been analyzed to determine the relaxation channels that the molecule may evolve in after nonradiative decay. Once the molecule is photoexcited to the {sup 1}{pi}{sub 2}{pi}{sub 1}* or {sup 1}{pi}{sub C{identical_to}}{sub N}{pi}{sub 1}* state, it would relax along the similar pathway: funneling through CI{sub 1} and then CI{sub 2}, and finally populate the ground state. Our results show that upon 193 nm photoexcitation, the most probable reaction channel is the ground-state HCN elimination following radiationless decays from excited states through surface crossings, which consists with experimental results J. Chem. Phys. 108, 5784 (1998). The investigated dissociation channels on the {sup 1}{pi}{sub 2}{pi}{sub C{identical_to}}{sub N}* surface, which are inaccessible upon 193 nm photoexcitation, may provide information for reactions induced by higher energy excitations.
Collective rotation from ab initio theory
NASA Astrophysics Data System (ADS)
Caprio, M. A.; Maris, P.; Vary, J. P.; Smith, R.
2015-08-01
Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7-9Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction.
Ab initio nuclear structure theory
NASA Astrophysics Data System (ADS)
Negoita, Gianina Alina
Ab initio no core methods have become major tools for understanding the properties of light nuclei based on realistic nucleon-nucleon (NN) and three-nucleon (NNN) interactions. A brief description is provided for the inter-nucleon interactions that fit two-body scattering and bound state data, as well as NNN interactions. Major new progress, including the goal of applying these interactions to solve for properties of nuclei, is limited by convergence issues. That is, with the goal of obtaining high precision solutions of the nuclear many-body Hamiltonian with no core methods (all nucleons treated on the same footing), one needs to proceed to very large basis spaces to achieve a convergence pattern suitable for extrapolation to the exact result. This thesis investigates (1) the similarity renormalization group (SRG) approach to soften the interaction, while preserving its phase shift properties, and (2) adoption of a realistic basis space using Woods-Saxon (WS) single-particle wavefunctions. Both have their advantages and limitations, discussed here. For (1), SRG was demonstrated by applying it to a realistic NN interaction, JISP16, in a harmonic oscillator (HO) representation. The degree of interaction softening achieved through a regulator parameter is examined. For (2), new results are obtained with the realistic JISP16 NN interaction in ab initio calculations of light nuclei 4He, 6He and 12C, using a WS basis optimized to minimize the ground-state energy within the truncated no core shell model. These are numerically-intensive many-body calculations. Finally, to gain insight into the potential for no core investigations of heavier nuclei, an initial investigation was obtained for the odd mass A = 47 - 49 region nuclei straddling 48Ca. The motivation for selecting these nuclei stems from the aim of preparing for nuclear double beta-decay studies of 48Ca. In these heavier systems, phenomenological additions to the realistic NN interaction determined by previous
Ab initio phonon limited transport
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu
We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)
NASA Astrophysics Data System (ADS)
Varandas, A. J. C.
2013-04-01
The Combined-Hyperbolic-Inverse-Power-Representation method, which treats evenly both short- and long-range interactions, is used to fit an extensive set of ab initio points for HO2 previously utilized [Xu et al., J. Chem. Phys. 122, 244305 (2005), 10.1063/1.1944290] to develop a spline interpolant. The novel form is shown to perform accurately when compared with others, while quasiclassical trajectory calculations of the O + OH reaction clearly pinpoint the role of long-range forces at low temperatures.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-01-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881
Discovering chemistry with an ab initio nanoreactor.
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S; Martínez, Todd J
2014-12-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor--a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings. PMID:25411881
Discovering chemistry with an ab initio nanoreactor
NASA Astrophysics Data System (ADS)
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-12-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor—a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.
Yousaf, Masood; Shin, Dongbin; Ruoff, Rodney; Park, Noejung
2015-12-17
We used ab initio molecular dynamics (AIMD) to investigate the effect of a monochromatic oscillating electric field in resonance with a particular molecular vibration on surfaces. As a case study, AIMD simulations were carried out for hydroxyl functional groups on graphene. When the frequency of the applied field matches with the C-OH vibration frequency, the amplitude is monotonically amplified, leading to a complete desorption from the surface, overcoming the substantial barrier. This suggests the possibility of activating a particular bond without damaging the remaining surface. We extended this work to the case of the amination of sp(2)-bonded carbon surfaces and discussed the general perspective that, in general, an unfavorable chemical process can be activated by applying an external electric field with an appropriate resonance frequency. PMID:26634785
Kolb, Brian; Guo, Hua
2016-07-01
Scattering and dissociative chemisorption of DCl on Au(111) are investigated using ab initio molecular dynamics with a slab model, in which the top two layers of Au are mobile. Substantial kinetic energy loss in the scattered DCl is found, but the amount of energy transfer is notably smaller than that observed in the experiment. On the other hand, the dissociative chemisorption probability reproduces the experimental trend with respect to the initial kinetic energy, but is about one order of magnitude larger than the reported initial sticking probability. While the theory-experiment agreement is significantly improved from the previous rigid surface model, the remaining discrepancies are still substantial, calling for further scrutiny in both theory and experiment. PMID:27394092
NASA Astrophysics Data System (ADS)
Kolb, Brian; Guo, Hua
2016-07-01
Scattering and dissociative chemisorption of DCl on Au(111) are investigated using ab initio molecular dynamics with a slab model, in which the top two layers of Au are mobile. Substantial kinetic energy loss in the scattered DCl is found, but the amount of energy transfer is notably smaller than that observed in the experiment. On the other hand, the dissociative chemisorption probability reproduces the experimental trend with respect to the initial kinetic energy, but is about one order of magnitude larger than the reported initial sticking probability. While the theory-experiment agreement is significantly improved from the previous rigid surface model, the remaining discrepancies are still substantial, calling for further scrutiny in both theory and experiment.
NASA Astrophysics Data System (ADS)
Petrongolo, Carlo; Ranghino, Graziella; Scordamaglia, Raimondo
1980-01-01
The potential energy surface of the β-lactam + OH - reaction, related to the mode of action of β-lactam antibiotics, was investigated using the ab initio Hartree—Fock method with the STO-3G basis set. Three possible reaction paths for the B A C2 breaking of the amidic CN bond were obtained and discussed. The minimum-energy reaction path is characterized by the following processes: (1) the formation of a tetrahedral intermediate, ≈ 121 kcal mol -1 more stable than the reagents; (2) a barrier, ≈ 15 kcal mol -1 above the intermediate, which is mainly due to the partial breaking of the amidic bond; (3) the complete breaking of the amidic bond concerted with a proton transfer till the formation of the final product, ≈ 34 kcal mol -1 more stable than the intermediate. The evolution of some molecular orbitals and of the electron population along the reaction path was also discussed.
Ab initio many-body calculations of the (3)H(d,n)(4)He and (3)He(d,p)(4)He fusion reactions.
Navrátil, Petr; Quaglioni, Sofia
2012-01-27
We apply the ab initio no-core shell model combined with the resonating-group method approach to calculate the cross sections of the (3)H(d,n)(4)He and (3)He(d,p)(4)He fusion reactions. These are important reactions for the big bang nucleosynthesis and the future of energy generation on Earth. Starting from a selected similarity-transformed chiral nucleon-nucleon interaction that accurately describes two-nucleon data, we performed many-body calculations that predict the S factor of both reactions. Virtual three-body breakup effects are obtained by including excited pseudostates of the deuteron in the calculation. Our results are in satisfactory agreement with experimental data and pave the way for microscopic investigations of polarization and electron-screening effects, of the (3)H(d,γn)(4)He bremsstrahlung and other reactions relevant to fusion research. PMID:22400830
Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.
2008-05-20
Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.
Ab initio alpha-alpha scattering
NASA Astrophysics Data System (ADS)
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.
2015-12-01
Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Ab initio alpha-alpha scattering.
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-12-01
Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Nickolaisen, S.L.; Roehl, C.M.; Blakeley, L.K.; Friedl, R.R.; Francisco, J.S.; Liu, R.; Sander, S.P.
2000-01-20
The kinetics of the HO{sub 2} + ClO reaction was studied using the flash photolysis/ultraviolet absorption technique over the temperature range 203--364 K and pressure range 50--700 Torr of N{sub 2}. In contrast to previous work, the temperature dependence displayed linear Arrhenius behavior over the entire temperature range. Ab initio calculations of intermediates and transition states have been carried out on the singlet and triplet potential energy surfaces. These calculations show that the reaction proceeds mainly through the ClO-HO{sub 2} complex on the triplet surface; however, collisionally stabilized HOOOCl formed on the singlet surface will possess an appreciable lifetime due to large barriers toward decomposition to HCl and HOCl. Termolecular rate calculations using ab initio parameters lead to a strong collision rate constant for HOOOCl formation. This intermediate may be important under both laboratory and atmospheric conditions.
Louis, F.; Gonzalez, C.A. Huie, R.E.; Kurylo, M.J.
2000-04-06
Ab initio calculations were carried out with Moeller-Plesset second- and fourth-order perturbation theory (MP2 and MP4), and the coupled cluster method, CCSD(T), on the H atom abstraction reaction from dibromomethane by hydroxyl radical attack. Geometry optimization and vibrational frequency calculations at the MP2 level were performed on reactants, products, and the transition state using the 6-311G(d,p) and 6-311G(2d,2p) basis sets. The geometry parameters optimized at the MP2/6-311G(2d,2p) level of theory were used in single-point energy calculations with increasing basis set sizes, from 6-311G(2d,2p) to 6-311++G(3df,3pd) at both the MP2 and MP4 (SDTQ) levels of theory. Canonical transition-state theory was used to predict the rate constants as a function of the temperature (250--400 K). It was found that the kinetic parameters obtained in this work with the spin-projected method PMP4(SDTQ)/6-311++G(3df,3pd)//MP2/6-311G(2d,2p) are in reasonable agreement with the experimental values. The prospect of using relatively low level ab initio electronic structure calculations aimed at the implementation of inexpensive semiquantitative screening tools that could air scientists in predicting the kinetics of similar processes is also discussed.
Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H
2016-05-21
This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values. PMID:27208951
NASA Astrophysics Data System (ADS)
Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H.
2016-05-01
This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.
Wu, Ying; Zhang, Chunfang; Cao, Jianwei; Bian, Wensheng
2014-06-19
Quasiclassical trajectory (QCT) calculations have been performed on a new global ab initio potential energy surface (PES) for the singlet ground state (1(1)A') of the CH2 reactive system. Our new PES can give a very good description of the well and asymptote regions, and particularly regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The integral cross sections, differential cross sections, and product rovibrational state distributions for the C((1)D) + H2 → CH + H reaction have been investigated in a wide range of collision energies. The present integral cross sections are much larger than the previous QCT results at low collision energies, which can be attributed to the differences of the PESs in the regions around the CIs and vdW complexes. The thermal rate coefficients in the temperature range 200-1500 K have also been calculated and very good agreement with experiment is obtained. PMID:24878310
NASA Astrophysics Data System (ADS)
Schatz, George C.; Walch, Stephen P.; Wagner, Albert F.
1980-11-01
We present ab initio (GVB-POL-CI) calculations for enough of the region about the abstraction and exchange saddle points for H(T)+CH4(CD4) to perform a full normal mode analysis of the transition states. The resulting normal mode frequencies are compared to four other published surfaces: an ab initio UHF-SCF calculation by Carsky and Zahradnik, a semiempirical surface by Raff, and two semiempirical surfaces by Kurylo, Hollinden, and Timmons. Significant quantitative and qualitative differences exist between the POL-CI results and those of the other surfaces. Transition state theory rate constants and vibrationally adiabatic reaction threshold energies were computed for all surfaces and compared to available experimental values. For abstraction, the POL-CI rates are in good agreement with experimental rates and in better agreement than are the rates of any of the other surfaces. For exchange, uncertainties in the experimental values and in the importance of vibrationally nonadiabatic effects cloud the comparison of theory to experiment. Tentative conclusions are that the POL-CI barrier is too low by several kcal. Unless vibrationaly nonadiabatic effects are severe, the POL-CI surface is still in better agreement with experiment than are the other surfaces. The rates for a simple 3-atom transition state theory model (where CH3 is treated as an atom) are compared to the rates for the full 6-atom model. The kinetic energy coupling of reaction coordinate modes to methyl group modes is identified as being of primary importance in determining the accuracy of the 3-atom model for this system. Substantial coupling in abstraction, but not exchange, causes the model to fail for abstraction but succeed for exchange.
NASA Astrophysics Data System (ADS)
Seifitokaldani, Ali
oxidizing potential (more than 2 volts vs. NHE). X-ray Photoelectron Spectroscopy (XPS) showed that the nitrogen amount on the surface of the electro-catalyst decreased from 11 % before the oxidation to 5 % after the oxidation, whereas the catalytic activity for the ORR decreased after the oxidation. Thus, decreasing the titanium nitride's amount in the titanium oxy-nitride surface reduced its catalytic activity. In the second phase of this project, electro-catalytic activity of the titanium nitride for the ORR was investigated via a density functional theory (DFT) computation. To the best of our knowledge, there is no theoretical and computational quantum chemistry study of the transition metal's nitride as the electro-catalyst in PEM fuel cells. ORR was considered to take place in three different sequential steps namely oxygen adsorption, hydroxide production and water desorption. Based on the XRD results, TiN(111) and TiN(200) were considered as the two major facets of the TiN. Simulation was done by the Vienna ab initio Simulation Package (VASP) based on the Plane-Wave basis sets and periodic boundary condition, while the PBE exchangecorrelational functional was used to describe the interactions among electrons. Comparing the adsorption energies proved existence of a strong dissociative adsorption of oxygen on the TiN(111) regardless of the adsorption sites. However, because of a relatively strong OH adsorption, TiN(111) loses the active sites to proceed the ORR, while on the TiN(200) surface, water production and desorption came about easily. Electron density of states (DOS) was obtained to calculate the d-band center and fractional filling in different situations. Considering two possible bridge and top adsorption sites on the TiN(200), these information indicated the hydroxide production and water desorption as the rate determining steps for the ORR in bridge and top sites, respectively. Therefore, it was shown that the TiN, specially TiN(200) had exhibited good
Phonocatalysis. An ab initio simulation experiment
NASA Astrophysics Data System (ADS)
Kim, Kwangnam; Kaviany, Massoud
2016-06-01
Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon) energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent) requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.
NASA Astrophysics Data System (ADS)
Czakó, Gábor
2013-04-01
Chemically accurate full-dimensional non-spin-orbit and spin-orbit (SO) ground-state potential energy surfaces (PESs) are obtained for the Br + CH4 → HBr + CH3 reaction by fitting 21 574 composite ab initio energy points. The composite method considers electron correlation methods up to CCSD(T), basis sets up to aug-cc-pwCVTZ-PP, correlation of the core electrons, scalar relativistic effects via an effective core potential (ECP), and SO corrections, thereby achieving an accuracy better than 0.5 kcal/mol. Benchmark structures and relative energies are computed for the stationary points using the ab initio focal-point analysis (FPA) scheme based on both ECP and Douglas-Kroll approaches providing all-electron relativistic CCSDT(Q)/complete-basis-set quality energies. The PESs accurately describe the saddle point of the abstraction reaction and the van der Waals complexes in the entrance and product channels. The SO-corrected PES provides a classical barrier height of 7285(7232 ± 50) cm-1, De values of 867(799 ± 10) and 399(344 ± 10) cm-1 for the complexes CH3-HBr and CH3-BrH, respectively, and reaction endothermicity of 7867(7857 ± 50) cm-1, in excellent agreement with the new, FPA-based benchmark data shown in parentheses. The difference between the Br + CH4 asymptotes of the non-SO and SO PESs is 1240 cm-1, in good agreement with the experiment (1228 cm-1). Quasiclassical trajectory calculations based on more than 13 million trajectories for the late-barrier Br + CH4(vk = 0, 1) [k = 1, 2, 3, 4] reactions show that the vibrational energy, especially the excitation of the stretching modes, activates the reaction much more efficiently than translational energy, in agreement with the extended Polanyi rules. Angular distributions show dominant backward scattering for the ground-state reaction and forward scattering for the stretching-excited reactions. The reactivity on the non-SO PES is about 3-5 times larger than that on the SO PES in a wide collision energy
Song, Hongwei; Lu, Yunpeng; Li, Jun; Yang, Minghui; Guo, Hua
2016-04-28
An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD3 reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi's rules, but can be rationalized by the recently proposed sudden vector projection model. PMID:27131546
NASA Astrophysics Data System (ADS)
Song, Hongwei; Lu, Yunpeng; Li, Jun; Yang, Minghui; Guo, Hua
2016-04-01
An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD3 reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi's rules, but can be rationalized by the recently proposed sudden vector projection model.
Li, Jun; Jiang, Bin; Song, Hongwei; Ma, Jianyi; Zhao, Bin; Dawes, Richard; Guo, Hua
2015-05-21
We survey the recent advances in theoretical understanding of quantum state resolved dynamics, using the title reactions as examples. It is shown that the progress was made possible by major developments in two areas. First, an accurate analytical representation of many high-level ab initio points over a large configuration space can now be made with high fidelity and the necessary permutation symmetry. The resulting full-dimensional global potential energy surfaces enable dynamical calculations using either quasi-classical trajectory or more importantly quantum mechanical methods. The second advance is the development of accurate and efficient quantum dynamical methods, which are necessary for providing a reliable treatment of quantum effects in reaction dynamics such as tunneling, resonances, and zero-point energy. The powerful combination of the two advances has allowed us to achieve a quantitatively accurate characterization of the reaction dynamics, which unveiled rich dynamical features such as steric steering, strong mode specificity, and bond selectivity. The dependence of reactivity on reactant modes can be rationalized by the recently proposed sudden vector projection model, which attributes the mode specificity and bond selectivity to the coupling of reactant modes with the reaction coordinate at the relevant transition state. The deeper insights provided by these theoretical studies have advanced our understanding of reaction dynamics to a new level. PMID:25886142
Brüssel, Marc; di Dio, Philipp J.; Muñiz, Kilian; Kirchner, Barbara
2011-01-01
We carried out ab initio molecular dynamic simulations in order to determine the free energy surfaces of two selected reactions including solvents, namely a rearrangement of a ruthenium oxoester in water and a carbon dioxide addition to a palladium complex in carbon dioxide. For the latter reaction we also investigated the gas phase reaction in order to take solvent effects into account. We used two techniques to reconstruct the free energy surfaces: thermodynamic integration and metadynamics. Furthermore, we gave a reasonable error estimation of the computed free energy surface. We calculated a reaction barrier of ΔF = 59.5 ± 8.5 kJ mol−1 for the rearrangement of a ruthenium oxoester in water from thermodynamic integration. For the carbon dioxide addition to the palladium complex in carbon dioxide we found a ΔF = 44.9 ± 3.3 kJ mol−1 from metadynamics simulations with one collective variable. The investigation of the same reactions in the gas phase resulted in ΔF = 24.9 ± 6.7 kJ mol−1 from thermodynamic integration, in ΔF = 26.7 ± 2.3 kJ mol−1 from metadynamics simulations with one collective variable, and in ΔF = 27.1 ± 5.9 kJ mol−1 from metadynamics simulations with two collective variables. PMID:21541065
Matsubara, Hiroshi; Horvat, Sonia M; Schiesser, Carl H
2003-04-01
Ab initio calculations using 6-311G**, cc-pVDZ, aug-cc-pVDZ, and a (valence) double-zeta pseudopotential (DZP) basis sets, with (MP2, QCISD, CCSD(T)) and without (UHF) the inclusion of electron correlation, and density functional (B3LYO) calculations predict that homolytic substitution reactions of the methyl radical at the silicon atom in disilane can proceed via both backside and frontside attack mechanisms. At the highest level of theory (CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ), energy barriers (delta E) of 47.4 and 48.6 kJ mol-1 are calculated for the backside and frontside reactions respectively. Similar results are obtained for reactions involving germanium and tin with energy barriers (delta E) of between 46.5 and 67.3, and 41.0 and 73.3 kJ mol-1 for the backside and frontside mechanisms, respectively. These data suggest that homolytic substitution reactions of methyl radical at silicon, germanium, and tin can proceed via either homolytic substitution mechanism. PMID:12926395
Ab initio infrared and Raman spectra
NASA Astrophysics Data System (ADS)
Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.
1983-06-01
We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum
Collective rotation from ab initio theory
NASA Astrophysics Data System (ADS)
Caprio, Mark A.; Maris, Pieter; Vary, James P.
2015-10-01
The challenge of ab initio nuclear theory is to quantitatively predict the complex and highly-correlated behavior of the nuclear many-body system, starting from the underlying internucleon interactions. We may now seek to understand the wealth of nuclear collective phenomena through ab initio approaches. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. In this talk, the intrinsic structure of these bands is discussed, and the predicted rotational bands are compared to experiment. Supported by the US DOE under Award Nos. DE-FG02-95ER-40934, DESC0008485 (SciDAC/NUCLEI), and DE-FG02-87ER40371 and the US NSF under Award No. 0904782. Computational resources provided by NERSC (US DOE Contract No. DE-AC02-05CH11231).
Ab initio infrared and Raman spectra
NASA Technical Reports Server (NTRS)
Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.
1983-01-01
It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.
Ammal, Salai Cheettu; Heyden, Andreas
2011-10-06
The electronic structure of small Ptn (n = 1-8) clusters supported on the stoichiometric and partially reduced rutile TiO2(110) surface have been investigated using density functional theory. Pt atoms prefer to form a close-packed structure with (111) facet near an oxygen vacancy of the TiO2 support and a less dense structure with (100) facet away from oxygen vacant sites. Themain focus of this study is on identifying a realistic catalyst model for the Pt/TiO2 interface under watergas shift (WGS) reaction conditions. Constrained ab initio thermodynamic simulations on the stability of oxygen vacancies and formation of adsorbed gas phase molecules such as oxygen, CO, and hydrogen at the metal/oxide interface reveal that under WGS reaction conditions the formation of surface oxygen vacancies are thermodynamically favorable, platinum oxide species (PtOx) can easily be reduced and should not be present, CO adsorbs only weakly on interfacial Pt atoms, and CO poisoning of these sites should be less important. While hydrogen generally interacts weakly with interfacial Pt atoms, it forms very stable hydride species on Pt atoms neighboring an oxygen vacancy of the TiO2(110) support, possibly negatively affecting the WGS reaction rate.
Sosa, C.; Schlegel, H.B.
1987-11-11
The energetically favorable reaction paths for the unimolecular decomposition of the primary addition product of OH + C/sub 2/H/sub 4/ have been studied with ab initio techniques. Equilibrium geometries and transition structures were fully optimized with 3-21G and 6-31G* basis sets at the Hartree-Fock level. Heats of reaction and barrier heights have been computed with Moeller-Plesset perturbation theory up to fourth order, with and without annihilation of spin contamination. At the MP4 level barrier heights are lowered by 2-7 kcal/mol when the largest spin contaminant is removed. After the addition of OH + C/sub 2/H/sub 4/ to form the 2-hydroxyethyl radical, the most favorable reaction path (other than decomposition to reactants) is the (1,3)-hydrogen shift to form ethoxy radical followed by a dissociation into CH/sub 3/ + CH/sub 2/O. Other slightly higher energy paths include dissociation of ethoxy into H + CH/sub 3/CHO and decomposition of the 2-hydroxyethyl radical into H + HOCHCH/sub 2/.
Wu, S Y; Raghunath, P; Wu, J S; Lin, M C
2010-01-14
The reactions of hydrogen atom with silane and disilane are relevant to the understanding of catalytic chemical vapor deposition (Cat-CVD) and plasma enhanced chemical vapor deposition (PECVD) processes. In the present study, these reactions have been investigated by means of ab initio molecular-orbital and transition-state theory calculations. In both reactions, the most favorable pathway was found to be the H abstraction leading to the formation of SiH(3) and Si(2)H(5) products, with 5.1 and 4.0 kca/mol barriers, respectively. For H + Si(2)H(6), another possible reaction pathway giving SiH(3) + SiH(4) may take place with two different mechanisms with 4.3 and 6.7 kcal/mol barriers for H-atom attacking side-way and end-on, respectively. To validate the calculated energies of the reactions, two isodesmic reactions, SiH(3)+CH(4)-->SiH(4)+CH(3) and Si(2)H(5)+C(2)H(6)-->Si(2)H(6)+C(2)H(5) were employed; the predicted heats of the formation for SiH(3) (49.0 kcal/mol) and Si(2)H(5) (58.6 kcal/mol) were found to agree well with the experimental data. Finally, rate constants for both H-abstraction reactions predicted in the range of 290-2500 K agree well with experimental data. The result also shows that H+Si(2)H(6) producing H(2)+Si(2)H(5) is more favorable than SiH(3)+SiH(4.). PMID:19938820
NASA Astrophysics Data System (ADS)
Thiessen, P. A.; Treder, H.-J.
Jedes initium wird durch experimenta crucis zum eventus. Jedes theoretisch interpretierbare ex-eventu-Resultat führt auf ein neues Initium. Gerade dies ist die gemeinsame Aussage von Atomistik, Quantenmechanik und Relativitätstheorie.Translated AbstractAb initio vel ex eventu. IIEvery initium becomes an eventus by experimenta crucis. Every theoretically interpretable ex-eventu result leads to a new initium. Right this is the joint assertion of atomism, quantum mechanics, and relativity.
Ab initio Bogoliubov coupled cluster theory
NASA Astrophysics Data System (ADS)
Signoracci, Angelo; Hagen, Gaute; Duguet, Thomas
2014-09-01
Coupled cluster (CC) theory has become a standard method in nuclear theory for realistic ab initio calculations of medium mass nuclei, but remains limited by its requirement of a Slater determinant reference state which reasonably approximates the nuclear system of interest. Extensions of the method, such as equation-of-motion CC, permit the calculation of nuclei with one or two nucleons added or removed from a doubly magic core, yet still only a few dozen nuclei are accessible with modern computational restrictions. In order to extend the applicability of ab initio methods to open-shell systems, the superfluid nature of nuclei must be taken into account. By utilizing Bogoliubov algebra and employing spontaneous symmetry breaking with respect to particle number conservation, superfluid systems can be treated by a single reference state. An ab initio theory to include correlations on top of a Bogoliubov reference state has been developed in the guise of standard CC theory. The formalism and first results of this Bogoliubov coupled cluster theory will be presented to demonstrate the applicability of the method.
Ab Initio Reaction Kinetics of CH3OĊ(═O) and ĊH2OC(═O)H Radicals.
Tan, Ting; Yang, Xueliang; Ju, Yiguang; Carter, Emily A
2016-03-01
The dissociation and isomerization kinetics of the methyl ester combustion intermediates methoxycarbonyl radical (CH3OĊ(═O)) and (formyloxy)methyl radical (ĊH2OC(═O)H) are investigated theoretically using high-level ab initio methods and Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation (ME) theory. Geometries obtained at the hybrid density functional theory (DFT) and coupled cluster singles and doubles with perturbative triples correction (CCSD(T)) levels of theory are found to be similar. We employ high-level ab initio wave function methods to refine the potential energy surface: CCSD(T), multireference singles and doubles configuration interaction (MRSDCI) with the Davidson-Silver (DS) correction, and multireference averaged coupled-pair functional (MRACPF2) theory. MRSDCI+DS and MRACPF2 capture the multiconfigurational character of transition states (TSs) and predict lower barrier heights than CCSD(T). The temperature- and pressure-dependent rate coefficients are computed using RRKM/ME theory in the temperature range 300-2500 K and a pressure range of 0.01 atm to the high-pressure limit, which are then fitted to modified Arrhenius expressions. Dissociation of CH3OĊ(═O) to ĊH3 and CO2 is predicted to be much faster than dissociating to CH3Ȯ and CO, consistent with its greater exothermicity. Isomerization between CH3OĊ(═O) and ĊH2OC(═O)H is predicted to be the slowest among the studied reactions and rarely happens even at high temperature and high pressure, suggesting the decomposition pathways of the two radicals are not strongly coupled. The predicted rate coefficients and branching fractions at finite pressures differ significantly from the corresponding high-pressure-limit results, especially at relatively high temperatures. Finally, because it is one of the most important CH3Ȯ removal mechanisms under atmospheric conditions, the reaction kinetics of CH3Ȯ + CO was also studied along the PES of CH3OĊ(═O); the resulting kinetics
Teng, Wen-Shuang; Moskaleva, Lyudmila V; Chen, Hui-Lung; Lin, M C
2013-07-18
The reaction of NCN with H atoms has been investigated by ab initio MO and RRKM theory calculations. The mechanisms for formation of major products on the doublet and quartet potential energy surfaces have been predicted at the CCSD(T) level of theory with the complete basis set limit. In addition, the heat of formation for NCN predicted at this rigorous level and those from five isogyric reactions are in close agreement with the best value based on the isodesmic process, (3)CCO + N2 = (3)NCN + CO, 109.4 kcal/mol, which lies within the two existing experimental values. The rate constants for the three possible reaction channels, H + NCN → CH + N2 (k(P1)), HCN + (4)N (k(QP1)), and HNC + (4)N (k(QP2)), have been calculated in the temperature range 298-3000 K. The results show that k(P1) is significantly higher than k(QP1) and k(QP2) and that the total rate constant agrees well with available experimental values in the whole temperature range studied. The kinetics of the reverse CH + N2 reaction has also been revisited at the CCSD(T)/CBS level; the predicted total rate constants at 760 Torr Ar pressure can be represented by kr = 4.01 × 10(-15) T(0.90) exp(-17.42 kcal mol(-1)/RT) cm(3) molecule(-1) s(-1) at T = 800-4000 K. The result agrees closely with the most recent experimental data and the best theoretical result of Harding et al. (J. Phys. Chem. A 2008, 112, 522) as well as that of Moskaleva and Lin (Proc. Combust. Inst. 2000, 28, 2393) evaluated with a steady-state approximation after a coding error correction made in this study. PMID:23755876
Mebel, A.M.; Diau, E.W.G.; Lin, M.C.; Morokuma, K.
1996-10-09
A potential energy surface for the reaction of vinyl radical with molecular oxygen has been studied using the ab initio G2M(RCC, MP2) method. The most favorable reaction pathway leading to the major CHO+CH{sub 2}O products is described. The C{sub 2}H{sub 3}O+O products can be formed by elimination of the oxygen atom from C{sub 2}H{sub 3}OO via TS 23, which is by 7.8 kcal/mol lower in energy than the reactants, but by 6.5 kcal/mol higher than TS 9`. The hydrogen migration in 1` gives rise to another significant product channel: C{sub 2}H{sub 3}+O{sub 2} {yields} 1` {yields} TS 25` {yields} C{sub 2}H{sub 2}+O{sub 2}H, with TS 25` lying below C{sub 2}H{sub 3}+O{sub 2} by 3.5 kcal/mol. Multichannel RRKM calculations have been carried out for the total and individual rate constants for various channels using the G2M(RCC, MP2) energetics and molecular parameters of the intermediates and transition states. The computed low pressure reaction rate constant is in quantitative agreement with experiment. At atmospheric pressure, the title reaction is dominated by the stabilization of vinylperoxy radical C{sub 2}H{sub 3}OO at room temperature. In the 500-900 K temperature range, the CHO+CH{sub 2}O channel has the highest rate constant, and at T >= 900 K, C{sub 2}H{sub 3}O+O are the major products. At very high temperatures, the channel producing C{sub 2}H{sub 2} + O{sub 2}H becomes competitive. 15 refs., 3 figs., 4 tabs.
Singh, Hari Ji; Mishra, Bhupesh Kumar
2010-09-01
Hydrofluoroethers are being considered as potential candidates for third generation refrigerants. The present investigation involves the ab initio quantum mechanical study of the decomposition mechanism of CF(3)OCH(2)O radical formed from a hydrofluoroether, CF(3)OCH(3) (HFE-143a) in the atmosphere. The geometries of the reactant, products and transition states involved in the decomposition pathways are optimized and characterized at the DFT (B3LYP) level of theory using 6-311G(d,p) basis set. Energy calculations have been performed at the G2(MP2) and G2M(CC,MP2) level of theory. Two prominent decomposition channels, C-O bond scission and reaction with atmospheric O(2) have been considered for detailed investigation. Studies performed at the G2(MP2) level reveals that the decomposition channel involving C-O bond scission occurs with a barrier height of 23.8 kcal mol(-1) whereas the oxidative pathway occurring with O(2) proceeds with an energy barrier of 7.2 kcal mol(-1). On the other hand the corresponding values at G2M(CC,MP2) are 24.5 and 5.9 kcal mol(-1) respectively. Using canonical transition state theory (CTST) rate constants for the two pathways considered are calculated at 298 K and 1 atm pressure and found to be 5.9 x 10(-6) s(-1) and 2.3 x 10(-5) s(-1) respectively. The present study concludes that reaction with O(2) is the dominant path for the consumption of CF(3)OCH(2)O in the atmosphere. Transition states are searched and characterized on the potential energy surfaces involved in both of the reaction channels. The existence of transition state on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate (IRC) calculation. PMID:20169381
Laitinen, R.S.; Pakkanen, T.A.; Steudel, R.
1987-02-04
Ab initio MO calculations involving the 4-31G* basis set have been used to predict the equilibrium geometries of the hypervalent sulfur hydrides H/sub 2/SS, (HS)/sub 2/SS, H/sub 2/S(SH)/sub 2/, H/sub 2/S(SSH)/sub 2/, and the cyclic H/sub 4/S/sub 4/. The energy changes in their formation from appropriate sulfanes H/sub 2/S/sub n/ (n = 1-4) have been studied with the 6-31G* basis set including the correction for the electron correlation by the second- and third-order Moeller-Plesset perturbation theory. The results are used to discuss the possible pathways in the interconversion reactions between various sulfur compounds containing cumulated SS bonds, for example, the formation of S/sub 7/ from S/sub 8/ for which hypervalent intermediates have been proposed recently. Comparison with experimental evidence is made whenever possible.
NASA Astrophysics Data System (ADS)
Huo, Rui-Ping; Zhang, Xiang; Huang, Xu-Ri; Li, Ji-Lai; Sun, Chia-Chung
2012-09-01
The hydrogen abstraction of CH3OH by C2 (A3Π u ) has been investigated by direct ab initio dynamics over a wide temperature range 200-3000 K. The potential energy surfaces (PESs) have been constructed at the UCCSD(T)/aug-cc-pVTZ//UMP2/6-311++G(d,p) levels of theory. Two different hydrogen abstractions on the methyl and hydroxyl sites of methanol are considered. For the methyl H-abstraction, it is essentially a hydrogen atom transfer (HAT), whereas the hydroxyl site H-abstraction is better described as a proton coupled electron transfer (PCET) according to the Natural Bond Orbital (NBO) analysis. The results suggest that the methyl site reaction is dominant, and the calculated rate constants are roughly consistent with available experimental values. On the other hand, the temperature dependence of deuterium kinetic isotope effects (KIEs) analysis reveals a substantial normal isotope effect in the methyl H-abstraction process, while normal and inverse KIEs coexist in the hydroxyl H-abstraction channel. Furthermore, the three and four-parameter expressions of Arrhenius rate constants are also provided within 200-3000 K.
Ab initio melting curve of osmium
NASA Astrophysics Data System (ADS)
Burakovsky, L.; Burakovsky, N.; Preston, D. L.
2015-11-01
The melting curve of osmium up to a pressure P of 500 GPa is obtained from an extensive suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. The ab initio P =0 melting point of Os is 3370 ±75 K; this range encompasses all of the available data in the literature and corroborates the conclusion of J. W. Arblaster [Platinum Metals Rev. 49, 166 (2005)], 10.1595/147106705X70264 that the melting temperature of pure Os is 3400 ±50 K and that the 3300 K typically quoted in the literature is the melting point of impure Os. The T =0 equation of state (EOS) of Os and the P dependence of the optimized c /a ratio for the hexagonal unit cell, both to pressures ˜900 GPa, are obtained in the ab initio approach as validation of its use. Although excellent agreement with the available experimental data (P ≲80 GPa) is found, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes the QMD data to higher pressures, in agreement with the more recent experimental EOS by Godwal et al. The theoretical melting curve of Os obtained earlier by Joshi et al. is shown to be inconsistent with our QMD results, and the possible reason for this discrepancy is suggested. Regularities in the melting curves of Os and five other third-row transition metals (Ta, W, Re, Pt, Au) could be used to estimate the currently unknown melting curves of Hf and Ir.
Xu, Z F; Raghunath, P; Lin, M C
2015-07-16
The kinetics and mechanism of the CH3 + O reaction and related isomerization-decomposition of CH3O and CH2OH radicals have been studied by ab initio molecular orbital theory based on the CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ, CCSD/aug-cc-pVDZ, and G2M//B3LYP/6-311+G(3df,2p) levels of theory. The predicted potential energy surface of the CH3 + O reaction shows that the CHO + H2 products can be directly generated from CH3O by the TS3 → LM1 → TS7 → LM2 → TS4 path, in which both LM1 and LM2 are very loose and TS7 is roaming-like. The result for the CH2O + H reaction shows that there are three low-energy barrier processes including CH2O + H → CHO + H2 via H-abstraction and CH2O + H → CH2OH and CH2O + H → CH3O by addition reactions. The predicted enthalpies of formation of the CH2OH and CH3O radicals at 0 K are in good agreement with available experimental data. Furthermore, the rate constants for the forward and some key reverse reactions have been predicted at 200-3000 K under various pressures. Based on the new reaction pathway for CH3 + O, the rate constants for the CH2O + H and CHO + H2 reactions were predicted with the microcanonical variational transition-state/Rice-Ramsperger-Kassel-Marcus (VTST/RRKM) theory. The predicted total and individual product branching ratios (i.e., CO versus CH2O) are in good agreement with experimental data. The rate constant for the hydrogen abstraction reaction of CH2O + H has been calculated by the canonical variational transition-state theory with quantum tunneling and small-curvature corrections to be k(CH2O + H → CHO + H2) = 2.28 × 10(-19) T(2.65) exp(-766.5/T) cm(3) molecule(-1) s(-1) for the 200-3000 K temperature range. The rate constants for the addition giving CH3O and CH2OH and the decomposition of the two radicals have been calculated by the microcanonical RRKM theory with the time-dependent master equation solution of the multiple quantum well system in the 200-3000 K temperature range at 1 Torr to
Lee, T.J. ); Rice, J.E. )
1993-06-24
The energetics of the protonation reaction of chlorine nitrate, ClONO[sub 2], have been investigated using state-of-the art ab initio quantum mechanical methods. Specifically, equilibrium structures, vibrational spectra, and thermochemical data have been obtained using second-order Moeller-Plesset perturbation theory (MP2), singles and doubles coupled-cluster theory (CCSD), and the CCSD(T) method, which includes a preturbational estimate of the effects of connected triple excitations. It is shown that the lowest energy form of protonated ClONO[sub 2] corresponds to a complex between HOCl and NO[sub 2][sup +] -- similar to the situation for HONO[sub 2] and CH[sub 3]ONO[sub 2]. The proton affinity of ClONO[sub 2] is determined to be 176.8 [+-] 3 kcal/mol (0 K) while the second most stable isomer of protonated ClONO[sub 2] is 20 kcal/mol higher in energy. The HOCl [hor ellipsis]NO[sub 2][sup +] complex is bound by 12.9 [+-] 2 kcal/mol. The heat of formation of ClONO[sub 2] is computed to be 7.4 kcal/mol at 298 K, in good agreement with the experimental value of 6.3 kcal/mol. The present study supports a recent hypothesis that the reaction of ClONO[sub 2] on the surface of polar stratospheric clouds (PSCs) is proton catalyzed, although the specific mechanism is different. The results are also consistent with other recent findings concerning the reactions of ClONO[sub 2] and HOCl with HCl on the surface of PSCs. 59 refs., 1 fig., 10 tabs.
Ab initio study of guanine damage by hydroxyl radical.
Chaban, Galina M; Wang, Dunyou; Huo, Winifred M
2015-01-15
Multiconfigurational ab initio methods are used in this study to examine two initial reactions that take place during the OH radical attack of the DNA base guanine: a ring opening reaction and a hydrogen transfer reaction. The same reactions are also studied in the presence of a single water molecule. The ring opening reaction has a moderate barrier height of ∼20-25 kcal/mol that is relatively insensitive to the presence of water. The barrier of the H-transfer reaction, on the other hand, is lowered from ∼50 to ∼22 kcal/mol when one water molecule is added, thus becoming comparable to the barrier height of the ring opening reaction. PMID:25517252
Pal, S K; Mereshchenko, A S; Butaeva, E V; El-Khoury, P Z; Tarnovsky, A N
2013-03-28
Ultrafast deep-ultraviolet through near infrared (210-950 nm) transient absorption spectroscopy complemented by ab initio multiconfigurational calculations offers a global description of the photochemical reaction pathways of bromoform following 255-nm excitation in methylcyclohexane and acetonitrile solutions. Photoexcitation of CHBr3 leads to the ground-state iso-CHBr3 product in a large quantum yield (∼35%), formed through two different mechanisms: concerted excited-state isomerization and cage-induced isomerization through the recombination of the nascent radical pair. These two processes take place on different time scales of tens of femtoseconds and several picoseconds, respectively. The novel ultrafast direct isomerization pathway proposed herein is consistent with the occurrence of a conical intersection between the first excited singlet state of CHBr3 and the ground electronic state of iso-CHBr3. Complete active space self-consistent field calculations characterize this singularity in the vicinity of a second order saddle point on the ground state which connects the two isomer forms. For cage-induced isomerization, both the formation of the nascent radical pair and its subsequent collapse into ground-state iso-CHBr3 are directly monitored through the deep-ultraviolet absorption signatures of the radical species. In both mechanisms, the optically active (i.e., those with largest Franck-Condon factors) C-Br-Br bending and Br-Br stretching modes of ground-state iso-CHBr3 have the largest projection on the reaction coordinate, enabling us to trace the structural changes accompanying vibrational relaxation of the non-equilibrated isomers through transient absorption dynamics. The iso-CHBr3 photoproduct is stable in methylcyclohexane, but undergoes either facile thermal isomerization to the parent CHBr3 structure through a cyclic transition state stabilized by the polar acetonitrile medium (∼300-ps lifetime), and hydrolysis in the presence of water. PMID
Ab initio non-relativistic spin dynamics
Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.
2014-12-07
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
Ab initio non-relativistic spin dynamics
NASA Astrophysics Data System (ADS)
Ding, Feizhi; Goings, Joshua J.; Frisch, Michael J.; Li, Xiaosong
2014-12-01
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li3 molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
Ab Initio Neutron Drops with Chiral Hamiltonians
NASA Astrophysics Data System (ADS)
Potter, Hugh; Maris, Pieter; Vary, James
2015-04-01
Ab initio calculations for neutron drops are of interest for insights into neutron-rich nuclei and neutron star matter, and for examining the neutron-only sector of nucleon-nucleon and 3-nucleon interactions. I present ab initio results calculated using the no-core shell model with 2- and 3-body chiral Hamiltonians for neutron drops up to 20 neutrons confined in a 10 MeV harmonic trap. I discuss ground state energies, internal energies, radii, and evidence for pairing. In addition, excitation energies can be used to investigate the spin-orbit splittings in the p-shell and sd -shell. Prior Green's Function Monte Carlo calculations using the Argonne v8' potential with added 3-nucleon forces serve as a comparison. Supported by DOE Grants DESC0008485 (SciDAC/NUCLEI), DE-FG02-87ER40371, and NSF Grant 0904782; computational resources provided by the Oak Ridge Leadership Computing Facility (DOE Office of Science Contract DE-AC05-00OR22725) under an INCITE award.
Tan, Ting; Pavone, Michele; Krisiloff, David B; Carter, Emily A
2012-08-23
Combustion of renewable biofuels, including energy-dense biodiesel, is expected to contribute significantly toward meeting future energy demands in the transportation sector. Elucidating detailed reaction mechanisms will be crucial to understanding biodiesel combustion, and hydrogen abstraction reactions are expected to dominate biodiesel combustion during ignition. In this work, we investigate hydrogen abstraction by the radicals H·, CH(3)·, O·, HO(2)·, and OH· from methyl formate, the simplest surrogate for complex biodiesels. We evaluate the H abstraction barrier heights and reaction enthalpies, using multireference correlated wave function methods including size-extensivity corrections and extrapolation to the complete basis set limit. The barrier heights predicted for abstraction by H·, CH(3)·, and O· are in excellent agreement with derived experimental values, with errors ≤1 kcal/mol. We also predict the reaction energetics for forming reactant complexes, transition states, and product complexes for reactions involving HO(2)· and OH·. High-pressure-limit rate constants are computed using transition state theory within the separable-hindered-rotor approximation for torsions and the harmonic oscillator approximation for other vibrational modes. The predicted rate constants differ significantly from those appearing in the latest combustion kinetics models of these reactions. PMID:22830521
Liu, Cong; Assary, Rajeev S; Curtiss, Larry A
2014-06-26
Upgrading furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan can be coupled with various C1 to C4 low molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase to produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (∼25 kcal/mol) are lower than the cellulose activation or decomposition reactions (∼50 kcal/mol). Cycloaddition of C5-C8 cyclo ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products, and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ∼20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons. PMID:24902118
Ab Initio Unimolecular Reaction Kinetics of CH2C(═O)OCH3 and CH3C(═O)OCH2 Radicals.
Tan, Ting; Yang, Xueliang; Ju, Yiguang; Carter, Emily A
2015-10-22
The unimolecular dissociation and isomerization kinetics of the methyl ester combustion intermediates methoxycarbonylmethyl (CH2C(═O)OCH3) and acetyloxylmethyl (CH3C(═O)OCH2) are theoretically investigated using high-level ab initio methods and the Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation (ME) theory. Potential energy surfaces (PESs) are obtained using coupled cluster singles and doubles with perturbative triples correction (CCSD(T)), multireference singles and doubles configuration interaction (MRSDCI) with the Davidson-Silver (DS) correction, and multireference averaged coupled pair functional (MRACPF2) theory. The transition states exhibit high T1 diagnostics in coupled cluster calculations, suggesting the need for a multireference correlated wave function treatment. MRSDCI+DS and MRACPF2 capture their multiconfigurational character well, yielding lower barrier heights than CCSD(T) for these reactions. The rate coefficients are computed using the RRKM/ME theory over a 500-2500 K temperature range and at a pressure range of 0.01 atm to the high-pressure limit. The temperature- and pressure-dependent rate coefficients are given in modified Arrhenius expressions. The β-scission of CH2C(═O)OCH3 is predicted to have a much higher barrier than the corresponding isomerization reaction and the β-scission of CH3C(═O)OCH2. Consequently, the rate coefficients for β-scission of CH2C(═O)OCH3 are the smallest among the three reactions and the isomerization followed by decomposition to CH3C(═O) and HCHO is the dominant reaction pathway for CH2C(═O)OCH3. Both radicals CH2C(═O)OCH3 and CH3C(═O)OCH2 are predicted to mainly decompose to CH3C(═O) + HCHO rather than to the bimolecular product CH2C(═O) + CH3O. A newly developed MA combustion mechanism, using our theoretical rate coefficients for the MA-related reactions, predicts combustion properties in good agreement with available experimental data. PMID:26436475
Ab initio study of the reaction of propionyl (C2H5CO) radical with oxygen (O2).
Hou, Hua; Wang, Baoshan
2007-08-01
The reaction of propionyl radical with oxygen has been studied using the full coupled cluster theory with the complete basis set. This is the first time to gain a conclusive insight into the reaction mechanism and kinetics for this important reaction in detail. The reaction takes place via a chemical activation mechanism. The barrierless association of propionyl with oxygen produces the propionylperoxy radical, which decomposes to form the hydroxyl radical and the three-center alpha-lactone predominantly or the four-center beta-propiolactone. The oxidation of propionyl radical to carbon monoxide or carbon dioxide is not straightforward rather via the secondary decomposition of alpha-lactone and beta-propiolactone. Kinetically, the overall rate constant is almost pressure independent and it approaches the high-pressure limit around tens of torr of helium. At temperatures below 600 K, the rate constant shows negative temperature dependence. The experimental yields of the hydroxyl radical can be well reproduced, with the average energy transferred per collision -DeltaE=20-25 cm(-1) at 213 and 295 K (helium bath gas). At low pressures, together with the hydroxy radical, alpha-lactone is the major product, while beta-propiolactone only accounts for about one-fifth of alpha-lactone. At the high-pressure limit, the production of the propionylperoxy radical is dominant together with a fraction of the isomers. The infrared spectroscopy or the mass spectroscopy techniques are suggested to be employed in the future experimental study of the C2H5CO+O2 reaction. PMID:17688339
Towards Accurate Ab Initio Predictions of the Spectrum of Methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2001-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
Sun, Geng; Jiang, Hong
2015-12-21
A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH2⇌CH+H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for accurate description of
Schroeder, Christi A; Pluhařová, Eva; Seidel, Robert; Schroeder, William P; Faubel, Manfred; Slavíček, Petr; Winter, Bernd; Jungwirth, Pavel; Bradforth, Stephen E
2015-01-14
Oxidative damage to DNA and hole transport between nucleobases in oxidized DNA are important processes in lesion formation for which surprisingly poor thermodynamic data exist, the relative ease of oxidizing the four nucleobases being one such example. Theoretical simulations of radiation damage and charge transport in DNA depend on accurate values for vertical ionization energies (VIEs), reorganization energies, and standard reduction potentials. Liquid-jet photoelectron spectroscopy can be used to directly study the oxidation half-reaction. The VIEs of nucleic acid building blocks are measured in their native buffered aqueous environment. The experimental investigation of purine and pyrimidine nucleotides, nucleosides, pentose sugars, and inorganic phosphate demonstrates that photoelectron spectra of nucleotides arise as a spectral sum over their individual chemical components; that is, the electronic interactions between each component are effectively screened from one another by water. Electronic structure theory affords the assignment of the lowest energy photoelectron band in all investigated nucleosides and nucleotides to a single ionizing transition centered solely on the nucleobase. Thus, combining the measured VIEs with theoretically determined reorganization energies allows for the spectroscopic determination of the one-electron redox potentials that have been difficult to establish via electrochemistry. PMID:25551179
NASA Astrophysics Data System (ADS)
Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji
2014-06-01
Photodissociation pathways of nitromethane following π → π* electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH3 and NO2 (2B2) is formed by direct dissociation from the S1 state. Important pathways involving S1 and S0 states for production of various dissociation products CH3NO + O (1D), CH3O(X2E) + NO (X2Π), CH2NO + OH, and CH2O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH3NO2, the OH radical roaming in OH dissociation from CH2N(O)(OH), and the NO roaming in NO dissociation from CH3ONO.
Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji
2014-06-28
Photodissociation pathways of nitromethane following π → π(*) electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH3 and NO2 ((2)B2) is formed by direct dissociation from the S1 state. Important pathways involving S1 and S0 states for production of various dissociation products CH3NO + O ((1)D), CH3O(X(2)E) + NO (X(2)Π), CH2NO + OH, and CH2O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH3NO2, the OH radical roaming in OH dissociation from CH2N(O)(OH), and the NO roaming in NO dissociation from CH3ONO. PMID:24985641
Isegawa, Miho; Liu, Fengyi; Morokuma, Keiji; Maeda, Satoshi
2014-06-28
Photodissociation pathways of nitromethane following π → π{sup *} electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH{sub 3} and NO{sub 2} ({sup 2}B{sub 2}) is formed by direct dissociation from the S{sub 1} state. Important pathways involving S{sub 1} and S{sub 0} states for production of various dissociation products CH{sub 3}NO + O ({sup 1}D), CH{sub 3}O(X{sup 2}E) + NO (X{sup 2}Π), CH{sub 2}NO + OH, and CH{sub 2}O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH{sub 3}NO{sub 2}, the OH radical roaming in OH dissociation from CH{sub 2}N(O)(OH), and the NO roaming in NO dissociation from CH{sub 3}ONO.
NASA Astrophysics Data System (ADS)
Popa, C.; Offermans, W. K.; van Santen, R. A.; Jansen, A. P. J.
2006-10-01
The adsorption and dissociation of NHx fragments on the Rh(111) crystal surface have been studied using first-principles density-functional calculations. The stability and configurations of NHx species have been investigated and characterized using frequency analysis. The highest adsorption energies have been calculated for NH and N. Several paths of NHx (x=1-3) dehydrogenation and hydrogenation have been taken into account. The transition states have been determined and in detail analyzed. The activation barriers and thermodynamic and kinetic data have been calculated for all the elementary steps. The calculations have shown that the elementary reactions have significant barriers, between 0.7 and 1.1eV . The transition states are regarded neither early nor late with respect to the distance in hyperspace between initial and final states. The NH3 dehydrogenation has been determined as the rate limiting step. For this elementary process there has been estimated a large contribution of the zero point energy to the activation barrier and a significant entropy activation.
NASA Technical Reports Server (NTRS)
Lindh, Roland; Lee, Timothy J.; Bernhardsson, Anders; Persson, B. Joakim; Karlstroem, Gunnar; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The autoaromatization of (Z)-hex-3-ene-1,5-diyne to the singlet biradical para-benzyne has been reinvestigated by state of the art ab initio methods. Previous CCSD(T)/6-31G(d,p) and CASPT2[0]/ANO[C(5s4p2d1f)/H(3s2p)] calculations estimated the the reaction heat at 298 K to be 8-10 and 4.9 plus or minus 3.2 kcal/mol, respectively. Recent NO- and oxygen-dependent trapping experiments and collision-induced dissociation threshold energy experiments estimate the heat of reaction to be 8.5 plus or minus 1.0 at 470 K (recomputed to 9.5 plus or minus 1.0 at 298 K) and 8.4 plus or minus 3.0 kcal/mol at 298 K, respectively. New theoretical estimates at 298 K predict the values at the basis set limit for the CCSD(T) and CASPT2(g1) methods to be 12.7 plus or minus 2.0 and 5.4 plus or minus 2.0 kcal/mol, respectively. The experimentally predicted electronic contribution to the heat of activation is 28.6 kcal/mol. This can be compared with 25.5 and 29.8 kcal/mol from the CASPT2[g1] and the CCSD(T) methods, respectively. The new study has in particular improved on the one-particle basis set for the CCSD(T) method as compared to earlier studies. For the CASPT2 investigation the better suited CASPT2[g1] approximation is utilized. The original CASPT2 method, CASPT2[0], systematically favors open shell systems relative to closed shell systems. This was previously corrected empirically. The study shows that the energy difference between CCSD(T) and CASPT2[g1] at the basis set limit is estimated to be 7 plus or minus 2 kcal/mol. The study also demonstrates that the estimated heat of reaction is very sensitive to the quality of the basis set.
Guiding ab initio calculations by alchemical derivatives.
to Baben, M; Achenbach, J O; von Lilienfeld, O A
2016-03-14
We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects. PMID:26979677
Ab initio determination of light hadron masses.
Dürr, S; Fodor, Z; Frison, J; Hoelbling, C; Hoffmann, R; Katz, S D; Krieg, S; Kurth, T; Lellouch, L; Lippert, T; Szabo, K K; Vulvert, G
2008-11-21
More than 99% of the mass of the visible universe is made up of protons and neutrons. Both particles are much heavier than their quark and gluon constituents, and the Standard Model of particle physics should explain this difference. We present a full ab initio calculation of the masses of protons, neutrons, and other light hadrons, using lattice quantum chromodynamics. Pion masses down to 190 mega-electron volts are used to extrapolate to the physical point, with lattice sizes of approximately four times the inverse pion mass. Three lattice spacings are used for a continuum extrapolation. Our results completely agree with experimental observations and represent a quantitative confirmation of this aspect of the Standard Model with fully controlled uncertainties. PMID:19023076
Ab initio molar volumes and Gaussian radii.
Parsons, Drew F; Ninham, Barry W
2009-02-12
Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766
Guiding ab initio calculations by alchemical derivatives
NASA Astrophysics Data System (ADS)
to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.
2016-03-01
We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.
Ab Initio Modeling of Molecular Radiation
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Schwenke, David
2014-01-01
Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.
Ab Initio Calculation of the Hoyle State
Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.
2011-05-13
The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.
Khanniche, Sarah; Louis, Florent; Cantrel, Laurent; Černušák, Ivan
2016-03-17
To get an insight into the possible reactivity between iodine oxides and CO, a first step was to study the thermochemical properties and kinetic parameters of the reaction between IO and CO using theoretical chemistry tools. All stationary points involved were optimized using the Becke's three-parameter hybrid exchange functional coupled with the Lee-Yang-Parr nonlocal correlation functional (B3LYP) and the Møller-Plesset second-order perturbation theory (MP2). Single-point energy calculations were performed using the coupled cluster theory with the iterative inclusion of singles and doubles and the perturbative estimation for triple excitations (CCSD(T)) and the aug-cc-pVnZ (n = T, Q, and 5) basis sets on geometries previously optimized at the aug-cc-pVTZ level. The energetics was then recalculated using the one-component DK-CCSD(T) approach with the relativistic ANO basis sets. The spin-orbit coupling for the iodine containing species was calculated a posteriori using the restricted active space state interaction method in conjunction with the multiconfigurational perturbation theory (CASPT2/RASSI) employing the complete active space (CASSCF) wave function as the reference. The CCSD(T) energies were also corrected for BSSE for molecular complexes and refined with the extrapolation to CBS limit while the DK-CCSD(T) values were refined with the extrapolation to FCI. The exploration of the potential energy surface revealed a two-steps mechanism with a trans and a cis pathway. The rate constants for the direct and complex mechanism were computed as a function of temperature (250-2500 K) using the canonical transition state theory. The three-parameter Arrhenius expressions obtained for the direct and indirect mechanism at the DK-CCSD(T)-cf level of theory is 1.49 × 10(-17) × T(1.77) exp(-47.4 (kJ mol(-1))/RT). PMID:26908233
Li, Anyang; Guo, Hua
2014-06-14
An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm{sup −1}. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H{sub 4}O{sup +} well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H{sub 2}O{sup +} rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H{sub 2}O{sup +} reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.
NASA Astrophysics Data System (ADS)
Resat, Marianne Sowa; Smolanoff, Jason N.; Goldman, Ilyse B.; Anderson, Scott L.
1994-06-01
We report a combined experimental and theoretical study of the reaction of small carbon cluster cations with N2O aimed at understanding the reaction mechanism and how it is affected by the electronic and geometric structure of the C+n reactants. Cross sections for reaction of C+n (n=3-12) with N2O were measured over a collision energy range from 0.1-10 eV, using a guided ion beam tandem mass spectrometer. Ab initio calculations were used to examine the structure and energetics of reactant and product species. Small clusters, which are linear, react with no activation barrier, resulting in either oxide or nitride formation. The branching between oxide and nitride channels shows a strong even-odd alternation, with even clusters preferentially forming nitrides. This appears to be correlated with an even/odd alternation in the ionization potential of the CnN. The larger, monocyclic C+n have activation barriers for reaction, and a completely different product distribution. Secondary reactions of the primary oxide and nitride products were studied at high N2O pressures. Products containing two O or two N atoms are not observed, but it is possible to add one of each. Possible reaction mechanisms are discussed and supported by thermochemistry derived from spin restricted ab initio calculations.
Ab initio derivation of model energy density functionals
NASA Astrophysics Data System (ADS)
Dobaczewski, Jacek
2016-08-01
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.
Ab Initio: And a New Era of Airline Pilot Training.
ERIC Educational Resources Information Center
Gesell, Laurence E.
1995-01-01
Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)
Ab initio two-component Ehrenfest dynamics
NASA Astrophysics Data System (ADS)
Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong
2015-09-01
We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H2 and O2. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.
Ab Initio Studies of Calcium Carbonate Hydration.
Lopez-Berganza, Josue A; Diao, Yijue; Pamidighantam, Sudhakar; Espinosa-Marzal, Rosa M
2015-11-25
Ab initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate. Structural and energetics analysis of the hydration of these clusters revealed a first hydration shell composed of 12 water molecules. Bond-length and charge densities were also determined for different cluster sizes. The solvation of calcium carbonate in bulk water was investigated by placing the explicitly solvated CaCO3·nH2O clusters in a polarizable continuum model (PCM). The findings of this study provide new insights into the energetics and structure of hydrated calcium carbonate and contribute to the understanding of mechanisms where calcium carbonate formation or dissolution is of relevance. PMID:26505205
Ab initio two-component Ehrenfest dynamics
Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong
2015-09-21
We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.
Oxidation of GaN: An ab initio thermodynamic approach
NASA Astrophysics Data System (ADS)
Jackson, Adam J.; Walsh, Aron
2013-10-01
GaN is a wide-band-gap semiconductor used in high-efficiency light-emitting diodes and solar cells. The solid is produced industrially at high chemical purities by deposition from a vapor phase, and oxygen may be included at this stage. Oxidation represents a potential path for tuning its properties without introducing more exotic elements or extreme processing conditions. In this work, ab initio computational methods are used to examine the energy potentials and electronic properties of different extents of oxidation in GaN. Solid-state vibrational properties of Ga, GaN, Ga2O3, and a single substitutional oxygen defect have been studied using the harmonic approximation with supercells. A thermodynamic model is outlined which combines the results of ab initio calculations with data from experimental literature. This model allows free energies to be predicted for arbitrary reaction conditions within a wide process envelope. It is shown that complete oxidation is favorable for all industrially relevant conditions, while the formation of defects can be opposed by the use of high temperatures and a high N2:O2 ratio.
Skutterudites under pressure: An ab initio study
Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.
2014-03-07
Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.
Dayou, Fabrice; Duflot, Denis; Rivero-Santamaría, Alejandro; Monnerville, Maurice
2013-11-28
We report the first global potential energy surface (PES) for the X{sup 2}A{sup ′} ground electronic state of the Si({sup 3}P) + OH(X{sup 2}Π) → SiO(X{sup 1}Σ{sub g}{sup +}) + H({sup 2}S) reaction. The PES is based on a large number of ab initio energies obtained from multireference configuration interaction calculations plus Davidson correction (MRCI+Q) using basis sets of quadruple zeta quality. Corrections were applied to the ab initio energies in the reactant channel allowing a proper description of long-range interactions between Si({sup 3}P) and OH(X{sup 2}Π). An analytical representation of the global PES has been developed by means of the reproducing kernel Hilbert space method. The reaction is found barrierless. Two minima, corresponding to the SiOH and HSiO isomers, and six saddle points, among which the isomerization transition state, have been characterized on the PES. The vibrational spectra of the SiOH/HSiO radicals have been computed from second-order perturbation theory and quantum dynamics methods. The structural, energetic, and spectroscopic properties of the two isomers are in good agreement with experimental data and previous high quality calculations.
Lucas, J. M.; Andres, J. de; Sogas, J.; Alberti, M.; Aguilar, A.; Bofill, J. M.; Bassi, D.; Ascenzi, D.; Tosi, P.
2009-07-14
Reactive collisions between Li{sup +} ions and i-C{sub 3}H{sub 7}Cl molecules have been studied in the 0.20-12.00 eV center-of-mass energy range using an octopole radio frequency guided-ion beam apparatus recently developed in our laboratory. At low collision energies, dehydrohalogenation reactions giving rise to Li(C{sub 3}H{sub 6}){sup +} and Li(HCl){sup +} are the main reaction channels, while at higher ones C{sub 3}H{sub 7}{sup +} and C{sub 2}H{sub 3}{sup +} become dominant, all their reactive cross sections having been measured as a function of the collision energy. To obtain information about the potential energy surfaces (PESs) on which the reactive processes take place, ab initio calculations at the MP2 level have been performed. For dehydrohalogenations, the reactive ground singlet PES shows ion-molecule adduct formation in both the reactant and product sides of the surface. Following the minimum energy path connecting both minima, an unstable intermediate and the corresponding barriers, both lying below the reactant's energy, have been characterized. The entrance channel ion-molecule adduct is also involved in the formation of C{sub 3}H{sub 7}{sup +}, which then generates C{sub 2}H{sub 3}{sup +} via an CH{sub 4} unimolecular elimination. A qualitative interpretation of the experimental results based on ab initio calculations is also included.
Reactive Monte Carlo sampling with an ab initio potential
NASA Astrophysics Data System (ADS)
Leiding, Jeff; Coe, Joshua D.
2016-05-01
We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the "rare-event" character of chemical reactions.
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY
Turchi, P A
2004-09-24
Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.
Barrett, B R; Navratil, P; Vary, J P
2011-04-11
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN
NASA Astrophysics Data System (ADS)
Nishioka, Hirotaka; Ando, Koji
2011-05-01
By making use of an ab initio fragment-based electronic structure method, fragment molecular orbital-linear combination of MOs of the fragments (FMO-LCMO), developed by Tsuneyuki et al. [Chem. Phys. Lett. 476, 104 (2009)], 10.1016/j.cplett.2009.05.069, we propose a novel approach to describe long-distance electron transfer (ET) in large system. The FMO-LCMO method produces one-electron Hamiltonian of whole system using the output of the FMO calculation with computational cost much lower than conventional all-electron calculations. Diagonalizing the FMO-LCMO Hamiltonian matrix, the molecular orbitals (MOs) of the whole system can be described by the LCMOs. In our approach, electronic coupling TDA of ET is calculated from the energy splitting of the frontier MOs of whole system or perturbation method in terms of the FMO-LCMO Hamiltonian matrix. Moreover, taking into account only the valence MOs of the fragments, we can considerably reduce computational cost to evaluate TDA. Our approach was tested on four different kinds of model ET systems with non-covalent stacks of methane, non-covalent stacks of benzene, trans-alkanes, and alanine polypeptides as their bridge molecules, respectively. As a result, it reproduced reasonable TDA for all cases compared to the reference all-electron calculations. Furthermore, the tunneling pathway at fragment-based resolution was obtained from the tunneling current method with the FMO-LCMO Hamiltonian matrix.
NASA Astrophysics Data System (ADS)
Czakó, Gábor; Bowman, Joel M.
2012-01-01
We report a high-quality, ab initio, full-dimensional global potential energy surface (PES) for the Cl(2P, 2P3/2) + CH4 reaction, which describes both the abstraction (HCl + CH3) and substitution (H + CH3Cl) channels. The analytical PES is a least-squares fit, using a basis of permutationally invariant polynomials, to roughly 16 000 ab initio energy points, obtained by an efficient composite method, including counterpoise and spin-orbit corrections for the entrance channel. This composite method is shown to provide accuracy almost equal to all-electron CCSD(T)/aug-cc-pCVQZ results, but at much lower computational cost. Details of the PES, as well as additional high-level benchmark characterization of structures and energetics are reported. The PES has classical barrier heights of 2650 and 15 060 cm-1 (relative to Cl(2P3/2) + CH4(eq)), respectively, for the abstraction and substitution reactions, in good agreement with the corresponding new computed benchmark values, 2670 and 14 720 cm-1. The PES also accurately describes the potential wells in the entrance and exit channels for the abstraction reaction. Quasiclassical trajectory calculations using the PES show that (a) the inclusion of the spin-orbit corrections in the PES decreases the cross sections by a factor of 1.5-2.5 at low collision energies (Ecoll); (b) at Ecoll ≈ 13 000 cm-1 the substitution channel opens and the H/HCl ratio increases rapidly with Ecoll; (c) the maximum impact parameter (bmax) for the abstraction reaction is ˜6 bohr; whereas bmax is only ˜2 bohr for the substitution; (d) the HCl and CH3 products are mainly in the vibrational ground state even at very high Ecoll; and (e) the HCl rotational distributions are cold, in excellent agreement with experiment at Ecoll = 1280 cm-1.
Ab initio simulation of transport phenomena in rarefied gases.
Sharipov, Felix; Strapasson, José L
2012-09-01
Ab initio potentials are implemented into the direct simulation Monte Carlo (DSMC) method. Such an implementation allows us to model transport phenomena in rarefied gases without any fitting parameter of intermolecular collisions usually extracted from experimental data. Applying the method proposed by Sharipov and Strapasson [Phys. Fluids 24, 011703 (2012)], the use of ab initio potentials in the DSMC requires the same computational efforts as the widely used potentials such as hard spheres, variable hard sphere, variable soft spheres, etc. At the same time, the ab initio potentials provide more reliable results than any other one. As an example, the transport coefficients of a binary mixture He-Ar, viz., viscosity, thermal conductivity, and thermal diffusion factor, have been calculated for several values of the mole fraction. PMID:23030889
Ab initio methods for nuclear properties - a computational physics approach
NASA Astrophysics Data System (ADS)
Maris, Pieter
2011-04-01
A microscopic theory for the structure and reactions of light nuclei poses formidable challenges for high-performance computing. Several ab-initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab-initio no-core full configuration (NCFC) approach is based on basis space expansion methods and uses Slater determinants of single-nucleon basis functions to express the nuclear wave function. In this approach, the quantum many-particle problem becomes a large sparse matrix eigenvalue problem. The eigenvalues of this matrix give us the binding energies, and the corresponding eigenvectors the nuclear wave functions. These wave functions can be employed to evaluate experimental quantities. In order to reach numerical convergence for fundamental problems of interest, the matrix dimension often exceeds 1 billion, and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. I discuss different strategies for distributing and solving this large sparse matrix on current multicore computer architectures, including methods to deal with with memory bottleneck. Several of these strategies have been implemented in the code MFDn, which is a parallel fortran code for nuclear structure calculations. I will show scaling behavior and compare the performance of the pure MPI version with the hybrid MPI/OpenMP code on Cray XT4 and XT5 platforms. For large core counts (typically 5,000 and above), the hybrid version is more efficient than pure MPI. With this code, we have been able to predict properties of the unstable nucleus 14F, which have since been confirmed by experiments. I will also give an overview of other recent results for nuclei in the A = 6 to 16 range with 2- and 3-body interactions. Supported in part by US DOE Grant DE-FC02-09ER41582.
Ab initio computations of photodissociation products of CFC alternatives
Tai, S.; Illinger, K.H.; Kenny, J.E.
1995-12-31
Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.
Ab Initio Structure Analysis Using Laboratory Powder Diffraction Data
NASA Astrophysics Data System (ADS)
Sasaki, Akito
Today, laboratory X-ray diffractometers are seeing increasingly wide use in the ab initio crystal structure analysis of organic powder samples. This is because optics and optical devices have been improved, making it possible to obtain precise integrated intensities of reflections in high 2-theta ranges. Another reason is that one can use direct-space methods, which do not require “high-resolution diffraction data”, much more easily than before. Described here are some key points to remember when performig ab initio crystal structure analysis using powder diffraction data from organic compounds.
Yuxiang Bu; Zhaohua Cao; Zailun Yang
1995-08-15
This article presents an application of the accurate calculation scheme proposed recently for the inner-sphere reorganization energies of molecules of the type AH{sub 2} (A = Al, Si, P, and S). A reasonable extension has been made. The inner-sphere reorganization energies for the title thermal electron self-exchange reactions are calculated in terms of ab initio MO self-consistent field method (HFSCF) at different basis-set levels (6-31G**, 6-31 + G**, DZ, and DZP) and the involved parameters are also determined. These calculated results have been calibrated by comparing optimized molecular geometrical parameters and corresponding energy properties with the experimental findings or other theoretical values. An approximation, in which the contribution from the bond length-bond angle to the potential energy surface is neglected, is adopted in constructing the calculation formulas via the function model. Its adequacy is discussed. Agreement among different calculation schemes is analyzed. 32 refs., 2 tabs.
Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures
Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan
2006-04-05
A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.
Towards SiC Surface Functionalization: An Ab Initio Study
Cicero, G; Catellani, A
2005-01-28
We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for bio-compatible devices.
Ab initio pseudopotential band calculation of organic conductors
Ishibashi, Shoji; Kohyama, Masanori
1999-12-01
The authors have calculated the band structures of organic conductors TTF-TCNQ and {beta}-(BEDT-TTF){sub 2}I{sub 3} using the ab initio plane-wave pseudopotential method within the local-density approximation (LDA). The Fermi-surface shape and the origin of bands near the Fermi level are investigated for each compound.
Multiple time step integrators in ab initio molecular dynamics
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
Takahasi, S. ); Curtiss, L.A.; Gosztola, D.; Koura, N. ); Loong, C.K.; Saboungi, M.L. . Materials Science Div.)
1993-04-01
The Raman and neutron scattering spectra of 46 mol% AlCl[sub 3] -54 mol% 1-ethyl-3-methyl imidazolium chloride (EMIC) and 67 mol% AlCl[sub 3] - 33 mol% EMIC melts are presented. Ab initio molecular orbital calculations have been carried out on structures of chloroaluminate anion and EMI cation and the interaction between anion and cation.
Exploring the free energy surface using ab initio molecular dynamics.
Samanta, Amit; Morales, Miguel A; Schwegler, Eric
2016-04-28
Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525
Exploring the free energy surface using ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Samanta, Amit; Morales, Miguel A.; Schwegler, Eric
2016-04-01
Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.
Ab initio molecular dynamics calculations of ion hydration free energies
Leung, Kevin; Rempe, Susan B.; Lilienfeld, O. Anatole von
2009-05-28
We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or '{lambda}-path' technique to compute the intrinsic hydration free energies of Li{sup +}, Cl{sup -}, and Ag{sup +} ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential ({phi}) contributions, we obtain absolute AIMD hydration free energies ({Delta}G{sub hyd}) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model {phi} predictions. The sums of Li{sup +}/Cl{sup -} and Ag{sup +}/Cl{sup -} AIMD {Delta}G{sub hyd}, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag{sup +}+Ni{sup +}{yields}Ag+Ni{sup 2+} in water. The predictions for this reaction suggest that existing estimates of {Delta}G{sub hyd} for unstable radiolysis intermediates such as Ni{sup +} may need to be extensively revised.
Ab initio potentials of F+Li2 accessible at ultracold temperatures
NASA Astrophysics Data System (ADS)
Wright, K. W. A.; Lane, Ian C.
2010-09-01
Ab initio calculations for the strongly exoergic Li2+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li2 molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.
Ab initio potentials of F+Li{sub 2} accessible at ultracold temperatures
Wright, K. W. A.; Lane, Ian C.
2010-09-15
Ab initio calculations for the strongly exoergic Li{sub 2}+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li{sub 2} molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.
Espinosa-Garcia, J; Rangel, C; Corchado, J C
2016-06-22
We report an analytical full-dimensional potential energy surface for the GeH4 + OH → GeH3 + H2O reaction based on ab initio calculations. It is a practically barrierless reaction with very high exothermicity and the presence of intermediate complexes in the entrance and exit channels, reproducing the experimental evidence. Using this surface, thermal rate constants for the GeH4 + OH/OD isotopic reactions were calculated using two approaches: variational transition state theory (VTST) and quasi-classical trajectory (QCT) calculations, in the temperature range 200-1000 K, and results were compared with the only experimental data at 298 K. Both methods showed similar values over the whole temperature range, with differences less than 30%; and the experimental data was reproduced at 298 K, with negative temperature dependence below 300 K, which is associated with the presence of an intermediate complex in the entrance channel. However, while the QCT approach reproduced the experimental kinetic isotope effect, the VTST approach underestimated it. We suggest that this difference is associated with the harmonic approximation used in the treatment of vibrational frequencies. PMID:27292879
NASA Astrophysics Data System (ADS)
Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N.
2016-01-01
Initial state selected dynamics of the Ne + NeH+(v0 = 0, j0 = 0) → NeH+ + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]+ structure lying 0.72 eV below the Ne + NeH+ asymptote is found to be the most stable geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.
Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng; Xu Wenwu
2013-05-07
A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.
Ab initio no-core shell model with continuum
NASA Astrophysics Data System (ADS)
Navratil, Petr
2008-04-01
The ab initio no-core shell model (NCSM) is a many-body approach to nuclear structure of light nuclei. The NCSM adopts an effective interaction theory to transform fundamental inter-nucleon interactions into effective interactions for a specified nucleus in a selected harmonic oscillator basis space [1]. The method is capable of predicting nuclear structure from inter-nucleon forces derived from quantum chromodynamics by means of chiral effective field theory [2]. NCSM extensions to the microscopic description of nuclear reactions are now under development. In my talk, I will first discuss our recent calculations of the ^4He total photo-absorption cross section using two- and three-nucleon interactions from chiral effective field theory [3]. I will then outline our effort to augment the NCSM by the resonating group method (RGM) technique to develop a new method capable of describing simultaneously both bound states and nuclear reactions on light nuclei [4]. This approach, which preserves translational symmetry and the Pauli principle, will allow us to calculate cross sections of reactions important for astrophysics and describe weakly-bound systems from first principles. I will present our first phase shift results for neutron scattering off ^3H, ^4He and ^7Li and proton scattering off ^3He, ^4He and ^7Be using realistic nucleon-nucleon potentials. 3mm [1] P. Navr'atil, J. P. Vary and B. R. Barrett, Phys. Rev. C 62, 054311 (2000). [2] P. Navr'atil and V. G. Gueorguiev and J. P. Vary, W. E. Ormand and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007). [3] S. Quaglioni and P. Navr'atil, Phys. Lett. B 652, 370 (2007). [4] S. Quaglioni and P. Navr'atil, arXiv:0712.0855.
Ab-initio calculations on melting of thorium
NASA Astrophysics Data System (ADS)
Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.
2016-05-01
Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.
Ab initio molecular dynamics: concepts, recent developments, and future trends.
Iftimie, Radu; Minary, Peter; Tuckerman, Mark E
2005-05-10
The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed "on the fly" from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204
Recent progress in ab initio density matrix renormalization group methodology
NASA Astrophysics Data System (ADS)
Hachmann, Johannes; Dorando, Jonathan J.; Kin-Lic Chan, Garnet
2008-03-01
We present some recent developments in the ab initio density matrix renormalization group (DMRG) method for quantum chemical problems, in particular our local, quadratic scaling algorithm [1] for low dimensional systems. This method is particularly suited for the description of strong nondynamic correlation, and allows us to compute numerically exact (FCI) correlated energies for large active spaces, up to one order of magnitude larger then can be done by conventional CASCI techniques. Other features of this method are its inherent multireference nature, compactness, variational results, size-consistency and size-extensivity. In addition we will review the problems (predominantly organic electronic materials) on which we applied the ab initio DMRG: 1) metal-insulator transition in hydrogen chains [1] 2) all-trans polyacetylene [1] 3) acenes [2] 4) polydiacetylenes [3]. References [1] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [2] Hachmann, Dorando, Avil'es, Chan, JCP 127 (2007), 134309. [3] unpublished.
Understanding phonon transport in thermoelectric materials using ab initio approaches
NASA Astrophysics Data System (ADS)
Broido, David
Good thermoelectric materials have low phonon thermal conductivity, kph. Accurate theories to describe kph are important components in developing predictive models of thermoelectric efficiency that can help guide synthesis and measurement efforts. We have developed ab initio approaches to calculate kph, in which phonon modes and phonon scattering rates are computed using interatomic force constants determined from density functional theory, and a full solution of the Boltzmann transport equation for phonons is implemented. A recent approach to calculate interatomic force constants using ab initio molecular dynamics has yielded a good description of the thermal properties of Bi2Te3. But, the complexity of new promising candidate thermoelectric materials introduces computational challenges in assessing their thermal properties. An example is germanane, a germanium based hydrogen-terminated layered semiconductor, which we will discuss in this talk.
Spin-orbit decomposition of ab initio nuclear wave functions
NASA Astrophysics Data System (ADS)
Johnson, Calvin W.
2015-03-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
Ab Initio Electronic Relaxation Times and Transport in Noble Metals
NASA Astrophysics Data System (ADS)
Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.
Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.
Ab initio Monte Carlo investigation of small lithium clusters.
Srinivas, S.
1999-06-16
Structural and thermal properties of small lithium clusters are studied using ab initio-based Monte Carlo simulations. The ab initio scheme uses a Hartree-Fock/density functional treatment of the electronic structure combined with a jump-walking Monte Carlo sampling of nuclear configurations. Structural forms of Li{sub 8} and Li{sub 9}{sup +} clusters are obtained and their thermal properties analyzed in terms of probability distributions of the cluster potential energy, average potential energy and configurational heat capacity all considered as a function of the cluster temperature. Details of the gradual evolution with temperature of the structural forms sampled are examined. Temperatures characterizing the onset of structural changes and isomer coexistence are identified for both clusters.
Towards AB Initio Calculation of the Circular Dichroism of Peptides
NASA Astrophysics Data System (ADS)
Molteni, E.; Onida, G.; Tiana, G.
2012-08-01
In this work we plan to use ab initio spectroscopy calculations to compute circular dichroism (CD) spectra of peptides. CD provides information on protein secondary structure content; peptides, instead, remain difficult to address, due to their tendency to adopt multiple conformations in equilibrium. Therefore peptides are an interesting test-case for ab initio calculation of CD spectra. As a first application, we focus on the (83-92) fragment of HIV-1 protease, which is known to be involved in the folding and dimerization of this protein. As a preliminary step, we performed classical molecular dynamics (MD) simulations, in order to obtain a set of representative conformers of the peptide. Then, on some of the obtained conformations, we calculated absorption spectra at the independent particle, RPA and TDLDA levels, showing the presence of charge transfer excitations, and their influence on spectral features.
GAUSSIAN 76: An ab initio Molecular Orbital Program
DOE R&D Accomplishments Database
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
Thermochemical data for CVD modeling from ab initio calculations
Ho, P.; Melius, C.F.
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
The study of molecular spectroscopy by ab initio methods
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1991-01-01
This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab Initio Study of Defect Properties in YPO4
Gao, Fei; Xiao, Haiyan Y.; Zhou, Yungang; Devanathan, Ramaswami; Hu, Shenyang Y.; Li, Yulan; Sun, Xin; Khaleel, Mohammad A.
2012-03-01
Ab initio methods based on density functional theory have been used to calculate the formation energies of intrinsic defects, including vacancies, interstitials, antisites and Frenkel pairs in YPO4 under the O-rich and Y2O3-rich, and the O-rich and Y-rich conditions. The larger size of the yttrium atom may give rise to higher formation energy of the phosphorus antisite defect. In general, the formation energies of anion interstitials are much smaller than those of cation interstitials for both conditions considered. It is of greatly interest to find that the relative stabilities among the same types of interstitials are independent of the reference states. The most stable configuration for oxygen interstitials is an O-O split interstitial near the Ta site, while the most stable configuration for cation interstitials is a tetrahedral interstitial near the Ta site. The cation split interstitials are unfavorable in YPO4, with much higher formation energies. Furthermore, the properties of Frenkel pairs are compared with those calculated using empirical potentials. The results reveal that both ab initio and empirical potential calculations show a similar trend in the formation energies of Frenkel pairs, but the formation energies obtained by empirical potentials are much larger than those calculated by ab initio method.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
NASA Astrophysics Data System (ADS)
Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.
2014-08-01
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.
Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V
2014-08-01
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573
A Complete and Accurate Ab Initio Repeat Finding Algorithm.
Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua
2016-03-01
It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy. PMID:26272474
Maity, Surajit; Dangi, Beni B; Parker, Dorian S N; Kaiser, Ralf I; Lin, Hong-Mao; E, Hai-Ping; Sun, Bing-Jian; Chang, A H H
2015-02-19
The reactions of the boron monoxide ((11)BO; X(2)Σ(+)) radical with 1,3-butadiene (CH2CHCHCH2; X(1)Ag) and its partially deuterated counterparts, 1,3-butadiene-d2 (CH2CDCDCH2; X(1)Ag) and 1,3-butadiene-d4 (CD2CHCHCD2; X(1)Ag), were investigated under single collision conditions exploiting a crossed molecular beams machine. The experimental data were combined with the state-of-the-art ab initio electronic structure calculations and statistical RRKM calculations to investigate the underlying chemical reaction dynamics and reaction mechanisms computationally. Our investigations revealed that the reaction followed indirect scattering dynamics through the formation of (11)BOC4H6 doublet radical intermediates via the barrierless addition of the (11)BO radical to the terminal carbon atom (C1/C4) and/or the central carbon atom (C2/C3) of 1,3-butadiene. The resulting long-lived (11)BOC4H6 intermediate(s) underwent isomerization and/or unimolecular decomposition involving eventually at least two distinct atomic hydrogen loss pathways to 1,3-butadienyl-1-oxoboranes (CH2CHCHCH(11)BO) and 1,3-butadienyl-2-oxoboranes (CH2C ((11)BO)CHCH2) in overall exoergic reactions via tight exit transition states. Utilizing partially deuterated 1,3-butadiene-d2 and -d4, we revealed that the hydrogen loss from the methylene moiety (CH2) dominated with 70 ± 10% compared to an atomic hydrogen loss from the methylidyne group (CH) of only 30 ± 10%; these data agree nicely with the theoretically predicted branching ratio of 80% versus 19%. PMID:25626151
NASA Astrophysics Data System (ADS)
Kianfar, Ali Hossein; Ramazani, Shapour; Fath, Roghaye Hashemi; Roushani, Mahmoud
2013-03-01
Attempts to spectroscopic and structural study of copper complexes, some Cu(II) Schiff base complexes were synthesized and characterized by means of electronic, IR, 1HNMR spectra and elemental analysis. The thermal analyses of the complexes were investigated and the first order kinetic parameters were derived for them. The cyclic voltammetric studies in acetonitrile were proposed a monomeric structure for complexes. The structures of compounds were determined by ab initio calculations. In the solid state, the ligands exist as keto-amine/enol-imine tautomeric forms with an intramolecular hydrogen bond (Nsbnd H⋯O) between amine and carbonyl group. The kinetic studies of the tautomerism and equilibrium constant of the reactions were calculated using transition state theory. The optimized molecular geometry and atomic charges were calculated using MP2 method with 6-31G(d) basis set for H, C, N and O atoms and LANL2DZ for the Cu atom. The results suggested that, in the complexes, Cu(II) ion is in pseudo square-planar NO3 coordination geometry. Also the bond lengths and angles were studied and compared.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Maity, Surajit; Dangi, Beni B; Parker, Dorian S N; Kaiser, Ralf I; An, Yi; Sun, Bing-Jian; Chang, A H H
2014-10-16
The reaction dynamics of boron monoxide ((11)BO; X(2)Σ(+)) with propylene (CH(3)CHCH(2); X(1)A') were investigated under single collision conditions at a collision energy of 22.5 ± 1.3 kJ mol(-1). The crossed molecular beam investigation combined with ab initio electronic structure and statistical (RRKM) calculations reveals that the reaction follows indirect scattering dynamics and proceeds via the barrierless addition of boron monoxide radical with its radical center located at the boron atom. This addition takes place to either the terminal carbon atom (C1) and/or the central carbon atom (C2) of propylene reactant forming (11)BOC(3)H(6) intermediate(s). The long-lived (11)BOC(3)H(6) doublet intermediate(s) underwent unimolecular decomposition involving at least three competing reaction mechanisms via an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group elimination to form cis-/trans-1-propenyl-oxo-borane (CH(3)CHCH(11)BO), 3-propenyl-oxo-borane (CH(2)CHCH(2)(11)BO), and ethenyl-oxo-borane (CH(2)CH(11)BO), respectively. Utilizing partially deuterated propylene (CD(3)CHCH(2) and CH(3)CDCD(2)), we reveal that the loss of a vinyl hydrogen atom is the dominant hydrogen elimination pathway (85 ± 10%) forming cis-/trans-1-propenyl-oxo-borane, compared to the loss of a methyl hydrogen atom (15 ± 10%) leading to 3-propenyl-oxo-borane. The branching ratios for an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group loss are experimentally derived to be 26 ± 8%:5 ± 3%:69 ± 15%, respectively; these data correlate nicely with the branching ratios calculated via RRKM theory of 19%:5%:75%, respectively. PMID:25238644
Macromolecular ab initio phasing enforcing secondary and tertiary structure
Millán, Claudia; Sammito, Massimo; Usón, Isabel
2015-01-01
Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631
Ab Initio Computation of the Energies of Circular Quantum Dots
Lohne, M. Pedersen; Hagen, Gaute; Hjorth-Jensen, M.; Kvaal, S.; Pederiva, F.
2011-01-01
We perform coupled-cluster and diffusion Monte Carlo calculations of the energies of circular quantum dots up to 20 electrons. The coupled-cluster calculations include triples corrections and a renormalized Coulomb interaction defined for a given number of low-lying oscillator shells. Using such a renormalized Coulomb interaction brings the coupled-cluster calculations with triples correlations in excellent agreement with the diffusion Monte Carlo calculations. This opens up perspectives for doing ab initio calculations for much larger systems of electrons.
The implementation of ab initio quantum chemistry calculations on transporters.
Cooper, M D; Hillier, I H
1991-06-01
The RHF and geometry optimization sections of the ab initio quantum chemistry code, GAMESS, have been optimized for a network of parallel microprocessors, Inmos T800-20 transputers, using both indirect and direct SCF techniques. The results indicate great scope for implementation of such codes on small parallel computer systems, very high efficiencies having been achieved, particularly in the cases of direct SCF and geometry optimization with large basis sets. The work, although performed upon one particular parallel system, the Meiko Computing Surface, is applicable to a wide range of parallel systems with both shared and distributed memory. PMID:1919615
Ab initio electronic properties of dual phosphorus monolayers in silicon
2014-01-01
In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device components are calculated. PMID:25246862
Ab initio vibrational and dielectric properties of Y V O
NASA Astrophysics Data System (ADS)
Vali, R.
2009-10-01
For the yttrium orthovanadate Y V O with a tetragonal zircon-type structure, the first complete set of Raman-active and IR-active phonon modes has been calculated using ab initio density functional perturbation theory. The calculated IR reflectivity spectra are in good agreement with available experimental data. We report the calculated frequencies of three Raman-active modes that could not be detected experimentally and a new assignment of the experimental Raman data. The contributions of each IR-active phonon modes to static dielectric tensor have been determined.
Potential Dependence of Electrochemical Barriers from ab Initio Calculations.
Chan, Karen; Nørskov, Jens K
2016-05-01
We present a simple and computationally efficient method to determine the potential dependence of the activation energies for proton-electron transfer from a single ab initio barrier calculation. We show that the potential dependence of the activation energy is given by the partial charge transferred at the transition state. The method is evaluated against the potential dependence determined explicitly through multiple calculations at varying potential. We show that the transfer coefficient is given by the charge transferred from the initial to transition state, which has significant implications for electrochemical kinetics. PMID:27088442
Ab-Initio Shell Model with a Core
Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P
2008-06-04
We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.
Ab initio Study of He Stability in hcp-Ti
Dai, Yunya; Yang, Li; Peng, SM; Long, XG; Gao, Fei; Zu, Xiaotao T.
2010-12-20
The stability of He in hcp-Ti was studied using ab initio method based on density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms has been used to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models.
Ab Initio Calculations Applied to Problems in Metal Ion Chemistry
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)
1994-01-01
Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.
Ab initio study of hydrogen on beryllium surfaces
NASA Astrophysics Data System (ADS)
Bachurin, D. V.; Vladimirov, P. V.
2015-11-01
Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy.
An improved ab initio structure for fluorine peroxide (FOOF)
NASA Astrophysics Data System (ADS)
Mack, Hans-Georg; Oberhammer, Heinz
1988-03-01
Ab initio calculations with the 6-31G* and Dunning (9s5p/4s2p) basis sets augmented with p and d functions at various levels of theory (RHF, MP2, MP3, and MP4) were carried out on F 2O 2. The best result was obtained at the MP2 level with the Dunning basis plus one set of d functions on fluorine and two sets of d functions on oxygen. These calculations reproduce the experimental bond lengths to within 0.01 Å and the angles to within the experimental uncertainties.
Ab initio study of neutron drops with chiral Hamiltonians
NASA Astrophysics Data System (ADS)
Potter, H. D.; Fischer, S.; Maris, P.; Vary, J. P.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R.
2014-12-01
We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon-nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd-even energy differences for neutron numbers N = 2- 18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N = 8 , 16 , 20 , 28 , 40 , 50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8‧ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian.
Ab-initio study of transition metal hydrides
Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini
2014-04-24
We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.
Wang, Li; Liu, Jing-Yao; Li, Ze-Sheng; Sun, Chia-Chung
2004-03-01
The hydrogen abstract reactions of OH radicals with HOF (R1), HOCl (R2), and HOBr (R3) have been studied systematically by a dual-level direct-dynamics method. The geometries and frequencies of all the stationary points are optimized at the MP2/6-311+G(2d, 2p) level of theory. A hydrogen-bonded complex is located at the product channel for the OH + HOBr reaction. To improve the energetics information along the minimum energy path (MEP), single-point energy calculations are carried out at the CCSD(T)/6-311++G(3df, 3pd) level of theory. Interpolated single-point energy (ISPE) method is employed to correct the energy profiles for the three reactions. It is found that neither the barrier heights (DeltaE) nor the H-O bond dissociation energies [D(H-O)] exhibit any clear-cut linear correlations with the halogen electronegative. The decrease of DeltaE and D(H-O) for the three reactions are in order of HOF > HOBr > HOCl. Rate constants for each reaction are calculated by canonical variational transition-state theory (CVT) with a small-curvature tunneling correction (SCT) within 200-2000 K. The agreement of the rate constants with available experimental values for reactions R2 and R3 at 298 K is good. Our results show that the variational effect is small while the tunneling correction has an important contribution in the calculation of rate constants in the low-temperature range. Due to the lack of the kinetic data of these reactions, the present theoretical results are expected to be useful and reasonable to estimate the dynamical properties of these reactions over a wide temperature range where no experimental value is available. PMID:14735573
Ab initio study of hot electrons in GaAs.
Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G
2015-04-28
Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287
Three-cluster dynamics within an ab initio framework
Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr
2013-09-26
In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less
Ab initio thermodynamic model for magnesium carbonates and hydrates.
Chaka, Anne M; Felmy, Andrew R
2014-09-01
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation. PMID:24679248
Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates
Chaka, Anne M.; Felmy, Andrew R.
2014-03-28
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Ab initio prediction of the critical thickness of a precipitate
NASA Astrophysics Data System (ADS)
Sampath, S.; Janisch, R.
2013-09-01
Segregation and precipitation of second phases in metals and metallic alloys is an important phenomenon that has a strong influence on the mechanical properties of the material. Models exist that describe the growth of coherent, semi-coherent and incoherent precipitates. One important parameter of these models is the energy of the interface between matrix and precipitate. In this work we apply ab initio density functional theory calculations to obtain this parameter and to understand how it depends on chemical composition and mechanical strain at the interface. Our example is a metastable Mo-C phase, the body-centred tetragonal structure, which exists as a semi-coherent precipitate in body-centred cubic molybdenum. The interface of this precipitate is supposed to change from coherent to semi-coherent during the growth of the precipitate. We predict the critical thickness of the precipitate by calculating the different contributions to a semi-coherent interface energy by means of ab initio density functional theory calculations. The parameters in our model include the elastic strain energy stored in the precipitate, as well as a misfit dislocation energy that depends on the dislocation core width and the dislocation spacing. Our predicted critical thickness agrees well with experimental observations.
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-09-15
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Entropy of Liquid Water from Ab Initio Molecular Dynamics
NASA Astrophysics Data System (ADS)
Spanu, Leonardo; Zhang, Cui; Galli, Giulia
2012-02-01
The debate on the structural properties of water has been mostly based on the calculation of pair correlation functions. However, the simulation of thermodynamic and spectroscopic quantities may be of great relevance for the characterization of liquid water properties. We have computed the entropy of liquid water using a two-phase thermodynamic model and trajectories generated by ab initio molecular dynamics simulations [1]. In an attempt to better understand the performance of several density functionals in simulating liquid water, we have performed ab initio molecular dynamics using semilocal, hybrid [2] and van der Waals density functionals [3]. We show that in all cases, at the experimental equilibrium density and at temperatures in the vicinity of 300 K, the computed entropies are underestimated, with respect to experiment, and the liquid exhibits a degree of tetrahedral order higher than in experiments. We also discuss computational strategies to simulate spectroscopic properties of water, including infrared and Raman spectra.[4pt] [1] C.Zhang, L.Spanu and G.Galli, J.Phys.Chem. B 2011 (in press)[0pt] [2] C.Zhang, D.Donadio, F.Gygi and G.Galli, J. Chem. Theory Comput. 7, 1443 (2011)[0pt] [3] C.Zhang, J.Wu, G.Galli and F.Gygi, J. Chem. Theory Comput. 7, 3061 (2011)
Ab initio tight-binding Hamiltonian for transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Fang, Shiang; Kuate Defo, Rodrick; Shirodkar, Sharmila N.; Lieu, Simon; Tritsaris, Georgios A.; Kaxiras, Efthimios
2015-11-01
We present an accurate ab initio tight-binding Hamiltonian for the transition metal dichalcogenides, MoS2, MoSe2, WS2, WSe2, with a minimal basis (the d orbitals for the metal atoms and p orbitals for the chalcogen atoms) based on a transformation of the Kohn-Sham density functional theory Hamiltonian to a basis of maximally localized Wannier functions. The truncated tight-binding Hamiltonian, with only on-site, first, and partial second neighbor interactions, including spin-orbit coupling, provides a simple physical picture and the symmetry of the main band-structure features. Interlayer interactions between adjacent layers are modeled by transferable hopping terms between the chalcogen p orbitals. The full-range tight-binding Hamiltonian can be reduced to hybrid-orbital k .p effective Hamiltonians near the band extrema that capture important low-energy excitations. These ab initio Hamiltonians can serve as the starting point for applications to interacting many-body physics including optical transitions and Berry curvature of bands, of which we give some examples.
Assary, Rajeev S; Kim, Taejin; Low, John J; Greeley, Jeff; Curtiss, Larry A
2012-12-28
Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2-OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2-OH position, which includes a C-C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future. PMID:22932938
Ab initio surface reaction energetics of SiH4 and Si2H6 on Si(001)-(2×2)
NASA Astrophysics Data System (ADS)
Smardon, R. D.; Srivastava, G. P.
2005-11-01
First-principles pseudopotential calculations, within a simple dynamically constrained scheme, have been performed to investigate the reaction of 0.25 ML coverage of SiH4 and Si2H6 with the Si(001)-(2×2) surface. The silane molecule (SiH4) is adsorbed on to the surface at a number of different sites (on dimer, interrow, or intrarow) with varying barrier heights. Two distinct structures, which are similar in energy, arise from the initial dissociative reaction SiH4→SiH3(silyl)+H, where the dissociated species are adsorbed either on the same dimer components or on adjacent dimer components. Several further decays of silyl from SiH4 are presented in two separate regimes of high and low ambient hydrogen coverages. The decomposition of silyl can form two different bridging structures: an on top or an intrarow bridging structure in both of the two hydrogen coverage regimes. The disilane molecule (Si2H6) is also adsorbed upon this surface with varying energy barriers, resulting in a dissociation reaction where two SiH3 species are adsorbed on one dimer or in an adjacent dimer configuration. Plausible energy reaction paths for the above models are presented. The stability of the SiH2 species is also discussed.
Ab initio surface reaction energetics of SiH4 and Si2H6 on Si(001)-(2 x 2).
Smardon, R D; Srivastava, G P
2005-11-01
First-principles pseudopotential calculations, within a simple dynamically constrained scheme, have been performed to investigate the reaction of 0.25 ML coverage of SiH4 and Si2H6 with the Si(001)-(2 x 2) surface. The silane molecule (SiH4) is adsorbed on to the surface at a number of different sites (on dimer, interrow, or intrarow) with varying barrier heights. Two distinct structures, which are similar in energy, arise from the initial dissociative reaction SiH4-->SiH3(silyl) + H, where the dissociated species are adsorbed either on the same dimer components or on adjacent dimer components. Several further decays of silyl from SiH4 are presented in two separate regimes of high and low ambient hydrogen coverages. The decomposition of silyl can form two different bridging structures: an on top or an intrarow bridging structure in both of the two hydrogen coverage regimes. The disilane molecule (Si2H6) is also adsorbed upon this surface with varying energy barriers, resulting in a dissociation reaction where two SiH3 species are adsorbed on one dimer or in an adjacent dimer configuration. Plausible energy reaction paths for the above models are presented. The stability of the SiH2 species is also discussed. PMID:16375553
Reaction Pathways and Excited States in H2O2+OH → HO2+H2O : A New ab initio Investigation
Ginovska, Bojana; Camaioni, Donald M.; Dupuis, Michel
2007-08-28
The mechanism of the hydrogen abstraction reaction H2O2+OH→ HO2+H2O in gas phase was studied, using DFT (MPW1K) level of theory. We located 2 pathways for the reaction, both going through the same intermediate complex OH-H2O2, but via two distinct transition state structures that differ by the orientation of the hydroxyl hydrogen relative to the incipient hydroperoxy hydrogen. In one case, these hydrogens are on same side of the plane made by the 3 oxygen atoms and in the other these hydrogens are on opposite sides of the plane. The first two excited states were calculated for selected points of both pathways using time-dependent DFT, multiconfigurational quasi-degenerate-perturbation theory (MCQDPT2/ CASSCF) and equation of motion coupled cluster singles, doubles model (EOM-CCSD) EOMCCSD energies and completely renormalized EOM-CCSD(T)(IA) correction. An avoided crossing between the two excited states was found on both reaction pathways, on the product side of the barrier to H-transfer on the ground state surface, near the transition states. Further more, we report on the calculation of the rate of the reaction in the gas phase for temperatures in the range of 250-500 K, and suggest that the strong temperature dependence of the rate at high temperatures is due to reaction on the low-lying excited state surface over a barrier that is much larger than on the ground state surface. This work was supported in part by the Office of Basic Energy Sciences of the Department of Energy (DOE), Chemical Sciences program (BG and MD) and in part by the U.S. Department of Energy’s Office of Biological and Environmental Research, Environmental Management Science Program (BG and DMC). The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute.
Direct ab initio study of the C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 reactions
NASA Astrophysics Data System (ADS)
Mai, Tam V.-T.; Ratkiewicz, Artur; Duong, Minh v.; Huynh, Lam K.
2016-02-01
A kinetic study of the reactions C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 was carried out in the temperature range of 300-2500 K using high levels of electronic structure theory, namely, CCSD(T)/CBS//BH&HLYP/cc-pVDZ, and canonical variational transition state theory (CVT) with corrections for small curvature tunneling (SCT) and hindered internal rotation (HIR) treatments. It is found that variational effect is not important and both SCT and HIR corrections noticeably affect the rate constants. Being in good agreement with literature data, the calculated results provide solid basis information for the investigation of the polyaromatic hydrocarbon (PAH) + alkyl radical reaction, an important class in combustion and soot formation.
Assary, Rajeev S.; Kim, Taijin; Low, John; Greeley, Jeffrey P.; Curtiss, Larry A.
2012-12-28
Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2–OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2–OH position, which includes a C–C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future.
NASA Astrophysics Data System (ADS)
Sun, Geng; Jiang, Hong
2015-12-01
A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH 2 ⇌ CH + H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for
NASA Astrophysics Data System (ADS)
Szabó, István; Telekes, Hajnalka; Czakó, Gábor
2015-06-01
We develop a full-dimensional global analytical potential energy surface (PES) for the F- + CH3F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller-Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are -0.45(-0.61), 46.07(45.16), and 29.18(26.07) kcal mol-1, respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol-1, respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol-1. Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F- + CH3F(v = 0) reaction using the new PES. Apart from low collision energies (Ecoll), the SN2 excitation function is nearly constant, the abstraction cross sections rapidly increase with Ecoll from a threshold of ˜40 kcal mol-1, and retention trajectories via double inversion are found above Ecoll = ˜ 30 kcal mol-1, and at Ecoll = ˜ 50 kcal mol-1, the front-side attack cross sections start to increase very rapidly. At low Ecoll, the
Szabó, István; Telekes, Hajnalka; Czakó, Gábor
2015-06-28
We develop a full-dimensional global analytical potential energy surface (PES) for the F(-) + CH3F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller-Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are -0.45(-0.61), 46.07(45.16), and 29.18(26.07) kcal mol(-1), respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol(-1), respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol(-1). Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F(-) + CH3F(v = 0) reaction using the new PES. Apart from low collision energies (Ecoll), the SN2 excitation function is nearly constant, the abstraction cross sections rapidly increase with Ecoll from a threshold of ∼40 kcal mol(-1), and retention trajectories via double inversion are found above Ecoll = ∼ 30 kcal mol(-1), and at Ecoll = ∼ 50 kcal mol(-1), the front-side attack cross sections start to increase very rapidly. At
Development of Novel Analytical Method for Ab Initio Powder Structural Analysis
NASA Astrophysics Data System (ADS)
Sakata, Makoto; Nishibori, Eiji; Sawa, Hiroshi
Genetic Algorithm (GA) applied to ab initio structure determination from synchrotron powder diffraction is described. It seems to have an advantage over other real space methods for ab initio structure determination because of the existence of schema theorem. As an example, the case of Prednisolone Succinate is shown in some detail. Future development of GA in crystallography is briefly described.
An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry
Matthew Neurock
2005-06-13
As petroleum prices continue to rise and the United States seeks to reduce its dependency on foreign oil, there is a renewed interest in the research and development of more efficient and alternative energy sources, such as fuel cells. One approach is to utilize processes that can produce long-chain hydrocarbons from other sources. One such reaction is Fischer-Tropsch synthesis. Fischer-Tropsch synthesis is a process by which syngas (CO and H{sub 2}) is converted to higher molecular weight hydrocarbons. The reaction involves a complex set of bond-breaking and bond-making reactions, such as CO and H{sub 2} activation, hydrocarbon hydrogenation reactions, and hydrocarbon coupling reactions. This report details our initial construction of an ab initio based kinetic Monte Carlo code that can be used to begin to simulate Fischer-Tropsch synthesis over model Co(0001) surfaces. The code is based on a stochastic kinetic formalism that allows us to explicitly track the transformation of all reactants, intermediates and products. The intrinsic kinetics for the simulations were derived from the ab initio results that we reported in previous year summaries.
An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry
Matthew Neurock; David A. Walthall
2006-05-07
One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various different energy sources potentially including fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch synthesis involves the initiation or activation of CO and H{sub 2} bonds, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. Commercially viable catalysts include supported Co and Co-alloys. Over the first two years of this project we have used ab initio methods to determine the adsorption energies for all reactants, intermediates, and products along with the overall reaction energies and their corresponding activation barriers over the Co(0001) surface. Over the third year of the project we developed and advanced an ab initio-based kinetic Monte Carlo simulation code to simulate Fischer Tropsch synthesis. This report details our work over the last year which has focused on the derivation of kinetic parameters for the elementary steps involved in FT synthesis from ab initio density functional theoretical calculations and the application of the kinetic Monte Carlo algorithm to simulate the initial rates of reaction for FT over the ideal Co(0001) surface. The results from our simulations over Co(0001) indicate the importance of stepped surfaces for the activation of adsorbed CO. In addition, they demonstrate that the dominant CH{sub x}* surface intermediate under steady state conditions is CH*. This strongly suggests that hydrocarbon coupling
Li, Yaqin; Sun, Zhigang E-mail: dawesr@mst.edu; Jiang, Bin; Guo, Hua E-mail: dawesr@mst.edu; Xie, Daiqian; Dawes, Richard E-mail: dawesr@mst.edu
2014-08-28
The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.
Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.
An ab Initio Benchmark and DFT Validation Study on Gold(I)-Catalyzed Hydroamination of Alkynes.
Ciancaleoni, Gianluca; Rampino, Sergio; Zuccaccia, Daniele; Tarantelli, Francesco; Belanzoni, Paola; Belpassi, Leonardo
2014-03-11
High level ab initio calculations have been carried out on an archetypal gold(I)-catalyzed reaction: hydroamination of ethyne. We studied up to 12 structures of possible gold(I)-coordinated species modeling different intermediates potentially present in a catalytic cycle for the addition of a protic nucleophile to an alkyne. The benchmark is used to evaluate the performances of some popular density functionals for describing geometries and relative energies of stationary points along the reaction profile. Most functionals (including hybrid or meta-hybrid) give accurate structures but large nonsystematic errors (4-12 kcal/mol) along the reaction energy profile. The double hybrid functional B2PLYP outperforms all considered functionals and compares very nicely with our reference ab initio benchmark energies. Moreover, we present an assessment of the accuracy of commonly used approaches to include relativistic effects, such as relativistic effective potentials and a scalar ZORA Hamiltonian, by a comparison with the results obtained using a relativistic all-electron four-component Dirac-Kohn-Sham method. The contribution of nonscalar relativistic effects in gold(I)-catalyzed reactions, as we investigated here, is expected to be on the order of 1 kcal/mol. PMID:26580180
The ab-initio density matrix renormalization group in practice
Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Ab initio engineering of materials with stacked hexagonal tin frameworks.
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
Ab Initio Calculations of Excited Carrier Dynamics in Gallium Nitride
NASA Astrophysics Data System (ADS)
Jhalani, Vatsal; Bernardi, Marco
Bulk wurtzite GaN is the primary material for blue light-emission technology. The radiative processes in GaN are regulated by the dynamics of excited (or so-called ``hot'') carriers, through microscopic processes not yet completely understood. We present ab initio calculations of electron-phonon (e-ph) scattering rates for hot carriers in GaN. Our work combines density functional theory to compute the electronic states, and density functional perturbation theory to obtain the phonon dispersions and e-ph coupling matrix elements. These quantities are interpolated on fine Brillouin zone grids with maximally localized Wannier functions, to converge the e-ph scattering rates within 5 eV of the band edges. We resolve the contribution of the different phonon modes to the total scattering rate, and study the impact on the relaxation times of the long-range Fröhlich interaction due to the longitudinal-optical phonon modes.
Highly anisotropic thermal conductivity of arsenene: An ab initio study
NASA Astrophysics Data System (ADS)
Zeraati, Majid; Vaez Allaei, S. Mehdi; Abdolhosseini Sarsari, I.; Pourfath, Mahdi; Donadio, Davide
2016-02-01
Elemental two-dimensional (2D) materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using ab initio calculations. Solving the Boltzmann transport equation for phonons, we predict a highly anisotropic thermal conductivity of 30.4 and 7.8 W/mK along the zigzag and armchair directions, respectively, at room temperature. Our calculations reveal that phonons with mean free paths between 20 nm and 1 μ m provide the main contribution to the large thermal conductivity in the zigzag direction; mean free paths of phonons contributing to heat transport in the armchair directions range between 20 and 100 nm. The obtained anisotropic thermal conductivity and feasibility of synthesis, in addition to high electron mobility reported elsewhere, make arsenene a promising material for nanoelectronic applications and thermal management.
Ab initio study of II-(VI)2 dichalcogenides.
Olsson, P; Vidal, J; Lincot, D
2011-10-12
The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. PMID:21937783
Vibrational and ab initio molecular dynamics studies of bradykinin
NASA Astrophysics Data System (ADS)
Święch, Dominika; Kubisiak, Piotr; Andrzejak, Marcin; Borowski, Piotr; Proniewicz, Edyta
2016-07-01
In this study, the comprehensive theoretical and experimental investigations of Raman (RS) and infrared absorption (IR) spectra of bradykinin (BK) are presented. The ab initio Born-Oppenheimer molecular dynamics (BOMD) calculations, in the presence of water molecules that form the first coordination sphere, were used for conformational analysis of the BK structure. Based on the Density Functional Theory (DFT) calculations at the B3LYP/6-311G(d) level the vibrational spectra were interpreted. The calculated frequencies were scaled by means of the effective scaling frequency factor (ESFF) method. The theoretical data, which confirm the compact structure of BK in the presence of the water molecules revealed the remarkable effect of the intermolecular hydrogen bonding on the BK structural properties.
Ab initio water pair potential with flexible monomers.
Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof
2015-03-26
A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects. PMID:25687650
Efficient Ab initio Modeling of Random Multicomponent Alloys
NASA Astrophysics Data System (ADS)
Jiang, Chao; Uberuaga, Blas P.
2016-03-01
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.
Ab initio H2O in realistic hydrophilic confinement.
Allolio, Christoph; Klameth, Felix; Vogel, Michael; Sebastiani, Daniel
2014-12-15
A protocol for the ab initio construction of a realistic cylindrical pore in amorphous silica, serving as a geometric nanoscale confinement for liquids and solutions, is presented. Upon filling the pore with liquid water at different densities, the structure and dynamics of the liquid inside the confinement can be characterized. At high density, the pore introduces long-range oscillations into the water density profile, which makes the water structure unlike that of the bulk across the entire pore. The tetrahedral structure of water is also affected up to the second solvation shell of the pore wall. Furthermore, the effects of the confinement on hydrogen bonding and diffusion, resulting in a weakening and distortion of the water structure at the pore walls and a slowdown in diffusion, are characterized. PMID:25208765
High-throughput ab-initio dilute solute diffusion database
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Ab initio engineering of materials with stacked hexagonal tin frameworks
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
Ab initio calculation of the shock Hugoniot of bulk silicon
NASA Astrophysics Data System (ADS)
Strickson, Oliver; Artacho, Emilio
2016-03-01
We describe how ab initio molecular dynamics can be used to determine the Hugoniot locus (states accessible by a shock wave) for materials with a number of stable phases, and with an approximate treatment of plasticity and yield, without having to simulate these phenomena directly. We consider the case of bulk silicon, with forces from density-functional theory, up to 70 GPa. The fact that shock waves can split into multiple waves due to phase transitions or yielding is taken into account here by specifying the strength of any preceding waves explicitly based on their yield strain. Points corresponding to uniaxial elastic compression along three crystal axes and a number of postshock phases are given, including a plastically yielded state, approximated by an isotropic stress configuration following an elastic wave of predetermined strength. The results compare well to existing experimental data for shocked silicon.
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Kolorenč, Přemysl; Sisourat, Nicolas
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.
Kolorenč, Přemysl; Sisourat, Nicolas
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states. PMID:26671378
Ab initio calculation of thermodynamic properties of silicon
NASA Astrophysics Data System (ADS)
Wei, Siqing; Li, Changlin; Chou, M. Y.
1994-11-01
We present a fully ab initio calculation of the thermodynamic properties for silicon within the quasiharmonic approximation, making use of volume-dependent phonon frequencies obtained from pseudopotential local-density calculations. The temperature dependence of the thermal-expansion coefficient, specific heat (at constant volume), and other related quantities are studied. We confirm that the thermal-expansion coefficient behaves differently in three temperature regions: positive for temperature below 15 K, negative between 15 and 125 K, and positive again above 125 K. This finding agrees with experiment. The abnormal (negative) thermal-expansion coefficient at low temperatures is explained through a detailed study of mode Grüneisen parameters. Both specific-heat and thermal-expansion-coefficient values calculated are in excellent agreement with experiment up to a few hundred kelvin.
XMVB: a program for ab initio nonorthogonal valence bond computations.
Song, Lingchun; Mo, Yirong; Zhang, Qianer; Wu, Wei
2005-04-15
An ab initio nonorthogonal valence bond program, called XMVB, is described in this article. The XMVB package uses Heitler-London-Slater-Pauling (HLSP) functions as state functions, and calculations can be performed with either all independent state functions for a molecule or preferably a few selected important state functions. Both our proposed paired-permanent-determinant approach and conventional Slater determinant expansion algorithm are implemented for the evaluation of the Hamiltonian and overlap matrix elements among VB functions. XMVB contains the capabilities of valence bond self-consistent field (VBSCF), breathing orbital valence bond (BOVB), and valence bond configuration interaction (VBCI) computations. The VB orbitals, used to construct VB functions, can be defined flexibly in the calculations depending on particular applications and focused problems, and they may be strictly localized, delocalized, or bonded-distorted (semidelocalized). The parallel version of XMVB based on MPI (Message Passing Interface) is also available. PMID:15704237
Ab initio theory of NMR chemical shifts in solids
Louie, S.G. |
1997-12-31
A new formalism for ab initio calculation of the orbital magnetic susceptibility and the NMR chemical shifts in solids and liquids is presented. The approach can be applied to periodic systems such as crystals, surfaces or polymers, and with a supercell technique, to nonperiodic systems such as amorphous materials, liquids, or solids with defects. The formalism is based on the density functional theory in the local density approximation and makes use of a generalized f-sum rule to eliminate the divergent terms that plagued previous theories. Calculations have been successfully carried out for the diamagnetic susceptibility of a number of insulators and for the NMR chemical shifts of a variety of systems including free molecules, ionic crystals, hydrogen-bonded materials and amorphous carbon.
Ab initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Ab initio calculations of grain boundaries in bcc metals
NASA Astrophysics Data System (ADS)
Scheiber, Daniel; Pippan, Reinhard; Puschnig, Peter; Romaner, Lorenz
2016-03-01
In this study, we compute grain boundary (GB) properties for a large set of GBs in bcc transition metals with a special focus on W, Mo and Fe using ab initio density functional theory (DFT) and semi-empirical second nearest neighbour modified embedded atom method (2NN-MEAM) potentials. The GB properties include GB energies, surface energies, GB excess volume and work of separation, which we analyse and then compare to experimental data. We find that the used 2NN-MEAM potentials can predict general trends of GB properties, but do not always reproduce the GB ground state structure and energy found with DFT. In particular, our results explain the experimental finding that W and Mo prefer intergranular fracture, while other bcc metals prefer transgranular cleavage.
Transport coefficients in diamond from ab-initio calculations
NASA Astrophysics Data System (ADS)
Löfâs, Henrik; Grigoriev, Anton; Isberg, Jan; Ahuja, Rajeev
2013-03-01
By combining the Boltzmann transport equation with ab-initio electronic structure calculations, we obtain transport coefficients for boron-doped diamond. We find the temperature dependence of the resistivity and the hall coefficients in good agreement with experimental measurements. Doping in the samples is treated via the rigid band approximation and scattering is treated in the relaxation time approximation. In contrast to previous results, the acoustic phonon scattering is the dominating scattering mechanism for the considered doping range. At room temperature, we find the thermopower, S, in the range 1-1.6 mV/K and the power factor, S2σ, in the range 0.004-0.16 μW /cm K2.
Ab initio potential energy surface and rovibrational states of HBO
NASA Astrophysics Data System (ADS)
Ha, Tae-Kyu; Makarewicz, Jan
1999-01-01
The potential energy surface describing the large-amplitude motion of H around the BO core in the HBO molecule has been determined from ab initio calculations. This surface has been sampled by a set of 170 grid points from a two-dimensional space defined by the stretching and the bending coordinates of the H nucleus. At each grid point, the BO bond length has been optimized using the second-order Møller-Plesset perturbation theory with the basis set aug-cc-pVTZ. The surface has a local minimum for the linear as well as the bent configuration of HBO. A low energy barrier to the linear configuration BOH causes a large-amplitude motion and a strong rovibrational interaction in the molecule. Its rovibrational dynamics is different from the dynamics in bent or quasilinear triatomic molecules.
Ab initio engineering of materials with stacked hexagonal tin frameworks
NASA Astrophysics Data System (ADS)
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-07-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.
Ab initio electronic stopping power of protons in bulk materials
NASA Astrophysics Data System (ADS)
Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia
2016-01-01
The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.
Isofulminic acid, HONC: Ab initio theory and microwave spectroscopy.
Mladenović, Mirjana; Lewerenz, Marius; McCarthy, Michael C; Thaddeus, Patrick
2009-11-01
Isofulminic acid, HONC, the most energetic stable isomer of isocyanic acid HNCO, higher in energy by 84 kcal/mol, has been detected spectroscopically by rotational spectroscopy supported by coupled cluster electronic structure calculations. The fundamental rotational transitions of the normal, carbon-13, oxygen-18, and deuterium isotopic species have been detected in the centimeter band in a molecular beam by Fourier transform microwave spectroscopy, and rotational constants and nitrogen and deuterium quadrupole coupling constants have been derived. The measured constants agree well with those predicted by ab initio calculations. A number of other electronic and spectroscopic parameters of isofulminic acid, including the dipole moment, vibrational frequencies, infrared intensities, and centrifugal distortion constants have been calculated at a high level of theory. Isofulminic acid is a good candidate for astronomical detection with radio telescopes because it is highly polar and its more stable isomers (HNCO, HOCN, and HCNO) have all been identified in space. PMID:19895013
Ab initio study of helium behavior in titanium tritides
Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei
2013-03-01
Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].
High-throughput ab-initio dilute solute diffusion database.
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Ab initio quantum dynamics using coupled-cluster.
Kvaal, Simen
2012-05-21
The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given. PMID:22612082
Efficient Ab initio Modeling of Random Multicomponent Alloys.
Jiang, Chao; Uberuaga, Blas P
2016-03-11
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches. PMID:27015491
Ab initio correlated calculations of rare-gas dimer quadrupoles
NASA Astrophysics Data System (ADS)
Donchev, Alexander G.
2007-10-01
This paper reports ab initio calculations of rare gas ( RG=Kr , Ar, Ne, and He) dimer quadrupoles at the second order of Møller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG2 quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG2 quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG3 quadrupoles is discussed.
Ab Initio Screening of CO2-philic Groups.
Tian, Ziqi; Saito, Tomonori; Jiang, De-En
2015-04-23
Ab initio calculations were used to identify CO2-philic groups. Over 55 neutral molecules were screened for CO2 affinity via binding energetics. It is found that poly(ethylene oxide)s (PEO) oligomers with more than three repeating units are good CO2-binding groups, consistent with the high-performance of PEO-based materials for CO2/N2 separation. More interestingly, two triazole groups linked with a methylene chain are also excellent for CO2 binding with a favorable interaction of more than 28 kJ/mol, indicating that polymers or covalent-organic frameworks (COFs) with triazoles may be utilized for CO2 capture. This work provides a useful guide to introduce promising organic groups into polymeric membranes and COFs for CO2/N2 separation media. PMID:25825811
NASA Astrophysics Data System (ADS)
Pietrucci, Fabio; Andreoni, Wanda
2011-08-01
Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.
Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory
Vary, J. P.; Maris, P.; Honkanen, H.; Li, J.; Shirokov, A. M.; Brodsky, S. J.; Harindranath, A.
2009-12-17
Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually, we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.
Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory
Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.
2009-08-03
Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.
Yu, Dequan; Chen, Jun; Cong, Shulin; Sun, Zhigang
2015-12-17
The FH2– anion has a stable structure that resembles a configuration in the vicinity of the transition state for neutral reaction F + H2 → HF + H. Electron photodetachment spectra of the FH2– anion reveal the neutral reaction dynamics in the critical transition-state region. Accurate quantum dynamics simulations of the photodetachment spectra using highly accurate new ab initio potential energy surfaces for both anionic and neutral FH2 are performed and compared with all available experimental results. The results provide reliable interpretations for the experimental observations of FH2– photoelectron detachment and reveal a detailed picture of the molecular dynamics around the transition state of the F + H2 reaction. The latest high-resolution photoelectron detachment spectra [Kim et al. Science, 2015, 349, 510-513] confirm the high accuracy of our new potential energy surface for describing the resonance-enhanced reactivity of the neutral F + H2 reaction. PMID:26550683
Steinmann, Casper; Fedorov, Dmitri G.; Jensen, Jan H.
2013-01-01
We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be kcal mol−1 for MP2/cc-pVDZ and for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively. PMID:23593259
4He Thermophysical Properties: New Ab Initio Calculations
Hurly, John J.; Mehl, James B.
2007-01-01
Since 2000, atomic physicists have reduced the uncertainty of the helium-helium “ab initio” potential; for example, from approximately 0.6 % to 0.1 % at 4 bohr, and from 0.8 % to 0.1 % at 5.6 bohr. These results led us to: (1) construct a new inter-atomic potential ϕ07, (2) recalculate values of the second virial coefficient, the viscosity, and the thermal conductivity of 4He from 1 K to 10,000 K, and (3), analyze the uncertainties of the thermophysical properties that propagate from the uncertainty of ϕ07 and from the Born-Oppenheimer approximation of the electron-nucleon quantum mechanical system. We correct minor errors in a previous publication [J. J. Hurly and M. R. Moldover, J. Res. Nat. Inst. Standards Technol. 105, 667 (2000)] and compare our results with selected data published after 2000. The ab initio results tabulated here can serve as standards for the measurement of thermophysical properties. PMID:27110456
Operator evolution for ab initio theory of light nuclei
NASA Astrophysics Data System (ADS)
Schuster, Micah; Quaglioni, Sofia; Johnson, Calvin; Jurgenson, Eric; Navrátil, Petr
2014-09-01
The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range; short ranges have the largest absolute renormalization when including two- and three-body induced terms, while at long ranges the induced three-body contribution takes on increased relative importance. The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores
Raghunath, P; Lin, M C
2013-10-24
The kinetics and mechanisms for SiH2 + Si2H6 and SiH3 + Si2H5 reactions and the related unimolecular decomposition of Si3H8 have been investigated by ab initio molecular orbital theory based on the QCISD(T)/CBS//QCISD/6-311++G(d,p) method in conjunction with quantum statistical variational Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. For the barrierless radical association processes, their variational transition states have been characterized by the CASPT2//CASSCF method. The species involved in the study are known to coexist under CVD conditions. The results show that the association reaction of SiH2 and Si2H6 producing Si3H8 occurs by insertion via its lowest-energy path forming a loose hydrogen-bonding molecular complex with 8.3 kcal/mol binding energy; the reaction is exothermic by 55.0 kcal/mol. The chemically activated Si3H8 adduct can fragment by several paths, producing SiH4 + SiH3SiH (-0.7 kcal/mol), Si(SiH3)2 + H2 (-1.4 kcal/mol), and SiH3SiH2SiH + H2 (-1.4 kcal/mol). The predicted enthalpy changes as given agree well with available thermochemical data. Three other decomposition channels of Si3H8 occurring by Si-H or Si-Si breaking were found to be highly endothermic, and the reactions take place without a well-defined barrier. The heats of formation of Si3H8, SiH2SiH, Si2H4, i-Si3H7, n-Si3H7, Si(SiH3)2, and SiH3SiH2SiH have been predicted and found to be in close agreement with those available data in the literature. The product branching rate constants for SiH2 + Si2H6 and SiH3 + Si2H5 reactions and the thermal unimolecular decomposition of Si3H8 for all low-energy paths have been calculated with multichannel variational RRKM theory covering varying P,T conditions typically employed in PECVD and Cat-CVD processes for hydrogenated amorphous silicon (a-Si/H) film growth. The results were also found to be in good agreement with available kinetic data. Our kinetic results may be employed to model and control very large-area a-Si/H film growth for a
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Ab initio calculation and anharmonic force field of hypochlorous acid, HOCl
NASA Astrophysics Data System (ADS)
Halonen, L.; Ha, T.-K.
1988-03-01
Ab initio calculations on HOCl have been performed at the third-order Møller-Plesset perturbation theory level to determine the equilibrium structure and the anharmonic force field. An empirical anharmonic force field based on the ab initio results is obtained using available experimental vibration-rotation data. Four of the six harmonic and six of the ten cubic force constants have been determined experimentally, the remaining values being fixed at the ab initio values. A good fit to the experimental vibration-rotation data of four isotopic species is obtained.
An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics
Nakamura, Makoto Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki
2014-05-14
We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling
Towards an ab initio description of correlated materials
NASA Astrophysics Data System (ADS)
Yee, Chuck-Hou
Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls
Gimondi, Ilaria; Cavallotti, Carlo; Vanuzzo, Gianmarco; Balucani, Nadia; Casavecchia, Piergiorgio
2016-07-14
The mechanism of the O((3)P) + CH3CCH reaction was investigated using a combined experimental/theoretical approach. Experimentally the reaction dynamics was studied using crossed molecular beams (CMB) with mass-spectrometric detection and time-of-flight analysis at 9.2 kcal/mol collision energy. Theoretically master equation (ME) simulations were performed on a potential energy surface (PES) determined using high-level ab initio electronic structure calculations. In this paper (II) the theoretical results are described and compared with experiments, while in paper (I) are reported and discussed the results of the experimental study. The PES was investigated by determining structures and vibrational frequencies of wells and transition states at the CASPT2/aug-cc-pVTZ level using a minimal active space. Energies were then determined at the CASPT2 level increasing systematically the active space and at the CCSD(T) level extrapolating to the complete basis set limit. Two separate portions of the triplet PES were investigated, as O((3)P) can add either on the terminal or the central carbon of the unsaturated propyne bond. Minimum energy crossing points (MECPs) between the triplet and singlet PESs were searched at the CASPT2 level. The calculated spin-orbit coupling constants between the T1 and S0 electronic surfaces were ∼25 cm(-1) for both PESs. The portions of the singlet PES that can be accessed from the MECPs were investigated at the same level of theory. The system reactivity was predicted integrating stochastically the one-dimensional ME using Rice-Ramsperger-Kassel-Marcus theory to determine rate constants on the full T1/S0 PESs, accounting explicitly for intersystem crossing (ISC) using the Landau-Zener model. The computational results are compared both with the branching ratios (BRs) determined experimentally in the companion paper (I) and with those estimated in a recent kinetic study at 298 K. The ME results allow to interpret the main system reactivity: CH
Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Ab initio studies of niobium defects in uranium
Xiang, S; Huang, H; Hsiung, L
2007-06-01
Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.
Melting curves of metals by ab initio calculations
NASA Astrophysics Data System (ADS)
Minakov, Dmitry; Levashov, Pavel
2015-06-01
In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).
Ab initio simulation of gap discrete breathers in strained graphene
NASA Astrophysics Data System (ADS)
Lobzenko, I. P.; Chechin, G. M.; Bezuglova, G. S.; Baimova, Yu. A.; Korznikova, E. A.; Dmitriev, S. V.
2016-03-01
The methods of the density functional theory were used for the first time for the simulation of discrete breathers in graphene. It is demonstrated that breathers can exist with frequencies lying in the gap of the phonon spectrum, induced by uniaxial tension of a monolayer graphene sheet in the "zigzag" direction (axis X), polarized in the "armchair" direction (axis Y). The found gap breathers are highly localized dynamic objects, the core of which is formed by two adjacent carbon atoms located on the Y axis. The atoms surrounding the core vibrate at much lower amplitudes along both the axes ( X and Y). The dependence of the frequency of these breathers on amplitude is found, which shows a soft type of nonlinearity. No breathers of this type were detected in the gap induced by stretching along the Y axis. It is shown that the breather vibrations may be approximated by the Morse oscillators, the parameters of which are determined from ab initio calculations. The results are of fundamental importance, as molecular dynamics calculations based on empirical potentials cannot serve as a reliable proof of the existence of breathers in crystals.
Volumic omit maps in ab initio dual-space phasing.
Oszlányi, Gábor; Sütő, András
2016-07-01
Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850
Ab initio study of optical excitations in VO2
NASA Astrophysics Data System (ADS)
Coulter, John; Gali, Adam; Manousakis, Efstratios
2014-03-01
Motivated by recent experimental efforts to fabricate p-n junctions from transition metal oxides (TMOs) and a recent theoretical study claiming TMOs to be good absorbers and promising materials for efficient carrier multiplication, we study the optical properties of a prototypical TMO, the insulator M1 phase of vanadium dioxide (VO2), by ab initio methods. We applied the Bethe-Salpeter equations (BSE) to calculate the optical properties, starting from self-consistent GW quasi-particle energy levels and states. In contrast to expectations, the exciton binding energy obtained by BSE is in good agreement with the experiment. We find that the electron-electron interaction is very strong which makes this material promising for efficient carrier multiplication that might lead to an enhanced efficiency in photo-voltaics applications. To illustrate this more quantitatively, we calculated the impact ionization rate within the independent quasiparticle approximation, and find that the rate is significantly higher than silicon in the region of highest solar intensity, due to the strong multiple carrier excitations.
Ab initio studies of phoshorene island single electron transistor.
Ray, S J; Venkata Kamalakar, M; Chowdhury, R
2016-05-18
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications. PMID:27093536
Ab initio studies of phosphorene island single electron transistor
NASA Astrophysics Data System (ADS)
Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.
2016-05-01
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.
An Ab Initio Based Potential Energy Surface for Water
NASA Technical Reports Server (NTRS)
Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)
1996-01-01
We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.
Ab initio description of the exotic unbound 7He nucleus
Baroni, Simone; Navratil, Petr; Quaglioni, Sofia
2013-01-11
In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less
Ab initio investigation of grain boundary cohesion in Al alloys
NASA Astrophysics Data System (ADS)
Zhang, Shengjun; Kontsevoi, Oleg Y.; Freeman, A. J.; Olson, G. B.
2010-03-01
Strength and hardness of aluminum alloys can be substantially increased by alloying with Mg, Zn, Cu, Si, and other elements. The main drawback of Al alloys is their susceptibility to stress corrosion cracking, which is caused by alloying impurities segregated at grain boundaries. We investigated the embrittling and cohesion-enhancing effects of impurities on a σ5(012)[100] grain boundary in Al by means of the full-potential linearized augmented plane-wave (FLAPW) method within the framework of the Rice-Wang thermodynamic model and within the ab initio tensile test approach. We calculated segregation energies, analyzed local atomic configurations, electronic structures and spatial charge density distributions around segregated impurities, and identified the roles of atomic size and the bonding behavior of the impurity with the surrounding Al atoms. The results show that He, H and Na are strong embrittlers, Zn is a weak embrittler, while Sc, B, Cu and Mg are cohesion enhancers. We further evaluated the effect of co-alloying with two or more elements on grain boundary strength. This work provides a fundamental basis for the design of high strength Al alloys.
Ab Initio Simulation of the Photoelectron Spectrum for Methoxy Radical
NASA Astrophysics Data System (ADS)
Cheng, Lan; Weichman, Marissa L.; Kim, Jongjin B.; Ichino, Takatoshi; Neumark, Daniel; Stanton, John F.
2015-06-01
A theoretical simulation of the photoelectron spectrum for the ground state of methoxy radical is reported based on the quasidiabatic model Hamiltonian originally proposed by Köppel, Domcke, and Cederbaum. The parameters in the model Hamiltonian have been obtained from ab initio coupled-cluster calculations. The linear and quadratic force constants have been calculated using equation-of-motion coupled-cluster ionization potential method with the singles, doubles, and triples (EOMIP-CCSDT) truncation scheme together with atomic natural orbital basis sets of triple-zeta quality (ANO1). The cubic and quartic force constants have been obtained from EOMIP-CCSD calculations with ANO basis sets of double-zeta quality (ANO0), and the spin-orbit coupling constant has been computed at the EOMIP-CCSD/pCVTZ level. The nuclear Schroedinger equation has been solved using the Lanzcos algorithm to obtain vibronic energy levels as well as the corresponding intensities. The simulated spectrum compares favorably with the recent high-resolution slow electron velocity-map imaging experiment for vibronic levels up to 2000 cm-1.
TOPICAL REVIEW: Ab initio symplectic no-core shell model
NASA Astrophysics Data System (ADS)
Dytrych, T.; Sviratcheva, K. D.; Draayer, J. P.; Bahri, C.; Vary, J. P.
2008-12-01
The no-core shell model (NCSM) is a prominent ab initio method that yields a good description of the low-lying states in few-nucleon systems as well as in more complex p-shell nuclei. Nevertheless, its applicability is limited by the rapid growth of the many-body basis with larger model spaces and increasing number of nucleons. The symplectic no-core shell model (Sp-NCSM) aspires to extend the scope of the NCSM beyond the p-shell region by augmenting the conventional spherical harmonic oscillator basis with the physically relevant symplectic \\SpR{3} symmetry-adapted configurations of the symplectic shell model that describe naturally the monopole-quadrupole vibrational and rotational modes, and also partially incorporate α-cluster correlations. In this review, the models underpinning the Sp-NCSM approach, namely, the NCSM, the Elliott SU(3) model and the symplectic shell model, are discussed. Following this, a prescription for constructing translationally invariant symplectic configurations in the spherical harmonic oscillator basis is given. This prescription is utilized to unveil the extent to which symplectic configurations enter into low-lying states in 12C and 16O nuclei calculated within the framework of the NCSM with the JISP16 realistic nucleon-nucleon interaction. The outcomes of this proof-of-principle study are presented in detail.
Microsolvation of methyl hydrogen peroxide: Ab initio quantum chemical approach
NASA Astrophysics Data System (ADS)
Kulkarni, Anant D.; Rai, Dhurba; Bartolotti, Libero J.; Pathak, Rajeev K.
2009-08-01
Methyl hydrogen peroxide (MHP), one of the simplest organic hydroperoxides, is a strong oxidant, with enhanced activity in aqueous ambience. The present study investigates, at the molecular level, the role of hydrogen bonding that is conducive to cluster formation of MHP with water molecules from its peroxide end, with the methyl group remaining hydrophobic for up to five water molecules. Ab initio quantum chemical computations on MHP⋯(H2O)n, [n =1-5] are performed at second order Møller-Plesset (MP2) perturbation theory employing the basis sets 6-31G(d,p) and 6-311++G(2d,2p) to study the cluster formation of MHP with water molecules from its peroxide end and hydrophobic hydration due to the methyl group. Successive addition of water molecules alters the hydrogen bonding pattern, which leads to changes in overall cluster geometry and in turn to IR vibrational frequency shifts. Molecular co-operativity in these clusters is gauged directly through a detailed many-body interaction energy analysis. Molecular electrostatic potential maps are shown to have a bearing on predicting further growth of these clusters, which is duly corroborated through sample calculations for MHP⋯(H2O)8. Further, a continuum solvation model calculation for energetically stable clusters suggests that this study should serve as a precursor for pathways to aqueous solvation of MHP.
Ab initio study of MoS2 nanotube bundles
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu; Charlier, Jean-Christophe
2003-07-01
Recently, the synthesis of a new phase of MoS2I1/3 stoichiometry was reported [M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001)]. Electron microscope images and diffraction data were interpreted to indicate bundles of sub-nanometer-diameter single-wall MoS2 nanotubes. After experimental characterization, the structure was attributed to an assembly of “armchair” nanotubes with interstitial iodine. Using first-principles total-energy calculations, bundles of MoS2 nanotubes with different topologies and stoichiometries are investigated. All of the systems are strongly metallic. Configurations with “zigzag” structures are found to be more stable energetically than the “armchair” ones, though all of the structures have similar stabilities. After relaxation, there remain several candidates which give a lattice parameter in relative agreement with experiment. Further, spin-polarized calculations indicate that a structure with armchair tubes iodine atoms in their center acquires a very large spontaneous magnetic moment of 12μB, while the other structures are nonmagnetic. Our ab initio calculations show that in most of the other structures, the tubes are very strongly bound together, and that the compounds should be considered as a crystal, rather than as a bundle of tubes in the habitual sense.
Ab initio modelling of methane hydrate thermophysical properties.
Jendi, Z M; Servio, P; Rey, A D
2016-04-21
The key thermophysical properties of methane hydrate were determined using ab initio modelling. Using density functional theory, the second-order elastic constants, heat capacity, compressibility, and thermal expansion coefficient were calculated. A wide and relevant range of pressure-temperature conditions were considered, and the structures were assessed for stability using the mean square displacement and radial distribution functions. Methane hydrate was found to be elastically isotropic with a linear dependence of the bulk modulus on pressure. Equally significant, multi-body interactions were found to be important in hydrates, and water-water interactions appear to strongly influence compressibility like in ice Ih. While the heat capacity of hydrate was found to be higher than that of ice, the thermal expansion coefficient was significantly lower, most likely due to the lower rigidity of hydrates. The mean square displacement gave important insight into stability, heat capacity, and elastic moduli, and the radial distribution functions further confirmed stability. The presented results provide a much needed atomistic thermoelastic characterization of methane hydrates and are essential input for the large-scale applications of hydrate detection and production. PMID:27019976
Engineering Room-temperature Superconductors Via ab-initio Calculations
NASA Astrophysics Data System (ADS)
Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen
The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.
Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures
NASA Astrophysics Data System (ADS)
Debernardi, Alberto; Marchetti, Luigi
2016-06-01
Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.
Ab Initio Investigation of NH_3-O_2 Exciplex
NASA Astrophysics Data System (ADS)
Haupert, L. M.; Simpson, G.; Slipchenko, L. V.
2010-06-01
In their recent investigation of fluorescence from poly(amido amine) (PAMAM) dendrimers, Chu and Imae suggested an exciplex composed of tertiary amine and oxygen molecules might be responsible for fluorescence in PAMAM dendrimers. In this work, we present an ab initio investigation of the electronic structure of a possible ammonia-oxygen exciplex model system using equation-of-motion coupled cluster techniques. Geometry optimization of the triplet ground state produced a weakly bound state with an equilibrium separation of ˜ 3.5 Å, and an excited state geometry scan revealed a bound, excited triplet state with an equilibrium separation of 2.02 Å, consistent with results of earlier PM3 work by Juranic et al. The energy gap between the triplet ground state and first triplet excited state of the exciplex at 2.02 Å is 412.8 nm, lending support to the exciplex hypothesis. C.-C. Chu, and T. Imae, Macromol. Rapid. Commun., 30, 89-93 (2009). I. Juranic, H. S. Rzepa, and Y. MinYan, J. Chem. Soc. Perkin Trans., 2 (1990)
Accurate ab initio vibrational energies of methyl chloride
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup HL}, and CBS-37{sup HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup HL} and CBS-37{sup HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.
Ab Initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Ab initio description of p-shell hypernuclei.
Wirth, Roland; Gazda, Daniel; Navrátil, Petr; Calci, Angelo; Langhammer, Joachim; Roth, Robert
2014-11-01
We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction. We validate the approach for s-shell hypernuclei and apply it to p-shell hypernuclei, in particular to (Λ)(7)Li, (Λ)(9)Be, and (Λ)(13)C. We show that the chiral hyperon-nucleon interactions provide ground-state and excitation energies that generally agree with experiment within the cutoff dependence. At the same time we demonstrate that hypernuclear spectroscopy provides tight constraints on the hyperon-nucleon interactions. PMID:25415901
Ab initio SCF calculations on hydrogen bonded cresol isomers
NASA Astrophysics Data System (ADS)
Pohl, M.; Kleinermanns, K.
1988-12-01
Ab initio GAUSSIAN 80 calculations with two different basis sets (STO-3G and 4 31 G*) were performed on hydrogen bonded cresol isomers for comparison with experimental data from free jet fluorescence excitation spectroscopy. For m-cresol, the calculated barriers for hindered internal rotation of the OH-group and the CH3-group are in good agreement with experiment. The calculations show the trans-linear configuration of p-cresol· B-clusters ( B = H2O, CH3OH) to be more stable than the all-planar configuration. This agrees with CI calculations and microwave spectroscopic investigations of the water dimer. Calculations of both the intermolecular stretch and bend frequencies of p-cresol· B-clusters show little dependence on the all-planar or trans-linear configuration but a strong dependence on the choice of the basis set. With the minimal basis set STO-3G, the vibrational energies are generally too high. The agreement between the calculated vibrational frequencies from the 4 31 G* basis set and the experimental values is fair.
Predicting lattice thermal conductivity with help from ab initio methods
NASA Astrophysics Data System (ADS)
Broido, David
2015-03-01
The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.
Ab initio calculation of double ionization of atoms
Serov, V. V.
2013-02-15
The Solov'ev-Vinitsky method was used to perform an ab initio calculation of the triple-differential cross section for the double single-photon photoionization of helium for the case of equal emitted-electron energies. A Gaussian width {gamma} describing angular electron-electron correlations at the total electron energy E taking values in range between 0.1 and 100 eV was obtained for this cross section. The results agree with available experimental data, but they raise a doubt as to whether the well-known Wannier law {gamma} {proportional_to} E{sup 1/4} is applicable at experimentally accessible energies. The Gaussian width {gamma} was investigated as a function of the total emitted-electron energy for targets that have a strongly asymmetric configuration of the initial state-specifically, a negative atomic-hydrogen ion H{sup -} and heliumin the 1s2s{sup 1}S and 1s3s{sup 1}S excited states. It was found that this function, {gamma}(E), had a maximum at low energies. It was also shown that, at low energies, the dependence of the double-differential cross section on the angle between the emitted-electron momenta for the targets indicated above differed substantially from the Gaussian dependence, featuring maxima whose number was equal to the number of radial nodes in the initial state. This opens new possibilities for a qualitative analysis of the electron structure of targets.
Ab initio calculation of infrared intensities for hydrogen peroxide
NASA Technical Reports Server (NTRS)
Rogers, J. D.; Hillman, J. J.
1982-01-01
Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.
Ab initio simulations of peptide-mineral interactions
NASA Astrophysics Data System (ADS)
Hug, Susanna; Hunter, Graeme K.; Goldberg, Harvey; Karttunen, Mikko
We performed Car-Parrinello Molecular Dynamics (CPMD) simulations of two amino acids, aspartic acid (Asp) and phophoserine (pSer), on a calcium oxalate monohydrate (COM) surface as a model of the interactions of phosphoproteins with biominerals. In our earlier work using in vitro experiments and classical Molecular Dynamics (MD) simulations we have demonstrated the importance of phosphorylation of serine on the interactions of osteopontin (OPN) with COM. We used configurations from our previous classical MD simulations as a starting point for the ab initio simulations. In the case of Asp we found that the α-carboxyl and amine groups form temporary close contacts with the surface. For the dipeptide Asp-pSer the carboxyl groups form permanent close contacts with the surface and the distances of its other functional groups do not vary much. We show how the interaction of carboxyl groups with COM crystal is established and confirm the importance of phosphorylation in mediating the interactions between COM surfaces and OPN.
Ab initio study of the phenol-water cation radical
NASA Astrophysics Data System (ADS)
Hobza, Pavel; Burcl, Rudolf; Špirko, Vladimír; Dopfer, Otto; Müller-Dethlefs, Klaus; Schlag, Edward W.
1994-07-01
The phenol-water cation radical has been investigated by ab initio theory using the spin-restricted open-shell Hartree-Fock and spin-restricted open-shell second-order Møller-Plesset theories with 3-21G*(O) and 6-31G* basis sets. The full geometrical optimization was performed for several hydrogen-bonded structures and one hemibonded structure. Clearly, the most stable structure has been found for Cs symmetry with the linear hydrogen bond between the proton of the OH group of the phenol cation radical and the oxygen of the water, and the water hydrogens pointing away from the phenyl ring. For this structure harmonic (and for some intermolecular modes anharmonic) vibrational frequencies have been computed for various isotopic complexes. The computed shifts of phenol-localized intramolecular modes on complexation and on deuteration as well as the calculated intermolecular frequencies of the different isotopic complexes allow for an assignment of vibrational frequencies observed in the experimental zero-kinetic-energy (ZEKE) photoelectron spectra. Five out of a possible six intermolecular vibrations and several intramolecular modes have been assigned, including the 18b vibration which shows a strong blue shift in frequency upon complexation. Structure and properties of the phenol-water cation radical are compared with those of the corresponding neutral complex.
An efficient approach to ab initio Monte Carlo simulation
Leiding, Jeff; Coe, Joshua D.
2014-01-21
We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β{sup 0}), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where—depending on the quality of the reference system potential—acceptance probabilities were enhanced by factors of 1.2–28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.
Accurate ab initio vibrational energies of methyl chloride.
Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH3 (35)Cl and CH3 (37)Cl. The respective PESs, CBS-35( HL), and CBS-37( HL), are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35( HL) and CBS-37( HL) PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm(-1), respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH3Cl without empirical refinement of the respective PESs. PMID:26133427
Accurate ab initio vibrational energies of methyl chloride
NASA Astrophysics Data System (ADS)
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-01
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH335Cl and CH337Cl. The respective PESs, CBS-35 HL, and CBS-37 HL, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35 HL and CBS-37 HL PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm-1, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH3Cl without empirical refinement of the respective PESs.
Ab initio study of the bonding in diatomic nickel
Noell, J.O.; Newton, M.D.; Hay, P.J.; Martin, R.L.; Bobrowicz, F.W.
1980-09-01
Hartree--Fock, GVB, and configuration interaction calculations were performed for diatomic nickel using an ab initio effective core potential. A basis set specifically optimized for the /sup 3/D state of atomic nickel is found to be far superior to the more common basis obtained from the /sup 3/F atomic state. Correlation effects are found to be significant in determining the bond energy. In particular, the two electrons of the s--s bond must be appropriately correlated. In addition, correlation effects which one would interpret as being principally intra-atomic in character are found to have a marked effect on the molecular properties. The theoretically predicted bond dissociation energy (D/sub e/) of 43.4 kcal/mol is significantly lower than the experimental estimate of 55 +- 5 kcal/mol. However, molecular partition functions calculated using the present results indicate that the experimental value should be revised downward to a value of approx.46 +- 5 kcal/mol, in good agreement with our calculations. An interatomic distance of 4.27 bohr is computed and compared with experimental estimates. Spectroscopic parameters for dipole-allowed transitions from the ground state were determined from SCF and GVB calculations and discussed in relation to the experimentally observed visible and ultraviolet spectra attributed to Ni/sub 2/.
Ab initio effective interactions for s d -shell valence nucleons
NASA Astrophysics Data System (ADS)
Dikmen, E.; Lisetskiy, A. F.; Barrett, B. R.; Maris, P.; Shirokov, A. M.; Vary, J. P.
2015-06-01
We perform ab initio no-core shell-model calculations for A =18 and 19 nuclei in a 4 ℏ Ω , or Nmax=4 , model space by using the effective JISP16 and chiral N3LO nucleon-nucleon potentials and transform the many-body effective Hamiltonians into the 0 ℏ Ω model space to construct the A -body effective Hamiltonians in the s d shell. We separate the A -body effective Hamiltonians with A =18 and A =19 into inert core, one-, and two-body components. Then we use these core, one-, and two-body components to perform standard shell-model calculations for the A =18 and A =19 systems with valence nucleons restricted to the s d shell. Finally, we compare the standard shell-model results in the 0 ℏ Ω model space with the exact no-core shell-model results in the 4 ℏ Ω model space for the A =18 and A =19 systems and find good agreement.
Lead-Chalcogenides Under Pressure: Ab-Initio Study
NASA Astrophysics Data System (ADS)
Gupta, Dinesh C.; Hamid, Idris
ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.
Amide N-oxides: an ab initio molecular orbital study
NASA Astrophysics Data System (ADS)
Greenberg, Arthur; DuBois, Thomas D.
2001-06-01
There are no known examples of amide N-oxides. The present study employs ab initio molecular orbital calculations at the 6-3G ∗ level to explore potential target molecules in this class. Bridgehead bicyclic lactams appear to be attractive targets for oxidation to form the corresponding N-oxides because they have reduced (or zero) amide resonance energy. The amide N-oxide linkage is predicted to have a ca. 9-10 kcal/mol rotational barrier due to eclipsing of nonbonded oxygen atoms in the transition state. The linkage has a nearly flat conformational ( ΦON-CO) profile in the range 120-240° and this suggests that a very sterically hindered acyclic amide N-oxide may be a practical synthetic target. The oxidation of strained amides is calculated to be highly exothermic if dimethyldioxirane is employed. This reagent is predicted to react appreciably exothermically with normal, stable amides such as N, N-dimethylacetamide, thus offering the potential for generating and studying such relatively unstable amide N-oxides at low temperatures.
FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole.
Rai, Amareshwar K; Singh, Rachana; Singh, K N; Singh, V B
2006-02-01
FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value. PMID:16098806
Ab initio simulations on rutile-based titania nanowires
NASA Astrophysics Data System (ADS)
Zhukovskii, Yu F.; Evarestov, R. A.
2012-08-01
The rod symmetry groups for monoperiodic (1D) nanostructures have been applied for construction of models for bulk-like TiO2 nanowires (NWs) cut from a rutile-based 3D crystal along the chosen [001] and [110] directions of crystallographic axes. In this study, we have considered nanowires described by both the Ti-atom centered rotation axes as well as the hollow site centered axes passing through the interstitial positions between the Ti and O atoms closest to the axes. The most stable [001]-oriented TiO2 NWs with rhombic cross sections are found to display the energetically preferable {110} facets only while the nanowires with quasi-square sections across the [110] axis are formed by the alternating { 1bar 10 } and {001} facets. For simulations on rutile-based nanowires possessing different diameters for each NW type, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof (PBE) exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO). We have simulated both structural and electronic properties of TiO2 NWs depending both on orientation and position of symmetry axes as well as on diameter and morphology of nanowires.
Ab initio Raman spectroscopy of water under extreme conditions
NASA Astrophysics Data System (ADS)
Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia
Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.
Ab initio modeling of the motional Stark effect on MAST
De Bock, M. F. M.; Conway, N. J.; Walsh, M. J.; Carolan, P. G.; Hawkes, N. C.
2008-10-15
A multichord motional Stark effect (MSE) system has recently been built on the MAST tokamak. In MAST the {pi} and {sigma} lines of the MSE spectrum overlap due to the low magnetic field typical for present day spherical tokamaks. Also, the field curvature results in a large change in the pitch angle over the observation volume. The measured polarization angle does not relate to one local pitch angle but to an integration over all pitch angles in the observation volume. The velocity distribution of the neutral beam further complicates the measurement. To take into account volume effects and velocity distribution, an ab initio code was written that simulates the MSE spectrum on MAST. The code is modular and can easily be adjusted for other tokamaks. The code returns the intensity, polarized fraction, and polarization angle as a function of wavelength. Results of the code are presented, showing the effect on depolarization and wavelength dependence of the polarization angle. The code is used to optimize the design and calibration of the MSE diagnostic.
Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations
NASA Astrophysics Data System (ADS)
Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.
2012-05-01
An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.
Han, Huixian; Li, Anyang; Guo, Hua
2014-12-28
A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.
Ab initio many-body calculations of light nuclei neutron and proton scattering
NASA Astrophysics Data System (ADS)
Quaglioni, Sofia
2008-10-01
One of the greatest challenges of nuclear physics today is the development of a quantitative microscopic theory of low-energy reactions on light nuclei. At the same time, technical progress on the theoretical front is urgent to match the major experimental advances in the study of exotic nuclei at the radioactive beam facilities. We build a new ab initio many-body approachootnotetextS. Quaglioni and P. Navratil, arXiv:0804.1560. capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group methodootnotetextY. C. Tang et al., Phys. Rep. 47, 167 (1978); K. Langanke and H. Friedrich, Advances in Nuclear Physics, chapter 4., Plenum, New York, 1987. with the ab initio no-core shell model.ootnotetextP. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000).. In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, while preserving Pauli principle and translational symmetry. I will present results for neutron and proton scattering on light nuclei, including n- and p-^4He phase shifts, and low-lying states of one-neutron halo p-shell nuclei, obtained using realistic nucleon-nucleon potentials. In particular, I will address the parity inversion of the ^11Be ground state.
NASA Astrophysics Data System (ADS)
Bacca, Sonia
2016-04-01
A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.
Ab initio study on the dynamics of furfural at the liquid-solid interfaces
NASA Astrophysics Data System (ADS)
Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2013-03-01
Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers
NASA Astrophysics Data System (ADS)
Li, S.; Kurtz, H.; Korambath, P.; Li, Y.-S.
2000-09-01
Intermolecular complexes of methanethiol with sulfur dioxide have been prepared by condensing the reagents diluted in argon and in nitrogen at 12-14 K. The 1:1 CH 3SH/SO 2 complexes were identified from the infrared spectra of the mixtures of methanethiol with sulfur dioxide in argon and nitrogen matrices. Perturbations to the vibrational energy spaces of some vibrational modes were identified and assigned. Ab initio calculations with the 6-311G ∗∗ basis set have been performed to get some information about the structure, binding energy, dipole moment, and potential function governing the internal rotation of SO 2 for the complex. The calculated results have suggested that the dipole/dipole interaction held the constituent species together to form the complex. Photochemical reactions were performed by exposing the matrix mixtures to UV irradiation. The appearance of new bands indicated the presence of more than one photochemical reaction product.
Shimamura, K; Shibuta, Y; Ohmura, S; Arifin, R; Shimojo, F
2016-04-13
The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed. PMID:26953616
NASA Astrophysics Data System (ADS)
Shimamura, K.; Shibuta, Y.; Ohmura, S.; Arifin, R.; Shimojo, F.
2016-04-01
The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed.
Ab initio quantum transport calculations using plane waves
NASA Astrophysics Data System (ADS)
Garcia-Lekue, A.; Vergniory, M. G.; Jiang, X. W.; Wang, L. W.
2015-08-01
We present an ab initio method to calculate elastic quantum transport at the nanoscale. The method is based on a combination of density functional theory using plane wave nonlocal pseudopotentials and the use of auxiliary periodic boundary conditions to obtain the scattering states. The method can be applied to any applied bias voltage and the charge density and potential profile can either be calculated self-consistently, or using an approximated self-consistent field (SCF) approach. Based on the scattering states one can straightforwardly calculate the transmission coefficients and the corresponding electronic current. The overall scheme allows us to obtain accurate and numerically stable solutions for the elastic transport, with a computational time similar to that of a ground state calculation. This method is particularly suitable for calculations of tunneling currents through vacuum, that some of the nonequilibrium Greens function (NEGF) approaches based on atomic basis sets might have difficulty to deal with. Several examples are provided using this method from electron tunneling, to molecular electronics, to electronic devices: (i) On a Au nanojunction, the tunneling current dependence on the electrode-electrode distance is investigated. (ii) The tunneling through field emission resonances (FERs) is studied via an accurate description of the surface vacuum states. (iii) Based on quantum transport calculations, we have designed a molecular conformational switch, which can turn on and off a molecular junction by applying a perpendicular electric field. (iv) Finally, we have used the method to simulate tunnel field-effect transistors (TFETs) based on two-dimensional transition-metal dichalcogenides (TMDCs), where we have studied the performance and scaling limits of such nanodevices and proposed atomic doping to enhance the transistor performance.
Internal dynamics in azetidine: A microwave and ab initio study
NASA Astrophysics Data System (ADS)
López, Juan C.; Blanco, Susana; Lesarri, Alberto; Alonso, José L.
2001-02-01
The internal dynamics of interconversion between equivalent conformations due to the coupling between ring puckering and NH inversion in azetidine has been investigated by rotational spectroscopy and ab initio computations. Analysis of the rotational spectra in the 8-220 GHz region has been completed for the ground state and first four excited states of the ring-puckering vibration. Rotational transitions exhibit a characteristic doubling originated by tunneling between equivalent conformations through a C2v barrier, which is related to symmetric (A1) and antisymmetric (B1) inversion states. Additionally, nuclear quadrupole hyperfine structure arising from the N nucleus could be resolved for low-J transitions. Accurate rotational and centrifugal distortion parameters together with the energy difference between inversion states derived from μc-type inversion transitions have been derived for each ring-puckering state using a two-state Hamiltonian. An effective monodimensional reduced potential function for the ring-puckering vibration V(X)=10.82(X4+14.29X-8.93X2-0.28X3) has been found consistent with the observed experimental variation of the rotational and centrifugal distortion constants with ring-puckering. This asymmetric single minimum potential function supports the existence of only one stable equatorial form. The barrier to interconversion between equivalent equatorial conformers, related to the C2v conformation of azetidine in which the ring atoms and the NH group are coplanar, has been estimated to range between 1900 and 2600 cm-1. The strong dependence of the dipole moment and quadrupole coupling constants with ring-puckering vibrational state evidence structural changes that occur along the ring-puckering coordinate.
Ab initio cluster study of crystalline NaF
Temple, D.K.
1992-01-01
A highly-accurate ab initio cluster model of crystalline NaF has been constructed to explore the limits of cluster methods in the treatment of ionic solids. The focus of this model was the characterization of the lattice environment and its influence on the easily-polarizable fluorine anion. The model consisted of a central all-electron fluorine anion coordinated by pseudopotentials, to represent the nearest-neighbor sodium cations, and a finite array of point charges chosen to generate the correct crystal field from the surrounding infinite ionic lattice. The wavefunction and properties of the anion were calculated using the restricted Hartree-Fock and configuration interaction techniques from quantum chemistry. An extensive analysis of basis set incompleteness errors in the anion wavefunction was performed. Important features were identified in the embedded anion, such as its distortion under the influence of the lattice compressions, its stabilization from the Madelung potential, and its changes in size due to electron correlations. Bulk properties of the rocksalt-structure (B1) NaF crystal were derived from the total mode energies, calculated as a function of the crystal volume. The properties included the zero-pressure lattice constant, cohesive energy, and bulk modulus, and the pressure-volume equation-of-state. A series of test calculations explored the relationships, and their underlying physical mechanisms, between the features of the embedded anion and the bulk properties of the crystal. These features often produced opposing changes in the properties, demonstrating the importance of a thorough and systematic treatment of the embedded anion. The most thorough test calculation gave bulk properties that were within 1% of experiment. Using an embedded anion model for the high-pressure cesium-chloride (B2) phase of NaF, the B1-to-B2 structural transition was correctly predicted at 25 GPa, in excellent agreement with the experimental values of 23 to 27 GPa.
Cosmic-Ray Modulation: an Ab Initio Approach
NASA Astrophysics Data System (ADS)
Engelbrecht, N. E.; Burger, R. A.
2014-10-01
A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.
Chiroptical properties of unsubstituted carbohydrates: Ab initio and semiempirical studies
NASA Astrophysics Data System (ADS)
Parra C., Alejandro
Ab initio calculations support assignment of the vacuum ultraviolet circular dichroism (CD) of simple saccharides to 11A 1 --> 21B1 and 11A 1 --> 11A2 transitions centered on the oxygen atoms of the acetal group treated as two weakly coupled ether chromophores. The calculations are consistent with assignments previously made on the basis of a deconvolution of CD spectra. Estimates of the oxygen centered contributions to magnetic transition dipole moments were made. Semiempirical calculations were performed to model the NaD molar optical rotation of 1,6- and 3,6- anhydrosugars. For 1,6-anhydrosugars, current parameters produce reasonable agreement with experimental values. For 3,6-anhydrosugars, modifications to the ether parameters had to be introduced. The most relevant included a reorientation of the bond-centered s-->s* transition dipole charges in the ether chromophore to a C2v orientation, and a shift from prolate polarizability ellipsoids to general ellipsoids. These changes result in good agreement with experimental Na D molar rotations for 3,6-anhydrosugars. A low energy CD band arises in 3,6- and 1,6-anhydrosugars when agreement with the experimental NaD molar rotations is achieved. It is proposed that this band is a real feature in the spectrum. The origin of the band is primarily the interaction between b1 symmetry- oriented transition dipoles in the COC groups with other transition dipoles in the molecule. Comparison with experimental spectra leads to an assignment of this band to 11A1 --> 21B1 transitions centered on the COC groups.
Efficient conformational space exploration in ab initio protein folding simulation.
Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel
2015-08-01
Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554
AN AB INITIO MODEL FOR COSMIC-RAY MODULATION
Engelbrecht, N. E.; Burger, R. A.
2013-07-20
A proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays (CRs) is of vital importance for a better understanding of CR modulation in the heliosphere. This study presents an ab initio model for CR modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for solar minimum heliospheric conditions, utilizing boundary values chosen so that model results are in reasonable agreement with spacecraft observations of turbulence quantities in the solar ecliptic plane and along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modeled slab and two-dimensional (2D) turbulence energy spectra. The modeled 2D spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers. There currently exist no models or observations for the wavenumber where this drop-off occurs, and it is considered to be the only free parameter in this study. The modeled spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on CR drifts are modeled in a self-consistent way, also employing a recently developed model for wavy current sheet drift. The resulting diffusion and drift coefficients are applied to the study of galactic CR protons and antiprotons using a 3D, steady-state CR modulation code, and sample solutions in fair to good agreement with multiple spacecraft observations are presented.
Efficient conformational space exploration in ab initio protein folding simulation
Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel
2015-01-01
Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554
NASA Astrophysics Data System (ADS)
Koizumi, Kenichi; Nobusada, Katsuyuki; Boero, Mauro
2015-12-01
Ab initio molecular dynamics simulations have been used to inspect the adsorption of O2 to a small gold-copper alloy cluster supported on graphene. The exposed Cu atom in this cluster acts as a crucial attractive site for the approaching of O2 and consequently widens the reaction channel for the adsorption process. Conversely, a pure Au cluster on the same graphene support is inactive for the O2 adsorption because the corresponding reaction channel for the adsorption is very narrow. These results clearly indicate that doping a different metal to the Au cluster is a way to enhance the oxygen adsorption and to promote catalytic reactions.
An investigation of ab initio shell-model interactions derived by no-core shell model
NASA Astrophysics Data System (ADS)
Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing
2016-09-01
The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.
Autrey, Thomas; Brown, Aaron K.; Camaioni, Donald M.; Dupuis, Michel; Foster, Nancy S.; Getty, April D.
2004-03-31
Photoacoustic signals from dilute ({approx}30 mM) solutions of H{sub 2}O{sub 2} were measured over the temperature range from 10-45 C to obtain the reaction enthalpy and volume change for H{sub 2}O{sub 2}(aq) {yields} 2 OH(aq) from which we ultimately determined {Delta}{sub f}G{sup o}, {Delta}{sub f}H{sup o} and partial molal volume, v{sup o}, of OH (aq). We find {Delta}{sub r}H = 46.8 {+-} 1.4 kcal/mol, which is 4 kcal/mol smaller than the gas phase bond energy, and {Delta}V{sub r} = 6.5 {+-} 0.4 mL/mol. The v{sup o} for OH in water is 14.4 {+-} 0.4 mL/ml: smaller than the v{sup o} of water. Using ab initio continuum theory, the hydration free energy is calculated to be -3.9 {+-} 0.3 kcal/mol (for standard states in number density concentration units) by a novel approach devised to capture in the definition of the solute cavity the strength and specific interactions of the solute with a water solvent molecule. The shape of the cavity is defined by ''rolling'' a 3 dimensional electron density isocontour of water on the ab initio water-OH minimum interaction surface. The value of the contour is selected to reproduce the volume of OH in water. We obtain for OH(aq): {Delta}{sub f}H{sup o} = -0.2 {+-} 1.4 and {Delta}{sub f}G{sup o} = 5.8 {+-} 0.4 kcal/mol that are in agreement with literature values. The results provide confidence in the pulsed PAC technique for measuring aqueous thermochemistry of radicals and open the way to obtaining thermochemistry for most radicals that can be formed by reaction of OH with aqueous substrates while advancing the field of continuum solvation theory towards ab initio-defined solute cavities.
Casolo, S; Tantardini, G F; Martinazzo, R
2016-07-14
We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques. PMID:26905385
Ab initio determination of the proton affinities of small neutral and anionic molecules
NASA Technical Reports Server (NTRS)
DeFrees, D. J.; McLean, A. D.
1986-01-01
The proton affinity of a molecule in the gas phase is a fundamental measure of its basicity and is the factor controlling the course of many ion-molecule reactions. In this article, ab initio molecular orbital theory at the MP4/6-311 ++ G(3df, 3pd) level of theory is demonstrated to predict proton affinities (PA's) for small neutral and anionic bases to within 2 kcal mol-1. Furthermore, the errors are random, indicating that there are likely no systematic errors in either the experimental or theoretical PA's. Also, this level of theory is used to calibrate less sophisticated theoretical models which are suitable for larger molecules; the MP4/6-311 ++ G(2d, 2p) and MP2/6-311 ++ G(d, p) theoretical models should be particularly useful. A procedure for predicting the vibrational frequencies for anion is proposed and applied to CH3-, NH2-, OH-, and CN-.
Decarboxylation of furfural on Pd(111): Ab initio molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Xue, Wenhua; Dang, Hongli; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2013-03-01
Furfural conversion over metal catalysts plays an important role in the studies of biomass-derived feedstocks. We report ab initio molecular dynamics simulations for the decarboxylation process of furfural on the palladium surface at finite temperatures. We observed and analyzed the atomic-scale dynamics of furfural on the Pd(111) surface and the fluctuations of the bondlengths between the atoms in furfural. We found that the dominant bonding structure is the parallel structure in which the furfural plane, while slightly distorted, is parallel to the Pd surface. Analysis of the bondlength fluctuations indicates that the C-H bond is the aldehyde group of a furfural molecule is likely to be broken first, while the C =O bond has a tendency to be isolated as CO. Our results show that the reaction of decarbonylation dominates, consistent with the experimental measurements. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSEDE's and NERSC's supercomputers.
NASA Astrophysics Data System (ADS)
De Fazio, Dario; de Castro-Vitores, Miguel; Aguado, Alfredo; Aquilanti, Vincenzo; Cavalli, Simonetta
2012-12-01
In this work we critically revise several aspects of previous ab initio quantum chemistry studies [P. Palmieri et al., Mol. Phys. 98, 1835 (2000);, 10.1080/00268970009483387 C. N. Ramachandran et al., Chem. Phys. Lett. 469, 26 (2009)], 10.1016/j.cplett.2008.12.035 of the HeH_2^+ system. New diatomic curves for the H_2^+ and HeH+ molecular ions, which provide vibrational frequencies at a near spectroscopic level of accuracy, have been generated to test the quality of the diatomic terms employed in the previous analytical fittings. The reliability of the global potential energy surfaces has also been tested performing benchmark quantum scattering calculations within the time-independent approach in an extended interval of energies. In particular, the total integral cross sections have been calculated in the total collision energy range 0.955-2.400 eV for the scattering of the He atom by the ortho- and para-hydrogen molecular ion. The energy profiles of the total integral cross sections for selected vibro-rotational states of H_2^+ (v = 0, …,5 and j = 1, …,7) show a strong rotational enhancement for the lower vibrational states which becomes weaker as the vibrational quantum number increases. Comparison with several available experimental data is presented and discussed.
NASA Technical Reports Server (NTRS)
Woon, David E.
2006-01-01
While reactions between closed shell molecules generally involve prohibitive barriers in the gas phase, prior experimental and theoretical studies have demonstrated that some of these reactions are significantly enhanced when confined within an icy grain mantle and can occur efficiently at temperatures below 100 K with no additional energy processing. The archetypal case is the reaction of formaldehyde (H2CO) and ammonia (NH3) to yield hydroxymethylamine (NH2CH2OH). In the present work we have characterized reactions involving methanol (CH3OH), carbon dioxide (CO2), carbon monoxide (CO), and isocyanic acid (HNCO) in search of other favorable cases. Most of the emphasis is on CH3OH, which was investigated in the two-body reaction with one H2CO and the three-body reaction with two H2CO molecules. The addition of a second H2CO to the product of the reaction between CH3OH and H2CO was also considered as an alternative route to longer polyoxymethylene polymers of the -CH2O- form. The reaction between HNCO and NH3 was studied to determine if it can compete against the barrierless charge transfer process that yields OCN(-) and NH4(+). Finally, the H2CO + NH3 reaction was revisited with additional benchmark calculations that confirm that little or no barrier is present when it occurs in ice.
Combined ab initio molecular dynamics and experimental studies of carbon atom addition to benzene.
McKee, Michael L; Reisenauer, Hans Peter; Schreiner, Peter R
2014-04-17
Car-Parrinello molecular dynamics was used to explore the reactions between triplet and singlet carbon atoms with benzene. The computations reveal that, in the singlet C atom reaction, products are very exothermic where nearly every collision yields a product that is determined by the initial encounter geometry. The singlet C atom reaction does not follow the minimum energy path because the bimolecular reaction is controlled by dynamics (i.e., initial orientation of encounter). On the other hand, in a 10 K solid Ar matrix, ground state C((3)P) atoms do tend to follow RRKM kinetics. Thus, ab initio molecular dynamics (AIMD) results indicate that a significant fraction of C-H insertion occurs to form phenylcarbene whereas, in marked contrast to previous theoretical and experimental conclusions, the Ar matrix isolation studies indicate a large fraction of direct cycloheptatetraene formation, without the intermediacy of phenylcarbene. The AIMD calculations are more consistent with vaporized carbon atom experiments where labeling studies indicate the initial formation of phenylcarbene. This underlines that the availability of thermodynamic sinks can completely alter the observed reaction dynamics. PMID:24661002
NASA Astrophysics Data System (ADS)
Hagiwara, Yohsuke; Tateno, Masaru
2010-10-01
We review the recent research on the functional mechanisms of biological macromolecules using theoretical methodologies coupled to ab initio quantum mechanical (QM) treatments of reaction centers in proteins and nucleic acids. Since in most cases such biological molecules are large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Instead, simulations that are jointed with molecular mechanics (MM) calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. Thus, we focus our attention on the methodologies/schemes and applications of jointed QM/MM calculations, and discuss the critical issues to be elucidated in biological macromolecular systems.
Efficient ab initio free energy calculations by classically assisted trajectory sampling
NASA Astrophysics Data System (ADS)
Wilson, Hugh F.
2015-12-01
A method for efficiently performing ab initio free energy calculations based on coupling constant thermodynamic integration is demonstrated. By the use of Boltzmann-weighted sums over states generated from a classical ensemble, the free energy difference between the classical and ab initio ensembles is readily available without the need for time-consuming integration over molecular dynamics trajectories. Convergence and errors in this scheme are discussed and characterised in terms of a quantity representing the degree of misfit between the classical and ab initio systems. Smaller but still substantial efficiency gains over molecular dynamics are also demonstrated for the calculation of average properties such as pressure and total energy for systems in equilibrium.
Ab Initio and Phenomenological Modeling of the Phonon Spectrum of Superhard cp-BC2N
NASA Astrophysics Data System (ADS)
Basalaev, Yu. M.; Kopytov, A. V.; Pavlova, T. Yu.; Poplavnoi, A. S.
2015-11-01
The phonon spectrum of hypothetical superhard cp-BC2N is calculated based on ab initio method of density functional in the center of the Brillouin zone and interpolated over the entire Brillouin zone using the Keating phenomenological model. The interaction parameters are determined by optimization of the IR- and Ramanactive frequencies for a phenomenological model by their comparison with the results of ab initio calculations. Numerical values of short-range interaction constants and charges are in agreement with the characteristics of the chemical bond calculated ab initio. These parameters have transparent physical meaning and chemical nature and can further be used for both qualitative estimations of any physical and physico-chemical quantities and quantitative calculations of the phonon spectra of a number of isostructural compounds. The Keating phenomenological model is used to study the genesis of the phonon spectrum from the spectra of sublattices.
Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization
NASA Astrophysics Data System (ADS)
Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng
With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.
Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.
2015-02-01
Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
An ab initio-based Er–He interatomic potential in hcp Er
Yang, Li; ye, Yeting; Fan, K. M.; Shen, Huahai; Peng, Shuming; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei
2014-09-01
We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations. The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.
An Efficient Time-Stepping Scheme for Ab Initio Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Tsuchida, Eiji
2016-08-01
In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. We also propose several extensions of the algorithm required for use in ab initio molecular dynamics. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2× performance gain over the standard Verlet method for a given accuracy. We also show how to generate a canonical ensemble within this approach.
NASA Astrophysics Data System (ADS)
Song, Yu-Zhi; Li, Yong-Qing; Gao, Shou-Bao; Meng, Qing-Tian
2014-01-01
A globally accurate potential energy surface is reported for the electronic ground-state HLi2 by fitting ab initio energies to double many-body expansion formalism. The total 3726 ab initio energies used to map the HLi2 potential energy surface are calculated using the multi-reference configuration interaction method, with their dynamical correlation being semiempirically corrected by the double many-body expansion-scaled external correlation method. The current potential energy surface generates an excellent fit of the ab initio energies, showing a small root-mean squared derivation of 0.636 kcal mol-1. The topographical features of the HLi2 potential energy surface are examined in detail, which concludes that the H + Li2(X 1Σg) → Li + LiH(X 1Σ) reaction is essentially barrierless and the exothermicity is calculated to be 33.668 kcal mol-1, thus corroborates the available experimental and theoretical results.
Ab initio study of hydrogen migration across n-alkyl radicals.
Davis, Alexander C; Francisco, Joseph S
2011-04-14
A thorough ab initio investigation is conducted on all possible hydrogen migration pathways for the 1-ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl, 1-heptyl, and 1-octyl radicals in order to determine underlying trends in reaction enthalpies, activation energies, Arrhenius A-factors, tunneling, and rate coefficients. The G4, G2, and CBS-Q composite methods are used to determine the enthalpy of reaction and activation energy barrier for each reaction. Each method shows excellent agreement with eight experimental enthalpy of reaction values, with root mean squared values of 0.8, 0.9, and 0.6 kcal mol(-1) for CBS-Q, G2, and G4, respectively. Differences in barrier heights, A-factors, tunneling, and rate coefficients are observed for axial and equatorial arrangements as well as between secondary hydrogen migration sites, depending on the location of the secondary site relative to the terminal carbon. The validity of using cycloalkane model systems to estimate rate parameters is also assessed. The failure of two key assumptions inherent to the cycloalkane models, resulting in a breakdown in the accuracy of these methods for larger transition states, is discussed. This study has significant ramifications for future theoretical, experimental, and modeling studies involving the decomposition of n-alkanes. PMID:21413772
NASA Astrophysics Data System (ADS)
Salem, Mostafa E.; Ahmed, Ashour A.; Shaaban, Mohamed R.; Shibl, Mohamed F.; Farag, Ahmad M.
2015-09-01
Pyrazolo[1,5-a]pyrimidine, triazolo[1,5-a]pyrimidine, and pyrimido[1,2-a]benzimidazole, pyrido[1,2-a]benzimidazole ring systems incorporating phenylsulfonyl moiety were synthesized via the reaction of 3-(N,N-dimethylamino)-1-(thiophen-2-yl)-2-(phenylsulfonyl)prop-2-en-1-one derivatives with the appropriate aminoazoles as 1,3-binucleophiles and 1H-benzimidazol-2-ylacetonitrile using conventional methods as well as microwave irradiation. The regioselectivity of the cyclocondensation reactions was confirmed both experimentally by alternative synthesis of reaction products and theoretically using ab initio quantum chemical calculations namely the Density Functional Theory (DFT). The theoretical work was carried out using the Becke, three parameter, Lee-Yang-Parr hybrid functional (B3LYP) combined with the 6-311++G(d,p) basis set. It was found that the final cyclocondensation reaction product depends mainly on the initial addition to the activated double bond by the nitrogen atom of the 1,3-binucleophiles that has the higher electron density.
Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.
2000-08-15
The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to
Ab initio kinetics studies of hydrogen atom abstraction from methyl propanoate.
Tan, Ting; Yang, Xueliang; Ju, Yiguang; Carter, Emily A
2016-02-14
The kinetics of hydrogen abstraction by five radicals (H, CH3, O((3)P), OH, and HO2) from a biodiesel surrogate, methyl propanoate (MP), is theoretically investigated. We employ high-level ab initio quantum chemistry methods, coupled-cluster singles and doubles with perturbative triples correction (CCSD(T)) and multi-reference singles and doubles configuration interaction (MRSDCI) with the Davidson-Silver (DS) correction, and obtain chemically accurate reaction energetics. Overall, MRSDCI + DS predicts comparable energetics to CCSD(T) for MP + H/CH3/O/OH. The rate constants are computed using transition state theory (TST-Rice-Ramsperger-Kassel-Marcus theory) in conjunction with the separable-hindered-rotor approximation, variable reaction coordinate TST, and the multi-structure all-structure (MS-AS) approach. A simplified method, semi-multi-structure, is also employed for MP + OH/HO2, and the rate coefficients with this less expensive method are in good agreement with the results obtained with the MS-AS method. The fitted modified Arrhenius expressions are provided over a temperature range of 250 to 2000 K. The predicted rate coefficients for MP + OH agree remarkably well with experimental data over a wide temperature range. Branching ratio analysis of all the studied reactions shows that abstractions of the secondary H atoms within MP are expected to dominate the consumption of fuel at low temperatures, and the contributions of abstractions from the two methyl groups increase with temperature for all abstracting radicals. PMID:26796249
Mechanism of alkane dehydrogenation catalyzed by acidic zeolites: Ab initio transition path sampling
NASA Astrophysics Data System (ADS)
Bučko, Tomáš; Benco, Lubomir; Dubay, Orest; Dellago, Christoph; Hafner, Jürgen
2009-12-01
The dehydrogenation of propane over acidic chabazite has been studied using ab initio density-functional simulations in combination with static transition-state searches and dynamic transition path sampling (TPS) methods at elevated temperatures. The acidic zeolite has been modeled both using a small cluster and a large periodic model consisting of two unit cells, the TPS simulations allow to account for the effect of temperature and entropy. In agreement with experimental observations we find propene as the dominant reaction product and that the barrier for the dehydrogenation of a methyl group is higher than that for a methylene group. However, whereas all studies based on small cluster models (including the present one) conclude that the reaction proceeds via the formation of an alkoxy intermediate, our TPS studies based on a large periodic model lead to the conclusion that propene formation occurs via the formation of various forms of propyl cations stabilized by entropy, while the formation of an alkoxy species is a relatively rare event. It was observed only in 15% of the reactive trajectories for methyl dehydrogenation and even in only 8% of the methylene dehydrogenation reactions. Our studies demonstrate the importance of entropic effects and the need to account for the structure and flexibility of the zeolitic framework by using large periodic models.
NASA Astrophysics Data System (ADS)
Zeng, Xiancheng; Hu, Hao; Hu, Xiangqian; Cohen, Aron J.; Yang, Weitao
2008-03-01
Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H2O)62+/3+ and Ru(H2O)62+/3+. The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.
An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry
Matthew Neurock
2002-09-11
As the US seeks to develop an energy strategy that reduces the reliance on foreign oil, there is a renewed interest in research and development of the Fischer Tropsch synthesis of converting syngas into long chain hydrocarbon products. This report investigates some of the basic elementary steps for Fischer-Tropsch synthesis over ideal Co and Ru metal surfaces by using ab initio density functional theoretical calculations. This includes activation of CO of CO, the hydrogenation of CH{sub x} intermediates, and the adsorption and dissociation of water. The activation of CO is studied in detail showing a strong dependence on the surface coverage, defect sites and Co-Ru alloy formation. The barriers for CO activation over the ideal (0001) surfaces are quite high making CO activation at the terrace sites unlikely under operating conditions. The calculations for the overall reaction energies at the step edges indicate that these sites are much more reactive. The hydrogenation of the CHx intermediates occurs in a sequential fashion. CH1 was found to be the most stable intermediate over various surfaces. The barriers to form both CH* as well as CH{sub 4} are both found to be highly activated and potentially difficult steps. Water which is a reaction product was found to be weakly adsorbed on Co. Analysis of the microscopic reverse reaction of water activation indicates that this process has a very low activation barrier. Consequently, any water which forms desorbs or is activated to form surface hydroxyl intermediates.
Noell, J.O.; Hay, P.J.
1982-08-25
Ab initio molecular orbital methods utilizing relativistic core potentials and correlated wave functions are employed to examine the oxidative addition reactions H/sub 2/ + Pt(PH/sub 3/)/sub 2/..-->..cis-Pt(PH/sub 3/)/sub 2/H/sub 2/ and H/sub 2/ + Pt(P(CH/sub 3/)/sub 3/)/sub 2/..-->..cis-Pt(P(CH/sub 3/)/sub 3/)/sub 2/H/sub 2/. For this symmetry-allowed process, an activation barrier of 17 kcal/mol and an exothermicity of 7 kcal/mol are calculated at the SCF level for the PH/sub 3/ liquid; similar values are obtained for the P(CH/sub 3/)/sub 3/ ligand. This implies a barrier of 24 kcal/mol for the reverse reductive elimination reaction. These values were not significantly altered in MC-SCF or CI calculations. This barrier is consistent with available data in the analogous process in six-coordinate complexes but is puzzling in light of the paucity of known four-coordinate cis dihydrides. The reaction is analyzed in terms of three phases: initial repulsion, partial transfer of charge from the platinum to the hydrogen, and final metal-hydrogen bond formation. The relative energies of the cis and trans isomers are also discussed.
NASA Astrophysics Data System (ADS)
Ansari, R.; Faghihnasiri, M.; Malakpour, S.; Sahmani, S.
2015-07-01
In the current investigation, ab initio calculations are performed to explore the influence of electric field on the mechanical properties of bilayer boron nitride with AB stacking order (AB-2LBN). To accomplish this, density functional theory (DFT) within the framework of generalized gradient approximation (GGA) is implemented. It is demonstrated that the electric field has significant effects on Young's modulus and Poisson's ratio of AB-2LBN when its magnitude is small. With increasing the magnitude of electric field, these effects diminish so that the mechanical properties with and without considering the electric field become approximately identical. Also, it is shown that the equilibrium strain energy decreases linearly by increasing the magnitude of applied electric field.
Ab initio electronic structure study for TTF-TCNQ under uniaxial compression
NASA Astrophysics Data System (ADS)
Ishibashi, Shoji; Hashimoto, Tamotsu; Kohyama, Masanori; Terakura, Kiyoyuki
2004-04-01
We have investigated the electronic structure of TTF-TCNQ under uniaxial compression with ab initio plane-wave pseudopotential calculations within the local-density approximation and generalized gradient approximation. Depending on the compression direction, the constituent molecules are deformed in different ways. Along with these structural deformations, quasi-one-dimensional Fermi surfaces show dramatic changes in their shapes and sizes.
Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods
ERIC Educational Resources Information Center
Halpern, Arthur M.
2011-01-01
A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094
Predicting materials for solar energy conversion: ab-initio spectroscopy of heterogeneous interfaces
NASA Astrophysics Data System (ADS)
Galli, Giulia
We will discuss some progress in predicting materials for solar energy conversion using ab initio calculations, in particular we will focus on heterogeneous interfaces between photo-electrodes and water and between nanocomposites. We will also address the problem of building much needed tighter connections between computational and laboratory experiments.
CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule.
Barletta, Paolo; Shirin, Sergei V; Zobov, Nikolai F; Polyansky, Oleg L; Tennyson, Jonathan; Valeev, Edward F; Császár, Attila G
2006-11-28
The high accuracy ab initio adiabatic potential energy surfaces (PESs) of the ground electronic state of the water molecule, determined originally by Polyansky et al. [Science 299, 539 (2003)] and called CVRQD, are extended and carefully characterized and analyzed. The CVRQD potential energy surfaces are obtained from extrapolation to the complete basis set of nearly full configuration interaction valence-only electronic structure computations, augmented by core, relativistic, quantum electrodynamics, and diagonal Born-Oppenheimer corrections. We also report ab initio calculations of several quantities characterizing the CVRQD PESs, including equilibrium and vibrationally averaged (0 K) structures, harmonic and anharmonic force fields, harmonic vibrational frequencies, vibrational fundamentals, and zero-point energies. They can be considered as the best ab initio estimates of these quantities available today. Results of first-principles computations on the rovibrational energy levels of several isotopologues of the water molecule are also presented, based on the CVRQD PESs and the use of variational nuclear motion calculations employing an exact kinetic energy operator given in orthogonal internal coordinates. The variational nuclear motion calculations also include a simplified treatment of nonadiabatic effects. This sophisticated procedure to compute rovibrational energy levels reproduces all the known rovibrational levels of the water isotopologues considered, H(2) (16)O, H(2) (17)O, H(2) (18)O, and D(2) (16)O, to better than 1 cm(-1) on average. Finally, prospects for further improvement of the ground-state adiabatic ab initio PESs of water are discussed. PMID:17144700
Ab initio charge-carrier mobility model for amorphous molecular semiconductors
NASA Astrophysics Data System (ADS)
Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.
2016-05-01
Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.
Wong, Kim F.; Sonnenberg, Jason L.; Paesani, Francesco; Yamamoto, Takeshi; Vaníček, Jiří; Zhang, Wei; Schlegel, H. Bernhard; Case, David A.; Cheatham, Thomas E.; Miller, William H.; Voth, Gregory A.
2010-01-01
The rates of intramolecular proton transfer are calculated on a full-dimensional reactive electronic potential energy surface that incorporates high level ab initio calculations along the reaction path and by using classical Transition State theory, Path-Integral Quantum Transition State Theory, and the Quantum Instanton approach. The specific example problem studied is malonaldehyde. Estimates of the kinetic isotope effect using the latter two methods are found to be in reasonable agreement with each other. Improvements and extensions of this practical, yet chemically accurate framework for the calculations of quantized, reactive dynamics are also discussed. PMID:21116485
NASA Astrophysics Data System (ADS)
Timko, Jeff; Kuyucak, Serdar
2012-11-01
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
Proton transfer in the [phenol-NH3]+ system: An experimental and ab initio study
NASA Astrophysics Data System (ADS)
Kim, Ho-Tae; Green, Richard J.; Qian, Jun; Anderson, Scott L.
2000-04-01
Mass-analyzed threshold ionization (MATI) has been used to prepare phenol cations in selected vibrational states, including the ground state. Reactions of ground state C6H5OH+ with ND3, studied in a guided ion-beam apparatus, are reported, along with related ab initio calculations. This paper focuses on the energetics and product branching in the proton transfer (PT) channel. Based on thermochemistry in the literature, combined with calculations of the intracomplex PT barrier, PT was expected to make up a large fraction of the total reactive scattering. Experimentally, it is found that PT has a small cross section with clear threshold behavior, and the conclusion is that the PT reaction is endoergic by 4.5±1 kcal/mole. Assuming that NH3 has a proton affinity of 204.0 kcal/mole, this results in a proton affinity for phenoxy radical of 208.7 kcal/mole, and a neutral PhO-H bond energy of 91.1 kcal/mole. The results are used to reinterpret previous dissociative photoionization studies of phenol-ammonia complexes.
Ab Initio Quantum Mechanical/Molecular Mechanical Studies of Histone Modifying Enzymes
NASA Astrophysics Data System (ADS)
Zhang, Yingkai
Histone proteins that form the nucleosome core are subject to a variety of post-translational transformations. These histone modifications make up the histone code which extends the information in the genetic code and is emerging as an essential mechanism to regulate gene expression. In spite of a current flurry of significant advances in experimental studies, there has been little theoretical understanding regarding how enzymes generate or remove these modifications. Very recently, we have made excellent progresses in investigating two such important histone-modifying enzyme families: zinc-dependent histone deacetylases (HDACs) and histone lysine methyltransferases (HKMTs). Our studies on a histonedeacetylase- like protein HDLP suggested a novel catalytic mechanism. The simulations on HKMT SET7/9 have characterized the histone lysine methylation reaction and elucidated the origin of enzyme catalysis. Our computational approaches centered on the pseudobond ab initio quantum mechanical/molecular mechanical (QM/MM) method, which allows for accurate modeling of the chemistry at the reaction active site while properly including the effects of the protein environment
Giese, Timothy J; York, Darrin M
2016-06-14
A new approach for performing Particle Mesh Ewald in ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with extended atomic orbital basis sets is presented. The new approach, the Ambient-Potential Composite Ewald (CEw) method, does not perform the QM/MM interaction with Mulliken charges nor electrostatically fit charges. Instead the nuclei and electron density interact directly with the MM environment, but in a manner that avoids the use of dense Fourier transform grids. By performing the electrostatics with the underlying QM density, the CEw method avoids self-consistent field instabilities that have been encountered with simple charge mapping procedures. Potential of mean force (PMF) profiles of the p-nitrophenyl phosphate dissociation reaction in explicit solvent are computed from PBE0/6-31G* QM/MM molecular dynamics simulations with various electrostatic protocols. The CEw profiles are shown to be stable with respect to real-space Ewald cutoff, whereas the PMFs computed from truncated and switched electrostatics produce artifacts. PBE0/6-311G**, AM1/d-PhoT, and DFTB2 QM/MM simulations are performed to generate two-dimensional PMF profiles of the phosphoryl transesterification reactions with ethoxide and phenoxide leaving groups. The semiempirical models incorrectly produce a concerted ethoxide mechanism, whereas PBE0 correctly produces a stepwise mechanism. The ab initio reaction barriers agree more closely to experiment than the semiempirical models. The failure of Mulliken-charge QM/MM-Ewald is analyzed. PMID:27171914
Plotnikov, Nikolay; Kamerlin, Shina Caroline Lynn; Warshel, Arieh
2011-01-01
Recent years have seen tremendous effort in the development of approaches with which to obtain quantum mechanics/molecular mechanics (QM/MM) free energies for reactions in the condensed phase. Nevertheless, there remain significant challenges to address, particularly the high computational cost involved in performing proper configurational sampling and in particular in obtaining ab initio QM/MM (QM(ai)/MM) free energy surfaces. One increasingly popular approach that seems to offer an ideal way to progress in this direction is the elegant metadynamics (MTD) approach. However, in the current work we point out the subtle efficiency problems associated with this approach, and illustrate that we have at hand what is arguably a more powerful approach. More specifically, we demonstrate the effectiveness of an updated version of our original idea of using a classical reference potential for QM(ai)/MM calculations [J. Phys. Chem. B. 102 (1998), 2293)], which we refer to as “paradynamics” (PD). This approach is based on the use of an empirical valence bond (EVB) reference potential, which is already similar to the real ab initio potential. The reference potential is fitted to the ab initio potential by an iterative and, to a great degree, automated refinement procedure. The corresponding free energy profile is then constructed using the refined EVB potential, and the linear response approximation (LRA) is used to evaluate the QM(ai)/MM activation free energy barrier. The automated refinement of the EVB surface (and thus the reduction of the difference between the reference and ab initio potentials) is a key factor in accelerating the convergence of the LRA approach. We apply our PD approach to a test reaction, namely the SN2 reaction between chloride ion and methyl chloride, and demonstrate that, at present, this approach is far more powerful and cost effective than the metadynamics approach (at least in its current implementation). We also discuss the general features
An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron
NASA Astrophysics Data System (ADS)
Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U.
2015-05-01
It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)aq to U(V)aq by Fe(II)aq (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)aq at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI)aq. At higher U concentration, a rapid decrease in U(VI)aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta)schoepite phases, where up to ∼25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)aq concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to ∼30%). Thermodynamic calculations support that the reduction of U(VI)aq to U(IV)aq by Fe(II)aq is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is
Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.
Urakawa, Atsushi; Iannuzzi, Marcella; Hutter, Jürg; Baiker, Alfons
2007-01-01
Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained. PMID:17566132
NASA Technical Reports Server (NTRS)
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that
Antipova, Valeriya N; Zheleznaya, Lyudmila A; Zyrina, Nadezhda V
2014-08-01
In the absence of added DNA, thermophilic DNA polymerases synthesize double-stranded DNA from free dNTPs, which consist of numerous repetitive units (ab initio DNA synthesis). The addition of thermophilic restriction endonuclease (REase), or nicking endonuclease (NEase), effectively stimulates ab initio DNA synthesis and determines the nucleotide sequence of reaction products. We have found that NEases Nt.AlwI, Nb.BbvCI, and Nb.BsmI with non-palindromic recognition sites stimulate the synthesis of sequences organized mainly as palindromes. Moreover, the nucleotide sequence of the palindromes appeared to be dependent on NEase recognition/cleavage modes. Thus, the heterodimeric Nb.BbvCI stimulated the synthesis of palindromes composed of two recognition sites of this NEase, which were separated by AT-reach sequences or (A)n (T)m spacers. Palindromic DNA sequences obtained in the ab initio DNA synthesis with the monomeric NEases Nb.BsmI and Nt.AlwI contained, along with the sites of these NEases, randomly synthesized sequences consisted of blocks of short repeats. These findings could help investigation of the potential abilities of highly productive ab initio DNA synthesis for the creation of DNA molecules with desirable sequence. PMID:24965874
Koizumi, Kenichi; Nobusada, Katsuyuki; Boero, Mauro
2015-12-31
Ab initio molecular dynamics simulations have been used to inspect the adsorption of O{sub 2} to a small gold-copper alloy cluster supported on graphene. The exposed Cu atom in this cluster acts as a crucial attractive site for the approaching of O{sub 2} and consequently widens the reaction channel for the adsorption process. Conversely, a pure Au cluster on the same graphene support is inactive for the O{sub 2} adsorption because the corresponding reaction channel for the adsorption is very narrow. These results clearly indicate that doping a different metal to the Au cluster is a way to enhance the oxygen adsorption and to promote catalytic reactions.
Precise Electromagnetic Tests of Ab Initio Calculations of Light Nuclei: States in {sup 10}Be
McCutchan, E. A.; Lister, C. J.; Wiringa, R. B.; Pieper, Steven C.; Seweryniak, D.; Greene, J. P.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Zhu, S.; Chiara, C. J.; Stefanescu, I.
2009-11-06
In order to test ab initio calculations of light nuclei, we have remeasured lifetimes in {sup 10}Be using the Doppler shift attenuation method (DSAM) following the {sup 7}Li({sup 7}Li,alpha){sup 10}Be reaction at 8 and 10 MeV. The new experiments significantly reduce systematic uncertainties in the DSAM technique. The J{sup p}i=2{sub 1}{sup +} state at 3.37 MeV has tau=205+-(5){sub stat}+-(7){sub sys} fs corresponding to a B(E2arrow down) of 9.2(3)e{sup 2} fm{sup 4} in broad agreement with many calculations. The J{sup p}i=2{sub 2}{sup +} state at 5.96 MeV was found to have a B(E2arrow down) of 0.11(2)e{sup 2} fm{sup 4} and provides a more discriminating test of nuclear models. New Green's function Monte Carlo calculations for these states and transitions with a number of Hamiltonians are also reported and compared to experiment.
How Is Acetylcholinesterase Phosphonylated by Soman? An Ab Initio QM/MM Molecular Dynamics Study
2015-01-01
Acetylcholinesterase (AChE) is a crucial enzyme in the cholinergic nerve system that hydrolyzes acetylcholine (ACh) and terminates synaptic signals by reducing the effective concentration of ACh in the synaptic clefts. Organophosphate compounds irreversibly inhibit AChEs, leading to irreparable damage to nerve cells. By employing Born–Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have characterized the covalent inhibition mechanism between AChE and the nerve toxin soman and determined its free energy profile for the first time. Our results indicate that phosphonylation of the catalytic serine by soman employs an addition–elimination mechanism, which is highly associative and stepwise: in the initial addition step, which is also rate-limiting, His440 acts as a general base to facilitate the nucleophilic attack of Ser200 on the soman’s phosphorus atom to form a trigonal bipyrimidal pentacovalent intermediate; in the subsequent elimination step, Try121 of the catalytic gorge stabilizes the leaving fluorine atom prior to its dissociation from the active site. Together with our previous characterization of the aging mechanism of soman inhibited AChE, our simulations have revealed detailed molecular mechanistic insights into the damaging function of the nerve agent soman. PMID:24786171
Ab Initio Molecular Dynamics of Dimerization and Clustering in Alkali Metal Vapors.
Chaban, Vitaly V; Prezhdo, Oleg V
2016-06-30
Alkali metals are known to form dimers, trimers, and tetramers in their vapors. The mechanism and regularities of this phenomenon characterize the chemical behavior of the first group elements. We report ab initio molecular dynamics (AIMD) simulations of the alkali metal vapors and characterize their structural properties, including radial distribution functions and atomic cluster size distributions. AIMD confirms formation of Men, where n ranges from 2 to 4. High pressure sharply favors larger structures, whereas high temperature decreases their fraction. Heavier alkali metals maintain somewhat larger fractions of Me2, Me3, and Me4, relative to isolated atoms. A single atom is the most frequently observed structure in vapors, irrespective of the element and temperature. Due to technical difficulties of working with high temperatures and pressures in experiments, AIMD is the most affordable method of research. It provides valuable understanding of the chemical behavior of Li, Na, K, Rb, and Cs, which can lead to development of new chemical reactions involving these metals. PMID:27294399
He, Rongxing; Li, Lei; Zhong, Jie; Zhu, Chongqin; Francisco, Joseph S; Zeng, Xiao Cheng
2016-04-26
Solar emission produces copious nitrosonium ions (NO(+)) in the D layer of the ionosphere, 60 to 90 km above the Earth's surface. NO(+) is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200-220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates-tetrahydrate NO(+)(H2O)4 and pentahydrate NO(+)(H2O)5-are identified and shown to be responsible for HONO formation in the ionosphere. The critical tetrahydrate NO(+)(H2O)4 exhibits a chain-like structure through which all of the lowest-energy isomers must go. However, most lowest-energy isomers of pentahydrate NO(+)(H2O)5 can be converted to the HONO-containing product, encountering very low barriers, via a chain-like or a three-armed, star-like structure. Although these structures are not the global minima, at 220 K, most lowest-energy NO(+)(H2O)4 and NO(+)(H2O)5 isomers tend to channel through these highly populated isomers toward HONO formation. PMID:27071120
Ab initio approach to effective single-particle energies in doubly closed shell nuclei
NASA Astrophysics Data System (ADS)
Duguet, T.; Hagen, G.
2012-03-01
The present work discusses, from an ab initio standpoint, the definition, the meaning, and the usefulness of effective single-particle energies (ESPEs) in doubly closed shell nuclei. We perform coupled-cluster calculations to quantify to what extent selected closed-shell nuclei in the oxygen and calcium isotopic chains can effectively be mapped onto an effective independent-particle picture. To do so, we revisit in detail the notion of ESPEs in the context of strongly correlated many-nucleon systems and illustrate the necessity of extracting ESPEs through the diagonalization of the centroid matrix, as originally argued by Baranger. For the purpose of illustration, we analyze the impact of correlations on observable one-nucleon separation energies and nonobservable ESPEs in selected closed-shell oxygen and calcium isotopes. We then state and illustrate the nonobservability of ESPEs. Similarly to spectroscopic factors, ESPEs can indeed be modified by a redefinition of inaccessible quantities while leaving actual observables unchanged. This leads to the absolute necessity of employing consistent structure and reaction models based on the same nuclear Hamiltonian to extract the shell structure in a meaningful fashion from experimental data.
Ab initio kinetics for the decomposition of monomethylhydrazine (CH3NHNH2)
Zhang, P.; Klippenstein, S. J.; Sun, Hongyan; Law, C. K.
2011-01-01
The decomposition kinetics of CH{sub 3}NHNH{sub 2} (monomethylhydrazine) is studied with ab initio transition state theory-based master equation analyses. The simple NN and CN bond fissions to produce the radicals CH{sub 3}NH + NH{sub 2} or CH{sub 3} + NHNH{sub 2} are expected to dominate the decomposition kinetics. The transition states for these two bond fissions are studied with variable reaction coordinate transition state theory employing directly determined CASPT2/aug-cc-pVDZ interaction energies. Orientation independent corrections for limitations in the basis set and for the effects of conserved mode geometry relaxation are included. The bond dissociation energies are evaluated at the QCISD(T)/CBS//B3LYP/6-311++G(d,p) level. The transition state theory analysis directly provides high pressure dissociation and recombination rate coefficients. Predictions for the pressure dependence and product branching in the dissociation of CH{sub 3}NHNH{sub 2} are obtained by solving the master equation.
Rosenow, Phil; Tonner, Ralf
2016-05-28
The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001). PMID:27250324
NASA Astrophysics Data System (ADS)
Rosenow, Phil; Tonner, Ralf
2016-05-01
The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).
Chen Shilu; Fang Weihai
2009-08-07
In the present paper we report a theoretical study on mechanistic photodissociation of acetaldehyde (CH{sub 3}CHO). Stationary structures for H{sub 2} and CO eliminations in the ground state (S{sub 0}) have been optimized with density functional theory method, which is followed by the intrinsic reaction coordinate and ab initio molecular dynamics calculations to confirm the elimination mechanism. Equilibrium geometries, transition states, and intersection structures for the C-C and C-H dissociations in excited states were determined by the complete-active-space self-consistent field (CASSCF) method. Based on the CASSCF optimized structures, the potential energy profiles for the dissociations were refined by performing the single-point calculations using the multireference configuration interaction method. Upon the low-energy irradiation of CH{sub 3}CHO (265 nm<{lambda}<318 nm), the T{sub 1} C-C bond fission following intersystem crossing from the S{sub 1} state is the predominant channel and the minor channel, the ground-state elimination to CH{sub 4}+CO after internal conversion (IC) from S{sub 1} to S{sub 0}, could not be excluded. With the photon energy increasing, another pathway of IC, achieved via an S{sub 1}/S{sub 0} intersection point resulting from the S{sub 1} C-C bond fission, becomes accessible and increases the yield of CH{sub 4}+CO.
Ab initio study of the O4H(+) novel species: spectroscopic fingerprints to aid its observation.
Xavier, F George D; Hernández-Lamoneda, Rámon
2015-06-28
A detailed ab initio characterization of the structural, energetic and spectroscopic properties of the novel O4H(+) species is presented. The equilibrium structures and relative energies of all multiplet states have been determined systematically by analyzing static and dynamical correlation effects. The two and three body dissociation processes have been studied and indicate the presence of conical intersections in various states including the ground state. Comparison with available thermochemical data is very good, supporting the applied methodology. The reaction, H3(+) + O4→ O4H(+) + H2, was found to be exothermic ΔH = -19.4 kcal mol(-1) and therefore, it is proposed that the product in the singlet state could be formed in the interstellar medium (ISM) via collision processes. To aid in its laboratory or radioastronomy detection in the interstellar medium we determined spectroscopic fingerprints. It is estimated for the most stable geometry of O4H(+) dipole allowed electronic transitions in the visible region at 429 nm and 666 nm, an intense band at 1745 cm(-1) in the infrared and signals at 40.6, 81.2 and 139.2 GHz in the microwave region at 10, 50 and 150 K respectively, relevant for detection in the ISM. PMID:26028209
Cluster form factor calculation in the ab initio no-core shell model
Navratil, Petr
2004-11-01
We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for <{sup 5}He vertical bar{sup 4}He+n>, <{sup 5}He vertical bar{sup 3}H+d>, <{sup 6}Li vertical bar{sup 4}He+d>, <{sup 6}Be vertical bar{sup 3}He+{sup 3}He>, <{sup 7}Li vertical bar{sup 4}He+{sup 3}H>, <{sup 7}Li vertical bar{sup 6}Li+n>, <{sup 8}Be vertical bar{sup 6}Li+d>, <{sup 8}Be vertical bar{sup 7}Li+p>, <{sup 9}Li vertical bar{sup 8}Li+n>, and <{sup 13}C vertical bar{sup 12}C+n>, with all the nuclei described by multi-({Dirac_h}/2{pi}){omega} NCSM wave functions.
Melting of sodium under high pressure. An ab-initio study
González, D. J.; González, L. E.
2015-08-17
We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.
Ab initio calculations on the magnetic properties of transition metal complexes
Bodenstein, Tilmann; Fink, Karin
2015-12-31
We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.
Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties
NASA Astrophysics Data System (ADS)
Sun, Huai; Rigby, David
1997-07-01
Various levels of ab initio calculation have been performed to determine the optimum strategy for parameterization of the valence parameters of a CFF-type force field for siloxanes and polysiloxanes. Electrostatic nonbond parameters have been determined using scaled electrostatic potential (ESP) charges adjusted for known systematic differences between ab initio and experimental data, while van der Waals nonbond parameters have been determined using a classical approach involving fitting to experimental liquid density and cohesive energy density data measured at atmospheric pressure and a single temperature for a set of four small molecules. Simulations have been performed on molecular crystals, liquids and isolated molecules, yielding results which agree favorably with available experimental data. Properties calculated include unit cell parameters and crystal densities, liquid densities from 303-473 K and 0-1800 bar, dependence of oligomer density and solubility parameters on chain length and temperature, gas-phase geometries and vibrational frequencies, and gas and liquid-phase conformational behavior.
Yadav, J.S.; Hermsmeier, M.; Gund, T. )
1989-01-01
We have calculated the net atomic charges and molecular electrostatic potentials of two potent nicotinic acetylcholine receptor agonists, isoarecolone and acetylpiperazine, by three different methods to see how well they correlate and if the simplest method gives the same predictive results. The calculational methods involved calculating net atomic charges by semiempirical (MNDO from MOPAC) and ab initio (Mulliken) and ab initio (potential derived) at STO-3G basis set level. Some deviations were observed when comparisons were made atom by atom, but when group comparisons were made, good correlations were observed. When these partial charges were used to calculate the respective molecular electrostatic potentials on the van der Waals surface, very good correlations were obtained. This study shows that for routine electrostatic calculations, semiempirical MNDO Calculations give similar results and thus lead to similar predictions.
B28: the smallest all-boron cage from an ab initio global search
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce
2015-09-01
Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e
Ab initio investigation of light-induced relativistic spin-flip effects in magneto-optics
NASA Astrophysics Data System (ADS)
Mondal, Ritwik; Berritta, Marco; Carva, Karel; Oppeneer, Peter M.
2015-05-01
Excitation of a metallic ferromagnet such as Ni with an intensive femtosecond laser pulse causes an ultrafast demagnetization within approximately 300 fs. It was proposed that the ultrafast demagnetization measured in femtosecond magneto-optical experiments could be due to relativistic light-induced processes. We perform an ab initio investigation of the influence of relativistic effects on the magneto-optical response of Ni. To this end, first, we develop a response theory formulation of the additional appearing ultrarelativistic terms in the Foldy-Wouthuysen transformed Dirac Hamiltonian due to the electromagnetic field, and second, we compute the influence of relativistic light-induced spin-flip transitions on the magneto-optics. Our ab initio calculations of relativistic spin-flip optical excitations predict that these can give only a very small contribution (≤0.1 %) to the laser-induced magnetization change in Ni.
DFT and ab initio quantum chemical studies on p-cyanobenzoic acid
NASA Astrophysics Data System (ADS)
Arjunan, V.; Rani, T.; Varalakshmy, L.; Mohan, S.; Tedlamelekot, F.
2011-05-01
The Fourier transform infrared (FTIR) and FT-Raman spectra of p-cyanobenzoic acid (CBA) have been recorded in the range 4000-400 and 4000-100 cm -1, respectively. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The vibrational frequencies determined experimentally were compared with theoretical wavenumbers obtained from ab initio HF and DFT-B3LYP gradient calculations employing 6-31G**, 6-311++G** and cc-pVTZ basis sets for the optimised geometry of the compound. The geometry and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The normal coordinate analysis was also carried out with ab initio force fields utilising Wilson's FG matrix method. The interactions of cyano and carboxylic acid groups with the skeletal vibrational modes were investigated.
Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering
Quaglioni, S; Navratil, P
2008-12-17
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.
Point defect modeling in materials: Coupling ab initio and elasticity approaches
NASA Astrophysics Data System (ADS)
Varvenne, Céline; Bruneval, Fabien; Marinica, Mihai-Cosmin; Clouet, Emmanuel
2013-10-01
Modeling point defects at an atomic scale requires careful treatment of the long-range atomic relaxations. This elastic field can strongly affect point defect properties calculated in atomistic simulations because of the finite size of the system under study. This is an important restriction for ab initio methods which are limited to a few hundred atoms. We propose an original approach coupling ab initio calculations and linear elasticity theory to obtain the properties of an isolated point defect for reduced supercell sizes. The reliability and benefit of our approach are demonstrated for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron, and the neutral vacancy in silicon.
Hyperfine Parameters for Aluminum Hydride: An ab Initio Molecular Orbital Study
NASA Astrophysics Data System (ADS)
Gee, Myrlene; Wasylishen, Roderick E.
2001-06-01
An extensive ab initio molecular orbital study of the 27Al nuclear spin-rotation and nuclear quadrupolar coupling constants in aluminum hydride, AlH, has been performed. The 27Al nuclear spin-rotation constant (C⊥), calculated to be approximately 300 kHz, was neglected in a previous analysis of the hyperfine structure in the microwave spectrum (M. Goto and S. Saito, Astrophys. J.452, L147-148 (1995)). Unfortunately, the ab initio calculations do not provide a definitive value for the aluminum nuclear quadrupolar coupling constant, but suggest a value of -49±4 MHz. It is apparent that the microwave study of AlH should be repeated.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals
NASA Astrophysics Data System (ADS)
Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano
2015-03-01
Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.
Properties of metals during the heating by intense laser irradiation using ab initio simulations
NASA Astrophysics Data System (ADS)
Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane
2011-10-01
Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.
Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions
Navratil, P; Ormand, W E; Forssen, C; Caurier, E
2004-11-30
There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.
Large-scale ab initio configuration interaction calculations for light nuclei
NASA Astrophysics Data System (ADS)
Maris, Pieter; Metin Aktulga, H.; Caprio, Mark A.; Çatalyürek, Ümit V.; Ng, Esmond G.; Oryspayev, Dossay; Potter, Hugh; Saule, Erik; Sosonkina, Masha; Vary, James P.; Yang, Chao; Zhou, Zheng
2012-12-01
In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2010-01-01
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree—Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations. PMID:19618944
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.
Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C
2013-01-01
: The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
NASA Astrophysics Data System (ADS)
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study
Rio, B. G. del; González, L. E.
2015-08-17
Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
NASA Astrophysics Data System (ADS)
Knoop, S.; Żuchowski, P. S.; KÈ©dziera, D.; Mentel, Ł.; Puchalski, M.; Mishra, H. P.; Flores, A. S.; Vassen, W.
2014-08-01
We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet He4 and Rb87 in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+17-4+1a0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon
2013-01-01
The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785
Implementation of a vector potential method in an ab initio Hartree-Fock code
NASA Astrophysics Data System (ADS)
Tevekeliyska, Violina; Springborg, Michael; Champagne, Benoît; Kirtman, Bernard
2012-12-01
For extended systems exposed to an external, electrostatic field, the presence of the field leads to an extra term (E⃗. P⃗) to the Hamiltonian, where E⃗ is the field vector and P⃗ is the polarization of the system of interest. In order to find out how a polymer chain responds to an external electric perturbation, a field with a charge and a current term for the polarization is added to an ab initio Hartree-Fock Hamiltonian. The polarization expression is taken from an efficient vector potential approach (VPA) [1] for calculating electronic and nuclear responses of infinite periodic systems to finite electric fields and is implemented in the ab initio LCAO-SCF algorithm [3], which computes band structure of regular or helical polymers, taking into account the one-dimensional translational symmetry. A smoothing procedure for numerical differentiation of the orbital coefficients is used in order to calculate self-consistently the charge flow contribution to the polarization.
Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.
2015-02-27
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
NASA Astrophysics Data System (ADS)
Shibuta, Yasushi; Shimamura, Kohei; Oguri, Tomoya; Arifin, Rizal; Shimojo, Fuyuki; Yamaguchi, Shu
2015-03-01
The growth mechanism of carbon nanotubes (CNT) has been widely discussed both from experimental and computational studies. Regarding the computational studies, most of the studies focuses on the aggregation of isolate carbon atoms on the catalytic metal nanoparticle, whereas the initial dissociation of carbon source molecules should affect the yield and quality of the products. On the other hand, we have studied the dissociation process of carbon source molecules on the metal surface by the ab initio molecular dynamics simulation. In the study, we investigate the ethanol dissociation on Pt and Ni clusters by ab initio MD simulations to discuss the initial stage of CNT growth by alcohol CVD technique. Part of this research is supported by the Grant-in-Aid for Young Scientists (a) (No. 24686026) from MEXT, Japan.
Hydrogen adsorption in ZIF-7: A DFT and ab-initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Dixit, Mudit; Major, Dan Thomas; Pal, Sourav
2016-05-01
Primary H2 adsorption sites in a zeolitic imidazolate framework, ZIF-7, are identified using ab-initio density functional theory (DFT) based molecular dynamics annealing simulations. The simulations suggest several low energy adsorption sites. The effect of light transition metal decoration on hydrogen storage properties was studied. Our ab-intio DFT calculations illustrate that decorating the ZIF with Sc increases both the number of H2 molecules, as well as the H2 binding energy. The binding energy (∼25 kJ/mol per H2) at 8H2 loading in the pore, suggests that Sc-ZIFs can be potential candidates for hydrogen storage.
Transport coefficients of helium-argon mixture based on ab initio potential
NASA Astrophysics Data System (ADS)
Sharipov, Felix; Benites, Victor J.
2015-10-01
The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-argon mixtures are calculated for a wide range of temperature and for various mole fractions up to the 12th order of the Sonine polynomial expansion with an ab initio intermolecular potential. The calculated values for these transport coefficients are compared with other data available in the open literature. The comparison shows that the obtained transport coefficients of helium-argon mixture have the best accuracy for the moment.
Optical and other material properties of SiO2 from ab initio studies
NASA Astrophysics Data System (ADS)
Warmbier, Robert; Mohammed, Faris; Quandt, Alexander
2014-07-01
The optical properties of photonic devices largely depend on the dielectric properties of the underlying materials. We apply modern ab initio methods to study crystalline SiO2 phases, which serve as toy models for amorphous glass. We discuss the dielectric response from the infrared to the VIS/UV, which is crucial for glass based photonic applications. Low density silica, like cristobalite, may provide a good basis for high transmission optical devices.
On limits of ab initio calculations of pairing gap in nuclei
Saperstein, E. E.; Baldo, M.; Lombardo, U.; Pankratov, S. S.; Zverev, M. V.
2011-11-15
A brief review of recent microscopic calculations of nuclear pairing gap is given. A semi-microscopic model is suggested in which the ab initio effective pairing interaction is supplemented with a small phenomenological addendum. It involves a parameter which is universal for all medium and heavy nuclei. Calculations for several isotopic and isotonic chains of semi-magic nuclei confirm the relevance of the model.
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per
2006-09-01
We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.
An ab initio MIA study of TIBO derivatives R79882 and R82913
NASA Astrophysics Data System (ADS)
Peeters, Anik; Van Alsenoy, C.
1995-04-01
The gas phase structure of two TIBO compounds (R79882 and R82913), potent inhibitors of the reverse transcriptase of HIV1, was studied with ab initio Hartree-Fock methods using the MIA approach. For compound R82913 the geometry of a dimer and of the respective monomers was fully optimized and compared with experiment. For compound R79882 a complete geometry optimization of 15 different conformers was performed.
Ab initio study of the ν(CO 2) mode in EDA complexes
NASA Astrophysics Data System (ADS)
Jamróz, M. H.; Dobrowolski, J. Cz.; Bajdor, K.; Borowiak, M. A.
1995-04-01
Stabilization energy, geometry and ν2 mode of CO 2 molecule in EDA complexes with organic electron donors are ab initio modeled using SPARTAN program. We prove that the splitting of ν2 mode, observed previously in IR spectra, is an effect of removing the double degeneracy of this mode in the complex resulted from the deformation of CO 2 moiety. The dependence of the deformation on complex stabilization energy is discussed.
Ab initio calculation of positron distribution, ACAR and lifetime in TTF-TCNQ
NASA Astrophysics Data System (ADS)
Ishibashi, Shoji; Kohyama, Masanori
2000-06-01
We have performed ab initio calculations of positron distribution, ACAR and lifetime in the quasi-one-dimensional organic conductor TTF-TCNQ. The electronic structure is obtained within the LDA, while the positron state is calculated either with the LDA or with the GGA. Except the positron lifetime, differences between the LDA and GGA results are rather small. The obtained results are compared with our previous experiments and calculations.
Methylchloride adsorbed on Si(0 0 1): an ab initio study
NASA Astrophysics Data System (ADS)
Preuss, M.; Schmidt, W. G.; Seino, K.; Bechstedt, F.
2004-07-01
We present ab initio calculations of the adsorption of methylchloride (CH 3Cl) on Si(0 0 1). Among multiple plausible adsorption geometries, we find five thermodynamically favorable configurations. These lead to strong geometrical changes in the Si surface structure as well as to significant charge transfer processes. The stability of the adsorption structures is discussed in terms of electrostatics. The results are compared to recent experimental and theoretical findings.
Ab initio molecular dynamics study of liquid sodium and cesium up to critical point
Yuryev, Anatoly A.; Gelchinski, Boris R.
2015-08-17
Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.
Manson, S.T.; Miller, J.H.
1987-01-01
Ab initio calculations of single and double differential cross sections for ionization by fast, charged particles within the framework of the Born approximation are presented. In addition, a semi-empirical method based on the asymptotic Bethe-Born expansion is also discussed. Both are applied to ionization of helium by electrons and protons in an effort to assess their accuracy and validity. Agreement with experiment is quite good. The implications for other targets is discussed.
Ab initio calculations in a uniform magnetic field using periodic supercells
Cai, W; Galli, G
2003-10-21
We present a formulation of ab initio electronic structure calculations in a finite magnetic field, which retains the simplicity and efficiency of techniques widely used in first principles molecular dynamics simulations, based on plane-wave basis sets and Fourier transforms. In addition we discuss results obtained with this method for the energy spectrum of interacting electrons in quantum wells, and for the electronic properties of dense fluid deuterium in a uniform magnetic field.
Yamaji, Youhei
2015-12-31
Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.
Ab initio nuclear structure from lattice effective field theory
Lee, Dean
2014-11-11
This proceedings article reviews recent results by the Nuclear Lattice EFT Collaboration on an excited state of the {sup 12}C nucleus known as the Hoyle state. The Hoyle state plays a key role in the production of carbon via the triple-alpha reaction in red giant stars. We discuss the structure of low-lying states of {sup 12}C as well as the dependence of the triple-alpha reaction on the masses of the light quarks.
Ab initio based thermal property predictions at a low cost: An error analysis
NASA Astrophysics Data System (ADS)
Lejaeghere, Kurt; Jaeken, Jan; Van Speybroeck, Veronique; Cottenier, Stefaan
2014-01-01
Ab initio calculations often do not straightforwardly yield the thermal properties of a material yet. It requires considerable computational efforts, for example, to predict the volumetric thermal expansion coefficient αV or the melting temperature Tm from first principles. An alternative is to use semiempirical approaches. They relate the experimental values to first-principles predictors via fits or approximative models. Before applying such methods, however, it is of paramount importance to be aware of the expected errors. We therefore quantify these errors at the density-functional theory level using the Perdew-Burke-Ernzerhof functional for several semiempirical approximations of αV and Tm, and compare them to the errors from fully ab initio methods, which are computationally more intensive. We base our conclusions on a benchmark set of 71 ground-state elemental crystals. For the thermal expansion coefficient, it appears that simple quasiharmonic theory, in combination with different approximations to the Grüneisen parameter, provides a similar overall accuracy as exhaustive first-principles phonon calculations. For the melting temperature, expensive ab initio molecular-dynamics simulations still outperform semiempirical methods.
NASA Astrophysics Data System (ADS)
Geng, Hua Y.
2015-02-01
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.
Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries
NASA Astrophysics Data System (ADS)
Draayer, J. P.; Dytrych, T.; Launey, K. D.; Dreyfuss, A. C.; Langr, D.
2015-01-01
An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Geng, Hua Y.
2015-02-15
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.
In pursuit of the ab initio limit for conformational energy prototypes
NASA Astrophysics Data System (ADS)
Császár, Attila G.; Allen, Wesley D.; Schaefer, Henry F.
1998-06-01
The convergence of ab initio predictions to the one- and n-particle limits has been systematically explored for several conformational energy prototypes: the inversion barriers of ammonia, water, and isocyanic acid, the torsional barrier of ethane, the E/Z rotamer separation of formic acid, and the barrier to linearity of silicon dicarbide. Explicit ab initio results were obtained with atomic-orbital basis sets as large as [7s6p5d4f3g2h1i/6s5p4d3f2g1h] and electron correlation treatments as extensive as fifth-order Møller-Plesset perturbation theory (MP5), the full coupled-cluster method through triple excitations (CCSDT), and Brueckner doubles theory including perturbational corrections for both triple and quadruple excitations [BD(TQ)]. Subsequently, basis set and electron correlation extrapolation schemes were invoked to gauge any further variations in arriving at the ab initio limit. Physical effects which are tacitly neglected in most theoretical work have also been quantified by computations of non-Born-Oppenheimer (BODC), relativistic, and core correlation shifts of relative energies. Instructive conclusions are drawn for the pursuit of spectroscopic accuracy in theoretical conformational analyses, and precise predictions for the key energetic quantities of the molecular prototypes are advanced.
Song, Lingchun; Gao, Jiali
2009-01-01
A theoretical model is presented for deriving effective diabatic states based on ab initio self-consistent field valence bond (VBSCF) theory by reducing the multi-configurational VB Hamiltonian into an effective two-state model. We describe two computational approaches for the optimization of the effective diabatic configurations, resulting in two ways of interpreting such effective diabatic states. In the variational diabatic configuration (VDC) method, the energies of the individual diabatic states are variationally minimized. In the consistent diabatic configuration (CDC) method, both the configuration coefficients and orbital coefficients are simultaneously optimized to minimize the adiabatic ground-state energy in VBSCF calculations. In addition, we describe a mixed molecular orbital and valence bond (MOVB) approach to construct the CDC diabatic and adiabatic states for a chemical reaction, whereas the VDC-MOVB method has been described previously. Employing the symmetric SN2 reaction between NH3 and CH3NH3+ as a test system, we found that the results from ab initio VBSCF and from MOVB calculations are in good agreement, suggesting that the computationally efficient MOVB method is a reasonable model for VB simulations of condensed phase reactions. The results indicate that CDC and VDC diabatic states converge, respectively, to covalent and ionic states as the molecular geometries are distorted from the minimum of the respective diabatic state along the reaction coordinate. Furthermore, the resonance energy that stabilizes the energy of crossing between the two diabatic states, resulting in the transition state of the adiabatic ground-state reaction, has a strong dependence on the overlap integral between the two diabatic states and is a function of both the exchange integral and the total diabatic ground-state energy. PMID:18828577
Disch, R.L.; Schulman, J.M.; Peck, R.C.
1992-05-14
The geometries and energies of the title compounds are reported at the STO-3G and 6-31G* SCF levels, except for circumcoronene, where only the STO-3G level was employed. Group equivalents and homodesmic reactions are used to obtain heats of formation from ab initio energies. At the 6-31G* SCF level, the {Delta}H{sub f}{degrees} values for the first three compounds are similar, ranging from 66.3 to 72.2 kcal/mol. Evidence of a small additional aromatic stability for coronene is found. The ab initio enthalpy changes for homodesmic reactions containing similar structural parameters are shown to be proportional to the natural logarithm of a quantity we term the Kekule ratio: the product of reactant and product Kekule numbers, each raised to a power equal to its stoichiometric coefficient. 26 refs., 1 fig., 5 tabs.
An ab initio study of oxygen on strained graphene.
Nguyen, Manh-Thuong
2013-10-01
Graphene under strain exhibits new fascinating properties. In this work, I show that lattice strain introduced by uniform expansion of unit cells can strongly modify the chemical properties of graphene. By employing density functional theory calculations I found that strain enhances the bonding between atomic oxygen and graphene. Strain also increases the diffusion energy barrier of atomic oxygen on graphene; however, it reduces the activation energy for oxygen migrating through the graphene sheet. Strong stability enhancement of atomic oxygen on graphene induced by strain would also change molecular oxygen dissociation reactions from endothermic to exothermic. PMID:23945352
Periodic arrays of intercalated atoms in twisted bilayer graphene: An ab initio investigation
NASA Astrophysics Data System (ADS)
Miwa, R. H.; Venezuela, P.; Morell, Eric Suárez
2015-09-01
We have performed an ab initio investigation of transition metals (TMs =Mo ,Ru ,Co ,andPt ) embedded in twisted bilayer graphene (tBG) layers. Our total energy results reveal that, triggered by the misalignment between the graphene layers, Mo and Ru atoms may form a quasiperiodic (triangular) array of intercalated atoms. In contrast, the formation of those structures is not expected for the other TMs, the Co and Pt atoms. The net magnetic moment (m ) of Mo and Ru atoms may be quenched upon intercalation, depending on the stacking region (AA or AB). For instance, we find a magnetic moment of 0.3 μB(1.8 μB) for Ru atoms intercalated between the AA (AB) regions of the stacked twisted layers. Through simulated scanning tunneling microscopy (STM) images, we verify that the presence of intercalated TMs can be identified by the formation of bright (hexagonal) spots lying on the graphene surface.
Towards microscopic ab initio calculations of astrophysical S-factors
NASA Astrophysics Data System (ADS)
Neff, Thomas; Feldmeier, Hans; Langanke, Karlheinz
2011-04-01
Low energy capture cross sections are calculated within a microscopic many-body approach using an effective Hamiltonian derived from the Argonne V18 potential. The dynamics is treated within Fermionic Molecular Dynamics (FMD) which uses a Gaussian wave-packet basis to represent the many-body states. A phase-shift equivalent effective interaction derived within the Unitary Correlation Operator Method (UCOM) that treats explicitly short-range central and tensor correlations is employed. As a first application the 3He(α,γ)7Be reaction is presented. Within the FMD approach the microscopic many-body wave functions of the 3/2- and 1/2- bound states in 7Be as well as the many-body scattering states in the 1/2+, 3/2+ and 5/2+ channels are calculated as eigenstates of the same microscopic effective Hamiltonian. Finally the S-factor is calculated from E1 transition matrix elements between the many-body scattering and bound states. For 3He(α, γ)7Be the S-factor agrees very well, both in absolute normalization and energy dependence, with the recent experimental data from the Weizmann, LUNA, Seattle and ERNA experiments. For the 3H(α, γ)7Li reaction the calculated S-factor is about 15% above the data.
Exploring the free energy surface using ab initio molecular dynamics
Samanta, Amit; Morales, Miguel A.; Schwegler, Eric
2016-04-22
Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string method inmore » collective variables to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hcp to fcc phase transition in Ti.« less
Ab initio characterization of the conical intersections involved in the photochemistry of phenol
Vieuxmaire, Olivier P. J.; Domcke, Wolfgang; Lan, Zhenggang; Sobolewski, Andrzej L.
2008-12-14
The nature of the vibronic interactions between the {sup 1}{pi}{pi}* (A{sup '}), the {sup 1}{pi}{sigma}* (A{sup ''}), and the S{sub 0} (A{sup '}) states at the CI{sub {pi}}{sub {pi}}{sub */{pi}}{sub {sigma}}{sub *} and CI{sub {pi}}{sub {sigma}}{sub */{pi}}{sub {pi}} conical intersections has been investigated by accurate ab initio calculations. Potential energy surfaces have been constructed at the complete-active-space self-consistent-field and multireference configuration-interaction (MRCI) levels of theory along each of the ten normal coordinates of A{sup ''} symmetry that potentially can be coupling modes at these conical intersections. The OH torsion was found to be by far the strongest coupling mode in each case. As for benzene, a 'channel three' radiationless decay mechanism associated with a prefulvenic conical intersection, CI{sub pref}, was found to exist in phenol. The reaction path connecting the prefulvenic form of phenol with the minimum-energy structure of the S{sub 1} state was computed at different levels of theory. The barrier to be overcome for the opening of the prefulvenic decay channel is estimated as 6370 cm{sup -1} at the MRCI level, that is, about 2300 cm{sup -1} above the energy of CI{sub {pi}}{sub {pi}}{sub */{pi}}{sub {sigma}}{sub *}. With sufficient excess energy in the S{sub 1} state, the prefulvenic decay mechanism can be in competition with the hydrogen detachment process.
Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal.
Chung, Wilfredo Credo; Nanbu, Shinkoh; Ishida, Toshimasa
2010-08-19
The dynamics of the photoisomerization of a model protonated Schiff base of 9-cis retinal in isorhodopsin is investigated using nonadiabatic molecular dynamics simulation combined with ab initio quantum chemical calculations on-the-fly. The quantum chemical part is treated at the complete-active space self-consistent field level for six electrons in six active pi orbitals with the 6-31G basis set (CASSCF(6,6)/6-31G). The probabilities of nonadiabatic transitions between the S(1) ((1)pipi*) and S(0) states are estimated in light of the Zhu-Nakamura theory. The photoinduced cis-trans isomerization of 9-cis retinal proceeds slower than that of its 11-cis analogue and at a lower quantum yield, confirming experimental observations. An energetic barrier in the excited state impedes the elongation and twist of the C(9)=C(10) stretch and torsion coordinates, respectively, resulting in the trapping of trajectories before transition. Consequently, the isomerization takes longer time and the transition more often occurs at smaller twist angle of =C(8)-C(9)=C(10)-C(11)=, which leads to regeneration of the 9-cis reactant. Thus, neither the smaller twist observed in the X-ray crystal nor the slower movement of nuclei in the transition region would be the main reason for the longer reaction time and lower yield. A well-known space-saving asynchronous bicycle pedal or crankshaft photoisomerization mechanism is found to be operational in 9-cis retinal. The simulation in vacuo suggests that the excited-state barrier and the photoisomerization itself are intrinsic properties of the visual chromophore and not triggered mainly by the protein environment that surrounds the chromophore. PMID:20666503
Synthesis, crystal structure and ab initio/DFT calculations of a derivative of dithiophosphonates
NASA Astrophysics Data System (ADS)
Karakus, M.; Solak, S.; Hökelek, T.; Dal, H.; Bayrakdar, A.; Özdemir Kart, S.; Karabacak, M.; Kart, H. H.
2014-03-01
The compound 2 has been synthesized from the reaction of 2,4-Bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide and (R)-1-[3,5-Bis(trifloromethyl)phenyl]ethanol in toluene. The obtained crude dithiophosphonic acid 1 has been treated with the excess of N(C2H5)3 to give rise to 2, [(+HN(C2H5)3][(O-CH3CH-C6H3(CF3)2)(CH3OC6H4)PS2-]. The compound 2 has been characterized by using the spectroscopic methods such as IR, 1H, 13C, 31P NMR and structural analysing method such as X-ray crystallography. It crystallizes in the orthorhombic system, whose space group is P212121. It consists of a dithiophosphonate bridged methoxyphenyl and bis(triflorophenylethyl) groups and a triethylammonium moiety linked by Nsbnd H⋯S and Csbnd H⋯F hydrogen bonds. In the crystal structure, the C17H14F6O2PS2 molecule is elongated along the b-axis and stacked along the a-axis. The triethylammonium, N(CH2CH3)3, molecule fill in the cavities between the C17H14F6O2PS2 molecule. Moreover, ab initio methods based on Hartree-Fock (HF) and Density Functional Theory (DFT) calculations with the basis set of 6-31G(d) are also carried out to determine the molecular structural properties and to calculate FT-IR and NMR spectrum of the compound 2. The experimental results and theoretical calculations have been compared, and they are found to be in good agreement.
An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry
Matthew Neurock; Siddharth Chopra
2003-09-11
As the US seeks to develop an energy strategy that reduces the reliance on foreign oil, there is a renewed interest in the research and development of the Fischer Tropsch synthesis for converting syngas into long chain hydrocarbon products. This report investigates some of the basic elementary steps for Fischer-Tropsch synthesis over ideal Pt, Ru and carbon-covered Pt and Ru metal surfaces by using ab initio density functional theoretical calculations. We examine in detail the adsorption sites as well as the binding energies for C, CH, CH{sub 2}, CH3 and CH4 on Pt(111), Ru(0001), 2x2-C-Pt(111) and 2x2-C-Ru(0001). The results indicate that the binding energies increase with decreasing the hydrogen in the fragment molecule, i.e. CH{sub 4} < CH{sub 3} < CH{sub 2} < CH < C. More specifically the work analyzes the elementary steps involved in the activation of methane. This is simply the reverse set of steps necessary for the hydrogenation of C to CH{sub 4}. The results indicate that these hydrocarbon intermediates bind more strongly to Ru than Pt. The introduction of co-adsorbed carbon atoms onto both Ru(0001) as well as Pt(111) significantly increased the overall energies as well as the activation barriers for C-H bond activation. The results suggest that Ru may be so active that it initially can initially activate CH4 into CH or C but ultimately it dies because the CH and C intermediates poison the surface and thus kill its activity. Methane can dissociate on Pt but subsequent hydrocarbon coupling reactions act to remove the surface carbon.
Li, Jun E-mail: zhangdh@dicp.ac.cn; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H. E-mail: zhangdh@dicp.ac.cn; Xie, Daiqian; Guo, Hua
2015-05-28
We report a permutationally invariant global potential energy surface (PES) for the H + CH{sub 4} system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (J{sub tot} = 0) including the abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].
An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry
Matthew Neurock
2006-09-11
One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various energy sources which will likely include fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch (FT) synthesis involves the adsorption and the activation of CO and H{sub 2}, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. The current commercial catalysts are supported Co and Co-alloys particles. This project set out with the following objectives in mind: (1) understand the reaction mechanisms that control FT kinetics, (2) predict how the intrinsic metal-adsorbate bond affects the sequence of elementary steps in FT, (3) establish the effects of the reaction environment on catalytic activity and selectivity, (4) construct a first-principles based algorithm that can incorporate the detailed atomic surface structure and simulate the kinetics for the myriad of elementary pathways that make up FT chemistry, and (5) suggest a set of optimal features such as alloy composition and spatial configuration, oxide support, distribution of defect sites. As part of this effort we devoted a significant portion of time to develop an ab initio based kinetic Monte Carlo simulation which can be used to follow FT surface chemistry over different transition metal and alloy surfaces defined by the user. Over the life of this program, we have used theory and have developed and applied stochastic Monte Carlo simulations in order to establish the fundamental
NASA Astrophysics Data System (ADS)
Gonzalez, Dayana; Mebel, Alexander
2016-03-01
It has been recently shown that Titan provides a unique perspective in our solar system: its atmosphere is comparable to a model of prebiotic Earth's. Provided the organic cationic and anionic molecular species identified by the Cassini spacecraft, this research characterizes reaction pathways for the reactions of methyl derivatives of the cyclopropenyl cation, the methyl cation with methyl- and dimethyl-acetylene, and reactions of resonance structures of protonated acrylonitrile with CH2NH. Isomerization and dissociation reactions involving methyl-cyclopropenyl cations, the perinaphthenyl cation and anion, and cations of pyrimidine and purine precursors of nucleobases will be examined to locate reaction pathways, intermediates, transition states, and products of the reactions. Gaussian '09 software is used for ab initio calculations to map out the PES. Geometry optimizations and vibrational frequency computations are preformed via the double-hybrid density functional B2PLYP-D3. Single-point energies are refined by use of the explicitly-correlated coupled-cluster CCSD(T)-F12 method. Rate constants are calculated using microcanonical RRKM theory, and pressure effects evaluated used the Master Equation approach; these allow for prediction of absolute rate constants and product branching ratios at different pressures and temperatures.
Ab initio study of charge-transfer dynamics in collisions of C{sup 2+} ions with hydrogen chloride
Rozsalyi, E.; Vibok, A.; Bene, E.; Halasz, G. J.; Bacchus-Montabonel, M. C.
2011-05-15
Ab initio quantum chemistry molecular calculations followed by a semiclassical dynamical treatment in the keV collision energy range have been developed for the study of the charge-transfer process in collisions of C{sup 2+} ions with hydrogen chloride. The mechanism has been investigated in detail in connection with avoided crossings between states involved in the reaction. A simple mechanism driven by a strong nonadiabatic coupling matrix element has been pointed out for this process. A comparative analysis with the halogen fluoride target corresponding to a similar electronic configuration shows a quite different charge-transfer mechanism leading to a very different behavior of the cross sections. Such behavior may be correlated to specific nonadiabatic interactions observed in these collision systems.
NASA Astrophysics Data System (ADS)
Bankura, Arindam; Klein, Michael L.; Carnevale, Vincenzo
2013-08-01
Ab initio molecular dynamics calculations have been used to compare and contrast the deprotonation reaction of a histidine residue in aqueous solution with the situation arising in a histidine-tryptophan cluster. The latter is used as a model of the proton storage unit present in the pore of the M2 proton conducting ion channel. We compute potentials of mean force for the dissociation of a proton from the Nδ and Nɛ positions of the imidazole group to estimate the pKas. Anticipating our results, we will see that the estimated pKa for the first protonation event of the M2 channel is in good agreement with experimental estimates. Surprisingly, despite the fact that the histidine is partially desolvated in the M2 channel, the affinity for protons is similar to that of a histidine in aqueous solution. Importantly, the electrostatic environment provided by the indoles is responsible for the stabilization of the charged imidazolium.
Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.
Zhang, Dawei; Liu, Chungen
2016-04-12
The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems. PMID:26963572
NASA Astrophysics Data System (ADS)
Faghaninia, Alireza; Ager, Joel W.; Lo, Cynthia S.
2015-06-01
Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy—particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n -type semiconductors, by explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain the perturbation to the electron distribution—resulting from the dominant scattering mechanisms—and use this to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT, we accurately calculate electrical transport properties of the compound n -type semiconductors, GaAs and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards a fully ab initio carrier transport model that is valid in all compound semiconductors.
Ho, T.; Rabitz, H.
1996-02-01
A general interpolation method for constructing smooth molecular potential energy surfaces (PES{close_quote}s) from {ital ab} {ital initio} data are proposed within the framework of the reproducing kernel Hilbert space and the inverse problem theory. The general expression for an {ital a} {ital posteriori} error bound of the constructed PES is derived. It is shown that the method yields globally smooth potential energy surfaces that are continuous and possess derivatives up to second order or higher. Moreover, the method is amenable to correct symmetry properties and asymptotic behavior of the molecular system. Finally, the method is generic and can be easily extended from low dimensional problems involving two and three atoms to high dimensional problems involving four or more atoms. Basic properties of the method are illustrated by the construction of a one-dimensional potential energy curve of the He{endash}He van der Waals dimer using the exact quantum Monte Carlo calculations of Anderson {ital et} {ital al}. [J. Chem. Phys. {bold 99}, 345 (1993)], a two-dimensional potential energy surface of the HeCO van der Waals molecule using recent {ital ab} {ital initio} calculations by Tao {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 8680 (1994)], and a three-dimensional potential energy surface of the H{sup +}{sub 3} molecular ion using highly accurate {ital ab} {ital initio} calculations of R{umlt o}hse {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 2231 (1994)]. In the first two cases the constructed potentials clearly exhibit the correct asymptotic forms, while in the last case the constructed potential energy surface is in excellent agreement with that constructed by R{umlt o}hse {ital et} {ital al}. using a low order polynomial fitting procedure. {copyright} {ital 1996 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei
2014-06-01
New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
Velaga, Srinath C; Anderson, Brian J
2014-01-16
Gas hydrate deposits are receiving increased attention as potential locations for CO2 sequestration, with CO2 replacing the methane that is recovered as an energy source. In this scenario, it is very important to correctly characterize the cage occupancies of CO2 to correctly assess the sequestration potential as well as the methane recoverability. In order to predict accurate cage occupancies, the guest–host interaction potential must be represented properly. Earlier, these potential parameters were obtained by fitting to experimental equilibrium data and these fitted parameters do not match with those obtained by second virial coefficient or gas viscosity data. Ab initio quantum mechanical calculations provide an independent means to directly obtain accurate intermolecular potentials. A potential energy surface (PES) between H2O and CO2 was computed at the MP2/aug-cc-pVTZ level and corrected for basis set superposition error (BSSE), an error caused due to the lower basis set, by using the half counterpoise method. Intermolecular potentials were obtained by fitting Exponential-6 and Lennard-Jones 6-12 models to the ab initio PES, correcting for many-body interactions. We denoted this model as the “VAS” model. Reference parameters for structure I carbon dioxide hydrate were calculated using the VAS model (site–site ab initio intermolecular potentials) as Δμ(w)(0) = 1206 ± 2 J/mol and ΔH(w)(0) = 1260 ± 12 J/mol. With these reference parameters and the VAS model, pure CO2 hydrate equilibrium pressure was predicted with an average absolute deviation of less than 3.2% from the experimental data. Predictions of the small cage occupancy ranged from 32 to 51%, and the large cage is more than 98% occupied. The intermolecular potentials were also tested by calculating the pure CO2 density and diffusion of CO2 in water using molecular dynamics simulations. PMID:24328234
Ab Initio Calculations of the Interaction between CO _{2} and the Acetate Ion
Steckel, Janice A.
2012-11-29
A series of ab initio calculations designed to investigate the interaction of CO{sub 2} with acetate are presented. The lowest energy structure, AC–CO{sub 2}-η{sup 2}, is predicted by CCSD(T)/aVTZ to be bound by -10.6 kcal/mol. Six of the bound complexes have binding energies on the order of -8 kcal/mol, but analysis shows that the η{sup 1}-CT complex is fundamentally different from the others. The η{sup 1}-CT complex is characterized by geometric distortion, large polarization and induction effects and charge transfer whereas the other five complexes have little geometric distortion and negligible charge transfer. The amount of charge that is transferred from the anion to the CO{sub 2} in the η{sup 1}-CT complex is estimated to be about half an electron by NPA, DMA, CHELPG, and Mulliken analyses, whereas the EDA-ALMO-CTA (B3LYP) approach predicts a charge transfer of 75 me{sup –}. However, the transfer of this small amount of charge leads to an energy lowering of -56 kcal/mol, without which the complex would not be bound. The RI-MP2 geometries closely approximate those resulting from the CCSD optimizations, and the optimized second-order opposite spin (O2) method performs well for all the complexes except for the η{sup 1}-CT complex. DFT methods do not reproduce all the ab initio geometries, binding energies and/or energy ordering of these complexes although the range-separated hybrid meta-GGA (M11) and nonlocal (VV10 and vdwDF10) functionals are shown to yield results significantly better than other functionals considered for this system. The fact that there is such variation among DFT methods has implications for DFT-based ab initio molecular dynamics simulations and for the parametrization of classical force fields based on DFT calculations.
NASA Astrophysics Data System (ADS)
Orimoto, Yuuichi; Aoki, Yuriko
2016-07-01
An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.
Orimoto, Yuuichi; Aoki, Yuriko
2016-07-14
An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account. PMID:27421397
Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel
E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young
2006-03-16
The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.
Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2
NASA Technical Reports Server (NTRS)
Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.
1976-01-01
The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.
Converging sequences in the ab initio no-core shell model
Forssen, C.; Vary, J. P.; Caurier, E.; Navratil, P.
2008-02-15
We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By examining the underlying theory of effective operators, we expose the physical foundations for the alternative pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for A-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We demonstrate the utility of our strategy with large-scale calculations in light nuclei.
Ab initio prediction of protein structure with both all-atom and simplified force fields
NASA Astrophysics Data System (ADS)
Scheraga, Harold
2004-03-01
Using only a physics-based ab initio method, and both all-atom (ECEPP/3) and simplified united-residue (UNRES) force fields, global optimization of both potential functions with Monte Carlo-plus-Minimization (MCM) and Conformational Space Annealing (CSA), respectively, provides predicted structures of proteins without use of knowledge-based information. The all-atom approach has been applied to the 46-residue protein A, and the UNRES approach has been applied to larger CASP targets. The predicted structures will be described.
Debela, T. T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Wang, S. Y.; Wang, Cai-Zhuang; Jiang, J. Z.
2013-12-12
Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt–Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.
Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones
NASA Astrophysics Data System (ADS)
Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng
2004-04-01
A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.
NASA Astrophysics Data System (ADS)
Kozlov, Maxim I.; Poddubnyy, Vladimir V.; Glebov, Ilya O.; Belov, Aleksandr S.; Khokhlov, Daniil V.
2016-02-01
The electronic properties of light-harvesting complexes determine the efficiency of energy transfer in photosynthetic antennae. Ab initio calculations of the electronic properties of bacteriochlorophylls (composing the LH1 complex of the purple bacteria Thermochromatium tepidum) were performed. Based on these calculations, the excitonic Hamiltonian of a native cyclic complex and the Hamiltonians of open complexes with several removed bacteriochlorophylls were constructed. Absorption spectra calculated based on these Hamiltonians agree well with the experimental data. We found that the parameters of interaction between the neighboring bacteriochlorophylls are significantly larger than the empirical parameters suggested previously.
Initial oxidation of TiAl: An ab-initio investigation
Bakulin, Alexander V. Kulkova, Svetlana E.; Hu, Qing-Miao; Yang, Rui
2014-11-14
We present ab-initio investigation of oxygen adsorption up to two monolayer coverage on the stoichiometric TiAl(100) surface to illustrate the initial oxidation stage. The formation of band gap near the Fermi level demonstrates the transformation from metal to oxide surface with increasing oxygen coverage. The oxidation of Ti rather than Al is observed from our electronic structure calculations. The energy barriers of oxygen diffusion between different sites on surface as well as in subsurface and bulk region are derived. It is shown that the diffusion of oxygen is much easier on the surface than that into the subsurface region.
A comparative ab initio and DFT study of polyaniline leucoemeraldine base and its oligomers.
Mishra, Abhishek Kumar; Tandon, Poonam
2009-11-01
Ab initio Hartree-Fock (HF) and density functional theory (DFT) calculations are being performed to investigate the geometric, vibrational, and electronic properties of the polyaniline leucoemeraldine base (PANI-LB). Vibrational spectra of PANI-LB have been analyzed using the DFT oligomer approach, and complete assignments are being reported. Lower region spectral assignments of the PANI-LB which were not being reported earlier are being done in the present work. DFT calculations with the 6-31G** basis set produce very good results of not only vibrational modes but also of energy band gap. PMID:19827802
Ab initio study on electronically excited states of lithium isocyanide, LiNC
NASA Astrophysics Data System (ADS)
Yasumatsu, Hisato; Jeung, Gwang-Hi
2014-01-01
The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ˜10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.
Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations
NASA Astrophysics Data System (ADS)
Koudriachova, M. V.
2008-06-01
A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.
Vibrational energy levels for CH4 from an ab initio potential
NASA Technical Reports Server (NTRS)
Schwenke, D. W.; Partridge, H.
2001-01-01
Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.
Site occupancy trend of Co in Ni2MnIn: Ab initio approach
NASA Astrophysics Data System (ADS)
Pal, Soumyadipta; Mahadevan, Priya; Biswas, C.
2015-06-01
The trend of site occupation of Co at Ni sites of Ni2MnIn system is studied in austenitic phase having L21 structure by ab initio density functional theory (DFT) calculation. The Co atoms prefer to be at Ni sites rather than Mn site and are ferromagetically coupled with Ni and Mn. The ground state has tetragonal structure for Ni1.5Co0.5MnIn and Ni1.25Co0.75MnIn. The Co tends to form cluster.
DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering
Franke, Daniel; Svergun, Dmitri I.
2009-01-01
DAMMIF, a revised implementation of the ab-initio shape-determination program DAMMIN for small-angle scattering data, is presented. The program was fully rewritten, and its algorithm was optimized for speed of execution and modified to avoid limitations due to the finite search volume. Symmetry and anisometry constraints can be imposed on the particle shape, similar to DAMMIN. In equivalent conditions, DAMMIF is 25–40 times faster than DAMMIN on a single CPU. The possibility to utilize multiple CPUs is added to DAMMIF. The application is available in binary form for major platforms.
Phosphine adsorption and dissociation on the Si(001) surface: An ab initio survey of structures
NASA Astrophysics Data System (ADS)
Warschkow, O.; Wilson, H. F.; Marks, N. A.; Schofield, S. R.; Curson, N. J.; Smith, P. V.; Radny, M. W.; McKenzie, D. R.; Simmons, M. Y.
2005-09-01
We report a comprehensive ab initio survey of possible dissociation intermediates of phosphine (PH3) on the Si(001) surface. We assign three scanning tunneling microscopy (STM) features, commonly observed in room-temperature dosing experiments, to PH2+H , PH+2H , and P+3H species, respectively, on the basis of calculated energetics and STM simulation. These assignments and a time series of STM images which shows these three STM features converting into another, allow us to outline a mechanism for the complete dissociation of phosphine on the Si(001) surface. This mechanism closes an important gap in the understanding of the doping process of semiconductor devices.
Ab initio predictions on the rotational spectra of carbon-chain carbene molecules
NASA Technical Reports Server (NTRS)
Maluendes, S. A.; McLean, A. D.; Loew, G. H. (Principal Investigator)
1992-01-01
We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.
Thorium in tungsten: construction of interatomic EAM potentials from ab initio data
NASA Astrophysics Data System (ADS)
Eberhard, Bernd; Haider, Ferdinand
2013-07-01
The interatomic interaction potential of tungsten and thorium crystals and those of hypothetical tungsten and thorium alloys within the embedded atom approach are considered. The corresponding Ansatz functions are fitted against full potential linear augmented plane wave data of real tungsten- and thorium- and hypothetical tungsten-thorium-crystals. The result is interatomic potentials, ready for use within classical molecular dynamics schemes. A cross check of the resulting force scheme derived by comparison of ab initio and classical molecular dynamics data is provided. Furthermore, we used the potentials to calculate the phonon dispersion relations, which then serve as an additional check.
Ab initio pseudopotential calculation for TTF-TCNQ and TSeF-TCNQ
NASA Astrophysics Data System (ADS)
Ishibashi, Shoji; Kohyama, Masanori
2000-09-01
We have investigated the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ [at room temperature (RT) and 100 K] and TSeF-TCNQ (RT), which have isomorphic crystal structure, by an ab initio plane-wave pseudopotential band calculation. To express the exchange and correlation energy for electrons, we used both the local density approximation and generalized gradient approximation for comparison. For each case, electronic band dispersions were calculated along several symmetric lines and tight-binding parameters were evaluated. The Fermi surface shape was also obtained. The six sets of results (for three structures and two approximations) were compared systematically.
Fully ab initio finite-size corrections for charged-defect supercell calculations.
Freysoldt, Christoph; Neugebauer, Jörg; Van de Walle, Chris G
2009-01-01
In ab initio theory, defects are routinely modeled by supercells with periodic boundary conditions. Unfortunately, the supercell approximation introduces artificial interactions between charged defects. Despite numerous attempts, a general scheme to correct for these is not yet available. We propose a new and computationally efficient method that overcomes limitations of previous schemes and is based on a rigorous analysis of electrostatics in dielectric media. Its reliability and rapid convergence with respect to cell size is demonstrated for charged vacancies in diamond and GaAs. PMID:19257218
Ab initio based force field and molecular dynamics simulations of crystalline TATB.
Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E
2004-04-15
An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608
Temperature dependent mechanical properties of Mo-Si-B compounds via ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Dharmawardhana, C. C.; Sakidja, R.; Aryal, S.; Ching, W. Y.
2013-07-01
A new method was proposed to obtain high temperature mechanical properties with a combination of ab initio molecular dynamics and stress-strain analyses. It was applied to compounds in the Mo-Si-B ternary system, namely, T1 (Mo5Si3) and T2 (Mo5SiB2) phases. The calculated coefficient of thermal expansion, thermal expansion anisotropy, and elastic constants agree well with those from the available experiments. The method enables us to theoretically access these properties up to 2000 K.
Kurova, N. V. Burdov, V. A.
2013-12-15
The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.
Stoddard, Nathan; Pichler, Peter; Duscher, Gerd J M; Windl, Wolfgang
2005-01-01
In this Letter, we present ab initio results identifying a new diffusion path for the nitrogen pair complex in silicon, resulting in an effective diffusivity of 67exp(-2.38 eV/kT) cm{sup 2}/s. This nudged elastic band result is compared with other nitrogen diffusion paths and mechanisms, and is determined to have unmatched agreement with experimental results. It is also shown that careful consideration of total energy corrections and use of a fully temperature-dependent diffusion prefactor have modest but important effects on the calculation of diffusivity for paired and for interstitial nitrogen.
Tripathi, A.N.; Smith, V.H. Jr. K7L3N6); Kaijser, P.; Siemens, A.G. ); Diercksen, G.H.F. )
1990-03-01
Isotropic scattering functions and Compton profiles together with their directional components for several directions relevant to the molecular structure of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} have been evaluated for {ital ab} {ital initio} self-consistent field and configuration-interaction wave functions. The internally folded density (reciprocal form factor) {ital B}({ital r}) is calculated and discussed as are various momentum expectation values. Comparison is made with available experimental and other theoretical results.
NASA Astrophysics Data System (ADS)
Feshin, V. P.; Feshina, E. V.
2000-07-01
The results of ab initio calculations at the RHF/6-31G ∗ level of 1-methyl-4-chloro- and -5-chloroimidazoles as well as of 1-methyl-4,5-dichloroimidazoles with total optimization of their geometry were presented. They were used for the interpretation of peculiarities of an influence of the "pyridine" and "pyrrole" N atoms on the electron distribution of the Cl atoms in these molecules and of their 35Cl NQR frequencies. These peculiarities are caused by the different space electron distribution of these N atoms that causes the different polarization of the geminal Cl atom p-electron shell.
Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid
NASA Technical Reports Server (NTRS)
Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1994-01-01
Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.
Shaughnessy, M C; Jones, R E
2016-02-01
We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm. PMID:26669825
NASA Astrophysics Data System (ADS)
Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.
2016-03-01
Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.
NASA Technical Reports Server (NTRS)
Komornicki, A.; Jaffe, R. L.
1979-01-01
The infrared spectral intensities for HOCl and HO2 have been calculated using a new ab initio technique. Theoretical results for the geometries, vibrational frequencies, and the dipole moments of these species are also reported. All of the calculations were performed at the SCF level using near Hartree-Fock quality basis sets. The results for the molecular geometries and the vibrational frequencies are in good agreement with available experimental data. It is believed that the computed intensities are accurate to at least 50%. The results should be helpful in attempts to determine the stratospheric abundance of HOCl and HO2 by in situ infrared spectroscopic measurements.
The ab initio potential energy surface and spectroscopic constants of HOCl
NASA Astrophysics Data System (ADS)
Koput, Jacek; Peterson, Kirk A.
1998-02-01
The potential energy surface of hypochlorous acid, HOCl, has been determined from large-scale ab initio calculations using the coupled-cluster method CCSD(T), with basis sets of quadruple- and quintuple-zeta quality. The effect of core-electron correlation on the calculated structural parameters has been investigated. The vibrational-rotational energy levels of the three isotopic species of HOCl have then been calculated using the variational method and have been further characterized by the spectroscopic constants determined using the perturbational approach. The spectroscopic constants determined, are found to be in excellent agreement with experimental data.
The role of Metals in Amyloid Aggregation: A Test Case for ab initio Simulations
Minicozzi, V.; Rossi, G. C.; Stellato, F.; Morante, S.
2007-12-26
First principle ab initio molecular dynamics simulations of the Car-Parrinello type have proved to be of invaluable help in understanding the microscopic mechanisms of chemical bonding both in solid state physics and in structural biophysics. In this work we present as test cases the study of the Cu coordination mode in two especially important examples: Prion protein and {beta}-amyloids. Using medium size PC-clusters as well as larger parallel platforms, we are able to deal with systems comprising 300 to 500 atoms and 1000 to 1500 electrons for as long as 2-3 ps. We present structural results which confirm indications coming from NMR and XAS data.
NASA Astrophysics Data System (ADS)
Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki
2015-07-01
Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.
Experimental and ab initio infrared study of chi-, kappa- and alpha-aluminas formed from gibbsite
Favaro, L.; Boumaza, A.; Roy, P.; Ledion, J.; Sattonnay, G.; Brubach, J.B.; Huntz, A.M.; Tetot, R.
2010-04-15
chi-, kappa- and alpha-alumina phases formed by dehydration of micro-grained gibbsite between 773 and 1573 K are studied using infrared spectroscopy (IR). The structural transitions evidenced by X-ray diffraction (XRD) were interpreted by comparing IR measurements with ab initio simulations (except for the chi form whose complexity does not allow a reliable simulation). For each phase, IR spectrum presents specific bands corresponding to transverse optical (TO) modes of Al-O stretching and bending under 900 cm{sup -1}. The very complex chi phase, obtained at 773 K, provides a distinctive XRD pattern in contrast with the IR absorbance appearing as a broad structure extending between 200 and 900 cm{sup -1} resembling the equivalent spectra for gamma-alumina phase. kappa-alumina is forming at 1173 K and its rich IR spectrum is in good qualitative agreement with ab initio simulations. This complexity reflects the large number of atoms in the kappa-alumina unit cell and the wide range of internuclear distances as well as the various coordinances of both Al and O atoms. Ab initio simulations suggest that this form of transition alumina demonstrates a strong departure from the simple pattern observed for other transition alumina. At 1573 K, the stable alpha-ALPHAl{sub 2}OMICRON{sub 3} develops. Its IR spectra extends in a narrower energy range as compared to transition alumina and presents characteristics features similar to model alpha-ALPHAl{sub 2}OMICRON{sub 3}. Ab initio calculations show again a very good general agreement with the observed IR spectra for this phase. In addition, for both kappa- and alpha-ALPHAl{sub 2}OMICRON{sub 3}, extra modes, measured at high energy (above 790 cm{sup -1} for kappa and above 650 cm{sup -1} for alpha), can originate from either remnant chi-alumina or from surface modes. - Graphical abstract: Infrared spectra of the sequence Gibbsite ->chi->kappa->alpha-Al{sub 2}O{sub 3} obtained from 24 h calcinations of Gibbsite at 773 K, 1173 K
Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.
Enhancing mechanical toughness of aluminum surfaces by nano-boron implantation: An ab initio study
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Kwon, Dae-Gyeon; Kwon, Young-Kyun; Tománek, David
2015-01-01
Searching for ways to enhance surface hardness of aluminum, we study the equilibrium structure, stability, elastic properties and formation dynamics of a boron-enriched surface using ab initio density functional calculations. We used molecular dynamics simulations to model the implantation of energetic boron nanoparticles in Al and identify structural arrangements that optimize the formation of strong covalent Bsbnd Al bonds. Nano-indentation simulations based on constrained optimization suggest that presence of boron nanostructures in the subsurface region enhances significantly the mechanical hardness of aluminum surfaces.
Holst, Bastian; French, Martin; Redmer, Ronald
2011-06-15
Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.
Ab initio R-matrix calculations of e+-molecule scattering
NASA Technical Reports Server (NTRS)
Danby, Grahame; Tennyson, Jonathan
1990-01-01
The adaptation of the molecular R-matrix method, originally developed for electron-molecule collision studies, to positron scattering is discussed. Ab initio R-matrix calculations are presented for collisions of low energy positrons with a number of diatomic systems including H2, HF and N2. Differential elastic cross sections for positron-H2 show a minimum at about 45 deg for collision energies between 0.3 and 0.5 Ryd. The calculations predict a bound state of positronHF. Calculations on inelastic processes in N2 and O2 are also discussed.
Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides
NASA Astrophysics Data System (ADS)
Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki
2012-09-01
Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.
Transport coefficients of helium-argon mixture based on ab initio potential.
Sharipov, Felix; Benites, Victor J
2015-10-21
The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-argon mixtures are calculated for a wide range of temperature and for various mole fractions up to the 12th order of the Sonine polynomial expansion with an ab initio intermolecular potential. The calculated values for these transport coefficients are compared with other data available in the open literature. The comparison shows that the obtained transport coefficients of helium-argon mixture have the best accuracy for the moment. PMID:26493894
Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation
NASA Astrophysics Data System (ADS)
Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.
2016-06-01
The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.