Science.gov

Sample records for ab initio reaction

  1. Ab Initio Calculations Of Light-Ion Reactions

    SciTech Connect

    Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W

    2012-03-12

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  2. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  3. Unified ab initio approaches to nuclear structure and reactions

    DOE PAGES

    Navratil, Petr; Quaglioni, Sofia; Hupin, Guillaume; ...

    2016-04-13

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Bemore » $${({\\rm{p}},\\gamma )}^{8}{\\rm{B}}$$ radiative capture. Lastly, we highlight our efforts to describe transfer reactions including the 3H$${({\\rm{d}},{\\rm{n}})}^{4}$$He fusion.« less

  4. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    PubMed Central

    Elenewski, Justin E.; Hackett, John C

    2015-01-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906

  5. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  6. Ab initio calculations of nuclear reactions important for astrophysics

    NASA Astrophysics Data System (ADS)

    Navratil, Petr; Dohet-Eraly, Jeremy; Calci, Angelo; Horiuchi, Wataru; Hupin, Guillaume; Quaglioni, Sofia

    2016-09-01

    In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. One of the newly developed approaches is the No-Core Shell Model with Continuum (NCSMC), capable of describing both bound and scattering states in light nuclei simultaneously. We will present NCSMC results for reactions important for astrophysics that are difficult to measure at relevant low energies, such as 3He(α,γ)7Be and 3H(α,γ)7Li and 11C(p,γ)12N radiative capture, as well as the 3H(d,n)4He fusion. We will also address prospects of calculating the 2H(α,γ)6Li capture reaction within the NCSMC formalism. Prepared in part by LLNL under Contract DE-AC52-07NA27344. Supported by the U.S. DOE, OS, NP, under Work Proposal No. SCW1158, and by the NSERC Grant No. SAPIN-2016-00033. TRIUMF receives funding from the NRC Canada.

  7. Ab initio Quantum Chemical Reaction Kinetics: Recent Applications in Combustion Chemistry (Briefing Charts)

    DTIC Science & Technology

    2015-06-28

    Charts 3. DATES COVERED (From - To) June 2015-June 2015 4. TITLE AND SUBTITLE AB INITIO QUANTUM CHEMICAL REACTION KINETICS: RECENT APPLICATIONS IN...Unlimited. 13. SUPPLEMENTARY NOTES Briefing Charts presented at 9th Int. Conf. Chemical Kinetics; Ghent, Belgium; 28 Jun 2015. PA#15351. 14. ABSTRACT...ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical Reaction Kinetics: Recent Applications in Combustion Chemistry Ghanshyam L. Vaghjiani* DISTRIBUTION A

  8. Methods for Using Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules

    DTIC Science & Technology

    2014-08-20

    Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules The focus of this research was to apply efficient...methods for using ab initio potential energy surfaces (PESs) computed with high levels of quantum chemistry theory to predict chemical reaction properties...in non peer-reviewed journals: Methods for Using Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules Report

  9. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava

    subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated

  10. "Ab initio" synthesis of zeolites for preestablished catalytic reactions.

    PubMed

    Gallego, Eva María; Portilla, M Teresa; Paris, Cecilia; León-Escamilla, Alejandro; Boronat, Mercedes; Moliner, Manuel; Corma, Avelino

    2017-03-10

    Unlike homogeneous catalysts that are often designed for particular reactions, zeolites are heterogeneous catalysts that are explored and optimized in a heuristic fashion. We present a methodology for synthesizing active and selective zeolites by using organic structure-directing agents that mimic the transition state (TS) of preestablished reactions to be catalyzed. In these zeolites, the pores and cavities could be generated approaching a molecular-recognition pattern. For disproportionation of toluene and isomerization of ethylbenzene into xylenes, the TSs are larger than the reaction products. Zeolite ITQ-27 showed high disproportionation activity, and ITQ-64 showed high selectivity for the desired para and ortho isomers. For the case of a product and TS of similar size, we synthesized a catalyst, MIT-1, for the isomerization of endo-dicyclopentane into adamantane.

  11. Ab Initio Calculations Of Nuclear Reactions And Exotic Nuclei

    SciTech Connect

    Quaglioni, S.

    2014-05-05

    Our ultimate goal is to develop a fundamental theory and efficient computational tools to describe dynamic processes between nuclei and to use such tools toward supporting several DOE milestones by: 1) performing predictive calculations of difficult-to-measure landmark reactions for nuclear astrophysics, such as those driving the neutrino signature of our sun; 2) improving our understanding of the structure of nuclei near the neutron drip line, which will be the focus of the DOE’s Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University; but also 3) helping to reveal the true nature of the nuclear force. Furthermore, these theoretical developments will support plasma diagnostic efforts at facilities dedicated to the development of terrestrial fusion energy.

  12. Pathways of electrophilic aromatic substitution reactions catalyzed by group 13 trihalides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Volkov, Alexey N.; Timoshkin, Alexey Y.; Suvorov, Andrew V.

    An ab initio study of the two possible pathways of ectrophilic aromatic substitution reaction catalyzed by monomeric and dimeric forms of group 13 metal halides has been performed. Optimized geometries of π, σ-complexes and corresponding transition states have been obtained at second-order Møller-Plesset/ LANL2DZ(d)+ level of theory. It is found that operation of the dimeric pathway is more favorable both thermodynamically and kinetically. Thus, it is expected that catalytical activity of the metal halide will be greatly increased if the stoichiometric ratio 2:1 is employed. Obtained results are in qualitative agreement with available experimental data.

  13. Electric fields acting as catalysts in chemical reactions. An ab initio study of the walden inversion reaction

    NASA Astrophysics Data System (ADS)

    Andrés, J. L.; Lledós, A.; Duran, M.; Bertrán, J.

    1988-12-01

    Ab initio SCF calculations have been carried out on the fluoride exchange reaction F -+CH 3F→FCH 3+F -. An external uniform electric field along the FCF axis has been incorporated by proper changes in the one-electron part of the Fock matrix. The reaction profile has been found to be dramatically modified with increase in strength of the applied field. The electric field is found to be essential to describe the potential energy hypersurface so that it intervenes in the reaction coordinate. It is concluded that strong electric fields open a new way to catalyze reactions.

  14. Unified ab initio approaches to nuclear structure and reactions

    SciTech Connect

    Navratil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-04-13

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be ${({\\rm{p}},\\gamma )}^{8}{\\rm{B}}$ radiative capture. Lastly, we highlight our efforts to describe transfer reactions including the 3H${({\\rm{d}},{\\rm{n}})}^{4}$He fusion.

  15. Ab initio study for the hydrogen abstraction reactions on toluene and tetralin.

    SciTech Connect

    Beste, Ariana; Harrison, Robert J; Britt, Phillip F; Buchanan III, A C

    2006-01-01

    Hydrogen abstraction reactions play a key role in many thermal and catalytic processes involved in the production of fuels and chemicals. In this paper, the hydrogen abstraction reactions on toluene and tetralin by the benzyl radical are investigated by ab initio methods. These reactions are representatives of similar reactions occurring in the thermolysis of lignin model compounds containing the phenethyl phenyl ether (PPE) structural moiety. The title reactions serve to calibrate the theoretical methods to be used in the study of PPE pyrolysis through comparison of the reaction barriers with reliable experimental values. We used two different hybrid density functionals (BHandHLYP, B3LYP) and second-order perturbation theory to obtain equilibrium and transition state geometries. We recomputed selected energy barriers at the B3LYP geometries with the coupled cluster singles and doubles (CCSD) method. Multiple transition states were found for both reactions. BHandHLYP underestimates and second-order perturbation theory overestimates the reaction barriers; B3LYP energy barriers agree well with experiment and the corresponding CCSD energy barriers. The flat potential energy surface around the saddle points causes numerical inaccuracies. We observe the break down of the harmonic approximation in the calculation of low frequencies.

  16. Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC

    NASA Astrophysics Data System (ADS)

    Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina

    2016-11-01

    New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.

  17. Enthalpy of the gas-phase CO2 + Mg reaction from ab initio total energies.

    PubMed

    Lesar, Antonija; Prebil, Sasa; Hodoscek, Milan

    2002-01-01

    Various highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3(MP2), G3//B3LYP, G3(MP2)//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction enthalpies of the ground-state reaction of CO2 with Mg. All model chemistries predict highly endothermic reactions, with DeltaH(298) = 63.6-69.7 kcal x mol(-1). The difference between the calculated reaction enthalpies and the experimental value, evaluated with recommended experimental standard enthalpies of formation for products and reactants, is more than 20 kcal x mol(-1) for all methods. This difference originates in the incorrect experimental enthalpy of formation of gaseous MgO given in thermochemical databases. When the theoretical formation enthalpy for MgO calculated by a particular method is used, the deviation is reduced to 1.3 kcal x mol(-1). The performance of the methodologies used to calculate the heat of this particular reaction and the enthalpy of formation of MgO are discussed.

  18. Ab initio study of the kinetics of hydrogen abstraction reactions on toluene and tetralin

    SciTech Connect

    Beste, Ariana; Britt, Phillip F; Buchanan III, A C; Harrison, Robert J; Hathorn, Bryan C

    2008-01-01

    Hydrogen abstraction reactions play a key role in many thermal and catalytic processes involved in the production of fuels and chemicals. In this paper, the reaction barriers and rate constants for the hydrogen abstraction reactions on toluene and tetralin by the benzyl radical are calculated by ab initio methods. These reactions are representatives of similar reactions occurring in the thermolysis of lignin model compounds containing the phenethyl phenyl ether (PPE) structural moiety. Thermolysis of PPE occurs by a free radical chain mechanism in which the product selectivity arises from competitive hydrogen abstraction at the benzylic and nonbenzylic methylen sites by chain carrying benzyl and phenoxyl radicals. The title reactions serve to calibrate the theoretical methods to be used in the study of PPE through comparison of the rate constants and the reaction enthalpies with reliable experimental values. In this study, we used two different hybrid density functionals (BHandHLYP, B3LYP) and second-order perturbation theory to obtain equilibrium and transition state geometries. Multiple transition states were found for both reactions. BHandHLYP underestimates and second-order perturbation theory overestimates the reaction barriers; B3LYP energy barriers agree well with experiment. Absolute and relative rate constants were calculated using transition state theory. We found that the relative rate constant using the B3LYP functional agrees within a factor of 2.0 with experiment at the experimental temperature of 333 K, indicating that the B3LYP functional will be successful in predicting relative rate constants for hydrogen abstraction reactions participating in the pyrolysis of PPE.

  19. Reaction of Stabilized Criegee Intermediates from Ozonolysis of Limonene with Water: Ab Initio and DFT Study

    PubMed Central

    Jiang, Lei; Lan, Ru; Xu, Yi-Sheng; Zhang, Wen-Jie; Yang, Wen

    2013-01-01

    The mechanism of the chemical reaction of H2O with three stabilized Criegee intermediates (stabCI-OO, stabCI-CH3-OO and stabCIx-OO) produced via the limonene ozonolysis reaction has been investigated using ab initio and DFT (Density Functional Theory) methods. It has been shown that the formation of the hydrogen-bonded complexes is followed by two different reaction pathways, leading to the formation of either OH radicals via water-catalyzed H migration or of α-hydroxy hydroperoxide. Both pathways were found to be essential sources of atmospheric OH radical and H2O2 making a significant contribution to the formation of secondary aerosols in the Earth’s atmosphere. The activation energies at the CCSD(T)/6-31G(d) + CF level of theory were found to be in the range of 14.70–21.98 kcal mol−1. The formation of α-hydroxy hydroperoxide for the reaction of stabCIx-OO and H2O with the activation energy of 14.70 kcal mol−1 is identified as the most favorable pathway. PMID:23481640

  20. Ab initio study on SN2 reaction of methyl p-nitrobenzenesulfonate and chloride anion in [mmim][PF6].

    PubMed

    Hayaki, Seigo; Kido, Kentaro; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-02-28

    A S(N)2 reaction of methyl p-nitrobenzenesulfonate (p-NBS) and chloride anion in ionic liquid ([mmim][PF(6)]) was studied using RISM-SCF-SEDD method coupled with a highly sophisticated ab initio electronic structure theory (CCSD). The solvation structure as well as the energy profile along the reaction were discussed through comparison with an ordinary solvent system, dichloromethane.

  1. Ab initio and density functional theory evidence on the rate-limiting step in the Morita-Baylis-Hillman reaction.

    PubMed

    Roy, Dipankar; Sunoj, Raghavan B

    2007-11-08

    The first ab initio and DFT studies on the mechanism of the MBH reaction show that the rate-limiting step involves an intramolecular proton transfer in the zwitterionic intermediate generated by the addition of enolate to electrophile. The activation barrier for the C-C bond-formation is found to be 20.2 kcal/mol lower than the proton-transfer step for the MBH reaction between methyl vinyl ketone and benzaldehyde catalyzed by DABCO.

  2. Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.

    PubMed

    Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin

    2011-01-14

    Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.

  3. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    NASA Astrophysics Data System (ADS)

    Lespade, Laure

    2016-08-01

    Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car-Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  4. Ab initio study of the H + HONO reaction: Direct abstraction versus indirect exchange processes

    SciTech Connect

    Hsu, C.C.; Lin, M.C.; Mebel, A.M.; Melius, C.F.

    1997-01-02

    The mechanism of the H + HONO reaction (for which no experimental data are available) has been elucidated by ab initio molecular orbital calculations using modified G2 and BAC-MP4 methods. These results indicate that the reaction occurs predominantly by two indirect metathetical processes. One produces OH + HNO and H{sub 2}O + NO from the decomposition of vibrationally excited hydroxyl nitroxide, HN(O)OH, formed by H atom addition to the N atom of HONO. The other produces H{sub 2}O + NO from the decomposition of vibrationally excited dihydroxylamino radical, N(OH){sub 2}, formed by H atom addition to the terminal O atom. These indirect displacement processes are much more efficient than the commonly assumed, direct H-abstraction reaction producing H{sub 2} + NO{sub 2}. A transition-state theory calculation for the direct abstraction reaction and RRKM calculations for the two indirect displacement processes give rise to the following rate constants, in units of cm{sup 3} molecule{sup -1} s{sup -1} for the 300-3500 K temperature range under atmospheric conditions: k{sub H(2)} = 3.33 x 10{sup -16}T{sup 1.55} exp(-3328.5/T), k{sub OH} = 9.36 x 10{sup -14}T{sup 0.86} exp(-2500.8/T), k{sub H(2)O} = 1.35 x 10{sup -17}T{sup 1.89} exp-(-1935.7/T), where the rate constant for H{sub 2}O production represents the sum from both indirect displacement reactions. 32 refs., 3 figs., 7 tabs.

  5. Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p-shell nuclei

    DOE PAGES

    Raimondi, Francesco; Hupin, Guillaume; Navratil, Petr; ...

    2016-05-10

    Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Here, ab initio approaches have been successfully applied to describe the 3H(d,n)4He and 3He(d,p)4He fusion processes. An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d,p) reactions to processes with light p-shell nuclei. As a firstmore » application, we study the elastic scattering of deuterium on 7Li and the 7Li(d,p)8Li transfer reaction based on a two-body Hamiltonian. We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d–7Li and p–8Li particle-decay channels determines some features of the 9Be spectrum above the d+7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Deuteron stripping reactions with p-shell targets can now be computed ab initio, but calculations are very demanding. Finally, a quantitative description of the 7Li(d,p)8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.« less

  6. Reaction mechanisms and kinetics of the iminovinylidene radical with NO: Ab initio study

    SciTech Connect

    Hsiao, Ming-Kai; Chung, Yi-Hua; Hung, Yu-Ming; Chen, Hui-Lung

    2014-05-28

    The nitric oxide (NO) is a notorious compound for polluting environment. Recent year, removing nitric oxide from the atmosphere becomes a focus of the investigation. In our work, we study the iminovinylidene (HNCC) radical reacted with NO molecule. The mechanism and kinetic for reaction of the HNCC radical with the NO molecule is investigated via considering the possible channels of the N and O atoms of NO attacking the N and C atoms of the HNCC based on the high level ab initio molecular orbital calculations in conjunction with variational TST and RRKM calculations. The species involved have been optimized at the B3LYP/6-311++G(3df,2p) level and their single-point energies are refined by the CCSD(T)/aug-cc-PVQZ//B3LYP/6-311++G(3df,2p) method. The calculated potential energy surfaces indicated that energetically the most favorable channel for the HNCC + NO reaction was predicted to be the formation of HNC+CNO (P8) product via the addition reaction of the C atom of HNCC radical and the N atom of NO with the head to head orientation. To rationalize the scenario of the calculated results, we also employ the Fukui functions and HSAB theory to seek for a possible explanation. In addition, the reaction rate constants were calculated using VariFlex code, and the results show that the total rate coefficient, k{sub total}, at Ar pressure 760 Torr can be represented with an equation: k{sub total} = 6.433 × 10{sup −11} T {sup 0.100} exp(0.275 kcal mol{sup −1}/RT) at T = 298–3000 K, in units of cm{sup 3} molecule{sup −1} s{sup −1}.

  7. Ab initio study on an excited-state intramolecular proton-transfer reaction in ionic liquid.

    PubMed

    Hayaki, Seigo; Kimura, Yoshifumi; Sato, Hirofumi

    2013-06-06

    An excited-state intramolecular proton transfer (ESIPT) reaction of 4'-N,N-dimethylamino-3-hydroxyflavone in room temperature ionic liquid is theoretically investigated using RISM-SCF-SEDD, which is a hybrid method of molecular liquid theory and ab initio molecular orbital theory. The photo-excitation and proton-transfer processes are computed by considering the solvent fluctuation. The calculated absorption and emission energy are in good agreement with the experiments. The changes in the dipole moment indicate that the drastic solvation relaxation is accompanied by the excitation and an ESIPT process, which is consistent with the remarkable dynamic Stokes shift observed in the experiments. We calculated the nonequilibrium free-energy contour as a function of the proton coordinate and the solvation coordinate. We conclude that although immediately after the excitation the barrier height of the ESIPT process is relatively small, the barrier becomes larger as the solvation relaxation to the excited normal state proceeds. The solvation relaxation process is also investigated on the basis of microscopic solvation structure obtained by RISM calculations.

  8. Ab Initio ONIOM-Molecular Dynamics (MD) Study on the Deamination Reaction by Cytidine Deaminase

    SciTech Connect

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2007-08-23

    We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket of the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determing step is the release of the NH3 molecule. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.

  9. An ab initio investigation of possible intermediates in the reaction of the hydroxyl and hydroperoxyl radicals

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.

  10. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  11. An ab initio potential energy surface and dynamics of the Ar+H2+ → ArH + + H reaction

    NASA Astrophysics Data System (ADS)

    Liu, Xinguo; Liu, Huirong; Zhang, Qinggang

    2011-04-01

    An ab initio potential energy surface (PES) for the ground state (1 2A') of the chemical reaction Ar+H2+ → ArH + + H has been constructed from a set of accurate ab initio data, which we have computed using the coupled-cluster theory including all single and double excitations plus perturbative corrections for the triples UCCSD(T) with a large orbital basis set of aug-cc-pV5Z. The new PES has a root-mean-square (rms) error of 0.5341 kcal/mol. The total integral reaction cross-sections have been calculated at three collision energies by means of the quasi-classical trajectory (QCT) calculation based on the new PES and compared with previous TSH results.

  12. Intramolecular SN2 reaction caused by photoionization of benzene chloride-NH3 complex: direct ab initio molecular dynamics study.

    PubMed

    Tachikawa, Hiroto

    2006-01-12

    Ionization processes of chlorobenzene-ammonia 1:1 complex (PhCl-NH3) have been investigated by means of full dimensional direct ab initio molecular dynamics (MD) method, static ab initio calculations, and density functional theory (DFT) calculations. The static ab initio and DFT calculations of neutral PhCl-NH3 complex showed that one of the hydrogen atoms of NH3 orients toward a carbon atom in the para-position of PhCl. The dynamics calculation for ionization of PhCl-NH3 indicated that two reaction channels are competitive with each other as product channels: one is an intramolecular SN2 reaction expressed by a reaction scheme [PhCl-NH3]+-->SN2 intermediate complex-->PhNH3++Cl, and the other is ortho-NH3 addition complex (ortho complex) in which NH3 attacks the ortho-carbon of PhCl+ and the trajectory leads to a bound complex expressed by (PhCl-NH3)+. The mechanism of the ionization of PhCl-NH3 is discussed on the basis of the theoretical results.

  13. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction.

    PubMed

    Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J

    2013-02-28

    A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.

  14. Theoretical study of the dynamics of Cl + O3 reaction I. Ab initio potential energy surface and quasiclassical trajectory results.

    PubMed

    Castillo, J F; Aoiz, F J; Martínez-Haya, B

    2011-05-14

    We present a global full dimensional potential energy surface (PES) for the Cl + O(3)→ ClO + O(2) reaction, which is an elementary step in a catalytic cycle that leads to the destruction of ozone in the stratosphere. The PES is constructed by interpolation of quantum chemistry data using the method developed by Collins and co-workers. Ab initio data points (energy, gradients and Hessian matrix elements) have been calculated at the UQCISD/aug-cc-pVDZ (unrestricted quadratic configuration interaction with single and double excitations) level of theory. The ab initio calculations predict a markedly non-coplanar (dihedral angle of 80°) transition state for the reaction, located very early in the reactant valley and slightly below the energy of the reactants as long as the spin-orbit splitting is neglected. Quasiclassical trajectory (QCT) calculations have been carried out at several collision energies to investigate the reaction dynamics. The QCT excitation function shows no threshold, displays a minimum at a collision energy of 2.5 kcal mol(-1), and then increases monotonically at larger collision energies. This behaviour is consistent with a barrierless reaction dominated by an oxygen-abstraction mechanism. The calculated product vibrational distributions (strongly inverted for ClO) and rate constants are compared with experimental determinations. Differential cross sections (DCS) summed over all final states are found to be in fairly good agreement with those derived from crossed molecular beam experiments.

  15. The Free Energies of Reactions of Chlorinated Methanes with Aqueous Monovalent Anions: Applications of ab initio Electronic Structure Theory

    SciTech Connect

    Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.

    2000-01-01

    The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. Favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH-, SH-, NO3 -, HCO3 -, HSO3 -, HSO4 -, H2PO4 -, and F-) that can occur in natural waters with the chlorinated methanes, CCl4, CCl3H, CCl2H2, and CClH3. The results of this investigation show that nucleophilic substitution reactions of OH-, SH-, HCO3 -, and F- are significantly exothermic for chlorine displacement, NO3 - reactions are slightly exothermic to thermoneutral, HSO3

  16. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    NASA Technical Reports Server (NTRS)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  17. Classical trajectory studies of gas phase reaction dynamics and kinetics using ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Pattengill, Merle D.; Schwenke, David W.

    1989-01-01

    Strategies for constructing global potential energy surfaces from a limited number of accurate ab initio electronic energy calculations are discussed. Generally, these data are concentrated in small regions of configuration space (e.g., in the vicinity of saddle points and energy minima) and difficulties arise in generating a potential function that is globally well-behaved. Efficient computer codes for carrying out classical trajectory calculations on vector and parallel processors are also described. Illustrations are given from recent work on the following chemical systems: Ca + HF yields CaF + H, H + H + H2 yields H2 + H2, N + O2 yields NO + O and O + N2 yields NO + N. The dynamics and kinetics of metathesis, dissociation, recombination, energy transfer and complex formation processes will be discussed.

  18. Ab initio calculations of nuclear structure and reactions with chiral two- and three-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Navratil, Petr; Langhammer, Joachim; Hupin, Guillaume; Quaglioni, Sofia; Calci, Angelo; Roth, Robert; Soma, Vittorio; Cipollone, Andrea; Barbieri, Carlo; Duguet, T.

    2014-09-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In recent years, a significant progress has been made in developing ab initio many-body approaches capable of describing both bound and scattering states in light and medium mass nuclei based on input from QCD employing Hamiltonians constructed within chiral effective field theory. We will present calculations of proton-10C scattering and resonances of the exotic nuclei 11N and 9He within the no-core shell model with continuum. Also, we will discuss calculations of binding and separation energies of neutron rich isotopes of Ar, K, Ca, Sc and Ti within the self-consistent Gorkov-Green's function approach. The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In recent years, a significant progress has been made in developing ab initio many-body approaches capable of describing both bound and scattering states in light and medium mass nuclei based on input from QCD employing Hamiltonians constructed within chiral effective field theory. We will present calculations of proton-10C scattering and resonances of the exotic nuclei 11N and 9He within the no-core shell model with continuum. Also, we will discuss calculations of binding and separation energies of neutron rich isotopes of Ar, K, Ca, Sc and Ti within the self-consistent Gorkov-Green's function approach. Support from the NSERC Grant No. 401945-2011 is acknowledged. This work was prepared in part by the LLNL under Contract No. DE-AC52-07NA27344.

  19. An ab initio molecular orbital study of the reaction NH 2+NO → H 2+N 2O

    NASA Astrophysics Data System (ADS)

    Baker, Lane A.; Su, Shujun

    1998-03-01

    Potential energy surface of the reaction NH 2+NO → H 2+N 2O has been studied at several high levels of ab initio molecular orbital theory. The reaction pathway involves initially the formation without a barrier of a twisted non-planar H 2N-NO nitrosamine intermediate, and a C s symmetry transition state, followed by a dihydrogen H 2 elimination to form the products. The reaction path bifurcates before the transition state. At MP4(SDTQ)/6-311G(2d,p)//CASSCF/6-31G(d,p) level of theory, the reaction barrier for this path is found to be +33.7 kcal/mol.

  20. Ab initio study of the chlorine nitrate protonation reaction - Implications for loss of ClONO2 in the stratosphere

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1993-01-01

    Ab initio quantum mechanical methods, including coupled-cluster theory, are used to determine the equilibrium geometries, dipole moments, and harmonic vibrational frequencies of ClONO2, NO2(+), and four isomers of protonated ClONO2. It was found that, for the equilibrium structures and harmonic frequencies of ClONO2, HOCl, and NO2(+), the highest-level theoretical predictions are consistent with the available experimental information concerning the reactions of ClONO2 and HOCl with HCl on the surface of polar stratospheric clouds (PSCs). The study supports a recent hypothesis that the reaction of ClONO2 on the surface of PSCs is proton catalyzed, although the mechanism is different.

  1. Interfacing ab initio Quantum Mechanical Method with Classical Drude Osillator Polarizable Model for Molecular Dynamics Simulation of Chemical Reactions

    PubMed Central

    Lu, Zhenyu; Zhang, Yingkai

    2009-01-01

    In order to further improve the accuracy and applicability of combined quantum mechanical/molecular mechanical (QM/MM) methods, we have interfaced the ab initio QM method with the classical Drude oscillator polarizable MM force field (ai-QM/MM-Drude). Different coupling approaches have been employed and compared: 1. the conventional dual self-consistent-field (SCF) procedure; 2. the direct SCF scheme, in which QM densities and MM Drude positions are converged simultaneously; 3. the micro-iterative SCF scheme, in which the Drude positions of the polarizable model are fully converged during each self-consistent field (SCF) step of QM calculations; 4. the one-step-Drude-update scheme, in which the MM Drude positions are updated only once instead of fully converged during each molecular dynamics (MD) step. The last three coupling approaches are found to be efficient and can achieve the desired convergence in a similar number of QM SCF steps comparing with the corresponding QM method coupled to a non-polarizable force field. The feasibility and applicability of the implemented ai-QM/MM-Drude approach have been demonstrated by carrying out Born-Oppenheimer molecular dynamics simulations with the umbrella sampling method to determine potentials of mean force for both the methyl transfer reaction of the methyl chlorine-chlorine ion system and the glycine intra-molecular proton transfer reaction in aqueous solution. Our results indicate that the ai-QM/MM-Drude approach is very promising, which provides a better description of QM/MM interactions while can achieve quite similar computational efficiency in comparison with the corresponding conventional ab initio QM/MM method. PMID:19221605

  2. Reaction of stabilized Criegee intermediates from ozonolysis of limonene with sulfur dioxide: ab initio and DFT study.

    PubMed

    Jiang, Lei; Xu, Yi-sheng; Ding, Ai-zhong

    2010-12-02

    The mechanism of the reaction of the sulfur dioxide (SO(2)) with four stabilized Criegee intermediates (stabCI-CH(3)-OO, stabCI-OO, stabCIx-OO, and stabCH(2)OO) produced via the ozonolysis of limonene have been investigated using ab initio and DFT (density functional theory) methods. It has been shown that the intermediate adduct formed by the initiation of these reactions may be followed by two different reaction pathways such as H migration reaction to form carboxylic acids and rearrangement of oxygen to produce the sulfur trioxide (SO(3)) from the terminal oxygen of the COO group and SO(2). We found that the reaction of stabCI-OO and stabCH(2)OO with SO(2) can occur via both the aforementioned scenarios, whereas that of stabCI-CH(3)-OO and stabCIx-OO with SO(2) is limited to the second pathway only due to the absence of migrating H atoms. It has been shown that at the CCSD(T)/6-31G(d) + CF level of theory the activation energies of six reaction pathways are in the range of 14.18-22.59 kcal mol(-1), with the reaction between stabCIx-OO and SO(2) as the most favorable pathway of 14.18 kcal mol(-1) activation energy and that the reaction of stabCI-OO and stabCH(2)OO with SO(2) occurs mainly via the second reaction path. The thermochemical analysis of the reaction between SO(2) and stabilized Criegee intermediates indicates that the reaction of SO(2) and stabilized Criegee intermediates formed from the exocyclic primary ozonide decomposition is the main pathway of the SO(3) formation. This is likely to explain the large (~100%) difference in the production rate in the favor of the exocyclic compounds observed in recent experiments on the formation of H(2)SO(4) from exocyclic and endocyclic compounds.

  3. Theoretical study of the reaction of hydrogen with nitric acid: ab initio MO and TST/RRKM calculations

    NASA Astrophysics Data System (ADS)

    Boughton, J. W.; Kristyan, Sandor; Lin, M. C.

    1997-01-01

    The kinetics and mechanism of the H + HNO 3 reaction have been elucidated with ab initio molecular orbital and statistical theory calculations. Our room temperature reaction rate results accord well with available experimental data. The reaction is dominated by an indirect metathetical process taking place via vibrationally excited dihydroxyl nitroxide, ON(OH) 2, producing OH + cis-HONO. The excited ON(OH) 2 also undergoes molecular elimination, yielding H 2O + NO 2 as a minor competing reaction. The direct H abstraction reaction forming H 2 + NO 3 was found to be the least important one. At atmospheric pressure, we recommend the following expressions for the three rate constants, in units of cm 3/molecule s, from the 300-3000 K temperature range for H + HNO 3 collision yielding the products H 2 + NO 3 by direct mechanism ka = (9.24 × 10 -16) T1.53e -8253/ T based on CTST calculations, OH + cis-HONO by indirect mechanism kb = (6.35 × 10 -19) T2.30e -1.53/ T), and H 2O + NO 2 by indirect mechanism kc = (1.01 × 10 -22) T3.29e -3126/ T, the latter two are based on Arrhenius fits to the solution of the master equation which includes RRKM microscopic rate constants and tunneling corrections.

  4. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.

    PubMed

    Ranaghan, Kara E; Ridder, Lars; Szefczyk, Borys; Sokalski, W Andrzej; Hermann, Johannes C; Mulholland, Adrian J

    2004-04-07

    To investigate fundamental features of enzyme catalysis, there is a need for high-level calculations capable of modelling crucial, unstable species such as transition states as they are formed within enzymes. We have modelled an important model enzyme reaction, the Claisen rearrangement of chorismate to prephenate in chorismate mutase, by combined ab initio quantum mechanics/molecular mechanics (QM/MM) methods. The best estimates of the potential energy barrier in the enzyme are 7.4-11.0 kcal mol(-1)(MP2/6-31+G(d)//6-31G(d)/CHARMM22) and 12.7-16.1 kcal mol(-1)(B3LYP/6-311+G(2d,p)//6-31G(d)/CHARMM22), comparable to the experimental estimate of Delta H(++)= 12.7 +/- 0.4 kcal mol(-1). The results provide unequivocal evidence of transition state (TS) stabilization by the enzyme, with contributions from residues Arg90, Arg7, and Arg63. Glu78 stabilizes the prephenate product (relative to substrate), and can also stabilize the TS. Examination of the same pathway in solution (with a variety of continuum models), at the same ab initio levels, allows comparison of the catalyzed and uncatalyzed reactions. Calculated barriers in solution are 28.0 kcal mol(-1)(MP2/6-31+G(d)/PCM) and 24.6 kcal mol(-1)(B3LYP/6-311+G(2d,p)/PCM), comparable to the experimental finding of Delta G(++)= 25.4 kcal mol(-1) and consistent with the experimentally-deduced 10(6)-fold rate acceleration by the enzyme. The substrate is found to be significantly distorted in the enzyme, adopting a structure closer to the transition state, although the degree of compression is less than predicted by lower-level calculations. This apparent substrate strain, or compression, is potentially also catalytically relevant. Solution calculations, however, suggest that the catalytic contribution of this compression may be relatively small. Consideration of the same reaction pathway in solution and in the enzyme, involving reaction from a 'near-attack conformer' of the substrate, indicates that adoption of this

  5. DFT and ab initio calculations on two reactions between hydrogen atoms and the fire suppressants 2-H heptafluoropropane and CF3Br.

    PubMed

    Lee, Edmond P F; Dyke, John M; Chow, Wan-Ki; Chau, Foo-Tim; Mok, Daniel K W

    2007-07-15

    Reaction enthalpies and barrier heights of the reactions CF3Br+H-->CF3+HBr {reaction (1)} and CF3CHFCF3+H-->CF3CFCF3+H2 {reaction (2)} have been calculated at the near state-of-the-art ab initio level, and also by employing the B3LYP, BH&HLYP, BB1K, MPW1K, MPWB1K and TPSS1KCIS functionals. In addition, the integrated molecular orbital+molecular orbital (IMOMO) method has been used to study reaction (2). The ab initio benchmark values of the reaction enthalpy (298 K) and barrier height (0 K) of reaction (2) are reported for the first time {-(0.7+/-0.7) and 13.3+/-0.5 kcal/mole respectively}. When density functional theory (DFT) results are compared with ab initio benchmarks for both reactions (1) and (2), the MPWB1K functional is found to have the best performance of the six functionals used. The IMOMO method with the RCCSD/aug-cc-pVTZ and/or RCCSD(T)/aug-cc-pVTZ levels, as the high levels of calculation on the model system, gives reaction enthalpies and barrier heights of reaction (2), which agree with ab initio benchmark values to within 1 kcal/mole. Computed key geometrical parameters and imaginary vibrational frequencies of the transition state structures of reactions (1) and (2) obtained at different levels of calculation are compared. The magnitudes of the computed imaginary vibrational frequencies of the transition states of both reactions considered are found to be very sensitive to the levels of calculation used to obtain them. The heat of formation (298 K) of CF3CFCF3 calculated at the near state-of-the-art level has a value of -(318+/-3) kcal/mole.

  6. Ab initio quantum mechanical calculation of the reaction probability for the Cl-+PH2Cl→ClPH2+Cl- reaction

    NASA Astrophysics Data System (ADS)

    Farahani, Pooria; Lundberg, Marcus; Karlsson, Hans O.

    2013-11-01

    The SN2 substitution reactions at phosphorus play a key role in organic and biological processes. Quantum molecular dynamics simulations have been performed to study the prototype reaction Cl-+PH2Cl→ClPH2+Cl-, using one and two-dimensional models. A potential energy surface, showing an energy well for a transition complex, was generated using ab initio electronic structure calculations. The one-dimensional model is essentially reflection free, whereas the more realistic two-dimensional model displays involved resonance structures in the reaction probability. The reaction rate is almost two orders of magnitude smaller for the two-dimensional compared to the one-dimensional model. Energetic errors in the potential energy surface is estimated to affect the rate by only a factor of two. This shows that for these types of reactions it is more important to increase the dimensionality of the modeling than to increase the accuracy of the electronic structure calculation.

  7. Photodissociation and ab initio studies of Mg+(NH3)n, n=1-4: Electronic structure and photoinduced reaction

    NASA Astrophysics Data System (ADS)

    Yoshida, Shinji; Daigoku, Kota; Okai, Nobuhiro; Takahata, Akihiro; Sabu, Akiyoshi; Hashimoto, Kenro; Fuke, Kiyokazu

    2002-11-01

    Photodissociation spectra of Mg+(NH3)n (n=1-4) cluster ions are examined in the wavelength region of 240-1200 nm. From the comparison with the results of ab initio calculations for the structure and the excitation energies of these clusters, the observed absorption bands are assigned to the transitions derived from the 2P-2S transition of Mg+ ion. The extensive redshift of the observed spectra is ascribed to the formation of a one-center ion-pair state. In the photolysis of Mg+NH3, NH3+ and Mg+NH2 ions are produced via photoinduced charge transfer and intracluster reaction processes, respectively, in addition to the Mg+ ion generated by the evaporation of ammonia molecules. For n=2, both the intracluster reaction and evaporation are dominant decay processes, while the evaporation is the sole photodissociation channel for larger clusters. The branching fractions of these processes are found to depend strongly on the solvation number n and also on the photolysis wavelength. The energetics and the dynamics of the dissociation processes are discussed in relation to the redox reaction of metal ions.

  8. N2O + CO reaction over Si- and Se-doped graphenes: An ab initio DFT study

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Reza; Yu, Yang-Xin

    2015-12-01

    Catalytic conversion of non-CO2 green house gases and other harmful gases is a promising way to protect the atmospheric environment. Non-metal atom-doped graphene is attractive for use as a catalyst in the conversion due to its unique electronic properties, relatively low price and leaving no burden to the environment. To make an attempt on the development of green catalysts for the conversion, ab initio density functional theory is used to investigate the mechanisms of N2O reduction by CO on Si- and Se-doped graphenes. We have calculated the geometries and adsorption energies of reaction species (N2O, CO, N2 and CO2) as well as energy profiles along the reaction pathways. The activation energies of N2O decomposition and CO oxidation on both Si- and Se-doped graphenes have been obtained. Our calculated results indicate that the catalytic activity of Si-doped graphene is better than the Fe+ in gas phase and comparable to the single Fe atom embedded on graphene. In the calculations, we found that van der Waals interactions and zero-point energy are two non-negligible factors for the predictions of the activation energies. Further discussion shows that Si-doped graphene can be one of efficient green catalysts for conversion of the airborne pollutants and Se-doped graphene can be a candidate for oxidizing CO by atomic oxygen.

  9. Free Energies for Degradation Reactions of 1,2,3-Trichloropropane from ab initio Electronic Structure Theory

    SciTech Connect

    Bylaska, Eric J.; Glaesemann, Kurt R.; Felmy, Andrew R.; Vasiliu, Monica; Dixon, David A.; Tratnyek, P. G.

    2010-11-25

    Electronic structure methods were used to calculate the gas-phase and aqueous phase reaction energies for reductive dechlorination (i.e. hydrogenolysis), reductive Beta-elimination, dehydrochlorination, and nucleophilic substitution by OH- of 1,2,3-trichloropropane. The thermochemical properties Delta Hof(298.15K), So(298.15K,1 bar), and Delta GS(298.15K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely metabolites. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive Beta-elimination (Delta Gorxn ≈ -32 kcal/mol), followed closely by reductive dechlorination (Delta Gorxn ≈ -27 kcal/mol), dehydrochlorination (Delta Gorxn ≈ -27kcal/mol), and nucleophilic substitution by OH- (Delta Gorxn ≈ -25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate CH2-CHCl-CH2Cl , and CH2Cl-CH-CH2Cl species, was not favorable in the standard state (Delta Gorxn ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.

  10. AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS

    SciTech Connect

    Turchi, P A

    2004-04-14

    Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.

  11. Ab initio/density functional theory and multichannel RRKM calculations for the Ch{sub 3}O + CO reaction

    SciTech Connect

    Wang, B.; Hou, H.; Gu, Y.

    1999-10-07

    The potential energy surface for the reaction of methoxy radical with carbon monoxide has been studied using the G2(B2LYP/MP2/CC) method. Two reaction mechanisms were revealed. The hydrogen abstraction of CH{sub 3}O by CO produces CH{sub 2}O + HCO via a barrier of 24.19 kcal/mol. The addition of CH{sub 3}O to CO proceeds to an intermediate CH{sub 3}OCO via a barrier of 6.39 kcal/mol. The products, CH{sub 3} and CO{sub 2}, can be formed in two ways. One is the C-O bond cleavage of the CH{sub 3}OCO radical. The other involves the isomerization of CH{sub 3}OCO to the CH{sub 3}CO{sub 2} radical and the subsequent C-C bond fission. CH{sub 2}O and HCI can be formed via the path CH{sub 3}OCO {r{underscore}arrow} TS6 {r{underscore}arrow} IM4 {r{underscore}arrow} TS7 {r{underscore}arrow} CH{sub 2}O + HCO. A radical product, CH{sub 2}COOH, is formed through the hydrogen rearrangement of the CH{sub 3}CO{sub 2} radical. Multichannel RRKM calculations have been carried out for the total and individual rate constants for various channels over a wide range of temperatures and pressures using the ab initio data. At lower temperatures, the title reaction is dominated by the stabilization of the CH{sub 3}OCO radical. At higher temperatures, the CH{sub 3} + CO product channel and the direct hydrogen abstraction channels become dominant and competitive. The title reaction shows the typical fall-off behavior. The calculations were compared with the available experimental data.

  12. Canonical variational transition state theory for a radical combination reaction on ab initio potential energy surfaces: H+CH3

    NASA Astrophysics Data System (ADS)

    LeBlanc, James F.; Pacey, Philip D.

    1985-11-01

    Canonical variational transition state theory calculations have been performed for the reaction H+CH3→CH4 on potential energy surfaces based on ab initio calculations. Most vibrations were treated as harmonic. The resulting energy levels and partition functions were compared to empirical rules. For the two rotational degrees of freedom (χ) of CH3 which become bending vibrations in CH4, changing from a harmonic oscillator treatment to a hindered rotor treatment changed the partition functions by an order of magnitude or more for C ṡ ṡ ṡ H distances, R, greater than 0.3 nm. The variation of potential energy with R was taken as a standard Morse function, as a stiff Morse function with a variable parameter β or as a Lippincott function. The value of R for which the rate was minimum was found to vary between 0.25 and 0.5 nm, depending on the temperature and the assumed variation of potential energy with R and χ. Provided the χ bending modes were treated as hindered rotations for large values of R, the limiting values of the rate coefficients were similar to the results of experiments, of classical trajectory calculations, and of a modified version of simple collision theory.

  13. Ab initio study of nitrogen and position-specific oxygen kinetic isotope effects in the NO + O3 reaction

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-12-01

    Ab initio calculations have been carried out to investigate nitrogen (k15/k14) and position-specific oxygen (k17/k16O & k18/k16) kinetic isotope effects (KIEs) for the reaction between NO and O3 using CCSD(T)/6-31G(d) and CCSD(T)/6-311G(d) derived frequencies in the complete Bigeleisen equations. Isotopic enrichment factors are calculated to be -6.7‰, -1.3‰, -44.7‰, -14.1‰, and -0.3‰ at 298 K for the reactions involving the 15N16O, 14N18O, 18O16O16O, 16O18O16O, and 16O16O18O isotopologues relative to the 14N16O and 16O3 isotopologues, respectively (CCSD(T)/6-311G(d)). Using our oxygen position-specific KIEs, a kinetic model was constructed using Kintecus, which estimates the overall isotopic enrichment factors associated with unreacted O3 and the oxygen transferred to NO2 to be -19.6‰ and -22.8‰, respectively, (CCSD(T)/6-311G(d)) which tends to be in agreement with previously reported experimental data. While this result may be fortuitous, this agreement suggests that our model is capturing the most important features of the underlying physics of the KIE associated with this reaction (i.e., shifts in zero-point energies). The calculated KIEs will useful in future NOx isotopic modeling studies aimed at understanding the processes responsible for the observed tropospheric isotopic variations of NOx as well as for tropospheric nitrate.

  14. SurfKin: an ab initio kinetic code for modeling surface reactions.

    PubMed

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-05

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts.

  15. Mechanisms of branching reactions in melanin formation - Ab initio quantum engineering approach -

    NASA Astrophysics Data System (ADS)

    Kishida, Ryo; Menez Aspera, Susan; Kasai, Hideaki

    Melanin, a pigment found in animals, consists of two types of oligomeric unit: eumelanin and pheomelanin. The color of the skin, the hair, and the eyes is controlled by the ratio of eumelanin/pheomelanin production. Especially, dopachrome and dopaquinone are the precursor molecules of melanin which directly affect the composition of melanin through their branching reactions. Dopachrome is converted into two possible monomers of eumelanin. Dopaquinone can undergo both eumelanin and pheomelanin synthesis. To understand the mechanisms and controlling factors that govern the conversions, reactions of the two molecules are investigated using density functional theory-based first-principles calculations. Our results deepen mechanistic understanding of the reactions and open possibilities to design properties and functions of melanin. In this talk, we will discuss about the competitions of the branching reactions.

  16. Benchmark ab Initio Characterization of the Complex Potential Energy Surface of the F(-) + CH3CH2Cl Reaction.

    PubMed

    Tajti, Viktor; Czako, Gabor

    2017-03-24

    We compute benchmark structures, frequencies, and relative energies for the stationary points of the potential energy surface of the F- + CH3CH2Cl reaction using explicitly-correlated ab initio levels of theory. CCSD(T)-F12b geometries and harmonic vibrational frequencies are obtained with the aug-cc-pVTZ and aug-cc-pVDZ basis sets, respectively. The benchmark relative energies are determined using a high-level composite method based on CCSD(T)-F12b/aug-cc-pVQZ frozen-core energies, CCSD(T)-F12b/cc-pCVTZ-F12 core electron correlation effects, and CCSD(T)-F12b/aug-cc-pVDZ zero-point energy corrections. The SN2 channel leading to Cl- + CH3CH2F (-33.2) can proceed via back-side (-11.5), front-side (29.1), and double-inversion (18.0) transition states, whereas the bimolecular elimination (E2) products, Cl- + HF + C2H4 (-19.3), can be formed via anti (-15.0) and syn (-7.3) saddle points, whose best adiabatic energies relative to F- + CH3CH2Cl are shown in parentheses in kcal/mol. Besides the SN2 and E2 channels, the 0 K reaction enthalpies of the HF + H3C-CHCl- (29.4), H- + H3C-CHClF (46.2), H- + FH2C-CH2Cl (51.1), and FCl- + CH3CH2 (49.7) product channels are determined. Utilizing the new benchmark data, the performance of the DF-MP2, MP2, MP2-F12, CCSD(T), and CCSD(T)-F12b methods with aug-cc-pVDZ and aug-cc-pVTZ basis sets is tested.

  17. Ab initio study of key branching reactions in biodiesel and Fischer-Tropsch fuels.

    PubMed

    Davis, Alexander C; Francisco, Joseph S

    2011-11-30

    Many biologically and Fischer-Tropsch synthesized fuels contain branched alkanes which, during their combustion and atmospheric oxidation mechanism, produce methylalkyl radicals. As a result, an accurate description of the chemistry of these species is essential to integrating these fuels into our energy systems. Even though branched alkanes make up roughly one-third of the compounds in gasoline and diesel fuels, both experimental and theoretical data on methylalkyl radicals and their reactions are scarce, especially for larger chain systems and combustion conditions. The present work investigates all the hydrogen migration reactions available to the n-methylprop-1-yl through n-methylhept-1-yl radicals, for n = 2-6, using the CBS-Q, G2, and G4 composite computational methods, over a wide temperature range. The resulting thermodynamic and kinetic parameters are used to determine the effect that the presence of the methyl group has on these important unimolecular, chain branching reactions, for the reactions involving not only a tertiary abstraction site but also all the primary and secondary sites. The activation energies of hydrogen migration reactions with the methyl group, either within or immediately outside the ring, are found to be roughly 0.8-1.6 kcal mol(-1) lower in energy than expected on the basis of analogous reactions in n-alkyl radicals. An important implication of this result is that the current method of using rate parameters derived from n-alkyl radicals to predict the chain branching characteristics of methylated alkyl radicals significantly underpredicts the importance of these reactions in atmospheric and combustion processes. Discussion of a possible cause for this phenomenon and its effect on the overall combustion mechanism of branched hydrocarbons is presented. Of particular concern is that 2,2,4,4,6,8,8-heptamethylnonane, which is currently used to model branched alkanes in diesel fuel surrogates, is predicted to have a much lower activation

  18. 'Dynamic Distance' Reaction Coordinate for Competing Bonds:  Applications in Classical and Ab Initio Simulations.

    PubMed

    Burisch, Christian; Markwick, Phineus R L; Doltsinis, Nikos L; Schlitter, Jürgen

    2008-01-01

    A versatile reaction coordinate, the "dynamic distance", is introduced for the study of reactions involving the rupture and formation of a series of chemical bonds or contacts. The dynamic distance is a mass-weighted mean of selected distances. When implemented as a generalized constraint, the dynamic distance is particularly suited for driving activated processes by controlled increase during a simulation. As a single constraint acting upon multiple degrees of freedom, the sequence of events along the resulting reaction pathway is determined unambiguously by the underlying energy landscape. Free energy profiles can be readily obtained from the mean constraint force. In this paper both theoretical aspects and numerical implementation are discussed, and the unique and diverse properties of this reaction coordinate are demonstrated using three examples:  In the framework of Car-Parrinello molecular dynamics, we present results for the prototypical double proton-transfer reaction in formic acid dimer and the photocycle of the guanine-cytosine DNA base pair. As a classical mechanical example, the opening of the binding pocket of the enzyme rubisco is analyzed.

  19. Ab Initio Quantum Calculations of Reactions in Astrophysical Ices: Acetaldehyde and Acetone with Ammonia

    NASA Astrophysics Data System (ADS)

    Chen, L.; Woon, D. E.

    2009-06-01

    Complex organic molecules, including amino acid precursors, have been observed in young stellar objects. Both laboratory and theoretical studies have shown that ice chemistry can play an important role in low-temperature synthetic pathways, with water serving as a catalyst that can significantly enhance reaction rates by lowering barriers or eliminating them altogether. Reactions between carbonyl species and ammonia are particularly promising, as shown in previous studies of the formaldehyde-ammonia reaction. In this study, we explore the reactions of ammonia with two larger carbonyl species, acetaldehyde and acetone, embedded in a water ice cluster. To examine the explicit impact of the water, we gradually increase the size of the cluster from 4H_2O to 12H_2O. Cluster calculations were performed at the MP2/{6-31}+G^{**} or B3LYP/{6-31}+G^{**} level. In order to account for the electrostatic contribution from bulk ice, the Polarizable Continuum Model (PCM) and Isodensity Surface Polarized Continuum Model (IPCM) were used to model reaction field solvation effects. For both acetaldehyde and acetone, the reactant is a charge transfer complex (a partial charge-transfer complex in small clusters and full proton-transfer complex in larger clusters). Rearrangement to amino-hydroxylated products can occur by surmounting a small reaction barrier. Stereo-selectivity is observed in the case of acetaldehyde. P. Ehrenfreund and S. B. Charnley, Ann. Rev. Astron. Astrophys. 38, 427 (2000). W. A. Schutte, L. J. Allamandola, and S. A. Sandford, Science 259, 1143 (1993) W. A. Schutte, L. J. Allamandola, and S. A. Sandford, Icarus 104, 118 (1993) D. E. Woon, Icarus 142, 550 (1999) S. P. Walch, C. W. Bauschicher, Jr., A. Ricca and E. L. O. Bakes, Chem. Phys. Lett, 333, 6 (2001)

  20. Modeling reaction pathways of low energy particle deposition on thiophene via ab initio calculations

    NASA Astrophysics Data System (ADS)

    Crenshaw, Jasmine D.; Phillpot, Simon R.; Iordanova, Nedialka; Sinnott, Susan B.

    2011-07-01

    Chemical reactions of thiophene with organic molecules are of interest to modify thermally deposited coatings of conductive polymers. Here, energy barriers for reactions involving thiophene and small hydrocarbon radicals are identified. Enthalpies of formation involving reactants are also calculated using the B3LYP, BMK, and B98 hybrid functionals within the G AUSSIAN03 program. Experimental values, G3, and CBS-QB3 calculations are used as standards, due to their accurate thermochemistry parameters. The BMK functional is found to perform best for the selected organic molecules. These results provide insights into the reactivity of several polymerization and deposition processes.

  1. Free energies for degradation reactions of 1,2,3-trichloropropane from ab initio electronic structure theory.

    PubMed

    Bylaska, Eric J; Glaesemann, Kurt R; Felmy, Andrew R; Vasiliu, Monica; Dixon, David A; Tratnyek, Paul G

    2010-11-25

    Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.

  2. Ab initio kinetics for isomerization reaction of normal-chain hexadiene isomers

    NASA Astrophysics Data System (ADS)

    Yang, Feiyu; Deng, Fuquan; Pan, Youshun; Tian, Zemin; Zhang, Yingjia; Huang, Zuohua

    2016-10-01

    The ground-state potential energy surface (PES) of isomerization philosophy of ten normal-chain hexadiene isomers is computed by density functional methods using the geometries optimized at B3LYP/6-311++G (d, p) level of theory. These detailed reaction pathways are used to calculate the rate constants for the unimolecular isomerization reactions by transition state theory (TST) in the temperature range of 500-2500 K. Difference of rate constant between each hexadiene isomer is interpreted through the PES and Ḣ atom transfer, and only 2,4-hexadiene readily fulfills cis-cis to trans-trans conformation conversion. All the conversions are kinetically interpreted from the PES and ST geometry.

  3. Ab initio dynamical vertex approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Thunström, Patrik; Gunacker, Patrik; Tomczak, Jan M.; Held, Karsten

    2017-03-01

    Diagrammatic extensions of dynamical mean-field theory (DMFT) such as the dynamical vertex approximation (DΓ A) allow us to include nonlocal correlations beyond DMFT on all length scales and proved their worth for model calculations. Here, we develop and implement an Ab initio DΓ A approach (AbinitioDΓ A ) for electronic structure calculations of materials. The starting point is the two-particle irreducible vertex in the two particle-hole channels which is approximated by the bare nonlocal Coulomb interaction and all local vertex corrections. From this, we calculate the full nonlocal vertex and the nonlocal self-energy through the Bethe-Salpeter equation. The AbinitioDΓ A approach naturally generates all local DMFT correlations and all nonlocal G W contributions, but also further nonlocal correlations beyond: mixed terms of the former two and nonlocal spin fluctuations. We apply this new methodology to the prototypical correlated metal SrVO3.

  4. Discovering chemistry with an ab initio nanoreactor

    NASA Astrophysics Data System (ADS)

    Martinez, Todd

    Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.

  5. A global 12-dimensional ab initio potential energy surface and dynamical studies for the SiH4+H →SiH3+H2 reaction

    NASA Astrophysics Data System (ADS)

    Wang, Manhui; Sun, Xiaomin; Bian, Wensheng; Cai, Zhengting

    2006-06-01

    A global 12-dimensional ab initio interpolated potential energy surface (PES) for the SiH4+H →SiH3+H2 reaction is presented. The ab initio calculations are based on the unrestricted quadratic configuration interaction treatment with all single and double excitations together with the cc-pVTZ basis set, and the modified Shepard interpolation method of Collins and co-workers [K. C. Thompson et al., J. Chem. Phys. 108, 8302 (1998); M. A. Collins, Theor. Chem. Acc. 108, 313 (2002); R. P. A. Bettens and M. A. Collins, J. Chem. Phys. 111, 816 (1999)] is applied. Using this PES, classical trajectory and variational transition state theory calculations have been carried out, and the computed rate constants are in good agreement with the available experimental data.

  6. Ab initio quantum chemistry: Methodology and applications

    PubMed Central

    Friesner, Richard A.

    2005-01-01

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller–Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly. PMID:15870212

  7. Ab initio study of acrylate polymerization reactions: methyl methacrylate and methyl acrylate propagation.

    PubMed

    Yu, Xinrui; Pfaendtner, Jim; Broadbelt, Linda J

    2008-07-24

    The kinetic parameters of the free radical propagation of methyl methacrylate and methyl acrylate have been calculated using quantum chemistry and transition state theory. Multiple density functional theory (DFT) methods were used to calculate the activation energy, and it was found that MPWB1K/6-31G(d,p) yields results that are in very good agreement with experimental data. To obtain values of the kinetic parameters that were in the best agreement with experimental data, low frequencies were treated using a one-dimensional internal rotor model. Chain length effects were also explored by examining addition reactions of monomeric, dimeric, and trimeric radicals to monomer for both methyl methacrylate and methyl acrylate. The results show that the values for the addition of the trimeric radical to monomer are closest to experimental data. The kinetic parameters that were calculated using a continuum description of the monomer as a solvent were not significantly different from the vacuum results.

  8. Ab Initio Study on the Mechanism of Tropospheric Reactions of the Nitrate Radical with Alkenes: Ethene.

    PubMed

    Pérez-Casany, M. Pilar; Nebot-Gil, Ignacio; Sánchez-Marín, José; Tomás-Vert, Francisco; Martínez-Ataz, Ernesto; Cabañas-Galán, Beatriz; Aranda-Rubio, Alfonso

    1998-10-02

    A mechanism for the reaction of the NO(3) radical with the simplest alkene, ethene, is proposed. The mechanism involves three paths leading to three main different products: oxirane, ethanal, and nitric acid. The three paths start from the same initial intermediate, an NO(3)-ethene adduct. The calculated energy barriers show that the oxirane is the product kinetically more favored. Initial analysis of the potential energy surface was made at AM1 level. Then, the geometries and characterization of the found stationary points on the surface were refined at ROHF level with a 6-31G basis set. Further refinement was carried out at CASSCF level with the same basis set, and an active space was built with five active electrons in six active orbitals.

  9. Reaction selectivity in an ionized water dimer: nonadiabatic ab initio dynamics simulations.

    PubMed

    Svoboda, Ondřej; Hollas, Daniel; Ončák, Milan; Slavíček, Petr

    2013-07-21

    We study dynamical processes following water dimer ionization. The nonadiabatic dynamical simulations of the water dimer radical cation are performed using a surface hopping technique and a Complete Active Space-Self Consistent Field (CASSCF) method for the description of electronic structure. The main goal of this study is to find out whether a state-dependent reactivity is observed for the water dimer radical cation. We provide a detailed mapping of the potential energy surfaces (PESs) in the relevant coordinates for different electronic states. Dynamical patterns are discussed on the basis of static PES cuts and available experimental data. As a product of the reaction, we observed either proton transferred structure (H3O(+)···OH˙) or various dissociated structures (H3O(+) + OH˙, H2O˙(+) + H2O, H˙ + OH˙ + H2O˙(+)). The relative yields are controlled by the populated electronic state of the radical cation. The proton transfer upon the HOMO electron ionization is an ultrafast process, taking less than 100 fs, in cases of higher energy ionization the dynamical processes occur on longer timescales (200-300 fs). We also discuss the implications of our simulations for the efficiency of the recently identified intermolecular coulomb decay (ICD) process in the water dimer.

  10. Reactions associated with ionization in water: a direct ab initio dynamics study of ionization in (H2O)17

    SciTech Connect

    Furuhama, Ayako; Dupuis, Michel; Hirao, Kimihiko

    2006-05-07

    A quasi-classical ab initio dynamics calculation of the (H2O)17 cluster, which is the first water cluster that includes a four-fold coordinated water molecule, has been carried out to obtain a detailed picture of the elementary processes and energy redistribution induced by ionization in a model of aqueous water. Well within 100 fs after ionization, a proton is seen to have transferred from the “ionized molecule” to a neighboring molecule, forming a hydronium ion and a hydroxyl radical. Two neighboring water molecules to the ionized water molecule play an important role in the reaction, in what we term a “reactive trimer”. The reaction time is gated by the encounter of the “ionized” water molecule with these two neighboring molecules and this occurs at ~ 35 fs after ionization. We find that the distance of approach between the “ionized” molecule and the neighboring molecule reflects best the time characteristics of the transfer of a proton, and thus of the formation of a hydronium ion and an OH radical. These findings are consistent with those for smaller cyclic clusters, albeit the dynamics of the transferring proton is much damped in our simulation compared to the small cyclic cluster cases. We use a partitioning scheme for the kinetic energy of the << OLE Object: Microsoft Equation 3.0 >> system that distinguishes the “reactive trimer” and the surrounding medium. The analysis of the simulation indicates that the kinetic energy of the surrounding medium increases markedly right after the event of ionization. The increase in kinetic energy is consistent with a reorganization of the surrounding medium, in this case an orientation relaxation, from a configuration as a hydrogen bond donor to the “ionized” tetra-coordinated water molecule, into a configuration where the surrounding water molecule have turned their dipoles for a more favorable interaction with the “ionized” water cation. Battelle operates the Pacific Northwest National

  11. Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p-shell nuclei

    SciTech Connect

    Raimondi, Francesco; Hupin, Guillaume; Navratil, Petr; Quaglioni, Sofia

    2016-05-10

    Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Here, ab initio approaches have been successfully applied to describe the 3H(d,n)4He and 3He(d,p)4He fusion processes. An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d,p) reactions to processes with light p-shell nuclei. As a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d,p)8Li transfer reaction based on a two-body Hamiltonian. We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d–7Li and p–8Li particle-decay channels determines some features of the 9Be spectrum above the d+7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Deuteron stripping reactions with p-shell targets can now be computed ab initio, but calculations are very demanding. Finally, a quantitative description of the 7Li(d,p)8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.

  12. Ab initio phonon limited transport

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu

    We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)

  13. Ab initio QM/MM free energy simulations of peptide bond formation in the ribosome support an eight-membered ring reaction mechanism.

    PubMed

    Xu, Jun; Zhang, John Z H; Xiang, Yun

    2012-10-03

    Ab initio QM/MM free-energy simulations were carried out to study the peptide bond formation reaction in the peptidyl transferase center of the ribosome. The QM part of the reaction was treated by density functional theory at the B3LYP/6-31G* level, while the MM part including the solvent and RNA environment was described by molecular force field. The calculated free-energy surfaces for the two popular reaction mechanisms, the six- and eight-membered ring reactions, exhibited large energetic differences which favor the eight-membered reaction mechanism. The simulated quasi-transition state structures clearly indicated a "late" feature consistent with previous theoretical studies. Also the important functional role played by water molecules in the active site of the ribosome and its implication in ribozymic catalysis was discussed in detail.

  14. Discovering chemistry with an ab initio nanoreactor

    SciTech Connect

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.

  15. Discovering chemistry with an ab initio nanoreactor

    PubMed Central

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-01-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881

  16. Discovering chemistry with an ab initio nanoreactor

    DOE PAGES

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  17. Ab Initio Study of Polonium

    SciTech Connect

    Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2008-05-20

    Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.

  18. A global ab initio potential energy surface for the X 2A' ground state of the Si + OH → SiO + H reaction

    NASA Astrophysics Data System (ADS)

    Dayou, Fabrice; Duflot, Denis; Rivero-Santamaría, Alejandro; Monnerville, Maurice

    2013-11-01

    We report the first global potential energy surface (PES) for the X 2A' ground electronic state of the Si(3P) + OH(X2Π) → SiO(X^1Σ _g^+) + H(2S) reaction. The PES is based on a large number of ab initio energies obtained from multireference configuration interaction calculations plus Davidson correction (MRCI+Q) using basis sets of quadruple zeta quality. Corrections were applied to the ab initio energies in the reactant channel allowing a proper description of long-range interactions between Si(3P) and OH(X2Π). An analytical representation of the global PES has been developed by means of the reproducing kernel Hilbert space method. The reaction is found barrierless. Two minima, corresponding to the SiOH and HSiO isomers, and six saddle points, among which the isomerization transition state, have been characterized on the PES. The vibrational spectra of the SiOH/HSiO radicals have been computed from second-order perturbation theory and quantum dynamics methods. The structural, energetic, and spectroscopic properties of the two isomers are in good agreement with experimental data and previous high quality calculations.

  19. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-03

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  20. Ab initio alpha-alpha scattering

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  1. An ab initio study of the kinetics of the reactions of halomethanes with the hydroxyl radical. 1. CH{sub 2}Br{sub 2}

    SciTech Connect

    Louis, F.; Gonzalez, C.A. Huie, R.E.; Kurylo, M.J.

    2000-04-06

    Ab initio calculations were carried out with Moeller-Plesset second- and fourth-order perturbation theory (MP2 and MP4), and the coupled cluster method, CCSD(T), on the H atom abstraction reaction from dibromomethane by hydroxyl radical attack. Geometry optimization and vibrational frequency calculations at the MP2 level were performed on reactants, products, and the transition state using the 6-311G(d,p) and 6-311G(2d,2p) basis sets. The geometry parameters optimized at the MP2/6-311G(2d,2p) level of theory were used in single-point energy calculations with increasing basis set sizes, from 6-311G(2d,2p) to 6-311++G(3df,3pd) at both the MP2 and MP4 (SDTQ) levels of theory. Canonical transition-state theory was used to predict the rate constants as a function of the temperature (250--400 K). It was found that the kinetic parameters obtained in this work with the spin-projected method PMP4(SDTQ)/6-311++G(3df,3pd)//MP2/6-311G(2d,2p) are in reasonable agreement with the experimental values. The prospect of using relatively low level ab initio electronic structure calculations aimed at the implementation of inexpensive semiquantitative screening tools that could air scientists in predicting the kinetics of similar processes is also discussed.

  2. Successive hydrogen-elimination reactions with low activation energies in the a-Si:H formation process: An ab initio molecular-orbital study

    NASA Astrophysics Data System (ADS)

    Sato, Kota; Sugiyama, Yoko; Uchiyama, Akihiko; Iwabuchi, Susumu; Hirano, Tsuneo; Koinuma, Hideomi

    1992-07-01

    Successive hydrogen elimination reactions with low activation energies during the formation of a-Si:H by silane plasma chemical vapor deposition are proposed on the basis of an ab initio molecular-orbital method. The activation energy of the first step, the reaction of a dangling-bond site with an adjacent tetrahedrally coordinated silicon atom, was found to be 25.2 kcal/mol at 0 K when the zero-point vibrational energy was taken into account. The subsequent step was an exothermic process with a lower activation energy. The total process was thermodynamically much more favorable than the molecular processes by which a hydrogen atom or molecule is eliminated.

  3. Ab initio calculations of nitramine dimers

    NASA Astrophysics Data System (ADS)

    Koh-Fallet, Sharon; Schweigert, Igor

    2015-06-01

    Elevated temperatures and pressures are typically thought to have opposing effects on the reaction channels of nitramine decomposition. These high temperatures promote reactions with loose transition structures (positive activation entropies and volumes), such as N-N bond homolysis. Elevated pressures promote reactions with tight transition structures (negative activation entropies and volumes), such as intramolecular and intermolecular H transfer. However, no quantitative data exists regarding the range of temperatures and pressures at which these effects become pronounced. We are pursuing ab initio calculations of the corresponding unimolecular and bimolecular transition structures with the objective of estimating the relevant thermochemical parameters and quantifying the effects of elevated temperature and pressures on the corresponding rate constants. Here, we present density functional theory and complete active space calculations of gas-phase molecular dimers of nitramines as an intermediate step toward modeling transition structures directly in the condensed phase. This work was supported by the Naval Research Laboratory via the American Society for Engineering and Education and by the Office of Naval Research, both directly and through the Naval Research Laboratory.

  4. Ab initio study of cyanoguanidine isomers

    NASA Astrophysics Data System (ADS)

    Arbuznikov, A. V.; Sheludyakova, L. A.; Burgina, E. B.

    1995-06-01

    An ab initio quantum chemical study of the geometric structure and stability of cyanoguanidine isomers was carried out at the Hartree-Fock and Møller-Plesset levels of theory. Two stable separable isomers ('cyanioime' and 'cyanoamine') are found. This gives evidence in favour of the vibrational spectroscopy data showing the existence of both isomers.

  5. Ab initio study of cyanoguanidine isomers

    NASA Astrophysics Data System (ADS)

    Arbuznikov, A. V.; Sheludyakova, L. A.; Burgina, E. B.

    1995-06-01

    An ab initio quantum chemical study of the geometric structure and stability of cyanoguanidine isomers was carried out at the Hartree-Fock and Møller-Plesset levels of theory. Two stable separable isomers (‘cyanioime' and ‘cyanoamine') are found. This gives evidence in favour of the vibrational spectroscopy data showing the existence of both isomers.

  6. Guided-Ion-Beam and ab Initio Study of the Li+, K+, and Rb+ Association Reactions with Gas-Phase Butanone and Cyclohexanone in Their Ground Electronic States

    NASA Astrophysics Data System (ADS)

    Lucas, J. M.; de Andrés, J.; López, E.; Albertí, M.; Bofill, J. M.; Bassi, D.; Ascenzi, D.; Tosi, P.; Aguilar, A.

    2009-08-01

    The association reactions between Li+, K+, and Rb+ (M) and butanone and cyclohexanone molecules under single collision conditions have been studied using a radiofrequency-guided ion-beam apparatus, characterizing the adducts by mass spectrometry. The excitation function for the [M-(molecule)]+ adducts (in arbitrary units) has been obtained at low collision energies in the 0.10 eV up to a few eV range in the center of mass frame. The measured relative cross sections decrease when collision energy increases, showing the expected energy dependence for adduct formation. The energetics and structure of the different adducts have been calculated ab initio at the MP2(full) level, showing that the M+-molecule interaction takes place through the carbonyl oxygen atom, as an example of a nontypical covalent chemical bond. The cross-section energy dependence and the role of radiative cooling rates allowing the stabilization of the collision complexes are also discussed.

  7. Synthesis and characterization of some new Schiff base complexes of group 13 elements, ab initio studies, cytotoxicity and reaction with hydrogen peroxide.

    PubMed

    Asadi, Mozaffar; Savaripoor, Nooshin; Asadi, Zahra; Ghatee, Mohammad Hadi; Moosavi, Fatemeh; Yousefi, Reza; Jamshidi, Mehrnaz

    2013-01-15

    A novel tetradentate Schiff base, naphthabza-H2=N,N'-bis(naphthylidene)-2-aminobenzylamine, and a series of aluminum(III), gallium(III), and indium(III) complexes with general formula, MLNO3, were synthesized and characterized by elemental analysis, 1H NMR, FT-IR, UV-Vis spectroscopy and thermogravimetric method. The product of the reaction of complexes with hydrogen peroxide was characterized by similar techniques. According to the ab initio calculations aluminum and gallium complexes have five-coordinated structures and indium complex is a six-coordinated one. Also, the growth inhibitory effects of the complexes toward K562 cancer cell line were measured and the results for these complexes are as follows: Al>Ga>In.

  8. Ab initio studies of ClOx reactions. IV. Kinetics and mechanism for the self-reaction of ClO radicals

    NASA Astrophysics Data System (ADS)

    Zhu, R. S.; Lin, M. C.

    2003-03-01

    The self-reaction of ClO radicals has been investigated by ab initio molecular orbital and variational transition state theory calculations. Both singlet and triplet potential energy surfaces were predicted by the modified Gaussian-2 method. The reaction was shown to take place mainly over the singlet surface by forming ClOOCl (k1) and ClOClO (k1'). These association processes were found to be strongly pressure dependent and the predicted total rate constants are in good agreement with the experimental data. The predicted second- and third-order rate constants for formation of ClOOCl and ClOClO can be expressed, respectively, in units of cm3 molecule-1 s-1 and cm6 molecule-2 s-1 by k1∞=1.6×10-9T-0.67 exp(-64/T), k1'∞=6.4×10-9T-0.78 exp(-76/T), and k10=8.31×10-20T-4.96 exp(-336/T), k1'0=1.72×10-14T-6.99 exp(-926/T) in the temperature range 180-500 K for N2 as the third body. The observed T, P-dependent data could be best accounted for with the heat of formation of ClOOCl, ΔfH0o(ClOOCl)=29.4±1 kcal/mol. The formation of Cl2+O2 (2), Cl+ClOO (3), and Cl+OClO (4) products have been confirmed, with the predicted pressure-independent rate constants: k2=1.09×10-13T0.66 exp(-1892/T); k3=1.36×10-13T0.77exp(-2168/T); k4=6.26×10-11T0.005 exp(-2896/T), respectively, in units of cm3 molecule-1 s-1, covering the temperature range 200-1500 K. These results are also in reasonable agreement with existing experimental kinetic data.

  9. Oxygen reduction reaction (ORR) on mixed oxy-nitride non-noble catalyst: Ab-initio simulation, elaboration and characterization

    NASA Astrophysics Data System (ADS)

    Seifitokaldani, Ali

    oxidizing potential (more than 2 volts vs. NHE). X-ray Photoelectron Spectroscopy (XPS) showed that the nitrogen amount on the surface of the electro-catalyst decreased from 11 % before the oxidation to 5 % after the oxidation, whereas the catalytic activity for the ORR decreased after the oxidation. Thus, decreasing the titanium nitride's amount in the titanium oxy-nitride surface reduced its catalytic activity. In the second phase of this project, electro-catalytic activity of the titanium nitride for the ORR was investigated via a density functional theory (DFT) computation. To the best of our knowledge, there is no theoretical and computational quantum chemistry study of the transition metal's nitride as the electro-catalyst in PEM fuel cells. ORR was considered to take place in three different sequential steps namely oxygen adsorption, hydroxide production and water desorption. Based on the XRD results, TiN(111) and TiN(200) were considered as the two major facets of the TiN. Simulation was done by the Vienna ab initio Simulation Package (VASP) based on the Plane-Wave basis sets and periodic boundary condition, while the PBE exchangecorrelational functional was used to describe the interactions among electrons. Comparing the adsorption energies proved existence of a strong dissociative adsorption of oxygen on the TiN(111) regardless of the adsorption sites. However, because of a relatively strong OH adsorption, TiN(111) loses the active sites to proceed the ORR, while on the TiN(200) surface, water production and desorption came about easily. Electron density of states (DOS) was obtained to calculate the d-band center and fractional filling in different situations. Considering two possible bridge and top adsorption sites on the TiN(200), these information indicated the hydroxide production and water desorption as the rate determining steps for the ORR in bridge and top sites, respectively. Therefore, it was shown that the TiN, specially TiN(200) had exhibited good

  10. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the Br(2P, 2P3/2) + CH4 → HBr + CH3 reaction

    NASA Astrophysics Data System (ADS)

    Czakó, Gábor

    2013-04-01

    Chemically accurate full-dimensional non-spin-orbit and spin-orbit (SO) ground-state potential energy surfaces (PESs) are obtained for the Br + CH4 → HBr + CH3 reaction by fitting 21 574 composite ab initio energy points. The composite method considers electron correlation methods up to CCSD(T), basis sets up to aug-cc-pwCVTZ-PP, correlation of the core electrons, scalar relativistic effects via an effective core potential (ECP), and SO corrections, thereby achieving an accuracy better than 0.5 kcal/mol. Benchmark structures and relative energies are computed for the stationary points using the ab initio focal-point analysis (FPA) scheme based on both ECP and Douglas-Kroll approaches providing all-electron relativistic CCSDT(Q)/complete-basis-set quality energies. The PESs accurately describe the saddle point of the abstraction reaction and the van der Waals complexes in the entrance and product channels. The SO-corrected PES provides a classical barrier height of 7285(7232 ± 50) cm-1, De values of 867(799 ± 10) and 399(344 ± 10) cm-1 for the complexes CH3-HBr and CH3-BrH, respectively, and reaction endothermicity of 7867(7857 ± 50) cm-1, in excellent agreement with the new, FPA-based benchmark data shown in parentheses. The difference between the Br + CH4 asymptotes of the non-SO and SO PESs is 1240 cm-1, in good agreement with the experiment (1228 cm-1). Quasiclassical trajectory calculations based on more than 13 million trajectories for the late-barrier Br + CH4(vk = 0, 1) [k = 1, 2, 3, 4] reactions show that the vibrational energy, especially the excitation of the stretching modes, activates the reaction much more efficiently than translational energy, in agreement with the extended Polanyi rules. Angular distributions show dominant backward scattering for the ground-state reaction and forward scattering for the stretching-excited reactions. The reactivity on the non-SO PES is about 3-5 times larger than that on the SO PES in a wide collision energy

  11. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the Br(2P, 2P(3∕2)) + CH4 → HBr + CH3 reaction.

    PubMed

    Czakó, Gábor

    2013-04-07

    Chemically accurate full-dimensional non-spin-orbit and spin-orbit (SO) ground-state potential energy surfaces (PESs) are obtained for the Br + CH4 → HBr + CH3 reaction by fitting 21 574 composite ab initio energy points. The composite method considers electron correlation methods up to CCSD(T), basis sets up to aug-cc-pwCVTZ-PP, correlation of the core electrons, scalar relativistic effects via an effective core potential (ECP), and SO corrections, thereby achieving an accuracy better than 0.5 kcal∕mol. Benchmark structures and relative energies are computed for the stationary points using the ab initio focal-point analysis (FPA) scheme based on both ECP and Douglas-Kroll approaches providing all-electron relativistic CCSDT(Q)∕complete-basis-set quality energies. The PESs accurately describe the saddle point of the abstraction reaction and the van der Waals complexes in the entrance and product channels. The SO-corrected PES provides a classical barrier height of 7285(7232 ± 50) cm(-1), De values of 867(799 ± 10) and 399(344 ± 10) cm(-1) for the complexes CH3-HBr and CH3-BrH, respectively, and reaction endothermicity of 7867(7857 ± 50) cm(-1), in excellent agreement with the new, FPA-based benchmark data shown in parentheses. The difference between the Br + CH4 asymptotes of the non-SO and SO PESs is 1240 cm(-1), in good agreement with the experiment (1228 cm(-1)). Quasiclassical trajectory calculations based on more than 13 million trajectories for the late-barrier Br + CH4(vk = 0, 1) [k = 1, 2, 3, 4] reactions show that the vibrational energy, especially the excitation of the stretching modes, activates the reaction much more efficiently than translational energy, in agreement with the extended Polanyi rules. Angular distributions show dominant backward scattering for the ground-state reaction and forward scattering for the stretching-excited reactions. The reactivity on the non-SO PES is about 3-5 times larger than that on the SO PES in a wide

  12. State-to-state quantum wave packet dynamics of the LiH + H reaction on two AB initio potential energy surfaces

    SciTech Connect

    Gómez-Carrasco, S.; González-Sánchez, L.; Roncero, O.

    2014-03-20

    The dynamics and kinetics of the LiH + H reaction have been studied by using an accurate quantum reactive time-dependent wave packet method on the ab initio ground electronic state potential energy surfaces (PES) developed earlier. Reaction probabilities for the two possible reaction channels, the LiH + H→ H{sub 2} + Li depletion process and the LiH + H→H + LiH hydrogen exchange reaction, have been calculated from 1 meV up to 1.0 eV collision energies for total angular momenta J from 0 to 80. State-to-state and total integral cross sections for the LiH-depletion and H-exchange channels of the reaction have been calculated over this collision energy range. It is found that the LiH-depletion channel is dominant in the whole range of collision energies for both PESs. Accurate total rate coefficients have been calculated on both surfaces from 100 K to 2000 K and are significantly larger than previous empirical estimates and previous J-shifting results. In addition, the present accurate calculations present noticeable differences with previous calculations using the centrifugal sudden approximation.

  13. Ab initio computational study of reaction mechanism of peptide bond formation on HF/6-31G(d,p) level

    NASA Astrophysics Data System (ADS)

    Siahaan, P.; Lalita, M. N. T.; Cahyono, B.; Laksitorini, M. D.; Hildayani, S. Z.

    2017-02-01

    Peptide plays an important role in modulation of various cell functions. Therefore, formation reaction of the peptide is important for chemical reactions. One way to probe the reaction of peptide synthesis is a computational method. The purpose of this research is to determine the reaction mechanism for peptide bond formation on Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine by ab initio computational approach. The calculations were carried out by theory and basis set HF/6-31G(d,p) for four mechanisms (path 1 to 4) that proposed in this research. The results show that the highest of the rate determining step between reactant and transition state (TS) for path 1, 2, 3, and 4 are 163.06 kJ.mol-1, 1868 kJ.mol-1, 5685 kJ.mol-1, and 1837 kJ.mol-1. The calculation shows that the most preferred reaction of Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine are on the path 1 (initiated with the termination of H+ in proline amino acid) that produce Ac-PV-NH2.

  14. E2 and SN2 Reactions of X(-) + CH3CH2X (X = F, Cl); an ab Initio and DFT Benchmark Study.

    PubMed

    Bento, A Patrícia; Solà, Miquel; Bickelhaupt, F Matthias

    2008-06-01

    We have computed consistent benchmark potential energy surfaces (PESs) for the anti-E2, syn-E2, and SN2 pathways of X(-) + CH3CH2X with X = F and Cl. This benchmark has been used to evaluate the performance of 31 popular density functionals, covering local-density approximation, generalized gradient approximation (GGA), meta-GGA, and hybrid density-functional theory (DFT). The ab initio benchmark has been obtained by exploring the PESs using a hierarchical series of ab initio methods [up to CCSD(T)] in combination with a hierarchical series of Gaussian-type basis sets (up to aug-cc-pVQZ). Our best CCSD(T) estimates show that the overall barriers for the various pathways increase in the order anti-E2 (X = F) < SN2 (X = F) < SN2 (X = Cl) ∼ syn-E2 (X = F) < anti-E2 (X = Cl) < syn-E2 (X = Cl). Thus, anti-E2 dominates for F(-) + CH3CH2F, and SN2 dominates for Cl(-) + CH3CH2Cl, while syn-E2 is in all cases the least favorable pathway. Best overall agreement with our ab initio benchmark is obtained by representatives from each of the three categories of functionals, GGA, meta-GGA, and hybrid DFT, with mean absolute errors in, for example, central barriers of 4.3 (OPBE), 2.2 (M06-L), and 2.0 kcal/mol (M06), respectively. Importantly, the hybrid functional BHandH and the meta-GGA M06-L yield incorrect trends and qualitative features of the PESs (in particular, an erroneous preference for SN2 over the anti-E2 in the case of F(-) + CH3CH2F) even though they are among the best functionals as measured by their small mean absolute errors of 3.3 and 2.2 kcal/mol in reaction barriers. OLYP and B3LYP have somewhat higher mean absolute errors in central barriers (5.6 and 4.8 kcal/mol, respectively), but the error distribution is somewhat more uniform, and as a consequence, the correct trends are reproduced.

  15. Ab initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.

    1983-06-01

    We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum

  16. Ab initio Theory of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Wang

    2007-03-01

    With blooming experimental synthesis of various nanostructures out of many semiconductor materials, there is an urgent need to calculate the electronic structures and optical properties of these nanosystems based on reliable ab initio methods. Unfortunately, due to the O(N^3) scaling of the conventional ab initio calculation methods based on the density functional theory (DFT), and the >1000 atom sizes of the most experimental nanosystems, the direct applications of these conventional ab intio methods are often difficult. Here we will present the calculated results using our O(N) scaling charge patching method (CPM) [1,2] to nanosystems up to 10,000 atoms. The CPM yields the charge density of a nanosystem by patching the charge motifs generated from small prototype systems. The CPM electron/hole eigen energies differ from the directly calculated results by only ˜10-20 meV. We will present the optical band gaps of quantum dots and wires, quantum rods, quantum dot/quantum well, and quantum dots doped with impurities. Besides good agreements with experimental measurements, we will demonstrate why it is important to perform ab initio calculations, in contrast with the continuum model k.p calculations. We will show the effects of surface polarization potentials and the internal electric fields. Finally, a linear scaling 3 dimensional fragment (LS3DF) method will be discussed. The LS3DF method can be used to calculate the total energy and atomic forces of a large nanosystem, with the results practically the same as the direct DFT method. Our work demonstrates that, with the help of supercomputers, it is now feasible to calculate the electronic structures and optical properties of >10,000 atom nanocrystals with ab initio accuracy. [1] L.W. Wang, Phys. Rev. Lett. 88, 256402 (2002). [2] J. Li, L.W. Wang, Phys. Rev. B 72, 125325 (2005).

  17. Direct ab initio molecular dynamics study on a microsolvated SN2 reaction of OH-(H2O) with CH3Cl.

    PubMed

    Tachikawa, Hiroto

    2006-10-07

    Reaction dynamics for a microsolvated SN2 reaction OH-(H2O)+CH3Cl have been investigated by means of the direct ab initio molecular dynamics method. The relative center-of-mass collision energies were chosen as 10, 15, and 25 kcal/mol. Three reaction channels were found as products. These are (1) a channel leading to complete dissociation (the products are CH3OH+Cl- +H2O: denoted by channel I), (2) a solvation channel (the products are Cl-(H2O)+CH3OH: channel II), and (3) a complex formation channel (the products are CH3OH...H2O+Cl-: channel III). The branching ratios for the three channels were drastically changed as a function of center-of-mass collision energy. The ratio of complete dissociation channel (channel I) increased with increasing collision energy, whereas that of channel III decreased. The solvation channel (channel II) was minor at all collision energies. The selectivity of the reaction channels and the mechanism are discussed on the basis of the theoretical results.

  18. Ab initio direct classical trajectory investigation on the SN2 reaction of F- with NH2F: nonstatistical central barrier recrossing dynamics.

    PubMed

    Yu, Feng

    2012-02-05

    The bimolecular nucleophilic substitution (S(N)2) reaction of F(a)(-) with NH(2)F(b) has been investigated with the ab initio direct classical trajectory method. According to our trajectory calculations, a dynamic behavior of nonstatistical central barrier recrossing is revealed. Among the 64 trajectories calculated in this work, 45 trajectories follow the dynamic reaction pathways as assumed by statistical theory and other 19 trajectories with central barrier recrossings are nonstatistical. For the nonstatistical trajectories, the central barrier recrossings may originate from the inefficient kinetic energy transfer from the intramolecular modes of the NH(2)F(a) moiety in the dynamic F(b)(-)…H-NH-F(a) complex to the intermolecular modes of the dynamic F(b)(-)…H-NH-F(a) complex on the exit-channel potential energy surface. With respect to the dynamic behavior of the nonstatistical central barrier recrossing, the statistical theories such as the Rice-Ramsperger-Kassel-Marcus and transition state theories without further corrections cannot be used to model the reaction kinetics for this S(N)2 reaction.

  19. Direct ab initio molecular dynamics study on a microsolvated SN2 reaction of OH-(H2O) with CH3Cl

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2006-10-01

    Reaction dynamics for a microsolvated SN2 reaction OH-(H2O)+CH3Cl have been investigated by means of the direct ab initio molecular dynamics method. The relative center-of-mass collision energies were chosen as 10, 15, and 25kcal/mol. Three reaction channels were found as products. These are (1) a channel leading to complete dissociation (the products are CH3OH+Cl-+H2O: denoted by channel I), (2) a solvation channel (the products are Cl-(H2O)+CH3OH: channel II), and (3) a complex formation channel (the products are CH3OH ⋯H2O+Cl-: channel III). The branching ratios for the three channels were drastically changed as a function of center-of-mass collision energy. The ratio of complete dissociation channel (channel I) increased with increasing collision energy, whereas that of channel III decreased. The solvation channel (channel II) was minor at all collision energies. The selectivity of the reaction channels and the mechanism are discussed on the basis of the theoretical results.

  20. Mode-specific multi-channel dynamics of the F- + CHD2Cl reaction on a global ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Szabó, István; Czakó, Gábor

    2016-10-01

    We report a detailed quasiclassical trajectory study for the dynamics of the ground-state and CH/CD stretching-excited F- + CHD2Cl(vCH/CD = 0, 1) → Cl- + CHD2F, HF + CD2Cl-, and DF + CHDCl- SN2, proton-, and deuteron-abstraction reactions using a full-dimensional global ab initio analytical potential energy surface. The simulations show that (a) CHD2Cl(vCH/CD = 1), especially for vCH = 1, maintains its mode-specific excited character prior to interaction, (b) the SN2 reaction is vibrationally mode-specific, (c) double inversion can occur and is enhanced upon CH/CD stretching excitations, (d) in the abstraction reactions the HF channel is preferred and the vCH/CD = 1 excitations significantly promote the HF/DF channels, (e) back-side rebound, back-side stripping, and front-side stripping are the dominant direct abstraction mechanisms based on correlated scattering- and attack-angle distributions, (f) the exact classical vibrational energy-based Gaussian binning (1GB) provides realistic mode-specific polyatomic product state distributions, (g) in the abstraction reactions CH and CD stretchings are not pure spectator modes and mainly ground-state products are produced, thus most of the initial energy transfers into product translation, and (h) the HF and DF product molecules are rotationally cold without any significant dependence on the reactant's and HF/DF vibrational states.

  1. A study of the atmospherically important reactions between dimethyl selenide (DMSe) and molecular halogens (X2 = Cl2, Br2, and I2) with ab initio calculations.

    PubMed

    Rhyman, Lydia; Armata, Nerina; Ramasami, Ponnadurai; Dyke, John M

    2012-06-14

    The atmospherically relevant reactions between dimethyl selenide (DMSe) and the molecular halogens (X(2) = Cl(2), Br(2), and I(2)) have been studied with ab initio calculations at the MP2/aug-cc-pVDZ level of theory. Geometry optimization calculations showed that the reactions proceed from the reagents to the products (CH(3)SeCH(2)X + HX) via three minima, a van der Waals adduct (DMSe:X(2)), a covalently bound intermediate (DMSeX(2)), and a product-like complex (CH(3)SeCH(2)X:HX). The computed potential energy surfaces are used to predict what molecular species are likely to be observed in spectroscopic experiments such as gas-phase photoelectron spectroscopy and infrared matrix isolation spectroscopy. It is concluded that, for the reactions of DMSe with Cl(2) and Br(2), the covalent intermediate should be seen in spectroscopic experiments, whereas, in the DMSe + I(2) reaction, the van der Waals adduct DMSe:I(2) should be observed. Comparison is made with previous related calculations and experiments on dimethyl sulfide (DMS) with molecular halogens. The relevance of the results to atmospheric chemistry is discussed. The DMSeX(2) and DMSe:X(2) intermediates are likely to be reservoirs of molecular halogens in the atmosphere which will lead on photolysis to ozone depletion.

  2. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  3. Ab Initio Crystal Field for Lanthanides.

    PubMed

    Ungur, Liviu; Chibotaru, Liviu F

    2017-03-13

    An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc)2 ](-) (Pc=phthalocyanine) and Dy4 K2 ([Dy(4) K(2) O(OtBu)(12) ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides.

  4. AB initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, D. R.; Komornicki, A.; White, S. R.; Wilson, K. R.

    1982-08-01

    We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schroedinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques, are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules.

  5. Ab initio study of the reaction pathways for OH + C/sub 2/H/sub 4/. -->. HOCH/sub 2/CH/sub 2/. -->. products

    SciTech Connect

    Sosa, C.; Schlegel, H.B.

    1987-11-11

    The energetically favorable reaction paths for the unimolecular decomposition of the primary addition product of OH + C/sub 2/H/sub 4/ have been studied with ab initio techniques. Equilibrium geometries and transition structures were fully optimized with 3-21G and 6-31G* basis sets at the Hartree-Fock level. Heats of reaction and barrier heights have been computed with Moeller-Plesset perturbation theory up to fourth order, with and without annihilation of spin contamination. At the MP4 level barrier heights are lowered by 2-7 kcal/mol when the largest spin contaminant is removed. After the addition of OH + C/sub 2/H/sub 4/ to form the 2-hydroxyethyl radical, the most favorable reaction path (other than decomposition to reactants) is the (1,3)-hydrogen shift to form ethoxy radical followed by a dissociation into CH/sub 3/ + CH/sub 2/O. Other slightly higher energy paths include dissociation of ethoxy into H + CH/sub 3/CHO and decomposition of the 2-hydroxyethyl radical into H + HOCHCH/sub 2/.

  6. High Level Ab Initio Kinetics as a Tool for Astrochemistry

    NASA Astrophysics Data System (ADS)

    Klippenstein, Stephen

    2015-05-01

    We will survey the application of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. The accuracy of various aspects of the calculations will be summarized including (i) the underlying ab initio electronic structure calculations, (ii) the treatment of the high pressure recombination process, and (iii) the treatment of the pressure dependence of the kinetics. The applications will consider the chemistry of phosphorous on giant planets, the kinetics of water dimerization, the chemistry of nitrogen on Titan's atmosphere, as well as various reactions of interstellar chemistry interest such as the recombination of OH with H, and O(3P) reacting with C2H5, CH2, and CCS. Chemical Sciences and Engineering Division.

  7. Ab Initio and Ab Exitu No-Core Shell Model

    SciTech Connect

    Vary, J P; Navratil, P; Gueorguiev, V G; Ormand, W E; Nogga, A; Maris, P; Shirokov, A

    2007-10-02

    We outline two complementary approaches based on the no core shell model (NCSM) and present recent results. In the ab initio approach, nuclear properties are evaluated with two-nucleon (NN) and three-nucleon interactions (TNI) derived within effective field theory (EFT) based on chiral perturbation theory (ChPT). Fitting two available parameters of the TNI generates good descriptions of light nuclei. In a second effort, an ab exitu approach, results are obtained with a realistic NN interaction derived by inverse scattering theory with off-shell properties tuned to fit light nuclei. Both approaches produce good results for observables sensitive to spin-orbit properties.

  8. Ab initio and RRKM calculations for multichannel rate constants of the C{sub 2}H{sub 3}+O{sub 2} reaction

    SciTech Connect

    Mebel, A.M.; Diau, E.W.G.; Lin, M.C.; Morokuma, K.

    1996-10-09

    A potential energy surface for the reaction of vinyl radical with molecular oxygen has been studied using the ab initio G2M(RCC, MP2) method. The most favorable reaction pathway leading to the major CHO+CH{sub 2}O products is described. The C{sub 2}H{sub 3}O+O products can be formed by elimination of the oxygen atom from C{sub 2}H{sub 3}OO via TS 23, which is by 7.8 kcal/mol lower in energy than the reactants, but by 6.5 kcal/mol higher than TS 9`. The hydrogen migration in 1` gives rise to another significant product channel: C{sub 2}H{sub 3}+O{sub 2} {yields} 1` {yields} TS 25` {yields} C{sub 2}H{sub 2}+O{sub 2}H, with TS 25` lying below C{sub 2}H{sub 3}+O{sub 2} by 3.5 kcal/mol. Multichannel RRKM calculations have been carried out for the total and individual rate constants for various channels using the G2M(RCC, MP2) energetics and molecular parameters of the intermediates and transition states. The computed low pressure reaction rate constant is in quantitative agreement with experiment. At atmospheric pressure, the title reaction is dominated by the stabilization of vinylperoxy radical C{sub 2}H{sub 3}OO at room temperature. In the 500-900 K temperature range, the CHO+CH{sub 2}O channel has the highest rate constant, and at T >= 900 K, C{sub 2}H{sub 3}O+O are the major products. At very high temperatures, the channel producing C{sub 2}H{sub 2} + O{sub 2}H becomes competitive. 15 refs., 3 figs., 4 tabs.

  9. Direct ab initio dynamics studies of the hydrogen abstraction reactions of hydrogen atom with n-propyl radical and isopropyl radical.

    PubMed

    Li, Qian Shu; Zhang, Yue; Zhang, Shaowen

    2005-02-01

    The kinetics of the hydrogen abstraction reactions of hydrogen atom with n-propyl radical and isopropyl radical were studied using the direct ab initio dynamics approach. BHandHLYP/cc-pVDZ method was employed to optimize the geometries of stationary points as well as the points on the minimum energy path (MEP). The energies of all the points for the two reactions were further refined at the QCISD(T)/cc-pVTZ level of theory. No barrier was found at the QCISD(T)/cc-pVTZ//BHandHLYP/cc-pVDZ level of theory for both reactions. The forward and reverse rate constants were evaluated with both canonical variational transition state theory (CVT) and microcanonical variational transition state theory (mu VT) in the temperature range of 300-2,500 K. The fitted three-parameter Arrhenius expression of the calculated CVT rate constants at the QCISD(T)/cc-pVTZ//BHandHLYP/cc-pVDZ level of theory are k(CVT) (n-C3H7) = 1.68 x 10(-14) T(0.84) e((319.5/T)) cm3 molecule(-1) s(-1) and k(CVT) (iso-C3H7)=4.99 x 10(-14) T(0.90) e((159.5/T)) cm3 molecule(-1) s(-1) for reactions of n-C3H7 + H and iso-C3H7 + H, respectively, which are in good agreement with available literature data. The variational effects were analysed.

  10. Ab initio study of CO2 capture mechanisms in aqueous monoethanolamine: reaction pathways for the direct interconversion of carbamate and bicarbonate.

    PubMed

    Matsuzaki, Yoichi; Yamada, Hidetaka; Chowdhury, Firoz A; Higashii, Takayuki; Onoda, Masami

    2013-09-26

    Ab initio molecular orbital calculations combined with the polarizable continuum model (PCM) formalism have been carried out for a comprehensive understanding of the mechanism of carbon dioxide (CO2) absorption by aqueous amine solutions. CO2 is captured by amines to generate carbamates and bicarbonate. We have examined the direct interconversion pathways of these two species (collectively represented by a reversible hydrolysis of carbamate) with the prototypical amine, monoethanolamine (MEA). We evaluate both a concerted and a stepwise mechanism for the neutral hydrolysis of MEA carbamate. Large activation energies (ca. 36 kcal/mol) and lack of increase in catalytic efficiency with the inclusion of additional water molecules are predicted in both the mechanisms. We also examined the mechanism of alkaline hydrolysis of MEA carbamate at high concentrations of amine (high pH). The addition of OH(-) ion to carbamate anion was theoretically not allowed due to the reduction in the nucleophilicity of the former as a result of microsolvation. We propose an alternative pathway for hydrolysis: a proton transfer from protonated MEA to carbamate to generate the carbamic acid that initially undergoes a nucleophilic addition of OH(-) and subsequent low-barrier reactions leading to the formation of bicarbonate and free MEA. On the basis of the calculated activation energies, this pathway would be the most efficient route for the direct interconversion of carbamate and bicarbonate without the intermediacy of the free CO2, while the actual contributions will be dependent on the concentrations of protonated MEA and OH(-) ions.

  11. Germacrene D Cyclization: An Ab Initio Investigation

    PubMed Central

    Setzer, William N.

    2008-01-01

    Essential oils that contain large concentrations of germacrene D are typically accompanied by cadinane sesquiterpenoids. The acid-catalyzed cyclization of germacrene D to give cadinane and selinane sesquiterpenes has been computationally investigated using both density functional (B3LYP/6-31G*) and post Hartree-Fock (MP2/6-31G* *) ab initio methods. The calculated energies are in general agreement with experimentally observed product distributions, both from acid-catalyzed cyclizations as well as distribution of the compounds in essential oils. PMID:19325722

  12. Molecular associations from ab initio pair potentials

    NASA Astrophysics Data System (ADS)

    Iglesias, E.; Sordo, T. L.; Sordo, J. A.

    1991-12-01

    A method of building up stable molecular associations by using pair potentials from ab initio calculations is presented. The Matsuoka-Clementi-Yoshimine potential has been chosen to emulate the water-water interactions while 1-6-12 potentials are used to compute both solute-solvent and solute-solute interactions. Parameters for neutral-amino-acid-water and neutral- amino-acid-neutral-amino-acid interactions are provided by the program. Supermolecules are constructed by minimization of the interaction energy of the molecules involved. Both steepest-decent and Fletcher-Powell algorithms are available to carry out such a minimization.

  13. Ab-initio phasing in protein crystallography

    NASA Astrophysics Data System (ADS)

    van der Plas, J. L.; Millane, Rick P.

    2000-11-01

    The central problem in the determination of protein structures form x-ray diffraction dada (x-ray crystallography) corresponds to a phase retrieval problem with undersampled amplitude data. Algorithms for this problem that have an increased radius of convergence have the potential for reducing the amount of experimental work, and cost, involved in determining protein structures. We describe such an algorithm. Application of the algorithm to a simulated crystallographic problem shows that it converges to the correct solution, with no initial phase information, where currently used algorithms fail. The results lend support to the possibility of ab initio phasing in protein crystallography.

  14. Ab-initio Studies Of Lithium Oxide

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Goel, Prabhatasree; Mittal, R.; Chaplot, S. L.

    2010-12-01

    Lithium oxide is an important material because of its high thermal conductivity and superionic behavior at high temperature. It behaves like a superionic conductor above 1200 K. Phonon frequencies have been calculated using ab-initio method. The calculations of phonon dispersion relation near unit cell volume corresponding to the superionic transition indicate softening of zone boundary transverse acoustic phonon mode along (110). The instability of phonon mode could lead to the dynamical disorder of lithium sub lattice. Thermal expansion and equation of states are also computed. The results compare well with our previous semi-empirical potential calculations.

  15. Ab Initio Chemical Kinetics for the CH3 + O((3)P) Reaction and Related Isomerization-Decomposition of CH3O and CH2OH Radicals.

    PubMed

    Xu, Z F; Raghunath, P; Lin, M C

    2015-07-16

    The kinetics and mechanism of the CH3 + O reaction and related isomerization-decomposition of CH3O and CH2OH radicals have been studied by ab initio molecular orbital theory based on the CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ, CCSD/aug-cc-pVDZ, and G2M//B3LYP/6-311+G(3df,2p) levels of theory. The predicted potential energy surface of the CH3 + O reaction shows that the CHO + H2 products can be directly generated from CH3O by the TS3 → LM1 → TS7 → LM2 → TS4 path, in which both LM1 and LM2 are very loose and TS7 is roaming-like. The result for the CH2O + H reaction shows that there are three low-energy barrier processes including CH2O + H → CHO + H2 via H-abstraction and CH2O + H → CH2OH and CH2O + H → CH3O by addition reactions. The predicted enthalpies of formation of the CH2OH and CH3O radicals at 0 K are in good agreement with available experimental data. Furthermore, the rate constants for the forward and some key reverse reactions have been predicted at 200-3000 K under various pressures. Based on the new reaction pathway for CH3 + O, the rate constants for the CH2O + H and CHO + H2 reactions were predicted with the microcanonical variational transition-state/Rice-Ramsperger-Kassel-Marcus (VTST/RRKM) theory. The predicted total and individual product branching ratios (i.e., CO versus CH2O) are in good agreement with experimental data. The rate constant for the hydrogen abstraction reaction of CH2O + H has been calculated by the canonical variational transition-state theory with quantum tunneling and small-curvature corrections to be k(CH2O + H → CHO + H2) = 2.28 × 10(-19) T(2.65) exp(-766.5/T) cm(3) molecule(-1) s(-1) for the 200-3000 K temperature range. The rate constants for the addition giving CH3O and CH2OH and the decomposition of the two radicals have been calculated by the microcanonical RRKM theory with the time-dependent master equation solution of the multiple quantum well system in the 200-3000 K temperature range at 1 Torr to

  16. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2012-11-12

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  17. Ab initio based polarizable force field parametrization

    NASA Astrophysics Data System (ADS)

    Masia, Marco

    2008-05-01

    Experimental and simulation studies of anion-water systems have pointed out the importance of molecular polarization for many phenomena ranging from hydrogen-bond dynamics to water interfaces structure. The study of such systems at molecular level is usually made with classical molecular dynamics simulations. Structural and dynamical features are deeply influenced by molecular and ionic polarizability, which parametrization in classical force field has been an object of long-standing efforts. Although when classical models are compared to ab initio calculations at condensed phase, it is found that the water dipole moments are underestimated by ˜30%, while the anion shows an overpolarization at short distances. A model for chloride-water polarizable interaction is parametrized here, making use of Car-Parrinello simulations at condensed phase. The results hint to an innovative approach in polarizable force fields development, based on ab initio simulations, which do not suffer for the mentioned drawbacks. The method is general and can be applied to the modeling of different systems ranging from biomolecular to solid state simulations.

  18. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  19. Global sampling of the photochemical reaction paths of bromoform by ultrafast deep-UV through near-IR transient absorption and ab initio multiconfigurational calculations

    NASA Astrophysics Data System (ADS)

    Pal, S. K.; Mereshchenko, A. S.; Butaeva, E. V.; El-Khoury, P. Z.; Tarnovsky, A. N.

    2013-03-01

    Ultrafast deep-ultraviolet through near infrared (210-950 nm) transient absorption spectroscopy complemented by ab initio multiconfigurational calculations offers a global description of the photochemical reaction pathways of bromoform following 255-nm excitation in methylcyclohexane and acetonitrile solutions. Photoexcitation of CHBr3 leads to the ground-state iso-CHBr3 product in a large quantum yield (˜35%), formed through two different mechanisms: concerted excited-state isomerization and cage-induced isomerization through the recombination of the nascent radical pair. These two processes take place on different time scales of tens of femtoseconds and several picoseconds, respectively. The novel ultrafast direct isomerization pathway proposed herein is consistent with the occurrence of a conical intersection between the first excited singlet state of CHBr3 and the ground electronic state of iso-CHBr3. Complete active space self-consistent field calculations characterize this singularity in the vicinity of a second order saddle point on the ground state which connects the two isomer forms. For cage-induced isomerization, both the formation of the nascent radical pair and its subsequent collapse into ground-state iso-CHBr3 are directly monitored through the deep-ultraviolet absorption signatures of the radical species. In both mechanisms, the optically active (i.e., those with largest Franck-Condon factors) C-Br-Br bending and Br-Br stretching modes of ground-state iso-CHBr3 have the largest projection on the reaction coordinate, enabling us to trace the structural changes accompanying vibrational relaxation of the non-equilibrated isomers through transient absorption dynamics. The iso-CHBr3 photoproduct is stable in methylcyclohexane, but undergoes either facile thermal isomerization to the parent CHBr3 structure through a cyclic transition state stabilized by the polar acetonitrile medium (˜300-ps lifetime), and hydrolysis in the presence of water.

  20. Ab initio study on the kinetics of hydrogen abstraction for the H+alkene-->H2+alkenyl reaction class.

    PubMed

    Huynh, Lam K; Panasewicz, Sylwester; Ratkiewicz, Artur; Truong, Thanh N

    2007-03-22

    Kinetics of the hydrogen abstraction reaction class of the H+alkene has been studied using the reaction class transition state theory (RC-TST) combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approach. The rate constants for the reference reaction, H+C2H4, were obtained by the canonical variational transition state theory (CVT) with the small curvature tunneling (SCT) correction in the temperature range of 300-3000 K. Combined with these data, both the RC-TST/LER, where only reaction energy is needed, and RC-TST/BHG, where no other information is needed, are found to be promising methods for predicting rate constants for a large number of reactions in this reaction class. Our analysis indicates that less than 50% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER or RC-TST/BHG method while in comparison to explicit rate calculations the differences are less than 100% or a factor of 2 on the average.

  1. Ab initio study of the influence of resonance stabilization on intramolecular ring closure reactions of hydrocarbon radicals.

    PubMed

    Wang, Kun; Villano, Stephanie M; Dean, Anthony M

    2016-03-28

    The intramolecular ring closure reactions of unsaturated hydrocarbon radicals potentially play an important role for the formation of molecular weight growth species, especially during the pyrolysis and oxidation of alkenes under low to intermediate temperatures. In this work we investigated a series of intramolecular cycloaddition reactions of both allylic- and alkyl-type dienyl radicals. In the first set of reactions, a resonant linear radical is converted into a non-resonant cyclic radical. In the second set, a non-resonant linear alkenyl radical isomerizes to either a resonant cyclic radical or a cyclic carbinyl radical. In both cases, three different reaction schemes are examined based on the location of the partially-formed resonance structure in the cyclic transition state. For each reaction scheme, both the endo- and exo-pathways were investigated. High pressure rate parameters are obtained from the results of CBS-QB3 electronic structure calculations combined with canonical transition state theory calculations. The results are discussed in the context of a Benson-type model to examine the impact of the partially-formed resonance stabilization on both the activation energies and pre-exponential factors. The results are compared to previously reported rate parameters for cycloaddition reactions of alkenyl radicals. The differences in the activation energies are primarily due to the bimolecular component of the activation energy. However, in some cases, the presence of the partial resonance structure significantly increases the strain energy for the ring that is formed in the transition state. The pre-exponential factors are also impacted by the formation of a partial resonance structure in the transition state. Lastly, the C6H9 potential energy surface is examined to show how the trends that are outlined here can be used to estimate rate parameters, which are needed to analyze pressure-dependent reaction systems.

  2. Ab initio Kinetics of Methylamine Radical Thermal Decomposition and H-abstraction from Monomethylhydrazine by H Atom

    DTIC Science & Technology

    2014-08-01

    Technical Paper 3. DATES COVERED (From - To) December 2013- August 2014 4. TITLE AND SUBTITLE Ab initio Kinetics of Methylamine Radical Thermal...phase kinetics of H-abstraction reactions from CH3NHNH2 by H atoms was further investigated by ab initio second-order multireference perturbation...distribution unlimited Ab initio Kinetics of Methylamine Radical Thermal Decomposition and H-abstraction from Monomethylhydrazine by H Atom

  3. Investigation of thermochemistry associated with the carbon-carbon coupling reactions of furan and furfural using ab initio methods.

    PubMed

    Liu, Cong; Assary, Rajeev S; Curtiss, Larry A

    2014-06-26

    Upgrading furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan can be coupled with various C1 to C4 low molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase to produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (∼25 kcal/mol) are lower than the cellulose activation or decomposition reactions (∼50 kcal/mol). Cycloaddition of C5-C8 cyclo ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products, and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ∼20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons.

  4. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  5. Ab initio characterization of (CH3IO3) isomers and the CH3O2 + IO reaction pathways.

    PubMed

    Drougas, Evangelos; Kosmas, Agnie M

    2007-05-03

    The geometries, harmonic vibrational frequencies, relative energetics, and enthalpies of formation of (CH(3)IO(3)) isomers and the reaction CH(3)O(2) + IO have been investigated using quantum mechanical methods. Optimization has been performed at the MP2 level of theory, using all electron and effective core potential, ECP, computational techniques. The relative energetics has been studied by single-point calculations at the CCSD(T) level. Methyl iodate, CH(3)OIO(2), is found to be the lowest-energy isomer showing particular stabilization. The two nascent association minima, CH(3)OOOI and CH(3)OOIO, show similar stabilities, and they are considerably higher located than CH(3)OIO(2). Interisomerization barriers have been determined, along with the transition states involved in various pathways of the reaction CH(3)O(2) + IO.

  6. Recent Progresses in Ab-Initio Studies of Low-Energy Few-Nucleon Reactions of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Marcucci, Laura E.

    2017-03-01

    We review the most recent theoretical studies of nuclear reactions of astrophysical interest involving few-nucleon systems. In particular, we focus on the radiative capture of protons by deuterons in the energy range of interest for Big Bang Nucleosynthesis. Related to this, we will discuss also the most recent calculation of tritium β -decay. Two frameworks will be considered, the conventional and the chiral effective field theory approach.

  7. An ab initio molecular orbital study of potential energy surface of the NH2+NO2 reaction

    NASA Astrophysics Data System (ADS)

    Mebel, A. M.; Hsu, C.-C.; Lin, M. C.; Morokuma, K.

    1995-10-01

    Potential energy surface of the reaction of NH2 with NO2 has been studied at the QCISD(T)/6-311G(d,p)//MP2/6-311G(d,p)+ZPC[MP2/6-311G(d,p)] and GAUSSIAN-2 (G2) levels of calculation. The reaction is shown to give three different groups of products. H2NO+NO can be produced by two different channels: (i) the barrierless association of the reactants to form H2NNO2 1, followed by the nitro-nitrite rearrangement into H2NONO 3 and the ON bond scission and (ii) the association of H2N with ONO directly forming 3 without barrier, followed by the dissociation 3. The barrier for the nitro-nitrite rearrangement at the transition state (TS) 2, 31.2 kcal/mol with respect to 1, is 20.8 kcal/mol lower than the reactants at the best G2 level. The TS 2 is found to lie significantly lower and to have much tighter structure than those previously reported. The thermodynamically most stable N2O+H2O products can be formed from 1 by the complex mechanism (iii), involving 1,3-hydrogen shift from nitrogen to oxygen, rotation of the OH bond, H shift from one oxygen to another and migration of the second H atom from N to O leading to elimination of H2O. The rate-determining step is the 1,3-H shift at TS 4 which is 12.5 kcal/mol lower than NH2+NO2, but 8.3 kcal/mol higher than the barrier for the nitro-nitrite isomerization at TS 2 at the G2 level. N2+H2O2 cannot be formed in the reaction, but several channels are shown to produce N2+2OH. All of them have as the rate-determining step the second 1,3-hydrogen shift from nitrogen to oxygen at TS 11 or 16, lying by 6.9 kcal/mol higher than NH2+NO2, and are not expected to compete with the reaction mechanisms producing H2NO+NO and N2O+H2O.

  8. Ab initio molecular dynamics with enhanced sampling for surface reaction kinetics at finite temperatures: CH2⇌ CH + H on Ni(111) as a case study.

    PubMed

    Sun, Geng; Jiang, Hong

    2015-12-21

    A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH2⇌CH+H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for accurate description of

  9. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K.

    PubMed

    Cheng, Tao; Xiao, Hai; Goddard, William A

    2017-02-21

    A critical step toward the rational design of new catalysts that achieve selective and efficient reduction of CO2 to specific hydrocarbons and oxygenates is to determine the detailed reaction mechanism including kinetics and product selectivity as a function of pH and applied potential for known systems. To accomplish this, we apply ab initio molecular metadynamics simulations (AIMμD) for the water/Cu(100) system with five layers of the explicit solvent under a potential of -0.59 V [reversible hydrogen electrode (RHE)] at pH 7 and compare with experiment. From these free-energy calculations, we determined the kinetics and pathways for major products (ethylene and methane) and minor products (ethanol, glyoxal, glycolaldehyde, ethylene glycol, acetaldehyde, ethane, and methanol). For an applied potential (U) greater than -0.6 V (RHE) ethylene, the major product, is produced via the Eley-Rideal (ER) mechanism using H2O + e(-) The rate-determining step (RDS) is C-C coupling of two CO, with ΔG(‡) = 0.69 eV. For an applied potential less than -0.60 V (RHE), the rate of ethylene formation decreases, mainly due to the loss of CO surface sites, which are replaced by H*. The reappearance of C2H4 along with CH4 at U less than -0.85 V arises from *CHO formation produced via an ER process of H* with nonadsorbed CO (a unique result). This *CHO is the common intermediate for the formation of both CH4 and C2H4 These results suggest that, to obtain hydrocarbon products selectively and efficiency at pH 7, we need to increase the CO concentration by changing the solvent or alloying the surface.

  10. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  11. Ab Initio Calculation of the Hoyle State

    SciTech Connect

    Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.

    2011-05-13

    The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.

  12. Guiding ab initio calculations by alchemical derivatives

    NASA Astrophysics Data System (ADS)

    to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.

    2016-03-01

    We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.

  13. Ab initio reaction pathways for photodissociation and isomerization of nitromethane on four singlet potential energy surfaces with three roaming paths

    SciTech Connect

    Isegawa, Miho; Liu, Fengyi; Morokuma, Keiji; Maeda, Satoshi

    2014-06-28

    Photodissociation pathways of nitromethane following π → π{sup *} electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH{sub 3} and NO{sub 2} ({sup 2}B{sub 2}) is formed by direct dissociation from the S{sub 1} state. Important pathways involving S{sub 1} and S{sub 0} states for production of various dissociation products CH{sub 3}NO + O ({sup 1}D), CH{sub 3}O(X{sup 2}E) + NO (X{sup 2}Π), CH{sub 2}NO + OH, and CH{sub 2}O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH{sub 3}NO{sub 2}, the OH radical roaming in OH dissociation from CH{sub 2}N(O)(OH), and the NO roaming in NO dissociation from CH{sub 3}ONO.

  14. A Density Functional Theory and ab Initio Investigation of the Oxidation Reaction of CO by IO Radicals.

    PubMed

    Khanniche, Sarah; Louis, Florent; Cantrel, Laurent; Černušák, Ivan

    2016-03-17

    To get an insight into the possible reactivity between iodine oxides and CO, a first step was to study the thermochemical properties and kinetic parameters of the reaction between IO and CO using theoretical chemistry tools. All stationary points involved were optimized using the Becke's three-parameter hybrid exchange functional coupled with the Lee-Yang-Parr nonlocal correlation functional (B3LYP) and the Møller-Plesset second-order perturbation theory (MP2). Single-point energy calculations were performed using the coupled cluster theory with the iterative inclusion of singles and doubles and the perturbative estimation for triple excitations (CCSD(T)) and the aug-cc-pVnZ (n = T, Q, and 5) basis sets on geometries previously optimized at the aug-cc-pVTZ level. The energetics was then recalculated using the one-component DK-CCSD(T) approach with the relativistic ANO basis sets. The spin-orbit coupling for the iodine containing species was calculated a posteriori using the restricted active space state interaction method in conjunction with the multiconfigurational perturbation theory (CASPT2/RASSI) employing the complete active space (CASSCF) wave function as the reference. The CCSD(T) energies were also corrected for BSSE for molecular complexes and refined with the extrapolation to CBS limit while the DK-CCSD(T) values were refined with the extrapolation to FCI. The exploration of the potential energy surface revealed a two-steps mechanism with a trans and a cis pathway. The rate constants for the direct and complex mechanism were computed as a function of temperature (250-2500 K) using the canonical transition state theory. The three-parameter Arrhenius expressions obtained for the direct and indirect mechanism at the DK-CCSD(T)-cf level of theory is 1.49 × 10(-17) × T(1.77) exp(-47.4 (kJ mol(-1))/RT).

  15. Ab initio simulations reveal that reaction dynamics strongly affect product selectivity for the cracking of alkanes over H-MFI.

    PubMed

    Zimmerman, Paul M; Tranca, Diana C; Gomes, Joseph; Lambrecht, Daniel S; Head-Gordon, Martin; Bell, Alexis T

    2012-11-28

    Product selectivity of alkane cracking catalysis in the H-MFI zeolite is investigated using both static and dynamic first-principles quantum mechanics/molecular mechanics simulations. These simulations account for the electrostatic- and shape-selective interactions in the zeolite and provide enthalpic barriers that are closely comparable to experiment. Cracking transition states for n-pentane lead to a metastable intermediate (a local minimum with relatively small barriers to escape to deeper minima) where the proton is shared between two hydrocarbon fragments. The zeolite strongly stabilizes these carbocations compared to the gas phase, and the conversion of this intermediate to more stable species determines the product selectivity. Static reaction pathways on the potential energy surface starting from the metastable intermediate include a variety of possible conversions into more stable products. One-picosecond quasiclassical trajectory simulations performed at 773 K indicate that dynamic paths are substantially more diverse than the potential energy paths. Vibrational motion that is dynamically sampled after the cracking transition state causes spilling of the metastable intermediate into a variety of different products. A nearly 10-fold change in the branching ratio between C2/C3 cracking channels is found upon inclusion of post-transition-state dynamics, relative to static electronic structure calculations. Agreement with experiment is improved by the same factor. Because dynamical effects occur soon after passing through the rate-limiting transition state, it is the dynamics, and not only the potential energy barriers, that determine the catalytic selectivity. This study suggests that selectivity in zeolite catalysis is determined by high temperature pathways that differ significantly from 0 K potential surfaces.

  16. An Extended Ab Initio and Theoretical Thermodynamics Studies of the Bergman Reaction and the Energy Splitting of the Singlet Ortho-, Meta-, and Para-Benzynes

    NASA Technical Reports Server (NTRS)

    Lindh, Roland; Lee, Timothy J.; Bernhardsson, Anders; Persson, B. Joakim; Karlstroem, Gunnar; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The autoaromatization of (Z)-hex-3-ene-1,5-diyne to the singlet biradical para-benzyne has been reinvestigated by state of the art ab initio methods. Previous CCSD(T)/6-31G(d,p) and CASPT2[0]/ANO[C(5s4p2d1f)/H(3s2p)] calculations estimated the the reaction heat at 298 K to be 8-10 and 4.9 plus or minus 3.2 kcal/mol, respectively. Recent NO- and oxygen-dependent trapping experiments and collision-induced dissociation threshold energy experiments estimate the heat of reaction to be 8.5 plus or minus 1.0 at 470 K (recomputed to 9.5 plus or minus 1.0 at 298 K) and 8.4 plus or minus 3.0 kcal/mol at 298 K, respectively. New theoretical estimates at 298 K predict the values at the basis set limit for the CCSD(T) and CASPT2(g1) methods to be 12.7 plus or minus 2.0 and 5.4 plus or minus 2.0 kcal/mol, respectively. The experimentally predicted electronic contribution to the heat of activation is 28.6 kcal/mol. This can be compared with 25.5 and 29.8 kcal/mol from the CASPT2[g1] and the CCSD(T) methods, respectively. The new study has in particular improved on the one-particle basis set for the CCSD(T) method as compared to earlier studies. For the CASPT2 investigation the better suited CASPT2[g1] approximation is utilized. The original CASPT2 method, CASPT2[0], systematically favors open shell systems relative to closed shell systems. This was previously corrected empirically. The study shows that the energy difference between CCSD(T) and CASPT2[g1] at the basis set limit is estimated to be 7 plus or minus 2 kcal/mol. The study also demonstrates that the estimated heat of reaction is very sensitive to the quality of the basis set.

  17. A nine-dimensional ab initio global potential energy surface for the H{sub 2}O{sup +} + H{sub 2} → H{sub 3}O{sup +} + H reaction

    SciTech Connect

    Li, Anyang; Guo, Hua

    2014-06-14

    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm{sup −1}. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H{sub 4}O{sup +} well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H{sub 2}O{sup +} rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H{sub 2}O{sup +} reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.

  18. Transition state theory thermal rate constants and RRKM-based branching ratios for the N((2)D) + CH(4) reaction based on multi-state and multi-reference ab initio calculations of interest for the Titan's chemistry.

    PubMed

    Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Scribano, Yohann; Bussery-Honvault, Béatrice

    2012-10-30

    Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N((2)D) + CH(4) reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol(-1) (MR-AQCC) and 3.89 kJ mol(-1) (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N((2)D) + CH(4) reaction proceeds via an insertion-dissociation mechanism and that the dominant product channels are CH(2)NH + H and CH(3) + NH.

  19. Ab Initio: And a New Era of Airline Pilot Training.

    ERIC Educational Resources Information Center

    Gesell, Laurence E.

    1995-01-01

    Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)

  20. Ab initio two-component Ehrenfest dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-21

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  1. Ab initio phase diagram of iridium

    NASA Astrophysics Data System (ADS)

    Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.

    2016-09-01

    The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.

  2. Ab Initio Quantum Simulations of Liquid Water

    NASA Astrophysics Data System (ADS)

    Gergely, John; Ceperley, David; Gygi, Francois

    2007-03-01

    Some recent efforts at simulating liquid water have employed ``ab initio'' molecular dynamics (AIMD) methods with forces from a version of density functional theory (DFT) and, in some cases, imaginary-time path integrals (PI) to study quantum effects of the protons. Although AIMD methods have met with many successes, errors introduced by the approximations and choices of simulation parameters are not fully understood. We report on path integral Monte Carlo (PIMC) studies of liquid water using DFT energies that provide quantitative benchmarks for PI-AIMD work. Specifically, we present convergence studies of the path integrals and address whether the Trotter number can be reduced by improving the form of the (approximate) action. Also, we assess 1) whether typical AIMD simulations are sufficiently converged in simulation time, i.e., if there is reason to suspect that nonergodic behavior in PI-AIMD methods leads to poor convergence, and 2) the relative efficiency of the methods. E. Schwegler, J.C. Grossman, F. Gygi, G. Galli, J. Chem. Phys 121, 5400 (2004).

  3. Ab-initio study of hexagonal apatites

    NASA Astrophysics Data System (ADS)

    Calderin, Lazaro; Stott, Malcom J.

    2001-03-01

    A silicon stabilized mixture of calcium phosphate phases has been recognized as playing an important role in actively resorbable coatings and in ceramics as bone materials. The nature of this material is being investigated using a variety of techniques including a combination of crystallographic analysis of measured x-ray diffraction spectra, and ab initio quantum mechanics simulations. We have used all-electron, density functional based calculations to investigate a group of hexagonal apatites. The fully relaxed crystallographic structures of hydroxyapatite, and related apatites have been obtained. We will present the results and discuss the nature of the bonding in these materials. The x-ray diffraction pattern and the infra-red spectra have also been obtained and will be compared with experiment. Acknowledgments:This work is part of a collaboration with the Applied Ceramics group of M.Sayer, and with Millenium Biologix Inc. Support of the NSERC of Canada through the award of a Co-operative R & D grant to the collaboration is acknowledged.

  4. Skutterudites under pressure: An ab initio study

    SciTech Connect

    Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.

    2014-03-07

    Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.

  5. An experimental guided-ion-beam and ab initio study of the ion-molecule gas-phase reactions between Li{sup +} ions and iso-C{sub 3}H{sub 7}Cl in their ground electronic state

    SciTech Connect

    Lucas, J. M.; Andres, J. de; Sogas, J.; Alberti, M.; Aguilar, A.; Bofill, J. M.; Bassi, D.; Ascenzi, D.; Tosi, P.

    2009-07-14

    Reactive collisions between Li{sup +} ions and i-C{sub 3}H{sub 7}Cl molecules have been studied in the 0.20-12.00 eV center-of-mass energy range using an octopole radio frequency guided-ion beam apparatus recently developed in our laboratory. At low collision energies, dehydrohalogenation reactions giving rise to Li(C{sub 3}H{sub 6}){sup +} and Li(HCl){sup +} are the main reaction channels, while at higher ones C{sub 3}H{sub 7}{sup +} and C{sub 2}H{sub 3}{sup +} become dominant, all their reactive cross sections having been measured as a function of the collision energy. To obtain information about the potential energy surfaces (PESs) on which the reactive processes take place, ab initio calculations at the MP2 level have been performed. For dehydrohalogenations, the reactive ground singlet PES shows ion-molecule adduct formation in both the reactant and product sides of the surface. Following the minimum energy path connecting both minima, an unstable intermediate and the corresponding barriers, both lying below the reactant's energy, have been characterized. The entrance channel ion-molecule adduct is also involved in the formation of C{sub 3}H{sub 7}{sup +}, which then generates C{sub 2}H{sub 3}{sup +} via an CH{sub 4} unimolecular elimination. A qualitative interpretation of the experimental results based on ab initio calculations is also included.

  6. Reactive Monte Carlo sampling with an ab initio potential

    DOE PAGES

    Leiding, Jeff; Coe, Joshua D.

    2016-05-04

    Here, we present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We also discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). Furthermore, we find that there are regions of state space formore » which RxMC sampling is much more efficient than AIMD due to the “rare-event” character of chemical reactions.« less

  7. Ab initio no core shell model

    SciTech Connect

    Barrett, Bruce R.; Navrátil, Petr; Vary, James P.

    2012-11-17

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN

  8. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  9. THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY

    SciTech Connect

    Turchi, P A

    2004-09-24

    Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.

  10. Electronic coupling calculation and pathway analysis of electron transfer reaction using ab initio fragment-based method. I. FMO-LCMO approach

    NASA Astrophysics Data System (ADS)

    Nishioka, Hirotaka; Ando, Koji

    2011-05-01

    By making use of an ab initio fragment-based electronic structure method, fragment molecular orbital-linear combination of MOs of the fragments (FMO-LCMO), developed by Tsuneyuki et al. [Chem. Phys. Lett. 476, 104 (2009)], 10.1016/j.cplett.2009.05.069, we propose a novel approach to describe long-distance electron transfer (ET) in large system. The FMO-LCMO method produces one-electron Hamiltonian of whole system using the output of the FMO calculation with computational cost much lower than conventional all-electron calculations. Diagonalizing the FMO-LCMO Hamiltonian matrix, the molecular orbitals (MOs) of the whole system can be described by the LCMOs. In our approach, electronic coupling TDA of ET is calculated from the energy splitting of the frontier MOs of whole system or perturbation method in terms of the FMO-LCMO Hamiltonian matrix. Moreover, taking into account only the valence MOs of the fragments, we can considerably reduce computational cost to evaluate TDA. Our approach was tested on four different kinds of model ET systems with non-covalent stacks of methane, non-covalent stacks of benzene, trans-alkanes, and alanine polypeptides as their bridge molecules, respectively. As a result, it reproduced reasonable TDA for all cases compared to the reference all-electron calculations. Furthermore, the tunneling pathway at fragment-based resolution was obtained from the tunneling current method with the FMO-LCMO Hamiltonian matrix.

  11. Electronic coupling calculation and pathway analysis of electron transfer reaction using ab initio fragment-based method. I. FMO-LCMO approach.

    PubMed

    Nishioka, Hirotaka; Ando, Koji

    2011-05-28

    By making use of an ab initio fragment-based electronic structure method, fragment molecular orbital-linear combination of MOs of the fragments (FMO-LCMO), developed by Tsuneyuki et al. [Chem. Phys. Lett. 476, 104 (2009)], we propose a novel approach to describe long-distance electron transfer (ET) in large system. The FMO-LCMO method produces one-electron Hamiltonian of whole system using the output of the FMO calculation with computational cost much lower than conventional all-electron calculations. Diagonalizing the FMO-LCMO Hamiltonian matrix, the molecular orbitals (MOs) of the whole system can be described by the LCMOs. In our approach, electronic coupling T(DA) of ET is calculated from the energy splitting of the frontier MOs of whole system or perturbation method in terms of the FMO-LCMO Hamiltonian matrix. Moreover, taking into account only the valence MOs of the fragments, we can considerably reduce computational cost to evaluate T(DA). Our approach was tested on four different kinds of model ET systems with non-covalent stacks of methane, non-covalent stacks of benzene, trans-alkanes, and alanine polypeptides as their bridge molecules, respectively. As a result, it reproduced reasonable T(DA) for all cases compared to the reference all-electron calculations. Furthermore, the tunneling pathway at fragment-based resolution was obtained from the tunneling current method with the FMO-LCMO Hamiltonian matrix.

  12. Quasiclassical Trajectory Calculations of the Rate Constant of the OH + HBr → Br + H2O Reaction Using a Full-Dimensional Ab Initio Potential Energy Surface Over the Temperature Range 5 to 500 K.

    PubMed

    de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Bowman, Joel M

    2014-02-20

    We report a permutationally invariant, ab initio potential energy surface (PES) for the OH + HBr → Br + H2O reaction. The PES is a fit to roughly 26 000 spin-free UCCSD(T)/cc-pVDZ-F12a energies and has no classical barrier to reaction. It is used in quasiclassical trajectory calculations with a focus on the thermal rate constant, k(T), over the temperature range 5 to 500 K. Comparisons with available experimental data over the temperature range 23 to 416 K are made using three approaches to treat the OH rotational and associated electronic partition function. All display an inverse temperature dependence of k(T) below roughly 160 K and a nearly constant temperature dependence above 160 K, in agreement with experiment. The calculated rate constant with no treatment of spin-orbit coupling is overall in the best agreement with experiment, being (probably fortuitously) within 20% of it.

  13. Ab initio molecular-orbital study on successive hydrogen-elimination reactions with low activation energies in the a-Si:H formation process: Cluster-size dependence of activation energies

    NASA Astrophysics Data System (ADS)

    Sato, Kota; Honna, Hiroshi; Iwabuchi, Susumu; Hirano, Tsuneo; Koinuma, Hideomi

    1994-07-01

    Successive hydrogen-elimination reactions with low activation energies during the formation of a-Si:H by silane plasma chemical-vapor deposition proposed by us were studied by using a larger cluster model on the basis of an ab initio molecular-orbital method. The activation energy of the first step, the reaction of a dangling-bond site with an adjacent tetrahedrally coordinated silicon, was found to be 18.2 kcal/mol (0.79 eV) by employing a larger cluster model. The total process was also shown to be thermodynamically more favorable by using larger cluster models. Thus, the successive process is considered to play an important role in a-Si:H formation processes.

  14. Ab initio computations of photodissociation products of CFC alternatives

    SciTech Connect

    Tai, S.; Illinger, K.H.; Kenny, J.E.

    1995-12-31

    Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.

  15. Ab-initio kinetics and thermodynamics studies of ammonia-borane for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Miranda, Caetano R.; Ceder, Gerbrand

    2007-03-01

    Ammonia-borane (BH3NH3) is a promising chemical hydrogen storage material given its high gravimetry and volumetric properties. However, the ammonia-borane (AB) thermal hydrogen release is not very efficient, being mainly limited by the kinetics of hydrogenation. Using ab initio calculations, we have investigated the thermodynamics and kinetics of hydrogen release on AB by calculating the free energies of the H2 release reactions for different possible decomposition products. Our results indicate that AB regeneration through the ammonia-borane polymeric and borazine-cyclotriborazane cycles is very unlikely due to the strong exothermic character of the reactions. The kinetics of hydrogen release is further investigated with the recently developed metadynamics method. This method allows us to calculate the multidimensional free energy surface of hydrogen release on AB. Our simulations reveal the atomistic mechanism of hydrogenation and provide the free energies barriers and transition states involved in inter and intramolecule H2 release on AB.

  16. Tensor Force Manifestations in Ab Initio Study of the {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 3}He Reactions

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2011-09-23

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions are studied at low energies in a multichannel ab initio model that takes into account the distortions of the nuclei. The internal wave functions of these nuclei are given by the stochastic variational method with the AV8{sup '} realistic interaction and a phenomenological three-body force included to reproduce the two-body thresholds. The obtained astrophysical S factors are all in very good agreement with the experiment. The most important channels for both transfer and radiative capture are identified by comparing to calculations with an effective central force. They are all found to dominate thanks to the tensor force.

  17. Ab Initio Infrared and Raman Spectra.

    DTIC Science & Technology

    1982-08-01

    tions. For parameters not depending on momenta, a parallel ab fhti Monte Carlo approach would use electronic energies and other parameters of... Monte Carlo approach. Specifically, as one of us has suggested,t I classical molecular dynamics may be integrated with ab iniHo quan- tum force...alternative approach, for phenomena which are not explicitly time dependent, is a Monte Carlo procedure in which at each trial nuclear configuration

  18. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  19. Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures

    SciTech Connect

    Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan

    2006-04-05

    A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.

  20. Towards SiC Surface Functionalization: An Ab Initio Study

    SciTech Connect

    Cicero, G; Catellani, A

    2005-01-28

    We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for bio-compatible devices.

  1. The application of ab initio calculations to molecular spectroscopy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1989-01-01

    The state of the art in ab initio molecular structure calculations is reviewed, with an emphasis on recent developments such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is shown that new developments in methodology combined with improvements in computer hardware are leading to unprecedented accuracy in solving problems in spectroscopy.

  2. The application of ab initio calculations to molecular spectroscopy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1989-01-01

    The state of the art in ab initio molecular structure calculations is reviewed with an emphasis on recent developments, such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is found that new developments in methodology, combined with improvements in computer hardware, are leading to unprecedented accuracy in solving problems in spectroscopy.

  3. Combining ab initio quantum mechanics with a dipole-field model to describe acid dissociation reactions in water: first-principles free energy and entropy calculations.

    PubMed

    Maurer, Patrick; Iftimie, Radu

    2010-02-21

    We introduce a novel approach to compute dissociation free energy and entropy values in simulations that employ a density functional theory description of the acidic moiety and of the solvent. The approach consists of utilizing an alchemical transformation of a weak acid A-COOH into the strong acid B-COOH, which makes it practical to employ alchemical free energy perturbation methods in the context of ab initio molecular dynamics simulations. The present alchemical transformation circumvents the need to tackle changes in the total number of electrons and atoms by replacing the chemical residue responsible for the change in acidity with an easily tunable external effective potential. Our investigation demonstrates that (1) a simple but effective class of external potentials that control acidity changes in the acetic/trifluoroacetic acid series can be achieved by replacing the methyl and trifluoromethyl substituents by screened dipoles. Using this dipole-field/quantum-mechanics (DF/QM) approach one can predict gas-phase geometries, proton dissociation energies, total dipole moments, and water binding energies in good agreement with full-QM values. (2) The resulting alchemical perturbation calculations are stable and well converged and allow one to compute absolute pK(a) values whose accuracy is limited primarily by the exchange-correlation functional employed: H-COOH=2.5+/-0.6 (full-QM calculation), 3.7 (exp); F(3)C-COOH=0.4+/-0.6 (DF/QM calculation), 0.5 (exp); H(3)C-COOH=3.1+/-0.7 (DF/QM calculation), 4.7 (exp); 3) Our DF/QM model predicts that the difference in acidity between H-COOH and H(3)C-COOH is dominated by solvent entropy effects, in excellent agreement with experimental observations. The calculated difference between the dissociation energies of these acids is DeltaDelta(d)U=0.0+/-0.26 kcal/mol while the experimental value is 0.0+/-0.1 kcal/mol.

  4. Exploring the free energy surface using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  5. Ab initio molecular dynamics calculations of ion hydration free energies.

    PubMed

    Leung, Kevin; Rempe, Susan B; von Lilienfeld, O Anatole

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or "lambda-path" technique to compute the intrinsic hydration free energies of Li(+), Cl(-), and Ag(+) ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential (phi) contributions, we obtain absolute AIMD hydration free energies (DeltaG(hyd)) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model phi predictions. The sums of Li(+)/Cl(-) and Ag(+)/Cl(-) AIMD DeltaG(hyd), which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag(+)+Ni(+)-->Ag+Ni(2+) in water. The predictions for this reaction suggest that existing estimates of DeltaG(hyd) for unstable radiolysis intermediates such as Ni(+) may need to be extensively revised.

  6. Time-dependent quantum wave packet study of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction on a new ab initio potential energy surface for the ground electronic state (1{sup 2}A Prime )

    SciTech Connect

    Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng; Xu Wenwu

    2013-05-07

    A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.

  7. Time-dependent quantum wave packet study of the Ar+H2+→ArH(+)+H reaction on a new ab initio potential energy surface for the ground electronic state (1(2)A').

    PubMed

    Hu, Mei; Xu, Wenwu; Liu, Xinguo; Tan, Ruishan; Li, Hongzheng

    2013-05-07

    A new global potential energy surface for the ground electronic state (1(2)A') of the Ar+H2(+)→ArH(+)+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.

  8. Scattering study of the Ne + NeH{sup +}(v{sub 0} = 0, j{sub 0} = 0) → NeH{sup +} + Ne reaction on an ab initio based analytical potential energy surface

    SciTech Connect

    Koner, Debasish; Panda, Aditya N.; Barrios, Lizandra; González-Lezana, Tomás

    2016-01-21

    Initial state selected dynamics of the Ne + NeH{sup +}(v{sub 0} = 0, j{sub 0} = 0) → NeH{sup +} + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]{sup +} structure lying 0.72 eV below the Ne + NeH{sup +} asymptote is found to be the most stable geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.

  9. Rate constant calculations of the GeH4 + OH/OD → GeH3 + H2O/HOD reactions using an ab initio based full-dimensional potential energy surface.

    PubMed

    Espinosa-Garcia, J; Rangel, C; Corchado, J C

    2016-06-22

    We report an analytical full-dimensional potential energy surface for the GeH4 + OH → GeH3 + H2O reaction based on ab initio calculations. It is a practically barrierless reaction with very high exothermicity and the presence of intermediate complexes in the entrance and exit channels, reproducing the experimental evidence. Using this surface, thermal rate constants for the GeH4 + OH/OD isotopic reactions were calculated using two approaches: variational transition state theory (VTST) and quasi-classical trajectory (QCT) calculations, in the temperature range 200-1000 K, and results were compared with the only experimental data at 298 K. Both methods showed similar values over the whole temperature range, with differences less than 30%; and the experimental data was reproduced at 298 K, with negative temperature dependence below 300 K, which is associated with the presence of an intermediate complex in the entrance channel. However, while the QCT approach reproduced the experimental kinetic isotope effect, the VTST approach underestimated it. We suggest that this difference is associated with the harmonic approximation used in the treatment of vibrational frequencies.

  10. Separable metamaterials: analytical ab-initio homogenization and chirality

    NASA Astrophysics Data System (ADS)

    Ciattoni, Alessandro; Rago, Domenico; Rizza, Carlo

    2016-11-01

    We investigate the ab-initio homogenization of separable metamaterials with factorized dielectric permittivity profiles, which can be achieved through suitable grey-scale permittivity design techniques. Separability allows such metamaterials to be physically regarded as the superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, separable metamaterials admit a simple and analytical description of their electromagnetic bi-anisotropic response, which can be reconstructed from the properties of the 1D generating media. Our approach provides a strategy that allows the full ab-initio and flexible design of a complex bianisotropic response by using the simple and well-known properties of 1D metamaterials.

  11. Ab initio theories for light nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Gezerlis, Alexandros

    2016-09-01

    In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).

  12. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  13. Ab Initio Atomistic Thermodynamics for Surfaces: A Primer

    DTIC Science & Technology

    2006-02-01

    Ab Initio Atomistic Thermodynamics for Surfaces: A Primer Jutta Rogal and Karsten Reuter Fritz - Haber -Institut der Max-Planck-Gesellschaft... Fritz - Haber -Institut der Max-Planck-Gesellschaft Faradayweg 4-6 D-14195 Berlin Germany 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...of the Fritz - Haber -Institut, in particular Wei-Xue Li, Cathy Stampfl and Mira Todorova. Particular thanks go to Matthias Scheffler for his continued

  14. Thermochemical data for CVD modeling from ab initio calculations

    SciTech Connect

    Ho, P.; Melius, C.F.

    1993-12-31

    Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

  15. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  16. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  17. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  18. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  19. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  20. Ab initio molecular dynamics using hybrid density functionals.

    PubMed

    Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; VandeVondele, Joost

    2008-06-07

    Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.

  1. Ab initio molecular dynamics using hybrid density functionals

    NASA Astrophysics Data System (ADS)

    Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost

    2008-06-01

    Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.

  2. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  3. Ab initio rotation-vibration spectra of HCN and HNC

    NASA Astrophysics Data System (ADS)

    Harris, Gregory J.; Polyansky, Oleg L.; Tennyson, Jonathan

    2002-03-01

    We have calculated an ab initio HCN/HNC linelist for all transitions up to J=25 and 18 000 cm -1 above the zero point energy. This linelist contains more than 200 million lines each with frequencies and transition dipoles. The linelist has been calculated using our semi-global HCN/HNC VQZANO+PES and dipole moment surface, which were reported in van Mourik et al. (J. Chem. Phys. 115 (2001) 3706). With this linelist we synthesise absorption spectra of HCN and HNC at 298 K and we present the band centre and band transition dipoles for the bands which are major features in these spectra. Several of the HCN bands and many of the HNC bands have not been previously studied. Our line intensities reproduce via fully ab initio methods the unusual intensity structure of the HCN CN stretch fundamental (00 01) for the first time and also the forbidden (02 20) HCN bending overtone. We also compare the J=1→0 pure rotational transition dipole in the HCN/HNC ground and vibrationally excited states with experimental and existing ab initio results.

  4. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  5. Nonadiabatic ab initio molecular dynamics with PME-ONIOM scheme of photoisomerization reaction between 1,3-cyclohexadiene and 1,3,5-cis-hexatriene in solution phase

    NASA Astrophysics Data System (ADS)

    Ohta, Ayumi; Kobayashi, Osamu; Danielache, Sebastian O.; Nanbu, Shinkoh

    2017-03-01

    The ultra-fast photoisomerization reactions between 1,3-cyclohexadiene (CHD) and 1,3,5-cis-hexatriene (HT) in both hexane and ethanol solvents were revealed by nonadiabatic ab initio molecular dynamics (AI-MD) with a particle-mesh Ewald summation method and our Own N-layered Integrated molecular Orbital and molecular Mechanics model (PME-ONIOM) scheme. Zhu-Nakamura version trajectory surface hopping method (ZN-TSH) was employed to treat the ultra-fast nonadiabatic decaying process. The results for hexane and ethanol simulations reasonably agree with experimental data. The high nonpolar-nonpolar affinity between CHD and the solvent was observed in hexane solvent, which definitely affected the excited state lifetimes, the product branching ratio of CHD:HT, and solute (CHD) dynamics. In ethanol solvent, however, the CHD solute was isomerized in the solvent cage caused by the first solvation shell. The photochemical dynamics in ethanol solvent results in the similar property to the process appeared in vacuo (isolated CHD dynamics).

  6. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  7. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  8. Molecular dynamics investigation of the bimolecular reaction BeH + H(2) --> BeH(2) + H on an ab initio potential-energy surface obtained using neural network methods with both potential and gradient accuracy determination.

    PubMed

    Le, Hung M; Raff, Lionel M

    2010-01-14

    The classical reaction dynamics of a four-body, bimolecular reaction on a neural network (NN) potential-energy surface (PES) fitted to a database obtained solely from ab initio MP2/6-311G(d,p) calculations are reported. The present work represents the first reported application of ab initio NN methods to a four-body, bimolecular, gas-phase reaction where bond extensions reach 8.1 A for the BeH + H(2) --> BeH(2) + H reaction. A modified, iterative novelty sampling method is used to select data points based on classical trajectories computed on temporary NN surfaces. After seven iterations, the sampling process is found to converge after selecting 9604 configurations. Incorporation of symmetry increases this to 19 208 BeH(3) configurations. The analytic PES for the system is obtained from the ensemble average of a five-member (6-60-1) NN committee. The mean absolute error (MAE) for the committee is 0.0046 eV (0.44 kJ mol(-1)). The total energy range of the BeH(3) database is 147.0 kJ mol(-1). Therefore, this MAE represents a percent energy error of 0.30%. Since it is the gradient of the PES that constitutes the most important quantity in molecular dynamics simulations, the paper also reports mean absolute error for the gradient. This result is 0.026 eV A(-1) (2.51 kJ mol(-1) A(-1)). Since the gradient magnitudes span a range of 15.32 eV A(-1) over the configuration space tested, this mean absolute gradient error represents a percent error of 0.17%. The mean percent absolute relative gradient error is 4.67%. The classically computed reaction cross sections generally increase with total energy. They vary from 0.007 to 0.030 A(2) when H(2) is at ground state, and from 0.05 to 0.10 A(2) when H(2) is in the first excited state. Trajectory integration is very fast using the five-member NN PES. The average trajectory integration time is 1.07 s on a CPU with a clock speed of 2.4 GHz. Zero angular momentum collisions are also investigated and compared with previously reported

  9. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  10. Extensive ab initio study of the OH+HCN reaction: Low lying electronic states of the stationary points on the 2A' surface

    NASA Astrophysics Data System (ADS)

    Palma, A.; Semprini, E.; Stefani, F.; Talamo, A.

    1996-09-01

    We found many stationary points (minima and transition states) for the title reaction on the 2A' surface at unrestricted Hartree-Fock self-consistent field (UHF-SCF) level with two different basis sets. Stable adducts, as suggested by previous experimental works, have been ascertained and several reaction paths are obtained through intrinsic reaction coordinate (IRC) calculations. A link to the HNC+OH reaction is possible. Multiconfiguration SCF (MC-SCF) calculations have been carried out for the addition reaction with the lowest energy barrier in order to eliminate the spin contamination error on these geometries. Correlation energy at the stationary points was estimated via a perturbative scheme, Møller-Plesset at fourth order (MP4) which does not seem adequate for such a system, and via multireference double configuration interaction (MR-DCI) with extrapolation to full CI values for ground and first excited states. Electronic excitations may open some reaction channels.

  11. Ab initio Study of He Stability in hcp-Ti

    SciTech Connect

    Dai, Yunya; Yang, Li; Peng, SM; Long, XG; Gao, Fei; Zu, Xiaotao T.

    2010-12-20

    The stability of He in hcp-Ti was studied using ab initio method based on density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms has been used to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models.

  12. Ab Initio Study of Phase Equilibria in TiCx

    NASA Astrophysics Data System (ADS)

    Korzhavyi, P. A.; Pourovskii, L. V.; Hugosson, H. W.; Ruban, A. V.; Johansson, B.

    2002-01-01

    The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx ( x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies ( Ti2C, Ti3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures.

  13. Pseudorotation motion in tetrahydrofuran: an ab initio study.

    PubMed

    Rayón, Víctor M; Sordo, Jose A

    2005-05-22

    The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.

  14. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  15. Morphing ab initio potential energy curve of beryllium monohydride

    NASA Astrophysics Data System (ADS)

    Špirko, Vladimír

    2016-12-01

    Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.

  16. Ab initio evidence for nonthermal characteristics in ultrafast laser melting

    NASA Astrophysics Data System (ADS)

    Lian, Chao; Zhang, S. B.; Meng, Sheng

    2016-11-01

    Laser melting of semiconductors has been observed for almost 40 years; surprisingly, it is not well understood where most theoretical simulations show a laser-induced thermal process. Ab initio nonadiabatic simulations based on real-time time-dependent density functional theory reveal intrinsic nonthermal melting of silicon, at a temperature far below the thermal melting temperature of 1680 K. Both excitation threshold and time evolution of diffraction intensity agree well with experiment. Nonthermal melting is attributed to excitation-induced drastic changes in bonding electron density, and the subsequent decrease in the melting barrier, rather than lattice heating as previously assumed in the two-temperature models.

  17. Communication: Ab initio Joule-Thomson inversion data for argon

    NASA Astrophysics Data System (ADS)

    Wiebke, Jonas; Senn, Florian; Pahl, Elke; Schwerdtfeger, Peter

    2013-02-01

    The Joule-Thomson coefficient μH(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K. The results also illustrate the limitations of the virial equation in regions close to the critical temperature.

  18. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  19. Ab-Initio Shell Model with a Core

    SciTech Connect

    Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P

    2008-06-04

    We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.

  20. Ab-initio study of transition metal hydrides

    SciTech Connect

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  1. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  2. Electric field response in bilayer graphene: Ab initio investigation

    NASA Astrophysics Data System (ADS)

    Mori, Yutaro; Minamitani, Emi; Ando, Yasunobu; Kasamatsu, Shusuke; Watanabe, Satoshi

    2016-11-01

    Stimulated by quantum capacitance measurements, we have investigated the electric properties of bilayer graphene (BLG) with carrier doping under an external electric field using ab initio calculations. We found that the relative permittivity of BLG depends weakly on the applied electric field, and that the BLG can be regarded as a dielectric material rather than a pair of metallic films. We also found that carrier doping affects the band gap of BLG under electric fields, although carrier doping has a much smaller effect on the band gap and density of states than the application of electric fields.

  3. Communication: Ab initio Joule-Thomson inversion data for argon.

    PubMed

    Wiebke, Jonas; Senn, Florian; Pahl, Elke; Schwerdtfeger, Peter

    2013-02-21

    The Joule-Thomson coefficient μ(H)(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K. The results also illustrate the limitations of the virial equation in regions close to the critical temperature.

  4. Direct ab initio dynamics studies on the hydrogen-abstraction reactions of OH radicals with HOX (X = F, Cl, and Br).

    PubMed

    Wang, Li; Liu, Jing-Yao; Li, Ze-Sheng; Sun, Chia-Chung

    2004-03-01

    The hydrogen abstract reactions of OH radicals with HOF (R1), HOCl (R2), and HOBr (R3) have been studied systematically by a dual-level direct-dynamics method. The geometries and frequencies of all the stationary points are optimized at the MP2/6-311+G(2d, 2p) level of theory. A hydrogen-bonded complex is located at the product channel for the OH + HOBr reaction. To improve the energetics information along the minimum energy path (MEP), single-point energy calculations are carried out at the CCSD(T)/6-311++G(3df, 3pd) level of theory. Interpolated single-point energy (ISPE) method is employed to correct the energy profiles for the three reactions. It is found that neither the barrier heights (DeltaE) nor the H-O bond dissociation energies [D(H-O)] exhibit any clear-cut linear correlations with the halogen electronegative. The decrease of DeltaE and D(H-O) for the three reactions are in order of HOF > HOBr > HOCl. Rate constants for each reaction are calculated by canonical variational transition-state theory (CVT) with a small-curvature tunneling correction (SCT) within 200-2000 K. The agreement of the rate constants with available experimental values for reactions R2 and R3 at 298 K is good. Our results show that the variational effect is small while the tunneling correction has an important contribution in the calculation of rate constants in the low-temperature range. Due to the lack of the kinetic data of these reactions, the present theoretical results are expected to be useful and reasonable to estimate the dynamical properties of these reactions over a wide temperature range where no experimental value is available.

  5. Elucidation of the physicomechanical and ab initio quantum energy transitions of a crosslinked PLGA scaffold.

    PubMed

    Sibambo, Sibongile R; Pillay, Viness; Choonara, Yahya E; Khan, Riaz A; Sweet, Joe L

    2007-09-01

    This study elucidated the in vitro physicomechanical transitions of a crosslinked polylactic-co-glycolic acid (PLGA) scaffold, utilizing quantum mechanics to compute the ab initio energy requirements of a salted-out and subsequently crosslinked PLGA scaffold interacting with simulated physiological fluid, phosphate buffered saline (PBS) (pH 7.4, 37 degrees C) at a molecular level. Twenty-six salted-out PLGA scaffolds were formulated using a four factor, two centerpoint quadratic Face-Centered Central Composite Design (FCCD). PLGA molecular mass, PLGA concentration, water volume and salting-out reaction time were the dependant formulation variables. Subsequent to PLGA solubilization in dimethyl formamide (DMF), protonated water was added to induce salting-out of PLGA into a scaffolds that were immersed in PBS, oscillated at 100 rpm, and analyzed at pre-determined time intervals for their physicomechanical and ab initio quantum energy transitions. Results indicated that the matrix resilience (MR) decreased with longer incubation periods (MR=35-45%) at day 30. Scaffolds salted-out using higher PLGA concentrations exhibited minimal changes in MR and the matrix ability to absorb energy was found to closely correlate with the scaffold residence time in PBS. Spartan-based ab initio quantum energy predictions elucidated the potential scaffold stability from a molecular viewpoint and its suitability for use in rate-modulated drug delivery.

  6. Three-cluster dynamics within an ab initio framework

    DOE PAGES

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less

  7. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials.

  8. Emission Spectroscopy and Ab Initio Calculations for TaN

    NASA Astrophysics Data System (ADS)

    Ram, R. S.; Liévin, J.; Bernath, P. F.

    2002-10-01

    The emission spectra of TaN have been investigated in the region 3000-35 000 cm -1 using a Fourier transform spectrometer. The spectra were observed in a tantalum hollow-cathode lamp by discharging a mixture of 1.5 Torr of Ne and about 6 mTorr of N 2. In addition to previously known bands, numerous additional bands were observed and assigned to a number of new transitions. The spectroscopic properties of the low-lying electronic states of TaN were also predicted by ab initio calculations. A 1Σ + state, with equilibrium constants of Be=0.457 852 1(48) cm -1, α e=0.002 235 9(67) cm -1, and Re=1.683 099 9(88) Å, has been identified as the ground state of TaN based on our experimental observations supported by the ab initio results. The first excited state has been identified as the a3Δ 1 spin component at 2827 cm -1 above the ground state. To higher energies, the states become difficult to assign because of their Hund's case (c) behavior and extensive interactions between the spin components of the electronic terms.

  9. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    PubMed

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  10. Implementation of renormalized excitonic method at ab initio level.

    PubMed

    Zhang, Hongjiang; Malrieu, Jean-Paul; Ma, Haibo; Ma, Jing

    2012-01-05

    The renormalized excitonic method [Hajj et al., Phys Rev B 2005, 72, 224412], in which the excited state of the whole system may be described as a linear combination of local excitations, has been implemented at ab initio level. Its performance is tested on the ionization potential and the energy gap between singlet ground state and lowest triplet for linear molecular hydrogen chains and more realistic systems, such as polyenes and polysilenes, using full configuration interaction (FCI) wave functions with a minimal basis set. The influence of different block sizes and the extent of interblock interactions are investigated. It has been demonstrated that satisfactory results can be obtained if the near degeneracies between the model space and the outer space are avoided and if interactions between the next-nearest neighbor blocks are considered. The method can be used with larger basis sets and other accurate enough ab initio evaluations (instead of FCI) of local excited states, from blocks, or from dimers or trimers of blocks. It provides a new possibility to accurately and economically describe the low-lying delocalized excited states of large systems, even inhomogeneous ones.

  11. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  12. Ab initio study of hot electrons in GaAs

    PubMed Central

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron–phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron–phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron–phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  13. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  14. Carbon dioxide capture in 2-aminoethanol aqueous solution from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kubota, Yoshiyuki; Ohnuma, Toshiharu; Bučko, Tomáš

    2017-03-01

    The reaction of carbon dioxide (CO2) with aqueous 2-aminoethanol (MEA) has been investigated using both blue moon ensemble and metadynamics approaches combined with ab initio molecular dynamics (AIMD) simulations. The AIMD simulations predicted the spontaneous deprotonation of the intermediate compound, MEA zwitterion, and they were used to study two possible routes for subsequent proton transfer reactions: the formation of the protonated MEA and the formation of MEA carbamic acid. The free-energy curve depicted by blue moon ensemble technique supported the favorable deprotonation of MEA zwitterion. The overall free-energy profile showed the favorable formation of the ionic products of MEA carbamate ion and protonated MEA.

  15. The substitution reactions RH + O 2 → RO 2 + H: transition state theory calculations based on the ab initio and DFT potential energy surface

    NASA Astrophysics Data System (ADS)

    Bogdanchikov, G. A.; Baklanov, A. V.; Parker, D. H.

    2004-02-01

    The new class of substitution reactions with oxygen molecule as an agent has been studied by combination of quantum chemistry calculation and transition state theory (TST). The 'inversion substitution' processes RH + O 2 → RO 2 + H (R=CH 3 and SiH 3) have been investigated. The energy for the stationary points (reagents, products and transition states) on the reaction coordinate has been calculated by G2M(CC,MP2) method and rate constants have been calculated within TST approach. The results show that in methane case the reaction considered (CH 4 + O 2 → CH 3O 2 + H) does not compete with generally accepted mechanism (CH 4 + O 2 → CH 3 + HO 2), but it does at elevated temperature in silane case.

  16. Equilibrium and rate constants, and reaction mechanism of the HF dissociation in the HF(H2O)7 cluster by ab initio rare event simulations.

    PubMed

    Elena, Alin Marin; Meloni, Simone; Ciccotti, Giovanni

    2013-12-12

    We perform restrained hybrid Monte Carlo (MC) simulations to compute the equilibrium constant of the dissociation reaction of HF in HF(H2O)7. We find that the HF is a stronger acid in the cluster than in the bulk, and its acidity is higher at lower T. The latter phenomenon has a vibrational entropic origin, resulting from a counterintuitive balance of intra- and intermolecular terms. We find also a temperature dependence of the reactions mechanism. At low T (≤225 K) the dissociation reaction follows a concerted path, with the H atoms belonging to the relevant hydrogen bond chain moving synchronously. At higher T (300 K), the first two hydrogen atoms move together, forming an intermediate metastable state having the structure of an eigen ion (H9O4(+)), and then the third hydrogen migrates completing the reaction. We also compute the dissociation rate constant, kRP. At very low T (≤75 K) kRP depends strongly on the temperature, whereas it gets almost constant at higher T’s. With respect to the bulk, the HF dissociation in the HF(H2O)7 is about 1 order of magnitude faster. This is due to a lower free energy barrier for the dissociation in the cluster.

  17. An ab initio/rice--Ramsperger--Kassel--Marcus study of the reactions of propenols with OH. Mechanism and kinetics of H abstraction channels.

    PubMed

    Zhou, Chong-Wen; Mebel, Alexander M; Li, Xiang-Yuan

    2009-10-08

    Propenols have been found to be common intermediates in the hydrocarbon combustion and they are present in substantial concentrations in a wide range of flames. However, the kinetics properties of these species in combustion flames have not received much attention. In this work, the mechanism and kinetics of the OH hydrogen abstraction from propenols are investigated. Three stable conformations of propenols, (E)-1-propenol, (Z)-1-propenol, and syn-propen-2-ol, are taken into consideration. The potential energy profiles for the three reaction systems have been first investigated by the CCSD(T) method. The geometric parameters and relative energies of the reactants, reactant complexes, transition states, product complexes, and products have been investigated theoretically. The rate constants are calculated in the temperature range of 200-3000 K by the Variflex code based on the weak collision master equation/microcanonical variational RRKM theory. For all considered reactions, our results support a stepwise mechanism involving the formation of a reactant complex in the entrance channel and a product complex in the exit channel. In the reaction of OH with (E)-1-propenol, the hydrogen abstractions from the -CH(3) and -OH sites are dominant and competitive with each other in the temperature range from 500 to 2000 K. Above 2000 K, the hydrogen abstraction from the -CH group bonded to O atom becomes dominant with a relative yield of 51.1% at 3000 K. In the reaction of OH with (Z)-1-propenol, the hydrogen abstractions from -CH(3), -CH bonded to O atom, and -OH are preferable in the temperature range from 500 to 1800 K, with the first two channels being competitive with each other. Above 1800 K, the hydrogen abstraction reaction from the CH group bonded to the CH(3) group becomes dominant with the branching ratio of 90.3% at 3000 K. In the reaction of OH with syn-propen-2-ol, the abstractions from the -CH(3) and -OH sites are competitive with each other when the temperature

  18. Direct ab initio study of the C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 reactions

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Ratkiewicz, Artur; Duong, Minh v.; Huynh, Lam K.

    2016-02-01

    A kinetic study of the reactions C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 was carried out in the temperature range of 300-2500 K using high levels of electronic structure theory, namely, CCSD(T)/CBS//BH&HLYP/cc-pVDZ, and canonical variational transition state theory (CVT) with corrections for small curvature tunneling (SCT) and hindered internal rotation (HIR) treatments. It is found that variational effect is not important and both SCT and HIR corrections noticeably affect the rate constants. Being in good agreement with literature data, the calculated results provide solid basis information for the investigation of the polyaromatic hydrocarbon (PAH) + alkyl radical reaction, an important class in combustion and soot formation.

  19. Glucose and Fructose to Platform Chemicals: Understanding the Thermodynamic Landscapes of Acid-Catalysed Reactions Using High-Level ab Initio Methods

    SciTech Connect

    Assary, Rajeev S.; Kim, Taijin; Low, John; Greeley, Jeffrey P.; Curtiss, Larry A.

    2012-12-28

    Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2–OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2–OH position, which includes a C–C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future.

  20. Possible gas-phase reactions of H2/CH4/tetramethylsilane in diamond/beta-SiC nanocomposite film deposition: an ab-initio study.

    PubMed

    Zhao, Y L; Zhang, R Q; Srikanth, Vadali V S S; Jiang, X

    2007-05-10

    The Si-C bond breakings in tetramethylsilane (TMS) when interacting with H/H2 and the successive H abstractions from SiH4/CH4 in the gas mixture of H2/ CH4/TMS were studied at the CCSD(T)/6-311+G**//MP2/6-31+G** level of theory. Their rate constants between 1500 and 2500 K were estimated using a conventional transition state theory. The results indicate that (i) it is mainly the H radical that causes the Si-C bond breaking in TMS, and (ii) the successive H abstractions from SiH4 are much easier and faster than those from CH4. At low temperatures the differences of rate constants among the four types of the reactions are large, but generally reduced at high temperatures. The reaction rates show no selectivity over the pressure as verified at P = 0.00025, 0.025, 1, and 100 atm, respectively. Our results could provide the following microscopic level understanding of reactions in the synthesis of diamond/beta-SiC nanocomposite films. Although the Si content is smaller than that of C in the precursor gases, the gas mixture activated by microwave plasma technique could provide Si sources with a higher rate. The produced Si sources with excellent rigidity in sp3 hybridization competitively occupy the space on the substrate together with C sources, resulting in the deposition of diamond/beta-SiC nanocomposite films.

  1. Ab initio computational applications to complex biomolecular systems

    NASA Astrophysics Data System (ADS)

    Liang, Lei

    A series of biomaterial related systems---including water and DNA molecules---have been studied using ab initio (first-principles) methods. By investigating the properties of water as the preliminary step, the hydrogen bond (HB) interactions, which play important roles in biomolecules, were better understood from the quantum mechanical viewpoint. The calculated K-edge x-ray absorption near edge structure (XANES) spectra of all 340 oxygen atoms in the model have been accumulated to reproduce the experimental one. The spectra were shown to be very sensitive to the HB configurations of O atoms, which could be used to elucidate the subtle structural variations in complex biomolecules. The simulation of single-molecule DNA overstretching experiments under torsionally constrained condition has been carried out afterwards. The initial DNA models were stretched stepwisely and eventually gained an extension of 1.5-fold (150% x the original length). The variation of total energy, atomic configuration, and the electronic structure during this process were analyzed in details. At the extension of ˜1.3-fold, the ring opening reactions occurred in the backbones. The backbone nicks appeared at elongations of ˜1.40-fold. The whole process was accompanied by HB breaking and charge transfers. We have proposed an overstretched structure named O-DNA (Opened-DNA) to clarify the confusion in understanding the behavior of DNA under high force load. With more experiences gained, a comprehensive methodology revealing the underlying principles of bioprocesses from the quantum mechanical viewpoint eventually come up. For the purpose of better computational accuracy, the scheme of implementing the generalized gradient approximation (GGA) exchange-correlation functionals into the Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) program suite has been discussed, and the computational efficiency has been analyzed correspondingly. Moreover, the parallel strategy for performing

  2. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F(-) + CH3F SN2 and proton-abstraction reactions.

    PubMed

    Szabó, István; Telekes, Hajnalka; Czakó, Gábor

    2015-06-28

    We develop a full-dimensional global analytical potential energy surface (PES) for the F(-) + CH3F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller-Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are -0.45(-0.61), 46.07(45.16), and 29.18(26.07) kcal mol(-1), respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol(-1), respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol(-1). Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F(-) + CH3F(v = 0) reaction using the new PES. Apart from low collision energies (Ecoll), the SN2 excitation function is nearly constant, the abstraction cross sections rapidly increase with Ecoll from a threshold of ∼40 kcal mol(-1), and retention trajectories via double inversion are found above Ecoll = ∼ 30 kcal mol(-1), and at Ecoll = ∼ 50 kcal mol(-1), the front-side attack cross sections start to increase very rapidly. At

  3. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F- + CH3F SN2 and proton-abstraction reactions

    NASA Astrophysics Data System (ADS)

    Szabó, István; Telekes, Hajnalka; Czakó, Gábor

    2015-06-01

    We develop a full-dimensional global analytical potential energy surface (PES) for the F- + CH3F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller-Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are -0.45(-0.61), 46.07(45.16), and 29.18(26.07) kcal mol-1, respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol-1, respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol-1. Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F- + CH3F(v = 0) reaction using the new PES. Apart from low collision energies (Ecoll), the SN2 excitation function is nearly constant, the abstraction cross sections rapidly increase with Ecoll from a threshold of ˜40 kcal mol-1, and retention trajectories via double inversion are found above Ecoll = ˜ 30 kcal mol-1, and at Ecoll = ˜ 50 kcal mol-1, the front-side attack cross sections start to increase very rapidly. At low Ecoll, the

  4. Ab initio molecular dynamics with enhanced sampling for surface reaction kinetics at finite temperatures: CH2 ⇌ CH + H on Ni(111) as a case study

    NASA Astrophysics Data System (ADS)

    Sun, Geng; Jiang, Hong

    2015-12-01

    A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH 2 ⇌ CH + H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for

  5. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock; David A. Walthall

    2006-05-07

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various different energy sources potentially including fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch synthesis involves the initiation or activation of CO and H{sub 2} bonds, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. Commercially viable catalysts include supported Co and Co-alloys. Over the first two years of this project we have used ab initio methods to determine the adsorption energies for all reactants, intermediates, and products along with the overall reaction energies and their corresponding activation barriers over the Co(0001) surface. Over the third year of the project we developed and advanced an ab initio-based kinetic Monte Carlo simulation code to simulate Fischer Tropsch synthesis. This report details our work over the last year which has focused on the derivation of kinetic parameters for the elementary steps involved in FT synthesis from ab initio density functional theoretical calculations and the application of the kinetic Monte Carlo algorithm to simulate the initial rates of reaction for FT over the ideal Co(0001) surface. The results from our simulations over Co(0001) indicate the importance of stepped surfaces for the activation of adsorbed CO. In addition, they demonstrate that the dominant CH{sub x}* surface intermediate under steady state conditions is CH*. This strongly suggests that hydrocarbon coupling

  6. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock

    2005-06-13

    As petroleum prices continue to rise and the United States seeks to reduce its dependency on foreign oil, there is a renewed interest in the research and development of more efficient and alternative energy sources, such as fuel cells. One approach is to utilize processes that can produce long-chain hydrocarbons from other sources. One such reaction is Fischer-Tropsch synthesis. Fischer-Tropsch synthesis is a process by which syngas (CO and H{sub 2}) is converted to higher molecular weight hydrocarbons. The reaction involves a complex set of bond-breaking and bond-making reactions, such as CO and H{sub 2} activation, hydrocarbon hydrogenation reactions, and hydrocarbon coupling reactions. This report details our initial construction of an ab initio based kinetic Monte Carlo code that can be used to begin to simulate Fischer-Tropsch synthesis over model Co(0001) surfaces. The code is based on a stochastic kinetic formalism that allows us to explicitly track the transformation of all reactants, intermediates and products. The intrinsic kinetics for the simulations were derived from the ab initio results that we reported in previous year summaries.

  7. Communication: Rigorous quantum dynamics of O + O{sub 2} exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    SciTech Connect

    Li, Yaqin; Sun, Zhigang E-mail: dawesr@mst.edu; Jiang, Bin; Guo, Hua E-mail: dawesr@mst.edu; Xie, Daiqian; Dawes, Richard E-mail: dawesr@mst.edu

    2014-08-28

    The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  8. New ab initio potential energy surface for BrH2 and rate constants for the H + HBr → H2 + Br abstraction reaction.

    PubMed

    Jiang, Bin; Xie, Changjian; Xie, Daiqian

    2011-03-21

    A global potential energy surface (PES) for the electronic ground state of the BrH(2) system was constructed based on the multireference configuration interaction (MRCI) method including the Davidson's correction using a large basis set. In addition, the spin-orbit correction were computed using the Breit-Pauli Hamiltonian and the unperturbed MRCI wavefunctions in the Br + H(2) channel and the transition state region. Adding the correction to the ground state potential, the lowest spin-orbit correlated adiabatic potential was obtained. The characters of the new potential are discussed. Accurate initial state specified rate constants for the H + HBr → H(2) + Br abstraction reaction were calculated using a time-dependent wave packet method. The predicted rate constants were found to be in excellent agreement with the available experimental values and much better than those obtained from a previous PES.

  9. Configurational and conformational preferences in oximes and oxime carbanions. Ab initio study of the syn effect in reactions of oxyimine enolate equivalents

    SciTech Connect

    Glaser, R.; Streitwieser, A. )

    1989-09-13

    Geometries and relative energies of stationary structures of several conformers of geometrical isomers of NO s-trans-configured acetaldoxime are reported. The calculated energies and geometries agree well with comparable experimental data. Effects of the theoretical model on the NO band lengths are discussed for formaldoxime. The theoretical results suggest that the regiochemistry of enolate equivalents of oxyimines in dissociating solvents is due to the thermodynamic syn preference of the anions. Syn/anti isomerization of the anions (E{sub a} < 26 kcal mol{sup {minus}1}) is rapid even at low temperatures. In contrast, the anti preference of the radicals of acetaldoxime indicates that the formation of the syn products in oxidative coupling reactions of the anions of oxime ethers is a kinetic effect.

  10. Communication: Rigorous quantum dynamics of O + O2 exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients.

    PubMed

    Li, Yaqin; Sun, Zhigang; Jiang, Bin; Xie, Daiqian; Dawes, Richard; Guo, Hua

    2014-08-28

    The kinetics and dynamics of several O + O2 isotope exchange reactions have been investigated on a recently determined accurate global O3 potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged "reef" structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  11. Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations.

    PubMed

    Ardèvol, Albert; Rovira, Carme

    2015-06-24

    Carbohydrate-active enzymes such as glycoside hydrolases (GHs) and glycosyltransferases (GTs) are of growing importance as drug targets. The development of efficient competitive inhibitors and chaperones to treat diseases related to these enzymes requires a detailed knowledge of their mechanisms of action. In recent years, sophisticated first-principles modeling approaches have significantly advanced in our understanding of the catalytic mechanisms of GHs and GTs, not only the molecular details of chemical reactions but also the significant implications that just the conformational dynamics of a sugar ring can have on these mechanisms. Here we provide an overview of the progress that has been made in the past decade, combining molecular dynamics simulations with density functional theory to solve these sweet mysteries of nature.

  12. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  13. Ab initio centroid path integral molecular dynamics: Application to vibrational dynamics of diatomic molecular systems

    NASA Astrophysics Data System (ADS)

    Ohta, Yasuhito; Ohta, Koji; Kinugawa, Kenichi

    2004-01-01

    An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.

  14. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  15. Ab initio electronic and lattice dynamical properties of cerium dihydride

    NASA Astrophysics Data System (ADS)

    Gurel, Tanju; Eryigit, Resul

    2007-03-01

    The rare-earth metal hydrides are interesting systems because of the dramatic structural and electronic changes due to the hydrogen absorption and desorption. Among them, cerium dihydride (CeH2) is one of the less studied rare-earth metal-hydride. To have a better understanding, we have performed an ab initio study of electronic and lattice dynamical properties of CeH2 by using pseudopotential density functional theory within local density approximation (LDA) and a plane-wave basis. Electronic band structure of CeH2 have been obtained within LDA and as well as GW approximation. Lattice dynamical properties are calculated using density functional perturbation theory. The phonon spectrum is found to contain a set of high-frequency (˜ 850-1000 cm-1) optical bands, mostly hydrogen related, and low frequency cerium related acoustic modes climbing to 160 cm^ -1 at the zone boundary.

  16. Approximate ab initio calculations of electronic structure of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Durandurdu, M.; Drabold, D. A.; Mousseau, N.

    2000-12-01

    We report on ab initio calculations of electronic states of two large and realistic models of amorphous silicon generated using a modified version of the Wooten-Winer-Weaire algorithm and relaxed, in both cases, with a Keating and a modified Stillinger-Weber potentials. The models have no coordination defects and a very narrow bond-angle distribution. We compute the electronic density-of-states and pay particular attention to the nature of the band-tail states around the electronic gap. All models show a large and perfectly clean optical gap and realistic Urbach tails. Based on these results and the extended quasi-one-dimensional stringlike structures observed for certain eigenvalues in the band tails, we postulate that the generation of model a-Si without localized states might be achievable under certain circumstances.

  17. The ab-initio density matrix renormalization group in practice

    SciTech Connect

    Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  18. Ab initio engineering of materials with stacked hexagonal tin frameworks

    PubMed Central

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  19. Efficient Ab initio Modeling of Random Multicomponent Alloys.

    PubMed

    Jiang, Chao; Uberuaga, Blas P

    2016-03-11

    We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.

  20. Quantum plasmonics: from jellium models to ab initio calculations

    NASA Astrophysics Data System (ADS)

    Varas, Alejandro; García-González, Pablo; Feist, Johannes; García-Vidal, F. J.; Rubio, Angel

    2016-08-01

    Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT) calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.

  1. Ab initio electronic stopping power of protons in bulk materials

    NASA Astrophysics Data System (ADS)

    Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia

    2016-01-01

    The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.

  2. Ab initio study of II-(VI)2 dichalcogenides

    NASA Astrophysics Data System (ADS)

    Olsson, P.; Vidal, J.; Lincot, D.

    2011-10-01

    The structural stabilities of the (Zn,Cd)(S,Se,Te)2 dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe2 pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.

  3. Ab initio engineering of materials with stacked hexagonal tin frameworks

    NASA Astrophysics Data System (ADS)

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-07-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  4. Ab initio water pair potential with flexible monomers.

    PubMed

    Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof

    2015-03-26

    A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects.

  5. Ab initio study of helium behavior in titanium tritides

    SciTech Connect

    Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-03-01

    Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].

  6. Ab initio electron propagator theory of molecular wires. I. Formalism.

    PubMed

    Dahnovsky, Yu; Zakrzewski, V G; Kletsov, A; Ortiz, J V

    2005-11-08

    Ab initio electron propagator methodology may be applied to the calculation of electrical current through a molecular wire. A new theoretical approach is developed for the calculation of the retarded and advanced Green functions in terms of the electron propagator matrix for the bridge molecule. The calculation of the current requires integration in a complex half plane for a trace that involves terminal and Green's-function matrices. Because the Green's-function matrices have complex poles represented by matrices, a special scheme is developed to express these "matrix poles" in terms of ordinary poles. An expression for the current is derived for a terminal matrix of arbitrary rank. For a single terminal orbital, the analytical expression for the current is given in terms of pole strengths, poles, and terminal matrix elements of the electron propagator. It is shown that Dyson orbitals with high pole strengths and overlaps with terminal orbitals are most responsible for the conduction of electrical current.

  7. Ab initio simulations of liquid carbon monoxide at high pressure

    NASA Astrophysics Data System (ADS)

    Leonhardi, Tanis C.; Militzer, Burkhard

    2017-03-01

    Carbon monoxide occurs as a volatile species in the interiors of terrestrial planets, and as a disequilibrium atmospheric constituent in the giant planets. It plays an important role during the accretionary stages of planet formation reacting with gases to form compounds such as CH4 and H2O. The structure of carbon monoxide is unknown over the majority of the temperature and pressure regime in giant planet interiors. Here we perform ab initio molecular dynamics simulations to characterize CO to 140 GPa and 5,000 K. We find that CO is stable as a molecular liquid at lower P-T conditions, as a polymeric liquid at higher P-T conditions found in ice giant interiors, and as a plasma at high-T.

  8. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  9. An ab initio study on anionic aerogen bonds

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2017-01-01

    An ab initio study is carried out to investigate the anionic aerogen bonds in complexes of KrO3, XeO3 and XeOF2 with F-, Cl-, Br-, CN-, NC-, N3-, SH-, SCN-, NCS-, OH- and OCH3- anions. All of the anionic aerogen bonds analyzed here have a partial covalent character. Charge transfer from the anion to the Kr-O or Xe-O σ∗ orbital stabilizes these complexes and leads to a sizable redshift in the corresponding stretching frequencies. The J(Kr-O) or J(Xe-O) spin-spin coupling constants can be regarded as a useful tool for the characterization of strength of the anionic aerogen-bonded complexes.

  10. Ab Initio Study of KCl and NaCl Clusters

    NASA Astrophysics Data System (ADS)

    Brownrigg, Clifton; Hira, Ajit; Pacheco, Jose; Salazar, Justin

    2013-03-01

    We continue our interest in the theoretical study of molecular clusters to examine the chemical properties of small KnCln and NanCln clusters (n = 2 - 15). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods of quantum chemistry to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations have been performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. The potential for design of new medicinal drugs is explored.

  11. Simple calculation of ab initio melting curves: Application to aluminum

    NASA Astrophysics Data System (ADS)

    Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean

    2015-03-01

    We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003), 10.1063/1.1624057] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013), 10.1103/PhysRevE.88.062145]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.

  12. Ab initio quantum transport in atomic carbon chains

    NASA Astrophysics Data System (ADS)

    Botello-Méndez, Andrés R.; Charlier, Jean-Christophe; Banhart, Florian; NAPS Team; Carbyne Collaboration

    2015-03-01

    Carbyne, the sp-hybridized phase of carbon, is still a missing link in the family of carbon allotropes. Recently, detailed electrical measurements and first-principles electronic transport calculations have been performed on monoatomic carbon chains. When the 1D system is under strain, the current-voltage curves exhibit a semiconducting behavior, which corresponds to the polyyne structure of the atomic chain with alternating single and triple bonds. Conversely, when the chain is unstrained, the ohmic behavior is observed in agreement with the metallic cumulene structure with double bonds, confirming recent theoretical predictions, namely that a metal-insulator transition can be induced by adjusting the strain. The key role of the contacting leads is also scrutinized by ab initio quantum conductance calculations, explaining the rectifying behavior measured in monoatomic carbon chains in a non-symmetric contact configuration.

  13. High-throughput ab-initio dilute solute diffusion database

    NASA Astrophysics Data System (ADS)

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  14. Ab-initio theory of spin fluctuations in magnets

    NASA Astrophysics Data System (ADS)

    Antropov, Vladimir; Ke, Liqin; van Schilfgaarde, Mark; Katsnelson, Mikhael

    2011-03-01

    We propose a framework for a true ab initio theory of magnetism, based on many-body perturbation theory (MPBT). It fits in naturally with methods based MPBT such as the GW approximation; but the approach can be implemented as an extension to any existing static method for electronic structure such as the local spin density approximation to density functional theory, to include spin fluctuations. Initially we calculated the spin fluctuation contributions using random phase approximation. The self consistency procedure similar to the one used in Moryia-Kawabata theory can be naturally implemented. The fluctuation dissipation theorem is used to calculate the reduction of the mean field magnetic moment in itinerant magnets. The applications of the technique includes traditional 3d ferromagnetic metals, their alloys and compounds and 5f systems.

  15. An Ab Initio Study of Alkali-C60 Complexes

    NASA Astrophysics Data System (ADS)

    Frick, Nathan; Hira, A. S.; Ray, A. K.

    2003-03-01

    We extend our previous work on fullerene-alkali complexes1-2 by presenting the results of an ab initio theoretical study of the alkali LiC60+, LiC60, NaC60+, NaC60, KC60+, and KC60 complexes. In the endohedral complexes for Li and Na, there is displacement of the adatom from the center. Of the ions, exohedral Li+ will sit closest to the cage, and among the neutrals, exohedral K remains closest. Bond lengths are consistently longer for the fivefold and threefold approaches. Adsorbates inside the fullerene donate negative charge to the carbons, but ions outside obtain a small amount, resulting in a polarization of the molecule. In the ion complexes, there is lowering of the orbital energy levels by 3 to 4 eV, resulting in an increase in the number of bound, but unoccupied, electronic orbitals. The HOMO-LUMO gap, of interest in superconductivity studies, is reduced by about 50 1. A.S. Hira and A.K. Ray, Phys. Rev. A 52, 141(1995); A 54, 2205(1996). 2. Ajit Hira and A. K. Ray, "An Initio Modeling of the Endohedral and Exohedral Complexes of C60Na2+ Complexes", Bull. Am. Phys. Soc. 47 (March 2002).

  16. Ab initio MCDHF calculations of electron-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Bieroń, Jacek; Froese Fischer, Charlotte; Fritzsche, Stephan; Gaigalas, Gediminas; Grant, Ian P.; Indelicato, Paul; Jönsson, Per; Pyykkö, Pekka

    2015-05-01

    We present recent advances in the development of atomic ab initio multiconfiguration Dirac-Hartree-Fock theory, implemented in the GRASP relativistic atomic structure code. For neutral atoms, the deviations of properties calculated within the Dirac-Hartree-Fock (DHF) method (based on independent particle model of an atomic cloud) are usually dominated by electron correlation effects, i.e. the non-central interactions of individual electrons. We present the recent advances in accurate calculations of electron correlation effects in small, medium, and heavy neutral atoms. We describe methods of systematic development of multiconfiguration expansions leading to systematic, controlled improvement of the accuracy of the ab initio calculations. These methods originate from the concept of the complete active space (CAS) model within the DHF theory, which, at least in principle, permits fully relativistic calculations with full account of electron correlation effects. The calculations within the CAS model on currently available computer systems are feasible only for very light systems. For heavier atoms or ions with more than a few electrons, restrictions have to be imposed on the multiconfiguration expansions. We present methods and tools, which are designed to extend the numerical calculations in a controlled manner, where multiconfiguration expansions account for all leading electron correlation effects. We show examples of applications of the GRASP code to calculations of hyperfine structure constants, but the code may be used for calculations of arbitrary bound-state atomic properties. In recent years it has been applied to calculations of atomic and ionic spectra (transition energies and rates), to determinations of nuclear electromagnetic moments, as well as to calculations related to interactions of bound electrons with nuclear electromagnetic moments leading to violations of discrete symmetries.

  17. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J. P.; Maris, P.; Honkanen, H.; Li, J.; Shirokov, A. M.; Brodsky, S. J.; Harindranath, A.

    2009-12-17

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually, we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  18. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.

    2009-08-03

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  19. Ab Initio Electronic Structure Calculations of Cytochrome P450 -- Ligand Interactions

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Ellis, S. W.; Tucker, G. T.

    1997-03-01

    The Cytochrome P450 superfamily of enzymes are of great interest in pharmacology as they participate in an enormous range of physiological processes including drug deactivation and xenobiotic detoxification. We apply ab initio electronic structure calculations to model the interactions of the haem molecule at the P450 active site with substrate and inhibitor ligands. These calculations, based on density function theory, were performed with the CETEP code which uses a plane wave basis set and pseudopotentials to perform efficient LDA, GGA and spin dependent calculations. A change in the spin state of the haem iron atom is observed on binding of a substrate molecule, consistent with the accepted reaction mechanism.

  20. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  1. Graph theory meets ab initio molecular dynamics: atomic structures and transformations at the nanoscale.

    PubMed

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-19

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  2. Binding of oxygen with titanium dioxide on singlet potential energy surface: An ab initio investigation

    NASA Astrophysics Data System (ADS)

    Bogdanchikov, Georgii A.; Baklanov, Alexey V.

    2017-01-01

    Ab initio calculations have been carried out to investigate interaction of titanium dioxide TiO2 with oxygen O2 in ground triplet and excited singlet states. On a singlet potential energy surface (PES) formation of a stable compound of titanium peroxide TiO4 is revealed which should appear in reaction of TiO2 with singlet oxygen without activation barrier. This peroxide is lower in energy than the ground state of two individual molecules TiO2 + 3O2 by 34.6 kcal/mol. Location of conical intersection between triplet and singlet PESs of TiO2sbnd O2 is also investigated.

  3. Polyatomic ab Initio Complex Potential Energy Surfaces: Illustration of Ultracold Collisions.

    PubMed

    Bhattacharya, Debarati; Ben-Asher, Anael; Haritan, Idan; Pawlak, Mariusz; Landau, Arie; Moiseyev, Nimrod

    2017-03-29

    Resonances are metastable states that decay after a finite period of time. These states play a role in many physical processes. For example, in recent cold collision experiments, autoionization from a resonance state was observed. Complementing such observations with theory provides insight into the reaction dynamics under study. Theoretical investigation of autoionization processes is enabled via complex potential energy surfaces (CPESs), where the real and imaginary parts, respectively, provide the energy and decay rate of the system. Unfortunately, calculation of ab initio polyatomic CPESs are cumbersome; hence, they are not in abundance. Here, we present an ab initio polyatomic CPES utilizing a recently developed approach, which makes such calculations feasible. This CPES helps interpret the autoionization process observed in the He(2(3)S) + H2 collision. From the behavior of the calculated CPES we can conclusively determine the nature of the autoionization process. Moreover, this CPES was used to generate reaction rates for the collision of He with ortho- and para-H2. These reaction rates are obtained from first principles. The results show a remarkable agreement with the cold collision experimental measurements, which demonstrates the robustness of our method. Hereby, we provide a computational tool for designing and interpreting new types of experiments that involve resonance states, e.g., in nucleobase damages (DNA or RNA) or in interatomic (intermolecular) Coulombic decay.

  4. Mapping enzymatic catalysis using the effective fragment molecular orbital method: towards all ab initio biochemistry.

    PubMed

    Steinmann, Casper; Fedorov, Dmitri G; Jensen, Jan H

    2013-01-01

    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be [Formula: see text] kcal mol(-1) for MP2/cc-pVDZ and [Formula: see text] for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively.

  5. Mapping Enzymatic Catalysis Using the Effective Fragment Molecular Orbital Method: Towards all ab initio Biochemistry

    PubMed Central

    Steinmann, Casper; Fedorov, Dmitri G.; Jensen, Jan H.

    2013-01-01

    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be kcal mol−1 for MP2/cc-pVDZ and for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively. PMID:23593259

  6. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  7. Ab initio calculations of the melting temperatures of refractory bcc metals.

    PubMed

    Wang, L G; van de Walle, A

    2012-01-28

    We present ab initio calculations of the melting temperatures for bcc metals Nb, Ta and W. The calculations combine phase coexistence molecular dynamics (MD) simulations using classical embedded-atom method potentials and ab initio density functional theory free energy corrections. The calculated melting temperatures for Nb, Ta and W are, respectively, within 3%, 4%, and 7% of the experimental values. We compare the melting temperatures to those obtained from direct ab initio molecular dynamics simulations and see if they are in excellent agreement with each other. The small remaining discrepancies with experiment are thus likely due to inherent limitations associated with exchange-correlation energy approximations within density-functional theory.

  8. Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Nakayama, Akira

    2008-01-01

    The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.

  9. Ab initio calculation of the potential bubble nucleus 34Si

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.

    2017-03-01

    Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to

  10. Protons in polar media: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, Tycho

    1998-10-01

    The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations

  11. Ab initio aqueous thermochemistry: application to the oxidation of hydroxylamine in nitric acid solution.

    PubMed

    Ashcraft, Robert W; Raman, Sumathy; Green, William H

    2007-10-18

    Ab initio molecular orbital calculations were performed and thermochemical parameters estimated for 46 species involved in the oxidation of hydroxylamine in aqueous nitric acid solution. Solution-phase properties were estimated using the several levels of theory in Gaussian03 and using COSMOtherm. The use of computational chemistry calculations for the estimation of physical properties and constants in solution is addressed. The connection between the pseudochemical potential of Ben-Naim and the traditional standard state-based thermochemistry is shown, and the connection of these ideas to computational chemistry results is established. This theoretical framework provides a basis for the practical use of the solution-phase computational chemistry estimates for real systems, without the implicit assumptions that often hide the nuances of solution-phase thermochemistry. The effect of nonidealities and a method to account for them is also discussed. A method is presented for estimating the solvation enthalpy and entropy for dilute aqueous solutions based on the solvation free energy from the ab initio calculations. The accuracy of the estimated thermochemical parameters was determined through comparison with (i) enthalpies of formation in the gas phase and in solution, (ii) Henry's law data for aqueous solutions, and (iii) various reaction equilibria in aqueous solution. Typical mean absolute deviations (MAD) for the solvation free energy in room-temperature water appear to be ~1.5 kcal/mol for most methods investigated. The MAD for computed enthalpies of formation in solution was 1.5-3 kcal/mol, depending on the methodology employed and the type of species (ion, radical, closed-shell) being computed. This work provides a relatively simple and unambiguous approach that can be used to estimate the thermochemical parameters needed to build detailed ab initio kinetic models of systems in aqueous solution. Technical challenges that limit the accuracy of the estimates are

  12. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics

    SciTech Connect

    Nakamura, Makoto Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-05-14

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.

  13. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics

    NASA Astrophysics Data System (ADS)

    Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-05-01

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.

  14. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics.

    PubMed

    Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-05-14

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.

  15. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific

  16. Reaction Dynamics of O((3)P) + Propyne: II. Primary Products, Branching Ratios, and Role of Intersystem Crossing from Ab Initio Coupled Triplet/Singlet Potential Energy Surfaces and Statistical Calculations.

    PubMed

    Gimondi, Ilaria; Cavallotti, Carlo; Vanuzzo, Gianmarco; Balucani, Nadia; Casavecchia, Piergiorgio

    2016-07-14

    The mechanism of the O((3)P) + CH3CCH reaction was investigated using a combined experimental/theoretical approach. Experimentally the reaction dynamics was studied using crossed molecular beams (CMB) with mass-spectrometric detection and time-of-flight analysis at 9.2 kcal/mol collision energy. Theoretically master equation (ME) simulations were performed on a potential energy surface (PES) determined using high-level ab initio electronic structure calculations. In this paper (II) the theoretical results are described and compared with experiments, while in paper (I) are reported and discussed the results of the experimental study. The PES was investigated by determining structures and vibrational frequencies of wells and transition states at the CASPT2/aug-cc-pVTZ level using a minimal active space. Energies were then determined at the CASPT2 level increasing systematically the active space and at the CCSD(T) level extrapolating to the complete basis set limit. Two separate portions of the triplet PES were investigated, as O((3)P) can add either on the terminal or the central carbon of the unsaturated propyne bond. Minimum energy crossing points (MECPs) between the triplet and singlet PESs were searched at the CASPT2 level. The calculated spin-orbit coupling constants between the T1 and S0 electronic surfaces were ∼25 cm(-1) for both PESs. The portions of the singlet PES that can be accessed from the MECPs were investigated at the same level of theory. The system reactivity was predicted integrating stochastically the one-dimensional ME using Rice-Ramsperger-Kassel-Marcus theory to determine rate constants on the full T1/S0 PESs, accounting explicitly for intersystem crossing (ISC) using the Landau-Zener model. The computational results are compared both with the branching ratios (BRs) determined experimentally in the companion paper (I) and with those estimated in a recent kinetic study at 298 K. The ME results allow to interpret the main system reactivity: CH

  17. Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  18. Ab initio solution of macromolecular crystal structures without direct methods.

    PubMed

    McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J

    2017-04-04

    The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.

  19. Ab initio study of MoS2 nanotube bundles

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu; Charlier, Jean-Christophe

    2003-07-01

    Recently, the synthesis of a new phase of MoS2I1/3 stoichiometry was reported [M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001)]. Electron microscope images and diffraction data were interpreted to indicate bundles of sub-nanometer-diameter single-wall MoS2 nanotubes. After experimental characterization, the structure was attributed to an assembly of “armchair” nanotubes with interstitial iodine. Using first-principles total-energy calculations, bundles of MoS2 nanotubes with different topologies and stoichiometries are investigated. All of the systems are strongly metallic. Configurations with “zigzag” structures are found to be more stable energetically than the “armchair” ones, though all of the structures have similar stabilities. After relaxation, there remain several candidates which give a lattice parameter in relative agreement with experiment. Further, spin-polarized calculations indicate that a structure with armchair tubes iodine atoms in their center acquires a very large spontaneous magnetic moment of 12μB, while the other structures are nonmagnetic. Our ab initio calculations show that in most of the other structures, the tubes are very strongly bound together, and that the compounds should be considered as a crystal, rather than as a bundle of tubes in the habitual sense.

  20. Ab initio electronic structure and optical conductivity of bismuth tellurohalides

    NASA Astrophysics Data System (ADS)

    Schwalbe, Sebastian; Wirnata, René; Starke, Ronald; Schober, Giulio A. H.; Kortus, Jens

    2016-11-01

    We investigate the electronic structure, dielectric, and optical properties of bismuth tellurohalides BiTe X (X =I , Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. [Phys. Rev. B 90, 035201 (2014), 10.1103/PhysRevB.90.035201], Makhnev et al. [Opt. Spectrosc. 117, 764 (2014), 10.1134/S0030400X14110125], and Rusinov et al. [JETP Lett. 101, 507 (2015), 10.1134/S0021364015080147]. We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.

  1. Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures

    NASA Astrophysics Data System (ADS)

    Debernardi, Alberto; Marchetti, Luigi

    2016-06-01

    Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.

  2. Lead-Chalcogenides Under Pressure: Ab-Initio Study

    NASA Astrophysics Data System (ADS)

    Gupta, Dinesh C.; Hamid, Idris

    ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.

  3. Melting curves of metals by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Minakov, Dmitry; Levashov, Pavel

    2015-06-01

    In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).

  4. Challenges for large scale ab initio Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kent, Paul

    2015-03-01

    Ab initio Quantum Monte Carlo is an electronic structure method that is highly accurate, well suited to large scale computation, and potentially systematically improvable in accuracy. Due to increases in computer power, the method has been applied to systems where established electronic structure methods have difficulty reaching the accuracies desired to inform experiment without empiricism, a necessary step in the design of materials and a helpful step in the improvement of cheaper and less accurate methods. Recent applications include accurate phase diagrams of simple materials through to phenomena in transition metal oxides. Nevertheless there remain significant challenges to achieving a methodology that is robust and systematically improvable in practice, as well as capable of exploiting the latest generation of high-performance computers. In this talk I will describe the current state of the art, recent applications, and several significant challenges for continued improvement. Supported through the Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE).

  5. Ab-Initio Study of Incongruent Melting in Silicates

    NASA Astrophysics Data System (ADS)

    Pinilla, C.; Stixrude, L. P.

    2014-12-01

    Knowledge of the multi-component thermodynamics and phase equilibria of silicate melts at Earth's interior conditions are key to understand the chemical and thermal evolution of the planet. Yet they remain poorly constrained with a wide uncertainty on the eutectic composition and temperature. In this work we present results from ab-initio molecular dynamics in combination with the two-phase coexistance method to study properties of a system of MgSiO3 liquid coexisting with crystalline MgO at conditions of the deep lower mantle. During incongruent melting the crystal may either grow via partial freezing of the liquid or shrink via partial melting at a given temperature and pressure. The melting process can be studied using the two-phases method where liquid and solid are in contact at a given temperature and pressure and so under thermodynamic equilibrium. We characterise the composition and densities of the resultant solid and liquid phases, provide chemical potentials of the liquid phase and study the structural and dynamical properties of the melt. In addition, we discuss the performance of alternative computational methods applied to the study of incongruent melting in silicate systems where long simulation times and a large number of atoms are usually needed. Finally, we discuss the implication of our findings for the evolution of the Earth's interior.

  6. Ab initio description of the exotic unbound 7He nucleus

    DOE PAGES

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-01-11

    In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less

  7. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed.

  8. Ab Initio Study of Covalently Functionalized Graphene and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Hammouri, Mahmoud; Vasiliev, Igor; Magedov, Igor; Frolova, Liliya; Kalugin, Nikolai

    2014-03-01

    The electronic and structural properties of carbon nanomaterials can be affected by chemical functionalization. We apply ab initio computational methods based on density functional theory to study the properties of graphene and single-walled carbon nanotubes functionalized with benzyne. Our calculations are carried out using the SIESTA electronic structure code combined with the generalized gradient approximation for the exchange correlation functional. The calculated binding energies, densities of states, and band structures of functionalized graphene and carbon nanotubes are analyzed in comparison with the available experimental data. The surfaces of carbon nanotubes are found to be significantly more reactive toward benzyne molecules than the surface of graphene. The strength of interaction between benzyne and carbon nanotubes is affected by the curvature of the nanotube sidewall. The binding energies of benzyne molecules attached to both semiconducting zigzag and metallic armchair nanotubes increase with decreasing the nanotube diameter. Supported by NSF CHE-1112388, NMSU GREG Award, NSF ECCS-0925988, NIH-5P20RR016480-12, and NIH- P20 GM103451.

  9. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  10. Ab initio liquid water from PBE0 hybrid functional simulations

    NASA Astrophysics Data System (ADS)

    Li, Zhaofeng; Wu, Xifan; Car, Roberto

    2010-03-01

    For reasons of computational efficiency, so far most ab initio molecular dynamics simulations of liquid water have been based on semi-local density functional approximations, such as PBE and BLYP. These approaches yield a liquid structure that, albeit qualitatively correct, is overstructured compared to experiment, even after nuclear quantum effects have been taken into account.footnotetextJ. A. Morrone and R. Car, Phys. Rev. Lett. 101, 017801(2008) A major cause of this inaccuracy is the delocalization error associated to semi-local density functional approximations, which, as a consequence, overestimate slightly the hydrogen bond strength in the liquid. In this work we adopt the PBE0 hybrid functional approximation, which, by mixing a fraction of exact (Hartree-Fock) exchange, reduces significantly the delocalization error of semi-local functionals. Our approach is based on a numerically efficient order-N implementation of exact exchange.footnotetextX. Wu, A. Selloni, and R. Car, Phys. Rev. B 79, 085102(2009) We find that PBE0 systematically improves the agreement of the simulated liquid with experiment. Our conclusion is substantiated by the calculated radial distribution functions, H-bond statistics, and molecular dipole distribution.

  11. Ab initio predictions of the symmetry energy and recent constraints

    NASA Astrophysics Data System (ADS)

    Sammarruca, Francesca

    2017-01-01

    The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.

  12. An efficient approach to ab initio Monte Carlo simulation.

    PubMed

    Leiding, Jeff; Coe, Joshua D

    2014-01-21

    We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β(0)), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where-depending on the quality of the reference system potential-acceptance probabilities were enhanced by factors of 1.2-28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.

  13. Ab initio studies of phosphorene island single electron transistor

    NASA Astrophysics Data System (ADS)

    Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.

    2016-05-01

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.

  14. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  15. Ab-Initio Molecular Dynamics Simulation of Graphene Sheet

    NASA Astrophysics Data System (ADS)

    Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.

    2017-01-01

    The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.

  16. Ab initio Raman spectroscopy of water under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia

    Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.

  17. Ab initio studies of niobium defects in uranium

    SciTech Connect

    Xiang, S; Huang, H; Hsiung, L

    2007-06-01

    Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.

  18. Perovskite transparent conducting oxides: an ab initio study.

    PubMed

    Dabaghmanesh, S; Saniz, R; Amini, M N; Lamoen, D; Partoens, B

    2013-10-16

    We present an ab initio study of the electronic structure and of the formation energies of various point defects in BaSnO3 and SrGeO3. We show that La and Y impurities substituting Ba or Sr are shallow donors with a preferred 1 + charge state. These defects have a low formation energy within all the suitable equilibrium growth conditions considered. Oxygen vacancies behave as shallow donors as well, preferring the 2 + charge state. Their formation energies, however, are higher in most growth conditions, indicating a limited contribution to conductivity. The calculated electron effective mass in BaSnO3, with a value of 0.21 m(e), and the very high mobility reported recently in La-doped BaSnO3 single-crystals, suggest that remarkably low scattering rates can be achieved in the latter. In the case of SrGeO3, our results point to carrier density and mobility values in the low range for typical polycrystalline TCOs, in line with experiment.

  19. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  20. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  1. Electronic structure and conductivity of ferroelectric hexaferrite: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Knížek, K.; Novák, P.; Küpferling, M.

    2006-04-01

    Ba0.5Sr1.5Zn2Fe12O22 is a promising multiferroic compound in which the electric polarization is intimately connected to the magnetic state. In principle, ferroelectrity might exist above the room temperature, but the electrical conductivity that increases with increasing temperature limits it to temperatures below ≈130K . We present results of an ab initio electronic structure calculation of the (BaSr)Zn2Fe12O22 system. To improve the description of strongly correlated 3d electrons of iron, the GGA+U method is used. The results show that the electrical conductivity strongly depends on relative fractions of iron and zinc in the tetrahedral sublattice that belongs to the spinel block of the hexaferrite structure. If this sublattice is fully occupied by zinc, the system is an insulator with a gap of ≈1.5eV . If it is occupied equally by Fe and Zn the gap decreases by a factor of 2, and the system is metallic when this sublattice is filled by iron only.

  2. Ab initio modeling of decomposition in iron based alloys

    NASA Astrophysics Data System (ADS)

    Gorbatov, O. I.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.

    2016-12-01

    This paper reviews recent progress in the field of ab initio based simulations of structure and properties of Fe-based alloys. We focus on thermodynamics of these alloys, their decomposition kinetics, and microstructure formation taking into account disorder of magnetic moments with temperature. We review modern theoretical tools which allow a consistent description of the electronic structure and energetics of random alloys with local magnetic moments that become totally or partially disordered when temperature increases. This approach gives a basis for an accurate finite-temperature description of alloys by calculating all the relevant contributions to the Gibbs energy from first-principles, including a configurational part as well as terms due to electronic, vibrational, and magnetic excitations. Applications of these theoretical approaches to the calculations of thermodynamics parameters at elevated temperatures (solution energies and effective interatomic interactions) are discussed including atomistic modeling of decomposition/clustering in Fe-based alloys. It provides a solid basis for understanding experimental data and for developing new steels for modern applications. The precipitation in Fe-Cu based alloys, the decomposition in Fe-Cr, and the short-range order formation in iron alloys with s-p elements are considered as examples.

  3. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  4. Ab initio calculations of correlated electron dynamics in ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Feist, Johannes

    2010-03-01

    The availability of ultrashort and intense light pulses on the femtosecond and attosecond timescale promises to allow to directly probe and control electron dynamics on their natural timescale. A crucial ingredient to understanding the dynamics in many-electron systems is the influence of electron correlation, induced by the interelectronic repulsion. In order to study electron correlation in ultrafast processes, we have implemented an ab initio simulation of the two-electron dynamics in helium atoms. We solve the time-dependent Schr"odinger equation in its full dimensionality, with one temporal and five spatial degrees of freedom in linearly polarized laser fields. In our computational approach, the wave function is represented through a combination of time-dependent close coupling with the finite element discrete variable representation, while time propagation is performed using an Arnoldi-Lanczos approximation with adaptive step size. This approach is optimized to allow for efficient parallelization of the program and has been shown to scale linearly using up to 1800 processor cores for typical problem sizes. This has allowed us to perform highly accurate and well- converged computations for the interaction of ultrashort laser pulses with He. I will present some recent results on using attosecond and femtosecond pulses to probe and control the temporal structure of the ionization process. This work was performed in collaboration with Stefan Nagele, Renate Pazourek, Andreas Kaltenb"ack, Emil Persson, Barry I. Schneider, Lee A. Collins, and Joachim Burgd"orfer.

  5. Experimental and ab initio study of the mechanical properties of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Snyders, R.; Music, D.; Sigumonrong, D.; Schelnberger, B.; Jensen, J.; Schneider, J. M.

    2007-05-01

    The authors have studied the elastic properties of radio frequency sputtered phase pure, stoichiometric, and dense hydroxyapatite films by nanoindentation. The measured elastic modulus values have been compared to ab initio calculated data. The calculation technique was based on the determination of all elastic constants. The calculated and measured elastic modulus values differ by ˜10%. The good agreement indicates that the elasticity of hydroxyapatite can be described using ab initio calculations, establishing the elastic modulus thereof.

  6. Ab initio results for intermediate-mass, open-shell nuclei

    NASA Astrophysics Data System (ADS)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  7. Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.

    2012-05-01

    An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.

  8. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  9. Dissociation dynamics of ethylene molecules on a Ni cluster using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shimamura, K.; Shibuta, Y.; Ohmura, S.; Arifin, R.; Shimojo, F.

    2016-04-01

    The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed.

  10. Structure models: From shell model to ab initio methods. A brief introduction to microscopic theories for exotic nuclei

    NASA Astrophysics Data System (ADS)

    Bacca, Sonia

    2016-04-01

    A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.

  11. Thermochemistry of aqueous hydroxyl radical from advances in photoacoustic calorimetry and ab initio continuum solvation theory.

    PubMed

    Autrey, Tom; Brown, Aaron K; Camaioni, Donald M; Dupuis, Michel; Foster, Nancy S; Getty, April

    2004-03-31

    Photoacoustic signals from dilute ( approximately 30 mM) solutions of H2O2 were measured over the temperature range from 10 to 45 degrees C to obtain the reaction enthalpy and volume change for H2O2(aq) --> 2 OH(aq) from which we ultimately determined DeltafG degrees , DeltafH degrees and partial molal volume, v degrees , of OH (aq). We find DeltarH = 46.8 +/- 1.4 kcal/mol, which is 4 kcal/mol smaller than the gas-phase bond energy, and DeltaVr = 6.5 +/- 0.4 mL/mol. The v degrees for OH in water is 14.4 +/- 0.4 mL/ml: smaller than the v degrees of water. Using ab intio continuum theory, the hydration free energy is calculated to be -3.9 +/- 0.3 kcal/mol (for standard states in number density concentration units) by a novel approach devised to capture in the definition of the solute cavity the strength and specific interactions of the solute with a water solvent molecule. The shape of the cavity is defined by "rolling" a three-dimensional electron density isocontour of water on the ab initio water-OH minimum interaction surface. The value of the contour is selected to reproduce the volume of OH in water. We obtain for OH(aq): DeltafH degrees = -0.2 +/- 1.4 and DeltafG degrees = 5.8 +/- 0.4 kcal/mol that are in agreement with literature values. The results provide confidence in the pulsed PAC technique for measuring aqueous thermochemistry of radicals and open the way to obtaining thermochemistry for most radicals that can be formed by reaction of OH with aqueous substrates while advancing the field of continuum solvation theory toward ab initio-defined solute cavities.

  12. Cosmic-Ray Modulation: an Ab Initio Approach

    NASA Astrophysics Data System (ADS)

    Engelbrecht, N. E.; Burger, R. A.

    2014-10-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.

  13. The hydration structure of carbon monoxide by ab initio methods

    NASA Astrophysics Data System (ADS)

    Awoonor-Williams, Ernest; Rowley, Christopher N.

    2017-01-01

    The solvation of carbon monoxide (CO) in liquid water is important for understanding its toxicological effects and biochemical roles. In this paper, we use ab initio molecular dynamics (AIMD) and CCSD(T)-F12 calculations to assess the accuracy of the Straub and Karplus molecular mechanical (MM) model for CO(aq). The CCSD(T)-F12 CO-H2O potential energy surfaces show that the most stable structure corresponds to water donating a hydrogen bond to the C center. The MM-calculated surface incorrectly predicts that the O atom is a stronger hydrogen bond acceptor than the C atom. The AIMD simulations indicate that CO is solvated like a hydrophobic solute, with very limited hydrogen bonding with water. The MM model tends to overestimate the degree of hydrogen bonding and overestimates the atomic radius of the C atom. The calculated Gibbs energy of hydration using the TIP3P water model is in good agreement with the experiment (9.3 kJ mol-1 expt. vs 10.7 kJ mol-1 calc.). The calculated diffusivity of CO (aq) in TIP3P-model water was 5.1 ×10-5 cm2/s calc., more than double the experimental value of 2.3 ×10-5 cm2/s. The hydration energy calculated using the TIP4P-FB water model is in poorer agreement with the experiment (ΔG = 6.8 kJ/mol) but the diffusivity is in better agreement (D =2.5 ±0.1 ×10-5 cm2/s).

  14. Ab initio molecular dynamics of liquid hydrogen chloride

    NASA Astrophysics Data System (ADS)

    Dubois, Vincent; Pasquarello, Alfredo

    2005-03-01

    We carried out an ab initio molecular dynamics simulation of liquid hydrogen chloride (ℓ-HCl) at a temperature of 313 K. Comparison with inelastic neutron scattering data shows that the simulation achieves an overall good description of the structural correlations, improving significantly upon a description based on classical interaction potentials. Despite some minor differences between theory and experiment in the H-H partial structure factor, the simulation gives a description of the hydrogen bonding in impressive agreement with experiment, for both the amount and the bond-length distribution of the bonds. In the simulation, 40% of the molecules are nonbonded, while the hydrogen-bonded chains are short, principally consisting of dimers (25%) and trimers (15%). Neighboring molecules in the simulation are found to form L-shaped arrangements, like in the isolated (HCl)2 dimer and in crystalline phases of HCl. The time correlation of the molecular-axis orientation is found to be characterized by a very short decay time (0.13 ps), consistent with the short length of the hydrogen-bonded chains. Other dynamical properties investigated in this work include the diffusion coefficient and the vibrational density of states. We evaluated the molecular dipole of the HCl molecule in the liquid using a definition based on the coupling of rotational modes to an external electric field. The average dipole moment (1.53 D) derived in this way is found to be considerably larger than for the isolated molecule (1.11 D). Our results show that the dipole moment in ℓ-HCl undergoes large fluctuations, both in orientation and in modulus. Upon the onset of an external field, such dipole fluctuations concur to reduce the fluctuations of the dielectric response.

  15. Efficient conformational space exploration in ab initio protein folding simulation

    PubMed Central

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel

    2015-01-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  16. Ab initio valence-space theory for exotic nuclei

    NASA Astrophysics Data System (ADS)

    Holt, Jason

    2015-10-01

    Recent advances in ab initio nuclear structure theory have led to groundbreaking predictions in the exotic medium-mass region, from the location of the neutron dripline to the emergence of new magic numbers far from stability. Playing a key role in this progress has been the development of sophisticated many-body techniques and chiral effective field theory, which provides a systematic basis for consistent many-nucleon forces and electroweak currents. Within the context of valence-space Hamiltonians derived from the nonperturbative in-medium similarity renormalization group (IM-SRG) approach, I will discuss the importance of 3N forces in understanding and making new discoveries in the exotic sd -shell region. Beginning in oxygen, we find that the effects of 3N forces are decisive in explaining why 24O is the last bound oxygen isotope, validating first predictions of this phenomenon from several years ago. Furthermore, 3N forces play a key role in reproducing spectroscopy, including signatures of doubly magic 22,24O, and physics beyond the dripline. Similar improvements are obtained in new spectroscopic predictions for exotic fluorine and neon isotopes, where agreement with recent experimental data is competitive with state-of-the-art phenomenology. Finally, I will discuss first applications of the IM-SRG to effective valence-space operators, such as radii and E 0 transitions, as well as extensions to general operators crucial for our future understanding of electroweak processes, such as neutrinoless double-beta decay. This work was supported by NSERC and the NRC Canada.

  17. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.

  18. Resonance and aromaticity: an ab initio valence bond approach.

    PubMed

    Rashid, Zahid; van Lenthe, Joop H; Havenith, Remco W A

    2012-05-17

    Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wave function for each system was constructed using a linear combination of the VB structures (spin functions), which closely resemble the Kekulé valence structures, and two types of orbitals, that is, strictly atomic (local) and delocalized atomic (delocal) p-orbitals, were used to describe the π-system. It is found that the Pauling-Wheland's resonance energy with nonorthogonal structures decreases, while the same with orthogonalized structures and the total mean resonance energy (the sum of the weighted off-diagonal contributions in the Hamiltonian matrix of orthogonalized structures) increase when delocal orbitals are used as compared to local p-orbitals. Analysis of the interactions between the different structures of a system shows that the resonance in the 6π electrons conjugated circuits have the largest contributions to the resonance energy. The VBSCF calculations also show that the extra stability of phenanthrene, a kinked benzenoid, as compared to its linear counterpart, anthracene, is a consequence of the resonance in the π-system rather than the H-H interaction in the bay region as suggested previously. Finally, the empirical parameters for the resonance interactions between different 4n+2 or 4n π electrons conjugated circuits, used in Randić's conjugated circuits theory or Herdon's semi-emprical VB approach, are quantified. These parameters have to be scaled by the structure coefficients (weights) of the contributing structures.

  19. AN AB INITIO MODEL FOR COSMIC-RAY MODULATION

    SciTech Connect

    Engelbrecht, N. E.; Burger, R. A.

    2013-07-20

    A proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays (CRs) is of vital importance for a better understanding of CR modulation in the heliosphere. This study presents an ab initio model for CR modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for solar minimum heliospheric conditions, utilizing boundary values chosen so that model results are in reasonable agreement with spacecraft observations of turbulence quantities in the solar ecliptic plane and along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modeled slab and two-dimensional (2D) turbulence energy spectra. The modeled 2D spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers. There currently exist no models or observations for the wavenumber where this drop-off occurs, and it is considered to be the only free parameter in this study. The modeled spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on CR drifts are modeled in a self-consistent way, also employing a recently developed model for wavy current sheet drift. The resulting diffusion and drift coefficients are applied to the study of galactic CR protons and antiprotons using a 3D, steady-state CR modulation code, and sample solutions in fair to good agreement with multiple spacecraft observations are presented.

  20. Uniaxial phase transition in Si: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Cheng, C.

    2003-04-01

    Based on a previously proposed thermodynamic analysis, [C. Cheng, W. H. Huang, and H. J. Li, Phys. Rev. B 63, 153202 (2001)] we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, βSn, simple-hexagonal (sh), simple-cubic, and hexagonal closed-packed structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different contributions to the relative phase stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic compression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures up to 20 GPa. The stable phases were found to be diamond, βSn, and sh structures, i.e., the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition Px>Pz. Similarly, the sh-to-βSn transition on increasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable to the condition Px

  1. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  2. Kinetic isotope effects for Cl + CH4 ⇌ HCl + CH3 calculated using ab initio semiclassical transition state theory.

    PubMed

    Barker, John R; Nguyen, Thanh Lam; Stanton, John F

    2012-06-21

    Calculations were carried out for 25 isotopologues of the title reaction for various combinations of (35)Cl, (37)Cl, (12)C, (13)C, (14)C, H, and D. The computed rate constants are based on harmonic vibrational frequencies calculated at the CCSD(T)/aug-cc-pVTZ level of theory and X(ij) vibrational anharmonicity coefficients calculated at the CCSD(T) /aug-cc-pVDZ level of theory. For some reactions, anharmonicity coefficients were also computed at the CCSD(T)/aug-cc-pVTZ level of theory. The classical reaction barrier was taken from Eskola et al. [J. Phys. Chem. A 2008, 112, 7391-7401], who extrapolated CCSD(T) calculations to the complete basis set limit. Rate constants were calculated for temperatures from ∼100 to ∼2000 K. The computed ab initio rate constant for the normal isotopologue is in good agreement with experiments over the entire temperature range (∼10% lower than the recommended experimental value at 298 K). The ab initio H/D kinetic isotope effects (KIEs) for CH(3)D, CH(2)D(2), CHD(3), and CD(4) are in very good agreement with literature experimental data. The ab initio (12)C/(13)C KIE is in error by ∼2% at 298 K for calculations using X(ij) coefficients computed with the aug-cc-pVDZ basis set, but the error is reduced to ∼1% when X(ij) coefficients computed with the larger aug-cc-pVTZ basis set are used. Systematic improvements appear to be possible. The present SCTST results are found to be more accurate than those from other theoretical calculations. Overall, this is a very promising method for computing ab initio kinetic isotope effects.

  3. Ab initio quantum chemical and kinetic modeling study of the pyrolysis kinetics of pyrrole

    SciTech Connect

    Martoprawiro, M.; Bacskay, G.B.; Mackie, J.C.

    1999-05-20

    The five-membered heterocyclic pyrrole moiety is an important structure in coals and derived tars, and the thermal decomposition reactions of pyrrole are important for production of precursors of the oxides of nitrogen, NO{sub x}, in the combustion of coals. The kinetics of pyrolysis of pyrrole have been investigated theoretically by ab initio quantum chemical techniques and by detailed chemical kinetic modeling of previously reported experimental results. The overall kinetics can be successfully modeled by a 117 step kinetic model that gives good agreement with temperature profiles of major products and also provides an acceptable fit for minor products. The thermochemistry and rate parameters of a number of key reactions have been obtained by ab initio calculations carried out at CASSCF, CASPT2, and G2(MP2) levels of theory. Several reaction pathways were investigated. The major product, HCN, arises principally from a hydrogen migration in pyrrole to form a cyclic carbene with the NH bond intact. Ring scission of this carbene leads to an allenic imine precursor of HCN and propyne. This is the decomposition pathway of lowest energy. Pyrolysis is preceded by the facile tautomerization of pyrrole to 2H-pyrrolenine. The latter can undergo CN fission to form an open chain biradical species, which is the precursor of the butenenitrile isomeric products, cis- and trans-crotononitrile and allyl cyanide. The biradical can also undergo facile H-fission to form cyanoallyl radical, which is an important precursor of acetylene, acetonitrile, and acrylonitrile, H{sub 2} also arises principally from H-fission of the biradical.

  4. An investigation of ab initio shell-model interactions derived by no-core shell model

    NASA Astrophysics Data System (ADS)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  5. Thermochemistry of Aqueous Hydroxyl Radical from Advances in Photoacoustic Calorimetry and ab Initio Continum Solvation Theory

    SciTech Connect

    Autrey, Thomas; Brown, Aaron K.; Camaioni, Donald M.; Dupuis, Michel; Foster, Nancy S.; Getty, April D.

    2004-03-31

    Photoacoustic signals from dilute ({approx}30 mM) solutions of H{sub 2}O{sub 2} were measured over the temperature range from 10-45 C to obtain the reaction enthalpy and volume change for H{sub 2}O{sub 2}(aq) {yields} 2 OH(aq) from which we ultimately determined {Delta}{sub f}G{sup o}, {Delta}{sub f}H{sup o} and partial molal volume, v{sup o}, of OH (aq). We find {Delta}{sub r}H = 46.8 {+-} 1.4 kcal/mol, which is 4 kcal/mol smaller than the gas phase bond energy, and {Delta}V{sub r} = 6.5 {+-} 0.4 mL/mol. The v{sup o} for OH in water is 14.4 {+-} 0.4 mL/ml: smaller than the v{sup o} of water. Using ab initio continuum theory, the hydration free energy is calculated to be -3.9 {+-} 0.3 kcal/mol (for standard states in number density concentration units) by a novel approach devised to capture in the definition of the solute cavity the strength and specific interactions of the solute with a water solvent molecule. The shape of the cavity is defined by ''rolling'' a 3 dimensional electron density isocontour of water on the ab initio water-OH minimum interaction surface. The value of the contour is selected to reproduce the volume of OH in water. We obtain for OH(aq): {Delta}{sub f}H{sup o} = -0.2 {+-} 1.4 and {Delta}{sub f}G{sup o} = 5.8 {+-} 0.4 kcal/mol that are in agreement with literature values. The results provide confidence in the pulsed PAC technique for measuring aqueous thermochemistry of radicals and open the way to obtaining thermochemistry for most radicals that can be formed by reaction of OH with aqueous substrates while advancing the field of continuum solvation theory towards ab initio-defined solute cavities.

  6. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling.

    PubMed

    Ludwig, Jeffery; Vlachos, Dionisios G

    2007-10-21

    We outline a hybrid multiscale approach for the construction of ab initio potential energy surfaces (PESs) useful for performing six-dimensional (6D) classical or quantum mechanical molecular dynamics (MD) simulations of diatomic molecules reacting at single crystal surfaces. The algorithm implements concepts from the corrugation reduction procedure, which reduces energetic variation in the PES, and uses neural networks for interpolation of smoothed ab initio data. A novelty sampling scheme is implemented and used to identify configurations that are most likely to be predicted inaccurately by the neural network. This hybrid multiscale approach, which couples PES construction at the electronic structure level to MD simulations at the atomistic scale, reduces the number of density functional theory (DFT) calculations needed to specify an accurate PES. Due to the iterative nature of the novelty sampling algorithm, it is possible to obtain a quantitative measure of the convergence of the PES with respect to the number of ab initio calculations used to train the neural network. We demonstrate the algorithm by first applying it to two analytic potentials, which model the H2/Pt(111) and H2/Cu(111) systems. These potentials are of the corrugated London-Eyring-Polanyi-Sato form, which are based on DFT calculations, but are not globally accurate. After demonstrating the convergence of the PES using these simple potentials, we use DFT calculations directly and obtain converged semiclassical trajectories for the H2/Pt(111) system at the PW91/generalized gradient approximation level. We obtain a converged PES for a 6D hydrogen-surface dissociation reaction using novelty sampling coupled directly to DFT. These results, in excellent agreement with experiments and previous theoretical work, are compared to previous simulations in order to explore the sensitivity of the PES (and therefore MD) to the choice of exchange and correlation functional. Despite having a lower energetic

  7. Reactive Monte Carlo sampling with an ab initio potential

    SciTech Connect

    Leiding, Jeff; Coe, Joshua D.

    2016-05-04

    Here, we present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We also discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). Furthermore, we find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the “rare-event” character of chemical reactions.

  8. Glycine in an electronically excited state: ab initio electronic structure and dynamical calculations.

    PubMed

    Muchová, Eva; Slavícek, Petr; Sobolewski, Andrzej L; Hobza, Pavel

    2007-06-21

    The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.

  9. The photofragmentation of gas phase lanthanide complexes: Experimental and ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Jiangchao

    Dissociative laser-driven photoreactions of open-shell lanthanide metal-organic complexes are analyzed from experimental and computational aspects. Experimental analysis, based on time-of-flight mass spectrometry suggests the most probable pathway for the photoreactions. A sequence of intermediates and the distribution of final products are identified. The computational analysis, based on excited-state ab initio molecular dynamics with surface hopping, is implemented at the DFT level of theory. Computational treatment prompts the mechanism of laser-driven photoreactions at time ranges from femtoseconds to picoseconds. The experimental and computational analyses agree on several key products of photoreactions. Branching between two reaction pathways, ligand ejection versus cracking, is observed and explained. The results obtained are of importance for basic studies of processes beyond the Born-Oppenheimer approximation and for nano-electronics application of laser-assisted chemical vapor deposition of insulators with super-high dielectric constant.

  10. Ab initio determination of the proton affinities of small neutral and anionic molecules

    NASA Technical Reports Server (NTRS)

    DeFrees, D. J.; McLean, A. D.

    1986-01-01

    The proton affinity of a molecule in the gas phase is a fundamental measure of its basicity and is the factor controlling the course of many ion-molecule reactions. In this article, ab initio molecular orbital theory at the MP4/6-311 ++ G(3df, 3pd) level of theory is demonstrated to predict proton affinities (PA's) for small neutral and anionic bases to within 2 kcal mol-1. Furthermore, the errors are random, indicating that there are likely no systematic errors in either the experimental or theoretical PA's. Also, this level of theory is used to calibrate less sophisticated theoretical models which are suitable for larger molecules; the MP4/6-311 ++ G(2d, 2p) and MP2/6-311 ++ G(d, p) theoretical models should be particularly useful. A procedure for predicting the vibrational frequencies for anion is proposed and applied to CH3-, NH2-, OH-, and CN-.

  11. Ab initio study of the optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chang, Eric

    2006-03-01

    We present an ab initio study of the optical properties of carbon nanotubes. We use state-of-the-art electronic structure methods based on many-body perturbation theory to compute the optical absorption and resonance Raman spectra of large tubes which have up to 200 atoms [1,2]. Our symmetry-based method makes the study of large tubes feasible within the many- body framework and also allows us to understand the symmetry properties of the excitons and selection rules. We include a study of the so-called dark excitons which are crucial for understanding luminescence efficiency in carbon nanotubes. The mechanism that explains the dark-bright splitting can be understood within our symmetry-based approach. Finally, we present an analysis of the two-photon spectra for several carbon nanotubes, a theoretical analysis which, in conjunction with combined one- and two-photon experiments, allows one to measure the binding energy of excitons. We find in all cases that the excitonic binding energy is large, ranging from 0.5 to 0.9 eV depending on the diameter of the tube, and that the excitonic wavefunction is Wannier-like and extended over many atoms. Our studies for the one- and two-photon absorption and resonance Raman spectra have been fruitful for understanding the corresponding experiments. In particular, our theoretical results are in good agreement with one- and two-photon absorption experiments [3-5]. The results for resonance Raman show that such a spectroscopic technique is a good alternative to optical absorption since it allows for the selection of tubes of a given diameter while probing the same excited states. 1. E.K. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. Lett. 92, 196401 (2004). 2. E.K. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. B 72, 195423 (2005). 3. M. Y. Sfeir et al., Science 306, 1540 (2004). 4. J. Maultzsch et al., to be published in Phys. Rev. B, see also cond-mat/0505150. 5. Z. M. Li et. al., Phys. Rev. Lett. 87, 127401 (2001).

  12. ab initio MD simulations of geomaterials with ~1000 atoms

    NASA Astrophysics Data System (ADS)

    Martin, G. B.; Kirtman, B.; Spera, F. J.

    2009-12-01

    In the last two decades, ab initio studies of materials using Density Functional Theory (DFT) have increased exponentially in popularity. DFT codes are now used routinely to simulate properties of geomaterials--mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only ~100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it is statistically marginal for duplicating physical properties of the liquid state like transport and structure. In MD simulations in the NEV ensemble, temperature (T), and pressure (P) fluctuations scale as N-1/2; small particle number (N) systems are therefore characterized by greater statistical state point location uncertainty than large N systems. Previous studies have used codes such as VASP where CPU time increases with N2, making calculations with N much greater than 100 impractical. SIESTA (Soler, et al. 2002) is a DFT code that enables electronic structure and MD computations on larger systems (N~103) by making some approximations, such as localized numerical orbitals, that would be useful in modeling some properties of geomaterials. Here we test the applicability of SIESTA to simulate geosilicates, both hydrous and anhydrous, in the solid and liquid state. We have used SIESTA for lattice calculations of brucite, Mg(OH)2, that compare very well to experiment and calculations using CRYSTAL, another DFT code. Good agreement between more classical DFT calculations and SIESTA is needed to justify study of geosilicates using SIESTA across a range of pressures and temperatures relevant to the Earth’s interior. Thus, it is useful to adjust parameters in

  13. The He + H2+ --> HeH+ + H reaction: Ab initio studies of the potential energy surface, benchmark time-independent quantum dynamics in an extended energy range and comparison with experiments

    NASA Astrophysics Data System (ADS)

    De Fazio, Dario; de Castro-Vitores, Miguel; Aguado, Alfredo; Aquilanti, Vincenzo; Cavalli, Simonetta

    2012-12-01

    In this work we critically revise several aspects of previous ab initio quantum chemistry studies [P. Palmieri et al., Mol. Phys. 98, 1835 (2000);, 10.1080/00268970009483387 C. N. Ramachandran et al., Chem. Phys. Lett. 469, 26 (2009)], 10.1016/j.cplett.2008.12.035 of the HeH_2^+ system. New diatomic curves for the H_2^+ and HeH+ molecular ions, which provide vibrational frequencies at a near spectroscopic level of accuracy, have been generated to test the quality of the diatomic terms employed in the previous analytical fittings. The reliability of the global potential energy surfaces has also been tested performing benchmark quantum scattering calculations within the time-independent approach in an extended interval of energies. In particular, the total integral cross sections have been calculated in the total collision energy range 0.955-2.400 eV for the scattering of the He atom by the ortho- and para-hydrogen molecular ion. The energy profiles of the total integral cross sections for selected vibro-rotational states of H_2^+ (v = 0, …,5 and j = 1, …,7) show a strong rotational enhancement for the lower vibrational states which becomes weaker as the vibrational quantum number increases. Comparison with several available experimental data is presented and discussed.

  14. Ab initio Quantum Chemical Studies of Reactions in Astrophysical Ices. Reactions Involving CH3OH, CO2, CO, HNCO in H2CO/NH3/H2O Ices

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    2006-01-01

    While reactions between closed shell molecules generally involve prohibitive barriers in the gas phase, prior experimental and theoretical studies have demonstrated that some of these reactions are significantly enhanced when confined within an icy grain mantle and can occur efficiently at temperatures below 100 K with no additional energy processing. The archetypal case is the reaction of formaldehyde (H2CO) and ammonia (NH3) to yield hydroxymethylamine (NH2CH2OH). In the present work we have characterized reactions involving methanol (CH3OH), carbon dioxide (CO2), carbon monoxide (CO), and isocyanic acid (HNCO) in search of other favorable cases. Most of the emphasis is on CH3OH, which was investigated in the two-body reaction with one H2CO and the three-body reaction with two H2CO molecules. The addition of a second H2CO to the product of the reaction between CH3OH and H2CO was also considered as an alternative route to longer polyoxymethylene polymers of the -CH2O- form. The reaction between HNCO and NH3 was studied to determine if it can compete against the barrierless charge transfer process that yields OCN(-) and NH4(+). Finally, the H2CO + NH3 reaction was revisited with additional benchmark calculations that confirm that little or no barrier is present when it occurs in ice.

  15. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.

  16. An ab initio-based Er–He interatomic potential in hcp Er

    SciTech Connect

    Yang, Li; ye, Yeting; Fan, K. M.; Shen, Huahai; Peng, Shuming; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations. The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.

  17. Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization

    NASA Astrophysics Data System (ADS)

    Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng

    With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.

  18. Ab initio calculation of (hyper)polarizabilities using a sum-over-states formalism.

    NASA Astrophysics Data System (ADS)

    Taylor, Caroline M.; Chaudhuri, Rajat K.; Potts, Davin M.; Freed, Karl F.

    2001-03-01

    Hyperpolarizabilities are relevant to a wide range of non-linear optical properties. Ab initio computations often require a high level of correlation for accurate determination of β and γ , and especially of thier frequency dependence. While sum-over-states methods are widely used within semi-empirical frameworks, they have not been employed with high level ab initio methods because of the computational costs associated with calculating a sufficient number of states. The effective valence shell Hamiltonian method (H^v) is a highly correlated, size-extensive, ab initio, multireference, perturbative (``perturb-then-diagonalize'') method. A single H^v calculation yields a large number of states, making it ideal for use with the sum-over-states fomalism for determination of molecular properties. The method has been used to calculate the (hyper)polarizabilities of small polyene systems.

  19. Classical and ab-initio molecular dynamic simulation of an amorphous silica surface

    NASA Astrophysics Data System (ADS)

    Mischler, C.; Kob, W.; Binder, K.

    2002-08-01

    We present the results of a classical molecular dynamic simulation as well as of an ab-initio molecular dynamic simulation of an amorphous silica surface. In the case of the classical simulation we use the potential proposed by van Beest et al. (BKS) whereas the ab-initio simulation is done with a Car-Parrinello method (CPMD). We find that the surfaces generated by BKS have a higher concentration of defects (e.g., concentration of two-membered rings) than those generated with CPMD. In addition also the distribution functions of the angles and of the distances are different for the short rings. Hence we conclude that whereas the BKS potential is able to correctly reproduce the surface on the length scale beyond ≈5 Å, it is necessary to use an ab-initio method to reliably predict the structure at small scales.

  20. Ab Initio potential grid based docking: From High Performance Computing to In Silico Screening

    NASA Astrophysics Data System (ADS)

    de Jonge, Marc R.; Vinkers, H. Maarten; van Lenthe, Joop H.; Daeyaert, Frits; Bush, Ian J.; van Dam, Huub J. J.; Sherwood, Paul; Guest, Martyn F.

    2007-09-01

    We present a new and completely parallel method for protein ligand docking. The potential of the docking target structure is obtained directly from the electron density derived through an ab initio computation. A large subregion of the crystal structure of Isocitrate Lyase, was selected as docking target. To allow the full ab initio treatment of this region special care was taken to assign optimal basis functions. The electrostatic potential is tested by docking a small charged molecule (succinate) into the binding site. The ab initio grid yields a superior result by producing the best binding orientation and position, and by recognizing it as the best. In contrast the same docking procedure, but using a classical point-charge based potential, produces a number of additional incorrect binding poses, and does not recognize the correct pose as the best solution.

  1. Global exploration of the energy landscape of solids on the ab initio level.

    PubMed

    Doll, K; Schön, J C; Jansen, M

    2007-12-14

    Predicting which crystalline modifications can be present in a chemical system requires the global exploration of its energy landscape. Due to the large computational effort involved, in the past this search for sufficiently stable minima has been performed employing a variety of empirical potentials and cost functions followed by a local optimization on the ab initio level. However, this entails the risk of overlooking important modifications that are not modeled accurately using empirical potentials. In order to overcome this critical limitation, we develop an approach to employ ab initio energy functions during the global optimization phase of the structure prediction. As an example, we perform a global exploration of the landscape of LiF on the ab initio level and show that the relevant crystalline modifications are found during the search.

  2. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.

    PubMed

    Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  3. Ab initio study of the role of lysine 16 for the molecular switching mechanism of Ras protein p21.

    PubMed Central

    Futatsugi, N; Hata, M; Hoshino, T; Tsuda, M

    1999-01-01

    Quantum chemical computations using the ab initio molecular orbital (MO) method have been performed to investigate the molecular switching mechanism of Ras protein p21, which has an important role in intracellular signal cascades. Lys(16) was demonstrated to be crucial to the function of Ras p21, and the hydrolysis of GTP to GDP was found to be an one-step reaction. The potential energy barrier of this hydrolysis reaction from GTP to (GDP + P) was calculated to be approximately 42 kcal/mol. The role of GAP (GTPase-activating protein) was also discussed in terms of the delivery of the water molecules required for the hydrolysis. PMID:10585950

  4. Ab-initio simulations of materials using VASP: Density-functional theory and beyond.

    PubMed

    Hafner, Jürgen

    2008-10-01

    During the past decade, computer simulations based on a quantum-mechanical description of the interactions between electrons and between electrons and atomic nuclei have developed an increasingly important impact on solid-state physics and chemistry and on materials science-promoting not only a deeper understanding, but also the possibility to contribute significantly to materials design for future technologies. This development is based on two important columns: (i) The improved description of electronic many-body effects within density-functional theory (DFT) and the upcoming post-DFT methods. (ii) The implementation of the new functionals and many-body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures. In this review, I discuss the implementation of various DFT functionals [local-density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functional mixing DFT, and exact (Hartree-Fock) exchange] and post-DFT approaches [DFT + U for strong electronic correlations in narrow bands, many-body perturbation theory (GW) for quasiparticle spectra, dynamical correlation effects via the adiabatic-connection fluctuation-dissipation theorem (AC-FDT)] in the Vienna ab initio simulation package VASP. VASP is a plane-wave all-electron code using the projector-augmented wave method to describe the electron-core interaction. The code uses fast iterative techniques for the diagonalization of the DFT Hamiltonian and allows to perform total-energy calculations and structural optimizations for systems with thousands of atoms and ab initio molecular dynamics simulations for ensembles with a few hundred atoms extending over several tens of ps. Applications in many different areas (structure and phase stability, mechanical and dynamical properties, liquids, glasses and quasicrystals, magnetism and magnetic nanostructures, semiconductors and insulators, surfaces

  5. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models.

    PubMed

    Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J

    2015-02-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  6. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  7. Ab initio study of collective excitations in a disparate mass molten salt.

    PubMed

    Bryk, Taras; Klevets, Ivan

    2012-12-14

    Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.

  8. Microscopic properties of liquid water from combined ab initio molecular dynamics and energy decomposition studies.

    PubMed

    Khaliullin, Rustam Z; Kühne, Thomas D

    2013-10-14

    The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.

  9. A density functional and ab initio investigation of the p-aminobenzoic acid molecule

    NASA Astrophysics Data System (ADS)

    Lago, A. F.; Dávalos, J. Z.; de Brito, A. Naves

    2007-08-01

    The p-aminobenzoic acid (C 7H 7NO 2) molecule has been investigated at different levels of theory. DFT methods (B3LYP and PBE1PBE), second order Møller-Plesset perturbation theory (MP2) and composite ab initio methods (G3MP2 and CBS) have been employed, in conjunction with large basis sets. Important informations on the electronic structure and thermochemistry of this molecule have been extracted, and the performance of the density functional and ab initio methods has been evaluated, based on the comparison of the calculated and the available experimental data.

  10. Ab initio approach to the development of interatomic potentials for the shell model of silica polymorphs

    NASA Astrophysics Data System (ADS)

    de Boer, K.; Jansen, A. P. J.; van Santen, R. A.

    1994-06-01

    We have developed a new method for deriving parameters for the shell model of silica polymorphs. All parameters for the shell model are derived in a self-consistent way from ab initio energy surfaces, polarizabilities and dipole moments of small clusters. This yields an ab initio partial charge shell model potential. The predictive power of our potential is demonstrated by presenting predictions for the structure of α-quartz, α-cristobalite, coesite, stishovite and the IR spectrum of α-quartz which are compared with experiment and predictions of the widely used potentials of Jackson and Catlow, and Kramer, Farragher, van Beest and van Santen.

  11. Ab initio study of carbon-chlorine bond cleavage in carbon tetrachloride.

    PubMed

    Zhang, Nianliu; Blowers, Paul; Farrell, James

    2005-01-15

    Chlorinated solvents in groundwater are known to undergo reductive dechlorination reactions with Fe(ll)-containing minerals and with corroding metals in permeable-barrier treatment systems. This research investigated the effect of the reaction energy on the reaction pathway for C-Cl bond cleavage in carbon tetrachloride (CCl4). Hartree-Fock, density functional theory, and modified complete basis set ab initio methods were used to study adiabatic electron transfer to aqueous-phase CCl4. The potential energies associated with fragmentation of the carbon tetrachloride anion radical (CCl4-) into a trichloromethyl radical (CCl3) and a chloride ion (Cl-) were explored as a function of the carbon-chlorine bond distance during cleavage. The effect of aqueous solvation was investigated using a continuum conductor-like screening model. Solvation significantly lowered the energies of the reaction products, suggesting that dissociative electron transfer was enhanced by solvation. The potential energy curves in an aqueous medium indicate that reductive cleavage undergoes a change from an inner-sphere to an outer-sphere mechanism as the overall energy change for the reaction is increased. The activation energy for the reaction was found to be a linear function of the overall energy change, and the Marcus-Hush model was used to relate experimentally measured activation energies for CCl4 reduction to overall reaction energies. Experimentally measured activation energies for CCl4 reduction by corroding iron correspond to reaction energies that are insufficiently exergonic for promoting the outer-sphere mechanism. This suggests that the different reaction pathways that have been observed for CCl4 reduction by corroding iron arise from different catalytic interactions with the surface, and not from differences in energy of the transferred electrons.

  12. Ab initio based State Specific Modeling of N2+O System

    NASA Astrophysics Data System (ADS)

    Luo, Han

    Nitrogen and atomic oxygen play an important role in high temperature gas systems. Their Zeldovich reaction product nitric oxide not only affects aerothermal loads and emissions of hypersonic vehicles, but also has the possibility to influence the efficiency of hypersonic propulsion. Atomic oxygen induced nitrogen dissociation is another reaction mechanism of the N2+O system. However, due to the difficulty of conducting ground tests, there are no experimental data for this reaction now. Thermo-chemical nonequilibrium could make the problem more difficult since experiments could only track macroscopic gas properties instead of internal energy distribution. On the other hand, current reaction and internal energy exchange models are able to reproduce equilibrium condition. Whether their predictions at nonequilibrium conditions are reliable is still questionable. The work in this thesis employs quasi-classical trajectory (QCT) method based on an ab-initio chemistry calculated potential energy surface for the N2+O system. Through QCT calculations of different initial condition, high fidelity cross sections and rates are obtained. The cross sections are further used to generate a ME-QCT-VT model for vibrational excitation/relaxation, a state-specific exchange (SSE) model and a state-specific dissociation (SSD) model. These models are verified by comparison with direct QCT calculated rates and other experimental data or models. Although there are no flowfield calculations in this work, the models are able to be applied easily in DSMC calculations.

  13. Regioselective synthesis and ab initio calculations of fused heterocycles thermally and under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Salem, Mostafa E.; Ahmed, Ashour A.; Shaaban, Mohamed R.; Shibl, Mohamed F.; Farag, Ahmad M.

    2015-09-01

    Pyrazolo[1,5-a]pyrimidine, triazolo[1,5-a]pyrimidine, and pyrimido[1,2-a]benzimidazole, pyrido[1,2-a]benzimidazole ring systems incorporating phenylsulfonyl moiety were synthesized via the reaction of 3-(N,N-dimethylamino)-1-(thiophen-2-yl)-2-(phenylsulfonyl)prop-2-en-1-one derivatives with the appropriate aminoazoles as 1,3-binucleophiles and 1H-benzimidazol-2-ylacetonitrile using conventional methods as well as microwave irradiation. The regioselectivity of the cyclocondensation reactions was confirmed both experimentally by alternative synthesis of reaction products and theoretically using ab initio quantum chemical calculations namely the Density Functional Theory (DFT). The theoretical work was carried out using the Becke, three parameter, Lee-Yang-Parr hybrid functional (B3LYP) combined with the 6-311++G(d,p) basis set. It was found that the final cyclocondensation reaction product depends mainly on the initial addition to the activated double bond by the nitrogen atom of the 1,3-binucleophiles that has the higher electron density.

  14. High-level ab initio studies of hydrogen abstraction from prototype hydrocarbon systems.

    PubMed

    Temelso, Berhane; Sherrill, C David; Merkle, Ralph C; Freitas, Robert A

    2006-09-28

    Symmetric and nonsymmetric hydrogen abstraction reactions are studied using state-of-the-art ab initio electronic structure methods. Second-order Møller-Plesset perturbation theory (MP2) and the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] methods with large correlation consistent basis sets (cc-pVXZ, where X = D,T,Q) are used in determining the transition-state geometries, activation barriers, and thermodynamic properties of several representative hydrogen abstraction reactions. The importance of basis set, electron correlation, and choice of zeroth-order reference wave function in the accurate prediction of activation barriers and reaction enthalpies are also investigated. The ethynyl radical (*CCH), which has a very high affinity for hydrogen atoms, is studied as a prototype hydrogen abstraction agent. Our high-level quantum mechanical computations indicate that hydrogen abstraction using the ethynyl radical has an activation energy of less than 3 kcal mol(-1) for hydrogens bonded to an sp(2) or sp(3) carbon. These low activation barriers further corroborate previous studies suggesting that ethynyl-type radicals would make good tooltips for abstracting hydrogens from diamondoid surfaces during mechanosynthesis. Modeling the diamond C(111) surface with isobutane and treating the ethynyl radical as a tooltip, hydrogen abstraction in this reaction is predicted to be barrierless.

  15. Ab initio study of hydrogen migration across n-alkyl radicals.

    PubMed

    Davis, Alexander C; Francisco, Joseph S

    2011-04-14

    A thorough ab initio investigation is conducted on all possible hydrogen migration pathways for the 1-ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl, 1-heptyl, and 1-octyl radicals in order to determine underlying trends in reaction enthalpies, activation energies, Arrhenius A-factors, tunneling, and rate coefficients. The G4, G2, and CBS-Q composite methods are used to determine the enthalpy of reaction and activation energy barrier for each reaction. Each method shows excellent agreement with eight experimental enthalpy of reaction values, with root mean squared values of 0.8, 0.9, and 0.6 kcal mol(-1) for CBS-Q, G2, and G4, respectively. Differences in barrier heights, A-factors, tunneling, and rate coefficients are observed for axial and equatorial arrangements as well as between secondary hydrogen migration sites, depending on the location of the secondary site relative to the terminal carbon. The validity of using cycloalkane model systems to estimate rate parameters is also assessed. The failure of two key assumptions inherent to the cycloalkane models, resulting in a breakdown in the accuracy of these methods for larger transition states, is discussed. This study has significant ramifications for future theoretical, experimental, and modeling studies involving the decomposition of n-alkanes.

  16. Photochemistry of hydrogen bonded heterocycles probed by photodissociation experiments and ab initio methods.

    PubMed

    Slavíček, Petr; Fárník, Michal

    2011-07-14

    In this perspective article, we focus on the photochemistry of five-membered nitrogen containing heterocycles (pyrrole, imidazole and pyrazole) in clusters. These heterocycles represent paradigmatic structures for larger biologically active heterocyclic molecules and complexes. The dimers of the three molecules are also archetypes of different bonding patterns: N-H···π interaction, N-H···N hydrogen bond and double hydrogen bond. We briefly review available data on photochemistry of the title molecules in the gas phase, but primarily we focus on the new reaction channels opened upon the complexation with other heterocycles or solvent molecules. Based on ab initio calculations we discuss various possible reactions in the excited states of the clusters: (1) hydrogen dissociation, (2) hydrogen transfer between the heterocyclic units, (3) molecular ring distortion, and (4) coupled electron-proton transfer. The increasing photostability with complexity of the system can be inferred from experiments with photodissociation in these clusters. A unified view on photoinduced processes in five-membered N-heterocycles is provided. We show that even though different deactivation channels are energetically possible for the complexed heterocycles, in most cases the major result is a fast reconstruction of the ground state. The complexed or solvated heterocycles are thus inherently photostable although the stability can in principle be achieved via different reaction routes.

  17. An efficient method for electron-atom scattering using ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang

    2017-02-01

    We present an efficient method based on ab-initio calculations to investigate electron-atom scatterings. Those calculations profit from methods implemented in standard quantum chemistry programs. The new approach is applied to electron-helium scattering. The results are compared with experimental and other theoretical references to demonstrate the efficiency of our method.

  18. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  19. Ab initio molecular dynamics simulations of a binary system of ionic liquids.

    PubMed

    Brüssel, Marc; Brehm, Martin; Voigt, Thomas; Kirchner, Barbara

    2011-08-14

    This work presents first insights into the structural properties of a binary mixture of ionic liquids from the perspective of ab initio molecular dynamics simulations. Simulations were carried out for a one-to-one mixture of 1-ethyl-3-methyl-imidazolium thiocyanate and 1-ethyl-3-methyl-imidazolium chloride and compared to pure 1-ethyl-3-methyl-imidazolium thiocyanate.

  20. Computer simulation of acetonitrile and methanol with ab initio-based pair potentials

    NASA Astrophysics Data System (ADS)

    Hloucha, M.; Sum, A. K.; Sandler, S. I.

    2000-10-01

    This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.

  1. Ab initio prediction of vacancy properties in concentrated alloys: The case of fcc Cu-Ni

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Sluiter, Marcel H. F.

    2015-05-01

    Vacancy properties in concentrated alloys continue to be of great interest because nowadays ab initio supercell simulations reach a scale where even defect properties in disordered alloys appear to be within reach. We show that vacancy properties cannot generally be extracted from supercell total energies in a consistent manner without a statistical model. Essential features of such a model are knowledge of the chemical potential and imposition of invariants. In the present work, we derive the simplest model that satisfies these requirements and we compare it with models in the literature. As illustration we compute ab initio vacancy properties of fcc Cu-Ni alloys as a function of composition and temperature. Ab initio density functional calculations were performed for SQS supercells at various compositions with and without vacancies. Various methods of extracting alloy vacancy properties were examined. A ternary cluster expansion yielded effective cluster interactions (ECIs) for the Cu-Ni-Vac system. Composition and temperature dependent alloy vacancy concentrations were obtained using statistical thermodynamic models with the ab initio ECIs. An Arrhenius analysis showed that the heat of vacancy formation was well represented by a linear function of temperature. The positive slope of the temperature dependence implies a negative configurational entropy contribution to the vacancy formation free energy in the alloy. These findings can be understood by considering local coordination effects.

  2. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  3. Ab initio calculations on the inclusion complexation of cyclobis(paraquat- p-phenylene)

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Chun; Liu, Lei; Mu, Ting-Wei; Guo, Qing-Xiang

    2001-01-01

    Semiempirical PM3, ab initio HF/3-21g ∗, and DFT B3LYP/6-31g ∗ calculations in vacuum and in solution were performed on the inclusion complexation of cyclobis(paraquat- p-phenylene) with nine symmetric aromatic substrates. A good correlation was found between the theoretical stabilization energies and experimental free energy changes upon complexation.

  4. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  5. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  6. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  7. Kinetic and dynamic studies of the Cl(2Pu) + H2O(X̃1A1) → HCl(X̃1Σ+) + OH(X̃2Π) reaction on an ab initio based full-dimensional global potential energy surface of the ground electronic state of ClH2O.

    PubMed

    Li, Jun; Dawes, Richard; Guo, Hua

    2013-08-21

    Extensive high-level ab initio calculations were performed on the ground electronic state of ClH2O. The barrier region for the title reaction was found to have significant multi-reference character, thus favoring the multi-reference configuration interaction (MRCI) method over single-reference methods such as coupled-cluster. A full-dimensional global potential energy surface was developed by fitting about 25 000 MRCI points using the permutation invariant polynomial method. The reaction path features a "late" barrier flanked by deep pre- and post-barrier wells. Calculated rate constants for the forward reaction are in reasonable agreement with experiment, suggesting a good representation of the forward barrier. The dynamics of the forward reaction was also investigated using a quasi-classical trajectory method at energies just above the barrier. While the OH bond is found to be a spectator, the HCl product has significant rotational excitation. The reaction proceeds via both direct rebound and stripping mechanisms, leading to backward and sideways scattering.

  8. Proton Exchange in a Paramagnetic Chemical Exchange Saturation Transfer Agent from Experimental Studies and ab Initio Metadynamics Simulation.

    PubMed

    Pollet, Rodolphe; Bonnet, Célia S; Retailleau, Pascal; Durand, Philippe; Tóth, Éva

    2017-03-27

    The proton-exchange process between water and a carbamate has been studied experimentally and theoretically in a lanthanide-based paramagnetic chemical exchange saturation transfer agent endowed with potential multimodality detection capabilities (optical imaging, or T1 MRI for the Gd(III) analogue). In addition to an in-depth structural analysis by a combined approach (using X-ray crystallography, NMR, and molecular dynamics), our ab initio simulation in aqueous solution sheds light on the reaction mechanism for this proton exchange, which involves structural Grotthuss diffusion.

  9. Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study.

    PubMed

    Brovarets', Ol'ha O; Yurenko, Yevgen P; Dubey, Igor Ya; Hovorun, Dmytro M

    2012-01-01

    Ab initio quantum-chemical study of specific point contacts of replisome proteins with DNA modeled by acetic acid with canonical and mutagenic tautomers of DNA bases methylated at the glycosidic nitrogen atoms was performed in vacuo and continuum with a low dielectric constant (ϵ ∼ 4) corresponding to a hydrophobic interface of protein-nucleic acid interaction. All tautomerized complexes were found to be dynamically unstable, because the electronic energies of their back-reaction barriers do not exceed zero-point vibrational energies associated with the vibrational modes whose harmonic vibrational frequencies become imaginary in the transition states of the tautomerization reaction. Additionally, based on the physicochemical arguments, it was demonstrated that the effects of biomolecular environment cannot ensure dynamic stabilization. This result allows suggesting that hypothetically generated by DNA-binding proteins of replisome rare tautomers will have no impact on the total spontaneous mutation due to the low reverse barrier allowing a quick return to the canonical form.

  10. Reduced dimensionality spin-orbit dynamics of CH3 + HCl ⇌ CH4 + Cl on ab initio surfaces.

    PubMed

    Remmert, Sarah M; Banks, Simon T; Harvey, Jeremy N; Orr-Ewing, Andrew J; Clary, David C

    2011-05-28

    A reduced dimensionality quantum scattering method is extended to the study of spin-orbit nonadiabatic transitions in the CH(3) + HCl ⇌ CH(4) + Cl((2)P(J)) reaction. Three two-dimensional potential energy surfaces are developed by fitting a 29 parameter double-Morse function to CCSD(T)/IB//MP2/cc-pV(T+d)Z-dk ab initio data; interaction between surfaces is described by geometry-dependent spin-orbit coupling functions fit to MCSCF/cc-pV(T+d)Z-dk ab initio data. Spectator modes are treated adiabatically via inclusion of curvilinear projected frequencies. The total scattering wave function is expanded in a vibronic basis set and close-coupled equations are solved via R-matrix propagation. Ground state thermal rate constants for forward and reverse reactions agree well with experiment. Multi-surface reaction probabilities, integral cross sections, and initial-state selected branching ratios all highlight the importance of vibrational energy in mediating nonadiabatic transition. Electronically excited state dynamics are seen to play a small but significant role as consistent with experimental conclusions.

  11. Challenges in modelling homogeneous catalysis: new answers from ab initio molecular dynamics to the controversy over the Wacker process.

    PubMed

    Stirling, András; Nair, Nisanth N; Lledós, Agustí; Ujaque, Gregori

    2014-07-21

    We present here a review of the mechanistic studies of the Wacker process stressing the long controversy about the key reaction steps. We give an overview of the previous experimental and theoretical studies on the topic. Then we describe the importance of the most recent Ab Initio Molecular Dynamics (AIMD) calculations in modelling organometallic reactivity in water. As a prototypical example of homogeneous catalytic reactions, the Wacker process poses serious challenges to modelling. The adequate description of the multiple role of the water solvent is very difficult by using static quantum chemical approaches including cluster and continuum solvent models. In contrast, such reaction systems are suitable for AIMD, and by combining with rare event sampling techniques, the method provides reaction mechanisms and the corresponding free energy profiles. The review also highlights how AIMD has helped to obtain a novel understanding of the mechanism and kinetics of the Wacker process.

  12. On the role of the termolecular reactions 2O2 + H2 → 2HO2 and 2O2 + H2 → H + HO2 + O2 in formation of the first radicals in hydrogen combustion: ab initio predictions of energy barriers.

    PubMed

    Monge-Palacios, M; Rafatijo, Homayoon

    2017-01-18

    We have investigated the role of termolecular reactions in the early chemistry of hydrogen combustion. We performed molecular chemical dynamics simulations using ReaxFF in LAMMPS to identify potential initial reactions for a 1 : 4 mixture of H2 : O2 in the NVT ensemble at density 276.3 kg m(-3) and ∼3000 K (∼4000 atm) and ∼4000 K (∼5000 atm), and then characterized the saddle points for those reactions using ab initio methods: CCSD(T) = FC/cc-pVTZ//MP2/6-31G, CCSD(T) = FULL/aug-cc-pVTZ//CCSD = FC/cc-pVTZ and CASSCF MP2/6-31G//MP2/6-31G. The main initial reaction is H2 + O2 → H + HO2, frequently occurring in the presence of a second O2 as a third body; that is, 2O2 + H2 → H + HO2 + O2. The second most frequent reaction is 2O2 + H2 → 2HO2. We found three saddle points on the triplet PES of these termolecular reactions: one for 2O2 + H2 → H + HO2 + O2 and two for 2O2 + H2 → 2HO2. In the latter case, one has a symmetric structure consistent with simultaneous formation of two HO2 and the other corresponds to a bimolecular reaction between O2 and H2 that is "interrupted" by a second O2 before going to completion. The classical barrier height of the symmetric saddle point for 2O2 + H2 → 2HO2 is 49.8 kcal mol(-1). The barrier to H2 + O2 → H + HO2 is 58.9 kcal mol(-1). The termolecular reaction will be competitive with H2 + O2 → H + HO2 only at sufficiently high pressures.

  13. Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations

    NASA Astrophysics Data System (ADS)

    Luo, Han; Kulakhmetov, Marat; Alexeenko, Alina

    2017-02-01

    Quasi-classical trajectory (QCT) calculations are used in this work to calculate state-specific N2(X1Σ ) +O(3P ) →2 N(4S ) +O(3P ) dissociation and N2(X1Σ ) +O(3P ) →NO(X2Π ) +N(4S ) exchange cross sections and rates based on the 13A″ and 13A' ab initio potential energy surface by Gamallo et al. [J. Chem. Phys. 119, 2545-2556 (2003)]. The calculations consider translational energies up to 23 eV and temperatures between 1000 K and 20 000 K. Vibrational favoring is observed for dissociation reaction at the whole range of collision energies and for exchange reaction around the dissociation limit. For the same collision energy, cross sections for v = 30 are 4 to 6 times larger than those for the ground state. The exchange reaction has an effective activation energy that is dependent on the initial rovibrational level, which is different from dissociation reaction. In addition, the exchange cross sections have a maximum when the total collision energy (TCE) approaches dissociation energy. The calculations are used to generate compact QCT-derived state-specific dissociation (QCT-SSD) and QCT-derived state-specific exchange (QCT-SSE) models, which describe over 1 × 106 cross sections with about 150 model parameters. The models can be used directly within direct simulation Monte Carlo and computational fluid dynamics simulations. Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model, Macheret's exchange model, and Park's two-temperature model. The new models match QCT-calculated and experimental rates within 30% under nonequilibrium conditions while other models under predict by over an order of magnitude under vibrationally-cold conditions.

  14. Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations.

    PubMed

    Luo, Han; Kulakhmetov, Marat; Alexeenko, Alina

    2017-02-21

    Quasi-classical trajectory (QCT) calculations are used in this work to calculate state-specific N2(X(1)Σ)+O((3)P)→2N((4)S)+O((3)P) dissociation and N2(X(1)Σ)+O((3)P)→NO(X(2)Π)+N((4)S) exchange cross sections and rates based on the 1(3)A″ and 1(3)A' ab initio potential energy surface by Gamallo et al. [J. Chem. Phys. 119, 2545-2556 (2003)]. The calculations consider translational energies up to 23 eV and temperatures between 1000 K and 20 000 K. Vibrational favoring is observed for dissociation reaction at the whole range of collision energies and for exchange reaction around the dissociation limit. For the same collision energy, cross sections for v = 30 are 4 to 6 times larger than those for the ground state. The exchange reaction has an effective activation energy that is dependent on the initial rovibrational level, which is different from dissociation reaction. In addition, the exchange cross sections have a maximum when the total collision energy (TCE) approaches dissociation energy. The calculations are used to generate compact QCT-derived state-specific dissociation (QCT-SSD) and QCT-derived state-specific exchange (QCT-SSE) models, which describe over 1 × 10(6) cross sections with about 150 model parameters. The models can be used directly within direct simulation Monte Carlo and computational fluid dynamics simulations. Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model, Macheret's exchange model, and Park's two-temperature model. The new models match QCT-calculated and experimental rates within 30% under nonequilibrium conditions while other models under predict by over an order of magnitude under vibrationally-cold conditions.

  15. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  16. The role of Li(+) ions in the gas phase dehydrohalogenation and dehydration reactions of i-C3H7Br and i-C3H7OH molecules studied by radiofrequency-guided ion beam techniques and ab initio methods.

    PubMed

    López, E; Lucas, J M; de Andrés, J; Albertí, M; Bofill, J M; Aguilar, A

    2017-04-07

    Gas phase reactive collisions between lithium ions and i-C3H7X (X = Br, OH) molecules have been studied under single collision conditions in the center of mass (CM) 0.01-10.00 eV energy range using a radiofrequency-guided ion beam apparatus. Mass spectrometry analysis of the products did show the presence of [C3H6-Li](+), [HX-Li](+), C3H7(+), and C2H3(+) as well as of the [Li-i-C3H7Br](+) adduct while [Li-i-C3H7OH](+) was hardly detected. For all these reactive processes, the corresponding cross sections have been measured in absolute units as a function of the CM collision energy. Quantum chemistry ab initio calculations done at the second order Möller Plesset level have provided relevant information on the topology of the potential energy surfaces (PESs) where a reaction takes place allowing the characterization of the stationary points on the respective PESs along their reaction pathways. The connectivity of the different stationary points localized on the PESs was ensured by using the intrinsic reaction coordinate (IRC) method, confirming the adiabatic character of the reactions. The main topology features of the reactive PESs, in the absence of dynamical calculations, were used to interpret at the qualitative level the behavior of the experimental excitations functions, evidencing the role played by the potential energy barriers on the experimental dynamics of the reactions. Reaction rate constants at 303.2 K for different reactions have been calculated from measured excitation functions.

  17. Ab initio description of continuum effects in A=11 exotic systems with chiral NN+3N forces

    NASA Astrophysics Data System (ADS)

    Calci, Angelo; Navratil, Petr; Roth, Robert; Dohet-Eraly, Jeremy; Quaglioni, Sofia; Hupin, Guillaume

    2016-09-01

    Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N) and many-nucleon interactions in a consistent and systematically improvable scheme. The rapid developments to construct divers families of chiral NN+3N interactions and the conceptual and technical improvements of ab initio many-body approaches pose a great opportunity for nuclear physics. By studying particular interesting phenomena in nuclear structure and reaction observables one can discriminate between different forces and study the predictive power of chiral EFT. The accurate description of the 11Be nucleus, in particular, the ground-state parity inversion and exceptionally strong E1 transition between its two bound states constitute an enormous challenge for the developments of nuclear forces and many-body approaches. We present a sensitivity analysis of structure and reaction observables to different NN+3N interactions in 11Be and n+10Be as well as the mirror p+10C scattering using the ab initio NCSM with continuum (NCSMC). Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  18. How Is Acetylcholinesterase Phosphonylated by Soman? An Ab Initio QM/MM Molecular Dynamics Study

    PubMed Central

    2015-01-01

    Acetylcholinesterase (AChE) is a crucial enzyme in the cholinergic nerve system that hydrolyzes acetylcholine (ACh) and terminates synaptic signals by reducing the effective concentration of ACh in the synaptic clefts. Organophosphate compounds irreversibly inhibit AChEs, leading to irreparable damage to nerve cells. By employing Born–Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have characterized the covalent inhibition mechanism between AChE and the nerve toxin soman and determined its free energy profile for the first time. Our results indicate that phosphonylation of the catalytic serine by soman employs an addition–elimination mechanism, which is highly associative and stepwise: in the initial addition step, which is also rate-limiting, His440 acts as a general base to facilitate the nucleophilic attack of Ser200 on the soman’s phosphorus atom to form a trigonal bipyrimidal pentacovalent intermediate; in the subsequent elimination step, Try121 of the catalytic gorge stabilizes the leaving fluorine atom prior to its dissociation from the active site. Together with our previous characterization of the aging mechanism of soman inhibited AChE, our simulations have revealed detailed molecular mechanistic insights into the damaging function of the nerve agent soman. PMID:24786171

  19. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation.

    PubMed

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2016-12-14

    NH3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH3 from atmospheric N2 and oceanic H2O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH3. Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.

  20. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2016-12-01

    NH3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH3 from atmospheric N2 and oceanic H2O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH3. Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.

  1. Ab initio Approach to Effective Single-Particle Energies in Doubly Closed Shell Nuclei

    SciTech Connect

    Duguet, T.

    2012-01-01

    The present work discusses, from an ab initio standpoint, the definition, the meaning, and the usefulness of effective single-particle energies (ESPEs) in doubly closed shell nuclei. We perform coupled-cluster calculations to quantify to what extent selected closed-shell nuclei in the oxygen and calcium isotopic chains can effectively be mapped onto an effective independent-particle picture. To do so, we revisit in detail the notion of ESPEs in the context of strongly correlated many-nucleon systems and illustrate the necessity of extracting ESPEs through the diagonalization of the centroid matrix, as originally argued by Baranger. For the purpose of illustration, we analyze the impact of correlations on observable one-nucleon separation energies and nonobservable ESPEs in selected closed-shell oxygen and calcium isotopes. We then state and illustrate the nonobservability of ESPEs. Similarly to spectroscopic factors, ESPEs can indeed be modified by a redefinition of inaccessible quantities while leaving actual observables unchanged. This leads to the absolute necessity of employing consistent structure and reaction models based on the same nuclear Hamiltonian to extract the shell structure in a meaningful fashion from experimental data.

  2. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters

    PubMed Central

    Rafiee, Marjan; Javaheri, Masoumeh

    2015-01-01

    Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect. PMID:27844007

  3. Electronic and magnetic properties of α-MnO2 from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Crespo, Y.; Seriani, N.

    2013-10-01

    α-MnO2, an active catalyst for oxygen reduction and evolution reactions, has been investigated using ab initio calculations with different exchange-correlation functionals: the generalized-gradient approximation in the version of Perdew, Burke, and Ernzerhof (PBE), PBE+U, and hybrid functionals. Both hybrid functionals and PBE+U (U≥2.0 eV) fail to capture the antiferromagnetic (AFM) ground state found experimentally, and a ferromagnetic configuration has the lowest energy. An AFM ground state is then recovered when using PBE or PBE+U (U≤1.6 eV). Interestingly, a reduction of the gap is observed at increasing values of the U parameter. We offer a qualitative explanation for the change in the calculated ground state employing the results for the electronic structure and physical arguments similar to those exposed in the Goodenough-Kanamori-Anderson rules. It is argued that the pz orbital of oxygen atoms with sp2 hybridization plays a fundamental role in the superexchange AFM interaction and in the reduction of the gap.

  4. HCO3(-) formation from CO2 at high pH: ab initio molecular dynamics study.

    PubMed

    Stirling, András

    2011-12-15

    Ab initio molecular dynamics simulations have been performed to study the dissolution of CO2 in water at high pH. The CO2 + OH(-) --> HCO3(-) forward and the HCO3(-) --> CO2 + OH(-) reverse paths have been simulated by employing the metadynamics technics. We have found that the free energy barrier along the forward direction is predominantly hydration related and significantly entropic in origin, whereas the backward barrier is primarily enthalpic. The main motifs in the forward mechanism are the structural diffusion of the hydroxyl ion to the first hydration sphere of CO2, its desolvation, and the C-O bond formation in concert with the CO2 bending within the hydrate cavity. In the reverse reaction, the origin of the barrier is the rupture of the strong C-O(H) bond. The present findings support the notion that the free energy barrier of the bicarbonate formation is strongly solvation related but provide also additional mechanistic details at the molecular level.

  5. Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations

    PubMed Central

    He, Rongxing; Li, Lei; Zhong, Jie; Zhu, Chongqin; Francisco, Joseph S.; Zeng, Xiao Cheng

    2016-01-01

    Solar emission produces copious nitrosonium ions (NO+) in the D layer of the ionosphere, 60 to 90 km above the Earth’s surface. NO+ is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200–220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates—tetrahydrate NO+(H2O)4 and pentahydrate NO+(H2O)5—are identified and shown to be responsible for HONO formation in the ionosphere. The critical tetrahydrate NO+(H2O)4 exhibits a chain-like structure through which all of the lowest-energy isomers must go. However, most lowest-energy isomers of pentahydrate NO+(H2O)5 can be converted to the HONO-containing product, encountering very low barriers, via a chain-like or a three-armed, star-like structure. Although these structures are not the global minima, at 220 K, most lowest-energy NO+(H2O)4 and NO+(H2O)5 isomers tend to channel through these highly populated isomers toward HONO formation. PMID:27071120

  6. Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations.

    PubMed

    He, Rongxing; Li, Lei; Zhong, Jie; Zhu, Chongqin; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-04-26

    Solar emission produces copious nitrosonium ions (NO(+)) in the D layer of the ionosphere, 60 to 90 km above the Earth's surface. NO(+) is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200-220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates-tetrahydrate NO(+)(H2O)4 and pentahydrate NO(+)(H2O)5-are identified and shown to be responsible for HONO formation in the ionosphere. The critical tetrahydrate NO(+)(H2O)4 exhibits a chain-like structure through which all of the lowest-energy isomers must go. However, most lowest-energy isomers of pentahydrate NO(+)(H2O)5 can be converted to the HONO-containing product, encountering very low barriers, via a chain-like or a three-armed, star-like structure. Although these structures are not the global minima, at 220 K, most lowest-energy NO(+)(H2O)4 and NO(+)(H2O)5 isomers tend to channel through these highly populated isomers toward HONO formation.

  7. Ab initio transition state searching in complex systems: fatty acid decarboxylation in minerals.

    PubMed

    Geatches, Dawn L; Greenwell, H Christopher; Clark, Stewart J

    2011-03-31

    Because of the importance of mineral catalyzed decarboxylation reactions in both crude oil formation and, increasingly, biofuel production, we present a model study into the decarboxylation of the shortest fatty acid, propionic acid C(2)H(5)COOH, into an alkane and CO(2) catalyzed by a pyrophillite-like, phyllosilicate clay. To identify the decarboxylation pathway, we searched for a transition state between the reactant, comprised of the clay plus interlayer fatty acid, and the product, comprised of the clay plus interlayer alkane and carbon dioxide. Using linear and quadratic synchronous transit mechanisms we searched for a transition state followed by vibrational analysis to verify the intermediate found as a transition state. We employed a periodic cell, planewave, ab initio density functional theory computation to examine total energy differences, Mulliken charges, vibrational frequencies, and the frontier orbitals of the reactants, intermediates, and products. The results show that interpretation of vibrational data, Mulliken charges and Fermi-level orbital occupancies is necessary for the classification of a transition state in this type of mixed bulk surface plus interlayer species, clay-organic system.

  8. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation

    PubMed Central

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2016-01-01

    NH3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH3 from atmospheric N2 and oceanic H2O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH3. Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process. PMID:27966594

  9. Marrying ab initio calculations and Halo-EFT: 7Li and 7Be radiative nucleon captures

    NASA Astrophysics Data System (ADS)

    Zhang, Xilin; Nollett, Kenneth; Phillips, Daniel

    2013-10-01

    We combine ab initio quantum-Monte-Carlo (QMC) calculations with the Halo-Effective-Field-Theory (Halo-EFT) framework, in order to study low-energy radiative nucleon capture to a weakly bound (halo) nucleus. Here we focus on the reactions 7Li(n, γ)8Li and 7Be(p, γ)8B, which are subjects of long-standing interest for astrophysics. In the low-energy region we can approximate 8Li (8B) as composed of a 7Li (7Be) core (and also its excitation), and a neutron (proton) with an anomalously extended wave function. The scattering and bound states can be studied in Halo-EFT, in which both core and the nucleon are treated as fundamental degrees of freedom. In our leading order calculation, we use asymptotic normalization coefficients from QMC calculations to fix the parameters in the Lagrangian, which we then apply to study radiative captures. This obviates computing the captures by directly using numerically intensive QMC methods, while still incorporating the nuclear dynamics that these methods provide. In addition, the model-independent EFT framework provides novel insights into the manner in which these two nucleon-capture processes are related to one another. This work is supported by US Department of Energy under grant DE-FG02-93ER-40756.

  10. Theoretical design of a novel copper doped gold cluster supported on graphene utilizing ab initio molecular dynamics simulations

    SciTech Connect

    Koizumi, Kenichi; Nobusada, Katsuyuki; Boero, Mauro

    2015-12-31

    Ab initio molecular dynamics simulations have been used to inspect the adsorption of O{sub 2} to a small gold-copper alloy cluster supported on graphene. The exposed Cu atom in this cluster acts as a crucial attractive site for the approaching of O{sub 2} and consequently widens the reaction channel for the adsorption process. Conversely, a pure Au cluster on the same graphene support is inactive for the O{sub 2} adsorption because the corresponding reaction channel for the adsorption is very narrow. These results clearly indicate that doping a different metal to the Au cluster is a way to enhance the oxygen adsorption and to promote catalytic reactions.

  11. Melting of sodium under high pressure. An ab-initio study

    SciTech Connect

    González, D. J.; González, L. E.

    2015-08-17

    We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.

  12. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    SciTech Connect

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  13. Ab initio calculations on the magnetic properties of transition metal complexes

    SciTech Connect

    Bodenstein, Tilmann; Fink, Karin

    2015-12-31

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.

  14. Point defect modeling in materials: Coupling ab initio and elasticity approaches

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Bruneval, Fabien; Marinica, Mihai-Cosmin; Clouet, Emmanuel

    2013-10-01

    Modeling point defects at an atomic scale requires careful treatment of the long-range atomic relaxations. This elastic field can strongly affect point defect properties calculated in atomistic simulations because of the finite size of the system under study. This is an important restriction for ab initio methods which are limited to a few hundred atoms. We propose an original approach coupling ab initio calculations and linear elasticity theory to obtain the properties of an isolated point defect for reduced supercell sizes. The reliability and benefit of our approach are demonstrated for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron, and the neutral vacancy in silicon.

  15. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    SciTech Connect

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  16. Ab initio study of AlxMoNbTiV high-entropy alloys.

    PubMed

    Cao, Peiyu; Ni, Xiaodong; Tian, Fuyang; Varga, Lajos K; Vitos, Levente

    2015-02-25

    The Al(x)MoNbTiV (x = 0-1.5) high-entropy alloys (HEAs) adopt a single solid-solution phase, having the body centered cubic (bcc) crystal structure. Here we employ the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation to investigate the equilibrium volume, elastic constants, and polycrystalline elastic moduli of Al(x)MoNbTiV HEAs. A comparison between the ab initio and experimental equilibrium volumes demonstrates the validity and accuracy of the present approach. Our results indicate that Al addition decreases the thermodynamic stability of the bcc structure with respect to face-centered cubic and hexagonal close packed lattices. For the elastically isotropic Al(0.4)MoNbTiV HEAs, the valence electron concentration (VEC) is about 4.82, which is slightly different from VEC ∼ 4.72 obtained for the isotropic Gum metals and refractory--HEAs.

  17. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  18. B28: the smallest all-boron cage from an ab initio global search

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce

    2015-09-01

    Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e

  19. Ab initio electron mobility and polar phonon scattering in GaAs

    NASA Astrophysics Data System (ADS)

    Zhou, Jin-Jian; Bernardi, Marco

    2016-11-01

    In polar semiconductors and oxides, the long-range nature of the electron-phonon (e -ph ) interaction is a bottleneck to compute charge transport from first principles. Here, we develop an efficient ab initio scheme to compute and converge the e -ph relaxation times (RTs) and electron mobility in polar materials. We apply our approach to GaAs, where by using the Boltzmann equation with state-dependent RTs, we compute mobilities in excellent agreement with experiment at 250 -500 K . The e -ph RTs and the phonon contributions to intravalley and intervalley e -ph scattering are also analyzed. Our work enables efficient ab initio computations of transport and carrier dynamics in polar materials.

  20. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    NASA Astrophysics Data System (ADS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-02-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  1. Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study

    SciTech Connect

    Rio, B. G. del; González, L. E.

    2015-08-17

    Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.

  2. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon

    PubMed Central

    2013-01-01

    The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785

  3. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    SciTech Connect

    Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  4. Properties of metals during the heating by intense laser irradiation using ab initio simulations

    NASA Astrophysics Data System (ADS)

    Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane

    2011-10-01

    Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.

  5. Theoretical method for full ab initio calculation of DNA/RNA-ligand interaction energy

    NASA Astrophysics Data System (ADS)

    Chen, Xi H.; Zhang, John Z. H.

    2004-06-01

    In this paper, we further develop the molecular fractionation with conjugate caps (MFCC) scheme for quantum mechanical computation of DNA-ligand interaction energy. We study three oligonuclear acid interaction systems: dinucleotide dCG/water, trinucleotide dCGT/water, and a Watson-Crick paired DNA segment, dCGT/dGCA. Using the basic MFCC approach, the nucleotide chains are cut at each phosphate group and a pair of conjugate caps (concaps) are inserted. Five cap molecules have been tested among which the dimethyl phosphate anion is proposed to be the standard concap for application. For each system, one-dimensional interaction potential curves are computed using the MFCC method and the calculated interaction energies are found to be in excellent agreement with corresponding results obtained from the full system ab initio calculations. The current study extends the application of the MFCC method to ab initio calculations for DNA- or RNA-ligand interaction energies.

  6. Study of the betulin molecule in a water environment; ab initio and molecular simulation calculations.

    PubMed

    Pospíšil, Miroslav; Kovář, Petr; Vácha, Robert; Svoboda, Michal

    2012-01-01

    Ab initio and molecular simulation methods were used in calculations of the neutral individual betulin molecule, and molecular simulations were used to optimize the betulin molecule immersed in various amounts of water. Individual betulin was optimized in different force fields to find the one exhibiting best agreement with ab initio calculations obtained in the Gaussian03 program. Dihedral torsions of active groups of betulin were determined for both procedures, and related calculated structures were compared successfully. The selected force field was used for subsequent optimization of betulin in a water environment, and a conformational search was performed using quench molecular dynamics. The total energies of betulin and its interactions in water bulk were calculated, and the influence of water on betulin structure was investigated.

  7. Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.

    PubMed

    Yang, Jianjun; Tse, John S

    2011-11-17

    The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.

  8. The Pu-U-Am system: An ab initio informed CALPHAD thermodynamic study

    NASA Astrophysics Data System (ADS)

    Perron, A.; Turchi, P. E. A.; Landa, A.; Söderlind, P.; Ravat, B.; Oudot, B.; Delaunay, F.

    2015-03-01

    Phase diagram and thermodynamic properties of the Am-U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu-U and Am-Pu thermodynamic assessments are combined to build a Pu-U-Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies.

  9. Ab initio simulation of atomic-scale imaging in noncontact atomic force microscopy.

    PubMed

    Caciuc, V; Hölscher, H

    2009-07-01

    In this paper, we summarize some results of our ab initio simulations aimed at investigating the mechanism of the NC-AFM image contrast on semiconductor and metallic surfaces. We start with an introduction into the basic ideas behind the ab initio simulation process of the NC-AFM experimental results. Our simulations reveal that the interaction of a clean silicon tip with a semiconductor surface like InAs(110) might lead to bond-formation and bond-breaking processes during the approach and retraction of the tip. This imaging mechanism is very similar to that observed on a metallic surface like Ag(110). Interestingly, a clean silicon tip can become contaminated with Ag surface atoms. On both types of surface we observe a significant energy dissipation which is caused by a hysteresis in the tip-sample force curves calculated on the approach and retraction path.

  10. [Photoelectron Spectra of CCl2-: Ab Initio Calculation and Franck-Condon Analysis].

    PubMed

    Wu, Jun

    2015-12-01

    Geometry optimization and harmonic vibrational frequency calculations were performed on the X¹A₁ state of CCl₂ and X²B₁ state of CCl₂⁻ at the B3LYP, MP2, CCSD levels. Franck-Condon analysis and spectral simulations were carried out on the photoelectron band of CCl₂⁻ including Duschinsky effects. The simulated spectra obtained are in excellent agreement with the experiment. Note that Duschinsky effect between bending vibration and the symmetric stretch modes should be considered in the CCl₂ (X¹A₁)-CCl₂⁻ (X²B₁) photodetachment process. By combining ab initio calculations with Franck-Condon analyses, the assignment of spectrum observed is firmly established to the X¹A₁-X²B₁ photodetachment process of the CCl₂⁻ radical, and the recommended geometric parameters of which in the literature are confirmed again base on ab initio theory and IFCA process.

  11. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  12. Ab-initio molecular dynamics simulations of liquid Hg-Pb alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2014-04-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-Pb alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-Pb mixtures (Hg30Pb70, Hg50Pb50 and Hg90Pb10) at 600K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and lead (l-Pb). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered three alloys. Among the all considered alloys, Hg50Pb50 alloy shows presence of more chemical ordering and presence of hetero-coordination.

  13. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2015-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  14. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2016-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  15. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    PubMed

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.

  16. Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge

    2013-03-01

    Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.

  17. Structural properties of liquid N-methylacetamide via ab initio, path integral, and classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Whitfield, T. W.; Crain, J.; Martyna, G. J.

    2006-03-01

    In order to better understand the physical interactions that stabilize protein secondary structure, the neat liquid state of a peptidic fragment, N-methylacetamide (NMA), was studied using computer simulation. Three different descriptions of the molecular liquid were examined: an empirical force field treatment with classical nuclei, an empirical force field treatment with quantum mechanical nuclei, and an ab initio density functional theory (DFT) treatment. The DFT electronic structure was evaluated using the BLYP approximate functional and a plane wave basis set. The different physical effects probed by the three models, such as quantum dispersion, many-body polarization, and nontrivial charge distributions on the liquid properties, were compared. Much of the structural ordering in the liquid is characterized by hydrogen bonded chains of NMA molecules. Modest structural differences are present among the three models of liquid NMA. The average molecular dipole in the liquid under the ab initio treatment, however, is enhanced by 60% over the gas phase value.

  18. Controlling Magnetic and Ferroelectric Order Through Geometry: Synthesis, Ab Initio Theory, Characterization of New Multi-Ferric Fluoride Materials

    SciTech Connect

    Halasyamani, Shiv; Fennie, Craig

    2016-11-03

    We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.

  19. Steady-state ab initio laser theory for N-level lasers.

    PubMed

    Cerjan, Alexander; Chong, Yidong; Ge, Li; Stone, A Douglas

    2012-01-02

    We show that Steady-state Ab initio Laser Theory (SALT) can be applied to find the stationary multimode lasing properties of an N-level laser. This is achieved by mapping the N-level rate equations to an effective two-level model of the type solved by the SALT algorithm. This mapping yields excellent agreement with more computationally demanding N-level time domain solutions for the steady state.

  20. Ab initio dipole moment and theoretical rovibrational intensities in the electronic ground state of PH 3

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per

    2006-09-01

    We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.

  1. Ab initio potential energy surface for the highly nonlinear dynamics of the KCN molecule

    SciTech Connect

    Párraga, H.; Arranz, F. J. Benito, R. M.; Borondo, F.

    2013-11-21

    An accurate ab initio quantum chemistry study at level of quadratic configuration interaction method of the electronic ground state of the KCN molecule is presented. A fitting of the results to an analytical series expansion was performed to obtain a global potential energy surface suitable for the study of the associated vibrational dynamics. Additionally, classical Poincaré surfaces of section for different energies and quantum eigenstates were calculated, showing the highly nonlinear behavior of this system.

  2. First fully ab initio potential energy surface of methane with a spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.

    2016-09-01

    Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.

  3. Ab initio equation of state of hydrogen for inertial fusion applications

    NASA Astrophysics Data System (ADS)

    Benedict, Lorin X.; Morales, Miguel A.; Schwegler, Eric; Tamblyn, Isaac; Bonev, Stanimir A.; Correa, Alfredo A.; Clark, Daniel S.; Haan, Steven W.; LLNL Collaboration

    2011-06-01

    We describe ab initio electronic structure calculations (DFT molecular dynamics and quantum Monte Carlo) of the equation of state of hydrogen in a regime relevant for ICF applications. We find the computed EOS to be quite close to that of the most recent SESAME table (constructed by G. Kerley, 2004). A simple density-dependent correction brings the recent SESAME EOS into nearly perfect agreement with ours in the chosen region. Simulations of ICF applications with this corrected SESAME table are discussed.

  4. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    SciTech Connect

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-17

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  5. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    NASA Astrophysics Data System (ADS)

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-01

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  6. Optical and other material properties of SiO2 from ab initio studies

    NASA Astrophysics Data System (ADS)

    Warmbier, Robert; Mohammed, Faris; Quandt, Alexander

    2014-07-01

    The optical properties of photonic devices largely depend on the dielectric properties of the underlying materials. We apply modern ab initio methods to study crystalline SiO2 phases, which serve as toy models for amorphous glass. We discuss the dielectric response from the infrared to the VIS/UV, which is crucial for glass based photonic applications. Low density silica, like cristobalite, may provide a good basis for high transmission optical devices.

  7. Ab initio study of optical absorption spectra of semiconductors and conjugated polymers

    SciTech Connect

    Tiago, M.L.; Chang, Eric K.; Rohlfing, Michael; Louie, Steven G.

    2000-04-30

    The effects of electron-hole interaction on the optical properties of a variety of materials have been calculated using an ab initio method based on solving the Bethe-Salpeter equation. Results on selected semiconductors, insulators, and semiconducting polymers are presented. In the cases of alpha-quartz (SiO2) and poly-phenylene-vinylene, resonant excitonic states qualitatively alter the absorption spectra.

  8. Ab initio nuclear structure from lattice effective field theory

    SciTech Connect

    Lee, Dean

    2014-11-11

    This proceedings article reviews recent results by the Nuclear Lattice EFT Collaboration on an excited state of the {sup 12}C nucleus known as the Hoyle state. The Hoyle state plays a key role in the production of carbon via the triple-alpha reaction in red giant stars. We discuss the structure of low-lying states of {sup 12}C as well as the dependence of the triple-alpha reaction on the masses of the light quarks.

  9. Resolution of ab initio shapes determined from small-angle scattering.

    PubMed

    Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I

    2016-11-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.

  10. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  11. Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.

    PubMed

    Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim

    2016-10-17

    For CO and N2 on Mg(2+) sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.

  12. An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer

    NASA Astrophysics Data System (ADS)

    Jensen, Per; Bunker, P. R.; Epa, V. C.; Karpfen, A.

    1992-02-01

    We have previously determined an analytical ab initio six-dimensional potential energy surface for the HCl dimer, and have used it to determine the minimum energy path for the trans-tunneling motion. In the present paper we refine this path by fitting to data. We calculate a further 178 ab initio points in order to determine the HCl stretching energies, and HCl stretching dipole moment functions, at eight positions along the minimum energy path. We use these ab initio results to compute the stretching wavenumbers and transition moments from the v1 = v2 = 0 state to all states of (HCl) 2 that have v1 + v2 ≤ 3, where v1 and v2 are the local mode quantum numbers for the HCl stretching vibrations. In doing this calculation we have assumed an adiabatic separation of the HCl stretching motion from the other vibrational motions in the dimer, and have used the semirigid bender Hamiltonian to average over the trans-tunneling motion. We obtain the fundamental "free-H" stretch v1 at 2877 cm -1 and the fundamental "bound-H" stretch v2 at 2861 cm -1; the experimental values are 2880 and 2854 cm -1, respectively.

  13. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Minnich, Austin J.

    2017-03-01

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  14. Theoretical study on isotope and temperature effect in hydronium ion using ab initio path integral simulation

    NASA Astrophysics Data System (ADS)

    Tachikawa, Masanori; Shiga, Motoyuki

    2004-09-01

    We have applied the ab initio path integral molecular dynamics simulation to study hydronium ion and its isotopes, which are the simplest systems for hydrated proton and deuteron. In this simulation, all the rotational and vibrational degrees of freedom are treated fully quantum mechanically, while the potential energies of the respective atomic configurations are calculated "on the fly" using ab initio quantum chemical approach. With the careful treatment of the ab initio electronic structure calculation by relevant choices in electron correlation level and basis set, this scheme is theoretically quite rigorous except for Born-Oppenheimer approximation. This accurate calculation allows a close insight into the structural shifts for the isotopes of hydronium ion by taking account of both quantum mechanical and thermal effects. In fact, the calculation is shown to be successful to quantitatively extract the geometrical isotope effect with respect to the Walden inversion. It is also shown that this leads to the isotope effect on the electronic structure as well as the thermochemical properties.

  15. Resolution of ab initio shapes determined from small-angle scattering

    PubMed Central

    Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.

    2016-01-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683

  16. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

    PubMed Central

    Yang, Lina; Minnich, Austin J.

    2017-01-01

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484

  17. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    PubMed

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  18. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  19. Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Dreyfuss, A. C.; Langr, D.

    2015-01-01

    An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si.

  20. Ab initio molecular dynamics simulation of pressure-induced phase transformation in BeO

    SciTech Connect

    Xiao, Haiyan; Duan, G; Zu, X T; Weber, William J

    2011-01-01

    Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ {yields} RS and ZB {yields} RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ {yields} RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchange-correlation functional employed and the way of applying pressure.

  1. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    NASA Astrophysics Data System (ADS)

    Geng, Hua Y.

    2015-02-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

  2. Condensed-matter ab initio approach for strongly correlated electrons: Application to a quantum spin liquid candidate

    SciTech Connect

    Yamaji, Youhei

    2015-12-31

    Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.

  3. Algorithms and novel applications based on the isokinetic ensemble. II. Ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Minary, Peter; Martyna, Glenn J.; Tuckerman, Mark E.

    2003-02-01

    In this paper (Paper II), the isokinetic dynamics scheme described in Paper I is combined with the plane-wave based Car-Parrinello (CP) ab initio molecular dynamics (MD) method [R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)] to enable the efficient study of chemical reactions and metallic systems. The Car-Parrinello approach employs "on the fly" electronic structure calculations as a means of generating accurate internuclear forces for use in a molecular dynamics simulation. This is accomplished by the introduction of an extended Lagrangian that contains the electronic orbitals as fictitious dynamical variables (often expressed directly in terms of the expansion coefficients of the orbitals in a particular basis set). Thus, rather than quench the expansion coefficients to obtain the ground state energy and nuclear forces at every time step, the orbitals are "propagated" under conditions that allow them to fluctuate rapidly around their global minimum and, hence, generate an accurate approximation to the nuclear forces as the simulation proceeds. Indeed, the CP technique requires the dynamics of the orbitals to be both fast compared to the nuclear degrees of freedom while keeping the fictitious kinetic energy that allows them to be propagated dynamically as small as possible. While these conditions can be easy to achieve in many types of systems, in metals and highly exothermic chemical reactions difficulties arise. (Note, the CP dynamics of metals is incorrect because the nuclear motion does not occur on the ground state electronic surface but it can, nonetheless, provide useful information.) In order to alleviate these difficulties the isokinetic methods of Paper I are applied to derive isokinetic CP equations of motion. The efficacy of the new isokinetic CPMD method is demonstrated on model and realistic systems. The latter include, metallic systems, liquid aluminum, a small silicon sample, the 2×1 reconstruction of the silicon 100 surface, and the

  4. Collisional Dissociation of CO: ab initio Potential Energy Surfaces and Quasiclassical Trajectory Rate Coefficients

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.

    2016-01-01

    We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.

  5. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH2(+).

    PubMed

    Li, Y Q; Zhang, P Y; Han, K L

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH2 (+) by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH(+)(X(1)Σ(+))+H((2)S)→C(+)((2)P)+H2(X(1)Σg (+)) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C(+)/H containing systems.

  6. Exploring the free energy surface using ab initio molecular dynamics

    SciTech Connect

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-22

    Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string method in collective variables to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hcp to fcc phase transition in Ti.

  7. Exploring the free energy surface using ab initio molecular dynamics

    DOE PAGES

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-22

    Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string method inmore » collective variables to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hcp to fcc phase transition in Ti.« less

  8. Defective pyrite (100) surface: An ab initio study

    SciTech Connect

    Stirling, Andras; Bernasconi, Marco; Parrinello, Michele

    2007-04-15

    The structural and electronic properties of sulfur monomeric defects at the FeS{sub 2}(100) surface have been studied by periodic density-functional calculations. We have shown that for a monomeric sulfur bound to an originally fivefold coordinated surface Fe site, the defect core features a triplet electronic ground state with unpaired spins localized on the exposed Fe-S unit. At this site, the iron and sulfur ions have oxidation states +4 and -2, respectively. This defect can be seen as produced via heterolytic bond breaking of the S-S sulfur dimer followed by a Fe-S redox reaction. The calculated sulfur 2p core-level shifts of the monomeric defects are in good agreement with experimental photoemission spectra, which allow a compelling assignment of the different spectroscopic features. The effect of water on the stability of the defective surface has also been studied, and it has been shown that the triplet state is stable against the wetting of the surface. The most important implications of the presence of the monomeric sulfur defect on the reactivity are also discussed.

  9. Absolute acidity of clay edge sites from ab-initio simulations

    NASA Astrophysics Data System (ADS)

    Tazi, Sami; Rotenberg, Benjamin; Salanne, Mathieu; Sprik, Michiel; Sulpizi, Marialore

    2012-10-01

    We provide a microscopic understanding of the solvation structure and reactivity of the edges of neutral clays. In particular we address the tendency to deprotonation of the different reactive groups on the (0 1 0) face of pyrophyllite. Such information cannot be inferred directly from titration experiments, which do not discriminate between different sites and whose interpretation resorts to macroscopic models. The determination of the corresponding pKa then usually relies on bond valence models, sometimes improved by incorporating some structural information from ab-initio simulations. Here we use density functional theory based molecular dynamics simulations, combined with thermodynamic integration, to compute the free energy of the reactions of water with the different surface groups, leading to a deprotonated site and an aqueous hydronium ion. Our approach consistently describes the clay and water sides of the interface and includes naturally electronic polarization effects. It also allows to investigate the structure and solvation of all sites separately. We find that the most acidic group is SiOH, due to its ability to establish strong hydrogen bonds with adsorbed water, as it also happens on the quartz and amorphous silica surfaces. The acidity constant of AlOH2 is only 1 pKa unit larger. Finally, the pKa of AlOH is outside the possible range in water and this site should not deprotonate in aqueous solution. We show that the solvation of surface sites and hence their acidity is strongly affected by the proximity of other sites, in particular for AlOH and AlOH2 which share the same Al. We discuss the implications of our findings on the applicability of bond valence models to predict the acidity of edge sites of clays.

  10. Acetonitrile-water hydrogen-bonded interaction: Matrix-isolation infrared and ab initio computation

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2015-08-01

    The 1:1 hydrogen-bonded complex of acetonitrile (CH3CN) and water (H2O) was trapped in Ar and N2 matrices and studied using infrared technique. Ab initio computations showed two types of complexes formed between CH3CN and H2O, a linear complex A with a Ctbnd N⋯H interaction between nitrogen of CH3CN and hydrogen of H2O and a cyclic complex B, in which the interactions are between the hydrogen of CH3CN with oxygen of H2O and hydrogen of H2O with π cloud of sbnd Ctbnd N of CH3CN. Vibrational wavenumber calculations revealed that both the complexes A and B were minima on the potential energy surface. Interaction energies computed at B3LYP/6-311++G(d,p) showed that linear complex A is more stable than cyclic complex B. Computations identified a blue shift of ∼11.5 cm-1 and a red shift of ∼6.5 cm-1 in the CN stretching mode for the complexes A and B, respectively. Experimentally, we observed a blue shift of ∼15.0 and ∼8.3 cm-1 in N2 and Ar matrices, respectively, in the CN stretching mode of CH3CN, which supports the formation of complex A. The Onsager Self Consistent Reaction Field (SCRF) model was used to explain the influence of matrices on the complexes A and B. To understand the nature of the interactions, Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were carried out for the complexes A and B.

  11. A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH4 system.

    PubMed

    Li, Jun; Chen, Jun; Zhao, Zhiqiang; Xie, Daiqian; Zhang, Dong H; Guo, Hua

    2015-05-28

    We report a permutationally invariant global potential energy surface (PES) for the H + CH4 system based on ∼63,000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (Jtot = 0) including the abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].

  12. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock

    2006-09-11

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various energy sources which will likely include fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch (FT) synthesis involves the adsorption and the activation of CO and H{sub 2}, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. The current commercial catalysts are supported Co and Co-alloys particles. This project set out with the following objectives in mind: (1) understand the reaction mechanisms that control FT kinetics, (2) predict how the intrinsic metal-adsorbate bond affects the sequence of elementary steps in FT, (3) establish the effects of the reaction environment on catalytic activity and selectivity, (4) construct a first-principles based algorithm that can incorporate the detailed atomic surface structure and simulate the kinetics for the myriad of elementary pathways that make up FT chemistry, and (5) suggest a set of optimal features such as alloy composition and spatial configuration, oxide support, distribution of defect sites. As part of this effort we devoted a significant portion of time to develop an ab initio based kinetic Monte Carlo simulation which can be used to follow FT surface chemistry over different transition metal and alloy surfaces defined by the user. Over the life of this program, we have used theory and have developed and applied stochastic Monte Carlo simulations in order to establish the fundamental

  13. Ab Initio Surface Phase Diagrams for Coadsorption of Aromatics and Hydrogen on the Pt(111) Surface

    DOE PAGES

    Ferguson, Glen Allen; Vorotnikov, Vassili; Wunder, Nicholas; ...

    2016-11-02

    Supported metal catalysts are commonly used for the hydrogenation and deoxygenation of biomass-derived aromatic compounds in catalytic fast pyrolysis. To date, the substrate-adsorbate interactions under reaction conditions crucial to these processes remain poorly understood, yet understanding this is critical to constructing detailed mechanistic models of the reactions important to catalytic fast pyrolysis. Density functional theory (DFT) has been used in identifying mechanistic details, but many of these works assume surface models that are not representative of realistic conditions, for example, under which the surface is covered with some concentration of hydrogen and aromatic compounds. In this study, we investigate hydrogen-guaiacolmore » coadsorption on Pt(111) using van der Waals-corrected DFT and ab initio thermodynamics over a range of temperatures and pressures relevant to bio-oil upgrading. We find that relative coverage of hydrogen and guaiacol is strongly dependent on the temperature and pressure of the system. Under conditions relevant to ex situ catalytic fast pyrolysis (CFP; 620-730 K, 1-10 bar), guaiacol and hydrogen chemisorb to the surface with a submonolayer hydrogen (~0.44 ML H), while under conditions relevant to hydrotreating (470-580 K, 10-200 bar), the surface exhibits a full-monolayer hydrogen coverage with guaiacol physisorbed to the surface. These results correlate with experimentally observed selectivities, which show ring saturation to methoxycyclohexanol at hydrotreating conditions and deoxygenation to phenol at CFP-relevant conditions. Additionally, the vibrational energy of the adsorbates on the surface significantly contributes to surface energy at higher coverage. Ignoring this contribution results in not only quantitatively, but also qualitatively incorrect interpretation of coadsorption, shifting the phase boundaries by more than 200 K and ~10-20 bar and predicting no guaiacol adsorption under CFP and hydrotreating conditions

  14. Ab Initio Surface Phase Diagrams for Coadsorption of Aromatics and Hydrogen on the Pt(111) Surface

    SciTech Connect

    Ferguson, Glen Allen; Vorotnikov, Vassili; Wunder, Nicholas; Clark, Jared; Gruchalla, Kenny; Bartholomew, Timothy; Robichaud, David J.; Beckham, Gregg T.

    2016-11-02

    Supported metal catalysts are commonly used for the hydrogenation and deoxygenation of biomass-derived aromatic compounds in catalytic fast pyrolysis. To date, the substrate-adsorbate interactions under reaction conditions crucial to these processes remain poorly understood, yet understanding this is critical to constructing detailed mechanistic models of the reactions important to catalytic fast pyrolysis. Density functional theory (DFT) has been used in identifying mechanistic details, but many of these works assume surface models that are not representative of realistic conditions, for example, under which the surface is covered with some concentration of hydrogen and aromatic compounds. In this study, we investigate hydrogen-guaiacol coadsorption on Pt(111) using van der Waals-corrected DFT and ab initio thermodynamics over a range of temperatures and pressures relevant to bio-oil upgrading. We find that relative coverage of hydrogen and guaiacol is strongly dependent on the temperature and pressure of the system. Under conditions relevant to ex situ catalytic fast pyrolysis (CFP; 620-730 K, 1-10 bar), guaiacol and hydrogen chemisorb to the surface with a submonolayer hydrogen (~0.44 ML H), while under conditions relevant to hydrotreating (470-580 K, 10-200 bar), the surface exhibits a full-monolayer hydrogen coverage with guaiacol physisorbed to the surface. These results correlate with experimentally observed selectivities, which show ring saturation to methoxycyclohexanol at hydrotreating conditions and deoxygenation to phenol at CFP-relevant conditions. Additionally, the vibrational energy of the adsorbates on the surface significantly contributes to surface energy at higher coverage. Ignoring this contribution results in not only quantitatively, but also qualitatively incorrect interpretation of coadsorption, shifting the phase boundaries by more than 200 K and ~10-20 bar and predicting no guaiacol adsorption under CFP and hydrotreating conditions. We

  15. Ab Initio Calculations of the Interaction between CO 2 and the Acetate Ion

    SciTech Connect

    Steckel, Janice A.

    2012-11-29

    A series of ab initio calculations designed to investigate the interaction of CO{sub 2} with acetate are presented. The lowest energy structure, AC–CO{sub 2}-η{sup 2}, is predicted by CCSD(T)/aVTZ to be bound by -10.6 kcal/mol. Six of the bound complexes have binding energies on the order of -8 kcal/mol, but analysis shows that the η{sup 1}-CT complex is fundamentally different from the others. The η{sup 1}-CT complex is characterized by geometric distortion, large polarization and induction effects and charge transfer whereas the other five complexes have little geometric distortion and negligible charge transfer. The amount of charge that is transferred from the anion to the CO{sub 2} in the η{sup 1}-CT complex is estimated to be about half an electron by NPA, DMA, CHELPG, and Mulliken analyses, whereas the EDA-ALMO-CTA (B3LYP) approach predicts a charge transfer of 75 me{sup –}. However, the transfer of this small amount of charge leads to an energy lowering of -56 kcal/mol, without which the complex would not be bound. The RI-MP2 geometries closely approximate those resulting from the CCSD optimizations, and the optimized second-order opposite spin (O2) method performs well for all the complexes except for the η{sup 1}-CT complex. DFT methods do not reproduce all the ab initio geometries, binding energies and/or energy ordering of these complexes although the range-separated hybrid meta-GGA (M11) and nonlocal (VV10 and vdwDF10) functionals are shown to yield results significantly better than other functionals considered for this system. The fact that there is such variation among DFT methods has implications for DFT-based ab initio molecular dynamics simulations and for the parametrization of classical force fields based on DFT calculations.

  16. Carbon dioxide hydrate phase equilibrium and cage occupancy calculations using ab initio intermolecular potentials.

    PubMed

    Velaga, Srinath C; Anderson, Brian J

    2014-01-16

    Gas hydrate deposits are receiving increased attention as potential locations for CO2 sequestration, with CO2 replacing the methane that is recovered as an energy source. In this scenario, it is very important to correctly characterize the cage occupancies of CO2 to correctly assess the sequestration potential as well as the methane recoverability. In order to predict accurate cage occupancies, the guest–host interaction potential must be represented properly. Earlier, these potential parameters were obtained by fitting to experimental equilibrium data and these fitted parameters do not match with those obtained by second virial coefficient or gas viscosity data. Ab initio quantum mechanical calculations provide an independent means to directly obtain accurate intermolecular potentials. A potential energy surface (PES) between H2O and CO2 was computed at the MP2/aug-cc-pVTZ level and corrected for basis set superposition error (BSSE), an error caused due to the lower basis set, by using the half counterpoise method. Intermolecular potentials were obtained by fitting Exponential-6 and Lennard-Jones 6-12 models to the ab initio PES, correcting for many-body interactions. We denoted this model as the “VAS” model. Reference parameters for structure I carbon dioxide hydrate were calculated using the VAS model (site–site ab initio intermolecular potentials) as Δμ(w)(0) = 1206 ± 2 J/mol and ΔH(w)(0) = 1260 ± 12 J/mol. With these reference parameters and the VAS model, pure CO2 hydrate equilibrium pressure was predicted with an average absolute deviation of less than 3.2% from the experimental data. Predictions of the small cage occupancy ranged from 32 to 51%, and the large cage is more than 98% occupied. The intermolecular potentials were also tested by calculating the pure CO2 density and diffusion of CO2 in water using molecular dynamics simulations.

  17. Introducing ab initio based neural networks for transition-rate prediction in kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär

    2017-02-01

    The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.

  18. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  19. Ab initio molecular dynamics simulation on the formation process of He@C₆₀ synthesized by explosion.

    PubMed

    Li, Jian-Ying; Liu, Li-Min; Jin, Bo; Liang, Hua; Yu, Hai-Jun; Zhang, Hong-Chang; Chu, Shi-Jin; Peng, Ru-Fang

    2013-04-01

    The applications of endohedral non-metallic fullerenes are limited by their low production rate. Recently, an explosive method developed in our group shows promise to prepare He@C₆₀ at fairly high yield, but the mechanism of He inserting into C₆₀ cage at explosive conditions was not clear. Here, ab initio molecular dynamics analysis has been used to simulate the collision between C₆₀ molecules at high-temperature and high-pressure induced by explosion. The results show that defects formed on the fullerene cage by collidsion can effectively decrease the reaction barrier for the insertion of He into C₆₀, and the self-healing capability of the defects was also observed.

  20. The Fate of a Zwitterion in Water from ab Initio Molecular Dynamics: Monoethanolamine (MEA)-CO2.

    PubMed

    Guido, Ciro A; Pietrucci, Fabio; Gallet, Grégoire A; Andreoni, Wanda

    2013-01-08

    Understanding the fundamental reactions accompanying the capture of carbon dioxide in amine solutions is critical for the design of high-performance solvents and requires an accurate modeling of the solute-solvent interaction. As a first step toward this goal, using ab initio molecular dynamics (Car-Parrinello) simulations, we investigate a zwitterionic carbamate, a species long proposed as intermediate in the formation of a stable carbamate, in a dilute aqueous solution. CO2 release and deprotonation are competitive routes for its dissociation and are both characterized by free-energy barriers of 6-8 kcal/mol. Water molecules play a crucial role in both pathways, resulting in large entropic effects. This is especially true in the case of CO2 release, which is accompanied by a strong reorganization of the solvent beyond the first coordination shell, leading to the formation of a water cage entrapping the solute (hydrophobic effect). Our results contrast with the assumptions of implicit solvent models.

  1. Proton affinity of the histidine-tryptophan cluster motif from the influenza A virus from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Klein, Michael L.; Carnevale, Vincenzo

    2013-08-01

    Ab initio molecular dynamics calculations have been used to compare and contrast the deprotonation reaction of a histidine residue in aqueous solution with the situation arising in a histidine-tryptophan cluster. The latter is used as a model of the proton storage unit present in the pore of the M2 proton conducting ion channel. We compute potentials of mean force for the dissociation of a proton from the Nδ and Nɛ positions of the imidazole group to estimate the pKas. Anticipating our results, we will see that the estimated pKa for the first protonation event of the M2 channel is in good agreement with experimental estimates. Surprisingly, despite the fact that the histidine is partially desolvated in the M2 channel, the affinity for protons is similar to that of a histidine in aqueous solution. Importantly, the electrostatic environment provided by the indoles is responsible for the stabilization of the charged imidazolium.

  2. New insights into mechanistic photoisomerization of ethylene-bridged azobenzene from ab initio multiple spawning simulation.

    PubMed

    Liu, Lihong; Wang, Yating; Fang, Qiu

    2017-02-14

    Ethylene-bridged azobenzene (br-AB) has aroused broad interests due to its unique photoswitching properties. Numerous dynamical simulations have been performed for the br-AB photoisomerization, which focused mainly on the conformational effect and the funnel role of minimum-energy conical intersection (MECI) on the mechanism. In the present work, we use the "full quantum" ab initio multiple spawning method to simulate the br-AB photoisomerization, which provides new insights into the mechanism. Upon irradiation of br-AB to the first excited singlet state (S1), most of the excess energies are trapped in the azo-moiety. Since the intramolecular vibrational energy redistribution is slower than the S1 relaxation processes, the nonadiabatic transition from S1 to the ground state (S0) occurs in the vicinity of high-energy crossing seam and even the largest probabilities of the S1 → S0 transition are not distributed in the MECI regions. Once decaying to the S0 state through the high-energy region, the subsequent isomerization and re-formation of the initial isomer are ultrafast processes in the S0 state. It is the nonergodic behavior of the S1 and S0 dynamics that is mainly responsible for the unique photoswitching properties of the ethylene-bridged azobenzene, which will be discussed in detail.

  3. New insights into mechanistic photoisomerization of ethylene-bridged azobenzene from ab initio multiple spawning simulation

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Wang, Yating; Fang, Qiu

    2017-02-01

    Ethylene-bridged azobenzene (br-AB) has aroused broad interests due to its unique photoswitching properties. Numerous dynamical simulations have been performed for the br-AB photoisomerization, which focused mainly on the conformational effect and the funnel role of minimum-energy conical intersection (MECI) on the mechanism. In the present work, we use the "full quantum" ab initio multiple spawning method to simulate the br-AB photoisomerization, which provides new insights into the mechanism. Upon irradiation of br-AB to the first excited singlet state (S1), most of the excess energies are trapped in the azo-moiety. Since the intramolecular vibrational energy redistribution is slower than the S1 relaxation processes, the nonadiabatic transition from S1 to the ground state (S0) occurs in the vicinity of high-energy crossing seam and even the largest probabilities of the S1 → S0 transition are not distributed in the MECI regions. Once decaying to the S0 state through the high-energy region, the subsequent isomerization and re-formation of the initial isomer are ultrafast processes in the S0 state. It is the nonergodic behavior of the S1 and S0 dynamics that is mainly responsible for the unique photoswitching properties of the ethylene-bridged azobenzene, which will be discussed in detail.

  4. Prebiotic Atmospheric Chemistry on Titan: Formation Kinetics via Ab Initio Calculations for Potential Energy Surface (PES) Mapping

    NASA Astrophysics Data System (ADS)

    Gonzalez, Dayana; Mebel, Alexander

    2016-03-01

    It has been recently shown that Titan provides a unique perspective in our solar system: its atmosphere is comparable to a model of prebiotic Earth's. Provided the organic cationic and anionic molecular species identified by the Cassini spacecraft, this research characterizes reaction pathways for the reactions of methyl derivatives of the cyclopropenyl cation, the methyl cation with methyl- and dimethyl-acetylene, and reactions of resonance structures of protonated acrylonitrile with CH2NH. Isomerization and dissociation reactions involving methyl-cyclopropenyl cations, the perinaphthenyl cation and anion, and cations of pyrimidine and purine precursors of nucleobases will be examined to locate reaction pathways, intermediates, transition states, and products of the reactions. Gaussian '09 software is used for ab initio calculations to map out the PES. Geometry optimizations and vibrational frequency computations are preformed via the double-hybrid density functional B2PLYP-D3. Single-point energies are refined by use of the explicitly-correlated coupled-cluster CCSD(T)-F12 method. Rate constants are calculated using microcanonical RRKM theory, and pressure effects evaluated used the Master Equation approach; these allow for prediction of absolute rate constants and product branching ratios at different pressures and temperatures.

  5. Multiferroicity in TTF-CA Organic Molecular Crystals Predicted through Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Giovannetti, Gianluca; Kumar, Sanjeev; Stroppa, Alessandro; van den Brink, Jeroen; Picozzi, Silvia

    2009-12-01

    We show by means of ab initio calculations that the organic molecular crystal TTF-CA is multiferroic: it has an instability to develop spontaneously both ferroelectric and magnetic ordering. Ferroelectricity is driven by a Peierls transition of the TTF-CA in its ionic state. Subsequent antiferromagnetic ordering strongly enhances the opposing electronic contribution to the polarization. It is so large that it switches the direction of the total ferroelectric moment. Within an extended Hubbard model, we capture the essence of the electronic interactions in TTF-CA, confirm the presence of a multiferroic groundstate, and clarify how this state develops microscopically.

  6. Ab-initio method for X-ray absorption spectra simulation of hydride molecular ions

    NASA Astrophysics Data System (ADS)

    Puglisi, Alessandra; Sisourat, Nicolas; Carniato, Stéphane

    2017-03-01

    Soft X-ray absorption spectra of molecular ions are important data for the modeling and understanding of laboratory and astrophysical plasma. In this work, we present an ab-initio method, based on the Configuration Interaction (CI) approach, for the calculations of energy positions and oscillator strengths of X-ray absorption spectra. Furthermore, we investigate the effects of the choice of the nature and number of spin-orbitals used in the CI expansion on the spectra. The method is applied on three hydride molecular ions, namely CH+, OH+ and SiH+. However, the approach proposed here is general and may thus be applied to any kind of molecular ions.

  7. Ab initio research of energy loss for energetic protons in solid-density Be

    NASA Astrophysics Data System (ADS)

    He, Bin; Meng, Xu-Jun; Wang, Zhi-Gang; Wang, Jian-Guo

    2017-03-01

    Ab initio research of energy loss for energetic protons in solid-density Be is made based on the average atom model. Our results are found in good agreement with the recent experiment for both warm and cool matter. Our results are compared with the local density approximation model and the reason for their difference is also explored. The energy loss at smaller projectile energies is predicted by our model and local density approximation, which helps probe the higher reliability of the proving model and judge the existence of the non-Fermi-Dirac velocity distribution for free electrons exists in dense plasmas in future.

  8. Application of ab-initio calculations to modeling of nanoscale diffusion and activation in silicon

    NASA Astrophysics Data System (ADS)

    Diebel, Milan

    As ULSI devices enter the nanoscale, ultra-shallow and highly electrically active junctions become necessary. New materials and 3D device structures as well as new process technologies are under exploration to meet the requirements of future devices. A detailed understanding of the atomistic mechanisms of point-defect/dopant interactions which govern diffusion and activation behavior is required to overcome the challenges in building these devices. This dissertation describes how ab-initio calculations can be used to develop physical models of diffusion and activation in silicon. A hierarchy of approaches (ab-initio, kinetic lattice Monte Carlo, continuum) is used to bridge the gaps in time scale and system size between atomistic calculations and nanoscale devices. This modeling approach is demonstrated by investigating two very different challenges in process technology: F co-implantation and stress effects on dopant diffusion/activation. In the first application, ab-initio calculations are used to understand anomalous F diffusion behavior. A set of strongly bound fluorine vacancy complexes (FnVm ) were found. The decoration of vacancies/dangling silicon bonds by fluorine leads to fluorine accumulating in vacancy rich regions, which explains the fluorine redistribution behavior reported experimentally. The revealed interactions of F with point-defects explain the benefits of F co-implantation for B and P activation and diffusion. Based on the insight gained, a simplified F diffusion model at the continuum level (50--100 nm scale) is extracted that accounts for co-implantation effects on B and P for various implant energies and doses. The second application addresses the effect of stress on point-defect/dopant equilibrium concentration, diffusion, and activation. A methodology is developed to extract detailed stress effects from ab-initio calculations. The approach is used to extract induced strains and elasticity tensors for various defects and impurities in order

  9. A high-precision ab initio determination of the equilibrium geometry and force field of HOC(+)

    NASA Technical Reports Server (NTRS)

    Defrees, D. J.; Bunker, P. R.; Binkley, J. S.; Mclean, A. D.

    1987-01-01

    The results of an ab initio molecular orbital investigation of the isoformyl cation, HOC(+), shape are reported. The effects of expanding the basis set to near the Hartree-Fock limit and of electron correlation were examined, and the results indicate that near the Hartree-Fock limit the HOC(+) is linear. An analytic potential function is presented, from which the calculated rotational energies are only 0.03 percent different from the experimental values. This represents a nearly two orders of magnitude reduction in error from earlier work.

  10. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  11. Ab Initio Study on Atomic Structures and Physical Properties of CdSe Quantum Nanodots

    DTIC Science & Technology

    2009-11-25

    CdSe quantum dots , with magic number (( CdSe )13, ( CdSe )19, ( CdSe )33 and ( CdSe )34 ). Effects of organic ligand binding on the stability of CdSe as well...calculations of optical absorption spectra for CdSe quantum dots , with magic number (( CdSe )13, ( CdSe )19, ( CdSe )33 and ( CdSe )34 ), have been calculated in...1 AOARD-08-4037 Title of Proposed Project: Ab initio study on atomic structures and physical

  12. Communication: GAIMS—Generalized Ab Initio Multiple Spawning for both internal conversion and intersystem crossing processes

    NASA Astrophysics Data System (ADS)

    Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.

    2016-03-01

    Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.

  13. Superconductivity in an expanded phase of ZnO: an ab initio study

    NASA Astrophysics Data System (ADS)

    Hapiuk, D.; Marques, M. A. L.; Mélinon, P.; Botti, S.; Masenelli, B.; Flores-Livas, J. A.

    2015-04-01

    It is known that covalent semiconductors become superconducting if conveniently doped with large concentration of impurities. In this article we investigate, using ab initio methods, if the same situation is possible for an ionic, large-band gap semiconductor such as ZnO. We concentrate on the cage-like sodalite phase, with very similar electronic and phononic properties as wurtzite ZnO, but allow for endohedral doping of the cages. We find that sodalite ZnO becomes superconducting for a variety of dopants, reaching a maximum critical temperature of 7 K. This value is comparable to the transition temperatures of doped silicon clathrates, cubic silicon, and diamond.

  14. Structure and dynamics of the Lu2Si2O7 lattice: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Nazipov, D. V.; Nikiforov, A. E.

    2017-01-01

    The ab initio calculations have been carried out for the crystal structure and Raman spectrum of a single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations and their frequencies and intensities in the Raman spectrum for two polarizations of the crystal have been determined. The calculations have been performed within the framework of the density functional theory (DFT) using the hybrid functionals. The ions involved in the vibrations have been identified using the method of isotopic substitution. The results of the calculations are in good agreement with the experiment.

  15. The photodissociation of dimethylnitrosamine studied by classical trajectories on ab initio potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Persico, Maurizio; Cacelli, Ivo; Ferretti, Alessandro

    1991-04-01

    We have determined ab initio potential energy surfaces of the S0 and S1 states of dimethylnitrosamine, with particular care for the N-N bond dissociation pathway. The electronic correlation has been taken into account by a multireference perturbation method, CIPSI. Classical trajectories in the S1 surface have been run with statistically determined initial conditions. Computed lifetimes and orientation parameters for the recoil velocity and the NO fragment angular momentum are in agreement with experimental data. Large amplitude internal motions are of primary importance in determining such quantities.

  16. Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta.

    PubMed

    Woodward, C; Rao, S I

    2002-05-27

    We report the first ab initio density-functional study of the strain field and Peierls stress of isolated <111> screw dislocations in bcc Mo and Ta. The local dislocation strain field is self-consistently coupled to the long-range elastic field using a flexible boundary condition method. This reduces the mesoscopic atomistic calculation to one involving only degrees of freedom near the dislocation core. The predicted equilibrium core for Mo is significantly different from previous atomistic results and the Peierls stress shows significant non-Schmid behavior as expected for the bcc metals.

  17. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  18. Ab initio calculation of the deuterium quadrupole coupling in liquid water

    NASA Astrophysics Data System (ADS)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-10-01

    The quadrupole coupling constant and asymmetry parameter for the deuteron in liquid heavy water was determined using purely theoretical methods. Molecular-dynamics simulations with the ab initio potential-energy surface of Lie and Clementi were used to generate snapshots of the liquid. The electric-field gradient at the deuteron was then calculated for these configurations and averaged to obtain the liquid quadrupole coupling constant. At 300 K a quadrupole coupling constant of 256±5 kHz and an asymmetry parameter of 0.164±0.003 were obtained. The temperature dependence of the quadrupole coupling constant was investigated.

  19. Longitudinal spin fluctuations and superconductivity in ferromagnetic ZrZn2 from Ab initio calculations.

    PubMed

    Santi, G; Dugdale, S B; Jarlborg, T

    2001-12-10

    The recent discovery of superconductivity coexisting with weak itinerant ferromagnetism in the d-electron intermetallic compound ZrZn2 strongly suggests spin-fluctuation mediated superconductivity. Ab initio electronic structure calculations of the Fermi surface and generalized susceptibilities are performed to investigate the viability of longitudinal spin-fluctuation-induced spin-triplet superconductivity in the ferromagnetic state. The critical temperature is estimated to be of the order of 1 K. Additionally, it is shown that in spite of a strong electron-phonon coupling ( lambda(ph) = 0.7), conventional s-wave superconductivity is inhibited by the presence of strong spin fluctuations.

  20. The role of Metals in Amyloid Aggregation: A Test Case for ab initio Simulations

    SciTech Connect

    Minicozzi, V.; Rossi, G. C.; Stellato, F.; Morante, S.

    2007-12-26

    First principle ab initio molecular dynamics simulations of the Car-Parrinello type have proved to be of invaluable help in understanding the microscopic mechanisms of chemical bonding both in solid state physics and in structural biophysics. In this work we present as test cases the study of the Cu coordination mode in two especially important examples: Prion protein and {beta}-amyloids. Using medium size PC-clusters as well as larger parallel platforms, we are able to deal with systems comprising 300 to 500 atoms and 1000 to 1500 electrons for as long as 2-3 ps. We present structural results which confirm indications coming from NMR and XAS data.

  1. Trivacancy in silicon: A combined DLTS and ab-initio modeling study

    NASA Astrophysics Data System (ADS)

    Markevich, V. P.; Peaker, A. R.; Lastovskii, S. B.; Murin, L. I.; Coutinho, J.; Markevich, A. V.; Torres, V. J. B.; Briddon, P. R.; Dobaczewski, L.; Monakhov, E. V.; Svensson, B. G.

    2009-12-01

    Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V3) in Si. It is found that in the neutral charge state the V3 is bistable, with the "fourfold" configuration being lower in energy than the (1 1 0) planar configuration. V3 in the (1 1 0) planar configuration gives rise to two acceptor levels at Ec-0.36 eV and Ec-0.46 eV in the gap, while in the "fourfold" configuration the defect has trigonal symmetry and an acceptor level at Ec-0.075 eV.

  2. Ab initio calculations of one-electron-scattering properties of ethyne (acetylene) and ethylene molecules

    SciTech Connect

    Tripathi, A.N.; Smith, V.H. Jr. K7L3N6); Kaijser, P.; Siemens, A.G. ); Diercksen, G.H.F. )

    1990-03-01

    Isotropic scattering functions and Compton profiles together with their directional components for several directions relevant to the molecular structure of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} have been evaluated for {ital ab} {ital initio} self-consistent field and configuration-interaction wave functions. The internally folded density (reciprocal form factor) {ital B}({ital r}) is calculated and discussed as are various momentum expectation values. Comparison is made with available experimental and other theoretical results.

  3. Structure of alcohol cluster ions in the gas phase, according to spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.

    2017-01-01

    Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.

  4. Communication: Multiple-timestep ab initio molecular dynamics with electron correlation.

    PubMed

    Steele, Ryan P

    2013-07-07

    A time-reversible, multiple-timestep protocol is presented for ab initio molecular dynamics simulations using correlated, wavefunction-based underlying potentials. The method is motivated by the observation that electron correlation contributions to forces vary on a slower timescale than their Hartree-Fock counterparts. An efficient dynamics algorithm, involving short-timestep Hartree-Fock and long-timestep Moøller-Plesset perturbation theory, is presented and tested. Results indicate stable trajectories and relative speedups comparable to those seen in force field-based multiple-timestep schemes, with the highest efficiency improvement occurring for large systems.

  5. Communication: Multiple-timestep ab initio molecular dynamics with electron correlation

    NASA Astrophysics Data System (ADS)

    Steele, Ryan P.

    2013-07-01

    A time-reversible, multiple-timestep protocol is presented for ab initio molecular dynamics simulations using correlated, wavefunction-based underlying potentials. The method is motivated by the observation that electron correlation contributions to forces vary on a slower timescale than their Hartree-Fock counterparts. An efficient dynamics algorithm, involving short-timestep Hartree-Fock and long-timestep Møller-Plesset perturbation theory, is presented and tested. Results indicate stable trajectories and relative speedups comparable to those seen in force field-based multiple-timestep schemes, with the highest efficiency improvement occurring for large systems.

  6. Electric-field control of magnetism in graphene quantum dots: Ab initio calculations

    PubMed Central

    Agapito, Luis A.; Kioussis, Nicholas; Kaxiras, Efthimios

    2011-01-01

    Employing ab initio calculations we predict that the magnetic states of hydrogenated diamond-shaped zigzag graphene quantum dots (GQDs), each exhibiting unique electronic structure, can be selectively tuned with gate voltage, through Stark or hybridization electric-field modulation of the spatial distribution and energy of the spin-polarized molecular orbitals, leading to transitions between these states. Electrical read-out of the GQD magnetic state can be accomplished by exploiting the distinctive electrical properties of the various magnetic configurations. PMID:21765631

  7. AB Initio Study of Ion-Pair States of the Iodine Molecule

    NASA Astrophysics Data System (ADS)

    Alekseev, Vadim A.

    2013-06-01

    Ion-pair states of the I_2molecule have been the subject of many experimentals studies and to date all 18 states correlating with I^+(^3P_{J=2,1,0}, ^1D_2) + I^-(^1S_0) asymptotes are known from experiment. This contribution reports on {ab initio study of the I_2 molecule with an emphasis on the ion-pair states. Figure shows experimental and calculated potentials of the ion-pair states correlating with I^+(^3P_{2}) + I^-(^1S_0) asymptote (energy is relative to I (^2P_{3/2}) + I (^2P_{3/2}) asymptote).

  8. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  9. An analytical ab initio potential surface and the calculated tunneling energies for the HCl dimer

    NASA Astrophysics Data System (ADS)

    Bunker, P. R.; Epa, V. C.; Jensen, Per; Karpfen, Alfred

    1991-03-01

    The six-dimensional potential energy surface of the HCl dimer has been calculated ab initio at 1654 nuclear geometries [A. Karpfen, P. R. Bunker and P. Jensen, Chem. Phys., in press]. In the present paper we have fitted an analytical function to these points; the analytical function is similar to that used previously by us for the potential surface of the HF dimer. The fitted function has 38 adjustable parameters and the standard deviation of the weighted fit is 19.0 cm -1. We have determined the minimum energy path for the trans-bending tunneling motion on this surface, and have calculated the tunneling and K-rotation energies and wavefunctions. Around equilibrium the path is qualitatively similar to that for the HF dimer in that there are two equivalent hydrogen-bonded structures of Cs symmetry (which are approximately L-shaped with a "bound" and a "free" H-atom) that can tunnel through a C2 h saddle point (the "closed" C2 h saddle point). However, away from equilibrium the path is qualitatively different from that found for the HF dimer since the HCl dimer never becomes linear along the path; in fact it passes through a second C2 h saddle point (the "open" C2 h saddle point). As a result the A-rotational constant only varies slightly along the path, and this explains the experimental observation that the tunneling splitting varies little with K-type rotation for the HCl dimer, in contrast to the situation for the HF dimer. Quantitatively it is clear that errors in the ab initio calculation, errors in the fitting of an analytic function to the points, the correction to the path that is caused by the zero point motion in the other vibrations, and the coupling between the four low-frequency modes, will all be relatively more significant than they were for the HF dimer because the full six-dimensional potential is much flatter; the ab initio dissociation energy is only ˜600 cm -1, and the ab initio tunneling barrier is only ˜70 cm -1. Therefore, we modify the

  10. Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations

    NASA Astrophysics Data System (ADS)

    Wang, Shidong; Wang, Zhao; Setyawan, Wahyu; Mingo, Natalio; Curtarolo, Stefano

    2011-10-01

    Several thousand compounds from the Inorganic Crystal Structure Database have been considered as nanograined, sintered-powder thermoelectrics with the high-throughput ab-initio AFLOW framework. Regression analysis unveils that the power factor is positively correlated with both the electronic band gap and the carrier effective mass, and that the probability of having large thermoelectric power factors increases with the increasing number of atoms per primitive cell. Avenues for further investigation are revealed by this work. These avenues include the role of experimental and theoretical databases in the development of novel materials.

  11. Ab initio insight into graphene nanofibers to destabilize hydrazine borane for hydrogen release

    NASA Astrophysics Data System (ADS)

    Qian, Zhao; Raghubanshi, Himanshu; Sterlin Leo Hudson, M.; Srivastava, O. N.; Liu, Xiangfa; Ahuja, Rajeev

    2017-02-01

    We report the potential destabilizing effects of graphene nanofibers on the hydrogen release property of hydrazine borane via state-of-the-art ab initio calculations for the first time. Interactions of a hydrazine borane cluster with two types of graphene patch edges which exist abundantly in our synthesized graphene nanofibers have been investigated. It is found that both zigzag and armchair edges can greatly weaken the H-host bonds (especially the middle Nsbnd H bond) of hydrazine borane. The dramatic decrease in hydrogen removal energy is caused by the strong interaction between hydrazine borane and the graphene patch edges concerning the electronic charge density redistribution.

  12. Testing the density matrix expansion against ab initio calculations of trapped neutron drops

    SciTech Connect

    Bogner, S. K.; Hergert, H.; Furnstahl, R. J.; Kortelainen, Erno M; Stoitsov, M. V.; Maris, Pieter; Vary, J. P.

    2011-01-01

    Microscopic input to a universal nuclear energy density functional can be provided through the density matrix expansion (DME), which has recently been revived and improved. Several DME implementation strategies are tested for neutron drop systems in harmonic traps by comparing to Hartree-Fock (HF) and ab initio no-core full configuration (NCFC) calculations with a model interaction (Minnesota potential). The new DME with exact treatment of Hartree contributions is found to best reproduce HF results and supplementing the functional with fit Skyrme-like contact terms shows systematic improvement toward the full NCFC results.

  13. Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P)

    SciTech Connect

    Kurova, N. V. Burdov, V. A.

    2013-12-15

    The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.

  14. Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.

    2008-01-01

    The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.

  15. Relativistic k .p Hamiltonians for centrosymmetric topological insulators from ab initio wave functions

    NASA Astrophysics Data System (ADS)

    Nechaev, I. A.; Krasovskii, E. E.

    2016-11-01

    We present a method to microscopically derive a small-size k .p Hamiltonian in a Hilbert space spanned by physically chosen ab initio spinor wave functions. Without imposing any complementary symmetry constraints, our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian parameters and the true Z2 topological invariant. We consider bulk crystals and thin films of Bi2Se3 , Bi2Te3 , and Sb2Te3 . It turns out that the effective continuous k .p models with open boundary conditions often incorrectly predict the topological character of thin films.

  16. Ab initio calculation of excitonic Hamiltonian of light-harvesting complex LH1 of Thermochromatium tepidum

    NASA Astrophysics Data System (ADS)

    Kozlov, Maxim I.; Poddubnyy, Vladimir V.; Glebov, Ilya O.; Belov, Aleksandr S.; Khokhlov, Daniil V.

    2016-02-01

    The electronic properties of light-harvesting complexes determine the efficiency of energy transfer in photosynthetic antennae. Ab initio calculations of the electronic properties of bacteriochlorophylls (composing the LH1 complex of the purple bacteria Thermochromatium tepidum) were performed. Based on these calculations, the excitonic Hamiltonian of a native cyclic complex and the Hamiltonians of open complexes with several removed bacteriochlorophylls were constructed. Absorption spectra calculated based on these Hamiltonians agree well with the experimental data. We found that the parameters of interaction between the neighboring bacteriochlorophylls are significantly larger than the empirical parameters suggested previously.

  17. Dissolution of cellulose in ionic liquids: an ab initio molecular dynamics simulation study.

    PubMed

    Payal, Rajdeep Singh; Balasubramanian, Sundaram

    2014-09-07

    Interactions determining the dissolution of a monomer of β-cellulose, i.e., cellobiose in a room temperature ionic liquid, [Emim][OAc], have been studied using ab initio molecular dynamics simulations. Although anions are the predominant species in the first coordination shell of cellobiose, cations too are present to a minor extent around it. The presence of low concentration of water in the solution does not significantly alter the nature of the coordination environment of cellobiose. All intra-molecular hydrogen bonds of anti-syn cellobiose are replaced by inter-molecular hydrogen bonds formed with the anions, whereas the anti-anti conformer retains an intramolecular hydrogen bond.

  18. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  19. An accurate potential energy curve for helium based on ab initio calculations

    NASA Astrophysics Data System (ADS)

    Janzen, A. R.; Aziz, R. A.

    1997-07-01

    Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.

  20. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones

    NASA Astrophysics Data System (ADS)

    Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng

    2004-04-01

    A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.