Science.gov

Sample records for ab initio spin

  1. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  2. Ab initio non-relativistic spin dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Frisch, Michael J.; Li, Xiaosong

    2014-12-01

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li3 molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  3. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  4. Ab initio theory of spin entanglement in atoms and molecules

    NASA Astrophysics Data System (ADS)

    Pittalis, S.; Troiani, F.; Rozzi, C. A.; Vignale, G.

    2015-02-01

    We investigate spin entanglement in many-electron systems within the framework of density functional theory. We show that the entanglement length, which is extracted from the spatial dependence of the local concurrence, is a sensitive indicator of atomic shells and reveals the character, covalent or metallic, of chemical bonds. These findings shed light on the remarkable success of modern density functionals, which tacitly employ the entanglement length as a variable. This opens the way to further research on entanglement-based functionals.

  5. Condensed-matter ab initio approach for strongly correlated electrons: Application to a quantum spin liquid candidate

    SciTech Connect

    Yamaji, Youhei

    2015-12-31

    Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.

  6. Ab-initio investigation of spin-dependent transport properties in Fe-doped armchair graphyne nanoribbons

    NASA Astrophysics Data System (ADS)

    GolafroozShahri, S.; Roknabadi, M. R.; Shahtahmasebi, N.; Behdani, M.

    2016-12-01

    An ab-initio study on the spin-polarized transport properties of H-passivated Fe-doped graphyne nanoribbons is presented. All the calculations were based on density functional theory (DFT). Doping single magnetic atom on graphyne nanoribbons leads to metallicity which can significantly improve the conductivity. The currents are not degenerate for both up and down spin electrons and they are considerably spin-polarized. Therefore a relatively good spin-filtering can be expected. For configurations with geometric symmetry spin-rectifying is also observed. Therefore they can be applied as a dual spin-filter or a dual spin-diode in spintronic equipment.

  7. Ab-Initio Based Computation of Rate Constants for Spin Forbidden Metalloprotein-Substrate Reactions

    NASA Astrophysics Data System (ADS)

    Ozkanlar, Abdullah; Rodriguez, Jorge H.

    2007-03-01

    Some chemical and biochemical reactions are non-adiabatic processes whereby the total spin angular momentum, before and after the reaction, is not conserved. These are named spin- forbidden reactions. The application of ab-initio methods, such as spin density functional theory (SDFT), to the prediction of rate constants is a challenging task of fundamental and practical importance. We apply non-adiabatic transition state theory (NA-TST) in conjuntion with SDFT to predict the rate constant of the spin- forbidden recombination of carbon monoxide with iron tetracarbonyl. To model the surface hopping probability between singlet and triplet states, the Landau-Zener formalism is used. The lowest energy point for singlet-triplet crossing, known as minimum energy crossing point (MECP), was located and used to compute, in a semi-quantum approach, reaction rate constants at 300 K. The predicted rates are in very good agreement with experiment. In addition, we present results for the spin- forbidden ligand binding reactions of iron-containing heme proteins such as myoglobin.

  8. Communication: Novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations.

    PubMed

    Mizukami, Wataru; Kurashige, Yuki; Yanai, Takeshi

    2010-09-01

    An investigation into spin structures of poly(m-phenylenecarbene), a prototype of magnetic organic molecules, is presented using the ab initio density matrix renormalization group method. It is revealed by achieving large-scale multireference calculations that the energy differences between high-spin and low-spin states (spin-gaps) of polycarbenes decrease with increasing the number of carbene sites. This size-dependency of the spin-gaps strikingly contradicts the predictions with single-reference methods including density functional theory. The wave function analysis shows that the low-spin states are beyond the classical spin picture, namely, much of multireference character, and thus are manifested as strongly correlated quantum states. The size dependence of the spin-gaps involves an odd-even oscillation, which cannot be explained by the integer-spin Heisenberg model with a single magnetic-coupling constant.

  9. Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation in transition metals from ab initio theory

    NASA Astrophysics Data System (ADS)

    Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy

    2016-04-01

    The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.

  10. Predominance of the Kitaev interaction in a three-dimensional honeycomb iridate: From ab initio to spin model

    NASA Astrophysics Data System (ADS)

    Kim, Heung-Sik; Kin-Ho Lee, Eric; Kim, Yong Baek

    2015-12-01

    The recently discovered three-dimensional hyperhoneycomb iridate, β-Li2IrO3, has raised hopes for the realization of the dominant Kitaev interaction between spin-orbit entangled local moments due to its near-ideal lattice structure. If true, this material may lie close to the sought-after quantum spin-liquid phase in three dimensions. Utilizing ab initio electronic structure calculations, we first show that the spin-orbit entangled basis, j\\text{eff} = 1/2 , correctly captures the low-energy electronic structure. The effective spin model derived in the strong-coupling limit supplemented by the ab initio results is shown to be dominated by the Kitaev interaction. We demonstrated that the possible range of parameters is consistent with a non-coplanar spiral magnetic order found in a recent experiment. All of these analyses suggest that β-Li2IrO3 may be the closest among known materials to the Kitaev spin-liquid regime.

  11. Ab initio molecular dynamics.

    PubMed

    Laasonen, Kari

    2013-01-01

    In this chapter, an introduction to ab initio molecular dynamics (AIMD) has been given. Many of the basic concepts, like the Hellman-Feynman forces, the difference between the Car-Parrinello molecular dynamics and AIMD, have been explained. Also a very versatile AIMD code, the CP2K, has been introduced. On the application, the emphasis was on the aqueous systems and chemical reactions. The biochemical applications have not been discussed in depth.

  12. Relativistic ab initio model potential calculations including spin-orbit effects through the Wood-Boring Hamiltonian

    NASA Astrophysics Data System (ADS)

    Seijo, Luis

    1995-05-01

    Presented in this paper, is a practical implementation of the use of the Wood-Boring Hamiltonian [Phys. Rev. B 18, 2701 (1978)] in atomic and molecular ab initio core model potential calculations (AIMP), as a means to include spin-orbit relativistic effects, in addition to the mass-velocity and Darwin operators, which were already included in the spin-free version of the relativistic AIMP method. Calculations on the neutral and singly ionized atoms of the halogen elements and sixth-row p-elements Tl-Rn are presented, as well as on the one or two lowest lying states of the diatomic molecules HX, HX+, (X=F, Cl, Br, I, At) TlH, PbH, BiH, and PoH. The calculated spin-orbit splittings and bonding properties show a stable, good quality, of the size of what can be expected from an effective potential method.

  13. Quantization and topological states in the spin Hall conductivity of low-dimensional systems: An ab initio study

    NASA Astrophysics Data System (ADS)

    Matthes, L.; Küfner, S.; Furthmüller, J.; Bechstedt, F.

    2016-03-01

    Ab initio relativistic band structure calculations are performed for the frequency-dependent spin Hall conductivity of two-dimensional atomically thin crystals and one-dimensional nanoribbons. We study the influence of topology, quantization, and topological edge states. As model systems fully halogenated germanene, GeI, and its zigzag nanoribbons are investigated. GeI represents a topological insulator (TI). For comparison, also the TI germanene and the trivial insulator hydrogenated germanene are studied. For the TIs we demonstrate the quantization of the static spin Hall conductivity. It is hardly influenced by temperature and Fermi level shift. Its frequency dependence is governed by the band-structure details. Topological edge states influence the conductivity mainly for vanishing frequencies.

  14. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    SciTech Connect

    Roemelt, Michael

    2015-07-28

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.

  15. Ab Initio Computation of Spin Orbit Coupling Effects on Magnetic Properties of Iron-Containing Complexes and Proteins

    NASA Astrophysics Data System (ADS)

    Aquino, Fredy; Rodriguez, Jorge H.

    2007-03-01

    Zero-Field Splittings (ZFS) in metalloproteins and other metal complexes arise from the combined action of crystalline fields acting on the metal valence electrons and spin-orbit coupling (SOC), a relativistic effect. The ab-initio calculation of ZFS parameters of metal-containing (bio)molecules is a challenging computational problem of practical relevance to metalloenzyme biochemistry, inorganic chemistry, and molecular-based bio- nanotechnology. We have implemented a methodology which treats the nonrelativistic electronic structure of magnetic (bio) molecules within the framework of spin density functional theory (SDFT) and adds the relativistic effects of SOC via perturbation theory (PT). This combined SDFT-PT approach allowed us to compute the ZFS parameters of iron-containing complexes and non-heme iron proteins with a good degree of accuracy. We also developed a semiquantitative approach to elucidate the physico-chemical origin of the magnitudes of ZFS parameters. We present results for biochemically relevant iron complexes and for nitric oxide-containing non-heme iron proteins, such as isopenicillin N synthase, which have unusually large ZFS. The computed ZFS parameters are in good agreement with experiment. Supported by NSF CAREER Award CHE- 0349189 (JHR).

  16. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  17. Ab Initio Calculations of Spin-Orbit Coupling for Heavy-Metal Containing Radicals

    NASA Astrophysics Data System (ADS)

    Cheng, Lan

    2016-06-01

    The perturbative treatment of spin-orbit coupling (SOC) on top of scalar-relativistic calculations is a cost-effective alternative to rigorous fully relativistic calculations. In this work the applicability of the perturbative scheme in the framework of spin-free exact two-component theory is demonstrated with calculations of SO splittings and SOC contributions to molecular properties in small heavy-metal containing radicals, including AuO, AuS, and ThO^+. The equation of motion coupled cluster techniques have been used to accurately account for the electron-correlation effects in these radicals, and basis-set effects are carefully analyzed. The computed results are compared with experimental measurements for SO splittings and dipole moments when available.

  18. Realistic multiband k .p approach from ab initio and spin-orbit coupling effects of InAs and InP in wurtzite phase

    NASA Astrophysics Data System (ADS)

    Faria Junior, Paulo E.; Campos, Tiago; Bastos, Carlos M. O.; Gmitra, Martin; Fabian, Jaroslav; Sipahi, Guilherme M.

    2016-06-01

    Semiconductor nanowires based on non-nitride III-V compounds can be synthesized under certain growth conditions to favor the appearance of the wurtzite crystal phase. Despite reports in the literature of ab initio band structures for these wurtzite compounds, we still lack effective multiband models and parameter sets that can be simply used to investigate physical properties of such systems, for instance, under quantum confinement effects. In order to address this deficiency, in this study we calculate the ab initio band structure of bulk InAs and InP in the wurtzite phase and develop an 8 ×8 k .p Hamiltonian to describe the energy bands around the Γ point. We show that our k .p model is robust and can be fitted to describe the important features of the ab initio band structure. The correct description of the spin-splitting effects that arise due to the lack of inversion symmetry in wurtzite crystals is obtained with the k -dependent spin-orbit term in the Hamiltonian, often neglected in the literature. All the energy bands display a Rashba-like spin texture for the in-plane spin expectation value. We also provide the density of states and the carrier density as functions of the Fermi energy. Alternatively, we show an analytical description of the conduction band, valid close to the Γ point. The same fitting procedure is applied to the 6 ×6 valence band Hamiltonian. However, we find that the most reliable approach is the 8 ×8 k .p Hamiltonian for both compounds. The k .p Hamiltonians and parameter sets that we develop in this paper provide a reliable theoretical framework that can be easily applied to investigate electronic, transport, optical, and spin properties of InAs- and InP-based nanostructures.

  19. Spin-forbidden ligand binding to the ferrous-heme group: ab initio and DFT studies.

    PubMed

    Strickland, Nikki; Harvey, Jeremy N

    2007-02-01

    The potential energy surfaces (PESs) and associated energy barriers that characterize the spin-forbidden recombination reactions of the gas-phase ferrous deoxy-heme group with CO, NO, and H2O ligands have been calculated using density functional theory (DFT). The bond energy for binding of O2 has also been calculated. Extensive large basis set CCSD(T) calculations on two small models of the heme group have been used to calibrate the accuracy of different DFT functionals for treating these systems. Pure functionals are shown to overestimate the stability of the low-spin forms of the deoxy-heme model, and to overestimate the binding energy of H2O and CO, whereas hybrid functionals such as B3PW91 and B3LYP yield accurate results. Accordingly, the latter functionals have been used to explore the PESs for binding. CO binding is found to involve a significant barrier of ca. 3 kcal mol-1 due to the need to change from the deoxy-heme quintet ground state to the bound singlet state. Binding of water does not involve a barrier, but the resulting bond is weak and may be further weakened in the protein environment, which should explain why water binding is not usually observed in heme proteins such as myoglobin. NO binding involves a low barrier, which is consistent with observed rapid geminate recombination. The calculated bond energies are in good agreement with previous reported values and in fair agreement with experiment for CO and O2. The value for NO is significantly lower than the experimentally derived bond energy, suggesting that B3LYP is less accurate in this case.

  20. Extensive ab initio study of the electronic states of BSe radical including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Liu, Siyuan; Zhai, Hongsheng; Liu, Yufang

    2016-06-01

    The internally contracted multi-reference configuration interaction method (MRCI) with Davidson modification and the Douglas-Kroll scalar relativistic correction has been used to calculate the BSe molecule at the level of aug-cc-pV5Z basis set. The calculated electronic states, including 9 doublet and 6 quartet Λ-S states, are correlated to the dissociation limit of B(2Pu) + Se(3Pg) and B(2Pu) + Se(1Dg). The Spin-orbit coupling (SOC) interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian operator, which causes the entire 15 Λ-S states to split into 32 Ω states. This is the first time that the spin-orbit coupling calculation has been carried out on BSe. The potential energy curves of the Λ-S and Ω electronic states are depicted with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound Λ-S and Ω states were determined, which are in good agreement with the experimental data. The transition dipole moments (TDMs) and the Franck-Condon factors (FCs) of the transitions from the low-lying bound Ω states A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 to the ground state X2Σ+1/2 have also been presented. Based on the previous calculations, the radiative lifetimes of the A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 were evaluated.

  1. Ab Initio Study of Polonium

    SciTech Connect

    Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2008-05-20

    Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.

  2. Indirect spin-spin coupling constants in CH 4, SiH 4 and GeH 4 - Gas-phase NMR experiment and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Antušek, Andrej; Keḑziera, Dariusz; Jackowski, Karol; Jaszuński, Michał; Makulski, Włodzimierz

    2008-09-01

    New values of the indirect spin-spin coupling constants in CH 4, SiH 4 and GeH 4, derived from experiment and ab initio calculations, are reported. The new experimental values of 1J(CH), 1J(SiH) and 1J(GeH) are obtained from gas-phase NMR spectra. The dependence of the measured one-bond coupling constants on the density is analysed and the results are extrapolated to zero-density point to eliminate the effects due to intermolecular forces. In the calculation of the coupling constants, at the nonrelativistic level coupled cluster singles and doubles (CCSD) perturbation theory is used and the basis set convergence of the results is discussed. The relativistic corrections are estimated from Dirac-Hartree-Fock (DHF) calculations. The final theoretical values are obtained adding available estimates of the vibrational and temperature corrections. The agreement of the calculated and experimental 1J(XH), X = C, Si, Ge, constants is very satisfying, the differences are approximately 1-3%.

  3. Defect-induced spin deterioration of La0.64Sr0.36MnO3 : Ab initio study

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Ma, Yuchen; Betzler, Klaus

    2007-10-01

    We present an ab initio study of the effect of various point defects with different concentrations on the magnetic properties of La0.64Sr0.36MnO3 (LSMO). We find that the 100% spin polarization is destroyed by oxygen vacancies with a concentration of 11.1% and by O substituting for La ( Lav+Oi pair) with a concentration of 12.5%. Interstitial oxygen defects make no contribution to the spin deterioration of LSMO at the Fermi level despite the theoretical half-metallic gap is decreased. When the La/Sr vacancy concentration increases up to 25.0%, the majority spin at the Fermi level is decreased dramatically. The results elucidate the underlying mechanism for the deterioration of the spin polarization of LSMO.

  4. Isolated hydrogen configurations in zirconia as seen by muon spin spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Vieira, R. B. L.; Vilão, R. C.; Marinopoulos, A. G.; Gordo, P. M.; Paixão, J. A.; Alberto, H. V.; Gil, J. M.; Weidinger, A.; Lichti, R. L.; Baker, B.; Mengyan, P. W.; Lord, J. S.

    2016-09-01

    We present a systematic study of isolated hydrogen in diverse forms of ZrO2 (zirconia), both undoped and stabilized in the cubic phase by additions of transition-metal oxides (Y2O3,Sc2O3 , MgO, CaO). Hydrogen is modeled by using muonium as a pseudoisotope in muon-spin spectroscopy experiments. The muon study is also supplemented with first-principles calculations of the hydrogen states in scandia-stabilized zirconia by conventional density-functional theory (DFT) as well as a hybrid-functional approach which admixes a portion of exact exchange to the semilocal DFT exchange. The experimentally observable metastable states accessible by means of the muon implantation allowed us to probe two distinct hydrogen configurations predicted theoretically: an oxygen-bound configuration and a quasiatomic interstitial one with a large isotropic hyperfine constant. The neutral-oxygen-bound configuration is characterized by an electron spreading over the neighboring zirconium cations, forming a polaronic state with a vanishingly small hyperfine interaction at the muon. The atom-like interstitial muonium is observed also in all samples but with different fractions. The hyperfine interaction is isotropic in calcia-doped zirconia [Aiso=3.02 (8 ) GHz], but slightly anisotropic in the nanograin yttria-doped zirconia [Aiso=2.1 (1 ) GHz, D =0.13 (2 ) GHz] probably due to muons stopping close to the interface regions between the nanograins in the latter case.

  5. High-spin and low-spin mixed state in LaSrCoO4 : An ab initio study

    NASA Astrophysics Data System (ADS)

    Wu, Hua

    2010-03-01

    Spin state is an important issue for many cobaltates, and an intermediate spin (IS) state having a half-filled eg orbital may well be expected for a Co3+ ion in a CoO6 octahedron with a remarkable tetragonal distortion. Here the single-layered perovskite cobaltate LaSrCoO4 , which has a notable tetragonal elongation, is investigated for its spin state and electronic structure, through a set of local-spin-density approximation plus Hubbard U (LSDA+U) calculations including also the multiplet effect and spin-orbit coupling. Counterintuitively, our calculations evidence that the IS state is not the ground state and it would, even if being so, give rise to a wrong ferromagnetic half-metallic solution. We find that a strong band hybridization significantly suppresses a multiplet energy splitting of the IS state. Instead, a high-spin (HS) and low-spin (LS) mixed state turns out to have the lowest total energy among all possibly combined spin states. Moreover, the mixed HS+LS ground state well accounts for the experimental paramagnetic insulating behavior, the effective magnetic moment, and the observed optical spectral features. We also predict that LaSrCoO4 in the mixed HS+LS ground state has a sizeable out-of-plane orbital moment and a local lattice distortion, which would motivate experimental studies.

  6. Ab initio determination of spin Hamiltonians with anisotropic exchange interactions: The case of the pyrochlore ferromagnet Lu2V2O7

    NASA Astrophysics Data System (ADS)

    Riedl, Kira; Guterding, Daniel; Jeschke, Harald O.; Gingras, Michel J. P.; Valentí, Roser

    2016-07-01

    We present a general framework for deriving effective spin Hamiltonians of correlated magnetic systems based on a combination of relativistic ab initio density functional theory calculations, exact diagonalization of a generalized Hubbard Hamiltonian on finite clusters, and spin projections onto the low-energy subspace. A key motivation is to determine anisotropic bilinear exchange couplings in materials of interest. As an example, we apply this method to the pyrochlore Lu2V2O7 where the vanadium ions form a lattice of corner-sharing spin-1/2 tetrahedra. In this compound, anisotropic Dzyaloshinskii-Moriya interactions (DMIs) play an essential role in inducing a magnon Hall effect. We obtain quantitative estimates of the nearest-neighbor Heisenberg exchange, the DMI, and the symmetric part of the anisotropic exchange tensor. Finally, we compare our results with experimental ones on the Lu2V2O7 compound.

  7. AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS

    SciTech Connect

    Turchi, P A

    2004-04-14

    Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.

  8. Ab initio two-component Ehrenfest dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-21

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  9. Ab initio two-component Ehrenfest dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-01

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H2 and O2. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  10. Quadratic scaling of intrinsic Gilbert damping with spin-orbital coupling in L10 FePdPt films: experiments and Ab initio calculations.

    PubMed

    He, P; Ma, X; Zhang, J W; Zhao, H B; Lüpke, G; Shi, Z; Zhou, S M

    2013-02-15

    The dependence of the intrinsic Gilbert damping parameter α(0) on the spin-orbital coupling strength ξ is investigated in L1(0) ordered FePd(1-x) Pt(x) films by time-resolved magneto-optical Kerr effect measurements and spin-dependent ab initio calculations. Continuous tuning of α(0) over more than one order of magnitude is realized by changing the Pt/Pd concentration ratio showing that α(0) is proportional to ξ(2) as changes of other leading parameters are found to be negligible. The perpendicular magnetic anisotropy is shown to have a similar variation trend with x. The present results may facilitate the design and fabrication of new magnetic alloys with large perpendicular magnetic anisotropy and tailored damping properties. PMID:25166400

  11. Quadratic scaling of intrinsic Gilbert damping with spin-orbital coupling in L10 FePdPt films: experiments and Ab initio calculations.

    PubMed

    He, P; Ma, X; Zhang, J W; Zhao, H B; Lüpke, G; Shi, Z; Zhou, S M

    2013-02-15

    The dependence of the intrinsic Gilbert damping parameter α(0) on the spin-orbital coupling strength ξ is investigated in L1(0) ordered FePd(1-x) Pt(x) films by time-resolved magneto-optical Kerr effect measurements and spin-dependent ab initio calculations. Continuous tuning of α(0) over more than one order of magnitude is realized by changing the Pt/Pd concentration ratio showing that α(0) is proportional to ξ(2) as changes of other leading parameters are found to be negligible. The perpendicular magnetic anisotropy is shown to have a similar variation trend with x. The present results may facilitate the design and fabrication of new magnetic alloys with large perpendicular magnetic anisotropy and tailored damping properties.

  12. An ab initio calculation of magnetic structure factors for Cs3CoCl5 including spin-orbit and finite magnetic field effects

    NASA Astrophysics Data System (ADS)

    Wolff, Stephen K.; Jayatilaka, Dylan; Chandler, Graham S.

    1995-09-01

    Spin-orbit interaction plays a significant role in determining the magnetic density in some transition metal complexes. We present a new ab initio technique, based on an extension of unrestricted Hartree-Fock theory, which includes nonperturbatively these spin-orbit effects, and simultaneously also the effects of a finite magnetic field. We also present a new and efficient method for calculating magnetic structure factors, based on the current density rather than magnetic dipole moment density, for a crystal composed of noninteracting molecular fragments. These structure factors are directly comparable to polarized neutron diffraction experiments. Results for the Cs3CoCl5 crystal are compared with experiment and previous studies. Without one-electron spin-orbit coupling terms, the magnitudes of the predicted structure factors are on average 10-15 % too low, whereas, with the spin-orbit terms, the magnitudes are 25-30% too high. Using an effective nuclear charge for Co in the spin-orbit term brings the results into much better agreement, and suggests that the two-electron spin-orbit shielding terms omitted in the present work are important. For over one quarter of the reflections studied, the magnetic contribution to the structure factors is more than 20% of the nuclear contribution.

  13. Ensemble v-representable ab initio density-functional calculation of energy and spin in atoms: A test of exchange-correlation approximations

    SciTech Connect

    Kraisler, Eli; Makov, Guy; Kelson, Itzhak

    2010-10-15

    The total energies and the spin states for atoms and their first ions with Z=1-86 are calculated within the the local spin-density approximation (LSDA) and the generalized-gradient approximation (GGA) to the exchange-correlation (xc) energy in density-functional theory. Atoms and ions for which the ground-state density is not pure-state v-representable are treated as ensemble v-representable with fractional occupations of the Kohn-Sham system. A recently developed algorithm which searches over ensemble v-representable densities [E. Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations. It is found that for many atoms, the ionization energies obtained with the GGA are only modestly improved with respect to experimental data, as compared to the LSDA. However, even in those groups of atoms where the improvement is systematic, there remains a non-negligible difference with respect to the experiment. The ab initio electronic configuration in the Kohn-Sham reference system does not always equal the configuration obtained from the spectroscopic term within the independent-electron approximation. It was shown that use of the latter configuration can prevent the energy-minimization process from converging to the global minimum, e.g., in lanthanides. The spin values calculated ab initio fit the experiment for most atoms and are almost unaffected by the choice of the xc functional. Among the systems with incorrectly obtained spin, there exist some cases (e.g., V, Pt) for which the result is found to be stable with respect to small variations in the xc approximation. These findings suggest a necessity for a significant modification of the exchange-correlation functional, probably of a nonlocal nature, to accurately describe such systems.

  14. Ab Initio Multiple Spawning Method for Intersystem Crossing Dynamics: Spin-Forbidden Transitions between (3)B1 and (1)A1 States of GeH2.

    PubMed

    Fedorov, Dmitry A; Pruitt, Spencer R; Keipert, Kristopher; Gordon, Mark S; Varganov, Sergey A

    2016-05-12

    Dynamics at intersystem crossings are fundamental to many processes in chemistry, physics, and biology. The ab initio multiple spawning (AIMS) method was originally developed to describe internal conversion dynamics at conical intersections where derivative coupling is responsible for nonadiabatic transitions between electronic states with the same spin multiplicity. Here, the applicability of the AIMS method is extended to intersystem crossing dynamics in which transitions between electronic states with different spin multiplicities are mediated by relativistic spin-orbit coupling. In the direct AIMS dynamics, the nuclear wave function is expanded in the basis of frozen multidimensional Gaussians propagating on the coupled electronic potential energy surfaces calculated on the fly. The AIMS method for intersystem crossing is used to describe the nonadiabatic transitions between the (3)B1 and (1)A1 states of GeH2. The potential energies and gradients were obtained at the CASSCF(6,6)/6-31G(d) level of theory. The spin-orbit coupling matrix elements were calculated with the configuration interaction method using the two-electron Breit-Pauli Hamiltonian. The excited (3)B1 state lifetime and intersystem crossing rate constants were estimated by fitting the AIMS state population with the first-order kinetics equation for a reversible unimolecular reaction. The obtained rate constants are compared with the values predicted by the statistical nonadiabatic transition state theory with transition probabilities calculated using the Landau-Zener and weak coupling formulas.

  15. Analysis of Charge-spin-orbital Fluctuations by Ab Initio Calculation and Random Phase Approximation: Application to Non-coplanar Antiferromagnet Cd2Os2O7

    NASA Astrophysics Data System (ADS)

    Uehara, Amane; Shinaoka, Hiroshi; Motome, Yukitoshi

    We present a systematic analysis on the basis of ab initio calculations and many-body perturbation theory for clarifying the dominant fluctuation in complex charge-spin-orbital coupled systems. For a tight-binding multiband model obtained from the maximally-localized Wannier function analysis of the band structure by the local density approximation, we take into account electron correlations at the level of random phase approximation. To identify the dominant fluctuation, we carry out the eigenmode analysis of the generalized susceptibility that includes all the multiple degrees of freedom: charge, spin, and orbital. We apply this method to the paramagnetic metallic phase of a pyrochlore oxide Cd2Os2O7, which shows a metalinsulator transition accompanied by a peculiar noncoplanar antiferromagnetic order of all-in all-out type. We find that the corresponding spin fluctuation is dominantly enhanced by the on-site Coulomb repulsions in the presence of strong spin-orbit coupling and trigonal crystal field splitting. Our results indicate that the combined method offers an effective tool for the systematic analysis of potential instabilities in strongly correlated electron materials.

  16. Ab-initio study of the magnetism, structure and spin dependent electronic states of Ti substituted MO (M = Mg, Ca, Sr)

    SciTech Connect

    Jaiganesh, G. Jaya, S. Mathi

    2015-06-24

    The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.

  17. Ab initio quantum Monte Carlo calculations of spin superexchange in cuprates: the benchmarking case of Ca2CuO3

    SciTech Connect

    Foyevtsova, Kateryna; Krogel, Jaron T; Kim, Jeongnim; Kent, Paul R; Dagotto, Elbio R; Reboredo, Fernando A

    2014-01-01

    In view of the continuous theoretical efforts aimed at an accurate microscopic description of the strongly correlated transition metal oxides and related materials, we show that with continuum quantum Monte Carlo (QMC) calculations it is possible to obtain the value of the spin superexchange coupling constant of a copper oxide in a quantitatively excellent agreement with experiment. The variational nature of the QMC total energy allows us to identify the best trial wave function out of the available pool of wave functions, which makes the approach essentially free from adjustable parameters and thus truly ab initio. The present results on magnetic interactions suggest that QMC is capable of accurately describing ground state properties of strongly correlated materials.

  18. Ab Initio Calculation of the Hoyle State

    SciTech Connect

    Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.

    2011-05-13

    The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.

  19. Ab initio study of the influence of structural parameters on the potential energy surfaces of spin-crossover Fe(II) model compounds

    NASA Astrophysics Data System (ADS)

    Boilleau, Corentin; Suaud, Nicolas; Guihéry, Nathalie

    2012-12-01

    In spin-crossover (SCO) compounds exhibiting a light induced excited spin state trapping (LIESST) effect, the thermodynamic T1/2 and kinetic T(LIESST) temperature values depend on the features of the potential energy surfaces (PES) of the two lowest singlet and quintet states but also on vibrational contributions, collective effects, such as electrostatics, for instance, spin-orbit couplings to a lesser extent, etc. In this work, the question of the link between the shape of the PES of SCO compounds exhibiting a LIESST effect and their first coordination sphere structure is addressed from wave function theory based ab initio calculations. Fe(II) complexes based on model ligands suited to reproduce the main characteristics of the PES of such compounds are distorted to emphasize selectively the role played by the metal-ligand distances and the ligand-metal-ligand angles. The studied angular deformations are those usually observed in many Fe(L)2(NCS)2 complexes. It is shown that the larger the deformation between the low spin and high spin equilibrium geometries, the higher the energy barrier from the high spin state and the weaker the energy difference between the bottom of the wells. These results corroborate observations made by experimentalists on a large number of complexes. While the PES features only constitutes one of the contributions to these temperatures, it is worth noticing that, relating T1/2 to the energy difference between the bottoms of the singlet and quintet wells and the T(LIESST) to the energy barrier from the quintet bottom well, the same slope of the empirical law T(LIESST) = -0.3T1/2+T0 is observed.

  20. Ab initio phonon limited transport

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu

    We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)

  1. An ab initio MO study of butalene

    NASA Astrophysics Data System (ADS)

    Ohta, Katsuhisa; Shima, Toru

    1994-01-01

    Butalene as a structural isomer of p-benzyne has been studied by using an ab initio GVB wavefunction. The geometry of butalene, which is shown to be almost rectangular, is first optimized as a local minimum on the energy surface at the ab initio level. However, the energy barrier of conversion to p-benzyne is as small as 1.6 kcal/mol, and experimental isolation of butalene is predicted to be difficult from a force-constant analysis.

  2. Spin State Energetics and Oxyl Character of Mn-Oxo Porphyrins by Multiconfigurational ab Initio Calculations: Implications on Reactivity.

    PubMed

    Venturinelli Jannuzzi, Sergio Augusto; Phung, Quan Manh; Domingo, Alex; Formiga, André Luiz Barboza; Pierloot, Kristine

    2016-06-01

    Important electromeric states in manganese-oxo porphyrins MnO(P)(+) and MnO(PF4)(+) (porphyrinato or meso-tetrafluoroporphyrinato) have been investigated with correlated ab initio methods (CASPT2, RASPT2), focusing on their possible role in multistate reactivity patterns in oxygen transfer (OAT) reactions. Due to the lack of oxyl character, the Mn(V) singlet ground state is kinetically inert. OAT reactions should therefore rather proceed through thermally accessible triplet and quintet states that have a more pronounced oxyl character. Two states have been identified as possible candidates: a Mn(V) triplet state and a Mn(IV)O(L(•)a2u)(+) quintet state. The latter state is high-lying in MnO(P)(+) but is stabilized by the substitutions of H by F at the meso carbons (where the a2u orbital has a significant amplitude). Oxyl character and Mn-O bond weakening in these two states stems from the fact that the Mn-O π* orbitals become singly (triplet) or doubly occupied (quintet). Moreover, an important role for the reactivity of the triplet state is also likely to be played by the π bond that has an empty π* orbital, because of the manifest diradical character of this π bond, revealed by the CASSCF wave function. Interestingly, the diradical character of this bond increases when the Mn-O bond is stretched, while the singly occupied π* orbital looses its oxygen radical contribution. The RASPT2 results were also used as a benchmark for the description of excited state energetics and Mn-O oxyl character with a wide range of pure and hybrid density functionals. With the latter functionals both the Mn(V) → Mn(IV) promotion energy and the diradical character of the π bond (with empty π*) are found to be extremely dependent on the contribution of exact exchange. For this reason, pure functionals are to be preferred.

  3. The electronic spectrum of AgBr 2: Ab initio benchmark vs. DFT calculations on the lowest ligand-field states including spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Santoyo-Castillo, I.; Ramírez-Solís, A.

    2010-10-01

    The X 2Π g, 2Σ g+ and 2Δ g states of AgBr 2 have been studied through benchmark ab initio CASSCF + Averaged Coupled Pair Functional (ACPF) and DFT calculations using especially developed valence basis sets to study the transition energies, geometries, vibrational frequencies, Mulliken charges and spin densities. The spin-orbit (SO) effects were included through the effective hamiltonian formalism using the |ΛSΣ> ACPF energies as diagonal elements. At the ACPF level, the ground state is 2Π g, in contradiction with ligand-field theory and Hartree-Fock results. The ACPF adiabatic excitation energies of the 2Σ g+ and 2Δ g states are 3825 and 20 152 cm -1, respectively. The inclusion of the SO effects leads to a pure Ω = 3/2 ( 2Π g) ground state, a Ω = 1/2 (97% 2Π g + 3% 2Σ g+) A state, a Ω = 1/2 (3% 2Π g + 97% 2Σ g+) B state, a Ω = 5/2 ( 2Δ g) C state and a Ω = 3/2 (99% 2Δ g) D state. The B97, B3LYP and PBE0 functionals, which were shown to yield accurate transition energies for CuCl 2, overestimate the X 2Π g- 2Σ g+ T e by around 25% but provide a qualitative energetic ordering in agreement with CASSCF and ACPF results. The nature of the bonding in the X 2Π g ground state is different from that of AgCl 2 since the Mulliken charge on the metal is 0.95 while the spin density is only 0.39. DFT strongly delocalizes the spin density providing even smaller values of around 0.13 on Ag not only for the ground state, but also for the 2Σ g+ state.

  4. Ab initio spin-orbit CI calculations of the potential curves and radiative lifetimes of low-lying states of lead monofluoride

    NASA Astrophysics Data System (ADS)

    Das, Kalyan K.; Petsalakis, Ioannis D.; Liebermann, Heinz-Peter; Alekseyev, Aleksey B.; Buenker, Robert J.

    2002-01-01

    The electronic structure of the lead monofluoride molecule is studied by means of ab initio configuration interaction (CI) calculations including the spin-orbit interaction. Potential-energy curves are generated for a large number of electronic states, of which only the X12Π1/2 ground and X22Π3/2 and A 2Σ+ excited states have been observed experimentally. Two different methods are compared for the inclusion of spin-orbit effects in the theoretical treatment, a contracted CI which employs a basis of large-scale Λ-S eigenfunctions to form a rather small matrix representation of the full relativistic Hamiltonian (two-step approach), and a more computationally laborious technique which involves solution of a secular equation of order 250 000 S2 eigenfunctions of different spin and spatial symmetry to achieve a potentially more evenly balanced description of both relativistic and electron correlation effects (one-step approach). In the present application, it is found that both methods achieve quite good agreement with measured spectroscopic constants for the X1, X2, and A states. The simpler of these methods is also employed to predict the radiative lifetimes of the latter two states. The key A 2Σ+-X 2Π transition moment in these calculations is found to vary strongly with internuclear distance and to vanish in the neighborhood of the respective equilibrium distances of both participating states. The computed lifetime for the A, v'=0 state of 16 μs overestimates the corresponding measured value by a factor of three, but those of higher vibrational states are found to decrease rather sharply with increasing v', suggesting that only a slight displacement of the theoretical A-X transition moment curve is needed to explain the above discrepancy.

  5. Ab initio study on the low-lying excited states of gas-phase PH+ cation including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Li, Xia; Zhang, Xiaomei; Yan, Bing

    2015-05-01

    Ab initio calculations have been performed on the low-lying excited and ground states of PH+. The potential energy curves (PECs) of the Λ-S states were calculated with multi-reference configuration interaction (MRCI) method along with the basis sets at 5-ξ level. In order to improve the PECs, the Davidson(+Q) correction and the Scalar relativistic effect are included. The corresponding spectroscopic constants were determined and good agreements with the available measurement were found. The interactions of the A2Δ-4Π and 12Σ+-4Π by the spin-orbit coupling (SOC) effect were well described by the spin-orbit matrix elements. The SOC effect makes the original 8 Λ-S states split into 15 Ω states. The Ω = 1/2 state generated from the X2Π state is confirmed to the ground Ω state. And the SOC splitting for the X2Π is calculated to be 294 cm-1. The SOC effect has large effect on the PECs of the A2Δ and 12Σ+ states, leading to much more shallow potential wells as well as potential barriers. The analysis of the wavefunction for the Ω states shows that the strong spin-orbit interaction exists near the crossing points of the PECs for the Λ-S states. The transition dipole moments (TDMs) of transitions A2Δ-X2Π and 12Σ--X2Π are evaluated with the MRCI wavefunction. Based on the TDMs along with the calculated Franck-Condon factors, the radiative lifetimes for the selected vibrational levels of A2Δ and 12Σ- states are predicted at the microseconds (μs). Good agreement with the measurement shows that the lowest vibrational level for A2Δ state is almost uninfluenced by the perturbation via the SOC effect.

  6. CheMPS2: A free open-source spin-adapted implementation of the density matrix renormalization group for ab initio quantum chemistry

    NASA Astrophysics Data System (ADS)

    Wouters, Sebastian; Poelmans, Ward; Ayers, Paul W.; Van Neck, Dimitri

    2014-06-01

    The density matrix renormalization group (DMRG) has become an indispensable numerical tool to find exact eigenstates of finite-size quantum systems with strong correlation. In the fields of condensed matter, nuclear structure and molecular electronic structure, it has significantly extended the system sizes that can be handled compared to full configuration interaction, without losing numerical accuracy. For quantum chemistry (QC), the most efficient implementations of DMRG require the incorporation of particle number, spin and point group symmetries in the underlying matrix product state (MPS) ansatz, as well as the use of so-called complementary operators. The symmetries introduce a sparse block structure in the MPS ansatz and in the intermediary contracted tensors. If a symmetry is non-abelian, the Wigner-Eckart theorem allows to factorize a tensor into a Clebsch-Gordan coefficient and a reduced tensor. In addition, the fermion signs have to be carefully tracked. Because of these challenges, implementing DMRG efficiently for QC is not straightforward. Efficient and freely available implementations are therefore highly desired. In this work we present CheMPS2, our free open-source spin-adapted implementation of DMRG for ab initio QC. Around CheMPS2, we have implemented the augmented Hessian Newton-Raphson complete active space self-consistent field method, with exact Hessian. The bond dissociation curves of the 12 lowest states of the carbon dimer were obtained at the DMRG(28 orbitals, 12 electrons, DSU(2) = 2500)/cc-pVDZ level of theory. The contribution of 1 s core correlation to the X1Σg+ bond dissociation curve of the carbon dimer was estimated by comparing energies at the DMRG(36o, 12e, DSU(2) = 2500)/cc-pCVDZ and DMRG-SCF(34o, 8e, DSU(2) = 2500)/cc-pCVDZ levels of theory.

  7. Ab initio calculations of the ground and excited states of the ZrN molecule including spin-orbit effects.

    PubMed

    Farhat, Ayman; Abdul-Al, Saleh N

    2015-06-15

    The electronic structures with spin-orbit effects of the zirconium nitride ZrN molecule are investigated by the methods of multireference single and double configuration interaction. The potential energy curves are calculated along with the spectroscopic constants for the lowest-lying 34 spin-orbit states Ω in ZrN. A good agreement is displayed by comparing the calculated spectroscopic constants with those available experimentally. The permanent dipole moments are calculated along with the vibrational energies. New results are obtained in this work for 29 spin-orbit states and their spectroscopic constants calculated. PMID:25899865

  8. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  9. Ab initio theory for femtosecond spin dynamics, angle-resolved fidelity analysis, and the magneto-optical Kerr effect in the Ni3(CH3OH) and Co3(+)(CH3OH) clusters.

    PubMed

    Chaudhuri, D; Jin, W; Lefkidis, G; Hübner, W

    2015-11-01

    We present a systematic analysis of the ab initio controlled femtosecond spin dynamics in Ni3(CH3OH) and Co3(+)(CH3OH) clusters achieved by a spin-orbit-coupling enabled Λ process. The distortion caused by the attachment of CH3OH to one of the active magnetic centers of the Ni3 and the Co3(+) clusters induces asymmetric geometries which result in well localized spin densities on the magnetic centers. With the use of high-level quantum chemistry methods, successful spin-flip scenarios are demonstrated for both clusters. In order to assess the experimental accessibility of those effects, we compute their tolerance with respect to two laser pulse parameters, i.e., the energy detuning as well as the deviation of the polar angle ϕ from its optimized value. Finally, we calculate the magneto-optical Kerr effect in order to connect to the susceptibility tensor χ as an experimentally measurable quantity.

  10. Ab initio melting curve of osmium

    NASA Astrophysics Data System (ADS)

    Burakovsky, L.; Burakovsky, N.; Preston, D. L.

    2015-11-01

    The melting curve of osmium up to a pressure P of 500 GPa is obtained from an extensive suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. The ab initio P =0 melting point of Os is 3370 ±75 K; this range encompasses all of the available data in the literature and corroborates the conclusion of J. W. Arblaster [Platinum Metals Rev. 49, 166 (2005)], 10.1595/147106705X70264 that the melting temperature of pure Os is 3400 ±50 K and that the 3300 K typically quoted in the literature is the melting point of impure Os. The T =0 equation of state (EOS) of Os and the P dependence of the optimized c /a ratio for the hexagonal unit cell, both to pressures ˜900 GPa, are obtained in the ab initio approach as validation of its use. Although excellent agreement with the available experimental data (P ≲80 GPa) is found, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes the QMD data to higher pressures, in agreement with the more recent experimental EOS by Godwal et al. The theoretical melting curve of Os obtained earlier by Joshi et al. is shown to be inconsistent with our QMD results, and the possible reason for this discrepancy is suggested. Regularities in the melting curves of Os and five other third-row transition metals (Ta, W, Re, Pt, Au) could be used to estimate the currently unknown melting curves of Hf and Ir.

  11. Ab-initio phasing in protein crystallography

    NASA Astrophysics Data System (ADS)

    van der Plas, J. L.; Millane, Rick P.

    2000-11-01

    The central problem in the determination of protein structures form x-ray diffraction dada (x-ray crystallography) corresponds to a phase retrieval problem with undersampled amplitude data. Algorithms for this problem that have an increased radius of convergence have the potential for reducing the amount of experimental work, and cost, involved in determining protein structures. We describe such an algorithm. Application of the algorithm to a simulated crystallographic problem shows that it converges to the correct solution, with no initial phase information, where currently used algorithms fail. The results lend support to the possibility of ab initio phasing in protein crystallography.

  12. Ab initio Study of HZnF

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Léonard, C.; Chambaud, G.

    2009-11-01

    On the basis of highly correlated ab initio calculations, an accurate determination of the electronic structure and of the rovibrational spectroscopy has been performed for the electronic ground state of the HZnF system. Using effective core pseudopotentials for the Zn and F atoms and associated aug-cc-pVQZ basis sets, we have calculated, at the multireference configuration interaction level including the Davidson correction, the three-dimensional potential energy surface of the X1Σ+ ground state. The rovibrational energy levels have been obtained variationally, and the results have been discussed and compared with existing experimental data on the ground state of the close system HZnCl, which exhibits a complicated vibration-rotation spectrum. Our analysis shows that the nature of the H-ZnF bond is quite similar to that of the H-ZnCl bond, according to their bond lengths, harmonic frequencies of the H-Zn stretching mode, and dissociation energies into H and ZnF/ZnCl. The ab initio study of the electronic ground and excited states of ZnH and ZnH+ are also presented using similar level of calculations. Characteristic constants are given for the first bounded electronic states correlating to the first two dissociation asymptotes of the neutral and ionic diatomics.

  13. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  14. Discovering chemistry with an ab initio nanoreactor

    PubMed Central

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-01-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881

  15. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  16. Discovering chemistry with an ab initio nanoreactor

    SciTech Connect

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.

  17. Discovering chemistry with an ab initio nanoreactor

    DOE PAGES

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  18. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  19. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  20. Ab initio derivation of model energy density functionals

    NASA Astrophysics Data System (ADS)

    Dobaczewski, Jacek

    2016-08-01

    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.

  1. On the hierarchical parallelization of ab initio simulations

    NASA Astrophysics Data System (ADS)

    Ruiz-Barragan, Sergi; Ishimura, Kazuya; Shiga, Motoyuki

    2016-02-01

    A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.

  2. Ab initio study of palladium and silicon carbide

    SciTech Connect

    Schuck, Paul C; Stoller, Roger E; Shrader, David

    2011-01-01

    Ab initio methods have been used to investigate the properties of Pd as impurity in bulk SiC at five charge states within the framework of density functional theory using the local density spin approximation. Pd interstitials and substitutionals have similar energy to their intrinsic counterparts. In addition, Pd substitutes for a vacancy, di-vacancy, and tri-vacancy with similar energies. Pd will also diffuse through SiC via an interstitial mechanism employing the tetrahedral sites and Pd can substitute for Si and C at positive charge states. Removing electrons (p-type doping) from SiC lowers the formation and migration energies of Pd defects in SiC for most configurations.

  3. Ab Initio: And a New Era of Airline Pilot Training.

    ERIC Educational Resources Information Center

    Gesell, Laurence E.

    1995-01-01

    Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)

  4. Ab initio calculations of nitramine dimers

    NASA Astrophysics Data System (ADS)

    Koh-Fallet, Sharon; Schweigert, Igor

    2015-06-01

    Elevated temperatures and pressures are typically thought to have opposing effects on the reaction channels of nitramine decomposition. These high temperatures promote reactions with loose transition structures (positive activation entropies and volumes), such as N-N bond homolysis. Elevated pressures promote reactions with tight transition structures (negative activation entropies and volumes), such as intramolecular and intermolecular H transfer. However, no quantitative data exists regarding the range of temperatures and pressures at which these effects become pronounced. We are pursuing ab initio calculations of the corresponding unimolecular and bimolecular transition structures with the objective of estimating the relevant thermochemical parameters and quantifying the effects of elevated temperature and pressures on the corresponding rate constants. Here, we present density functional theory and complete active space calculations of gas-phase molecular dimers of nitramines as an intermediate step toward modeling transition structures directly in the condensed phase. This work was supported by the Naval Research Laboratory via the American Society for Engineering and Education and by the Office of Naval Research, both directly and through the Naval Research Laboratory.

  5. Ab Initio Studies of Calcium Carbonate Hydration.

    PubMed

    Lopez-Berganza, Josue A; Diao, Yijue; Pamidighantam, Sudhakar; Espinosa-Marzal, Rosa M

    2015-11-25

    Ab initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate. Structural and energetics analysis of the hydration of these clusters revealed a first hydration shell composed of 12 water molecules. Bond-length and charge densities were also determined for different cluster sizes. The solvation of calcium carbonate in bulk water was investigated by placing the explicitly solvated CaCO3·nH2O clusters in a polarizable continuum model (PCM). The findings of this study provide new insights into the energetics and structure of hydrated calcium carbonate and contribute to the understanding of mechanisms where calcium carbonate formation or dissolution is of relevance.

  6. Phonocatalysis. An ab initio simulation experiment

    NASA Astrophysics Data System (ADS)

    Kim, Kwangnam; Kaviany, Massoud

    2016-06-01

    Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon) energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent) requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.

  7. An AB Initio Study of SbH_2 and BiH_2: the Renner Effect, Spin-Orbit Coupling, Local Mode Vibrations and Rovibronic Energy Level Clustering in SbH_2

    NASA Astrophysics Data System (ADS)

    Ostojic, Bojana; Schwerdtfeger, Peter; Bunker, Phil; Jensen, Per

    2016-06-01

    We present the results of ab initio calculations for the lower electronic states of the Group 15 (pnictogen) dihydrides, SbH_2 and BiH_2. For each of these molecules the two lowest electronic states become degenerate at linearity and are therefore subject to the Renner effect. Spin-orbit coupling is also strong in these two heavy-element containing molecules. For the lowest two electronic states of SbH_2, we construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques. Including both the Renner effect and spin-orbit coupling, we calculate term values and simulate the rovibrational and rovibronic spectra of SbH_2. Excellent agreement is obtained with the results of matrix isolation infrared spectroscopic studies and with gas phase electronic spectroscopic studies in absorption [1,2]. For the heavier dihydride BiH_2 we calculate bending potential curves and the spin-orbit coupling constant for comparison. For SbH_2 we further study the local mode vibrational behavior and the formation of rovibronic energy level clusters in high angular momentum states. [1] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A 107, 4244-4249 (2003) [2] N. Basco and K. K. Lee, Spectroscopy Letters 1, 13-15 (1968)

  8. Skutterudites under pressure: An ab initio study

    SciTech Connect

    Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.

    2014-03-07

    Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.

  9. Spin-Orbit Effect on the Molecular Properties of TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4): A Density Functional Theory and Ab Initio Study.

    PubMed

    Moon, Jiwon; Kim, Joonghan

    2016-09-29

    Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.

  10. Ab Initio No-Core Shell Model

    SciTech Connect

    Barrett, B R; Navratil, P; Vary, J P

    2011-04-11

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN

  11. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  12. THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY

    SciTech Connect

    Turchi, P A

    2004-09-24

    Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.

  13. Ab initio computations of photodissociation products of CFC alternatives

    SciTech Connect

    Tai, S.; Illinger, K.H.; Kenny, J.E.

    1995-12-31

    Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.

  14. Communication: GAIMS—Generalized Ab Initio Multiple Spawning for both internal conversion and intersystem crossing processes

    NASA Astrophysics Data System (ADS)

    Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.

    2016-03-01

    Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.

  15. Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures

    SciTech Connect

    Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan

    2006-04-05

    A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.

  16. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  17. Ab initio calculations in three-body cluster systems

    SciTech Connect

    Romero-Redondo, C.; Navratil, P.; Quaglioni, S.

    2013-06-10

    In this work we briefly outline the extension of the ab initio no-core shell model/Resonating group method (NCSM/RGM) to three-body cluster states. We present the results for {sup 6}He ground state within a {sup 4}He+n+n cluster basis under this approach.

  18. The electronic spectrum of AgCl2: Ab initio benchmark versus density-functional theory calculations on the lowest ligand-field states including spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Ramírez-Solís, A.; Poteau, R.; Daudey, J. P.

    2006-01-01

    The XΠg2, Σg+2, and Δg2 states of AgCl2 have been studied through benchmark ab initio complete active space self-consistent field plus second-order complete active space multireference Möller-Plesset algorithm (CASSCF +CASPT2) and complete active space self-consistent field plus averaged coupled pair functional (CASSCF +ACPF) and density-functional theory (DFT) calculations using especially developed basis sets to study the transition energies, geometries, vibrational frequencies, Mulliken charges, and spin densities. The spin-orbit (SO) effects were included through the effective Hamiltonian formalism using the ΛSΣ ACPF energies as diagonal elements. At the ACPF level, the ground state is Πg2 in contradiction with ligand-field theory, SCF, and large CASSCF; the adiabatic excitation energies for the Σg+2 and Δg2 states are 1640 and 18230cm-1, respectively. The inclusion of the SO effects leads to a pure Ω =3/2(Πg2) ground state, a Ω =1/2 (66%Πg2 and 34%Σg+2) A state, a Ω =1/2 (34%Πg2 and 66%Σg+2) B state, a Ω =5/2(Δg2)C state, and a Ω =3/2(99%Δg2)D state. The X-A, X-B, X-C, and X-D transition energies are 485, 3715, 17 246, and 20110cm-1, respectively. The B97-2, B3LYP, and PBE0 functionals overestimate by ≈100% the XΠg2-Σg+2Te but provide a qualitative energetic ordering in good agreement with ACPF results. B3LYP with variable exchange leads to a 42% optimal Hartree-Fock exchange for transition energies but all equilibrium geometries get worsened. Asymptotic corrections to B3LYP do not provide improved values. The nature of the bonding in the XΠg2 state is very different from that of CuCl2 since the Mulliken charge on the metal is 1.1 while the spin density is only 0.35. DFT strongly delocalizes the spin density providing even smaller values of around 0.18 on Ag not only for the ground state, but also for the Σg+2 state.

  19. Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.

    PubMed

    Zhang, Dawei; Liu, Chungen

    2016-04-12

    The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems. PMID:26963572

  20. Ab Initio Electronic Structure Calculations of Cytochrome P450 -- Ligand Interactions

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Ellis, S. W.; Tucker, G. T.

    1997-03-01

    The Cytochrome P450 superfamily of enzymes are of great interest in pharmacology as they participate in an enormous range of physiological processes including drug deactivation and xenobiotic detoxification. We apply ab initio electronic structure calculations to model the interactions of the haem molecule at the P450 active site with substrate and inhibitor ligands. These calculations, based on density function theory, were performed with the CETEP code which uses a plane wave basis set and pseudopotentials to perform efficient LDA, GGA and spin dependent calculations. A change in the spin state of the haem iron atom is observed on binding of a substrate molecule, consistent with the accepted reaction mechanism.

  1. Ab initio calculations on the magnetic properties of transition metal complexes

    SciTech Connect

    Bodenstein, Tilmann; Fink, Karin

    2015-12-31

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.

  2. Ab-initio calculations on melting of thorium

    NASA Astrophysics Data System (ADS)

    Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.

  3. Ab initio molecular dynamics: Concepts, recent developments, and future trends

    PubMed Central

    Iftimie, Radu; Minary, Peter; Tuckerman, Mark E.

    2005-01-01

    The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed “on the fly” from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204

  4. Ab Initio Electronic Relaxation Times and Transport in Noble Metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.

    Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.

  5. Towards AB Initio Calculation of the Circular Dichroism of Peptides

    NASA Astrophysics Data System (ADS)

    Molteni, E.; Onida, G.; Tiana, G.

    2012-08-01

    In this work we plan to use ab initio spectroscopy calculations to compute circular dichroism (CD) spectra of peptides. CD provides information on protein secondary structure content; peptides, instead, remain difficult to address, due to their tendency to adopt multiple conformations in equilibrium. Therefore peptides are an interesting test-case for ab initio calculation of CD spectra. As a first application, we focus on the (83-92) fragment of HIV-1 protease, which is known to be involved in the folding and dimerization of this protein. As a preliminary step, we performed classical molecular dynamics (MD) simulations, in order to obtain a set of representative conformers of the peptide. Then, on some of the obtained conformations, we calculated absorption spectra at the independent particle, RPA and TDLDA levels, showing the presence of charge transfer excitations, and their influence on spectral features.

  6. Ab Initio Calculations Of Light-Ion Reactions

    SciTech Connect

    Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W

    2012-03-12

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  7. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  8. Ab initio MRCI + Q calculations on the low-lying excited states of the MgBr radical including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wu, Dong-lan; Tan, Bin; Wen, Yu-feng; Zeng, Xue-feng; Xie, An-dong; Yan, Bing

    2016-05-01

    Accurate theoretical calculations on the MgBr radical have been carried out by using the high-level relativistic multireference configuration interaction method with Davidson correction (MRCI + Q) using correlation-consistent Quintuple-ζ quality basis set. The potential energy curves (PECs) of the 14 Λ-S states of MgBr have been computed. In order to improve the PECs, the core-valence correlation, scalar relativistic effect, and spin-orbit coupling effect are taken into account in the computations. The spectroscopic constants of the bound states have been determined from the computed PECs. The results of the ground state X2Σ+ and the first excited state A2Π are in good agreement with those from the available experiments, while spectroscopic constants of the other electronic states are firstly reported. The low-lying ion-pair state B2Σ+ correlated to ion-pair dissociation limit Mg+ (2Sg) + Br- (1Sg) is characterized. The permanent dipole moments (PDMs) of Λ-S states and the R-dependent spin-orbit (SO) matrix elements are computed. The results indicate that the abrupt changes of PDMs and the SO matrix elements are attributed to the changes of the electronic configurations near the avoided crossing point. After taking the SOC effect into account, the 14 Λ-S states split into 30 Ω states, and the SOC splitting for the A2Π is calculated to be 102.58 cm- 1. The SOC effect, leading to the double-well potential of the Ω = (3)1/2 state, is found to be substantial for MgBr. In order to further illustrate the SOC effect and the avoided crossing phenomenon of the PECs, the Λ-S compositions in the Ω state wavefunctions are analyzed in detail. Finally, the transition dipole moments (TDMs) of several transitions from upper Ω states to the ground X2Σ+1/2 state and the corresponding radiative lifetimes have been studied. It is shown that the (1)3/2-X2Σ+1/2 and (2)3/2-X2Σ+1/2 are particularly important to the observed transitions A2Π-X2Σ+ and C2Π-X2Σ+. The

  9. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  10. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  11. Acceleration of the Convergence in ab initio Atomic Relaxations

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan

    2006-03-01

    Atomic relaxations is often required to accurately describe the properties of nanosystems. In ab initio calculations, a common practice is to use a standard search algorithm, such as BFGS (Broyden-Fletcher-Goldfarb-Shanno) or CG (conjugate gradient) method, which starts the atomic relaxations without any knowledge of the Hessian matrix of the system. For example, the initial Hessian in BFGS method is often set to identity, and there is no preconditioning to CG method. One way to accelerate the convergence of the atomic relaxations is to estimate an approximate Hessian matrix of the system and then use it as the initial Hessian in BFGS method or a preconditioner in CG method. Previous attempts to obtain the approximated Hessian were focused on the use of classical force field models which rely on the existence of good parameters. Here, we present an alternative method to estimate the Hessian matrix of a nanosystem. First, we decompose the system into motifs which consist of a few atoms, then calculate the Hessian matrix elements on different motif types from ab initio calculations for small prototype systems. Then we generate the Hessian Matrix of the whole system by putting together these motif Hessians. We have applied our motif-based Hessian matrix in ab initio atomic relaxations in several bulk (with/without impurity) and quantum dot systems, and have found a speed up factor of 2 to 4 depending on the system size.

  12. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  13. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement. PMID:27634258

  14. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  15. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  16. Ab initio calculations of reactions with light nuclei

    NASA Astrophysics Data System (ADS)

    Quaglioni, Sofia; Hupin, Guillaume; Calci, Angelo; Navrátil, Petr; Roth, Robert

    2016-03-01

    An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review ab initio calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the ab initio no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the A-nucleon system are coupled to (A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.

  17. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  18. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  19. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573

  20. Ab Initio Calculations of Water Line Strengths

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry

    1998-01-01

    We report on the determination of a high quality ab initiu potential energy surface (PES) and dipole moment function for water. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base with J less than 6 for H2O. The changes in the PES are small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Using this adjusted PES, we can match 30,092 of the 30,117 transitions in the HITRAN 96 data base for H2O with theoretical lines. The 10,25,50,75, and 90 percentiles of the difference between the calculated and tabulated line positions are -0.11, -0.04, -0.01, 0.02, and 0.07 l/cm. Non-adiabatic effects are not explicitly included. About 3% of the tabulated line positions appear to be incorrect. Similar agreement using this adjusted PES is obtained for the oxygen 17 and oxygen 18 isotopes. For HDO, the agreement is not as good, with root-mean-square error of 0.25 l/cm for lines with J less than 6. This error is reduced to 0.02 l/cm by including a small asymmetric correction to the PES, which is parameterized by simultaneously fitting to HDO md D2O data. Scaling this correction by mass factors yields good results for T2O and HTO. The intensities summed over vibrational bands are usually in good agreement between the calculations and the tabulated results, but individual lines strengths can differ greatly. A high temperature list consisting of 307,721,352 lines is generated for H2O using our PES and dipole moment function.

  1. Ab initio studies of anisotropic magnetism in uranium and cerium monopnictides and monochalcogenides

    NASA Astrophysics Data System (ADS)

    Collins, Eric Mason

    We have applied two ab initio based methods to investigate the origin in the electronic structure of the unusual magnetic behavior of the cerium and uranium monopnictides and monochalcogenides. First, we have carried out spin-polarized electronic structure calculations, based on the full potential linear muffin tin (FPLMTO) method, with spin polarization (orbital polarization only via spin-orbit coupling) and also with orbital polarization correction. Second, we have carried out ab initio based calculations synthesizing (1) a phenomenological theory of orbitally driven magnetism based on the Anderson and Kondo, lattice model which incorporates explicitly the hybridization induced and the Coulomb exchange interactions on an equal footing, and (2) FPLMTO electronic structure calculations allowing a first principles evaluation of all the parameters entering the model Hamiltonian. For the cerium compounds, we also include the crystal field interactions on an equal footing with the hybridization and Coulomb exchange interactions with a scaling determined by experiment. The results for the uranium compound calculations show that both methods are limited to the extremes to which they are best suited. The pure band structure calculations provide the best agreement for the lighter uranium compounds, while the model hamiltonian approach provides better agreement for the heavier uranium compounds. In the case of the cerium compounds, while the pure FPLMTO calculations yield values for the magnetic moment in agreement with experiment for the lighter cerium chalcogenides, they fail to give, even qualitatively, the magnetic properties for all other systems. On the other hand, the ab initio based model Hamiltonian calculations reveal for the first time the interplay of hybridization, Coulomb exchange, and crystal field interactions across the cerium series, and give results for the low-temperature moment and ordering temperature in excellent agreement with experiment, for the

  2. Accurate ab initio study on the A2Π, 14Σ+, 14Π, 24Π and 16Σ+ electronic states of AlO radical including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2013-01-01

    The potential energy curves (PECs) of 15 Ω states generated from five Λ-S states (A2Π, 14Σ+, 14Π, 24Π and 16Σ+) of AlO radical are studied in detail using high level ab initio quantum chemical method for the first time. All the PEC calculations are made by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson modification (MRCI + Q). The spin-orbit coupling effect is included by the Breit-Pauli Hamiltonian with the aug-cc-pCVTZ basis set. Convergent behavior is discussed and excellent convergence has been observed with respect to the basis sets and level of theory. To improve the quality of PECs, core-valence correlation and scalar relativistic corrections are taken into account. Core-valence correlation corrections are included employing a cc-pCVQZ basis set. Scalar relativistic corrections are calculated by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. All the PECs are extrapolated to the complete basis set limit by the total-energy extrapolation scheme. With these PECs including all the corrections used here, on the one hand, the spectroscopic parameters of all the Λ-S and Ω states are calculated, which are in reasonable agreement with the experimental and other theoretical results; on the other hand, the vibrational levels and inertial rotation constants of X2Σ+, A2Π, B2Σ+ Λ-S states as well as A2Π3/2 and A2Π1/2 Ω states are determined, which also agree well with the measurements. The vibrational levels and inertial rotation constants of A2Π3/2 and A2Π1/2 Ω states as well as the spectroscopic parameters of four Λ-S states (14Σ+, 14Π, 24Π and 16Σ+) and their corresponding 13 Ω states can be expected to be reliable predicted ones.

  3. Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2

    NASA Technical Reports Server (NTRS)

    Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.

    1976-01-01

    The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.

  4. Structural and magnetic properties of Tcn@C60 endohedral metallofullerenes: An ab initio study

    NASA Astrophysics Data System (ADS)

    Kim, Eunja; Weck, Philippe F.; Czerwinski, Kenneth R.; Tománek, David

    2010-03-01

    We use ab initio spin density functional calculations to study the equilibrium structure and magnetic properties of Tcn@C60 endohedral metallofullerenes. The radionuclide ^99mTc is well established in biomedicine as a potent in vivo diagnostic radiopharmaceutical; its encapsulation in the inert C60 shell is expected to limit possible cytotoxicity of radiometal nanoparticles catabolized by the biological host. We find that C60 can endohedrally accommodate Tcn clusters with up to n=7. The encapsulation does not change significantly the structure of the enclosed clusters, but reduces the magnetic moment due to a stronger Tc--C hybridization for the larger clusters.

  5. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.

    2009-08-03

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  6. Ab initio calculations of the ground and excited states of I 2- and ICl -

    NASA Astrophysics Data System (ADS)

    Maslen, P. E.; Faeder, J.; Parson, R.

    1996-12-01

    We performed all-electron ab initio calculations of the first six states of I 2- and ICl - using a multi-reference configuration interaction method. Spin-orbit coupling is included via an empirical one-electron operator and has a large effect on the dissociation energy. The ground state dissociation energies were in error by 20-30%, probably due to deficiencies in the one electron basis sets. The electronic wavefunctions at the equilibrium geometry were used to calculate the electronic absorption spectrum from the ground state, and good agreement was found with the experimental data.

  7. Macromolecular ab initio phasing enforcing secondary and tertiary structure

    PubMed Central

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  8. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.

  9. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  10. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  11. Communication: GAIMS—generalized ab initio multiple spawning for both internal conversion and intersystem crossing processes

    DOE PAGES

    Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; Gonzalez, Leticia; Martinez, Todd J.

    2016-03-11

    Full Multiple Spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio Multiple Spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. Lastly, the results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalismmore » and its implementation.« less

  12. Polymeric nitrogen in a graphene matrix: An ab initio study

    NASA Astrophysics Data System (ADS)

    Timoshevskii, V.; Ji, Wei; Abou-Rachid, Hakima; Lussier, Louis-Simon; Guo, H.

    2009-09-01

    A hybrid material where polymeric nitrogen chains are sandwiched between graphene sheets in the form of a three-dimensional crystal, is predicted by means of ab initio simulations. It is demonstrated that chainlike polymeric nitrogen phase becomes stable at ambient pressure when intercalated in a multilayer graphene matrix. The physical origin of this stabilization is identified by studying the electronic properties of the system. This approach of stabilizing polymeric nitrogen by means of external three-dimensional matrix constitutes a path toward synthesizing different types of nitrogen-based high-energy materials.

  13. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  14. Ab-initio study of transition metal hydrides

    SciTech Connect

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  15. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  16. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  17. Exploring Transition Metal Catalyzed Reactions via AB Initio Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Hratchian, Hrant P.

    2011-06-01

    The study and prediction of chemical reactivity is one of the most influential contributions of quantum chemistry. A central concept in the theoretical treatment of chemical reactions is the reaction pathway, which can be quite difficult to integrate accurately and efficiently. This talk will outline our developments in the integration of these pathways on ab initio potential energy surfaces. We will also describe results from recent studies on the kinetics of transition metal catalyzed reactions, including the importance of vibrational coupling to the reaction coordinate and the role of this coupling in catalytic rate enhancement.

  18. Ab-initio study of napthelene based conducting polymer

    SciTech Connect

    Ruhela, Ankur; Kanchan, Reena; Srivastava, Anurag; Sinha, O. P.

    2014-04-24

    In this paper, we have identified structural and electronic properties of conducting polymers by using DFT based ATK-VNL ab-initio tool. Naphthalene derivative structures were stabilized by varying the bond length between two atoms of the molecule C-N and C-C. We have also studied the molecular energy spectrum of naphthalene derivatives and found the HOMOLUMO for the same. A comparison of structural and electronic properties of naphthalene derivatives by attaching the functional group of amine, have been performed and found that they show good semi conducting properties.

  19. Ab Initio Computation of the Energies of Circular Quantum Dots

    SciTech Connect

    Lohne, M. Pedersen; Hagen, Gaute; Hjorth-Jensen, M.; Kvaal, S.; Pederiva, F.

    2011-01-01

    We perform coupled-cluster and diffusion Monte Carlo calculations of the energies of circular quantum dots up to 20 electrons. The coupled-cluster calculations include triples corrections and a renormalized Coulomb interaction defined for a given number of low-lying oscillator shells. Using such a renormalized Coulomb interaction brings the coupled-cluster calculations with triples correlations in excellent agreement with the diffusion Monte Carlo calculations. This opens up perspectives for doing ab initio calculations for much larger systems of electrons.

  20. Ab-Initio Shell Model with a Core

    SciTech Connect

    Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P

    2008-06-04

    We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.

  1. Pseudorotation motion in tetrahydrofuran: an ab initio study.

    PubMed

    Rayón, Víctor M; Sordo, Jose A

    2005-05-22

    The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.

  2. Three-cluster dynamics within an ab initio framework

    DOE PAGES

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less

  3. Finite Elements in Ab Initio Electronic-Structure Calulations

    NASA Astrophysics Data System (ADS)

    Pask, J. E.; Sterne, P. A.

    Over the course of the past two decades, the density functional theory (DFT) (see e.g., [1]) of Hohenberg, Kohn, and Sham has proven to be an accurate and reliable basis for the understanding and prediction of a wide range of materials properties from first principles (ab initio), with no experimental input or empirical parameters. However, the solution of the Kohn-Sham equations of DFT is a formidable task and this has limited the range of physical systems which can be investigated by such rigorous, quantum mechanical means. In order to extend the interpretive and predictive power of such quantum mechanical theories further into the domain of "real materials", involving nonstoichiometric deviations, defects, grain boundaries, surfaces, interfaces, and the like; robust and efficient methods for the solution of the associated quantum mechanical equations are critical. The finite-element (FE) method (see e.g., [2]) is a general method for the solution of partial differential and integral equations which has found wide application in diverse fields ranging from particle physics to civil engineering. Here, we discuss its application to large-scale ab initio electronic-structure calculations.

  4. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  5. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  6. Unified ab initio approaches to nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-05-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.

  7. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials.

  8. Entropy of Liquid Water from Ab Initio Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Spanu, Leonardo; Zhang, Cui; Galli, Giulia

    2012-02-01

    The debate on the structural properties of water has been mostly based on the calculation of pair correlation functions. However, the simulation of thermodynamic and spectroscopic quantities may be of great relevance for the characterization of liquid water properties. We have computed the entropy of liquid water using a two-phase thermodynamic model and trajectories generated by ab initio molecular dynamics simulations [1]. In an attempt to better understand the performance of several density functionals in simulating liquid water, we have performed ab initio molecular dynamics using semilocal, hybrid [2] and van der Waals density functionals [3]. We show that in all cases, at the experimental equilibrium density and at temperatures in the vicinity of 300 K, the computed entropies are underestimated, with respect to experiment, and the liquid exhibits a degree of tetrahedral order higher than in experiments. We also discuss computational strategies to simulate spectroscopic properties of water, including infrared and Raman spectra.[4pt] [1] C.Zhang, L.Spanu and G.Galli, J.Phys.Chem. B 2011 (in press)[0pt] [2] C.Zhang, D.Donadio, F.Gygi and G.Galli, J. Chem. Theory Comput. 7, 1443 (2011)[0pt] [3] C.Zhang, J.Wu, G.Galli and F.Gygi, J. Chem. Theory Comput. 7, 3061 (2011)

  9. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  10. Ab initio study of hot electrons in GaAs

    PubMed Central

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron–phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron–phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron–phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  11. A fragmentation and reassembly method for ab initio phasing.

    PubMed

    Shrestha, Rojan; Zhang, Kam Y J

    2015-02-01

    Ab initio phasing with de novo models has become a viable approach for structural solution from protein crystallographic diffraction data. This approach takes advantage of the known protein sequence information, predicts de novo models and uses them for structure determination by molecular replacement. However, even the current state-of-the-art de novo modelling method has a limit as to the accuracy of the model predicted, which is sometimes insufficient to be used as a template for successful molecular replacement. A fragment-assembly phasing method has been developed that starts from an ensemble of low-accuracy de novo models, disassembles them into fragments, places them independently in the crystallographic unit cell by molecular replacement and then reassembles them into a whole structure that can provide sufficient phase information to enable complete structure determination by automated model building. Tests on ten protein targets showed that the method could solve structures for eight of these targets, although the predicted de novo models cannot be used as templates for successful molecular replacement since the best model for each target is on average more than 4.0 Å away from the native structure. The method has extended the applicability of the ab initio phasing by de novo models approach. The method can be used to solve structures when the best de novo models are still of low accuracy. PMID:25664740

  12. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation

    NASA Astrophysics Data System (ADS)

    Chibotaru, L. F.; Ungur, L.

    2012-08-01

    A methodology for the rigorous nonperturbative derivation of magnetic pseudospin Hamiltonians of mononuclear complexes and fragments based on ab initio calculations of their electronic structure is described. It is supposed that the spin-orbit coupling and other relativistic effects are already taken fully into account at the stage of quantum chemistry calculations of complexes. The methodology is based on the establishment of the correspondence between the ab initio wave functions of the chosen manifold of multielectronic states and the pseudospin eigenfunctions, which allows to define the pseudospin Hamiltonians in the unique way. Working expressions are derived for the pseudospin Zeeman and zero-field splitting Hamiltonian corresponding to arbitrary pseudospins. The proposed calculation methodology, already implemented in the SINGLE_ANISO module of the MOLCAS-7.6 quantum chemistry package, is applied for a first-principles evaluation of pseudospin Hamiltonians of several complexes exhibiting weak, moderate, and very strong spin-orbit coupling effects.

  13. Summation of Parquet diagrams as an ab initio method in nuclear structure calculations

    SciTech Connect

    Bergli, Elise; Hjorth-Jensen, Morten

    2011-05-15

    Research Highlights: > We present a Green's function based approach for doing ab initio nuclear structure calculations. > In particular the sum the subset of so-called Parquet diagrams. > Applying the theory to a simple but realistic model, results in good agreement with other ab initio methods. > This opens up for ab initio calculations for medium-heavy nuclei. - Abstract: In this work we discuss the summation of the Parquet class of diagrams within Green's function theory as a possible framework for ab initio nuclear structure calculations. The theory is presented and some numerical details are discussed, in particular the approximations employed. We apply the Parquet method to a simple model, and compare our results with those from an exact solution. The main conclusion is that even at the level of approximation presented here, the results shows good agreement with other comparable ab initio approaches.

  14. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  15. An ab initio MO study of heavy atom effects on the zero-field splitting tensors of high-spin nitrenes: how the spin-orbit contributions are affected.

    PubMed

    Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji

    2014-05-21

    The CASSCF and the hybrid CASSCF-MRMP2 methods are applied to the calculations of spin-spin and spin-orbit contributions to the zero-field splitting tensors (D tensors) of the halogen-substituted spin-septet 2,4,6-trinitrenopyridines, focusing on the heavy atom effects on the spin-orbit term of the D tensors (D(SO) tensors). The calculations reproduced experimentally determined |D| values within an error of 15%. Halogen substitutions at the 3,5-positions are less influential in the spin-spin dipolar (D(SS)) term of 2,4,6-trinitrenopyridines, although the D(SO) terms are strongly affected by the introduction of heavier halogens. The absolute sign of the D(SO) value (D = D(ZZ) - (D(XX) + D(YY))/2) of 3,5-dibromo derivative 3 is predicted to be negative, which contradicts the Pederson-Khanna (PK) DFT result previously reported. The large negative contributions to the D(SO) value of 3 arise from the excited spin-septet states ascribed mainly to the excitations of in-plane lone pair of bromine atoms → SOMO of π nature. The importance of the excited states involving electron transitions from the lone pair orbital of the halogen atom is also confirmed in the D(SO) tensors of halogen-substituted para-phenylnitrenes. A new scheme based on the orbital region partitioning is proposed for the analysis of the D(SO) tensors as calculated by means of the PK-DFT approach.

  16. Ab initio study of helium behavior in titanium tritides

    SciTech Connect

    Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-03-01

    Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].

  17. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  18. Quasi-Ab initio molecular dynamic study of Fe melting

    PubMed

    Belonoshko; Ahuja; Johansson

    2000-04-17

    We have investigated the melting of hcp Fe at high pressure by employing molecular dynamics simulations in conjunction with the full potential linear muffin tin orbital method. Apart from being of fundamental value, the melting of iron at high pressure is also important for our understanding of the Earth. The subject of iron melting at high pressures is controversial. The experimental data for the iron melting temperature can be separated into two regions, "low" and "high." Here we present an ab initio simulated iron melting curve which is in agreement with the low temperatures at lower pressures, but is in excellent agreement with the high-mostly shockwave-temperatures at high pressures. A comparison with available data lends support to the presented iron melting curve.

  19. Effective pair potentials using an ab initio variational approach

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe; Silvestrelli, Pier Luigi

    2010-01-01

    We used a variational approach adapted to a quantum molecular-dynamics code to determine the best reference potential for warm dense aluminum. This ab initio variational approach was based on the Gibbs-Bogolyubov inequality. We used many-body reference systems interacting through inverse-power-law potentials, among which the Coulomb potential was a particular case defining the classical one-component plasma model. By comparisons with full quantum molecular-dynamics simulations, we found that the Coulomb potential was not always the best reference potential. We calculated the self-diffusion coefficient and the shear viscosity and discussed the results obtained using the Chisolm-Wallace relation in the warm dense matter regime.

  20. Ab initio calculation of the shock Hugoniot of bulk silicon

    NASA Astrophysics Data System (ADS)

    Strickson, Oliver; Artacho, Emilio

    2016-03-01

    We describe how ab initio molecular dynamics can be used to determine the Hugoniot locus (states accessible by a shock wave) for materials with a number of stable phases, and with an approximate treatment of plasticity and yield, without having to simulate these phenomena directly. We consider the case of bulk silicon, with forces from density-functional theory, up to 70 GPa. The fact that shock waves can split into multiple waves due to phase transitions or yielding is taken into account here by specifying the strength of any preceding waves explicitly based on their yield strain. Points corresponding to uniaxial elastic compression along three crystal axes and a number of postshock phases are given, including a plastically yielded state, approximated by an isotropic stress configuration following an elastic wave of predetermined strength. The results compare well to existing experimental data for shocked silicon.

  1. Ab Initio Calculations of Excited Carrier Dynamics in Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Jhalani, Vatsal; Bernardi, Marco

    Bulk wurtzite GaN is the primary material for blue light-emission technology. The radiative processes in GaN are regulated by the dynamics of excited (or so-called ``hot'') carriers, through microscopic processes not yet completely understood. We present ab initio calculations of electron-phonon (e-ph) scattering rates for hot carriers in GaN. Our work combines density functional theory to compute the electronic states, and density functional perturbation theory to obtain the phonon dispersions and e-ph coupling matrix elements. These quantities are interpolated on fine Brillouin zone grids with maximally localized Wannier functions, to converge the e-ph scattering rates within 5 eV of the band edges. We resolve the contribution of the different phonon modes to the total scattering rate, and study the impact on the relaxation times of the long-range Fröhlich interaction due to the longitudinal-optical phonon modes.

  2. Ab initio water pair potential with flexible monomers.

    PubMed

    Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof

    2015-03-26

    A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects.

  3. Ab initio study of guanine damage by hydroxyl radical.

    PubMed

    Chaban, Galina M; Wang, Dunyou; Huo, Winifred M

    2015-01-15

    Multiconfigurational ab initio methods are used in this study to examine two initial reactions that take place during the OH radical attack of the DNA base guanine: a ring opening reaction and a hydrogen transfer reaction. The same reactions are also studied in the presence of a single water molecule. The ring opening reaction has a moderate barrier height of ∼20-25 kcal/mol that is relatively insensitive to the presence of water. The barrier of the H-transfer reaction, on the other hand, is lowered from ∼50 to ∼22 kcal/mol when one water molecule is added, thus becoming comparable to the barrier height of the ring opening reaction. PMID:25517252

  4. Ab initio engineering of materials with stacked hexagonal tin frameworks

    NASA Astrophysics Data System (ADS)

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-07-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  5. Ab initio engineering of materials with stacked hexagonal tin frameworks.

    PubMed

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  6. Ab Initio Study of KCl and NaCl Clusters

    NASA Astrophysics Data System (ADS)

    Brownrigg, Clifton; Hira, Ajit; Pacheco, Jose; Salazar, Justin

    2013-03-01

    We continue our interest in the theoretical study of molecular clusters to examine the chemical properties of small KnCln and NanCln clusters (n = 2 - 15). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods of quantum chemistry to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations have been performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. The potential for design of new medicinal drugs is explored.

  7. Ab initio and RRKM calculations of o-benzyne pyrolysis

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Qiao; Han, Ke-Li; Zhan, Ji-Ping; He, Guo-Zhong

    1998-05-01

    Recently, a new mechanism has been provided in the phenyl pyrolysis, that is, the phenyl dissociation favours the benzyne channel by losing an H atom [H. Wang, M. Frenklach, J. Phys. Chem., 98 (1994) 11465]. In this Letter, the dissociation of o-benzyne has been investigated by means of ab initio theory. The geometries and structures of o-benzyne with its pyrolysis products C 4H 2, C 2H 2 and also the transition state were optimized at the UHF/6-31G* level. The single point energies were refined by B3LYP/6-31G* calculations. The unimolecular rate constants for o-benzyne pyrolysis in different pressures were calculated by the Rice-Ramsperger-Kassel-Marcus (RRKM) method.

  8. Efficient Ab initio Modeling of Random Multicomponent Alloys.

    PubMed

    Jiang, Chao; Uberuaga, Blas P

    2016-03-11

    We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches. PMID:27015491

  9. Ab initio water pair potential with flexible monomers.

    PubMed

    Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof

    2015-03-26

    A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects. PMID:25687650

  10. Reactive Monte Carlo sampling with an ab initio potential

    NASA Astrophysics Data System (ADS)

    Leiding, Jeff; Coe, Joshua D.

    2016-05-01

    We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the "rare-event" character of chemical reactions.

  11. Ab initio X-Ray Absorption Fine Structure Cumulants

    NASA Astrophysics Data System (ADS)

    Vila, F.; Rehr, J. J.; Rossner, H. H.; Krappe, H. J.

    2006-03-01

    Theoretical calculations of vibrational effects in x-ray absorption spectra typically employ semi-phenomenological models, e.g. empirical force constants or correlated Debye or Einstein models. Instead we introduce an efficient and generally applicable ab initio approach based on electronic structure calculations of the dynamical matrix together with the Lanczos recursion algorithm [1] and relations between the cumulants. The approach yields 1) the thermal expansion coefficients (first cumulant of the vibrational distribution function); 2) correlated Debye-Waller factors (second cumulants) and 3) anharmonic contributions (third cumulants). Results are presented for crystalline (Cu, Au, Ge, GaAs) and molecular (GeCl4, C6H6) systems. Our results for the Debye-Waller factors agree well with experiment. [1]H.J. Krappe and H.H. Rossner, Phys. Rev. B70, 104102 (2004).

  12. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.

    PubMed

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  13. Ab initio engineering of materials with stacked hexagonal tin frameworks

    PubMed Central

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  14. Ab Initio Force Fields for Imidazolium-Based Ionic Liquids.

    PubMed

    McDaniel, Jesse G; Choi, Eunsong; Son, Chang Yun; Schmidt, J R; Yethiraj, Arun

    2016-07-21

    We develop ab initio force fields for alkylimidazolium-based ionic liquids (ILs) that predict the density, heats of vaporization, diffusion, and conductivity that are in semiquantitative agreement with experimental data. These predictions are useful in light of the scarcity of and sometimes inconsistency in experimental heats of vaporization and diffusion coefficients. We illuminate physical trends in the liquid cohesive energy with cation chain length and anion. These trends are different than those based on the experimental heats of vaporization. Molecular dynamics prediction of the room temperature dynamics of such ILs is more difficult than is generally realized in the literature due to large statistical uncertainties and sensitivity to subtle force field details. We believe that our developed force fields will be useful for correctly determining the physics responsible for the structure/property relationships in neat ILs.

  15. Ab initio study of II-(VI)2 dichalcogenides.

    PubMed

    Olsson, P; Vidal, J; Lincot, D

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.

  16. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  17. Quantum plasmonics: from jellium models to ab initio calculations

    NASA Astrophysics Data System (ADS)

    Varas, Alejandro; García-González, Pablo; Feist, Johannes; García-Vidal, F. J.; Rubio, Angel

    2016-08-01

    Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT) calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.

  18. The ab-initio density matrix renormalization group in practice

    SciTech Connect

    Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  19. Isofulminic acid, HONC: Ab initio theory and microwave spectroscopy.

    PubMed

    Mladenović, Mirjana; Lewerenz, Marius; McCarthy, Michael C; Thaddeus, Patrick

    2009-11-01

    Isofulminic acid, HONC, the most energetic stable isomer of isocyanic acid HNCO, higher in energy by 84 kcal/mol, has been detected spectroscopically by rotational spectroscopy supported by coupled cluster electronic structure calculations. The fundamental rotational transitions of the normal, carbon-13, oxygen-18, and deuterium isotopic species have been detected in the centimeter band in a molecular beam by Fourier transform microwave spectroscopy, and rotational constants and nitrogen and deuterium quadrupole coupling constants have been derived. The measured constants agree well with those predicted by ab initio calculations. A number of other electronic and spectroscopic parameters of isofulminic acid, including the dipole moment, vibrational frequencies, infrared intensities, and centrifugal distortion constants have been calculated at a high level of theory. Isofulminic acid is a good candidate for astronomical detection with radio telescopes because it is highly polar and its more stable isomers (HNCO, HOCN, and HCNO) have all been identified in space. PMID:19895013

  20. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  1. Vibrational and ab initio molecular dynamics studies of bradykinin

    NASA Astrophysics Data System (ADS)

    Święch, Dominika; Kubisiak, Piotr; Andrzejak, Marcin; Borowski, Piotr; Proniewicz, Edyta

    2016-07-01

    In this study, the comprehensive theoretical and experimental investigations of Raman (RS) and infrared absorption (IR) spectra of bradykinin (BK) are presented. The ab initio Born-Oppenheimer molecular dynamics (BOMD) calculations, in the presence of water molecules that form the first coordination sphere, were used for conformational analysis of the BK structure. Based on the Density Functional Theory (DFT) calculations at the B3LYP/6-311G(d) level the vibrational spectra were interpreted. The calculated frequencies were scaled by means of the effective scaling frequency factor (ESFF) method. The theoretical data, which confirm the compact structure of BK in the presence of the water molecules revealed the remarkable effect of the intermolecular hydrogen bonding on the BK structural properties.

  2. The ab-initio density matrix renormalization group in practice

    NASA Astrophysics Data System (ADS)

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-01

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  3. Ab Initio Calculations of the Interaction between CO 2 and the Acetate Ion

    SciTech Connect

    Steckel, Janice A.

    2012-11-29

    A series of ab initio calculations designed to investigate the interaction of CO{sub 2} with acetate are presented. The lowest energy structure, AC–CO{sub 2}-η{sup 2}, is predicted by CCSD(T)/aVTZ to be bound by -10.6 kcal/mol. Six of the bound complexes have binding energies on the order of -8 kcal/mol, but analysis shows that the η{sup 1}-CT complex is fundamentally different from the others. The η{sup 1}-CT complex is characterized by geometric distortion, large polarization and induction effects and charge transfer whereas the other five complexes have little geometric distortion and negligible charge transfer. The amount of charge that is transferred from the anion to the CO{sub 2} in the η{sup 1}-CT complex is estimated to be about half an electron by NPA, DMA, CHELPG, and Mulliken analyses, whereas the EDA-ALMO-CTA (B3LYP) approach predicts a charge transfer of 75 me{sup –}. However, the transfer of this small amount of charge leads to an energy lowering of -56 kcal/mol, without which the complex would not be bound. The RI-MP2 geometries closely approximate those resulting from the CCSD optimizations, and the optimized second-order opposite spin (O2) method performs well for all the complexes except for the η{sup 1}-CT complex. DFT methods do not reproduce all the ab initio geometries, binding energies and/or energy ordering of these complexes although the range-separated hybrid meta-GGA (M11) and nonlocal (VV10 and vdwDF10) functionals are shown to yield results significantly better than other functionals considered for this system. The fact that there is such variation among DFT methods has implications for DFT-based ab initio molecular dynamics simulations and for the parametrization of classical force fields based on DFT calculations.

  4. Operator evolution for ab initio theory of light nuclei

    NASA Astrophysics Data System (ADS)

    Schuster, Micah; Quaglioni, Sofia; Johnson, Calvin; Jurgenson, Eric; Navrátil, Petr

    2014-09-01

    The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range; short ranges have the largest absolute renormalization when including two- and three-body induced terms, while at long ranges the induced three-body contribution takes on increased relative importance. The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores

  5. Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.

    2012-05-01

    An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.

  6. Towards an ab-initio treatment of nonlocal electronic correlations with dynamical vertex approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten

    Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.

  7. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  8. General Rule of Negative Effective Ueff System & Materials Design of High-Tc Superconductors by ab initio Calculations

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, Hiroshi; Nakanishi, Akitaka; Uede, Hiroki; Takawashi, Yuki; Fukushima, Tetsuya; Sato, Kazunori

    2014-03-01

    Based upon ab initio electronic structure calculation, I will discuss the general rule of negative effective U system by (1) exchange-correlation-induced negative effective U caused by the stability of the exchange-correlation energy in Hund's rule with high-spin ground states of d5 configuration, and (2) charge-excitation-induced negative effective U caused by the stability of chemical bond in the closed-shell of s2, p6, and d10 configurations. I will show the calculated results of negative effective U systems such as hole-doped CuAlO2 and CuFeS2. Based on the total energy calculations of antiferromagnetic and ferromagnetic states, I will discuss the magnetic phase diagram and superconductivity upon hole doping. I also discuss the computational materials design method of high-Tc superconductors by ab initio calculation to go beyond LDA and multi-scale simulations.

  9. Protons in polar media: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, Tycho

    1998-10-01

    The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations

  10. Towards an ab initio description of correlated materials

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls

  11. Ab initio study of the Br(2P)-HBr van der Waals complex.

    PubMed

    Toboła, R; Chałasiński, G; Kłos, J; Szcześniak, M M

    2009-05-14

    This study reports an ab initio characterization of a prereactive van der Waals complex between an open-shell atom Br((2)P) and a closed shell molecule HBr. The three adiabatic potential surfaces 1 (2)A('), 2 (2)A('), and 1 (2)A("), which result from the splitting of degenerate P state of Br are obtained from coupled cluster calculations. The coupling between same-symmetry states is calculated by multireference configuration-interaction method. A transformation to a diabatic representation and inclusion of the spin-orbit coupling effects on the interactions are also discussed. Bound states are calculated using an adiabatic bender model. The global minimum on the lowest adiabatic potential surface corresponds to a T-shaped geometry and has a well depth of D(e)=762.5 cm(-1) at R(e)=3.22 A. A secondary minimum occurs for a hydrogen-bonded geometry with D(e)=445.3 cm(-1) at R(e)=4.24 A. Upon inclusion of spin-orbit coupling the hydrogen-bonded minimum remains at the same depth, but the T-shaped minimum washes out to less than half of its spin-free value. The lowest bound state is localized in the linear minimum. The spin-orbit coupling plays a very important role in shaping of the potential energy surfaces of Br-HBr.

  12. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    NASA Astrophysics Data System (ADS)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  13. Electronic and optical properties of K-doped ZnO: Ab initio study

    NASA Astrophysics Data System (ADS)

    Aimouch, D. E.; Meskine, S.; Hayn, R.; Zaoui, A.; Boukortt, A.

    2016-08-01

    We present the results of ab initio calculations of K-doped ZnO in the wurtzite structure using a supercell of 32 atoms and density functional theory. A complete analysis of its electronic, optical and magnetic properties is provided. The local spin density approximation (LSDA) has been used to analyze the density of states and to understand the K influence at different concentration values. The material is revealed to become a p-type doped semiconductor. The optical constant or refractive index, the dielectric function, and the absorption coefficient were determined and show a good agreement with available experimental data. Potassium doping leads to an absorption peak at about 380 nm. That peak might improve the absorption characteristics of ZnO for solar cell or optical applications.

  14. Ab Initio Theory of Coherent Laser-Induced Magnetization in Metals

    NASA Astrophysics Data System (ADS)

    Berritta, Marco; Mondal, Ritwik; Carva, Karel; Oppeneer, Peter M.

    2016-09-01

    We present the first materials specific ab initio theory of the magnetization induced by circularly polarized laser light in metals. Our calculations are based on nonlinear density matrix theory and include the effect of absorption. We show that the induced magnetization, commonly referred to as inverse Faraday effect, is strongly materials and frequency dependent, and demonstrate the existence of both spin and orbital induced magnetizations which exhibit a surprisingly different behavior. We show that for nonmagnetic metals (such as Cu, Au, Pd, Pt) and antiferromagnetic metals the induced magnetization is antisymmetric in the light's helicity, whereas for ferromagnetic metals (Fe, Co, Ni, FePt) the imparted magnetization is only asymmetric in the helicity. We compute effective optomagnetic fields that correspond to the induced magnetizations and provide guidelines for achieving all-optical helicity-dependent switching.

  15. Trends in magnetism of free Rh clusters via relativistic ab-initio calculations.

    PubMed

    Šipr, O; Ebert, H; Minár, J

    2015-02-11

    A fully relativistic ab-initio study on free Rh clusters of 13-135 atoms is performed to identify general trends concerning their magnetism and to check whether concepts which proved to be useful in interpreting magnetism of 3d metals are applicable to magnetism of 4d systems. We found that there is no systematic relation between local magnetic moments and coordination numbers. On the other hand, the Stoner model appears well-suited both as a criterion for the onset of magnetism and as a guide for the dependence of local magnetic moments on the site-resolved density of states at the Fermi level. Large orbital magnetic moments antiparallel to spin magnetic moments were found for some sites. The intra-atomic magnetic dipole Tz term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of x-ray magnetic circular dichroism experiments based on the sum rules.

  16. Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  17. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches.

    PubMed

    Ramírez-Solís, A; Poteau, R; Vela, A; Daudey, J P

    2005-04-22

    The X2Pi g-2Sigma g+, X2Pi g-2Delta g, X2Pi g-2Sigma u+, X2Pi g-2Pi u transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the X2Pi g-2Sigma g+ and X2Pi g-2Delta g transition energies, many of them even placing the 2Delta g ligand field state above the charge transfer 2Pi u and 2Sigma u+ states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the LambdaSSigma density defined by the orientation of the 3d hole (sigma, pi, or delta) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the X2Pi g state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio

  18. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches

    NASA Astrophysics Data System (ADS)

    Ramírez-Solís, A.; Poteau, R.; Vela, A.; Daudey, J. P.

    2005-04-01

    The XΠg2-Σg +2, XΠg2-Δg2, XΠg2-Σu +2, XΠg2-Πu2 transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the XΠg2-Σg +2 and XΠg2-Δg2 transition energies, many of them even placing the Δg2 ligand field state above the charge transfer Πu2 and Σu +2 states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the ΛSΣ density defined by the orientation of the 3d hole (σ, π, or δ) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the XΠg2 state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio values. These findings show that not only large

  19. Ab initio density matrix renormalization group study of magnetic coupling in dinuclear iron and chromium complexes

    SciTech Connect

    Harris, Travis V.; Morokuma, Keiji; Kurashige, Yuki; Yanai, Takeshi

    2014-02-07

    The applicability of ab initio multireference wavefunction-based methods to the study of magnetic complexes has been restricted by the quickly rising active-space requirements of oligonuclear systems and dinuclear complexes with S > 1 spin centers. Ab initio density matrix renormalization group (DMRG) methods built upon an efficient parameterization of the correlation network enable the use of much larger active spaces, and therefore may offer a way forward. Here, we apply DMRG-CASSCF to the dinuclear complexes [Fe{sub 2}OCl{sub 6}]{sup 2−} and [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+}. After developing the methodology through systematic basis set and DMRG M testing, we explore the effects of extended active spaces that are beyond the limit of conventional methods. We find that DMRG-CASSCF with active spaces including the metal d orbitals, occupied bridging-ligand orbitals, and their virtual double shells already capture a major portion of the dynamic correlation effects, accurately reproducing the experimental magnetic coupling constant (J) of [Fe{sub 2}OCl{sub 6}]{sup 2−} with (16e,26o), and considerably improving the smaller active space results for [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+} with (12e,32o). For comparison, we perform conventional MRCI+Q calculations and find the J values to be consistent with those from DMRG-CASSCF. In contrast to previous studies, the higher spin states of the two systems show similar deviations from the Heisenberg spectrum, regardless of the computational method.

  20. Lead-Chalcogenides Under Pressure: Ab-Initio Study

    NASA Astrophysics Data System (ADS)

    Gupta, Dinesh C.; Hamid, Idris

    ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.

  1. Ab initio calculations of As-vacancy interactions in silicon

    SciTech Connect

    Xie, J.; Chen, S.P.

    1999-04-01

    Atomistic simulation of a vacancy-assisted dopant diffusion in silicon needs details of the dopant-vacancy interaction, i.e., the potential as a functional of dopant-vacancy separations. In this paper, the authors present a detailed study on the energetics of As-vacancy reaction in silicon and the lattice distortions surrounding the As-vacancy defect by using an ab initio plane wave pseudopotential method and the density functional theory (DFT). A potential-energy diagram as a function of As-vacancy separation is provided, which can be used in the atomistic diffusion simulations. The authors also calculate the binding energy and the formation energy of different complexes such as AsV, As{sub 2}V and AsV{sub 2} (V represents vacancy). They find that the stable configuration of As{sub 2}V is As-V-As, while the stable configuration of AsV{sub 2} is As-V-V. The nature of the binding between As and vacancy is explained from the lattice distortions and the change of chemical bond configuration introduced by the As-vacancy complex.

  2. Ab initio studies of phosphorene island single electron transistor

    NASA Astrophysics Data System (ADS)

    Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.

    2016-05-01

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.

  3. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850

  4. Ab initio simulations of MgO under extreme conditions

    NASA Astrophysics Data System (ADS)

    Cebulla, Daniel; Redmer, Ronald

    2014-04-01

    We determined the phase diagram of magnesium oxide with finite-temperature density functional theory molecular dynamics simulations up to temperatures and pressures as relevant for the deep interior of super-Earths and in rocky cores of giant planets such as Jupiter. The equation of state data, the Hugoniot, and a ramp compression curve are computed and compared to earlier results from diamond anvil cell and (decaying) shock wave experiments. In addition, the dynamical electrical conductivity and the reflectivity along the experimental Hugoniot curve are calculated in order to characterize electronic structure changes under compression. The structural properties of MgO are identified using pair correlation functions and self-diffusion coefficients. The solid-solid coexistence line is calculated by comparing the free enthalpies of the B1 and the B2 phase. The free energy of the solid phases is determined via thermodynamic relations using the ab initio simulation results and phonon calculations in the harmonic approximation. Our results indicate that the solid B2 phase of MgO does not occur in the interior of the Earth but may play an important role in super-Earths and in rocky planetary cores.

  5. Ab initio description of the exotic unbound 7He nucleus

    DOE PAGES

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-01-11

    In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less

  6. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  7. Engineering Room-temperature Superconductors Via ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen

    The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.

  8. Ab Initio Study of Covalently Functionalized Graphene and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Hammouri, Mahmoud; Vasiliev, Igor; Magedov, Igor; Frolova, Liliya; Kalugin, Nikolai

    2014-03-01

    The electronic and structural properties of carbon nanomaterials can be affected by chemical functionalization. We apply ab initio computational methods based on density functional theory to study the properties of graphene and single-walled carbon nanotubes functionalized with benzyne. Our calculations are carried out using the SIESTA electronic structure code combined with the generalized gradient approximation for the exchange correlation functional. The calculated binding energies, densities of states, and band structures of functionalized graphene and carbon nanotubes are analyzed in comparison with the available experimental data. The surfaces of carbon nanotubes are found to be significantly more reactive toward benzyne molecules than the surface of graphene. The strength of interaction between benzyne and carbon nanotubes is affected by the curvature of the nanotube sidewall. The binding energies of benzyne molecules attached to both semiconducting zigzag and metallic armchair nanotubes increase with decreasing the nanotube diameter. Supported by NSF CHE-1112388, NMSU GREG Award, NSF ECCS-0925988, NIH-5P20RR016480-12, and NIH- P20 GM103451.

  9. Local Environment Distribution in Ab Initio Liquid Water

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Distasio, Robert A., Jr.; Car, Roberto

    2013-03-01

    We have analyzed the distribution of local environments in liquid water at ambient conditions and its inherent potential energy surface (IPES) based on state-of-the-art ab initio molecular dynamics simulations performed on 128 molecules implementing hybrid PBE0 exchange [PRB 79, 085102 (2009)] and van der Waals (vdW) interactions [PRL 102, 073005 (2009)]. The local environments of molecules are characterized in terms of the local structure index (LSI) [JCP 104, 7671 (1996)] which is able to distinguish high- and low-density molecular environments. In agreement with simulations based on model potentials, we find that the distribution of LSI is unimodal at ambient conditions and bimodal in the IPES, consistent with the existence of polymorphism in amorphous phases of water. At ambient conditions spatial LSI fluctuations extend up to ~7 Å and their dynamical correlation decays on a time scale of ~3 ps, as found for density fluctuations in a recent study [PRL 106, 037801 (2011)]. DOE: DE-SC0008626, DOE: DE-SC0005180, NSF: CHE-0956500

  10. FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole.

    PubMed

    Rai, Amareshwar K; Singh, Rachana; Singh, K N; Singh, V B

    2006-02-01

    FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value. PMID:16098806

  11. Ab initio calculations of nuclear reactions important for astrophysics

    NASA Astrophysics Data System (ADS)

    Navratil, Petr; Dohet-Eraly, Jeremy; Calci, Angelo; Horiuchi, Wataru; Hupin, Guillaume; Quaglioni, Sofia

    2016-09-01

    In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. One of the newly developed approaches is the No-Core Shell Model with Continuum (NCSMC), capable of describing both bound and scattering states in light nuclei simultaneously. We will present NCSMC results for reactions important for astrophysics that are difficult to measure at relevant low energies, such as 3He(α,γ)7Be and 3H(α,γ)7Li and 11C(p,γ)12N radiative capture, as well as the 3H(d,n)4He fusion. We will also address prospects of calculating the 2H(α,γ)6Li capture reaction within the NCSMC formalism. Prepared in part by LLNL under Contract DE-AC52-07NA27344. Supported by the U.S. DOE, OS, NP, under Work Proposal No. SCW1158, and by the NSERC Grant No. SAPIN-2016-00033. TRIUMF receives funding from the NRC Canada.

  12. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  13. Microsolvation of methyl hydrogen peroxide: Ab initio quantum chemical approach

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anant D.; Rai, Dhurba; Bartolotti, Libero J.; Pathak, Rajeev K.

    2009-08-01

    Methyl hydrogen peroxide (MHP), one of the simplest organic hydroperoxides, is a strong oxidant, with enhanced activity in aqueous ambience. The present study investigates, at the molecular level, the role of hydrogen bonding that is conducive to cluster formation of MHP with water molecules from its peroxide end, with the methyl group remaining hydrophobic for up to five water molecules. Ab initio quantum chemical computations on MHP⋯(H2O)n, [n =1-5] are performed at second order Møller-Plesset (MP2) perturbation theory employing the basis sets 6-31G(d,p) and 6-311++G(2d,2p) to study the cluster formation of MHP with water molecules from its peroxide end and hydrophobic hydration due to the methyl group. Successive addition of water molecules alters the hydrogen bonding pattern, which leads to changes in overall cluster geometry and in turn to IR vibrational frequency shifts. Molecular co-operativity in these clusters is gauged directly through a detailed many-body interaction energy analysis. Molecular electrostatic potential maps are shown to have a bearing on predicting further growth of these clusters, which is duly corroborated through sample calculations for MHP⋯(H2O)8. Further, a continuum solvation model calculation for energetically stable clusters suggests that this study should serve as a precursor for pathways to aqueous solvation of MHP.

  14. Ab initio modelling of methane hydrate thermophysical properties.

    PubMed

    Jendi, Z M; Servio, P; Rey, A D

    2016-04-21

    The key thermophysical properties of methane hydrate were determined using ab initio modelling. Using density functional theory, the second-order elastic constants, heat capacity, compressibility, and thermal expansion coefficient were calculated. A wide and relevant range of pressure-temperature conditions were considered, and the structures were assessed for stability using the mean square displacement and radial distribution functions. Methane hydrate was found to be elastically isotropic with a linear dependence of the bulk modulus on pressure. Equally significant, multi-body interactions were found to be important in hydrates, and water-water interactions appear to strongly influence compressibility like in ice Ih. While the heat capacity of hydrate was found to be higher than that of ice, the thermal expansion coefficient was significantly lower, most likely due to the lower rigidity of hydrates. The mean square displacement gave important insight into stability, heat capacity, and elastic moduli, and the radial distribution functions further confirmed stability. The presented results provide a much needed atomistic thermoelastic characterization of methane hydrates and are essential input for the large-scale applications of hydrate detection and production. PMID:27019976

  15. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  16. An efficient approach to ab initio Monte Carlo simulation

    SciTech Connect

    Leiding, Jeff; Coe, Joshua D.

    2014-01-21

    We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β{sup 0}), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where—depending on the quality of the reference system potential—acceptance probabilities were enhanced by factors of 1.2–28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.

  17. Ab initio description of p-shell hypernuclei.

    PubMed

    Wirth, Roland; Gazda, Daniel; Navrátil, Petr; Calci, Angelo; Langhammer, Joachim; Roth, Robert

    2014-11-01

    We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction. We validate the approach for s-shell hypernuclei and apply it to p-shell hypernuclei, in particular to (Λ)(7)Li, (Λ)(9)Be, and (Λ)(13)C. We show that the chiral hyperon-nucleon interactions provide ground-state and excitation energies that generally agree with experiment within the cutoff dependence. At the same time we demonstrate that hypernuclear spectroscopy provides tight constraints on the hyperon-nucleon interactions. PMID:25415901

  18. Ab initio calculations of free-energy reaction barriers.

    PubMed

    Bucko, T

    2008-02-13

    The theoretical description of chemical reactions was until recently limited to a 'static' approach in which important parameters such as the rate constant are deduced from the local topology of the potential energy surface close to minima and saddle points. Such an approach has, however, serious limitations. The growing computational power allows us now to use advanced simulation techniques to determine entropic effects accurately for medium-sized systems at ab initio level. Recently, we have implemented free-energy simulation techniques based on molecular dynamics, in particular on the blue-moon ensemble technique and on metadynamics, in the popular DFT code VASP. In the thermodynamic integration (blue-moon ensemble) technique, the free-energy profile is calculated as the path integral over the restoring forces along a parametrized reaction coordinate. In metadynamics, an image of the free-energy surface is constructed on the fly during the simulation by adding small repulsive Gaussian-shaped hills to the Lagrangian driving the dynamics. The two methods are tested on a simple chemical reaction-the nucleophilic substitution of methyl chloride by a chlorine anion.

  19. Ab initio calculations of free-energy reaction barriers

    NASA Astrophysics Data System (ADS)

    Bucko, T.

    2008-02-01

    The theoretical description of chemical reactions was until recently limited to a 'static' approach in which important parameters such as the rate constant are deduced from the local topology of the potential energy surface close to minima and saddle points. Such an approach has, however, serious limitations. The growing computational power allows us now to use advanced simulation techniques to determine entropic effects accurately for medium-sized systems at ab initio level. Recently, we have implemented free-energy simulation techniques based on molecular dynamics, in particular on the blue-moon ensemble technique and on metadynamics, in the popular DFT code VASP. In the thermodynamic integration (blue-moon ensemble) technique, the free-energy profile is calculated as the path integral over the restoring forces along a parametrized reaction coordinate. In metadynamics, an image of the free-energy surface is constructed on the fly during the simulation by adding small repulsive Gaussian-shaped hills to the Lagrangian driving the dynamics. The two methods are tested on a simple chemical reaction—the nucleophilic substitution of methyl chloride by a chlorine anion.

  20. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  1. Ab initio Raman spectroscopy of water under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia

    Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.

  2. Exploring the free energy surface using ab initio molecular dynamics.

    PubMed

    Samanta, Amit; Morales, Miguel A; Schwegler, Eric

    2016-04-28

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525

  3. Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures

    NASA Astrophysics Data System (ADS)

    Debernardi, Alberto; Marchetti, Luigi

    2016-06-01

    Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.

  4. Rational design of electrolyte components by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Johansson, Patrik; Jacobsson, Per

    This paper is a small review of the use of computer simulations and especially the use of standard quantum-mechanical ab initio electronic structure calculations to rationally design and investigate different choices of chemicals/systems for lithium battery electrolytes. Covered systems and strategies to enhance the performance of electrolytes will range from assisting the interpretation of vibrational spectroscopy experiments over development of potentials for molecular dynamics simulations, to the design of new lithium salts and the lithium ion coordination in liquid, polymer, and gel polymer electrolytes. Examples of studied properties include the vibrational spectra of anions and ion pairs to characterize the nature and extent of the interactions present, the lithium ion affinities of anions, important for the salt solvation and the ability to provide a high concentration of charge carriers, the HOMO energies of the anions to estimate the stability versus oxidation, the anion volumes that correlate to the anion mobility, the lithium ion coordination and dynamics to reveal the limiting steps of lithium ion transport, etc.

  5. Ab initio molecular dynamics calculations of ion hydration free energies

    SciTech Connect

    Leung, Kevin; Rempe, Susan B.; Lilienfeld, O. Anatole von

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or '{lambda}-path' technique to compute the intrinsic hydration free energies of Li{sup +}, Cl{sup -}, and Ag{sup +} ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential ({phi}) contributions, we obtain absolute AIMD hydration free energies ({Delta}G{sub hyd}) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model {phi} predictions. The sums of Li{sup +}/Cl{sup -} and Ag{sup +}/Cl{sup -} AIMD {Delta}G{sub hyd}, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag{sup +}+Ni{sup +}{yields}Ag+Ni{sup 2+} in water. The predictions for this reaction suggest that existing estimates of {Delta}G{sub hyd} for unstable radiolysis intermediates such as Ni{sup +} may need to be extensively revised.

  6. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  7. The AB Initio Mia Method: Theoretical Development and Practical Applications

    NASA Astrophysics Data System (ADS)

    Peeters, Anik

    The bottleneck in conventional ab initio Hartree -Fock calculations is the storage of the electron repulsion integrals because their number increases with the fourth power of the number of basis functions. This problem can be solved by a combination of the multiplicative integral approximation (MIA) and the direct SCF method. The MIA approach was successfully applied in the geometry optimisation of some biologically interesting compounds like the neurolepticum Haloperidol and two TIBO derivatives, inactivators of HIV1. In this thesis the potency of the MIA-method is shown by the application of this method in the calculation of the forces on the nuclei. In addition, the MIA method enabled the development of a new model for performing crystal field studies: the supermolecule model. The results for this model are in better agreement with experimental data than the results for the point charge model. This is illustrated by the study of some small molecules in the solid state: 2,3-diketopiperazine, formamide oxime and two polymorphic forms of glycine, alpha-glycine and beta-glycine.

  8. Ab-initio modeling of an anion C- 60 pseudopotential for fullerene-based compounds

    NASA Astrophysics Data System (ADS)

    Vrubel, Ivan I.; Polozkov, Roman G.; Ivanov, Vadim K.

    2016-08-01

    An anion C- 60 pseudopotential is determined from an ab-initio-based approach. First, ab-initio calculations are performed to calculate the electronic charge density and the total electrostatic potential. Second, the effective dependence of the pseudopotential on the radial degree of freedom is extracted from the angular average of the total electrostatic potential. Finally, the resulting effective pseudopotential is fitted to a simple analytical form which can be applied in further dynamical simulations of fullerene-based compounds.

  9. Chiroptical properties of unsubstituted carbohydrates: Ab initio and semiempirical studies

    NASA Astrophysics Data System (ADS)

    Parra C., Alejandro

    Ab initio calculations support assignment of the vacuum ultraviolet circular dichroism (CD) of simple saccharides to 11A 1 --> 21B1 and 11A 1 --> 11A2 transitions centered on the oxygen atoms of the acetal group treated as two weakly coupled ether chromophores. The calculations are consistent with assignments previously made on the basis of a deconvolution of CD spectra. Estimates of the oxygen centered contributions to magnetic transition dipole moments were made. Semiempirical calculations were performed to model the NaD molar optical rotation of 1,6- and 3,6- anhydrosugars. For 1,6-anhydrosugars, current parameters produce reasonable agreement with experimental values. For 3,6-anhydrosugars, modifications to the ether parameters had to be introduced. The most relevant included a reorientation of the bond-centered s-->s* transition dipole charges in the ether chromophore to a C2v orientation, and a shift from prolate polarizability ellipsoids to general ellipsoids. These changes result in good agreement with experimental Na D molar rotations for 3,6-anhydrosugars. A low energy CD band arises in 3,6- and 1,6-anhydrosugars when agreement with the experimental NaD molar rotations is achieved. It is proposed that this band is a real feature in the spectrum. The origin of the band is primarily the interaction between b1 symmetry- oriented transition dipoles in the COC groups with other transition dipoles in the molecule. Comparison with experimental spectra leads to an assignment of this band to 11A1 --> 21B1 transitions centered on the COC groups.

  10. Ab initio molecular dynamics study of ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Srinivasan, Varadharajan

    We have undertaken the first ever fully first-principles simulations of ferroelectric crystals at finite temperature with an aim to understand the nature of their phase transitions. In particular, we have studied the different aspects of phase transitions in two protypical ferroelectrics - PbTiO3 and KH2PO4. In PbTiO3, we have successfully reproduced the temperature-driven transition from a tetragonal to a cubic phase by using constant-pressure Car-Parrinello molecular dynamics. By defining suitable order parameters in terms of atomic displacements, we are able to monitor the approach of the cubic phase. Using a quasi-harmonic analysis, with the inclusion of a temperature dependent volume and the average thermal atomic displacements as the most basic effects of anharmonicity, we are also able to recover the softening of ferroelectric modes as well as other features seen in experiments. These observations confirm the predominantly displacive nature of the transition, while our simulations also indicate a possible build-up of disorder near the transition temperature. We have also studied the isotope effects in the ferroelectric transition in KH2PO4 by quantifying the temperature and mass dependence of the extent of delocalization of the hydrogens. Using a recently developed ab initio Open Path-integral Molecular Dynamics scheme we have calculated both the real and momentum-space distribution of the hydrogens in both protonated and deuterated KDP above and below their respective transition temperatures. We find that the two crystals not only involve different transition mechanisms but also the fluctuations above the transition temperature are of a qualitatively different nature.

  11. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.

  12. Ab initio valence-space theory for exotic nuclei

    NASA Astrophysics Data System (ADS)

    Holt, Jason

    2015-10-01

    Recent advances in ab initio nuclear structure theory have led to groundbreaking predictions in the exotic medium-mass region, from the location of the neutron dripline to the emergence of new magic numbers far from stability. Playing a key role in this progress has been the development of sophisticated many-body techniques and chiral effective field theory, which provides a systematic basis for consistent many-nucleon forces and electroweak currents. Within the context of valence-space Hamiltonians derived from the nonperturbative in-medium similarity renormalization group (IM-SRG) approach, I will discuss the importance of 3N forces in understanding and making new discoveries in the exotic sd -shell region. Beginning in oxygen, we find that the effects of 3N forces are decisive in explaining why 24O is the last bound oxygen isotope, validating first predictions of this phenomenon from several years ago. Furthermore, 3N forces play a key role in reproducing spectroscopy, including signatures of doubly magic 22,24O, and physics beyond the dripline. Similar improvements are obtained in new spectroscopic predictions for exotic fluorine and neon isotopes, where agreement with recent experimental data is competitive with state-of-the-art phenomenology. Finally, I will discuss first applications of the IM-SRG to effective valence-space operators, such as radii and E 0 transitions, as well as extensions to general operators crucial for our future understanding of electroweak processes, such as neutrinoless double-beta decay. This work was supported by NSERC and the NRC Canada.

  13. Ab initio cluster study of crystalline NaF

    SciTech Connect

    Temple, D.K.

    1992-01-01

    A highly-accurate ab initio cluster model of crystalline NaF has been constructed to explore the limits of cluster methods in the treatment of ionic solids. The focus of this model was the characterization of the lattice environment and its influence on the easily-polarizable fluorine anion. The model consisted of a central all-electron fluorine anion coordinated by pseudopotentials, to represent the nearest-neighbor sodium cations, and a finite array of point charges chosen to generate the correct crystal field from the surrounding infinite ionic lattice. The wavefunction and properties of the anion were calculated using the restricted Hartree-Fock and configuration interaction techniques from quantum chemistry. An extensive analysis of basis set incompleteness errors in the anion wavefunction was performed. Important features were identified in the embedded anion, such as its distortion under the influence of the lattice compressions, its stabilization from the Madelung potential, and its changes in size due to electron correlations. Bulk properties of the rocksalt-structure (B1) NaF crystal were derived from the total mode energies, calculated as a function of the crystal volume. The properties included the zero-pressure lattice constant, cohesive energy, and bulk modulus, and the pressure-volume equation-of-state. A series of test calculations explored the relationships, and their underlying physical mechanisms, between the features of the embedded anion and the bulk properties of the crystal. These features often produced opposing changes in the properties, demonstrating the importance of a thorough and systematic treatment of the embedded anion. The most thorough test calculation gave bulk properties that were within 1% of experiment. Using an embedded anion model for the high-pressure cesium-chloride (B2) phase of NaF, the B1-to-B2 structural transition was correctly predicted at 25 GPa, in excellent agreement with the experimental values of 23 to 27 GPa.

  14. Lithium insertion in silicon nanowires: an ab initio study.

    PubMed

    Zhang, Qianfan; Zhang, Wenxing; Wan, Wenhui; Cui, Yi; Wang, Enge

    2010-09-01

    The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process.

  15. AN AB INITIO MODEL FOR COSMIC-RAY MODULATION

    SciTech Connect

    Engelbrecht, N. E.; Burger, R. A.

    2013-07-20

    A proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays (CRs) is of vital importance for a better understanding of CR modulation in the heliosphere. This study presents an ab initio model for CR modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for solar minimum heliospheric conditions, utilizing boundary values chosen so that model results are in reasonable agreement with spacecraft observations of turbulence quantities in the solar ecliptic plane and along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modeled slab and two-dimensional (2D) turbulence energy spectra. The modeled 2D spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers. There currently exist no models or observations for the wavenumber where this drop-off occurs, and it is considered to be the only free parameter in this study. The modeled spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on CR drifts are modeled in a self-consistent way, also employing a recently developed model for wavy current sheet drift. The resulting diffusion and drift coefficients are applied to the study of galactic CR protons and antiprotons using a 3D, steady-state CR modulation code, and sample solutions in fair to good agreement with multiple spacecraft observations are presented.

  16. Efficient conformational space exploration in ab initio protein folding simulation

    PubMed Central

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel

    2015-01-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  17. Ab initio kinetics of gas phase decomposition reactions.

    PubMed

    Sharia, Onise; Kuklja, Maija M

    2010-12-01

    The thermal and kinetic aspects of gas phase decomposition reactions can be extremely complex due to a large number of parameters, a variety of possible intermediates, and an overlap in thermal decomposition traces. The experimental determination of the activation energies is particularly difficult when several possible reaction pathways coexist in the thermal decomposition. Ab initio calculations intended to provide an interpretation of the experiment are often of little help if they produce only the activation barriers and ignore the kinetics of the decomposition process. To overcome this ambiguity, a theoretical study of a complete picture of gas phase thermo-decomposition, including reaction energies, activation barriers, and reaction rates, is illustrated with the example of the β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule by means of quantum-chemical calculations. We study three types of major decomposition reactions characteristic of nitramines: the HONO elimination, the NONO rearrangement, and the N-NO(2) homolysis. The reaction rates were determined using the conventional transition state theory for the HONO and NONO decompositions and the variational transition state theory for the N-NO(2) homolysis. Our calculations show that the HMX decomposition process is more complex than it was previously believed to be and is defined by a combination of reactions at any given temperature. At all temperatures, the direct N-NO(2) homolysis prevails with the activation barrier at 38.1 kcal/mol. The nitro-nitrite isomerization and the HONO elimination, with the activation barriers at 46.3 and 39.4 kcal/mol, respectively, are slow reactions at all temperatures. The obtained conclusions provide a consistent interpretation for the reported experimental data. PMID:21077597

  18. An investigation of ab initio shell-model interactions derived by no-core shell model

    NASA Astrophysics Data System (ADS)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  19. Microwave and ab initio studies of rare gas-methane van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Liu, Yaqian; Jäger, Wolfgang

    2004-05-01

    Rotational spectra of the weakly bound Kr-methane van der Waals complex were recorded using a pulsed molecular beam Fourier transform microwave spectrometer in the range from 3.5 to 18 GHz. Spectra of 25 isotopomers of Kr-methane were assigned and analyzed. For isotopomers containing CH4, 13CH4, and CD4, two sets of transitions with K=0 and one with K=1 were recorded, correlating to the j=0, 1, and 2 rotational levels of free methane, respectively (j is the rotational angular momentum quantum number of the methane monomer). For isotopomers containing CH3D and CHD3, two K=0 components were recorded, correlating to the jk=00 and 11 rotational levels of free methane (k corresponds to the projection of j onto the C3 axis of CH3D and CHD3). The obtained spectroscopic results were used to derive van der Waals bond distance R, van der Waals stretching frequency νs, and the corresponding stretching force constant ks. Nuclear spin statistical weights of individual states were obtained from molecular symmetry group analyses and were compared with the observed relative transition intensities. The tentatively assigned j=2 transitions were more intense than predicted from symmetry considerations. This is attributed to a relatively large effective dipole moment of this state, supported by ab initio dipole moment calculations. Ab initio potential energy calculations of Kr-CH4 and Ar-CH4 were done at the coupled cluster level of theory, with single and double excitations and perturbative inclusion of triple excitations, using the aug-cc-pVTZ basis set supplemented with bond functions. The theoretical results show that the angular dynamics of the dimer does not change significantly when the binding partner of methane changes from Ar to Kr. The dipole moment of Ar-CH4 was calculated at various configurations, providing a qualitative explanation for the unsuccessful spectral searches for rotational transitions of Ar-CH4.

  20. Ab initio potential energy curves of the valence, Rydberg, and ion-pair states of iodine monochloride, ICl

    SciTech Connect

    Kalemos, Apostolos; Prosmiti, Rita

    2014-09-14

    We present for the first time a coherent ab initio study of 39 states of valence, Rydberg, and ion-pair character of the diatomic interhalogen ICl species through large scale multireference variational methods including spin-orbit effects coupled with quantitative basis sets. Various avoided crossings are responsible for a non-adiabatic behaviour creating a wonderful vista for its theoretical description. Our molecular constants are compared with all available experimental data with the aim to assist experimentalists especially in the high energy regime of up to ∼95 000 cm{sup −1}.

  1. Isovector splitting of nucleon effective masses, ab initio benchmarks and extended stability criteria for Skyrme energy functionals

    SciTech Connect

    Lesinski, T.; Meyer, J.

    2006-10-15

    We study the effect of the splitting of neutron and proton effective masses with isospin asymmetry on the properties of the Skyrme energy density functional. We discuss the ability of the latter to predict observables of infinite matter and finite nuclei, paying particular attention to controlling the agreement with ab initio predictions of the spin-isospin content of the nuclear equation of state, as well as diagnosing the onset of finite size instabilities, which we find to be of critical importance. We show that these various constraints cannot be simultaneously fulfilled by the standard Skyrme force, calling at least for an extension of its P-wave part.

  2. Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory.

    PubMed

    Aravena, Daniel; Atanasov, Mihail; Neese, Frank

    2016-05-01

    Regularities among electronic configurations for common oxidation states in lanthanide complexes and the low involvement of f orbitals in bonding result in the appearance of several periodic trends along the lanthanide series. These trends can be observed on relatively different properties, such as bonding distances or ionization potentials. Well-known concepts like the lanthanide contraction, the double-double (tetrad) effect, and the similar chemistry along the lanthanide series stem from these regularities. Periodic trends on structural and spectroscopic properties are examined through complete active space self-consistent field (CASSCF) followed by second-order N-electron valence perturbation theory (NEVPT2) including both scalar relativistic and spin-orbit coupling effects. Energies and wave functions from electronic structure calculations are further analyzed in terms of ab initio ligand field theory (AILFT), which allows one to rigorously extract angular overlap model ligand field, Racah, and spin-orbit coupling parameters directly from high-level ab initio calculations. We investigated the elpasolite Cs2NaLn(III)Cl6 (Ln(III) = Ce-Nd, Sm-Eu, Tb-Yb) crystals because these compounds have been synthesized for most Ln(III) ions. Cs2NaLn(III)Cl6 elpasolites have been also thoroughly characterized with respect to their spectroscopic properties, providing an exceptionally vast and systematic experimental database allowing one to analyze the periodic trends across the lanthanide series. Particular attention was devoted to the apparent discrepancy in metal-ligand covalency trends between theory and spectroscopy described in the literature. Consistent with earlier studies, natural population analysis indicates an increase in covalency along the series, while a decrease in both the nephelauxetic (Racah) and relativistic nephelauxetic (spin-orbit coupling) reduction with increasing atomic number is calculated. These apparently conflicting results are discussed on the

  3. Ab Initio Treatment of Lower Mantle Mineral Solvi.

    NASA Astrophysics Data System (ADS)

    Jung, D. Y.; Oganov, A. R.; Schmidt, M. W.

    2006-12-01

    The lower mantle of the Earth extends from about 670 to 2980 km depth and consists mainly of MgSiO3- perovskite (~ 70 vol%), (Mg,Fe)O magnesiowüstite (~ 20 vol%) and CaSiO3-perovskite (~ 10 vol%). To obtain a realistic picture of the lower mantle, it is necessary to consider the perovskite minerals as coexisting solid solutions with a large miscibility gap, as this is the case in nature. In this work we investigate the solvi of the three binaries in the Ca-perovskite - Mg-perovskite - corundum ternary, i.e. the solid solutions relevant for the Earth's lower mantle minerals in a simplified CMAS system. It is possible to calculate thermodynamic properties, structures and energetics of the individual minerals at extreme conditions of the mantle using ab initio methods, such as the density functional theory (DFT). We use the DFT together with the generalized gradient approximation (GGA) and the projector augmented wave (PAW) method, as implemented in the VASP code. The binary solvi are modelled through a subregular solid solution model together with point defect calculations at different pressures in the lower mantle regime. Point defects in the (Ca,Mg)-perovskite system are simple substitutions, but in MgSiO3-Al2O3 there is a coupled charge substitution of 2Al3+ with Mg2+Si^{4+}. Additionally, different symmetries of the perovskite (and akimotoite/ilmenite for MgSiO3) structures have been taken into account, thus allowing for phase transitions in solid solutions. At pressures and temperatures of the lower mantle, the solvus in the (Ca,Mg)SiO3 system remains wide open and solubilities of Ca in Mg-perovskite and Mg in Ca-perovskite decrease with pressure (at constant temperature and along any adiabatic geotherm). Calculations on the MgSiO3-Al2O3 (akimotoite-corundum) solvus show higher solubilities. Still, we find it unlikely that Ca-perovskite would disappear (i.e. fully dissolve in Mg-perovskite) at conditions of the lower mantle, at last not in the simplified CMAS

  4. Ab initio Calculations of Solvation Processes in Volcanic Gases

    NASA Astrophysics Data System (ADS)

    Lemke, K.; Seward, T.

    2006-12-01

    The structures and thermochemical properties of hydrated ions and neutral molecules play an important role in our understanding of solvent clustering and hydrogen bonding in the gas phase. Considerable effort therefore has been devoted to both the experimental and theoretical determination of stepwise hydration energies of geochemically important ions and neutral molecules with solvents, for instance H2O or H2S, over a broad range of temperatures typical of those encountered in volcanic gases. Because volcanic gases contain mutiple solute and solvent components which are subject to proton transfer, competive solvation and solvent switching, characterizing individual clusters has been a fundamental challenge to a molecular-level understanding of high temperature gas-phase solvation. However, recent advances in computational chemistry methods, especially Pople´s Gaussian (G-n) and complete basis set limit (CBS-x) model chemistries, now allow characterization of the dominant cluster structures and thermochemical properties of solute-solvent and solvent-solvent interactions in high temperature volcanic gases. Building on reported measurements of volcanic gases at Vesuvio, Italy, and Showa-Shinzan, Japan, as well as our recent investigations of ion-hydration we have re-examined the high temperature clustering equilibria of the small hydronium (H3O+) and ammonium (NH4+) ions as well as neutral ammonia and sulphur species with H2O and/or H2S using ab initio quantum chemical methods. From our study, we find that most of the gas phase ions tend to associate with a small number of H2O and H2S molecules to yield a hydrated ion cluster even at low humidities. Furthermore, inspection of van´t Hoff data demonstrate that (1) hydration energies of ions are shifted to less exergonic values as the solvent shell grows and the composition shifts from water-rich to hydrogen sulphide rich, (2) ion-cluster size increases with decreasing temperature at constant humidity, (3) attachment

  5. Crystal structure and magnetism in α -RuCl3 : An ab initio study

    NASA Astrophysics Data System (ADS)

    Kim, Heung-Sik; Kee, Hae-Young

    2016-04-01

    α -RuCl3 has been proposed recently as an excellent playground for exploring Kitaev physics on a two-dimensional (2D) honeycomb lattice. However, structural clarification of the compound has not been completed, which is crucial in understanding the physics of this system. Here, using ab initio electronic structure calculations, we study a full three-dimensional (3D) structure of α -RuCl3 , including the effects of spin-orbit coupling (SOC) and electronic correlations. The three major results are as follows: (i) SOC suppresses dimerization of Ru atoms, which exists in other Ru compounds such as isostructural Li2RuO3 , and makes the honeycomb closer to an ideal one. (ii) The nearest-neighbor Kitaev exchange interaction between the jeff=1 /2 pseudospin strongly depends on the Ru-Ru distance and the Cl position, originating from the nature of the edge-sharing geometry. (iii) The optimized 3D structure without electronic correlations has P 3 ¯1 m space-group symmetry independent of SOC, but including electronic correlation changes the optimized 3D structure to either C 2 /m or C m c 21 within 0.1 meV per formula unit (f.u.) energy difference. The reported P 3112 structure is also close in energy. The interlayer spin-exchange coupling is a few percent of the in-plane spin-exchange terms, confirming that α -RuCl3 is close to a 2D system. We further suggest how to increase the Kitaev term via tensile strain, which sheds light in realizing the Kitaev spin-liquid phase in this system.

  6. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

    SciTech Connect

    Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.

    2015-02-01

    Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  7. An Efficient Time-Stepping Scheme for Ab Initio Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Tsuchida, Eiji

    2016-08-01

    In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. We also propose several extensions of the algorithm required for use in ab initio molecular dynamics. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2× performance gain over the standard Verlet method for a given accuracy. We also show how to generate a canonical ensemble within this approach.

  8. An ab initio-based Er–He interatomic potential in hcp Er

    SciTech Connect

    Yang, Li; ye, Yeting; Fan, K. M.; Shen, Huahai; Peng, Shuming; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations. The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.

  9. Ab initio calculations of free energy barriers for chemical reactions in solution: proton transfer in [FHF]-.

    PubMed

    Muller, R P; Warshel, A

    1996-01-01

    This paper describes a hybrid ab initio quantum mechanical/molecular mechanics (QM/MM) method for calculating activation free energies of chemical reactions in solution, using molecular mechanics force fields for the solvent and an ab initio technique that incorporates the potential from the solvent in its Hamiltonian for the solute. The empirical valence bond (EVB) method is used as a reference potential for the ab initio free energy calculation, and drives the reaction along the proper coordinate, thus overcoming problems encountered by direct attempts to use molecular orbital methods in calculations of activation free energies. The utility of our method is illustrated by calculating the activation free energy for proton transfer between fluoride ions in the [FHF]-system, in both polar and nonpolar solution.

  10. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

    PubMed Central

    Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.

    2015-01-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected. PMID:25664744

  11. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models.

    PubMed

    Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J

    2015-02-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  12. Ab initio centroid molecular dynamics: a fully quantum method for condensed-phase dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pavese, Marc; Berard, Daniel R.; Voth, Gregory A.

    1999-01-01

    A fully quantum molecular dynamics method is presented which combines ab initio Car-Parrinello molecular dynamics with centroid molecular dynamics. The first technique allows the forces on the atoms to be obtained from ab initio electronic structure. The second technique, given the forces on the atoms, allows one to calculate an approximate quantum time evolution for the nuclei. The combination of the two, therefore, represents the first feasible approach to simulating the fully quantum dynamics of a many-body system. An application to excess proton translocation along a model water wire will be presented.

  13. Exploring the ab initio/classical free energy perturbation method: The hydration free energy of water

    NASA Astrophysics Data System (ADS)

    Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.

    2000-08-01

    The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to

  14. Ab initio study of collective excitations in a disparate mass molten salt.

    PubMed

    Bryk, Taras; Klevets, Ivan

    2012-12-14

    Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.

  15. Accurate ab initio quartic force fields for borane and BeH2

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.

    1992-01-01

    The quartic force fields of BH3 and BeH2 have been computed ab initio using an augmented coupled cluster (CCSD(T)) method and basis sets of spdf and spdfg quality. For BH3, the computed spectroscopic constants are in very good agreement with recent experimental data, and definitively confirm misassignments in some older work, in agreement with recent ab initio studies. Using the computed spectroscopic constants, the rovibrational partition function for both molecules has been constructed using a modified direct numerical summation algorithm, and JANAF-style thermochemical tables are presented.

  16. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  17. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory.

    PubMed

    Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L

    2016-05-13

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1  nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory. PMID:27232042

  18. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  19. The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations

    SciTech Connect

    Sellier, J.M. Dimov, I.

    2014-09-15

    The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practically unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.

  20. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE PAGES

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-11

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  1. Ab initio theory of magnetic-field-induced odd-frequency two-band superconductivity in MgB2

    NASA Astrophysics Data System (ADS)

    Aperis, Alex; Maldonado, Pablo; Oppeneer, Peter M.

    2015-08-01

    We develop the anisotropic Eliashberg framework for superconductivity in the presence of an applied magnetic field. Using as input the ab initio calculated electron and phonon band structures and electron-phonon coupling, we solve self-consistently the anisotropic Eliashberg equations for the archetypal superconductor MgB2. We find two self-consistent solutions, time-even two-band superconductivity, as well as unconventional time-odd s -wave spin triplet two-band superconductivity emerging with applied field. We provide the full momentum, frequency, and spin-resolved dependence and magnetic field-temperature phase diagrams of the time-even and time-odd superconducting pair amplitudes and predict fingerprints of this novel odd-frequency state in tunneling experiments.

  2. Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys

    NASA Astrophysics Data System (ADS)

    Turek, I.; Kudrnovský, J.; Drchal, V.

    2015-12-01

    We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula and which can be formulated within the atomic-sphere approximation. The formalism is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA). The resulting nonlocal torques are represented by nonrandom, non-site-diagonal, and spin-independent matrices, which simplifies the configuration averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its exact equivalence to other first-principles approaches based on the random local torques. This equivalence is also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L 10 atomic long-range order.

  3. Ferromagnetic ordering of Cr and Fe doped p-type diamond: An ab initio study

    SciTech Connect

    Benecha, E. M.; Lombardi, E. B.

    2014-02-21

    Ferromagnetic ordering of transition metal dopants in semiconductors holds the prospect of combining the capabilities of semiconductors and magnetic systems in single hybrid devices for spintronic applications. Various semiconductors have so far been considered for spintronic applications, but low Curie temperatures have hindered room temperature applications. We report ab initio DFT calculations on the stability and magnetic properties of Fe and Cr impurities in diamond, and show that their ground state magnetic ordering and stabilization energies depend strongly on the charge state and type of co-doping. We predict that divacancy Cr{sup +2} and substitutional Fe{sup +1} order ferromagnetically in p-type diamond, with magnetic stabilization energies (and magnetic moment per impurity ion) of 16.9 meV (2.5 μ{sub B}) and 33.3 meV (1.0 μ{sub B}), respectively. These magnetic stabilization energies are much larger than what has been achieved in other semiconductors at comparable impurity concentrations, including the archetypal dilute magnetic semiconductor GaAs:Mn. In addition, substitutional Fe{sup +1} exhibits a strong half-metallic character, with the Fermi level crossing bands in only the spin down channel. These results, combined with diamond’s extreme properties, demonstrate that Cr or Fe dopedp-type diamond may successfully be considered in the search for room temperature spintronic materials.

  4. Raman spectroscopic features of the neutral vacancy in diamond from ab initio quantum-mechanical calculations.

    PubMed

    Baima, Jacopo; Zelferino, Alessandro; Olivero, Paolo; Erba, Alessandro; Dovesi, Roberto

    2016-01-21

    Quantum-mechanical ab initio calculations are performed to elucidate the vibrational spectroscopic features of a common irradiation-induced defect in diamond, i.e. the neutral vacancy. Raman spectra are computed analytically through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach as a function of both different defect spin states and defect concentration. The experimental Raman features of defective diamond located in the 400-1300 cm(-1) spectral range, i.e. below the first-order line of pristine diamond at 1332 cm(-1), are well reproduced, thus corroborating the picture according to which, at low damage densities, this spectral region is mostly affected by non-graphitic sp(3) defects. No peaks above 1332 cm(-1) are found, thus ruling out previous tentative assignments of different spectral features (at 1450 and 1490 cm(-1)) to the neutral vacancy. The perturbation introduced by the vacancy to the thermal nuclear motion of carbon atoms in the defective lattice is discussed in terms of atomic anisotropic displacement parameters (ADPs), computed from converged lattice dynamics calculations. PMID:26686374

  5. Low-energy states of manganese-oxo corrole and corrolazine: multiconfiguration reference ab initio calculations.

    PubMed

    Zhao, Hailiang; Pierloot, Kristine; Langner, Ernie H G; Swarts, Jannie C; Conradie, Jeanet; Ghosh, Abhik

    2012-04-01

    Manganese(V)-oxo corrole and corrolazine have been studied with ab initio multiconfiguration reference methods (CASPT2 and RASPT2) and large atomic natural orbital (ANO) basis sets. The calculations confirm the expected singlet d(δ)(2) ground states for both complexes and rule out excited states within 0.5 eV of the ground states. The lowest excited states are a pair of Mn(V) triplet states with d(δ)(1)d(π)(1) configurations 0.5-0.75 eV above the ground state. Manganese(IV)-oxo macrocycle radical states are much higher in energy, ≥1.0 eV relative to the ground state. The macrocyclic ligands in the ground states of the complexes are thus unambiguously 'innocent'. The approximate similarity of the spin state energetics of the corrole and corrolazine complexes suggests that the latter macrocycle on its own does not afford any special stabilization for the Mn(V)O center. The remarkable stability of an Mn(V)O octaarylcorrolazine thus appears to be ascribable to the steric protection afforded by the β-aryl groups. PMID:22432719

  6. Ab initio ro-vibronic spectroscopy of SiCCl (X{sup ~2}Π)

    SciTech Connect

    Brites, Vincent; Mitrushchenkov, Alexander O.; Léonard, Céline; Peterson, Kirk A.

    2014-07-21

    The full dimensional potential energy surfaces of the {sup 2}A{sup ′} and {sup 2}A{sup ′′} electronic components of X{sup ~2}Π SiCCl have been computed using the explicitly correlated coupled cluster method, UCCSD(T)-F12b, combined with a composite approach taking into account basis set incompleteness, core-valence correlation, scalar relativity, and higher order excitations. The spin-orbit and dipole moment surfaces have also been computed ab initio. The ro-vibronic energy levels and absorption spectrum at 5 K have been determined from variational calculations. The influence of each correction on the fundamental frequencies is discussed. An assignment is proposed for bands observed in the LIF experiment of Smith et al. [J. Chem. Phys. 117, 6446 (2002)]. The overall agreement between the experimental and calculated ro-vibronic levels is better than 7 cm{sup −1} which is comparable with the 10–20 cm{sup −1} resolution of the emission spectrum.

  7. Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

    DOE PAGES

    Hupin, Guillaume; Langhammer, Joachim; Navratil, Petr; Quaglioni, Sofia; Calci, Angelo; Roth, Robert

    2013-11-27

    We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects from themore » inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2– and 1/2– resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. As a result, we find remarkably good agreement with measured differential cross sections at various energies below the d+3H threshold, while analyzing powers manifest larger deviations from experiment for certain energies and angles.« less

  8. Physical properties and spectra of IO, IO- and HOI studied by ab initio methods.

    PubMed

    Minaev, Boris; Loboda, Oleksandr; Vahtras, Olav; Agren, Hans; Bilan, Elena

    2002-03-15

    Structure and properties of the IO, IO- and HOI species, which are of potential importance for the ozone destruction catalytic cycle in the troposphere, have been calculated together with the EPR, NMR and UV-visible spectra by ab initio methodology with account of spin-orbit coupling (SOC) effects. Multi-configuration self-consistent field calculations with linear and quadratic response techniques and the multi-reference configuration interaction method have been employed. Photodissociation of these species, crucial for the catalytic ozone-destruction cycle, is critically reviewed and analyzed. Calculations predict that the singlet-triplet (S-T) transition to the lowest triplet state (X1 A' --> 3A'') should be responsible for the weak long-wavelength tail absorption (approximately 450-560 nm) and photodissociation of the HOI molecule. The second, more intense, band around 400 nm is produced by two overlapping S-S and S-T transitions. In order to check this assignment of the HOI photodissociation the isoelectronic IO- anion and IO radical have been studied by the same methods. Comparison with the EPR spectrum of the IO radical indicates that the methods are reliable which gives credit to the accuracy of the HOI spectral interpretation. NMR spectra of HOI and IO- molecules and some other properties are calculated for the first time.

  9. Efficient Ab-initio Calculation of the Anomalous Hall Conductivity of Fe by Wannier Interpolation

    NASA Astrophysics Data System (ADS)

    Wang, Xinjie; Vanderbilt, David; Yates, Jonathan; Souza, Ivo

    2006-03-01

    Recently, a first-principles calculation of the anomalous Hall conductivity (AHC) of Fe as a Brillouin-zone integral of the Berry curvature was carried out and found to be in reasonable agreement with experimental results. However, these authors observed extraordinarily strong and rapid variations of the Berry curvature with wavevector k in the vicinity of avoided crossings and near-degeneracies in reciprocal space. A conventional first-principles calculation thus requires an extremely dense k-point mesh and is quite time-consuming. Here, we present an efficient first-principles approach for computing the AHC based on Wannier interpolation. First, a conventional electronic-structure calculation is performed for Fe, with spin-orbit included, on a relatively coarse k-point mesh. Second, maximally-localized Wannier functions are constructed by a post-processing step, thus transforming the full ab-initio problem into an effective tight- binding form. Finally, the needed quantities such as Berry potentials and curvatures are interpolated onto a fine k-point mesh and used to compute the AHC. Our approach gives good agreement with conventional, less efficient first-priciples calculations. Y. Yao et al., Phys. Rev. Lett. 92, 037204 (2004). I. Souza,N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001).

  10. Ab initio modeling of the optical properties in organometallic halide perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Neukirch, Amanda; Nei, Wanyi; Pedesseau, Laurent; Even, Jacky; Katan, Claudine; Mohite, Aditya; Tretiak, Segrei

    2015-03-01

    The need for an inexpensive, clean, and plentiful source of energy has generated large amounts of research in an assortment of solution processed organic and hybrid organic-inorganic solar cells. A relative newcomer to the field of solution processed photovoltaics is the lead halide perovskite solar cell. In the past 5 years, the efficiencies of devices made from this material have increased from 3.5% to nearly 20%. Despite the rapid development of organic-inorganic perovskite solar cells, a thorough understanding of the fundamental photophysical processes driving the high performance of these devices is not well understood. I am using state-of-the-art ab initio computational techniques in order to characterize the properties at the interface of perovskite devices in order to aide in materials design and device engineering. I will present an in-depth analysis of the electronic and optical properties of bulk and surface states of pure and mixed halide systems. The high-level static quantum mechanical calculations, including spin-orbit-coupling and the many body GW approach, identify the key electronic states involved in photoinduced dynamics. This knowledge provides important information on how the optical properties change with variations to the system. Supported by the DOE, the LANL LDRD program XW11, and CNLS.

  11. Valley Hall effect in silicene and hydrogenated silicene ruled by grain boundaries: An ab initio investigation

    NASA Astrophysics Data System (ADS)

    Miwa, R. H.; Kagimura, R.; Lima, Matheus P.; Fazzio, A.

    2015-05-01

    We have performed an ab initio theoretical study of the energetic stability and the electronic properties of pristine and hydrogen-adsorbed grain boundaries (GBs) in silicene. We find that GBs in silicene present lower formation energy when compared with their counterparts in graphene. Removing the inversion symmetry, by applying an external electric field perpendicular to the silicene sheet, we verify the formation of valley-indexed metallic states lying along the GBs, characterizing the quantum valley Hall effect (QVHE). Here, we find the maintenance of the QVHE upon the presence of disordered and asymmetric geometries along the GBs. Those metallic states are suppressed upon the adsorption of H adatoms along the GBs. The H adatoms promote an unbalance on the electronic occupation of the unsaturated π electrons beside the hydrogenated GB rows, giving rise to (i) a net magnetic moment on the Si atoms along the edge sites of the hydrogenated GBs and (ii) an electronic band structure characterized by spin-polarized valley states protected against backscattering processes.

  12. Ab initio charge-carrier mobility model for amorphous molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2016-05-01

    Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.

  13. Computer simulation of acetonitrile and methanol with ab initio-based pair potentials

    NASA Astrophysics Data System (ADS)

    Hloucha, M.; Sum, A. K.; Sandler, S. I.

    2000-10-01

    This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.

  14. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  15. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  16. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  17. New approaches for molecular conformer force field analysis in combination with ab initio results

    NASA Astrophysics Data System (ADS)

    Kuramshina, G. M.; Pentin, Yu. A.; Yagola, A. G.

    1999-10-01

    Ab initio and DFT results on harmonic force constants for trans- and gauche-conformers of CH 3CH 2CH 2Cl, CF 3CH 2CH 2Cl and CCl 3CH 2CH 2Cl are used for formulating constraints in molecular force field models described compounds with hindered internal rotation around the C-C bond.

  18. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094

  19. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  20. The Use of Ab Initio Wavefunctions in Line-Shape Calculations for Water Vapor

    NASA Astrophysics Data System (ADS)

    Gamache, Robert R.; Lamouroux, Julien; Schwenke, David W.

    2014-06-01

    In semi-classical line-shape calculations, the internal motions of the colliding pair are treated via quantum mechanics and the collision trajectory is determined by classical dynamics. The quantum mechanical component, i.e. the determination of reduced matrix elements (RME) for the colliding pair, requires the wavefunctions of the radiating and the perturbing molecules be known. Here the reduced matrix elements for collisions in the ground vibrational state of water vapor are calculated by two methods and compared. First, wavefunctions determined by diagonalizing an effective (Watson) Hamiltonian are used to calculate the RMEs and, second, the ab initio wavefunctions of Partridge and Schwenke are used. While the ground vibrational state will yield the best approximation of the wavefunctions from the effective Hamiltonian approach, this study clearly identifies problems for states not included in the fit of the Hamiltonian and for extrapolated states. RMEs determined using ab initio wavefunctions use ˜100000 times more computational time; however, all ro-vibrational interactions are included. Hence, the ab initio approach will yield better RMEs as the number of vibrational quanta exchanged in the optical transition increases, resulting in improvements in calculated half-widths and line shifts. It is important to note that even for pure rotational transitions the use of ab initio wavefunctions will yield improved results.

  1. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  2. Raman and infrared spectra of minerals from ab initio molecular dynamics simulations: The spodumene crystal

    NASA Astrophysics Data System (ADS)

    Pagliai, Marco; Muniz-Miranda, Maurizio; Cardini, Gianni; Schettino, Vincenzo

    2011-05-01

    Ab initio molecular dynamics simulations with the Car-Parrinello method have been performed on the spodumene crystal at standard conditions and high pressure. Starting from the computed trajectories, accurate Raman and infrared spectra have been obtained and compared with available experimental measurements in the low and high pressure phases. The structural and spectroscopic changes due to the pressure effects are discussed.

  3. Microwave and ab initio studies of rare gas-methane van der Waals complexes.

    PubMed

    Liu, Yaqian; Jäger, Wolfgang

    2004-05-15

    Rotational spectra of the weakly bound Kr-methane van der Waals complex were recorded using a pulsed molecular beam Fourier transform microwave spectrometer in the range from 3.5 to 18 GHz. Spectra of 25 isotopomers of Kr-methane were assigned and analyzed. For isotopomers containing CH4, 13CH4, and CD4, two sets of transitions with K = 0 and one with K = 1 were recorded, correlating to the j = 0, 1, and 2 rotational levels of free methane, respectively (j is the rotational angular momentum quantum number of the methane monomer). For isotopomers containing CH3D and CHD3, two K = 0 components were recorded, correlating to the j(k) = 0(0) and 1(1) rotational levels of free methane (k corresponds to the projection of j onto the C3 axis of CH3D and CHD3). The obtained spectroscopic results were used to derive van der Waals bond distance R, van der Waals stretching frequency nu(s), and the corresponding stretching force constant k(s). Nuclear spin statistical weights of individual states were obtained from molecular symmetry group analyses and were compared with the observed relative transition intensities. The tentatively assigned j = 2 transitions were more intense than predicted from symmetry considerations. This is attributed to a relatively large effective dipole moment of this state, supported by ab initio dipole moment calculations. Ab initio potential energy calculations of Kr-CH4 and Ar-CH4 were done at the coupled cluster level of theory, with single and double excitations and perturbative inclusion of triple excitations, using the aug-cc-pVTZ basis set supplemented with bond functions. The theoretical results show that the angular dynamics of the dimer does not change significantly when the binding partner of methane changes from Ar to Kr. The dipole moment of Ar-CH4 was calculated at various configurations, providing a qualitative explanation for the unsuccessful spectral searches for rotational transitions of Ar-CH4.

  4. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-01

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  5. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    PubMed

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  6. Equilibrium and Dynamics Properties of Poly(oxyethylene) Melts and Related Poly(alkylethers) from Simulations and Ab Initio Calculations

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Molecular dynamics simulations of POE melts have been performed utilizing a potential force field parameterized to reproduce conformer energies and rotational energy barriers in dimethoxyethane as determined from ab initio electronic structure calculations. Chain conformations and dimensions of POE from the simulations were found to be in good agreement with predictions of a rotational isomeric state (RIS) model based upon the ab initio conformational. energies. The melt chains were found to be somewhat extended relative to chains at theta conditions. This effect will be discussed in light of neutron scattering experiments which indicate that POE chains are extended in the melt relative to theta solutions. The conformational characteristics of POE chains will also be compared with those of other poly (alkylethers), namely poly(oxymethylene), poly(oxytrimethylene) and poly(oxytetramethylene). Local conformational dynamics were found to be more rapid than in polymethylene. Calculated C-H vector correlation times were found to be in reasonable agreement with experimental values from C-13 NMR spin-lattice relaxation times. The influence of ionic salts on local conformations and dynamics will also be discussed.

  7. Carbonate-Bridged Lanthanoid Triangles: Single-Molecule Magnet Behavior, Inelastic Neutron Scattering, and Ab Initio Studies.

    PubMed

    Giansiracusa, Marcus J; Vonci, Michele; Van den Heuvel, Willem; Gable, Robert W; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette

    2016-06-01

    Optimization of literature synthetic procedures has afforded, in moderate yield, homogeneous and crystalline samples of the five analogues Na11[{RE(OH2)}3CO3(PW9O34)2] (1-RE; RE = Y, Tb, Dy, Ho, and Er). Phase-transfer methods have allowed isolation of the mixed salts (Et4N)9Na2[{RE(OH2)}3CO3(PW9O34)2] (2-RE; RE = Y and Er). The isostructural polyanions in these compounds are comprised of a triangular arrangement of trivalent rare-earth ions bridged by a μ3-carbonate ligand and sandwiched between two trilacunary Keggin {PW9O34} polyoxometalate ligands. Alternating-current (ac) magnetic susceptibility studies of 1-Dy, 1-Er, and 2-Er reveal the onset of frequency dependence for the out-of-phase susceptibility in the presence of an applied magnetic field at the lowest measured temperatures. Inelastic neutron scattering (INS) spectra of 1-Ho and 1-Er exhibit transitions between the lowest-lying crystal-field (CF) split states of the respective J = 8 and (15)/2 ground-state spin-orbit multiplets of the Ho(III) and Er(III) ions. Complementary ab initio calculations performed for these two analogues allow excellent reproduction of the experimental magnetic susceptibility and low-temperature magnetization data and are in reasonable agreement with the experimental INS data. The ab initio calculations reveal that the slight difference in coordination environments of the three Ln(III) ions in each complex gives rise to differences in the CF splitting that are not insignificant. This theoretical result is consistent with the observation of multiple relaxation processes by ac magnetic susceptibility and the broadness of the measured INS peaks. The ab initio calculations also indicate substantial mixing of the MJ contributions to the CF split energy levels of each Ln(III) ion. Calculations indicate that the CF ground states of the Ho(III) centers in 1-Ho are predominantly comprised of contributions from small MJ, while those of the Er(III) centers in 1-Er are predominantly

  8. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  9. Ab initio theory of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Essenberger, F.; Sanna, A.; Buczek, P.; Ernst, A.; Sandratskii, L.; Gross, E. K. U.

    2016-07-01

    We report a first-principles study of the superconducting critical temperature and other properties of Fe-based superconductors taking into account, on equal footing, phonon, charge, and spin-fluctuation mediated Cooper pairing. We show that in FeSe this leads to a modulated s ± gap symmetry and that the antiferromagnetic paramagnons are the leading mechanism for superconductivity in FeSe, overcoming the strong repulsive effect of both phonons and charge pairing.

  10. Melting of sodium under high pressure. An ab-initio study

    SciTech Connect

    González, D. J.; González, L. E.

    2015-08-17

    We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.

  11. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  12. Accelerating chemical reactions: Exploring reactive free-energy surfaces using accelerated ab initio molecular dynamics

    PubMed Central

    Pierce, Levi C. T.; Markwick, Phineus R. L.; McCammon, J. Andrew; Doltsinis, Nikos L.

    2011-01-01

    A biased potential molecular dynamics simulation approach, accelerated molecular dynamics (AMD), has been implemented in the framework of ab initio molecular dynamics for the study of chemical reactions. Using two examples, the double proton transfer reaction in formic acid dimer and the hypothetical adiabatic ring opening and subsequent rearrangement reactions in methylenecyclopropane, it is demonstrated that ab initio AMD can be readily employed to efficiently explore the reactive potential energy surface, allowing the prediction of chemical reactions and the identification of metastable states. An adaptive variant of the AMD method is developed, which additionally affords an accurate representation of both the free-energy surface and the mechanism associated with the chemical reaction of interest and can also provide an estimate of the reaction rate. PMID:21548673

  13. B28: the smallest all-boron cage from an ab initio global search

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce

    2015-09-01

    Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e

  14. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  15. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    PubMed

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations. PMID:26733483

  16. Prediction of the material with highest known melting point from ab initio molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun; van de Walle, Axel

    2015-07-01

    Using electronic structure calculations, we conduct an extensive investigation into the Hf-Ta-C system, which includes the compounds that have the highest melting points known to date. We identify three major chemical factors that contribute to the high melting temperatures. Based on these factors, we propose a class of materials that may possess even higher melting temperatures and explore it via efficient ab initio molecular dynamics calculations in order to identify the composition maximizing the melting point. This study demonstrates the feasibility of automated and high-throughput materials screening and discovery via ab initio calculations for the optimization of "higher-level" properties, such as melting points, whose determination requires extensive sampling of atomic configuration space.

  17. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems. PMID:25877566

  18. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-01

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  19. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  20. Ethanol decomposition on transition metal nanoparticles during carbon nanotube growth: ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Shimamura, Kohei; Oguri, Tomoya; Arifin, Rizal; Shimojo, Fuyuki; Yamaguchi, Shu

    2015-03-01

    The growth mechanism of carbon nanotubes (CNT) has been widely discussed both from experimental and computational studies. Regarding the computational studies, most of the studies focuses on the aggregation of isolate carbon atoms on the catalytic metal nanoparticle, whereas the initial dissociation of carbon source molecules should affect the yield and quality of the products. On the other hand, we have studied the dissociation process of carbon source molecules on the metal surface by the ab initio molecular dynamics simulation. In the study, we investigate the ethanol dissociation on Pt and Ni clusters by ab initio MD simulations to discuss the initial stage of CNT growth by alcohol CVD technique. Part of this research is supported by the Grant-in-Aid for Young Scientists (a) (No. 24686026) from MEXT, Japan.

  1. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    SciTech Connect

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  2. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  3. Like-charge guanidinium pairing from molecular dynamics and ab initio calculations.

    PubMed

    Vazdar, Mario; Vymětal, Jiři; Heyda, Jan; Vondrášek, Jiři; Jungwirth, Pavel

    2011-10-20

    Pairing of guanidinium moieties in water is explored by molecular dynamics simulations of short arginine-rich peptides and ab initio calculations of a pair of guanidinium ions in water clusters of increasing size. Molecular dynamics simulations show that, in an aqueous environment, the diarginine guanidinium like-charged ion pairing is sterically hindered, whereas in the Arg-Ala-Arg tripeptide, this pairing is significant. This result is supported by the survey of protein structure databases, where it is found that stacked arginine pairs in dipeptide fragments exist solely as being imposed by the protein structure. In contrast, when two arginines are separated by a single amino acid, their guanidinium groups can freely approach each other and they frequently form stacked pairs. Molecular dynamics simulations results are also supported by ab initio calculations, which show stabilization of stacked guanidinium pairs in sufficiently large water clusters.

  4. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    SciTech Connect

    Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  5. Conformational studies by liquid crystal NMR and ab initio calculations: methyl nicotinate and methyl isonicotinate

    NASA Astrophysics Data System (ADS)

    Kon, Masao; Kurokawa, Hideki; Takeuchi, Hiroshi; Konaka, Shigehiro

    1992-04-01

    Conformational properties of methyl nicotinate and methyl isonicotinate have been studied by liquid crystal 1H-NMR spectroscopy combined with ab initio calculations. The solvent used is a mixture of 80 mol.% of EBBA and 20 mol.% of MBBA.Ab initio calculations have been performed with 4-21G and MINI-4 basis sets to estimate molecular structures and the potential functions for internal rotation. Some structural parameters and the energy difference between rotational isomers have been refined by using observed dipolar coupling constants. The correlation between internal rotation and reorientational molecular motion has been taken into account according to the theory of Emsley, Luckhurst and Stockley. The parameters of the mean external potential are found to take similar values for methyl nicotinate and methyl isonicotinate. The energy difference of the two stable conformers of methyl nicotinate is in agreement with the analysis neglecting the correlation between the two motions.

  6. Point defect modeling in materials: Coupling ab initio and elasticity approaches

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Bruneval, Fabien; Marinica, Mihai-Cosmin; Clouet, Emmanuel

    2013-10-01

    Modeling point defects at an atomic scale requires careful treatment of the long-range atomic relaxations. This elastic field can strongly affect point defect properties calculated in atomistic simulations because of the finite size of the system under study. This is an important restriction for ab initio methods which are limited to a few hundred atoms. We propose an original approach coupling ab initio calculations and linear elasticity theory to obtain the properties of an isolated point defect for reduced supercell sizes. The reliability and benefit of our approach are demonstrated for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron, and the neutral vacancy in silicon.

  7. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  8. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon

    PubMed Central

    2013-01-01

    The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785

  9. An ab initio potential function for the ν13 vibrational mode of 1,3-butadiene

    NASA Astrophysics Data System (ADS)

    Senent, M. L.

    1995-06-01

    The restricted potential of the ν13 torsional mode of 1,3-butadiene has been determined from ab initio calculations. The relative energy and geometry of the second rotamer were calculated with the optimized couple cluster method with double substitutions. This ab initio level provides that the second stable structure attaches to a gauche form situated at 140.8°. The potential energy function was obtained by fitting to a symmetry-adapted Fourier series the total electronic energies of several selected conformations. These energies were calculated by the Möller-Plesset perturbation theory up to the second order (MP2) with full and partial optimization of the geometry. Torsional Raman band positions and fundamental frequencies were determined from the periodic potentials with a good agreement with experimental data. The convenience of performing fully optimized calculations to determine the restricted function is also refuted.

  10. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava

    subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated

  11. Properties of metals during the heating by intense laser irradiation using ab initio simulations

    NASA Astrophysics Data System (ADS)

    Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane

    2011-10-01

    Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.

  12. Ab initio study of AlxMoNbTiV high-entropy alloys.

    PubMed

    Cao, Peiyu; Ni, Xiaodong; Tian, Fuyang; Varga, Lajos K; Vitos, Levente

    2015-02-25

    The Al(x)MoNbTiV (x = 0-1.5) high-entropy alloys (HEAs) adopt a single solid-solution phase, having the body centered cubic (bcc) crystal structure. Here we employ the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation to investigate the equilibrium volume, elastic constants, and polycrystalline elastic moduli of Al(x)MoNbTiV HEAs. A comparison between the ab initio and experimental equilibrium volumes demonstrates the validity and accuracy of the present approach. Our results indicate that Al addition decreases the thermodynamic stability of the bcc structure with respect to face-centered cubic and hexagonal close packed lattices. For the elastically isotropic Al(0.4)MoNbTiV HEAs, the valence electron concentration (VEC) is about 4.82, which is slightly different from VEC ∼ 4.72 obtained for the isotropic Gum metals and refractory--HEAs. PMID:25640032

  13. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    SciTech Connect

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  14. Ab initio calculation of relative ion concentrations of protonated water clusters at equilibrium

    NASA Astrophysics Data System (ADS)

    Lee, E. P. F.; Dyke, J. M.; Wilders, A. E.; Watts, P.

    Relative concentrations of protonated water clusters, H(H2O)+n, are determined for the equilibria H(H2O)+n-1 + H2O ⇌ H(H2O)+n (for n = 1, …, 5), by ab initio molecular-orbital calculations (at the MP2/6-31G* level), using standard thermodynamic and statistical-mechanical methods. The calculated relative cluster-ion concentrations, at water concentrations of between 1 and 90 ppm at 308 K, are compared with the corresponding relative ion intensities measured with an ion-mobility mass spectrometer. The comparison shows that the observed cluster-ion intensity distributions agree well with those found from ab initio calculations for an equilibrium mixture of protonated water clusters.

  15. A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment

    NASA Technical Reports Server (NTRS)

    Bentley, Joseph A.; Bowman, Joel M.; Gazdy, Bela; Lee, Timothy J.; Dateo, Christopher E.

    1992-01-01

    An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.

  16. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    SciTech Connect

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  17. Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study

    SciTech Connect

    Rio, B. G. del; González, L. E.

    2015-08-17

    Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.

  18. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.

    PubMed

    Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C

    2013-02-27

    : The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.

  19. Rotational study of the CH4-CO complex: Millimeter-wave measurements and ab initio calculations.

    PubMed

    Surin, L A; Tarabukin, I V; Panfilov, V A; Schlemmer, S; Kalugina, Y N; Faure, A; Rist, C; van der Avoird, A

    2015-10-21

    The rotational spectrum of the van der Waals complex CH4-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110-145 GHz. Newly observed and assigned transitions belong to the K = 2-1 subband correlating with the rotationless jCH4 = 0 ground state and the K = 2-1 and K = 0-1 subbands correlating with the jCH4 = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH4-CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH4-CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH4 face closest to the CO subunit and binding energy De = 177.82 cm(-1). The bound rovibrational levels of the CH4-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 91.32, 94.46, and 104.21 cm(-1) for A (jCH4 = 0), F (jCH4 = 1), and E (jCH4 = 2) nuclear spin modifications of CH4-CO, respectively.

  20. Rotational study of the CH4-CO complex: Millimeter-wave measurements and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Surin, L. A.; Tarabukin, I. V.; Panfilov, V. A.; Schlemmer, S.; Kalugina, Y. N.; Faure, A.; Rist, C.; van der Avoird, A.

    2015-10-01

    The rotational spectrum of the van der Waals complex CH4-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110-145 GHz. Newly observed and assigned transitions belong to the K = 2-1 subband correlating with the rotationless jCH4 = 0 ground state and the K = 2-1 and K = 0-1 subbands correlating with the jCH4 = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH4-CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH4-CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH4 face closest to the CO subunit and binding energy De = 177.82 cm-1. The bound rovibrational levels of the CH4-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 91.32, 94.46, and 104.21 cm-1 for A (jCH4 = 0), F (jCH4 = 1), and E (jCH4 = 2) nuclear spin modifications of CH4-CO, respectively.

  1. Rotational study of the CH4-CO complex: Millimeter-wave measurements and ab initio calculations.

    PubMed

    Surin, L A; Tarabukin, I V; Panfilov, V A; Schlemmer, S; Kalugina, Y N; Faure, A; Rist, C; van der Avoird, A

    2015-10-21

    The rotational spectrum of the van der Waals complex CH4-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110-145 GHz. Newly observed and assigned transitions belong to the K = 2-1 subband correlating with the rotationless jCH4 = 0 ground state and the K = 2-1 and K = 0-1 subbands correlating with the jCH4 = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH4-CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH4-CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH4 face closest to the CO subunit and binding energy De = 177.82 cm(-1). The bound rovibrational levels of the CH4-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 91.32, 94.46, and 104.21 cm(-1) for A (jCH4 = 0), F (jCH4 = 1), and E (jCH4 = 2) nuclear spin modifications of CH4-CO, respectively. PMID:26493903

  2. Laser cooling of BH and GaF: insights from an ab initio study.

    PubMed

    Gao, Yu-feng; Gao, Tao

    2015-04-28

    The feasibility of laser cooling BH and GaF is investigated using ab initio quantum chemistry. The ground state X (1)Σ(+) and first two excited states (3)Π and (1)Π of BH and GaF are calculated using the multireference configuration interaction (MRCI) level of theory. For GaF, the spin-orbit coupling effect is also taken into account in the electronic structure calculations at the MRCI level. Calculated spectroscopic constants for BH and GaF show good agreement with available theoretical and experimental results. The highly diagonal Franck-Condon factors (BH: f00 = 0.9992, f11 = 0.9908, f22 = 0.9235; GaF: f00 = 0.997, f11 = 0.989, f22 = 0.958) for the (1)Π (v' = 0-2) → X (1)Σ(+) (v = 0-2) transitions in BH and GaF are determined, which are found to be in good agreement with the theoretical and experimental data. Radiative lifetime calculations of the (1)Π (v' = 0-2) state (BH: 131, 151, and 187 ns; GaF: 2.26, 2.36, and 2.48 ns) are found to be short enough for rapid laser cooling. The proposed laser cooling schemes that drive the (1)Π (v' = 0) → X (1)Σ(+) (v = 0) transition use just one laser wavelength λ00 (BH: 436 nm, GaF: 209 nm). Though the cooling wavelength of GaF is deep in the UVC, a frequency quadrupled Ti:sapphire laser (189-235 nm) could be capable of generating useful quantities of light at this wavelength. The present results indicate that BH and GaF are two good choices of molecules for laser cooling.

  3. Six low-strain zinc-blende half metals: An ab initio investigation

    NASA Astrophysics Data System (ADS)

    Pask, J. E.; Yang, L. H.; Fong, C. Y.; Pickett, W. E.; Dag, S.

    2003-06-01

    A class of spintronic materials, the zinc-blende (ZB) half metals, has recently been synthesized in thin-film form. We apply all-electron and pseudopotential ab initio methods to investigate the electronic and structural properties of ZB Mn and Cr pnictides and carbides, and find six compounds to be half metallic at or near their respective equilibrium lattice constants, making them excellent candidates for growth at low strain. Based on these findings, we further propose substrates on which the growth may be accomplished with minimum strain. Our findings are supported by the recent successful synthesis of ZB CrAs on GaAs and ZB CrSb on GaSb, where our predicted equilibrium lattice constants are within 0.5% of the lattice constants of the substrates on which the growth was accomplished. We confirm previous theoretical results for ZB MnAs, but find ZB MnSb to be half metallic at its equilibrium lattice constant, whereas previous work has found it to be only nearly so. We report here two low-strain half metallic ZB compounds, CrP and MnC, and suggest appropriate substrates for each. Unlike the other five compounds, we predict ZB MnC to become/remain half metallic with compression rather than expansion, and to exhibit metallicity in the minority- rather than majority-spin channel. These fundamentally different properties of MnC can be connected to substantially greater p-d hybridization and d-d overlap, and correspondingly larger bonding-antibonding splitting and smaller exchange splitting. We examine the relative stability of each of the six ZB compounds against NiAs and MnP structures, and find stabilities for the compounds not yet grown comparable to those already grown.

  4. Conductivity of carbon-based molecular junctions from ab-initio methods

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fei; Luo, Yi

    2014-12-01

    Carbon nanomaterials (CNMs) are prompting candidates for next generational electronics. In this review we provide a mini overview of recent results on the conductivity of carbon-based molecular junctions obtained from ab-initio methods. CNMs used as nanoelectrodes and molecular materials in molecular junctions are discussed. The functionalities that include the nanomechanically controlled molecular conductance switches, negative differential resistance devices, and electronic rectifiers realized by using CNMs have been demonstrated.

  5. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    SciTech Connect

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-17

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  6. Methylchloride adsorbed on Si(0 0 1): an ab initio study

    NASA Astrophysics Data System (ADS)

    Preuss, M.; Schmidt, W. G.; Seino, K.; Bechstedt, F.

    2004-07-01

    We present ab initio calculations of the adsorption of methylchloride (CH 3Cl) on Si(0 0 1). Among multiple plausible adsorption geometries, we find five thermodynamically favorable configurations. These lead to strong geometrical changes in the Si surface structure as well as to significant charge transfer processes. The stability of the adsorption structures is discussed in terms of electrostatics. The results are compared to recent experimental and theoretical findings.

  7. An ab initio MIA study of TIBO derivatives R79882 and R82913

    NASA Astrophysics Data System (ADS)

    Peeters, Anik; Van Alsenoy, C.

    1995-04-01

    The gas phase structure of two TIBO compounds (R79882 and R82913), potent inhibitors of the reverse transcriptase of HIV1, was studied with ab initio Hartree-Fock methods using the MIA approach. For compound R82913 the geometry of a dimer and of the respective monomers was fully optimized and compared with experiment. For compound R79882 a complete geometry optimization of 15 different conformers was performed.

  8. Ab initio calculations in a uniform magnetic field using periodic supercells

    SciTech Connect

    Cai, W; Galli, G

    2003-10-21

    We present a formulation of ab initio electronic structure calculations in a finite magnetic field, which retains the simplicity and efficiency of techniques widely used in first principles molecular dynamics simulations, based on plane-wave basis sets and Fourier transforms. In addition we discuss results obtained with this method for the energy spectrum of interacting electrons in quantum wells, and for the electronic properties of dense fluid deuterium in a uniform magnetic field.

  9. On limits of ab initio calculations of pairing gap in nuclei

    SciTech Connect

    Saperstein, E. E.; Baldo, M.; Lombardo, U.; Pankratov, S. S.; Zverev, M. V.

    2011-11-15

    A brief review of recent microscopic calculations of nuclear pairing gap is given. A semi-microscopic model is suggested in which the ab initio effective pairing interaction is supplemented with a small phenomenological addendum. It involves a parameter which is universal for all medium and heavy nuclei. Calculations for several isotopic and isotonic chains of semi-magic nuclei confirm the relevance of the model.

  10. First fully ab initio potential energy surface of methane with a spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.

    2016-09-01

    Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.

  11. Steady-state ab initio laser theory for N-level lasers.

    PubMed

    Cerjan, Alexander; Chong, Yidong; Ge, Li; Stone, A Douglas

    2012-01-01

    We show that Steady-state Ab initio Laser Theory (SALT) can be applied to find the stationary multimode lasing properties of an N-level laser. This is achieved by mapping the N-level rate equations to an effective two-level model of the type solved by the SALT algorithm. This mapping yields excellent agreement with more computationally demanding N-level time domain solutions for the steady state.

  12. Conformational properties of molecules by ab initio quantum mechanical energy minimization.

    PubMed Central

    Pedersen, L

    1985-01-01

    The recent literature on the determination of minimum energy conformations by ab initio quantum mechanical techniques is reviewed. The availability of computer-coded analytical first and second derivatives of the Hartree-Fock energy makes possible calculations that will be of significant assistance in structure determination of molecules. A short review of recent progress in empirical energy minimization and molecular dynamics is provided. PMID:3905373

  13. Incorporating Ab Initio energy into threading approaches for protein structure prediction

    PubMed Central

    2011-01-01

    Background Native structures of proteins are formed essentially due to the combining effects of local and distant (in the sense of sequence) interactions among residues. These interaction information are, explicitly or implicitly, encoded into the scoring function in protein structure prediction approaches—threading approaches usually measure an alignment in the sense that how well a sequence adopts an existing structure; while the energy functions in Ab Initio methods are designed to measure how likely a conformation is near-native. Encouraging progress has been observed in structure refinement where knowledge-based or physics-based potentials are designed to capture distant interactions. Thus, it is interesting to investigate whether distant interaction information captured by the Ab Initio energy function can be used to improve threading, especially for the weakly/distant homologous templates. Results In this paper, we investigate the possibility to improve alignment-generating through incorporating distant interaction information into the alignment scoring function in a nontrivial approach. Specifically, the distant interaction information is introduced through employing an Ab Initio energy function to evaluate the “partial” decoy built from an alignment. Subsequently, a local search algorithm is utilized to optimize the scoring function. Experimental results demonstrate that with distant interaction items, the quality of generated alignments are improved on 68 out of 127 query-template pairs in Prosup benchmark. In addition, compared with state-to-art threading methods, our method performs better on alignment accuracy comparison. Conclusions Incorporating Ab Initio energy functions into threading can greatly improve alignment accuracy. PMID:21342587

  14. Structural properties of rutherfordium: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Gyanchandani, Jyoti; Sikka, S. K.

    2012-01-01

    The structural and electronic properties of rutherfordium, the latest group IV B element, have been evaluated by first principles density functional theory in scalar relativistic formalism with and without spin-orbit coupling and compared with its 5d homologue Hf. It is found that Rf will crystallize in the hexagonal close packed structure as in Hf. However, under pressure, it will have different sequence of phase transitions than Hf: hcp→bcc instead of hcp→ω→bcc. An explanation is offered for this difference in terms of the competition between the band structure and the Ewald energy contributions.

  15. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  16. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools. PMID:27536341

  17. Ab initio molecular dynamics simulation of pressure-induced phase transformation of BeO

    SciTech Connect

    Xiao, H. Y.; Duan, G.; Zu, X. T.; Weber, W. J.

    2011-05-05

    Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ → RS and ZB → RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ → RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchange–correlation functional employed and the way of applying pressure.

  18. Structures of 13-atom clusters of fcc transition metals by ab initio and semiempirical calculations

    NASA Astrophysics Data System (ADS)

    Longo, R. C.; Gallego, L. J.

    2006-11-01

    We report the results of ab initio calculations of the structures and magnetic moments of Ni13 , Pd13 , Pt13 , Cu13 , Ag13 , and Au13 that were performed using a density-functional method that employs linear combinations of pseudoatomic orbitals as basis sets (SIESTA). Our structural results for Pt13 , Cu13 , Ag13 , and Au13 show that a buckled biplanar structure (BBP) is more stable than the icosahedral configuration, in keeping with results obtained recently by Chang and Chou [Phys. Rev. Lett. 93, 133401 (2004)] using the Vienna ab initio simulation package with a plane-wave basis. However, for Ni13 and Pd13 we found that the icosahedral structure is more stable than BBP. For all these clusters, two semiempirical methods based on spherically symmetric potentials both found the icosahedral structure to be the more stable, while the modified embedded atom model method, which uses a direction-dependent potential, found BBP to be the more stable structure. When low-energy structures found in recent ab initio studies of Pt13 , Cu13 , and Au13 other than Chang and Chou were optimized with SIESTA, those reported for Pt13 and Cu13 were found to be less stable than BBP, but the two-dimensional planar configuration reported for Au13 proved to be more stable than BBP.

  19. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  20. 7Be(p,gamma)8B S-factor from Ab Initio Wave Functions

    SciTech Connect

    Navratil, P; Bertulani, C A; Caurier, E

    2006-10-12

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) predicts low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. We present here a brief overview of the first steps taken toward nuclear reaction applications. In particular, we discuss our calculation of the {sup 7}Be(p,{gamma}){sup 8}B S-factor. We also present our first results of the {sup 3}He({alpha},{gamma}){sup 7}Be S-factor and of the S-factor of the mirror reaction {sup 3}H({alpha},{gamma}){sup 7}Li. The {sup 7}Be(p,{gamma}){sup 8}B and {sup 3}He({alpha},{gamma}){sup 7}Be reactions correspond to the most important uncertainties in solar model predictions of neutrino fluxes.

  1. Ab initio quantum mechanical models of peptide helices and their vibrational spectra.

    PubMed

    Bour, Petr; Kubelka, Jan; Keiderling, Timothy A

    2002-10-01

    Structural parameters for standard peptide helices (alpha, 3(10), 3(1) left-handed) were fully ab initio optimized for Ac-(L-Ala)(9)-NHMe and for Ac-(L-Pro)(9)-NHMe (poly-L-proline-PLP I and PLP II-forms), in order to better understand the relative stability and minimum energy geometries of these conformers and the dependence of the ir absorption and vibrational CD (VCD) spectra on detailed variation in these conformations. Only the 3(10)-helical Ala-based conformation was stable in vacuum for this decaamide structure, but both Pro-based conformers minimized successfully. Inclusion of solvent effects, by use of the conductor-like screening solvent model (COSMO), enabled ab initio optimizations [at the DFT/B3LYP/SV(P) level] without any constraints for the alpha- and 3(10)-helical Ala-based peptides as well as the two Pro-based peptides. The geometries obtained compare well with peptide chain torsion angles and hydrogen-bond distances found for these secondary structure types in x-ray structures of peptides and proteins. For the simulation of VCD spectra, force field and intensity response tensors were obtained ab initio for the complete Ala-based peptides in vacuum, but constrained to the COSMO optimized torsional angles, due to limitations of the solvent model. Resultant spectral patterns reproduce well many aspects of the experimental spectra and capture the differences observed for these various helical types.

  2. In pursuit of the ab initio limit for conformational energy prototypes

    NASA Astrophysics Data System (ADS)

    Császár, Attila G.; Allen, Wesley D.; Schaefer, Henry F.

    1998-06-01

    The convergence of ab initio predictions to the one- and n-particle limits has been systematically explored for several conformational energy prototypes: the inversion barriers of ammonia, water, and isocyanic acid, the torsional barrier of ethane, the E/Z rotamer separation of formic acid, and the barrier to linearity of silicon dicarbide. Explicit ab initio results were obtained with atomic-orbital basis sets as large as [7s6p5d4f3g2h1i/6s5p4d3f2g1h] and electron correlation treatments as extensive as fifth-order Møller-Plesset perturbation theory (MP5), the full coupled-cluster method through triple excitations (CCSDT), and Brueckner doubles theory including perturbational corrections for both triple and quadruple excitations [BD(TQ)]. Subsequently, basis set and electron correlation extrapolation schemes were invoked to gauge any further variations in arriving at the ab initio limit. Physical effects which are tacitly neglected in most theoretical work have also been quantified by computations of non-Born-Oppenheimer (BODC), relativistic, and core correlation shifts of relative energies. Instructive conclusions are drawn for the pursuit of spectroscopic accuracy in theoretical conformational analyses, and precise predictions for the key energetic quantities of the molecular prototypes are advanced.

  3. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.

    PubMed

    Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models. PMID:26374007

  4. Perspectives from ab-initio and tight-binding: Applications to transition metal compounds and superlattices

    NASA Astrophysics Data System (ADS)

    Venkataraman, Vijay Shankar

    The experimental and theoretical study of transition metal compounds have occupied condensed matter physicists for the best part of the last century. The rich variety of physical behaviour exhibited by these compounds owes its origin to the subtle balance of the energy scales at play for the d orbitals. In this thesis, we study three different systems comprised of transition metal atoms from the third, the fourth, and the fifth group of the periodic table using a combination of ab-initio density functional theory (DFT) computations and effective tight-binding models for the electronic properties. We first consider the electronic properties of artificially fabricated perovskite superlattices of the form [(SrIrO3)m / SrTiO3] with integer m denoting the number of layers of SrIrO3. After discussing the results of experiments undertaken by our collaborators, we present the results of our DFT calculations and build tight-binding models for the m = 1 and m = 2 superlattices. The active ingredient is found to be the 5d orbitals with significant spin-orbit coupling. We then study the energies of magnetic ground states within DFT and compare and contrast our results with those obtained for the bulk Ruddlesden-Popper iridates. Together with experimental measurements, our results suggest that these superlattices are an exciting venue to probe the magnetism and metal-insulator transitions that occur from the intricate balance of the spin-orbit coupling and electron interactions, as has been reported for their bulk counterparts. Next, we consider alpha-RuCl3, a honeycomb lattice compound. We first show using DFT calculations in conjunction with experiments performed by our collaborators, how spin-orbit coupling in the 4d orbitals of Ru is essential to understand the insulating state realized in this compound. Then, in the latter half of the chapter, we study the magnetic ground states of a two-dimensional analogue of alpha-RuCl3 in weak and strong-coupling regimes obtained from

  5. Ab initio modeling of 2D layered organohalide lead perovskites.

    PubMed

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-28

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place. PMID:27131557

  6. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity.

    PubMed

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(X 2Pi)-Kr and NO(A 2Sigma+)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1 2A' state [NO(X 2Pi)-Kr] and the multireference singles and doubles configuration interaction method for the excited 2 2A' state [NO(A 2Sigma+)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match

  7. Critical analysis of the vacancy induced magnetism in Scandium Nitride (ScN): An ab-initio study

    NASA Astrophysics Data System (ADS)

    Missaoui, Jamil; Hamdi, Ilyes; Meskini, Noureddine

    2016-09-01

    We have studied the origin of the magnetism induced by a neutral cation vacancy in rocksalt ScN using ab-initio calculations based on spin density functional theory. Our results showed that Sc vacancy induces a total local magnetic moment of 0.50μB. The main contributors to this induced magnetism are the 2 p orbitals of nearest nitrogen atoms surrounding the vacancy. The spin polarization energy (defined as the energy difference between the spin polarized and non-polarized states) is well above the room-temperature energy. Furthermore, we have investigated the effect of an external strain on the induced magnetism. Our calculations showed that applying an external strain leads to a decrease of the stability of the magnetic state. Moreover, calculations of the magnetic interactions showed that the most stable configuration corresponds to the fifth nearest neighbor distance with a ferromagnetic state. Finally, using thermodynamic considerations, we demonstrated that the minimum defect concentration to achieve magnetic percolation cannot be reached at equilibrium conditions. However, we found that by applying an external strain, we could reduce the formation energy of the defect, achieving therefore the magnetic percolation.

  8. An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron

    NASA Astrophysics Data System (ADS)

    Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U.

    2015-05-01

    It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)aq to U(V)aq by Fe(II)aq (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)aq at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI)aq. At higher U concentration, a rapid decrease in U(VI)aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta)schoepite phases, where up to ∼25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)aq concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to ∼30%). Thermodynamic calculations support that the reduction of U(VI)aq to U(IV)aq by Fe(II)aq is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is

  9. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab Initio Studies of Zero-Field Splittings.

    PubMed

    Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling

    2015-10-19

    experimentally deduced trend. D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed. PMID:26428688

  10. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    DOE PAGES

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; Hunter, Seth C.; Neese, Frank; Xue, Zi-Ling

    2015-10-02

    . Furthermore, D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.« less

  11. Ab initio theoretical studies of potential energy surfaces in the photodissociation of the vinyl radical. I. Ã state dissociation

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Irle, Stephan; Morokuma, Keiji; Tschumper, Gregory S.

    2003-10-01

    The mechanism of photodissociation of the vinyl radical, C2H3, starting from the first doublet excited (D1,Ã) state was studied with high-level ab initio methods as well as with ab initio direct dynamics. Geometry optimizations of stationary points and surface crossing seams were performed with complete active space self-consistent field (CASSCF) method, and the energies were re-evaluated with single-point multireference single and double excitation configuration interaction (MRCISD) calculations. Both internal conversion and intersystem crossing channels, which could bring the excited vinyl radical down to the ground state potential energy surface leading to dissociation on the ground state, have been identified within planar Cs, twisted Cs and C2v symmetry. Direct dynamics calculation indicates that the most feasible reaction channel is the direct internal conversion from D1 to the ground state (D0) within planar Cs symmetry, through a minimum of seam of crossing (conical intersection) at an energy of about 80 kcal/mol (with respect to the ground-state equilibrium geometry). The other internal conversions from D1 to D0 through conical intersections within twisted Cs symmetry require energies of about 80 and 75 kcal/mol at the two minima of seam of crossing, respectively, and they are not favored dynamically without initial out-of-plane vibrational excitation. The intersystem crossing channels between D1 and the lowest quartet state (Q1) and D0 and Q1 within twisted Cs and C2v symmetry are not efficient due to the high energy of the minima of seam of crossing as well as the small spin-orbit coupling.

  12. Emergence of quasi-one-dimensional physics in a nearly-isotropic three-dimensional molecular crystal: Ab initio modeling of Mo3S7(dmit) 3

    NASA Astrophysics Data System (ADS)

    Jacko, A. C.; Janani, C.; Koepernik, Klaus; Powell, B. J.

    2015-03-01

    We report density functional theory calculations for Mo3S7(dmit) 3 . We derive an ab initio tight-binding model from overlaps of Wannier orbitals; finding a layered model with interlayer hopping terms ˜3 /4 the size of the in-plane terms. The in-plane Hamiltonian interpolates the kagomé and honeycomb lattices. It supports states localized to dodecahedral rings within the plane, which populate one-dimensional (1D) bands and lead to a quasi-1D spin-one model on a layered honeycomb lattice once interactions are included. Two lines of Dirac cones also cross the Fermi energy.

  13. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock; David A. Walthall

    2006-05-07

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various different energy sources potentially including fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch synthesis involves the initiation or activation of CO and H{sub 2} bonds, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. Commercially viable catalysts include supported Co and Co-alloys. Over the first two years of this project we have used ab initio methods to determine the adsorption energies for all reactants, intermediates, and products along with the overall reaction energies and their corresponding activation barriers over the Co(0001) surface. Over the third year of the project we developed and advanced an ab initio-based kinetic Monte Carlo simulation code to simulate Fischer Tropsch synthesis. This report details our work over the last year which has focused on the derivation of kinetic parameters for the elementary steps involved in FT synthesis from ab initio density functional theoretical calculations and the application of the kinetic Monte Carlo algorithm to simulate the initial rates of reaction for FT over the ideal Co(0001) surface. The results from our simulations over Co(0001) indicate the importance of stepped surfaces for the activation of adsorbed CO. In addition, they demonstrate that the dominant CH{sub x}* surface intermediate under steady state conditions is CH*. This strongly suggests that hydrocarbon coupling

  14. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  15. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    NASA Astrophysics Data System (ADS)

    Sun, Hongyan; Vaghjiani, Ghanshyam L.

    2015-05-01

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation

  16. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret.

    PubMed

    Sun, Hongyan; Vaghjiani, Ghanshyam L

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation

  17. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret.

    PubMed

    Sun, Hongyan; Vaghjiani, Ghanshyam L

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation

  18. Ab Initio Kinetics and Thermal Decomposition Mechanism of Mononitrobiuret and 1,5- Dinitrobiuret

    SciTech Connect

    Sun, Hongyan; Vaghjiani, Ghanshyam G.

    2015-05-26

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which reveal the

  19. An ab initio calculation of the zero-field splitting parameters of the 3A-double prime state of formaldehyde

    NASA Technical Reports Server (NTRS)

    Davidson, E. R.; Ellenbogen, J. C.; Langhoff, S. R.

    1980-01-01

    The spin dipole-dipole and spin-orbit contributions to the zero-field splitting of the 3A-double prime state of formaldehyde have been evaluated at the excited state experimental geometry. Ab initio CI wave functions were generated from a Dunning double zeta plus polarization bases set using 3A-double prime rhf orbitals. Twelve states of each symmetry were used to evaluate the second-order spin-orbit effect. The resulting values of D and E were 0.19 and 0.03 kayser with the principal magnetic axes rotated 36 deg from the CO bond. The values of alpha and beta relative to the inertial axes were calculated to be 0.03 and 0.01 kayser compared to the experimental values of 0.05 plus or minus 0.01 and 0.02 plus or minus 0.02 kayser.

  20. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  1. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  2. Scalable numerical approach for the steady-state ab initio laser theory

    NASA Astrophysics Data System (ADS)

    Esterhazy, S.; Liu, D.; Liertzer, M.; Cerjan, A.; Ge, L.; Makris, K. G.; Stone, A. D.; Melenk, J. M.; Johnson, S. G.; Rotter, S.

    2014-08-01

    We present an efficient and flexible method for solving the non-linear lasing equations of the steady-state ab initio laser theory. Our strategy is to solve the underlying system of partial differential equations directly, without the need of setting up a parametrized basis of constant flux states. We validate this approach in one-dimensional as well as in cylindrical systems, and demonstrate its scalability to full-vector three-dimensional calculations in photonic-crystal slabs. Our method paves the way for efficient and accurate simulations of microlasers which were previously inaccessible.

  3. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  4. Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P)

    SciTech Connect

    Kurova, N. V. Burdov, V. A.

    2013-12-15

    The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.

  5. Ab initio R-matrix calculations of e+-molecule scattering

    NASA Technical Reports Server (NTRS)

    Danby, Grahame; Tennyson, Jonathan

    1990-01-01

    The adaptation of the molecular R-matrix method, originally developed for electron-molecule collision studies, to positron scattering is discussed. Ab initio R-matrix calculations are presented for collisions of low energy positrons with a number of diatomic systems including H2, HF and N2. Differential elastic cross sections for positron-H2 show a minimum at about 45 deg for collision energies between 0.3 and 0.5 Ryd. The calculations predict a bound state of positronHF. Calculations on inelastic processes in N2 and O2 are also discussed.

  6. Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.

    2016-06-01

    The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.

  7. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ˜10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  8. Reactivity of a sodium atom in vibrationally excited water clusters: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cwiklik, Lukasz; Kubisiak, Piotr; Kulig, Waldemar; Jungwirth, Pavel

    2008-07-01

    We investigated the reaction between a sodium atom and water molecules in both small and medium-size vibrationally excited water clusters using ab initio molecular dynamics simulations. Formation of NaOH was observed in small ( n = 4, 5) clusters, while water dissociation and subsequent geminate recombination accompanied by a transient formation of a Na +-OH - pair occurred in a 34 water cluster. Our results show that the initial step of the vibrationally excited reaction between a single sodium atom and water does not shut off in larger clusters and that it can also occur in the bulk water, however, more sodium atoms are likely required to stabilize the product.

  9. Ab initio based force field and molecular dynamics simulations of crystalline TATB.

    PubMed

    Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E

    2004-04-15

    An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608

  10. An ab initio quartic force field and the fundamental frequencies of o-benzyne

    NASA Astrophysics Data System (ADS)

    Bludský, Ota; Pirko, Vladimír; Kobayashi, Rika; Jørgensen, Poul

    1994-10-01

    The ab initio SCF, MCSCF and MP2 molecular energies, gradients and Hessians have been evaluated at 33 points for the ground electronic state of the o-benzyne molecule. The corresponding potential energy surfaces have been fitted to obtain a quartic force field from which the fundamental frequencies have been determined using second-order perturbation theory. Theoretical predictions reproduce the majority of the experimental data to a degree of agreement which allows a complete assignment of all the fundamental frequencies of o-benzyne.

  11. Ab initio calculations of one-electron-scattering properties of ethyne (acetylene) and ethylene molecules

    SciTech Connect

    Tripathi, A.N.; Smith, V.H. Jr. K7L3N6); Kaijser, P.; Siemens, A.G. ); Diercksen, G.H.F. )

    1990-03-01

    Isotropic scattering functions and Compton profiles together with their directional components for several directions relevant to the molecular structure of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} have been evaluated for {ital ab} {ital initio} self-consistent field and configuration-interaction wave functions. The internally folded density (reciprocal form factor) {ital B}({ital r}) is calculated and discussed as are various momentum expectation values. Comparison is made with available experimental and other theoretical results.

  12. An accurate potential energy curve for helium based on ab initio calculations

    NASA Astrophysics Data System (ADS)

    Janzen, A. R.; Aziz, R. A.

    1997-07-01

    Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.

  13. Matrix IR spectrum and ab initio SCF calculations of molecular SiS sub 2

    SciTech Connect

    Schnoeckel, H.; Koeppe, R. )

    1989-06-21

    In solid argon molecular SiS{sub 2} is generated by a reaction of SiS with S atoms. The antisymmetric stretching vibration {nu}{sub as}(SiS) is observed at 918 cm{sup {minus}1}. Bonding and structure (force constants from experimentally observed frequencies and results from ab initio SCF calculations) of SiS{sub 2} are compared with that of the similar molecules: CO, CS, CO{sub 2}, COS, CS{sub 2}, SiO, SiS, SiO{sub 2}, and SiOS.

  14. Converging sequences in the ab initio no-core shell model

    SciTech Connect

    Forssen, C.; Vary, J. P.; Caurier, E.; Navratil, P.

    2008-02-15

    We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By examining the underlying theory of effective operators, we expose the physical foundations for the alternative pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for A-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We demonstrate the utility of our strategy with large-scale calculations in light nuclei.

  15. Efficient Use of an Adapting Database of Ab Initio Calculations To Generate Accurate Newtonian Dynamics.

    PubMed

    Shaughnessy, M C; Jones, R E

    2016-02-01

    We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm.

  16. Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.

  17. Ab initio potentials of F+Li{sub 2} accessible at ultracold temperatures

    SciTech Connect

    Wright, K. W. A.; Lane, Ian C.

    2010-09-15

    Ab initio calculations for the strongly exoergic Li{sub 2}+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li{sub 2} molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.

  18. Transport coefficients of helium-argon mixture based on ab initio potential.

    PubMed

    Sharipov, Felix; Benites, Victor J

    2015-10-21

    The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-argon mixtures are calculated for a wide range of temperature and for various mole fractions up to the 12th order of the Sonine polynomial expansion with an ab initio intermolecular potential. The calculated values for these transport coefficients are compared with other data available in the open literature. The comparison shows that the obtained transport coefficients of helium-argon mixture have the best accuracy for the moment. PMID:26493894

  19. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones

    NASA Astrophysics Data System (ADS)

    Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng

    2004-04-01

    A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.

  20. Peculiarities of geminal atom interaction in chloro-containing imidazoles using ab initio calculations

    NASA Astrophysics Data System (ADS)

    Feshin, V. P.; Feshina, E. V.

    2000-07-01

    The results of ab initio calculations at the RHF/6-31G ∗ level of 1-methyl-4-chloro- and -5-chloroimidazoles as well as of 1-methyl-4,5-dichloroimidazoles with total optimization of their geometry were presented. They were used for the interpretation of peculiarities of an influence of the "pyridine" and "pyrrole" N atoms on the electron distribution of the Cl atoms in these molecules and of their 35Cl NQR frequencies. These peculiarities are caused by the different space electron distribution of these N atoms that causes the different polarization of the geminal Cl atom p-electron shell.

  1. A high-precision ab initio determination of the equilibrium geometry and force field of HOC(+)

    NASA Technical Reports Server (NTRS)

    Defrees, D. J.; Bunker, P. R.; Binkley, J. S.; Mclean, A. D.

    1987-01-01

    The results of an ab initio molecular orbital investigation of the isoformyl cation, HOC(+), shape are reported. The effects of expanding the basis set to near the Hartree-Fock limit and of electron correlation were examined, and the results indicate that near the Hartree-Fock limit the HOC(+) is linear. An analytic potential function is presented, from which the calculated rotational energies are only 0.03 percent different from the experimental values. This represents a nearly two orders of magnitude reduction in error from earlier work.

  2. The role of Metals in Amyloid Aggregation: A Test Case for ab initio Simulations

    SciTech Connect

    Minicozzi, V.; Rossi, G. C.; Stellato, F.; Morante, S.

    2007-12-26

    First principle ab initio molecular dynamics simulations of the Car-Parrinello type have proved to be of invaluable help in understanding the microscopic mechanisms of chemical bonding both in solid state physics and in structural biophysics. In this work we present as test cases the study of the Cu coordination mode in two especially important examples: Prion protein and {beta}-amyloids. Using medium size PC-clusters as well as larger parallel platforms, we are able to deal with systems comprising 300 to 500 atoms and 1000 to 1500 electrons for as long as 2-3 ps. We present structural results which confirm indications coming from NMR and XAS data.

  3. Initial oxidation of TiAl: An ab-initio investigation

    SciTech Connect

    Bakulin, Alexander V. Kulkova, Svetlana E.; Hu, Qing-Miao; Yang, Rui

    2014-11-14

    We present ab-initio investigation of oxygen adsorption up to two monolayer coverage on the stoichiometric TiAl(100) surface to illustrate the initial oxidation stage. The formation of band gap near the Fermi level demonstrates the transformation from metal to oxide surface with increasing oxygen coverage. The oxidation of Ti rather than Al is observed from our electronic structure calculations. The energy barriers of oxygen diffusion between different sites on surface as well as in subsurface and bulk region are derived. It is shown that the diffusion of oxygen is much easier on the surface than that into the subsurface region.

  4. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering

    PubMed Central

    Franke, Daniel; Svergun, Dmitri I.

    2009-01-01

    DAMMIF, a revised implementation of the ab-initio shape-determination program DAMMIN for small-angle scattering data, is presented. The program was fully rewritten, and its algorithm was optimized for speed of execution and modified to avoid limitations due to the finite search volume. Symmetry and anisometry constraints can be imposed on the particle shape, similar to DAMMIN. In equivalent conditions, DAMMIF is 25–40 times faster than DAMMIN on a single CPU. The possibility to utilize multiple CPUs is added to DAMMIF. The application is available in binary form for major platforms.

  5. New developments in the ``ab initio`` determination of transition metal alloy phase diagrams

    SciTech Connect

    Wolverton, C.; Asta, M.; Quannasser, S.; Dreysse, H.; de Fontaine, D.

    1992-04-01

    Certain classes of temperature-composition binary alloy phase diagrams can now be computed in an ``ab-initio`` approach. No adjustable or experimentally fitted parameter is used. The expectation value of the energy is expressed in terms of an expansion of cluster probabilities, where the prefactors, the Effective Cluster Interaction, are related to the alloy electronic structure. This framework is used to study the MoRe alloy for two situations: bulk and semi-infinite crystal bounded by a (001) surface. In both cases, good agreement with experimental data is found.

  6. New developments in the ab initio'' determination of transition metal alloy phase diagrams

    SciTech Connect

    Wolverton, C.; Asta, M. . Dept. of Physics); Quannasser, S.; Dreysse, H. . Lab. de Physique des Solides); de Fontaine, D. . Dept. of Materials Science and Mineral Engineering)

    1992-04-01

    Certain classes of temperature-composition binary alloy phase diagrams can now be computed in an ab-initio'' approach. No adjustable or experimentally fitted parameter is used. The expectation value of the energy is expressed in terms of an expansion of cluster probabilities, where the prefactors, the Effective Cluster Interaction, are related to the alloy electronic structure. This framework is used to study the MoRe alloy for two situations: bulk and semi-infinite crystal bounded by a (001) surface. In both cases, good agreement with experimental data is found.

  7. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics.

    PubMed

    Jakse, N; Pasturel, A

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  8. Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel

    SciTech Connect

    E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young

    2006-03-16

    The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.

  9. Ab initio description of second-harmonic generation from crystal surfaces

    NASA Astrophysics Data System (ADS)

    Tancogne-Dejean, Nicolas; Giorgetti, Christine; Véniard, Valérie

    2016-09-01

    We propose an ab initio framework to derive the dielectric and the second-order susceptibility tensors for crystal surfaces. The single-surface response is extracted from a supercell scheme. We evaluate macroscopic quantities, taking into account the local fields. The first- and second-order susceptibilities are evaluated within time-dependent density functional theory, in the long-wavelength limit. We apply our formalism to the calculation of the second-harmonic generation for clean and hydrogenated silicon surfaces. The agreement with measured second-order susceptibility components is significantly better, illustrating the importance of local-field effects.

  10. Efficient Use of an Adapting Database of Ab Initio Calculations To Generate Accurate Newtonian Dynamics.

    PubMed

    Shaughnessy, M C; Jones, R E

    2016-02-01

    We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm. PMID:26669825

  11. Vibrational energy levels for CH4 from an ab initio potential

    NASA Technical Reports Server (NTRS)

    Schwenke, D. W.; Partridge, H.

    2001-01-01

    Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.

  12. Ab Initio Identification of the Nitrogen Diffusion Mechanism in SIlicon

    SciTech Connect

    Stoddard, Nathan; Pichler, Peter; Duscher, Gerd J M; Windl, Wolfgang

    2005-01-01

    In this Letter, we present ab initio results identifying a new diffusion path for the nitrogen pair complex in silicon, resulting in an effective diffusivity of 67exp(-2.38 eV/kT) cm{sup 2}/s. This nudged elastic band result is compared with other nitrogen diffusion paths and mechanisms, and is determined to have unmatched agreement with experimental results. It is also shown that careful consideration of total energy corrections and use of a fully temperature-dependent diffusion prefactor have modest but important effects on the calculation of diffusivity for paired and for interstitial nitrogen.

  13. Site occupancy trend of Co in Ni{sub 2}MnIn: Ab initio approach

    SciTech Connect

    Pal, Soumyadipta Mahadevan, Priya; Biswas, C.

    2015-06-24

    The trend of site occupation of Co at Ni sites of Ni{sub 2}MnIn system is studied in austenitic phase having L2{sub 1} structure by ab initio density functional theory (DFT) calculation. The Co atoms prefer to be at Ni sites rather than Mn site and are ferromagetically coupled with Ni and Mn. The ground state has tetragonal structure for Ni{sub 1.5}Co{sub 0.5}MnIn and Ni{sub 1.25}Co{sub 0.75}MnIn. The Co tends to form cluster.

  14. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  15. Investigating short-range magnetism in strongly correlated materials via magnetic pair distribution function analysis and ab initio theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin; Page, Katharine; Brunelli, Michela; Staunton, Julie; Billinge, Simon

    Short-range magnetic correlations are known to exist in a variety of strongly correlated electron systems, but our understanding of the role they play is challenged by the difficulty of experimentally probing such correlations. Magnetic pair distribution function (mPDF) analysis is a newly developed neutron total scattering method that can reveal short-range magnetic correlations directly in real space, and may therefore help ameliorate this difficulty. We present temperature-dependent mPDF measurements of the short-range magnetic correlations in the paramagnetic phase of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. We observe significant correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range-ordered spin arrangement. With no free parameters, ab initio calculations using the self-interaction-corrected local spin density approximation of density functional theory quantitatively reproduce the magnetic correlations to a high degree of accuracy. These results yield valuable insight into the magnetic exchange in MnO and showcase the utility of the mPDF technique for studying magnetic properties of strongly correlated electron systems.

  16. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO-

    NASA Astrophysics Data System (ADS)

    Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun

    2016-02-01

    The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  17. Ab initio equation-of-state and elastic properties of Pu metal and Pu-Ga alloys

    NASA Astrophysics Data System (ADS)

    Per, Soderlind; Landa, Alex

    2010-03-01

    We present results of ab initio calculations of equation-of-state and elastic properties for Pu metal and Pu-Ga alloys. For this we have employed density-functional theory (DFT) in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-potential approximation (CPA) for the alloys. All Pu systems benefit from spin polarization which is consistent with previous DFT studies of plutonium. We show that orbital correlations become more important proceeding from α->β->γ plutonium, thus suggesting increasing f-electron correlation (localization). For δ-Pu- Ga alloys we find that the system softens with larger Ga content, i.e., bulk modulus, elastic constants, and chemical bonding weakens with increasing Ga concentration. This inverse relationship is nearly linear and supported by measurements on polycrystal δ-Pu-Ga alloys. For Pu metal, our single-crystal results also relates reasonably with ultrasound data on polycrystal samples where available. The comparison is indirect but made possible by approximating the polycrystal with an isotropic (uniform strain) single crystal. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis.

    PubMed

    Friesner, Richard A; Guallar, Victor

    2005-01-01

    We describe large scale ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic reactions. First, technical aspects of the methodology are reviewed, including the hybrid density functional theory (DFT) methods that are typically employed for the QM aspect of the calculations, and various approaches to defining the interface between the QM and MM regions in QM/MM approaches. The modeling of the enzymatic catalytic cycle for three examples--methane monooxygenase, cytochrome P450, and triose phosphate isomerase--are discussed in some depth, followed by a brief summary of other systems that have been investigated by ab initio methods over the past several years. Finally, a discussion of the qualitative and quantitative conclusions concerning enzymatic catalysis that are available from modern ab initio approaches is presented, followed by a conclusion briefly summarizing future prospects.

  19. Epitaxial strain induced ferroelectricity in rocksalt binary compound: Hybrid functional Ab initio calculation and soft mode group theory analysis

    NASA Astrophysics Data System (ADS)

    Kim, Bog G.

    2011-05-01

    We have studied the detailed mechanism of epitaxial strain induced ferroelectricity in rocksalt binary compound by ab initio calculation and soft mode group theory analysis. By applying compressive strain, cubic binary rocksalt (F m3m) transforms into tetragonal (I 4/mmm) structure. With increasing compressive strain, tetragonal structure becomes unstable against spontaneous transformation to lower symmetry tetragonal structure (I 4/mm), evident both from ab initio calculation and from soft mode group theory analysis. For the tensile strain, phase transition sequence can be cubic binary rocksalt to tetragonal (I 4/mmm) and to orthorhombic structure (I m2m). From ab initio calculation and space group analysis, we propose that the epitaxial strain induced ferroelectricity of rocksalt binary compound is the generic property.

  20. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range. PMID:25524926

  1. Free Energies of Chemical Reactions in Solution and in Enzymes with Ab Initio Quantum Mechanics/Molecular Mechanics Methods

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Yang, Weitao

    2008-05-01

    Combined quantum mechanics/molecular mechanics (QM/MM) methods provide an accurate and efficient energetic description of complex chemical and biological systems, leading to significant advances in the understanding of chemical reactions in solution and in enzymes. Here we review progress in QM/MM methodology and applications, focusing on ab initio QM-based approaches. Ab initio QM/MM methods capitalize on the accuracy and reliability of the associated quantum-mechanical approaches, however, at a much higher computational cost compared with semiempirical quantum-mechanical approaches. Thus reaction-path and activation free-energy calculations based on ab initio QM/MM methods encounter unique challenges in simulation timescales and phase-space sampling. This review features recent developments overcoming these challenges and enabling accurate free-energy determination for reaction processes in solution and in enzymes, along with applications.

  2. Correlations between ab initio and experimental data for isolated H-bonded complexes of water with nitrogen bases

    NASA Astrophysics Data System (ADS)

    Maes, G.; Smets, J.; Adamowicz, L.; McCarthy, W.; Van Bael, M. K.; Houben, L.; Schoone, K.

    1997-06-01

    Correlations between selected ab initio predicted and experimentally observed properties of 1:1 H-bonded complexes of pyridines, pyrimidines, and imidazoles with water are investigated. Relationships are found between the experimental properties of proton affinity and water frequency shift, and the ab initio calculated bond distances, interaction energies and water frequency shifts. It is also found that well-defined relations can be established between calculated and observed properties for the pyridine complexes, but these cannot be reliably extended to the other N-base systems. The similarities demonstrate that the presently available ab initio methods are useful in predicting the experimental behaviour of H-bonded systems, but only for closely related molecules.

  3. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range.

  4. Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods.

    PubMed

    Hu, Hao; Yang, Weitao

    2008-01-01

    Combined quantum mechanics/molecular mechanics (QM/MM) methods provide an accurate and efficient energetic description of complex chemical and biological systems, leading to significant advances in the understanding of chemical reactions in solution and in enzymes. Here we review progress in QM/MM methodology and applications, focusing on ab initio QM-based approaches. Ab initio QM/MM methods capitalize on the accuracy and reliability of the associated quantum-mechanical approaches, however, at a much higher computational cost compared with semiempirical quantum-mechanical approaches. Thus reaction-path and activation free-energy calculations based on ab initio QM/MM methods encounter unique challenges in simulation timescales and phase-space sampling. This review features recent developments overcoming these challenges and enabling accurate free-energy determination for reaction processes in solution and in enzymes, along with applications.

  5. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces.

    PubMed

    Herron, Jeffrey A; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-23

    Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation. PMID:27503889

  6. Ab Initio Calculation of Accurate Vibrational Frequencies for Molecules of Interest in Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within +/- 8 cm(sup -1) on average, and molecular bond distances are accurate to within +/- 0.001-0.003 A, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as rovibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy win be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  7. Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction

    SciTech Connect

    Durandurdu, Murat

    2015-10-15

    The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia at high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.

  8. Ab initio modeling of quasielastic neutron scattering of hydrogen pipe diffusion in palladium

    NASA Astrophysics Data System (ADS)

    Schiavone, Emily J.; Trinkle, Dallas R.

    2016-08-01

    A recent quasielastic neutron scattering (QENS) study of hydrogen in heavily deformed fcc palladium provided the first direct measurement of hydrogen pipe diffusion, which has a significantly higher diffusivity and lower activation barrier than in bulk. While ab initio estimates of hydrogen diffusion near a dislocation corroborated the experimental values, open questions remain from the Chudley-Elliott analysis of the QENS spectra, including significant nonmonotonic changes in jump distance with temperature. We calculate the spherically averaged incoherent scattering function at different temperatures using our ab initio data for the network of site energies, jump rates, and jump vectors to directly compare to experiment. Diffusivities and jump distances are sensitive to how a single Lorentzian is fit to the scattering function. Using a logarithmic least squares fit over the range of experimentally measured energies, our diffusivities and jump distances agree well with those measured by experiment. However, these calculated quantities do not reflect barriers or distances in our dislocation geometry. This computational approach allows for validation against experiment, along with a more detailed understanding of the QENS results.

  9. Ab initio calculation of the ro-vibrational spectrum of H2F+

    NASA Astrophysics Data System (ADS)

    Kyuberis, Aleksandra A.; Lodi, Lorenzo; Zobov, Nikolai F.; Polyansky, Oleg L.

    2015-10-01

    An ab initio study of the rotation-vibrational spectrum of the electronic ground state of the (gas-phase) fluoronium ion H2F+ is presented. A new potential energy surface (PES) and a new dipole moment surface (DMS) were produced and used to compute rotation-vibrational energy levels, line positions and line intensities. Our computations achieve an accuracy of 0.15 cm-1 for the fundamental vibrational frequencies, which is about 50 times more accurate than previous ab initio results. The computed room-temperature line list should facilitate the experimental observations of new H2F+ lines, in particular of yet unobserved overtone transitions. The H2F+ molecular ion, which is isoelectronic to water, has a non-linear equilibrium geometry but a low-energy barrier to linearity at about 6000 cm-1. As a result the effects of so-called quantum monodromy become apparent already at low bending excitations. An analysis of excited bends in terms of quantum monodromy is presented.

  10. Evolved chiral NN +3N Hamiltonians for ab initio nuclear structure calculations

    NASA Astrophysics Data System (ADS)

    Roth, Robert; Calci, Angelo; Langhammer, Joachim; Binder, Sven

    2014-08-01

    We discuss the building blocks for a consistent inclusion of chiral three-nucleon (3N) interactions into ab initio nuclear structure calculations beyond the lower p shell. We highlight important technical developments, such as the similarity renormalization group (SRG) evolution in the 3N sector, a JT-coupled storage scheme for 3N matrix elements with efficient on-the-fly decoupling, and the importance-truncated no-core shell model with 3N interactions. Together, these developments make converged ab initio calculations with explicit 3N interactions possible also beyond the lower p shell. We analyze in detail the impact of various truncations of the SRG-evolved Hamiltonian, in particular the truncation of the harmonic-oscillator model space used for solving the SRG flow equations and the omission of the induced beyond-3N contributions of the evolved Hamiltonian. Both truncations lead to sizable effects in the upper p shell and beyond and we present options to remedy these truncation effects. The analysis of the different truncations is a first step towards a systematic uncertainty quantification of all stages of the calculation.

  11. Can an ab initio three-body virial equation describe the mercury gas phase?

    PubMed

    Wiebke, J; Wormit, M; Hellmann, R; Pahl, E; Schwerdtfeger, P

    2014-03-27

    We report a sixth-order ab initio virial equation of state (EOS) for mercury. The virial coefficients were determined in the temperature range from 500 to 7750 K using a three-body approximation to the N-body interaction potential. The underlying two-body and three-body potentials were fitted to highly accurate Coupled-Cluster interaction energies of Hg2 (Pahl, E.; Figgen, D.; Thierfelder, C.; Peterson, K. A.; Calvo, F.; Schwerdtfeger, P. J. Chem. Phys. 2010, 132, 114301-1) and equilateral-triangular configurations of Hg3. We find the virial coefficients of order four and higher to be negative and to have large absolute values over the entire temperature range considered. The validity of our three-body, sixth-order EOS seems to be limited to small densities of about 1.5 g cm(-3) and somewhat higher densities at higher temperatures. Termwise analysis and comparison to experimental gas-phase data suggest a small convergence radius of the virial EOS itself as well as a failure of the three-body interaction model (i.e., poor convergence of the many-body expansion for mercury). We conjecture that the nth-order term of the virial EOS is to be evaluated from the full n-body interaction potential for a quantitative picture. Consequently, an ab initio three-body virial equation cannot describe the mercury gas phase. PMID:24547987

  12. Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H7+ cluster

    NASA Astrophysics Data System (ADS)

    Barragán, Patricia; Prosmiti, Rita; Wang, Yimin; Bowman, Joel M.

    2012-06-01

    Full-dimensional ab initio potential energy surface is constructed for the H_7^+ cluster. The surface is a fit to roughly 160 000 interaction energies obtained with second-order MöllerPlesset perturbation theory and the cc-pVQZ basis set, using the invariant polynomial method [B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009), 10.1080/01442350903234923]. We employ permutationally invariant basis functions in Morse-type variables for all the internuclear distances to incorporate permutational symmetry with respect to interchange of H atoms into the representation of the surface. We describe how different configurations are selected in order to create the database of the interaction energies for the linear least squares fitting procedure. The root-mean-square error of the fit is 170 cm-1 for the entire data set. The surface dissociates correctly to the H_5^+ + H2 fragments. A detailed analysis of its topology, as well as comparison with additional ab initio calculations, including harmonic frequencies, verify the quality and accuracy of the parameterized potential. This is the first attempt to present an analytical representation of the 15-dimensional surface of the H_7^+ cluster for carrying out dynamics studies.

  13. Three-cluster dynamics within an ab initio framework

    SciTech Connect

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to a 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.

  14. Ab initio study of structural and electronic properties of Cun@C60

    NASA Astrophysics Data System (ADS)

    Dhiman, Shobhna; Kumar, Ranjan; Dharamvir, Keya

    2013-06-01

    Ab initio investigation of structural and electronic properties of copper doped endohedral fullerene has been performed using numerical atomic orbital density functional theory. We have obtained the ground state structures for Cun@C60 (n=1-10). Which shows that C60 molecule can accommodate maximum of nine copper atoms, for n > 9 the cage eventually break. Encapsulated large number of copper atoms leads to deformation of cage with diameter varies from 7.00Å to 8.38Å. Binding energy/Cu atom is found to increase till n = 4 and after that it decreases with the number of Cu atoms with a sudden increase for n=10 and electronic affinity increases till n=2 then decreases uniformly till up to n=7 with a further sharp decrease for n=10. Ionization potential and Homo-Lumo gap shows a oscillatory nature. The results obtained are consistent with available theoretical and experimental results. The ab-initio calculations were performed using SIESTA code with generalized gradient approximation (GGA).

  15. Emergent properties of nuclei from ab initio coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.

    2016-06-01

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).

  16. a Microwave and AB Initio Study of the Nitric Acid - Trimethylamine Complex

    NASA Astrophysics Data System (ADS)

    Sedo, Galen; Leopold, Kenneth R.

    2009-06-01

    The microwave spectrum of the gas phase nitric acid - trimethylamine complex has been observed using Fourier transform microwave spectroscopy. The experimental rotational constants and (CH{_3}){_3}{^1}{^5}N-HNO{_3} isotope shifts are consistent with a complex in which the nitric acid proton forms a hydrogen bond to the nitrogen of the amine, similar to the experimentally determined structure of H{_3}N-HNO{_3} Analysis of the hyperfine structure in both the parent and (CH{_3}){_3}{^1}{^5}N-HNO{_3} spectra made it possible to determine, unambiguously, the quadrupole coupling constants of the {^1}{^5}N nuclei in both the nitric acid and trimethylamine moieties. Ab initio calculations, using the MP2/6-311++G(2df,2pd) level of theory and basis set, have been performed and are in quantitative agreement with the available experimental data. Both the experimentally determined quadrupole coupling constants and the ab initio structure have been used to assess the degree of proton transfer occurring in the nitric acid - trimethylamine complex. These results will be compared to those obtained for the H{_3}N-HNO{_3} and HNO{_3}-(H{_2}O){_n} [n = 0 - 3] complexes and discussed in terms of how binding partner basicity and the number of solvent molecules influence the incipient ionization of nitric acid moiety. M. E. Ott, and K. R. Leopold, J. Phys. Chem. A 1999, 103,1322-1328.

  17. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP).

    PubMed

    Aryal, Sitaram; Matsunaga, Katsuyuki; Ching, Wai-Yim

    2015-07-01

    Hydroxyapatite (HAP) is an important bioceramic which constitutes the mineral components of bones and hard tissues in mammals. It is bioactive and used as bioceramic coatings for metallic implants and bone fillers. HAP readily absorbs a large amount of impurities. Knowledge on the elastic and mechanical properties of impurity-doped HAP is a subject of great importance to its potential for biomedical applications. Zn and Mg are the most common divalent cations HAP absorbs. Using density function theory based ab initio methods, we have carried out a large number of ab initio calculations to obtain the bulk elastic and mechanical properties of HAP with Zn or Mg doped in different concentration at the Ca1 and Ca2 sites using large 352-atom supercells. Detailed information on their dependece on the concetraion of the substitued impurity is obtained. Our results show that Mg enhances overall elastic and bulk mechanical properties whereas Zn tends to degrade except at low concentrations. At a higher concentration, the mechanical properties of Zn and Mg doped HAP also depend significantly on impurity distribution between the Ca1 and Ca2 sites. There is a strong evidence that Zn prefers Ca2 site for substituion whereas Mg has no such preference. These results imply that proper control of dopant concentration and their site preference must carefully considered in using doped HAP for specific biomedical applications.

  18. Ab initio quantum chemistry in parallel-portable tools and applications

    SciTech Connect

    Harrison, R.J.; Shepard, R. ); Kendall, R.A. )

    1991-01-01

    In common with many of the computational sciences, ab initio chemistry faces computational constraints to which a partial solution is offered by the prospect of highly parallel computers. Ab initio codes are large and complex (O(10{sup 5}) lines of FORTRAN), representing a significant investment of communal effort. The often conflicting requirements of portability and efficiency have been successfully resolved on vector computers by reliance on matrix oriented kernels. This proves inadequate even upon closely-coupled shared-memory parallel machines. We examine the algorithms employed during a typical sequence of calculations. Then we investigate how efficient portable parallel implementations may be derived, including the complex multi-reference singles and doubles configuration interaction algorithm. A portable toolkit, modeled after the Intel iPSC and the ANL-ACRF PARMACS, is developed, using shared memory and TCP/IP sockets. The toolkit is used as an initial platform for programs portable between LANS, Crays and true distributed-memory MIMD machines. Timings are presented. 53 refs., 4 tabs.

  19. Operator evolution for ab initio electric dipole transitions of 4He

    DOE PAGES

    Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; Jurgenson, Eric D.; Navartil, Petr

    2015-07-24

    A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less

  20. Higher-order elastic constants and megabar pressure effects of bcc tungsten: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Vekilov, Yu. Kh.; Krasilnikov, O. M.; Lugovskoy, A. V.; Lozovik, Yu. E.

    2016-09-01

    The general method for the calculation of n th (n ≥2 ) order elastic constants of the loaded crystal is given in the framework of the nonlinear elasticity theory. For the crystals of cubic symmetry under hydrostatic compression, the two schemes of calculation of the elastic constants of second, third, and fourth order from energy-finite strain relations and stress-finite strain relations are implemented. Both techniques are applied for the calculation of elastic constants of orders from second to fourth to the bcc phase of tungsten at a 0-600 GPa pressure range. The energy and stress at the various pressures and deformations are obtained ab initio in the framework of projector augmented wave+generalized gradient approximation (PAW+GGA) method, as implemented in Vienna Ab initio Simulation Package (VASP) code. Using the obtained results, we found the pressure dependence of Grüneisen parameters for long-wave acoustic modes in this interval. The Lamé constants of second and third order were estimated for polycrystalline tungsten. The proposed method is applicable for crystals with arbitrary symmetry.

  1. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock

    2005-06-13

    As petroleum prices continue to rise and the United States seeks to reduce its dependency on foreign oil, there is a renewed interest in the research and development of more efficient and alternative energy sources, such as fuel cells. One approach is to utilize processes that can produce long-chain hydrocarbons from other sources. One such reaction is Fischer-Tropsch synthesis. Fischer-Tropsch synthesis is a process by which syngas (CO and H{sub 2}) is converted to higher molecular weight hydrocarbons. The reaction involves a complex set of bond-breaking and bond-making reactions, such as CO and H{sub 2} activation, hydrocarbon hydrogenation reactions, and hydrocarbon coupling reactions. This report details our initial construction of an ab initio based kinetic Monte Carlo code that can be used to begin to simulate Fischer-Tropsch synthesis over model Co(0001) surfaces. The code is based on a stochastic kinetic formalism that allows us to explicitly track the transformation of all reactants, intermediates and products. The intrinsic kinetics for the simulations were derived from the ab initio results that we reported in previous year summaries.

  2. Ab initio up to the melting point: Anharmonicity and vacancies in aluminum

    NASA Astrophysics Data System (ADS)

    Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.

    2009-03-01

    At elevated temperatures, the heat capacity of metals strongly deviates from the harmonic prediction. This was pointed out long agoootnotetextM. Born and E. Brody, Zeitschrift f"ur Physik 6, 132 (1921) and various explanations have been considered. Ab initio calculations showedootnotetextB. Grabowski, T. Hickel, J. Neugebauer, Phys. Rev. B 76, 24309 (2007) that a dominant part can be explained by quasiharmonic excitations. However, the detailed balance of further contributions, such as explicit anharmonicity and vacancies, is not clarified yet even for simple elementary metals. Aluminum is a prototypical example. Even though intensively studied, the ambiguous experimental situation has made a classification of the mechanisms impossible. To resolve the situation, we have calculated the full volume and temperature dependent ab initio free energy surface employing density-functional theory. In particular, we have included anharmonic and vacancy contributions using numerically highly efficient methods to coarse grain the configuration space. To obtain accurate vacancy energies, we have included the full spectrum of excitations: quasiharmonic, electronic, and explicitly anharmonic. The results are in contradiction to common belief, nevertheless the essential physics can be captured by a simple model.

  3. Deviational simulation of phonon transport in graphene ribbons with ab initio scattering

    SciTech Connect

    Landon, Colin D.; Hadjiconstantinou, Nicolas G.

    2014-10-28

    We present a deviational Monte Carlo method for solving the Boltzmann-Peierls equation with ab initio 3-phonon scattering, for temporally and spatially dependent thermal transport problems in arbitrary geometries. Phonon dispersion relations and transition rates for graphene are obtained from density functional theory calculations. The ab initio scattering operator is simulated by an energy-conserving stochastic algorithm embedded within a deviational, low-variance Monte Carlo formulation. The deviational formulation ensures that simulations are computationally feasible for arbitrarily small temperature differences, while the stochastic treatment of the scattering operator is both efficient and exhibits no timestep error. The proposed method, in which geometry and phonon-boundary scattering are explicitly treated, is extensively validated by comparison to analytical results, previous numerical solutions and experiments. It is subsequently used to generate solutions for heat transport in graphene ribbons of various geometries and evaluate the validity of some common approximations found in the literature. Our results show that modeling transport in long ribbons of finite width using the homogeneous Boltzmann equation and approximating phonon-boundary scattering using an additional homogeneous scattering rate introduces an error on the order of 10% at room temperature, with the maximum deviation reaching 30% in the middle of the transition regime.

  4. Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Vigil-Fowler, Derek; Lischner, Johannes; Neaton, Jeffrey B.; Louie, Steven G.

    2014-06-01

    Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semiconductors. Our calculations include electron-electron and electron-phonon interactions, and require no experimental input other than the structure of the material. We apply our approach to study the relaxation time and mean free path of hot carriers in Si, and map the band and k dependence of these quantities. We demonstrate that a hot carrier distribution characteristic of Si under solar illumination thermalizes within 350 fs, in excellent agreement with pump-probe experiments. Our work sheds light on the subpicosecond time scale after sunlight absorption in Si, and constitutes a first step towards ab initio quantification of hot carrier dynamics in materials.

  5. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces

    NASA Astrophysics Data System (ADS)

    Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-01

    Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.

  6. Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores

    DOE PAGES

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.

    2015-01-31

    In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A = La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order–disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimentalmore » observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.« less

  7. An ab Initio Benchmark and DFT Validation Study on Gold(I)-Catalyzed Hydroamination of Alkynes.

    PubMed

    Ciancaleoni, Gianluca; Rampino, Sergio; Zuccaccia, Daniele; Tarantelli, Francesco; Belanzoni, Paola; Belpassi, Leonardo

    2014-03-11

    High level ab initio calculations have been carried out on an archetypal gold(I)-catalyzed reaction: hydroamination of ethyne. We studied up to 12 structures of possible gold(I)-coordinated species modeling different intermediates potentially present in a catalytic cycle for the addition of a protic nucleophile to an alkyne. The benchmark is used to evaluate the performances of some popular density functionals for describing geometries and relative energies of stationary points along the reaction profile. Most functionals (including hybrid or meta-hybrid) give accurate structures but large nonsystematic errors (4-12 kcal/mol) along the reaction energy profile. The double hybrid functional B2PLYP outperforms all considered functionals and compares very nicely with our reference ab initio benchmark energies. Moreover, we present an assessment of the accuracy of commonly used approaches to include relativistic effects, such as relativistic effective potentials and a scalar ZORA Hamiltonian, by a comparison with the results obtained using a relativistic all-electron four-component Dirac-Kohn-Sham method. The contribution of nonscalar relativistic effects in gold(I)-catalyzed reactions, as we investigated here, is expected to be on the order of 1 kcal/mol. PMID:26580180

  8. Ab initio calculations of non-radiative carrier trapping due to deep impurity levels

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Wang; Shi, Lin

    2013-03-01

    Non-radiative carrier decay due to deep impurity levels in semiconductors is an important process which affects the efficiencies of devices from solar cells to light emitting diode. This process is due to multiple phonon emission. Despite of the fact the analytical formalisms have been derived long time ago, so far there is no direct ab initio calculations due to the high cost of calculating all the electron-phonon coupling constants. Here we introduce an algorithm which calculates all the electron-phonon coupling constants at once, hence allows the ab initio calculations of such processes. Another approximation is introduced to calculate the phonon modes of a given impurity system. We use a ZnGa-VN paired defect in GaN as an example to study this process. We found that while most of the promoting phonon modes (used to promote the transition with the electron-phonon coupling) come from the optical modes, the accepting phonon modes (used to satisfy the energy conservation) come mostly from the acoustic phonons. This work is supported by SC/BES/MSED of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, and by the National High Technology Research and Development Program of China (863 Program) (No. 2011AA03A103)

  9. Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system

    SciTech Connect

    Hormain, Laureline; Monnerville, Maurice Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón

    2015-04-14

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

  10. Ab initio calculation of oxygen self-diffusion coefficient in uranium dioxide UO2

    NASA Astrophysics Data System (ADS)

    Dorado, Boris; Garcia, Philippe; Torrent, Marc

    Uranium dioxide UO2 is the most widely used nuclear fuel worldwide and its atomic transport properties are relevant to practically all engineering aspects of the material. Although transport properties have already been studied in UO2 by means of first-principles calculations, the ab initio determination of self-diffusion coefficients has up to now remained unreachable because the relevant computational tools were neither available or adapted. The present work reports our results related to the ab initio calculation of the oxygen self-diffusion coefficient in UO2. We first determine the Gibbs free energies of formation of oxygen charged defects by calculating both the electronic and vibrational (hence entropic) contributions. Then, we use the transition state theory in order to compute the effective jump frequency of the defects, which in turn provides us with the value of the pre-exponential factor. The results are compared to self-diffusion data obtained experimentally with a careful monitoring of the relevant thermodynamic conditions (oxygen partial pressure, temperature, impurity content).

  11. Estudio ab initio del mecanismo de la reacción HSO + O3

    NASA Astrophysics Data System (ADS)

    Nebot Gil, I.

    La reacción entre el radical HSO y el ozono ha sido ampliamente estudiada desde el punto de vista experimental debido a la importancia que tiene el radical HSO en la oxidación de los compuestos de azufre reductores y a que puede contribuir a la producción de H2SO4 [1-4]. Se realizaron diversos estudios teóricos sobre la cinética de la reacción entre el radical HSO y el ozono. La reacción del HSO con el ozono presenta tres canales diferentes : HSO + O3 &rightarrow &HSO2 + O2 &rightarrow &HS + 2 O2 &rightarrow &SO + OH + O2 La controversia existente entre los grupos experimentales sobre cuál de las tres vías es la predominante, se ha resuelto mediante un estudio teórico de todas ellas utilizando métodos ab initio. La estructura de todos los reactivos, productos, intermedios y estados de transición ha sido optimizada a nivel ab initio utilizando los métodos UMP2 /6-31G** y QCISD/6-31G**.

  12. Hydrogen Bonds in Crystalline Imidazoles Studied by 15N NMR and ab initio MO Calculations

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Nagatomo, Shigenori; Masui, Hirotsugu; Nakamura, Nobuo; Hayashi, Shigenobu

    1999-07-01

    Intermolecular hydrogen bonds of the type N-H...N in crystals of imidazole and its 4-substituted and 4,5-disubstituted derivatives were studied by 15N CP/MAS NMR and an ab initio molecular orbital (MO) calculation. In the 15N CP/MAS NMR spectrum of each of the imidazole derivatives, two peaks due to the two different functional groups, >NH and =N-, were observed. The value of the 15N isotropic chemical shift for each nitrogen atom depends on both the length of the intermolecular hydrogen bond and the kind of the substituent or substituents. It was found that the difference between the experimen-tal chemical shifts of >NH and =N-varies predominantly with the hydrogen bond length but does not show any systematic dependence on the kind of substituent. The ab initio MO calculations suggest that the hydrogen bond formation influences the 15N isotropic chemical shift predominantly, and that the difference between the 15N isotropic chemical shift of >NH and =N-varies linearly with the hydrogen bond length.

  13. A new ab initio potential energy surface for the Ne-H 2 interaction

    NASA Astrophysics Data System (ADS)

    Lique, François

    2009-03-01

    A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.

  14. Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential

    SciTech Connect

    Yin, Chih-Chien; Li, Arvin Huang-Te; Chao, Sheng D.

    2013-11-21

    We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform.

  15. Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.

    One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.

  16. Structure and dynamics of bioactive phosphosilicate glasses and melts from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tilocca, Antonio

    2007-12-01

    Ab initio (Car-Parrinello) molecular dynamics simulations were carried out to investigate the melt precursor of a modified phosphosilicate glass with bioactive properties, and to quench the melt to the vitreous state. The properties of the 3000K liquid were extensively compared with those of the final glass structure. The melt is characterized by a significant fraction of structural defects (small rings, undercoordinated and overcoordinated ions), often combined together. The creation or removal of these coordinative defects in the liquid (through Si-O bond formation or dissociation) reflects frequent exchanges within the silicate first coordination shell, which in turn dynamically modify the intertetrahedral connectivity of silicate groups. The observed dynamical variation in both the identity and the number of silicate groups linked to a tagged Si ( Qn speciation) are considered key processes in the viscous flow of silicate melts [I. Farnan and J. F. Stebbins, Science 265, 1206 (1994)]. On the other hand, phosphate groups do not show an equally marked exchange activity in the coordination shell, but can still form links with Si. Once formed, these Si-O-P bridges are rather stable, and in fact they are retained in the glass phase obtained after cooling; their formation within the present full ab initio melt-and-quench approach strongly supports their presence in melt-derived phosphosilicate glasses with bioactive applications. On the other hand, the simulations show that the fraction of structural defects rapidly decreases during the cooling, and the glass is essentially free of miscoordinated ions and small rings.

  17. Moire pattern interlayer potentials in van der Waals materials from high level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Jung, Jeil; Leconte, Nicolas; Lebegue, Sebastien; Gould, Timothy

    Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. We study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) single layers for different possible combinations such as G/G, G/BN and BN/BN using high-level EXX+RPA ab initio calculations. The total energies differ substantially when compared with conventional LDA, but for stacking-dependent total energy differences we find that the dominance of short-range covalent-type binding over the longer-ranged van der Waals tails near equilibrium geometries renders the LDA as a reasonable starting point for ab initio calculation based analyses for the systems we have studied. Our calculations are useful input for study of strains originated by interlayer interactions in incommensurable 2D van der Waals crystals.

  18. Ab Initio Classical Dynamics Simulations of CO_2 Line-Mixing Effects in Infrared Bands

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Hartmann, Jean-Michel; Tran, Ha; Snels, Marcel; Stefani, Stefania; Piccioni, Giuseppe

    2013-06-01

    Ab initio calculations of line-mixing effects in CO_2 infrared bands are presented and compared with experiments. The predictions were carried using requantized Classical Dynamics Molecular Simulations (rCDMS) based on an approach previously developed and successfully tested for CO_2 isolated line shapes. Using classical dynamics equations, the force and torque applied to each molecule by the surrounding molecules (described by an ab initio intermolecular potential) are computed at each time step. This enables, using a requantization procedure, to predict dipole and isotropic polarizability auto-correlation functions whose Fourier-Laplace transforms yield the spectra. The quality of the rCDMS calculations is demonstrated by comparisons with measured spectra in the spectral regions of the 3ν_3 and 2ν_1+2ν_2+ν_3 Infrared bands. J.-M. Hartmann, H. Tran, N. H. Ngo, et al., Phys. Rev. Lett. A {87} (2013), 013403. H. Tran, C. Boulet, M. Snels, S. Stefani, J. Quant. Spectrosc. Radiat. Transfer {112} (2011), 925-936.

  19. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  20. 4He+n+n continuum within an ab initio framework

    DOE PAGES

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; Hupin, Guillaume

    2014-07-16

    In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known Jπ = 2+ resonance as well as a result consistent with a new low-lying second 2+ resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2–, 1+, and 0– channels, while no low-lying resonances are present in the 0+ and 1– channels.« less

  1. Ab initio molecular dynamics study of H2 formation inside POSS compounds.

    PubMed

    Kudo, Takako; Taketsugu, Tetsuya; Gordon, Mark S

    2011-04-01

    The mechanism and dynamics of the formation of a hydrogen molecule by incorporating two hydrogen atoms in a stepwise manner into the cavity of some POSS (polyhedral oligomeric silsesquioxanes) compounds has been investigated by ab initio molecular orbital and ab initio molecular dynamics (AIMD) methods. The host molecules in the present reactions are two types of POSS, T(8) ([HSiO(1.5)](8)) and T(12)(D(2d)) ([HSiO(1.5)](12)). AIMD simulations were performed at the CASSCF level of theory, in which two electrons and two orbitals of the colliding hydrogen atoms are included in the active space. The trajectories were started by inserting the second hydrogen atom into the hydrogen atom-encapsulated-POSS (H + H@T(n) → H(2)@T(n); n = 8 and 12). In many cases, the gradual formation of a hydrogen molecule has been observed after frequent collisions of two hydrogen atoms within the cages. The effect of the introduction of an argon atom in T(12) is discussed as well.

  2. Quantum supercharger library: hyper-parallel integral derivatives algorithms for ab initio QM/MM dynamics.

    PubMed

    Renison, C Alicia; Fernandes, Kyle D; Naidoo, Kevin J

    2015-07-01

    This article describes an extension of the quantum supercharger library (QSL) to perform quantum mechanical (QM) gradient and optimization calculations as well as hybrid QM and molecular mechanical (QM/MM) molecular dynamics simulations. The integral derivatives are, after the two-electron integrals, the most computationally expensive part of the aforementioned calculations/simulations. Algorithms are presented for accelerating the one- and two-electron integral derivatives on a graphical processing unit (GPU). It is shown that a Hartree-Fock ab initio gradient calculation is up to 9.3X faster on a single GPU compared with a single central processing unit running an optimized serial version of GAMESS-UK, which uses the efficient Schlegel method for s- and l-orbitals. Benchmark QM and QM/MM molecular dynamics simulations are performed on cellobiose in vacuo and in a 39 Å water sphere (45 QM atoms and 24843 point charges, respectively) using the 6-31G basis set. The QSL can perform 9.7 ps/day of ab initio QM dynamics and 6.4 ps/day of QM/MM dynamics on a single GPU in full double precision. © 2015 Wiley Periodicals, Inc.

  3. Quantum supercharger library: hyper-parallel integral derivatives algorithms for ab initio QM/MM dynamics.

    PubMed

    Renison, C Alicia; Fernandes, Kyle D; Naidoo, Kevin J

    2015-07-01

    This article describes an extension of the quantum supercharger library (QSL) to perform quantum mechanical (QM) gradient and optimization calculations as well as hybrid QM and molecular mechanical (QM/MM) molecular dynamics simulations. The integral derivatives are, after the two-electron integrals, the most computationally expensive part of the aforementioned calculations/simulations. Algorithms are presented for accelerating the one- and two-electron integral derivatives on a graphical processing unit (GPU). It is shown that a Hartree-Fock ab initio gradient calculation is up to 9.3X faster on a single GPU compared with a single central processing unit running an optimized serial version of GAMESS-UK, which uses the efficient Schlegel method for s- and l-orbitals. Benchmark QM and QM/MM molecular dynamics simulations are performed on cellobiose in vacuo and in a 39 Å water sphere (45 QM atoms and 24843 point charges, respectively) using the 6-31G basis set. The QSL can perform 9.7 ps/day of ab initio QM dynamics and 6.4 ps/day of QM/MM dynamics on a single GPU in full double precision. © 2015 Wiley Periodicals, Inc. PMID:25975864

  4. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  5. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  6. Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method

    NASA Astrophysics Data System (ADS)

    Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2015-04-01

    We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.

  7. Ab initio calculations of the optical properties of crystalline and liquid InSb

    SciTech Connect

    Sano, Haruyuki; Mizutani, Goro

    2015-11-15

    Ab initio calculations of the electronic and optical properties of InSb were performed for both the crystalline and liquid states. Two sets of atomic structure models for liquid InSb at 900 K were obtained by ab initio molecular dynamics simulations. To reduce the effect of structural peculiarities in the liquid models, an averaging of the two sets of the calculated electronic and optical properties corresponding to the two liquid models was performed. The calculated results indicate that, owing to the phase transition from crystal to liquid, the density of states around the Fermi level increases. As a result, the energy band gap opening near the Fermi level disappears. Consequently, the optical properties change from semiconductor to metallic behavior. Namely, owing to the melting of InSb, the interband transition peaks disappear and a Drude-like dispersion is observed in the optical dielectric functions. The optical absorption at a photon energy of 3.06 eV, which is used in Blu-ray Disc systems, increases owing to the melting of InSb. This increase in optical absorption is proposed to result from the increased optical transitions below 2 eV.

  8. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific

  9. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  10. Ab initio ground and the first excited adiabatic and quasidiabatic potential energy surfaces of H + + CO system

    NASA Astrophysics Data System (ADS)

    George, D. X. F.; Kumar, Sanjay

    2010-08-01

    Ab initio global adiabatic as well as quasidiabatic potential energy surfaces for the ground and the first excited electronic states of the H + + CO system have been computed as a function of the Jacobi coordinates ( R, r, γ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. In addition, nonadiabatic coupling matrix elements arising from radial motion, mixing angle and coupling potential have been computed using the ab initio procedure [Simah et al. (1999) [66

  11. Ab initio study of electron-ion structure factors in binary liquids with different types of chemical bonding

    SciTech Connect

    Klevets, Ivan; Bryk, Taras

    2014-12-07

    Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed.

  12. Ab initio determination of mode coupling in HSSH - The torsional splitting in the first excited S-S stretching state

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Winnewisser, G.; Yamada, K. M. T.; Defrees, D. J.; Mclean, A. D.

    1989-01-01

    A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.

  13. The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2 : Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.

    2016-01-01

    Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.

  14. Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH

    SciTech Connect

    Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy; Crawford, T Daniel; Windus, Theresa L.; Hase, William L.

    2006-09-20

    Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. The structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.

  15. Thermochemistry of Aqueous Hydroxyl Radical from Advances in Photoacoustic Calorimetry and ab Initio Continum Solvation Theory

    SciTech Connect

    Autrey, Thomas; Brown, Aaron K.; Camaioni, Donald M.; Dupuis, Michel; Foster, Nancy S.; Getty, April D.

    2004-03-31

    Photoacoustic signals from dilute ({approx}30 mM) solutions of H{sub 2}O{sub 2} were measured over the temperature range from 10-45 C to obtain the reaction enthalpy and volume change for H{sub 2}O{sub 2}(aq) {yields} 2 OH(aq) from which we ultimately determined {Delta}{sub f}G{sup o}, {Delta}{sub f}H{sup o} and partial molal volume, v{sup o}, of OH (aq). We find {Delta}{sub r}H = 46.8 {+-} 1.4 kcal/mol, which is 4 kcal/mol smaller than the gas phase bond energy, and {Delta}V{sub r} = 6.5 {+-} 0.4 mL/mol. The v{sup o} for OH in water is 14.4 {+-} 0.4 mL/ml: smaller than the v{sup o} of water. Using ab initio continuum theory, the hydration free energy is calculated to be -3.9 {+-} 0.3 kcal/mol (for standard states in number density concentration units) by a novel approach devised to capture in the definition of the solute cavity the strength and specific interactions of the solute with a water solvent molecule. The shape of the cavity is defined by ''rolling'' a 3 dimensional electron density isocontour of water on the ab initio water-OH minimum interaction surface. The value of the contour is selected to reproduce the volume of OH in water. We obtain for OH(aq): {Delta}{sub f}H{sup o} = -0.2 {+-} 1.4 and {Delta}{sub f}G{sup o} = 5.8 {+-} 0.4 kcal/mol that are in agreement with literature values. The results provide confidence in the pulsed PAC technique for measuring aqueous thermochemistry of radicals and open the way to obtaining thermochemistry for most radicals that can be formed by reaction of OH with aqueous substrates while advancing the field of continuum solvation theory towards ab initio-defined solute cavities.

  16. Quantitative Comparison of a New Ab Initio Micrometeor Ablation Model with an Observationally Verifiable Standard Model

    NASA Astrophysics Data System (ADS)

    Meisel, David D.; Szasz, Csilla; Kero, Johan

    2008-06-01

    The Arecibo UHF radar is able to detect the head-echos of micron-sized meteoroids up to velocities of 75 km/s over a height range of 80 140 km. Because of their small size there are many uncertainties involved in calculating their above atmosphere properties as needed for orbit determination. An ab initio model of meteor ablation has been devised that should work over the mass range 10-16 kg to 10-7 kg, but the faint end of this range cannot be observed by any other method and so direct verification is not possible. On the other hand, the EISCAT UHF radar system detects micrometeors in the high mass part of this range and its observations can be fit to a “standard” ablation model and calibrated to optical observations (Szasz et al. 2007). In this paper, we present a preliminary comparison of the two models, one observationally confirmable. Among the features of the ab initio model that are different from the “standard” model are: (1) uses the experimentally based low pressure vaporization theory of O’Hanlon (A users’s guide to vacuum technology, 2003) for ablation, (2) uses velocity dependent functions fit from experimental data on heat transfer, luminosity and ionization efficiencies measured by Friichtenicht and Becker (NASA Special Publication 319: 53, 1973) for micron sized particles, (3) assumes a density and temperature dependence of the micrometeoroids and ablation product specific heats, (4) assumes a density and size dependent value for the thermal emissivity and (5) uses a unified synthesis of experimental data for the most important meteoroid elements and their oxides through least square fits (as functions of temperature, density, and/or melting point) of the tables of thermodynamic parameters given in Weast (CRC Handbook of Physics and Chemistry, 1984), Gray (American Institute of Physics Handbook, 1972), and Cox (Allen’s Astrophysical Quantities 2000). This utilization of mostly experimentally determined data is the main reason for

  17. i-PI: A Python interface for ab initio path integral molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ceriotti, Michele; More, Joshua; Manolopoulos, David E.

    2014-03-01

    Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic

  18. Electronic State Spectroscopy of Halothane As Studied by ab Initio Calculations, Vacuum Ultraviolet Synchrotron Radiation, and Electron Scattering Methods.

    PubMed

    da Silva, F Ferreira; Duflot, D; Hoffmann, S V; Jones, N C; Rodrigues, F N; Ferreira-Rodrigues, A M; de Souza, G G B; Mason, N J; Eden, S; Limão-Vieira, P

    2015-08-01

    We present the first set of ab initio calculations (vertical energies and oscillator strengths) of the valence and Rydberg transitions of the anaesthetic compound halothane (CF3CHBrCl). These results are complemented by high-resolution vacuum ultraviolet photoabsorption measurements over the wavelength range 115-310 nm (10.8-4.0 eV). The spectrum reveals several new features that were not previously reported in the literature. Spin-orbit effects have been considered in the calculations for the lowest-lying states, allowing us to explain the broad nature of the 6.1 and 7.5 eV absorption bands assigned to σ*(C-Br) ← nBr and σ*(C-Cl) ← n(Cl) transitions. Novel absolute photoabsorption cross sections from electron scattering data were derived in the 4.0-40.0 eV range. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of halothane in the upper stratosphere (20-50 km).

  19. Electronic State Spectroscopy of Halothane As Studied by ab Initio Calculations, Vacuum Ultraviolet Synchrotron Radiation, and Electron Scattering Methods.

    PubMed

    da Silva, F Ferreira; Duflot, D; Hoffmann, S V; Jones, N C; Rodrigues, F N; Ferreira-Rodrigues, A M; de Souza, G G B; Mason, N J; Eden, S; Limão-Vieira, P

    2015-08-01

    We present the first set of ab initio calculations (vertical energies and oscillator strengths) of the valence and Rydberg transitions of the anaesthetic compound halothane (CF3CHBrCl). These results are complemented by high-resolution vacuum ultraviolet photoabsorption measurements over the wavelength range 115-310 nm (10.8-4.0 eV). The spectrum reveals several new features that were not previously reported in the literature. Spin-orbit effects have been considered in the calculations for the lowest-lying states, allowing us to explain the broad nature of the 6.1 and 7.5 eV absorption bands assigned to σ*(C-Br) ← nBr and σ*(C-Cl) ← n(Cl) transitions. Novel absolute photoabsorption cross sections from electron scattering data were derived in the 4.0-40.0 eV range. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of halothane in the upper stratosphere (20-50 km). PMID:26171941

  20. Laser sputtering generation of B/sub 2/ for ESR matrix isolation studies: comparison with ab initio CI theoretical calculations

    SciTech Connect

    Knight, L.B. Jr.; Gregory, B.W.; Cobranchi, S.T.; Feller, D.; Davidson, E.R.

    1987-06-10

    The /sup 11/B/sub 2/ molecule has been trapped in neon and argon matrices at 5 +/- 1 K for ESR (electron spin resonance) investigations. Laser sputtering from solid boron was used to generate the B/sub 2/ molecule whose ground electronic state has been established experimentally for the first time to be /sup 3/..sigma../sub g//sup -/. The ESR nuclear hyperfine parameters for B/sub 2/ and B atoms have been compared with the results of ab initio CI theoretical calculations. Good agreement between theory and experiment is found for the dipolar component of the A tensor but not for the small and difficult to calculate isotropic hfs. Reasons that make the Fermi contact term especially difficult to calculate in this particular case are presented. The argon matrix ESR results yield the following magnetic parameters for /sup 11/B/sub 2/ in its ground electronic state: g/sub parallel/ = g/sub perpendicular/ = 2.0015 (4); A/sub parallel/ = +/- 11 (1) MHz and A/sub perpendicular/ = +/- 27.4 (3) MHz for /sup 11/B and the zero field parameter; and the D value is 3633 (3) MHz. As discussed, the most reasonable signs for the A values are A/sub parallel/ < O and A/sub perpendicular/ > 0. The neon matrix value of D was found to be 3840 (3) MHz and A/sub perpendicular/ in neon is +/- 26.6 (3) MHz.

  1. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    SciTech Connect

    Sun, Hongyan E-mail: ghanshyam.vaghjiani@us.af.mil; Vaghjiani, Ghanshyam L. E-mail: ghanshyam.vaghjiani@us.af.mil

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH{sub 2} group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C{sub 2v} symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which

  2. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10.

    PubMed

    Zhang, Yang

    2014-02-01

    We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems.

  3. Defining Condensed Phase Reactive Force Fields from ab Initio Molecular Dynamics Simulations: The Case of the Hydrated Excess Proton.

    PubMed

    Knight, Chris; Maupin, C Mark; Izvekov, Sergei; Voth, Gregory A

    2010-10-12

    In this report, a general methodology is presented for the parametrization of a reactive force field using data from a condensed phase ab initio molecular dynamics (AIMD) simulation. This algorithm allows for the creation of an empirical reactive force field that accurately reproduces the underlying ab initio reactive surface while providing the ability to achieve long-time statistical sampling for large systems not possible with AIMD alone. In this work, a model for the hydrated excess proton is constructed where the hydronium cation and proton hopping portions of the model are statistically force-matched to the results of Car-Parrinello Molecular Dynamics (CPMD) simulations. The flexible nature of the algorithm also allows for the use of the more accurate classical simple point-charge flexible water (SPC/Fw) model to describe the water-water interactions while utilizing the ab initio data to create an overall multistate molecular dynamics (MS-MD) reactive model of the hydrated excess proton in water. The resulting empirical model for the system qualitatively reproduces thermodynamic and dynamic properties calculated from the ab initio simulation while being in good agreement with experimental results and previously developed multistate empirical valence bond (MS-EVB) models. The present methodology, therefore, bridges the AIMD technique with the MS-MD modeling of reactive events, while incorporating key strengths of both. PMID:26616784

  4. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  5. Rotational spectra, conformational structures, and dipole moments of thiodiglycol by jet-cooled FTMW and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Liu, Qiang; Suenram, R. D.; Lovas, F. J.; Hight Walker, A. R.; Jensen, J. O.; Samuels, A. C.

    2004-12-01

    The rotational spectra of three low-energy conformers of thiodiglycol (TDG) (HOCH 2CH 2SCH 2CH 2OH) have been measured in a molecular beam using a pulsed-nozzle Fourier-transform microwave spectrometer. To determine the likely conformational structures with ab initio approach, conformational structures of 2-(ethylthio)ethanol (HOEES) (CH 3CH 2SCH 2CH 2OH) were used as starting points together with the consideration of possible intramolecular hydrogen bonding in TDG. Three lower-energy conformers have been found for TDG at the MP2=Full/6311G** level and ab initio results agree nicely with experimentally determined rotational constants. In addition, Stark measurements were performed for two of the three conformers for dipole moment determinations, adding to our confidence of the conformational structure matches between experimental observations and ab initio calculations. Of the three lower-energy conformers, one displays a compact folded-like structure with strong hydrogen bonding between the two hydroxyl groups and the central sulfide atom. Two other conformers have relatively open chain-like structures with hydrogen bonding between each of the hydroxyl groups to the central sulfur atom, of which one has pure b-type dipole moment according to the ab initio results.

  6. Ab Initio Calculated and Experimentally Measured Raman Spectra of Spodumene (LiAlSi2O6)

    NASA Astrophysics Data System (ADS)

    Stangarone, C.; Prencipe, M.; Mantovani, L.; Bersani, D.; Tribaudino, M.; Lottici, P. P.

    2014-06-01

    Polarization Raman measurements on spodumene enabled the identification of all 30 active modes (14 Ag and 16 Bg). Ab initio CRYSTAL14 calculations (WC1LYP hamiltonian) give very good agreement for frequencies (ǀΔǀ< 4.8 cm^-1) and intensities.

  7. Bulk Modulus of Sc2O3: Ab initio Calculations and Experimental Results

    SciTech Connect

    S Barzilai; I Halvey; O Yeheskel

    2011-12-31

    The bulk modulus of scandia is evaluated by ab initio calculation, based on density functional theory, and compared with bulk modulus measurement on nearly fully dense scandia and with the value attained from the equation of state based on diamond anvil cell measurements. The current results are in the upper range of the bulk moduli results in the literature. The scatter in the literature results might be explained by the differences in the specific volumes of the measured and calculated cases. For the specific volume of 59.65{+-}0.07 {angstrom}{sup 3} the average measured isothermal bulk modulus of scandia from the present study and recent literature results is 188{+-}10 GPa.

  8. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    SciTech Connect

    Ching, Wai-Yim

    2013-12-31

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  9. Ab initio study of pressure induced structural and electronic properties in TmPo

    SciTech Connect

    Makode, Chandrabhan Pataiya, Jagdish; Sanyal, Sankar P.; Panwar, Y. S.; Aynyas, Mahendra

    2015-06-24

    We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.

  10. An ab initio approach to the anisotropic perpendicular diffusion of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Nicholas; Richardson, John; Burger, Renier

    2016-07-01

    The assumption that cosmic-ray diffusion perpendicular to the background magnetic field is anisotropic has been made in many numerical modulation studies. This was done in order to reproduce spacecraft observations of, for example, lower than expected latitude gradients of galactic protons. This assumption is usually justified in terms of observations of non-axisymmetric turbulent magnetic fluctuations, but is often implemented in a completely ad hoc manner. This study implements anisotropic perpendicular diffusion coefficients in an ab initio cosmic ray modulation model in a self-consistent manner, employing perpendicular mean free path expressions derived for the case where transverse magnetic fluctuations are non-axisymmetric. Voyager magnetic field observations are analysed to ascertain the nature of this non-axisymmetry, and modulation model solutions for various assumptions as to the spatial dependence of this non-axisymmetry, also taking into account the Voyager observations, are presented.

  11. Ab initio charge transport through N-doped carbon nanotubes: microscopic understanding of carbon nanotube sensors

    NASA Astrophysics Data System (ADS)

    Novaes, Frederico D.; Rossi, Mariana; da Silva, António J. R.; Fazzio, A.

    2006-03-01

    We calculate, using an ab initio non-equilibrium Green's function formalism, the conductance of metallic carbon nanotubes with pyridine-like defects. We show that there is a decrease of the conductance at the Fermi energy due to these defects, which is caused by nitrogen related levels within an energy window of 1.5 eV below the Fermi energy. We then investigate how exposure to NH3 can affect the conductance. At the pyridine- like structure the NH3 dissociated into NH2 and H, with both molecules binding to nitrogen atoms. This configuration leads to an increase of the conductance, and cannot, therefore, explain the increase of resistance that has been experimentally observed. We then investigate other configurations, and suggest that a possible cause of the resistance increase is adsorption of atomic or molecular species at the wall of pristine nanotubes.

  12. Investigations into the role of oxacarbenium ions in glycosylation reactions by ab initio molecular dynamics.

    PubMed

    Ionescu, Andrei R; Whitfield, Dennis M; Zgierski, Marek Z; Nukada, Tomoo

    2006-12-29

    We present a constrained ab initio molecular dynamics method that allows the modeling of the conformational interconversions of glycopyranosyl oxacarbenium ions. The model was successfully tested by estimating the barriers to ring inversion for two 4-substituted tetrahydropyranosyl oxacarbenium ions. The model was further extended to predict the pathways that connect the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-glucopyranosyl cation to its inverted (5)S(1) conformation and the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-mannopyranosyl cation to its inverted (3)E conformation. The modeled interconversion pathways reconcile a large body of experimental work on the acid-catalyzed hydrolysis of glycosides and the mechanisms of a number of glucosidases and mannosidases.

  13. Electron transfer and localization in endohedral metallofullerenes: Ab initio density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Shenyuan; Yoon, Mina; Hicke, Christian; Zhang, Zhenyu; Wang, Enge

    2008-09-01

    Endohedral metallofullerenes constitute an appealing class of nanoscale building blocks for fabrication of a wide range of materials. One open question of fundamental importance is the precise nature of charge redistribution within the carbon cages (Cn) upon metal encapsulation. Using ab initio density functional theory, we systematically study the electronic structure of metallofullerenes, focusing on the spatial charge redistribution. For large metallofullerenes (n>32) , the valence electrons of the metal atoms are all transferred to the fullerene states. Surprisingly, the transferred charge is found to be highly localized inside the cage near the metal cations rather than uniformly distributed on the surfaces of the carbon cage as traditionally believed. This counterintuitive charge localization picture is attributed to the strong metal-cage interactions within the systems. These findings may prove to be instrumental in the design of fullerene-based functional nanomaterials.

  14. An ab initio model for the modulation of galactic cosmic-ray electrons

    SciTech Connect

    Engelbrecht, N. E.; Burger, R. A.

    2013-12-20

    The modulation of galactic cosmic-ray electrons is studied using an ab initio three-dimensional steady state cosmic-ray modulation code in which the effects of turbulence on both the diffusion and drift of these cosmic-rays are treated as self-consistently as possible. A significant refinement is that a recent two-component turbulence transport model is used. This model yields results in reasonable agreement with observations of turbulence quantities throughout the heliosphere. The sensitivity of computed galactic electron intensities to choices of various turbulence parameters pertaining to the dissipation range of the slab turbulence spectrum, and to the choice of model of dynamical turbulence, is demonstrated using diffusion coefficients derived from the quasi-linear and extended nonlinear guiding center theories. Computed electron intensities and latitude gradients are also compared with spacecraft observations.

  15. Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression.

    PubMed

    Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella

    2008-05-14

    We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond. PMID:18532830

  16. Kinetics of reaction with water vapor and ab initio study of titanium beryllide

    NASA Astrophysics Data System (ADS)

    Munakata, K.; Kawamura, H.; Uchida, M.

    2007-08-01

    Beryllium is one of the candidate materials of the neutron multiplier in the tritium-breeding blanket. Titanium beryllides such as Be 12Ti are known to have advantages over beryllium from the perspectives of higher melting point, lower chemical reactivity, lower swelling and so forth. The reaction of titanium beryllides with water vapor was investigated. The sample disks of Be 12Ti were exposed to an argon gas with 10 000 ppm of water vapor, and the sample temperature was raised to 1000 °C. However, the chaotic breakaway reaction was not observed. The kinetics of oxidation on the surface of Be 12Ti by water vapor was investigated using a model differential equation, and the reaction constant was quantified. Furthermore, to know the electron state in Be 12Ti, ab initio calculations of quantum chemistry were performed using CRYSTAL 98. The structure optimization of Be 12Ti crystal was attempted, and an electron density map was generated.

  17. Ab initio calculation and spectral properties of nano- and bulk materials

    SciTech Connect

    Kulagin, N. A.

    2013-01-15

    This paper presents the development of ab initio calculation of the electronic structure of either clusters, nano-crystals, doped and unperfected bulk crystals. In addition, analysis of selected experimental data for {gamma}- or plasma irradiated pure and doped wide-band gap oxides such as sapphire, {alpha}-Al{sub 2}O{sub 3}, garnet, Y{sub 3}Al{sub 5}O{sub 12}, Gd{sub 3}Sc{sub 2}Al{sub 3}O{sub 12} and perovskites YAlO{sub 3}, SrTiO{sub 3} is presented. Change in the crystals surface morphology and spectroscopic properties of sapphire, perovskites, garnets as well as ion oxidation state in pure and doped {gamma}- and plasma irradiated crystals are discussed in detail using the optical and X ray spectroscopy experimental results.

  18. Ab initio downfolding for electron-phonon-coupled systems: Constrained density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Nomura, Yusuke; Arita, Ryotaro

    2015-12-01

    We formulate an ab initio downfolding scheme for electron-phonon-coupled systems. In this scheme, we calculate partially renormalized phonon frequencies and electron-phonon coupling, which include the screening effects of high-energy electrons, to construct a realistic Hamiltonian consisting of low-energy electron and phonon degrees of freedom. We show that our scheme can be implemented by slightly modifying the density functional-perturbation theory (DFPT), which is one of the standard methods for calculating phonon properties from first principles. Our scheme, which we call the constrained DFPT, can be applied to various phonon-related problems, such as superconductivity, electron and thermal transport, thermoelectricity, piezoelectricity, dielectricity, and multiferroicity. We believe that the constrained DFPT provides a firm basis for the understanding of the role of phonons in strongly correlated materials. Here, we apply the scheme to fullerene superconductors and discuss how the realistic low-energy Hamiltonian is constructed.

  19. Modification and ab-initio spectroscopic application of modified commerce terahertz spectrometer by using homemade parts

    NASA Astrophysics Data System (ADS)

    Lubenko, D. M.; Losev, V. F.; Andreev, Yu. M.; Kokh, K. A.; Lanskii, G. V.; Svetlichnyi, V. A.

    2015-12-01

    Ab-initio study on modification of commerce terahertz spectrometer with time resolution Z-3 (Zomega, USA) by substitution of ZnTe and GaP detectors and LT-GaAs generator for homemade of pure and S-doped GaSe is carried out. It was established that in spite of not optimized parameters pure and doped GaSe:S(0.3 mass%) crystal are comparable, relatively, in generation efficiency and detection sensitivity to commerce units due to lower nonlinear optical loss and much higher damage threshold. The advantages are in force from pump fluences of below 5 mJ/cm2 for pure GaSe. The closer S-doping to optimal concentration, the lover fluences resulting in the advantages. Pure and S-doped GaSe demonstrate higher reliability and larger dynamic range of operation. Recorded absorption spectra well match known spectra.

  20. Ab initio study of the anharmonic lattice dynamics of iron at the γ -δ phase transition

    NASA Astrophysics Data System (ADS)

    Lian, Chao-Sheng; Wang, Jian-Tao; Chen, Changfeng

    2015-11-01

    We report calculations of phonon dispersions of iron (Fe) at its γ -δ phase transition using a self-consistent ab initio lattice dynamical method in conjunction with an effective magnetic force approach via the antiferromagnetic approximation. Our results show that anharmonic phonon-phonon interactions play a crucial role in stabilizing the δ -Fe phase in the open bcc lattice. In contrast, the lattice dynamics of the close-packed fcc γ -Fe phase are dominated by magnetic interactions. Simultaneous considerations of the lattice anharmonic and magnetic interactions produced temperature-dependent phonon dispersions for δ -Fe and γ -Fe phases in excellent agreement with recent experimental measurements. The present results highlight the key role of lattice anharmonicity in determining the structural stability of iron at high temperatures, which has significant implications for other high-temperature paramagnetic metals like Ce and Pu.

  1. Ab initio based investigation of interstitial interactions and Snoek relaxation in Nb-O

    NASA Astrophysics Data System (ADS)

    Dmitriev, V. V.; Blanter, M. S.; Ruban, A. V.; Johansson, B.

    2012-02-01

    Chemical and strain-induced effective pair interactions of interstitial oxygen atoms in bcc Nb have been determined in supercell first-principles calculations using Vienna ab initio simulation package (VASP). The strain-induced interactions are in reasonable agreement with those obtained earlier within a phenomenological microscopic Krivoglaz-Kanzaki-Khachaturyan model (KKKM). At the same time, the chemical interactions, which have been considered to be small in earlier theoretical considerations, turned out to be dominating at the first several coordination shells. The obtained interactions have been used in calculations of the concentration- and temperature-dependence of the internal friction Snoek peak. The theoretical results are found to be in good agreement with the existing experimental data.

  2. Ab initio study of nitrogen-multisubstituted neutral and positively charged C{sub 20} fullerene

    SciTech Connect

    Rani, Anita; Kumar, Ranjan

    2014-04-24

    Ab initio investigation of structural and electronic properties of Nitrogen doped fullerenes, obtained from C{sub 20} by replacing up to 10 C atoms with N atoms, are studied by means of first principals density functional theory calculations using numerical orbitals as basis sets. We have obtained the ground state structures for C{sub 20−n}N{sub n} for n=1-10. While substituting nitrogen atoms, we cannot substitute more than 9 nitrogen atoms. Nitrogen doping in C20 shows a significant change in density of states. For a better comparison with experimental measurements, we have also considered some positively charged ions and report the differences between properties of these ions and the corresponding neutral molecules.

  3. Ab initio calculation of ICD widths in photoexcited HeNe

    SciTech Connect

    Jabbari, G.; Klaiman, S.; Chiang, Y.-C.; Gokhberg, K.; Trinter, F.; Jahnke, T.

    2014-06-14

    Excitation of HeNe by synchrotron light just below the frequency of the 1s → 3p transition of isolated He has been recently shown to be followed by resonant interatomic Coulombic decay (ICD). The vibrationally resolved widths of the ICD states were extracted with high precision from the photoion spectra. In this paper, we report the results of ab initio calculations of these widths. We show that interaction between electronic states at about the equilibrium distance of HeNe makes dark states of He accessible for the photoexcitation and subsequent electronic decay. Moreover, the values of the calculated widths are shown to be strongly sensitive to the presence of the non-adiabatic coupling between the electronic states participating in the decay. Therefore, only by considering the complete manifold of interacting decaying electronic states a good agreement between the measured and computed ICD widths can be achieved.

  4. Ab initio analysis of proton transfer dynamics in (H 2O) 3H +

    NASA Astrophysics Data System (ADS)

    Geissler, Phillip L.; Dellago, Christoph; Chandler, David; Hutter, Jürg; Parrinello, Michele

    2000-04-01

    We have harvested ab initio trajectories of proton transfer in (H 2O) 3H + by combining Car-Parrinello molecular dynamics (CPMD) with the transition path sampling method. Two transition state regions contribute to these dynamics, with saddle points similar to those identified by Geissler, Dellago, and Chandler for an empirical model of the same cluster [Phys. Chem. Chem. Phys. 1 (1999) 1317]. As in that model, the location of a transition state along a finite-temperature trajectory indicates that proton transfer is driven by reorganization of the oxygen ring. From vibrational properties it is estimated that the characteristic time for proton transfer is ˜1 ns at a temperature of 300 K.

  5. Enhanced thermal decomposition of nitromethane on functionalized graphene sheets: ab initio molecular dynamics simulations.

    PubMed

    Liu, Li-Min; Car, Roberto; Selloni, Annabella; Dabbs, Daniel M; Aksay, Ilhan A; Yetter, Richard A

    2012-11-21

    The burning rate of the monopropellant nitromethane (NM) has been observed to increase by adding and dispersing small amounts of functionalized graphene sheets (FGSs) in liquid NM. Until now, no plausible mechanisms for FGSs acting as combustion catalysts have been presented. Here, we report ab initio molecular dynamics simulations showing that carbon vacancy defects within the plane of the FGSs, functionalized with oxygen-containing groups, greatly accelerate the thermal decomposition of NM and its derivatives. This occurs through reaction pathways involving the exchange of protons or oxygens between the oxygen-containing functional groups and NM and its derivatives. FGS initiates and promotes the decomposition of the monopropellant and its derivatives, ultimately forming H(2)O, CO(2), and N(2). Concomitantly, oxygen-containing functional groups on the FGSs are consumed and regenerated without significantly changing the FGSs in accordance with experiments indicating that the FGSs are not consumed during combustion. PMID:23101732

  6. HEAT: High accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview.

    SciTech Connect

    Harding, M. E.; Vazquez, J.; Ruscic, B.; Wilson, A. K.; Gauss, J.; Stanton, J. F.; Chemical Sciences and Engineering Division; Univ. t Mainz; The Univ. of Texas; Univ. of North Texas

    2008-01-01

    Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate additive treatments of the two effects have limitations that are significant in the realm of <1 kJ mol{sup -1} theoretical thermochemistry.

  7. Quantum fluctuations and isotope effects in ab initio descriptions of water

    SciTech Connect

    Wang, Lu; Markland, Thomas E.; Ceriotti, Michele

    2014-09-14

    Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.

  8. Ab initio study of He point defects in fcc Au-Ag alloys

    SciTech Connect

    Zhu, Zi Qiang; Yang, Li; Nie, JL; Peng, SM; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-04-25

    The relative stabilities of He defects in two fcc Au-Ag alloys (Au3Ag2 and AuAg) are investigated using ab initio method based on density functional theory. The results show that the stabilities of He defects in the two alloys mainly depend on the atomic arrangements of the nearest neighboring host metals. A He interstitial prefers to stay at a site with more Ag neighboring atoms, while the favorable substitutional site has more Au neighboring atoms in Au-Ag alloys. Moreover, the substitutional He defects are the most stable configurations in both the alloys, and the octahedral He interstitials are energetically more favorable than the tetrahedral interstitials. It is of interest to note that the properties of He defects slightly depend on the mass-density of Au-Ag alloys. The results also demonstrate that the relative stabilities of He defects are primarily attributed to the hybridization between metals d states and He p states.

  9. Dissociation dynamics of ethylene molecules on a Ni cluster using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shimamura, K.; Shibuta, Y.; Ohmura, S.; Arifin, R.; Shimojo, F.

    2016-04-01

    The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed.

  10. Decarboxylation of furfural on Pd(111): Ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xue, Wenhua; Dang, Hongli; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Furfural conversion over metal catalysts plays an important role in the studies of biomass-derived feedstocks. We report ab initio molecular dynamics simulations for the decarboxylation process of furfural on the palladium surface at finite temperatures. We observed and analyzed the atomic-scale dynamics of furfural on the Pd(111) surface and the fluctuations of the bondlengths between the atoms in furfural. We found that the dominant bonding structure is the parallel structure in which the furfural plane, while slightly distorted, is parallel to the Pd surface. Analysis of the bondlength fluctuations indicates that the C-H bond is the aldehyde group of a furfural molecule is likely to be broken first, while the C =O bond has a tendency to be isolated as CO. Our results show that the reaction of decarbonylation dominates, consistent with the experimental measurements. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSEDE's and NERSC's supercomputers.

  11. Ab initio study on the dynamics of furfural at the liquid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers

  12. Pressure effect on elastic anisotropy of crystals from ab initio simulations: The case of silicate garnets

    SciTech Connect

    Mahmoud, A.; Erba, A. Dovesi, R.; Doll, K.

    2014-06-21

    A general methodology has been devised and implemented into the solid-state ab initio quantum-mechanical CRYSTAL program for studying the evolution under geophysical pressure of the elastic anisotropy of crystalline materials. This scheme, which fully exploits both translational and point symmetry of the crystal, is developed within the formal frame of one-electron Hamiltonians and atom-centered basis functions. Six silicate garnet end-members, among the most important rock-forming minerals of the Earth's mantle, are considered, whose elastic anisotropy is fully characterized under high hydrostatic compressions, up to 60 GPa. The pressure dependence of azimuthal anisotropy and shear-wave birefringence of seismic wave velocities for these minerals are accurately simulated and compared with available single-crystal measurements.

  13. Tailoring oxygen vacancies at ZnO( 1 1 ¯ 00 ) surface: An ab initio study

    NASA Astrophysics Data System (ADS)

    Korir, K. K.; Catellani, A.; Cicero, G.

    2016-09-01

    Oxygen vacancies in ZnO crystals have significant impacts on its properties and applications. On the basis of ab initio results, we describe the oxygen vacancy distribution and diffusion paths away from the ZnO( 1 1 ¯ 00 ) surface, aiming to elucidate thermodynamics and kinetic stability of the vacancies and a possible control mechanism. In view of defect engineering and sensor applications, we propose efficient routes to chemically control the equilibrium concentration of the oxygen vacancies at ZnO surfaces by exposure to specific reactive gases: we show that the oxygen vacancy concentration can be increased using sulfur oxide as post-growth treatment, while under exposure to ozone, no significant amount of oxygen vacancies can be sustained on the surface.

  14. A-dependence of the Spectra of the F Isotopes from ab initio Calculations

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.

    2016-03-01

    Using a succession of Okubo-Lee-Suzuki transformations within the No Core Shell Model (NCSM) formalism, we derive an ab initio, non-perturbative procedure for calculating the input for standard shell-model (SSM) calculations within one major shell. We have used this approach for calculating the spectra of the F isotopes from A=18 to A=25, so as to study the A-dependence of the results. In particular, we are interested in seeing if the theoretical input is weak enough, so that a single set of two-body effective interactions can be used for all of the F isotopes investigated. We will present results from SSM calculations based on input obtained with the JISP16 nucleon-nucleon interaction in an initial 4 ℏΩ NCSM basis space. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.

  15. Experimental and ab initio investigations of microscopic properties of laser-shocked Ge-doped ablator

    NASA Astrophysics Data System (ADS)

    Huser, G.; Recoules, V.; Ozaki, N.; Sano, T.; Sakawa, Y.; Salin, G.; Albertazzi, B.; Miyanishi, K.; Kodama, R.

    2015-12-01

    Plastic materials (CH) doped with mid-Z elements are used as ablators in inertial confinement fusion (ICF) capsules and in their surrogates. Hugoniot equation of state (EOS) and electronic properties of CH doped with germanium (at 2.5% and 13% dopant fractions) are investigated experimentally up to 7 Mbar using velocity and reflectivity measurements of shock fronts on the GEKKO laser at Osaka University. Reflectivity and temperature measurements were updated using a quartz standard. Shocked quartz reflectivity was measured at 532 and 1064 nm. Theoretical investigation of shock pressure and reflectivity was then carried out by ab initio simulations using the quantum molecular dynamics (QMD) code abinit and compared with tabulated average atom EOS models. We find that shock states calculated by QMD are in better agreement with experimental data than EOS models because of a more accurate description of ionic structure. We finally discuss electronic properties by comparing reflectivity data to a semiconductor gap closure model and to QMD simulations.

  16. Impact of oxygen on the 300-K isotherm of Laser Megajoule ablator using ab initio simulation

    NASA Astrophysics Data System (ADS)

    Colin-Lalu, P.; Recoules, V.; Salin, G.; Huser, G.

    2015-11-01

    The ablator material for inertial confinement fusion (ICF) capsules on the Laser Mégajoule is a glow-discharge polymer (GDP) plastic. Its equation of state (EOS) is of primary importance for the design of such capsules, since it has direct consequences on shock timing and is essential to mitigate hydrodynamic instabilities. Using ab initio molecular dynamics (AIMD), we have investigated the 300-K isotherm of amorphous CH1.37O0.08 plastic, whose structure is close to GDP plastic. The 300-K isotherm, which is often used as a cold curve within tabular EOS, is an important contribution of the EOS in the multimegabar pressure range. AIMD results are compared to analytic models within tabular EOS, pointing out large discrepancies. In addition, we show that the effect of oxygen decreases 300-K isotherm pressure by 10%-15%. The implication of these observations is the ability to improve ICF target performance, which is essential to achieve fusion ignition.

  17. Ab initio MO studies of interaction mechanisms of Protein Kinase C with cell membranes

    NASA Astrophysics Data System (ADS)

    Tsuda, Ken-ichiro; Kaneko, Hiroki; Shimada, Jiro; Takada, Toshikazu

    2001-12-01

    Protein Kinase C (PKC) is a family of regulatory enzymes. It is considered that binding with phorbol ester which are PKC activators, increases affinity of PKC for the membranes and consequently induces its conformation change. Electrostatic interactions between PKC and the membrane is assumed to be important, and performed ab initio MO calculations of one domain of PKC consisting of 50 amino acids and its complex with the ester is performed to investigate how the electrostatic potential of PKC changes through docking with the substrate. From the calculation, it is shown that the electrostatic potential of PKC near the binding site is dramatically affected through the binding, suggesting attractive interactions with the cell membrane.

  18. Ab initio electron scattering cross-sections and transport in liquid xenon

    NASA Astrophysics Data System (ADS)

    Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.

    2016-09-01

    Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10-4-1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.

  19. Ab initio and DFT studies on vibrational spectra of some halides of group IIIB elements

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Jianying; Tang, Guodong; Zhu, Longgen

    2005-11-01

    The vibrational spectra of some group IIIB elements halides MX 3 and their dimmers, M 2X 6 (M = Sc(III), Y(III), La(III); X = F, Cl, Br, I), have been systematically investigated by ab initio restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational frequencies, calculated by two methods with different basis sets, are compared to each other. The effect of the methods and the basis sets used on the calculated vibrational frequencies are discussed. Some vibrational frequencies of these complexes are also predicted.

  20. Ab Initio Vibrational Levels For HO2 and Vibrational Splittings for Hydrogen Atom Transfer

    NASA Technical Reports Server (NTRS)

    Barclay, V. J.; Dateo, Christopher E.; Hamilton, I. P.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We calculate vibrational levels and wave functions for HO2 using the recently reported ab initio potential energy surface of Walch and Duchovic. There is intramolecular hydrogen atom transfer when the hydrogen atom tunnels through a T-shaped saddle point separating two equivalent equilibrium geometries, and correspondingly, the energy levels are split. We focus on vibrational levels and wave functions with significant splitting. The first three vibrational levels with splitting greater than 2/cm are (15 0), (0 7 1) and (0 8 0) where V(sub 2) is the O-O-H bend quantum number. We discuss the dynamics of hydrogen atom transfer; in particular, the O-O distances at which hydrogen atom transfer is most probable for these vibrational levels. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  1. Precise Lifetime Measurements in Light Nuclei for Benchmarking Modern Ab-initio Nuclear Structure Models

    SciTech Connect

    Lister, C.J.; McCutchan, E.A.

    2014-06-15

    A new generation of ab-initio calculations, based on realistic two- and three-body forces, is having a profound impact on our view of how nuclei work. To improve the numerical methods, and the parameterization of 3-body forces, new precise data are needed. Electromagnetic transitions are very sensitive to the dynamics which drive mixing between configurations. We have made a series of precise (< 3%) measurements of electromagnetic transitions in the A=10 nuclei {sup 10}C and {sup 10}Be by using the Doppler Shift Attenuation method carefully. Many interesting features can be reproduced including the strong α clustering. New measurements on {sup 8}Be and {sup 12}Be highlight the interplay between the alpha clusters and their valence neutrons.

  2. Ab initio determination of the instability growth rate of warm dense beryllium-deuterium interface

    SciTech Connect

    Wang, Cong; Zhang, Ping; Li, Zi; Li, DaFang

    2015-10-15

    Accurate knowledge about the interfacial unstable growth is of great importance in inertial confinement fusion. During implosions, the deuterium-tritium capsule is driven by laser beams or X-rays to access the strongly coupled and partially degenerated warm dense matter regime. At this stage, the effects of dissipative processes, such as diffusion and viscosity, have significant impact on the instability growth rates. Here, we present ab initio molecular dynamics simulations to determine the equations of state and the transport coefficients. Several models are used to estimate the reduction in the growth rate dispersion curves of Rayleigh-Taylor and Richtmyer-Meshkov instabilities with considering the presence of these dissipative effects. We show that these instability growth rates are effectively reduced when considering diffusion. The findings provide significant insights into the microscopic mechanism of the instability growth at the ablator-fuel interface and will refine the models used in the laser-driven hydrodynamic instability experiments.

  3. Ab Initio Investigation of the Structures of Fe-Doped Carbon Clusters

    NASA Astrophysics Data System (ADS)

    Lovato, Christella; Brownrigg, Clifton; Hira, Ajit

    2012-02-01

    We continue our interest in the theoretical study of carbon clusters to examine the effects of the doping of small carbon clusters (Cn, n = 2 - 15) with iron atoms. This work applies the hybrid ab initio methods of quantum chemistry to derive the different FemCn (m = 1-3) geometries. Of particular interest are linear, fan, and cyclic geometries. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Exploration of the singlet, triplet, quintet, and septet potential energy surfaces is performed. The type of bonding in terms of competition between sp^2 and sp^3 hybridization is examined, with a view to addressing the possibility of the stabilization of the doped carbon nano-particles in a diamond type structure. The potential for the existence of new pathways to the fabrication of nanotubes is explored.

  4. Equation of state and phase diagram of ammonia at high pressures from ab initio simulations

    NASA Astrophysics Data System (ADS)

    Bethkenhagen, Mandy; French, Martin; Redmer, Ronald

    2013-06-01

    We present an equation of state as well as a phase diagram of ammonia at high pressures and high temperatures derived from ab initio molecular dynamics simulations. The predicted phases of ammonia are characterized by analyzing diffusion coefficients and structural properties. Both the phase diagram and the subsequently computed Hugoniot curves are compared to experimental results. Furthermore, we discuss two methods that allow us to take into account nuclear quantum effects, which are of considerable importance in molecular fluids. Our data cover pressures up to 330 GPa and a temperature range from 500 K to 10 000 K. This regime is of great interest for interior models of the giant planets Uranus and Neptune, which contain, besides water and methane, significant amounts of ammonia.

  5. Iodine-polyphenylacetylene charge-transfer complex: an ab initio quantum-chemical assessment

    NASA Astrophysics Data System (ADS)

    Andreocci, M. V.; Bossa, M.; Furlani, A.; Polzonetti, G.; Russo, M. V.

    1991-07-01

    The ab initio MO-LCAO-HF method has been used to calculate the electronic structure of the iodine-polyphenylacetylene charge-transfer complex (PPAI 2). Two models have been considered for the PPA molecule: a simple one containing two phenyl groups and a more realistic one containing six phenyl groups. The calculations give automatically the charge separation between I 5 and the polymer, and show that the total charge separation can be less than 1 e at short distances. The computed charges at the energy minimum have been succesfully introduced into the curve fitting of the I-3d 5/2 core level spectrum of PPAI 2 films, giving good agreement between experimental and theoretical results.

  6. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics.

    PubMed

    Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-05-14

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.

  7. Optical spectroscopy of the bulk and interfacial hydrated electron from ab initio calculations.

    PubMed

    Uhlig, Frank; Herbert, John M; Coons, Marc P; Jungwirth, Pavel

    2014-09-01

    The optical spectrum of the hydrated (aqueous) electron, e(aq)(–), is the primary observable by means of which this species is detected, monitored, and studied. In theoretical calculations, this spectrum has most often been simulated using one-electron models. Here, we present ab initio simulations of that spectrum in both bulk water and, for the first time, at the water/vapor interface, using density functional theory and its time-dependent variant. Our results indicate that this approach provides a reliable description, and quantitative agreement with the experimental spectrum for the bulk species is obtained using a “tuned” long-range corrected functional. The spectrum of the interfacial electron is found to be very similar to the bulk spectrum.

  8. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics.

    PubMed

    Pluhařová, Eva; Baer, Marcel D; Mundy, Christopher J; Schmidt, Burkhard; Jungwirth, Pavel

    2014-07-01

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkaline earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the infrared (IR) shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Because sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water.

  9. Ab initio cluster calculations of hydrogenated GaAs(001) surfaces

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Li, L.; Hicks, R. F.

    2000-04-01

    Hydrogen adsorption on the (2×4) and (4×2) reconstructions of gallium arsenide (001) has been studied by internal reflectance infrared spectroscopy and ab initio cluster calculations with density-functional theory. The calculations are made on Ga5As4H11,13, Ga4As5H11,13, and Ga7As8H19 clusters, which model the arsenic- and gallium-dimer termination of the semiconductor surface. Excellent agreement has been achieved between the vibrational frequencies predicted by the theory and those observed in experiments. On the (2×4), hydrogen adsorbs on arsenic dimers to form isolated and coupled arsenic-monohydrogen bonds, and arsenic-dihydrogen bonds. Conversely, on the (4×2), hydrogen adsorbs on gallium dimers to form terminal and bridged gallium hydrides. The latter species occur in isolated or coupled structures involving two or three Ga atoms.

  10. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    NASA Technical Reports Server (NTRS)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  11. Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression.

    PubMed

    Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella

    2008-05-14

    We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.

  12. Ab initio calculations on etching of graphite and diamond surfaces by atomic hydrogen

    SciTech Connect

    Kanai, C.; Watanabe, K.; Takakuwa, Y.

    2001-06-15

    Etching of graphite and hydrogenated diamond C(100) 2{times}1 surfaces by irradiating atomic hydrogen, which is one of the key reactions to promote epitaxial diamond growth by chemical vapor deposition, has been investigated by ab initio pseudopotential calculations. We demonstrate the reaction pathways and determine the activation energies for breaking C-C bonds on the surfaces by irradiating hydrogen atoms. The activation energy for C-C bond breaking on graphite is found to be only one-half of that on the hydrogenated diamond surface. This indicates that graphite, which is a typical nondiamond phase unnecessarily generated on the diamond surface during epitaxial growth, can be selectively eliminated by atomic hydrogen, resulting in methane desorption. Our result supports the growth rate enhancement in diamond epitaxy observed in a recent experiment by gas-source molecular beam epitaxy under hydrogen beam irradiation.

  13. Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics.

    PubMed

    Thomas, Martin; Kirchner, Barbara

    2016-02-01

    We present a new approach for calculating vibrational circular dichroism spectra by ab initio molecular dynamics. In the context of molecular dynamics, these spectra are given by the Fourier transform of the cross-correlation function of magnetic dipole moment and electric dipole moment. We obtain the magnetic dipole moment from the electric current density according to the classical definition. The electric current density is computed by solving a partial differential equation derived from the continuity equation and the condition that eddy currents should be absent. In combination with a radical Voronoi tessellation, this yields an individual magnetic dipole moment for each molecule in a bulk phase simulation. Using the chiral alcohol 2-butanol as an example, we show that experimental spectra are reproduced very well. Our approach requires knowing only the electron density in each simulation step, and it is not restricted to any particular electronic structure method. PMID:26771403

  14. Ab Initio Infrared Spectra and Electronic Response Calculations for the Insulating Phases of VO2

    NASA Astrophysics Data System (ADS)

    Hendriks, Christopher; Huffman, Tyler; Walter, Eric; Qazilbash, Mumtaz; Krakauer, Henry

    Previous studies have shown that, under doping or tensile strain and upon heating, the well-known vanadium dioxide (VO2) transition from an insulating monoclinic (M1) to a metallic rutile (R) phase progresses through a triclinic symmetry (T) phase and a magnetic monoclinic phase (M2), both of which are insulating. Structurally, this progression from M1 to R through T and M2 can be characterized by the progressive breaking of the V dimers. Investigation of the effect of these structural changes on the insulating phases of VO2 may help resolve questions surrounding the long-debated issue of the respective roles of electronic correlation and Peierls mechanisms in driving the MIT. We investigated electronic and vibrational properties of the insulating phases of VO2 in the framework of DFT+U. We will present ab initio calculations of infrared spectra and optical electronic responses for the insulating phases and compare these to available experimental measurements. Supported by ONR.

  15. Ab initio electron scattering cross-sections and transport in liquid xenon

    NASA Astrophysics Data System (ADS)

    Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.

    2016-09-01

    Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac–Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10‑4–1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.

  16. Ab Initio XAS Debye-Waller Factors Beyond the Harmonic Approximation

    NASA Astrophysics Data System (ADS)

    Vila, Fernando; Rossner, H. H.; Krappe, H. J.; Rehr, J. J.

    2007-03-01

    We introduce an ab initio approach to calculate the temperature dependent vibrational effects in x-ray absorption spectra beyond the harmonic approximation. Instead of relying on empirical models, we apply electronic structure theory to determine the dynamical matrix of the system, from which the appropriate vibrational densities of state can be obtained using a Lanczos recursion algorithm [2]. By combining thermodynamic perturbation theory and the quasi-harmonic approximation we obtain x-ray absorption fine structure (XAFS) cumulants such as the mean square relative displacement (2nd cumulant), the thermal expansion (first cumulant), the asymmetry of the distribution (third cumulant) and the perpendicular motion contribution to the DW factor. Other quantities of interest such as mean square atomic displacements are also discussed. [2]H.J. Krappe and H.H. Rossner, Phys. Rev. B70, 104102 (2004).

  17. Experimental and ab initio study of the photofragmentation of DNA and RNA sugars

    SciTech Connect

    Ha, D. T.; Huels, M. A.; Huttula, M.; Urpelainen, S.; Kukk, E.

    2011-09-15

    The photoelectron-photoion-photoion coincidence method is used to measure the photodissociation of doubly charged D-ribose (C{sub 5}H{sub 10}O{sub 5}), the RNA sugar molecules, and 2-deoxy-D-ribose (C{sub 5}H{sub 10}O{sub 4}), the DNA sugar molecules, following normal Auger decay after initial C 1s and O 1s core ionizations. The fragment identification is facilitated by measuring isotopically labeled D-ribose, such as D-ribose deuterated at C(1), and with {sup 13}C at the C(5) position. Ab initio quantum chemistry calculations are used to gain further insight into the abundant appearance of the CHO{sup +} fragment.

  18. HO2 + O3 Reaction: Ab Initio Study and Implications in Atmospheric Chemistry.

    PubMed

    Viegas, Luís P; Varandas, António J C

    2010-02-01

    We report a theoretical investigation on the reaction between ozone and the hydroperoxyl radical, which is part of the ozone depletion cycle. This reaction represents a great challenge to the state of the art ab initio methods, while its mechanism remains unclear to both experimentalists and theoreticians. In this work we calculated the relative energies of the stationary points along the reaction coordinate of the oxygen- and hydrogen-abstraction mechanisms using different levels of theory and extrapolating some of the results to the complete one-electron basis set limit. Oxygen abstraction is shown to be preceded by formation of hydrogen-bonded complexes, while hydrogen abstraction shows a lower energy barrier than oxygen abstraction. Both mechanisms lead to formation of HO3 + O2 in a very troublesome region of the potential-energy surface that is not correctly described by single-reference methods. The implications of the results on reaction dynamics are discussed. PMID:26617298

  19. Electronic states of lithium passivated germanium nanowires: An ab-initio study

    SciTech Connect

    Trejo, A.; Carvajal, E.; Vázquez-Medina, R.; Cruz-Irisson, M.

    2014-05-15

    A study of the electronic and structural properties of germanium nanowires (GeNWs) was performed using the ab-initio Density Functional Theory within the generalized gradient approximation where electron-ion interactions are described by ultrasoft pseudopotentials. To study the effects of the lithium in the surface of the GeNWs we compare the electronic band structures of Hydrogen passivated GeNWs with those of partial and totally Li passivated GeNWs. The nanowires were constructed in the [001], [111] and [110] directions, using the supercell model to create different wire diameters. The results show that in the case of partial Li passivation there are localized orbitals near the valence band maximum, which would create a p-doped-kind of state. The total Li passivation created metallic states for all the wires.

  20. Ab Initio Calculation of Structure and Thermodynamic Properties of Zintl Aluminide SrAl2

    NASA Astrophysics Data System (ADS)

    Fu, Zhi-Jian; Jia, Li-Jun; Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong; Sun, Xiao-Wei; Chen, Qi-Feng

    2015-12-01

    The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl2 at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory methodwithin the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl2 are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations inthe thermal expansion α are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.