Sample records for ab-dependent cellular cytotoxicity

  1. Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses.

    PubMed

    Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E; von Bredow, Benjamin; Ding, Shilei; Medjahed, Halima; Delgado, Gloria G; Brassard, Nathalie; Stürzel, Christina M; Kirchhoff, Frank; Hahn, Beatrice H; Parsons, Matthew S; Kaufmann, Daniel E; Evans, David T; Finzi, Andrés

    2018-03-20

    The conformation of the HIV-1 envelope glycoprotein (Env) substantially impacts antibody recognition and antibody-dependent cellular cytotoxicity (ADCC) responses. In the absence of the CD4 receptor at the cell surface, primary Envs sample a "closed" conformation that occludes CD4-induced (CD4i) epitopes. The virus controls CD4 expression through the actions of Nef and Vpu accessory proteins, thus protecting infected cells from ADCC responses. However, gp120 shed from infected cells can bind to CD4 present on uninfected bystander cells, sensitizing them to ADCC mediated by CD4i antibodies (Abs). Therefore, we hypothesized that these bystander cells could impact the interpretation of ADCC measurements. To investigate this, we evaluated the ability of antibodies to CD4i epitopes and broadly neutralizing Abs (bNAbs) to mediate ADCC measured by five ADCC assays commonly used in the field. Our results indicate that the uninfected bystander cells coated with gp120 are efficiently recognized by the CD4i ligands but not the bNabs. Consequently, the uninfected bystander cells substantially affect in vitro measurements made with ADCC assays that fail to identify responses against infected versus uninfected cells. Moreover, using an mRNA flow technique that detects productively infected cells, we found that the vast majority of HIV-1-infected cells in in vitro cultures or ex vivo samples from HIV-1-infected individuals are CD4 negative and therefore do not expose significant levels of CD4i epitopes. Altogether, our results indicate that ADCC assays unable to differentiate responses against infected versus uninfected cells overestimate responses mediated by CD4i ligands. IMPORTANCE Emerging evidence supports a role for antibody-dependent cellular cytotoxicity (ADCC) in protection against HIV-1 transmission and disease progression. However, there are conflicting reports regarding the ability of nonneutralizing antibodies targeting CD4-inducible (CD4i) Env epitopes to mediate

  2. A mathematical model of antibody-dependent cellular cytotoxicity (ADCC).

    PubMed

    Hoffman, F; Gavaghan, D; Osborne, J; Barrett, I P; You, T; Ghadially, H; Sainson, R; Wilkinson, R W; Byrne, H M

    2018-01-07

    Immunotherapies exploit the immune system to target and kill cancer cells, while sparing healthy tissue. Antibody therapies, an important class of immunotherapies, involve the binding to specific antigens on the surface of the tumour cells of antibodies that activate natural killer (NK) cells to kill the tumour cells. Preclinical assessment of molecules that may cause antibody-dependent cellular cytotoxicity (ADCC) involves co-culturing cancer cells, NK cells and antibody in vitro for several hours and measuring subsequent levels of tumour cell lysis. Here we develop a mathematical model of such an in vitro ADCC assay, formulated as a system of time-dependent ordinary differential equations and in which NK cells kill cancer cells at a rate which depends on the amount of antibody bound to each cancer cell. Numerical simulations generated using experimentally-based parameter estimates reveal that the system evolves on two timescales: a fast timescale on which antibodies bind to receptors on the surface of the tumour cells, and NK cells form complexes with the cancer cells, and a longer time-scale on which the NK cells kill the cancer cells. We construct approximate model solutions on each timescale, and show that they are in good agreement with numerical simulations of the full system. Our results show how the processes involved in ADCC change as the initial concentration of antibody and NK-cancer cell ratio are varied. We use these results to explain what information about the tumour cell kill rate can be extracted from the cytotoxicity assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Enhancement of antibody-dependent cellular cytotoxicity of cetuximab by a chimeric protein encompassing interleukin-15.

    PubMed

    Ochoa, Maria Carmen; Minute, Luna; López, Ascensión; Pérez-Ruiz, Elisabeth; Gomar, Celia; Vasquez, Marcos; Inoges, Susana; Etxeberria, Iñaki; Rodriguez, Inmaculada; Garasa, Saray; Mayer, Jan-Peter Andreas; Wirtz, Peter; Melero, Ignacio; Berraondo, Pedro

    2018-01-01

    Enhancement of antibody-dependent cellular cytotoxicity (ADCC) may potentiate the antitumor efficacy of tumor-targeted monoclonal antibodies. Increasing the numbers and antitumor activity of NK cells is a promising strategy to maximize the ADCC of standard-of-care tumor-targeted antibodies. For this purpose, we have preclinically tested a recombinant chimeric protein encompassing the sushi domain of the IL15Rα, IL-15, and apolipoprotein A-I (Sushi-IL15-Apo) as produced in CHO cells. The size-exclusion purified monomeric fraction of this chimeric protein was stable and retained the IL-15 and the sushi domain bioactivity as measured by CTLL-2 and Mo-7e cell proliferation and STAT5 phosphorylation in freshly isolated human NK and CD8 + T cells. On cell cultures, Sushi-IL15-Apo increases NK cell proliferation and survival as well as spontaneous and antibody-mediated cytotoxicity. Scavenger receptor class B type I (SR-B1) is the receptor for ApoA-I and is expressed on the surface of tumor cells. SR-B1 can adsorb the chimeric protein on tumor cells and can transpresent IL-15 to NK and CD8 + T cells. A transient NK-humanized murine model was developed to test the increase of ADCC attained by the chimeric protein in vivo . The EGFR + human colon cancer cell line HT-29 was intraperitoneally inoculated in immune-deficient Rag2 -/- γc -/- mice that were reconstituted with freshly isolated PBMCs and treated with the anti-EGFR mAb cetuximab. The combination of the Sushi-IL15-Apo protein and cetuximab reduced the number of remaining tumor cells in the peritoneal cavity and delayed tumor engraftment in the peritoneum. Furthermore, Sushi-IL15-Apo increased the anti-tumor effect of a murine anti-EGFR mAb in Rag1 -/- mice bearing subcutaneous MC38 colon cancer transfected to express EGFR. Thus, Sushi-IL15-Apo is a potent tool to increase the number and the activation of NK cells to promote the ADCC activity of antibodies targeting tumor antigens.

  4. Anti-podocalyxin antibody exerts antitumor effects via antibody-dependent cellular cytotoxicity in mouse xenograft models of oral squamous cell carcinoma.

    PubMed

    Itai, Shunsuke; Ohishi, Tomokazu; Kaneko, Mika K; Yamada, Shinji; Abe, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Chang, Yao-Wen; Ohba, Shun-Ichi; Nishioka, Yasuhiko; Kawada, Manabu; Harada, Hiroyuki; Kato, Yukinari

    2018-04-27

    Podocalyxin (PODXL) overexpression is associated with progression, metastasis, and poor outcomes in cancers. We recently produced the novel anti-PODXL monoclonal antibody (mAb) PcMab-47 (IgG 1 , kappa). Herein, we engineered PcMab-47 into 47-mG 2a , a mouse IgG 2a -type mAb, to add antibody-dependent cellular cytotoxicity (ADCC). We further developed 47-mG 2a -f, a core fucose-deficient type of 47-mG 2a to augment its ADCC. Immunohistochemical analysis of oral cancer tissues using PcMab-47 and 47-mG 2a revealed that the latter stained oral squamous cell carcinoma (OSCC) cells in a cytoplasmic pattern at a much lower concentration. PcMab-47 and 47-mG 2a detected PODXL in 163/201 (81.1%) and in 197/201 (98.0%) OSCC samples, respectively. 47-mG 2a -f also detected PODXL in OSCCs at a similar frequency as 47-mG 2a . In vitro analysis revealed that both 47-mG 2a and 47-mG 2a -f exhibited strong complement-dependent cytotoxicity (CDC) against CHO/hPODXL cells. In contrast, 47-mG 2a -f exhibited much stronger ADCC than 47-mG 2a against OSCC cells, indicating that ADCC and CDC of those anti-PODXL mAbs depend on target cells. In vivo analysis revealed that both 47-mG 2a and 47-mG 2a -f exerted antitumor activity in CHO/hPODXL xenograft models at a dose of 100 μg or 500 μg/mouse/week administered twice. 47-mG 2a -f, but not 47-mG 2a , exerted antitumor activity in SAS and HSC-2 xenograft models at a dose of 100 μg/mouse/week administered three times. Although both 47-mG 2a and 47-mG 2a -f exerted antitumor activity in HSC-2 xenograft models at a dose of 500 μg/mouse/week administered twice, 47-mG 2a -f also showed higher antitumor activity than 47-mG 2a . These results suggested that a core fucose-deficient anti-PODXL mAb could be useful for antibody-based therapy against PODXL-expressing OSCCs.

  5. Anti-podocalyxin antibody exerts antitumor effects via antibody-dependent cellular cytotoxicity in mouse xenograft models of oral squamous cell carcinoma

    PubMed Central

    Itai, Shunsuke; Ohishi, Tomokazu; Kaneko, Mika K.; Yamada, Shinji; Abe, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Chang, Yao-Wen; Ohba, Shun-Ichi; Nishioka, Yasuhiko; Kawada, Manabu; Harada, Hiroyuki; Kato, Yukinari

    2018-01-01

    Podocalyxin (PODXL) overexpression is associated with progression, metastasis, and poor outcomes in cancers. We recently produced the novel anti-PODXL monoclonal antibody (mAb) PcMab-47 (IgG1, kappa). Herein, we engineered PcMab-47 into 47-mG2a, a mouse IgG2a-type mAb, to add antibody-dependent cellular cytotoxicity (ADCC). We further developed 47-mG2a-f, a core fucose-deficient type of 47-mG2a to augment its ADCC. Immunohistochemical analysis of oral cancer tissues using PcMab-47 and 47-mG2a revealed that the latter stained oral squamous cell carcinoma (OSCC) cells in a cytoplasmic pattern at a much lower concentration. PcMab-47 and 47-mG2a detected PODXL in 163/201 (81.1%) and in 197/201 (98.0%) OSCC samples, respectively. 47-mG2a-f also detected PODXL in OSCCs at a similar frequency as 47-mG2a. In vitro analysis revealed that both 47-mG2a and 47-mG2a-f exhibited strong complement-dependent cytotoxicity (CDC) against CHO/hPODXL cells. In contrast, 47-mG2a-f exhibited much stronger ADCC than 47-mG2a against OSCC cells, indicating that ADCC and CDC of those anti-PODXL mAbs depend on target cells. In vivo analysis revealed that both 47-mG2a and 47-mG2a-f exerted antitumor activity in CHO/hPODXL xenograft models at a dose of 100 μg or 500 μg/mouse/week administered twice. 47-mG2a-f, but not 47-mG2a, exerted antitumor activity in SAS and HSC-2 xenograft models at a dose of 100 μg/mouse/week administered three times. Although both 47-mG2a and 47-mG2a-f exerted antitumor activity in HSC-2 xenograft models at a dose of 500 μg/mouse/week administered twice, 47-mG2a-f also showed higher antitumor activity than 47-mG2a. These results suggested that a core fucose-deficient anti-PODXL mAb could be useful for antibody-based therapy against PODXL-expressing OSCCs. PMID:29854293

  6. Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses

    PubMed Central

    Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E.; Ding, Shilei; Medjahed, Halima; Delgado, Gloria G.; Brassard, Nathalie; Stürzel, Christina M.; Kirchhoff, Frank; Hahn, Beatrice H.; Parsons, Matthew S.; Kaufmann, Daniel E.; Evans, David T.

    2018-01-01

    ABSTRACT The conformation of the HIV-1 envelope glycoprotein (Env) substantially impacts antibody recognition and antibody-dependent cellular cytotoxicity (ADCC) responses. In the absence of the CD4 receptor at the cell surface, primary Envs sample a “closed” conformation that occludes CD4-induced (CD4i) epitopes. The virus controls CD4 expression through the actions of Nef and Vpu accessory proteins, thus protecting infected cells from ADCC responses. However, gp120 shed from infected cells can bind to CD4 present on uninfected bystander cells, sensitizing them to ADCC mediated by CD4i antibodies (Abs). Therefore, we hypothesized that these bystander cells could impact the interpretation of ADCC measurements. To investigate this, we evaluated the ability of antibodies to CD4i epitopes and broadly neutralizing Abs (bNAbs) to mediate ADCC measured by five ADCC assays commonly used in the field. Our results indicate that the uninfected bystander cells coated with gp120 are efficiently recognized by the CD4i ligands but not the bNabs. Consequently, the uninfected bystander cells substantially affect in vitro measurements made with ADCC assays that fail to identify responses against infected versus uninfected cells. Moreover, using an mRNA flow technique that detects productively infected cells, we found that the vast majority of HIV-1-infected cells in in vitro cultures or ex vivo samples from HIV-1-infected individuals are CD4 negative and therefore do not expose significant levels of CD4i epitopes. Altogether, our results indicate that ADCC assays unable to differentiate responses against infected versus uninfected cells overestimate responses mediated by CD4i ligands. PMID:29559570

  7. Chimeric Anti-Human Podoplanin Antibody NZ-12 of Lambda Light Chain Exerts Higher Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity Compared with NZ-8 of Kappa Light Chain.

    PubMed

    Kaneko, Mika K; Abe, Shinji; Ogasawara, Satoshi; Fujii, Yuki; Yamada, Shinji; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Nishioka, Yasuhiko; Kato, Yukinari

    2017-02-01

    Podoplanin (PDPN), a type I transmembrane 36-kDa glycoprotein, is expressed not only in normal cells, such as renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, but also in cancer cells, including brain tumors and lung squamous cell carcinomas. Podoplanin activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and the podoplanin/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced neutralizing anti-human podoplanin monoclonal antibody (mAb), clone NZ-1 (rat IgG 2a , lambda), which neutralizes the podoplanin/CLEC-2 interaction and inhibits platelet aggregation and cancer metastasis. Human-rat chimeric antibody, NZ-8, was previously developed using variable regions of NZ-1 and human constant regions of heavy chain (IgG 1 ) and light chain (kappa chain). Although NZ-8 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cells, the binding affinity of NZ-8 was lower than that of NZ-1. Herein, we produced a novel human-rat chimeric antibody, NZ-12, the constant regions of which consist of IgG 1 heavy chain and lambda light chain. Using flow cytometry, we demonstrated that the binding affinity of NZ-12 was much higher than that of NZ-8. Furthermore, ADCC and CDC activities of NZ-12 were significantly increased against glioblastoma cell lines (LN319 and D397) and lung cancer cell line (PC-10). These results suggested that NZ-12 could become a promising therapeutic antibody against podoplanin-expressing brain tumors and lung cancers.

  8. A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer

    PubMed Central

    Elvington, Michelle; Huang, Yuxiang; Morgan, B. Paul; Qiao, Fei; van Rooijen, Nico; Atkinson, Carl

    2012-01-01

    Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer. PMID:22442351

  9. Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells

    PubMed Central

    Lee, Wen Shi; Richard, Jonathan; Lichtfuss, Marit; Smith, Amos B.; Park, Jongwoo; Courter, Joel R.; Melillo, Bruno N.; Sodroski, Joseph G.; Kaufmann, Daniel E.; Parsons, Matthew S.

    2015-01-01

    ABSTRACT Lifelong antiretroviral therapy (ART) for HIV-1 does not diminish the established latent reservoir. A possible cure approach is to reactivate the quiescent genome from latency and utilize immune responses to eliminate cells harboring reactivated HIV-1. It is not known whether antibodies within HIV-1-infected individuals can recognize and eliminate cells reactivated from latency through antibody-dependent cellular cytotoxicity (ADCC). We found that reactivation of HIV-1 expression in the latently infected ACH-2 cell line elicited antibody-mediated NK cell activation but did not result in antibody-mediated killing. The lack of CD4 expression on these HIV-1 envelope (Env)-expressing cells likely resulted in poor recognition of CD4-induced antibody epitopes on Env. To examine this further, cultured primary CD4+ T cells from HIV-1+ subjects were used as targets for ADCC. These ex vivo-expanded primary cells were modestly susceptible to ADCC mediated by autologous or heterologous HIV-1+ serum antibodies. Importantly, ADCC mediated against these primary cells could be enhanced following incubation with a CD4-mimetic compound (JP-III-48) that exposes CD4-induced antibody epitopes on Env. Our studies suggest that with sufficient reactivation and expression of appropriate Env epitopes, primary HIV-1-infected cells can be targets for ADCC mediated by autologous serum antibodies and innate effector cells. The results of this study suggest that further investigation into the potential of ADCC to eliminate reactivated latently infected cells is warranted. IMPORTANCE An HIV-1 cure remains elusive due to the persistence of long-lived latently infected cells. An HIV-1 cure strategy, termed “shock and kill,” aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. While recent research efforts have focused on reversing HIV-1 latency, it remains unclear whether preexisting immune

  10. ChLpMab-23: Cancer-Specific Human-Mouse Chimeric Anti-Podoplanin Antibody Exhibits Antitumor Activity via Antibody-Dependent Cellular Cytotoxicity.

    PubMed

    Kaneko, Mika K; Nakamura, Takuro; Kunita, Akiko; Fukayama, Masashi; Abe, Shinji; Nishioka, Yasuhiko; Yamada, Shinji; Yanaka, Miyuki; Saidoh, Noriko; Yoshida, Kanae; Fujii, Yuki; Ogasawara, Satoshi; Kato, Yukinari

    2017-06-01

    Podoplanin is expressed in many cancers, including oral cancers and brain tumors. The interaction between podoplanin and its receptor C-type lectin-like receptor 2 (CLEC-2) has been reported to be involved in cancer metastasis and tumor malignancy. We previously established many monoclonal antibodies (mAbs) against human podoplanin using the cancer-specific mAb (CasMab) technology. LpMab-23 (IgG 1 , kappa), one of the mouse anti-podoplanin mAbs, was shown to be a CasMab. However, we have not shown the usefulness of LpMab-23 for antibody therapy against podoplanin-expressing cancers. In this study, we first determined the minimum epitope of LpMab-23 and revealed that Gly54-Leu64 peptide, especially Gly54, Thr55, Ser56, Glu57, Asp58, Arg59, Tyr60, and Leu64 of podoplanin, is a critical epitope of LpMab-23. We further produced human-mouse chimeric LpMab-23 (chLpMab-23) and investigated whether chLpMab-23 exerts antibody-dependent cellular cytotoxicity (ADCC) and antitumor activity. In flow cytometry, chLpMab-23 showed high sensitivity against a podoplanin-expressing glioblastoma cell line, LN319, and an oral cancer cell line, HSC-2. chLpMab-23 also showed ADCC activity against podoplanin-expressing CHO cells (CHO/podoplanin). In xenograft models with HSC-2 and CHO/podoplanin, chLpMab-23 exerts antitumor activity using human natural killer cells, indicating that chLpMab-23 could be useful for antibody therapy against podoplanin-expressing cancers.

  11. Natural killing and antibody-dependent cellular cytotoxicity are independent immune functions in the Minnesota miniature swine.

    PubMed

    Koren, H S; Amos, D B; Kim, Y B

    1978-10-01

    Peripheral blood lymphocytes from Minnesota miniature pigs were tested for natural killing (NK) and antibody-dependent cellular cytotoxicity (ADCC) in a 2- to 4-hr 51Cr release assay against human myeloid and lymphoid tumor target cells. Adult specific pathogen-free and germfree animals exhibited normal levels of activity in both assays. In addition, the NK and ADCC activities of peripheral blood lymphocytes from colostrum-deprived newborn piglets were examined. These animals were obtained by hysterectomy and previously shown to be immunologically "virgin." We found that these newborn piglets exhibited normal ADCC but lacked NK activity. The differences in the ontogeny of the two activities suggest that they are distinct. Preliminary effector cell characterization studies suggest that: (i) NK and ADCC in the pig are physically not separable; (ii) the majority of the cytotoxic activity on a cell-per-cell basis is mediated by the non-T lymphocyte fraction; and (iii) the rosetted T cells, which account for about 60% of the total pig peripheral blood lymphocytes, have low but demonstrable cytotoxic activity as well.

  12. Antibody-dependent cellular cytotoxicity and cytokine/chemokine secretion by KHYG-1 cells stably expressing FcγRIIIA.

    PubMed

    Kobayashi, Eiji; Motoi, Sotaro; Sugiura, Masahito; Kajikawa, Masunori; Kojima, Shuji; Kohroki, Junya; Masuho, Yasuhiko

    2014-09-01

    Antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells is a major mechanism of tumor therapy with antibodies. NK cells not only manifest cytotoxicity but also secrete a variety of cytokines/chemokines that regulate immune responses. Using a retroviral vector, in this study we established a KHYG-1 cell line that stably expresses FcγRIIIA (CD16A). The KHYG-1/FcγRIIIA cells exerted potent antibody concentration-dependent ADCC, whereas parental KHYG-1 cells did not. In contrast, without antibody, the natural killer activity of KHYG-1/FcγRIIIA cells was less potent than that of parental KHYG-1 cells. During the course of ADCC, KHYG-1/FcγRIIIA cells secreted IFN-γ and MIP-1α dependent upon antibody concentration, but parental KHYG-1 cells did not. These results suggest that KHYG-1/FcγRIIIA cells would be useful in studies to elucidate the function of NK cells and the mechanism of ADCC. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ionophore-A23187-induced cellular cytotoxicity: a cell fragment mediated process.

    PubMed Central

    Nash, G S; Niedt, G W; MacDermott, R P

    1980-01-01

    Calcium ionophore A23187 was found to induce human white blood cells to kill human red blood cells. Optimal conditions for ionophore-induced cellular cytotoxicity (IICC) included an 18 h time period, an incubation temperature of 25 degrees, a 25:1 or 50:1 killer:target cell ratio,and a final ionophore concentration of 2 . 5 microgram/ml. WBC or granulocytes which were either frozen and thawed three times or sonicated were capable of mediating IICC. As intact cells, granulocytes (67 . 2% cytotoxicity), monocytes (34 . 8%), B cells (22 . 0%) and Null cells (19 . 3%) were effector cells but T cells (7 . 4%) were not. After fragmenting these cells, all cell types including T cells were able to mediate IICC. When cell lines (K562, Chang, and NCTC) were used as effectors, none would mediate IICC when intact. After freezing and thawing, Chang and NCTC would not mediate IICC, whereas K562 cells did. These studies may be indicative of a calcium-dependent, membrane-localized mechanism in cellular cytotoxic processes, and may provide a useful indicator system for isolation of the enzyme systems involved in cellular cytotoxicity. PMID:6773881

  14. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy.

    PubMed

    Stagg, John; Loi, Sherene; Divisekera, Upulie; Ngiow, Shin Foong; Duret, Helene; Yagita, Hideo; Teng, Michele W; Smyth, Mark J

    2011-04-26

    Trastuzumab, a monoclonal antibody targeting human epidermal growth factor receptor-2 (HER2/ErbB-2), has become the mainstay of treatment for HER2-positive breast cancer. Nevertheless, its exact mechanism of action has not been fully elucidated. Although several studies suggest that Fc receptor-expressing immune cells are involved in trastuzumab therapy, the relative contribution of lymphocyte-mediated cellular cytotoxicity and antitumor cytokines remains unknown. We report here that anti-ErbB-2 mAb therapy is dependent on the release of type I and type II IFNs but is independent of perforin or FasL. Our study thus challenges the notion that classical antibody-dependent, lymphocyte-mediated cellular cytotoxicity is important for trastuzumab. We demonstrate that anti-ErbB-2 mAb therapy of experimental tumors derived from MMTV-ErbB-2 transgenic mice triggers MyD88-dependent signaling and primes IFN-γ-producing CD8+ T cells. Adoptive cell transfer of purified T cell subsets confirmed the essential role of IFN-γ-producing CD8+ T cells. Notably, anti-ErbB-2 mAb therapy was independent of IL-1R or IL-17Ra signaling. Finally, we investigated whether immunostimulatory approaches with antibodies against programmed death-1 (PD-1) or 41BB (CD137) could be used to capitalize on the immune-mediated effects of trastuzumab. We demonstrate that anti-PD-1 or anti-CD137 mAb can significantly improve the therapeutic activity of anti-ErbB-2 mAb in immunocompetent mice.

  15. Modulation of cytotoxic T lymphocyte, natural killer cell, antibody-dependent cellular cytotoxicity, and antibody-dependent complement-mediated cytotoxicity by Vernonia cinerea L. and vernolide-A in BALB/c mice via enhanced production of cytokines IL-2 and IFN-γ.

    PubMed

    Pratheeshkumar, Poyil; Kuttan, Girija

    2012-02-01

    Effect of Vernonia cinerea L. and vernolide-A on cell-mediated immune (CMI) response was studied in normal as well as tumor-bearing BALB/c mice. Administration of V. cinerea and vernolide-A significantly enhanced natural killer (NK) cell activity in both normal as well as tumor-bearing animals, and the activity was observed earlier than in tumor-bearing control animals. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent complement-mediated cytotoxicity (ACC) were also enhanced significantly in both normal as well as tumor-bearing animals after V. cinerea and vernolide-A administration compared with untreated control tumor-bearing animals. Extract and vernolide-A showed a significant increase in cytotoxic T lymphocyte (CTL) production in both the in vivo and in vitro models. The level of cytokines such as interleukin (IL)-2 and interferon (IFN)-γ were also enhanced by the treatment of V. cinerea and vernolide-A in both normal as well as tumor-bearing animals. This study demonstrated that V. cinerea extract and vernolide-A stimulate the CTL, NK cell, ADCC, and ADCC through enhanced secretion of IL-2 and IFN-γ.

  16. Human IgG2 antibodies against epidermal growth factor receptor effectively trigger antibody-dependent cellular cytotoxicity but, in contrast to IgG1, only by cells of myeloid lineage.

    PubMed

    Schneider-Merck, Tanja; Lammerts van Bueren, Jeroen J; Berger, Sven; Rossen, Kai; van Berkel, Patrick H C; Derer, Stefanie; Beyer, Thomas; Lohse, Stefan; Bleeker, Wim K; Peipp, Matthias; Parren, Paul W H I; van de Winkel, Jan G J; Valerius, Thomas; Dechant, Michael

    2010-01-01

    Ab-dependent cellular cytotoxicity (ADCC) is usually considered an important mechanism of action for immunotherapy with human IgG1 but not IgG2 Abs. The epidermal growth factor receptor (EGF-R) Ab panitumumab represents the only human IgG2 Ab approved for immunotherapy and inhibition of EGF-R signaling has been described as its principal mechanism of action. In this study, we investigated effector mechanisms of panitumumab compared with zalutumumab, an EGF-R Ab of the human IgG1 isotype. Notably, panitumumab was as effective as zalutumumab in recruiting ADCC by myeloid effector cells (i.e., neutrophils and monocytes) in contrast to NK cell-mediated ADCC, which was only induced by the IgG1 Ab. Neutrophil-mediated tumor cell killing could be stimulated by myeloid growth factors and was triggered via FcgammaRIIa. Panitumumab-mediated ADCC was significantly affected by the functional FcgammaRIIa-R131H polymorphism and was induced more effectively by neutrophils from FcgammaRIIa-131H homozygous donors than from -131R individuals. This polymorphism did not affect neutrophil ADCC induced by the IgG1 Ab zalutumumab. The in vivo activity of both Abs was assessed in two animal models: a high-dose model, in which signaling inhibition is a dominant mechanism of action, and a low-dose model, in which effector cell recruitment plays a prominent role. Zalutumumab was more effective than panitumumab in the high-dose model, reflecting its stronger ability to induce EGF-R downmodulation and growth inhibition. In the low-dose model, zalutumumab and panitumumab similarly prevented tumor growth. Thus, our results identify myeloid cell-mediated ADCC as a potent and additional mechanism of action for EGF-R-directed immunotherapy.

  17. Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells.

    PubMed

    Klitgaard, Josephine L; Koefoed, Klaus; Geisler, Christian; Gadeberg, Ole V; Frank, David A; Petersen, Jørgen; Jurlander, Jesper; Pedersen, Mikkel W

    2013-10-01

    The treatment of chronic lymphocytic leukaemia (CLL) has been improved by introduction of monoclonal antibodies (mAbs) that exert their effect through secondary effector mechanisms. CLL cells are characterized by expression of CD5 and CD23 along with CD19 and CD20, hence anti-CD5 Abs that engage secondary effector functions represent an attractive opportunity for CLL treatment. Here, a repertoire of mAbs against human CD5 was generated and tested for ability to induce complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) both as single mAbs and combinations of two mAbs against non-overlapping epitopes on human CD5. The results demonstrated that combinations of two mAbs significantly increased the level of CDC compared to the single mAbs, while no enhancement of ADCC was seen with anti-CD5 mAb combinations. High levels of CDC and ADCC correlated with low levels of Ab-induced CD5 internalization and degradation. Importantly, an anti-CD5 mAb combination enhanced CDC of CLL cells when combined with the anti-CD20 mAbs rituximab and ofatumumab as well as with the anti-CD52 mAb alemtuzumab. These results suggest that an anti-CD5 mAb combination inducing CDC and ADCC may be effective alone, in combination with mAbs against other targets or combined with chemotherapy for CLL and other CD5-expressing haematological or lymphoid malignancies. © 2013 John Wiley & Sons Ltd.

  18. Antibody-Dependent Cellular Cytotoxicity Activity of a Novel Anti-PD-L1 Antibody Avelumab (MSB0010718C) on Human Tumor Cells.

    PubMed

    Boyerinas, Benjamin; Jochems, Caroline; Fantini, Massimo; Heery, Christopher R; Gulley, James L; Tsang, Kwong Yok; Schlom, Jeffrey

    2015-10-01

    Several anti-PD-1/PD-L1 monoclonal antibodies (mAb) are currently providing evidence of clinical benefit in subsets of cancer patients. The mode of action of these mAbs is to inhibit PD-1 on immune cells interacting with PD-L1 on tumor cells. These mAbs are either designed or engineered to eliminate antibody-dependent cell-mediated cytotoxicity (ADCC), which, however, has been implicated as an important mechanism in several highly effective mAb-mediated cancer therapies. A fully human anti-PD-L1 mAb would potentially be able to block PD-1/PD-L1 interactions and also mediate the ADCC lysis of tumor cells. MSB0010718C (designated avelumab) is a fully human IgG1 anti-PD-L1 mAb. The studies reported here demonstrate (i) the ability of avelumab to lyse a range of human tumor cells in the presence of PBMC or NK effectors; (ii) IFNγ can enhance tumor cell PD-L1 expression and, in some cases, enhance ADCC tumor cell lysis; (iii) purified NK cells are potent effectors for avelumab; (iv) similar levels of avelumab-mediated ADCC lysis of tumor cells are seen using purified NK as effectors from either healthy donors or cancer patients; (v) very low levels of avelumab-mediated lysis are seen using whole PBMCs as targets; this finding complements results seen in analyses of PBMC subsets of patients receiving avelumab; and (vi) the addition of IL12 to NK cells greatly enhances avelumab-mediated ADCC. These studies thus provide an additional mode of action for an anti-PD-L1 mAb and support the rationale for further studies to enhance avelumab-mediated ADCC activity. ©2015 American Association for Cancer Research.

  19. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    PubMed

    Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Tojino, Mami; Sugawara, Shu-Ichi; Takashima, Shou; Hirose, Yuriko; Tsukimura, Wataru; Mizuno, Mamoru; Amano, Junko; Matsuda, Akio; Tomita, Masahiro; Takayanagi, Atsushi; Shoda, Shin-Ichiro; Shirai, Takashi

    2015-01-01

    Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and

  20. Elimination of human T cell leukemia virus type-1-infected cells by neutralizing and antibody-dependent cellular cytotoxicity-inducing antibodies against human t cell leukemia virus type-1 envelope gp46.

    PubMed

    Tanaka, Yuetsu; Takahashi, Yoshiaki; Tanaka, Reiko; Kodama, Akira; Fujii, Hideki; Hasegawa, Atsuhiko; Kannagi, Mari; Ansari, Aftab A; Saito, Mineki

    2014-06-01

    Human T cell leukemia virus type-1 (HTLV-1) is prevalent worldwide with foci of high prevalence. However, to date no effective vaccine or drug against HTLV-1 infection has been developed. In efforts to define the role of antibodies in the control of HTLV-1 infection, we capitalized on the use of our previously defined anti-gp46 neutralizing monoclonal antibody (mAb) (clone LAT-27) and high titers of human anti-HTLV-1 IgG purified from HAM/TSP patients (HAM-IgG). LAT-27 and HAM-IgG completely blocked syncytium formation and T cell immortalization mediated by HTLV-1 in vitro. The addition of these antibodies to cultures of CD8(+) T cell-depleted peripheral blood mononuclear cells (PBMCs) from HAM/TSP patients at the initiation of culture not only decreased the numbers of Tax-expressing cells and the production of HTLV-1 p24 but also inhibited the spontaneous immortalization of T cells. Coculture of in vitro-HTLV-1-immortalized T cell lines with autologous PBMCs in the presence of LAT-27 or HAM-IgG, but not an F(ab')2 fragment of LAT-27 or nonneutralizing anti-gp46 mAbs, resulted in depletion of HTLV-1-infected cells. A 24-h (51)Cr release assay showed the presence of significant antibody-dependent cellular cytotoxicity (ADCC) activity in LAT-27 and HAM-IgG, but not F(ab')2 of LAT-27, resulting in the depletion of HTLV-1-infected T cells by autologous PBMCs. The depletion of natural killer (NK) cells from the effector PBMCs reduced this ADCC activity. Altogether, the present data demonstrate that the neutralizing and ADCC-inducing activities of anti-HTLV-1 antibodies are capable of reducing infection and eliminating HTLV-1-infected cells in the presence of autologous PBMCs.

  1. Avelumab: combining immune checkpoint inhibition and antibody-dependent cytotoxicity.

    PubMed

    Hamilton, Gerhard; Rath, Barbara

    2017-04-01

    Immune checkpoint inhibition holds great promise for selected tumors. The human monoclonal antibody (mAB) avelumab is directed to programmed death ligand-1 (PD-L1) and is supposed to inhibit the immunosuppressive PD-L1/PD-1 interaction and, furthermore, effect antibody-dependent cytotoxicity (ADCC) lysis of tumor cells. Areas covered: This article presents an overview of the current means to activate the antitumor immune defense by targeting PD-1 or PD-L1 with mABs and their possible role in ADCC-mediated tumor cell elimination. Expert opinion: Avelumab contains a Fc region which can bind cognate receptors on immune effector cells and induce ADCC-mediated tumor cell lysis, in contrast to other mABs directed to PD-1/PD-L1 which lack the ability to trigger ADCC due to belonging to the IgG4 subclass or possessing a mutated Fc region. Preclinical and clinical data indicate that avelumab can be safely administered to cancer patients with a toxicity profile comparable to other mABs and without lysis of PD-L1-positive activated immune cells. This antibody yielded durable responses in a phase II trial in advanced Merkel cell carcinoma patients. Tumor cell lysis by avelumab prevents cells from resorting to alternative checkpoints as shown by targeting PD-1 and the upregulation of TIM-3.

  2. Natural Killer Cell Mediated Antibody-Dependent Cellular Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies

    PubMed Central

    Seidel, Ursula J. E.; Schlegel, Patrick; Lang, Peter

    2013-01-01

    In the last decade several therapeutic antibodies have been Federal Drug Administration (FDA) and European Medicines Agency (EMEA) approved. Although their mechanisms of action in vivo is not fully elucidated, antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells is presumed to be a key effector function. A substantial role of ADCC has been demonstrated in vitro and in mouse tumor models. However, a direct in vivo effect of ADCC in tumor reactivity in humans remains to be shown. Several studies revealed a predictive value of FcγRIIIa-V158F polymorphism in monoclonal antibody treatment, indicating a potential effect of ADCC on outcome for certain indications. Furthermore, the use of therapeutic antibodies after allogeneic hematopoietic stem cell transplantation is an interesting option. Studying the role of the FcγRIIIa-V158F polymorphism and the influence of Killer-cell Immunoglobuline-like Receptor (KIR) receptor ligand incompatibility on ADCC in this approach may contribute to future transplantation strategies. Despite the success of approved second-generation antibodies in the treatment of several malignancies, efforts are made to further augment ADCC in vivo by antibody engineering. Here, we review currently used therapeutic antibodies for which ADCC has been suggested as effector function. PMID:23543707

  3. A cell impedance measurement device for the cytotoxicity assay dependent on the velocity of supplied toxic fluid

    NASA Astrophysics Data System (ADS)

    Kang, Yoon-Tae; Kim, Min-Ji; Cho, Young-Ho

    2018-04-01

    We present a cell impedance measurement chip capable of characterizing the toxic response of cells depending on the velocity of the supplied toxic fluid. Previous impedance-based devices using a single open-top chamber have been limited to maintaining a constant supply velocity, and devices with a single closed-top chamber present difficulties in simultaneous cytotoxicity assay for varying levels of supply velocities. The present device, capable of generating constant and multiple levels of toxic fluid velocity simultaneously within a single stepwise microchannel, performs a cytotoxicity assay dependent on toxic fluid velocity, in order to find the effective velocity of toxic fluid to cells for maximizing the cytotoxic effect. We analyze the cellular toxic response of 5% ethanol media supplied to cancer cells within a toxic fluid velocity range of 0-8.3 mm s-1. We observe the velocity-dependent cell detachment rate, impedance, and death rate. We find that the cell detachment rate decreased suddenly to 2.4% at a velocity of 4.4 mm s-1, and that the change rates of cell resistance and cell capacitance showed steep decreases to 8% and 41%, respectively, at a velocity of 5.7 mm s-1. The cell death rate and impedance fell steeply to 32% at a velocity of 5.7 mm s-1. We conclude that: (1) the present device is useful in deciding on the toxic fluid velocity effective to cytotoxicity assay, since the cellular toxic response is dependent on the velocity of toxic fluid, and; (2) the cell impedance analysis facilitates a finer cellular response analysis, showing better correlation with the cell death rate, compared to conventional visual observation. The present device, capable of performing the combinational analysis of toxic fluid velocity and cell impedance, has potential for application to the fine cellular toxicity assay of drugs with proper toxic fluid velocity.

  4. Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation.

    PubMed

    van Spriel, A B; Leusen, J H; van Egmond, M; Dijkman, H B; Assmann, K J; Mayadas, T N; van de Winkel, J G

    2001-04-15

    Receptors for human immunoglobulin (Ig)G and IgA initiate potent cytolysis of antibody (Ab)-coated targets by polymorphonuclear leukocytes (PMNs). Mac-1 (complement receptor type 3, CD11b/CD18) has previously been implicated in receptor cooperation with Fc receptors (FcRs). The role of Mac-1 in FcR-mediated lysis of tumor cells was characterized by studying normal human PMNs, Mac-1-deficient mouse PMNs, and mouse PMNs transgenic for human FcR. All PMNs efficiently phagocytosed Ab-coated particles. However, antibody-dependent cellular cytotoxicity (ADCC) was abrogated in Mac-1(-/-) PMNs and in human PMNs blocked with anti-Mac-1 monoclonal Ab (mAb). Mac-1(-/-) PMNs were unable to spread on Ab-opsonized target cells and other Ab-coated surfaces. Confocal laser scanning and electron microscopy revealed a striking difference in immunologic synapse formation between Mac-1(-/-) and wild-type PMNs. Also, respiratory burst activity could be measured outside membrane-enclosed compartments by using Mac-1(-/-) PMNs bound to Ab-coated tumor cells, in contrast to wild-type PMNs. In summary, these data document an absolute requirement of Mac-1 for FcR-mediated PMN cytotoxicity toward tumor targets. Mac-1(-/-) PMNs exhibit defective spreading on Ab-coated targets, impaired formation of immunologic synapses, and absent tumor cytolysis.

  5. Development of DS-5573a: A novel afucosylated mAb directed at B7-H3 with potent antitumor activity.

    PubMed

    Nagase-Zembutsu, Akiko; Hirotani, Kenji; Yamato, Michiko; Yamaguchi, Junko; Takata, Takehiko; Yoshida, Makoto; Fukuchi, Keisuke; Yazawa, Mitsuhiro; Takahashi, Shu; Agatsuma, Toshinori

    2016-05-01

    B7-H3 is highly overexpressed in a variety of human clinical tumors, and its expression is significantly associated with poor outcomes. In our study, we aimed to develop new antitumor mAbs by employing cancer cell immunization, and succeeded in generating a mouse anti-human B7-H3 antibody (M30) that shows antitumor activity. M30 was humanized (Hu-M30), and an afucosylated Hu-M30 (DS-5573a) was also generated. To assess the potency of DS-5573a as a therapeutic mAb, we characterized this mAb and evaluated its antitumor activity in vitro and in vivo. Flow cytometry analysis showed that B7-H3 proteins were expressed on various types of cancer cell lines broadly, and DS-5573a binds to IgC1 and IgC2 domains of human B7-H3. Antibody-dependent cellular cytotoxicity activity of DS-5573a was drastically enhanced against medium to high B7-H3-expressing cancer cell lines MDA-MB-231 and NCI-H322. DS-5573a also induced high antibody-dependent cellular cytotoxicity activity against low B7-H3-expressing cancer cell line COLO205, whereas Hu-M30 induced little activity against it. In addition, DS-5573a was found to be a novel anti-B7-H3 antibody which showed antibody-dependent cellular phagocytosis activity. Furthermore, DS-5573a showed dose-dependent and significant antitumor efficacy (0.03-3 mg/kg) in MDA-MB-231-bearing SCID mice (which have functional natural killer cells and macrophages), but little antitumor efficacy in NOG mice (which lack natural killer cells and have reduced macrophage function). These results suggest that antitumor activity of DS-5573a is mediated by effector cells, and this mAb could be a promising antitumor therapy for patients with a wide range of B7-H3-expressing tumors. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Poly-L-arginine: Enhancing Cytotoxicity and Cellular Uptake of Doxorubicin and Necrotic Cell Death.

    PubMed

    Movafegh, Bahareh; Jalal, Razieh; Mohammadi, Zobeideh; Aldaghi, Seyyede Araste

    2018-04-11

    Cell resistance to doxorubicin and its toxicity to healthy tissue reduce its efficiency. The use of cell penetrating peptides as drug delivery system along with doxorubicin is a strategy to reduce its side effects. In this study, the influence of poly-L-arginine on doxorubicin cytotoxicity, its cellular uptake and doxorubicin-induced apoptosis on human prostate cancer DU145 cells are assessed. The cytotoxicity of doxorubicin and poly-L-arginine, alone and in combination, in DU145 cells was evaluated at different exposure times using MTT assay. The influence of poly-L-arginine on doxorubicin delivery into cells was evaluated by fluorescence microscopy and ultraviolet spectroscopy. DAPI and ethidium bromide-acridine orange stainings, flow cytometry using annexin V/propidium iodide, western blot analysis with anti-p21 antibody and caspase-3 activity were used to examine the influence of poly-L-arginine on doxorubicin-induced cell death. Poly-L-arginine had no cytotoxicity at low concentrations and short exposure times. Poly-L-arginine increased the cytotoxic effect of doxorubicin in DU145 cells in a time-dependent manner. But no significant reduction was found in HFF cell viability. Poly-L-arginine seems to facilitate doxorubicin uptake and increase its intracellular concentration. 24 h combined treatment of cells with doxorubicin (0.5 μM) and poly-L-arginine (1 μg ml-1) caused a small increase in doxorubicin-induced apoptosis and significant elevated necrosis in DU145 cells as compared to each agent alone. Conlusion: Our results indicate that poly-L-arginine at lowest and highest concentrations act as proliferation-inducing and antiproliferative agents, respectively. Between these concentrations, poly-L-arginine increases the cellular uptake of doxorubicin and its cytotoxicity through induction of necrosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Construction and characterization of an anti-CD20 mAb nanocomb with exceptionally excellent lymphoma-suppressing activity.

    PubMed

    Li, Hua-Fei; Wu, Cong; Chen, Ting; Zhang, Ge; Zhao, He; Ke, Chang-Hong; Xu, Zheng

    2015-01-01

    The CD20-directed monoclonal antibody rituximab (RTX) established a new era in the treatment of non-Hodgkin lymphoma (NHL); however, suboptimal response and/or resistance to RTX still limit its clinical merits. Although four effector mechanisms are validated to participate in CD20-based immunotherapy, including complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, caspase-dependent apoptosis, and lysosome-mediated programmed cell death (PCD), they could hardly be synchronously activated by any anti-CD20 mAb or mAb derivative until now. Herein, a novel mAb nanocomb (polyethylenimine polymer-RTX-tositumomab [PPRT nanocomb]) was firstly constructed through mass arming two different anti-CD20 mAbs (RTX and tositumomab) to one polymer by nanotechnology. Comparing with free mAbs, PPRT nanocomb possesses a comparable binding ability and reduced "off-rate" to surface CD20 of NHL cells. When treated by PPRT nanocomb, the caspase-dependent apoptosis was remarkably enhanced except for concurrently eliciting complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and lysosome-mediated PCD. Besides, "cross-cell link"-assisted homotypic adhesion by PPRT nanocomb further enhanced the susceptibility to PCD of lymphoma cells. Pharmacokinetic assays revealed that PPRT nanocomb experienced a relatively reduced clearance from peripheral blood compared with free antibodies. With the cooperation of all the abovementioned superiorities, PPRT nanocomb exhibits exceptionally excellent in vivo antitumor activities in both disseminated and localized human NHL xenotransplant models.

  8. Monoclonal antibody, mAb 4C13, an effective detoxicant antibody against ricin poisoning.

    PubMed

    Dong, Na; Luo, Longlong; Wu, Junhua; Jia, Peiyuan; Li, Qian; Wang, Yuxia; Gao, Zhongcai; Peng, Hui; Lv, Ming; Huang, Chunqian; Feng, Jiannan; Li, Hua; Shan, Junjie; Han, Gang; Shen, Beifen

    2015-07-31

    Ricin is a glycoprotein produced in castor seeds and consists of two polypeptide chains named Ricin Toxin A Chain (RTA) and Ricin Toxin B Chain (RTB), linked via a disulfide bridge. Due to its high toxicity, ricin is regarded as a high terrorist risk for the public. However, antibodies can play a pivotal role in neutralizing the toxin. In this research, the anti-toxicant effect of mAb 4C13, a monoclonal antibody (mAb) established using detoxicated ricin as the immunized antigen, was evaluated. Compared with mAb 4F2 and mAb 5G6, the effective mechanism of mAb 4C13 was analyzed by experiments relating to its cytotoxicity, epitope on ricin, binding kinetics with the toxin, its blockage on the protein synthesis inhibition induced by ricin and the intracelluar tracing of its complex with ricin. Our result indicated that mAb 4C13 could recognize and bind to RTA, RTB and exert its high affinity to the holotoxin. Both cytotoxicity and animal toxicity of ricin were well blocked by pre-incubating the toxin with mAb 4C13. By intravenous injection, mAb 4C13 could rescue the mouse intraperitoneally (ip) injected with a lethal dose of ricin (20μg/kg) even at 6h after the intoxication and its efficacy was dependent on its dosage. This research indicated that mAb 4C13 could be an excellent candidate for therapeutic antibodies. Its potent antitoxic efficiency was related to its recognition on the specific epitope with very high affinity and its blockage of protein synthesis inhibition in cytoplasm followed by cellular internalization with ricin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Construction and characterization of an anti-CD20 mAb nanocomb with exceptionally excellent lymphoma-suppressing activity

    PubMed Central

    Li, Hua-Fei; Wu, Cong; Chen, Ting; Zhang, Ge; Zhao, He; Ke, Chang-Hong; Xu, Zheng

    2015-01-01

    The CD20-directed monoclonal antibody rituximab (RTX) established a new era in the treatment of non-Hodgkin lymphoma (NHL); however, suboptimal response and/or resistance to RTX still limit its clinical merits. Although four effector mechanisms are validated to participate in CD20-based immunotherapy, including complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, caspase-dependent apoptosis, and lysosome-mediated programmed cell death (PCD), they could hardly be synchronously activated by any anti-CD20 mAb or mAb derivative until now. Herein, a novel mAb nanocomb (polyethylenimine polymer–RTX–tositumomab [PPRT nanocomb]) was firstly constructed through mass arming two different anti-CD20 mAbs (RTX and tositumomab) to one polymer by nanotechnology. Comparing with free mAbs, PPRT nanocomb possesses a comparable binding ability and reduced “off-rate” to surface CD20 of NHL cells. When treated by PPRT nanocomb, the caspase-dependent apoptosis was remarkably enhanced except for concurrently eliciting complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and lysosome-mediated PCD. Besides, “cross-cell link”-assisted homotypic adhesion by PPRT nanocomb further enhanced the susceptibility to PCD of lymphoma cells. Pharmacokinetic assays revealed that PPRT nanocomb experienced a relatively reduced clearance from peripheral blood compared with free antibodies. With the cooperation of all the abovementioned superiorities, PPRT nanocomb exhibits exceptionally excellent in vivo antitumor activities in both disseminated and localized human NHL xenotransplant models. PMID:26257518

  10. Anti-EGFR Targeted Monoclonal Antibody Isotype Influences Antitumor Cellular Immunity in Head and Neck Cancer Patients.

    PubMed

    Trivedi, Sumita; Srivastava, Raghvendra M; Concha-Benavente, Fernando; Ferrone, Soldano; Garcia-Bates, Tatiana M; Li, Jing; Ferris, Robert L

    2016-11-01

    EGF receptor (EGFR) is highly overexpressed on several cancers and two targeted anti-EGFR antibodies which differ by isotype are FDA-approved for clinical use. Cetuximab (IgG1 isotype) inhibits downstream signaling of EGFR and activates antitumor, cellular immune mechanisms. As panitumumab (IgG2 isotype) may inhibit downstream EGFR signaling similar to cetuximab, it might also induce adaptive immunity. We measured in vitro activation of cellular components of the innate and adaptive immune systems. We also studied the in vivo activation of components of the adaptive immune system in patient specimens from two recent clinical trials using cetuximab or panitumumab. Both monoclonal antibodies (mAb) primarily activate natural killer (NK) cells, although cetuximab is significantly more potent than panitumumab. Cetuximab-activated neutrophils mediate antibody-dependent cellular cytotoxicity (ADCC) against head and neck squamous cell carcinomas (HNSCC) tumor cells, and interestingly, this effect was FcγRIIa- and FcγRIIIa genotype-dependent. Panitumumab may activate monocytes through CD32 (FcγRIIa); however, monocytes activated by either mAb are not able to mediate ADCC. Cetuximab enhanced dendritic cell (DC) maturation to a greater extent than panitumumab, which was associated with improved tumor antigen cross-presentation by cetuximab compared with panitumumab. This correlated with increased EGFR-specific cytotoxic CD8 + T cells in patients treated with cetuximab compared with those treated with panitumumab. Although panitumumab effectively inhibits EGFR signaling to a similar extent as cetuximab, it is less effective at triggering antitumor, cellular immune mechanisms which may be crucial for effective therapy of HNSCC. Clin Cancer Res; 22(21); 5229-37. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells.

    PubMed

    Deus, Cláudia M; Serafim, Teresa L; Magalhães-Novais, Silvia; Vilaça, Andreia; Moreira, Ana C; Sardão, Vilma A; Cardoso, Susana M; Oliveira, Paulo J

    2017-03-01

    Sirtuins regulate several processes associated with tumor development. Resveratrol was shown to stimulate sirtuin 1 and 3 (SIRT1/3) activities and to result in cytotoxicity for some tumor types. The relationship between modulation of sirtuin activities, cellular metabolic remodeling and resveratrol cytotoxicity mechanism on breast cancer cells is still an open question. Here, we evaluated whether sirtuin 1 and 3 are involved in resveratrol toxicity and whether resveratrol leads to a metabolic remodeling and cell differentiation. Results using the Extracellular Flux Analyzer indicated that resveratrol inhibits mitochondrial respiration in breast cancer cells. We also demonstrated here for the first time that resveratrol cytotoxic effects on breast cancer cells were modulated by SIRT1 and also involved mitochondrial complex I inhibition. Importantly, we also demonstrated that resveratrol reduced the pool of breast cancer cells with stemness markers through a SIRT1-dependent mechanism. Our data highlights the role of SIRT1 in regulating resveratrol induced differentiation and/or toxicity in breast cancer cells.

  12. An ab initio mechanism for efficient population of triplet states in cytotoxic sulfur substituted DNA bases: the case of 6-thioguanine.

    PubMed

    Martínez-Fernández, Lara; González, Leticia; Corral, Inés

    2012-02-18

    The deactivation mechanism of the cytotoxic 6-thioguanine, the 6-sulfur-substituted analogue of the canonical DNA base, is unveiled by ab initio calculations. Oxygen-by-sulfur substitution leads to efficient population of triplet states-the first step for generating singlet oxygen-which is responsible for its cytotoxicity. This journal is © The Royal Society of Chemistry 2012

  13. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  14. The cytotoxic effect of oxybuprocaine on human corneal epithelial cells by inducing cell cycle arrest and mitochondria-dependent apoptosis.

    PubMed

    Fan, W-Y; Wang, D-P; Wen, Q; Fan, T-J

    2017-08-01

    Oxybuprocaine (OBPC) is a widely used topical anesthetic in eye clinic, and prolonged and repeated usage of OBPC might be cytotoxic to the cornea, especially to the outmost corneal epithelium. In this study, we characterized the cytotoxic effect of OBPC on human corneal epithelial (HCEP) cells and investigated its possible cellular and molecular mechanisms using an in vitro model of non-transfected HCEP cells. Our results showed that OBPC at concentrations ranging from 0.025% to 0.4% had a dose- and time-dependent cytotoxicity to HCEP cells. Moreover, OBPC arrested the cells at S phase and induced apoptosis of these cells by inducing plasma membrane permeability, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation. Furthermore, OBPC could trigger the activation of caspase-2, -3, and -9, downregulate the expression of Bcl-xL, upregulate the expression of Bax along with the cytoplasmic amount of mitochondria-released apoptosis-inducing factor, and disrupt mitochondrial transmembrane potential. Our results suggest that OBPC has a dose- and time-dependent cytotoxicity to HCEP cells by inducing cell cycle arrest and cell apoptosis via a death receptor-mediated mitochondria-dependent proapoptotic pathway, and this novel finding provides new insights into the acute cytotoxicity and its toxic mechanisms of OBPC on HCEP cells.

  15. Reduced antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells of salivary polymorphonuclear leukocytes and inhibition of peripheral blood polymorphonuclear leukocyte cytotoxicity by saliva.

    PubMed

    Ashkenazi, M; Kohl, S

    1990-06-15

    Blood polymorphonuclear leukocytes (BPMN) have been shown to mediate antibody-dependent cellular cytotoxicity (ADCC) against HSV-infected cells. Although HSV infections are frequently found in the oral cavity, the ADCC capacity of salivary PMN (SPMN) has not been studied, mainly because methods to isolate SPMN were not available. We have recently developed a method to isolate SPMN, and in this study have evaluated their ADCC activity against HSV-infected cells. SPMN were obtained by repeated washings of the oral cavity, and separated from epithelial cells by nylon mesh filtration. ADCC was quantitatively determined by 51Cr release from HSV-infected Chang liver cells. SPMN in the presence of antibody were able to destroy HSV-infected cells, but SPMN were much less effective in mediating ADCC than BPMN (3.4% vs 40.7%, p less than 0.0001). In the presence of antiviral antibody, SPMN were able to adhere to HSV-infected cells, but less so than BPMN (34% vs 67%), and specific antibody-induced adherence was significantly lower in SPMN (p less than 0.04). The spontaneous adherence to HSV-infected cells was higher for SPMN than BPMN. SPMN demonstrated up-regulation of the adhesion glycoprotein CD18, but down-regulation of the FcRIII receptor. Incubation with saliva decreased ADCC capacity of BPMN, up-regulated CD18 expression, and down-regulated FcRIII expression.

  16. miR-143 or miR-145 overexpression increases cetuximab-mediated antibody-dependent cellular cytotoxicity in human colon cancer cells

    PubMed Central

    Gomes, Sofia E.; Simões, André E. S.; Pereira, Diane M.; Castro, Rui E.; Rodrigues, Cecília M. P.; Borralho, Pedro M.

    2016-01-01

    miR-143 and miR-145 are downregulated in colon cancer. Here, we tested the effect of restoring these miRNAs on sensitization to cetuximab in mutant KRAS (HCT116 and SW480) and wild-type KRAS (SW48) colon cancer cells. We evaluated cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and the modulation of signaling pathways involved in immune effector cell-mediated elimination of cancer cells. Stable miR-143 or miR-145 overexpression increased cell sensitivity to cetuximab, resulting in a significant increase of cetuximab-mediated ADCC independently of KRAS status. Importantly, HCT116 cells overexpressing these miRNAs triggered apoptosis in result of cetuximab-mediated ADCC, effected by peripheral blood mononuclear cells (p < 0.01). This was associated with increased apoptosis and caspase-3/7 activity, and reduced Bcl-2 protein expression (p < 0.01). In addition, caspase inhibition abrogated cetuximab-mediated ADCC in HCT116 cells overexpressing either miR-143 or miR-145 (p < 0.01). Furthermore, Bcl-2 silencing led to high level of cetuximab-mediated ADCC, compared to control siRNA (p < 0.05). Importantly, granzyme B inhibition, abrogated cetuximab-mediated ADCC, reducing caspase-3/7 activity (p < 0.01). Collectively, our data suggests that re-introduction of miR-143 or miR-145 may provide a new approach for development of therapeutic strategies to re-sensitize colon cancer cells to cetuximab by stimulating cetuximab-dependent ADCC to induce cell death. PMID:26824186

  17. Applicability of Type A/B alcohol dependence in the general population.

    PubMed

    Tam, Tammy W; Mulia, Nina; Schmidt, Laura A

    2014-05-01

    This study examined the concurrent and predictive validity of Type A/B alcohol dependence in the general population-a typology developed in clinical populations to gauge severity of dependence. Data were drawn from Waves 1 and 2 of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). The sample included 1,172 alcohol-dependent drinkers at baseline who were reinterviewed three years later. Latent class analysis was used to derive Type A/B classification using variables replicating the original Type A/B typology. Predictive validity of the Type A/B classification was assessed by multivariable linear and logistic regressions. A two-class solution consistent with Babor's original Type A/B typology adequately fit the data. Type B alcoholics in the general population, compared to Type As, had higher alcohol severity and more co-occurring drug, mental, and physical health problems. In the absence of treatment services utilization, Type B drinkers had two times the odds of being alcohol dependent three years later. Among those who utilized alcohol treatment services, Type B membership was predictive of heavy drinking and drug dependence, but not alcohol dependence, three years later. Findings suggest that Type A/B classification is both generalizable to, and valid within, the US general population of alcohol dependent drinkers. Results highlight the value of treatment for mitigating the persistence of dependence among Type B alcoholics in the general population. Screening for markers of vulnerability to Type B dependence could be of clinical value for health care providers to determine appropriate intervention. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus

    PubMed Central

    Mashruwala, Ameya A; van de Guchte, Adriana; Boyd, Jeffrey M

    2017-01-01

    Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI: http://dx.doi.org/10.7554/eLife.23845.001 PMID:28221135

  19. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase.

    PubMed

    Jo, Seung-Hee; Lee, So-Hyun; Chun, Hang Suk; Lee, Su Min; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-03-29

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury. (c)2002 Elsevier Science (USA).

  20. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells.

    PubMed

    Fernández, Dolores; García-Gómez, Concepción; Babín, Mar

    2013-05-01

    Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.

  1. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    PubMed

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  2. Depressed spontaneous cell-mediated cytotoxicity in Crohn's disease.

    PubMed

    Beeken, W L; Macpherson, B R; Gundel, R M; St Andre-Ukena, S; Wood, S G; Sylwester, D L

    1983-02-01

    Cytotoxicity of peripheral blood mononuclear cells of 30 patients with Crohn's disease (CD) and 30 matched controls was assayed by measuring isotope release from 75Se-L-methionine labelled RPMI 4788 human colon cancer cells. Effector populations were studied with and without monocyte depletion after 4 and 24 hr incubations in 10% fetal calf serum or autologous serum or plasma. Cytotoxicity was negligible at 4 hr. Twenty-four hour cytotoxicity was consistently lower in CD patients than in healthy controls, mean values ranging from 13.6 +/- 2.7% (s.e.m.) to 19.5 +/- 3.7% in patients and from 27.2 +/- 4.1% to 33.6 +/- 5.3% in controls. Cytotoxicity of disease controls was not significantly different from that of healthy subjects. Cytotoxicity was reduced by monocyte depletion, was weakly and inversely related to disease activity, was relatively stable for up to 24 months and was not HLA restricted. Cell lysis was attributable to spontaneous cell-mediated cytotoxicity. Antibody-dependent cellular cytotoxicity and antibody-complement-dependent cytotoxicity were not detected.

  3. Depressed spontaneous cell-mediated cytotoxicity in Crohn's disease.

    PubMed Central

    Beeken, W L; Macpherson, B R; Gundel, R M; St Andre-Ukena, S; Wood, S G; Sylwester, D L

    1983-01-01

    Cytotoxicity of peripheral blood mononuclear cells of 30 patients with Crohn's disease (CD) and 30 matched controls was assayed by measuring isotope release from 75Se-L-methionine labelled RPMI 4788 human colon cancer cells. Effector populations were studied with and without monocyte depletion after 4 and 24 hr incubations in 10% fetal calf serum or autologous serum or plasma. Cytotoxicity was negligible at 4 hr. Twenty-four hour cytotoxicity was consistently lower in CD patients than in healthy controls, mean values ranging from 13.6 +/- 2.7% (s.e.m.) to 19.5 +/- 3.7% in patients and from 27.2 +/- 4.1% to 33.6 +/- 5.3% in controls. Cytotoxicity of disease controls was not significantly different from that of healthy subjects. Cytotoxicity was reduced by monocyte depletion, was weakly and inversely related to disease activity, was relatively stable for up to 24 months and was not HLA restricted. Cell lysis was attributable to spontaneous cell-mediated cytotoxicity. Antibody-dependent cellular cytotoxicity and antibody-complement-dependent cytotoxicity were not detected. PMID:6601555

  4. A novel method for evaluating antibody-dependent cell-mediated cytotoxicity by flowcytometry using cryopreserved human peripheral blood mononuclear cells

    PubMed Central

    Yamashita, Makiko; Kitano, Shigehisa; Aikawa, Hiroaki; Kuchiba, Aya; Hayashi, Mitsuhiro; Yamamoto, Noboru; Tamura, Kenji; Hamada, Akinobu

    2016-01-01

    Analyzing the cytotoxic functions of effector cells, such as NK cells against target cancer cells, is thought to be necessary for predicting the clinical efficacy of antibody-dependent cellular cytotoxicity (ADCC) -dependent antibody therapy. The 51Cr release assay has long been the most widely used method for quantification of ADCC activity. However, the reproducibilities of these release assays are not adequate, and they do not allow evaluation of the lysis susceptibilities of distinct cell types within the target cell population. In this study, we established a novel method for evaluating cytotoxicity, which involves the detection and quantification of dead target cells using flowcytometry. CFSE (carboxyfluorescein succinimidyl ester) was used as a dye to specifically stain and thereby label the target cell population, allowing living and dead cells, as well as both target and effector cells, to be quantitatively distinguished. Furthermore, with our new approach, ADCC activity was more reproducibly, sensitively, and specifically detectable, not only in freshly isolated but also in frozen human peripheral blood mononuclear cells (PBMCs), than with the calcein-AM release assay. This assay, validated herein, is expected to become a standard assay for evaluating ADCC activity which will ultimately contribute the clinical development of ADCC dependent-antibody therapies. PMID:26813960

  5. A novel method for evaluating antibody-dependent cell-mediated cytotoxicity by flowcytometry using cryopreserved human peripheral blood mononuclear cells.

    PubMed

    Yamashita, Makiko; Kitano, Shigehisa; Aikawa, Hiroaki; Kuchiba, Aya; Hayashi, Mitsuhiro; Yamamoto, Noboru; Tamura, Kenji; Hamada, Akinobu

    2016-01-27

    Analyzing the cytotoxic functions of effector cells, such as NK cells against target cancer cells, is thought to be necessary for predicting the clinical efficacy of antibody-dependent cellular cytotoxicity (ADCC) -dependent antibody therapy. The (51)Cr release assay has long been the most widely used method for quantification of ADCC activity. However, the reproducibilities of these release assays are not adequate, and they do not allow evaluation of the lysis susceptibilities of distinct cell types within the target cell population. In this study, we established a novel method for evaluating cytotoxicity, which involves the detection and quantification of dead target cells using flowcytometry. CFSE (carboxyfluorescein succinimidyl ester) was used as a dye to specifically stain and thereby label the target cell population, allowing living and dead cells, as well as both target and effector cells, to be quantitatively distinguished. Furthermore, with our new approach, ADCC activity was more reproducibly, sensitively, and specifically detectable, not only in freshly isolated but also in frozen human peripheral blood mononuclear cells (PBMCs), than with the calcein-AM release assay. This assay, validated herein, is expected to become a standard assay for evaluating ADCC activity which will ultimately contribute the clinical development of ADCC dependent-antibody therapies.

  6. Asymmetrical Fc Engineering Greatly Enhances Antibody-dependent Cellular Cytotoxicity (ADCC) Effector Function and Stability of the Modified Antibodies*

    PubMed Central

    Liu, Zhi; Gunasekaran, Kannan; Wang, Wei; Razinkov, Vladimir; Sekirov, Laura; Leng, Esther; Sweet, Heather; Foltz, Ian; Howard, Monique; Rousseau, Anne-Marie; Kozlosky, Carl; Fanslow, William; Yan, Wei

    2014-01-01

    Antibody-dependent cellular cytotoxicity (ADCC) is mediated through the engagement of the Fc segment of antibodies with Fcγ receptors (FcγRs) on immune cells upon binding of tumor or viral antigen. The co-crystal structure of FcγRIII in complex with Fc revealed that Fc binds to FcγRIII asymmetrically with two Fc chains contacting separate regions of the FcγRIII by utilizing different residues. To fully explore this asymmetrical nature of the Fc-FcγR interaction, we screened more than 9,000 individual clones in Fc heterodimer format in which different mutations were introduced at the same position of two Fc chains using a high throughput competition AlphaLISA® assay. To this end, we have identified a panel of novel Fc variants with significant binding improvement to FcγRIIIA (both Phe-158 and Val-158 allotypes), increased ADCC activity in vitro, and strong tumor growth inhibition in mice xenograft human tumor models. Compared with previously identified Fc variants in conventional IgG format, Fc heterodimers with asymmetrical mutations can achieve similar or superior potency in ADCC-mediated tumor cell killing and demonstrate improved stability in the CH2 domain. Fc heterodimers also allow more selectivity toward activating FcγRIIA than inhibitory FcγRIIB. Afucosylation of Fc variants further increases the affinity of Fc to FcγRIIIA, leading to much higher ADCC activity. The discovery of these Fc variants will potentially open up new opportunities of building the next generation of therapeutic antibodies with enhanced ADCC effector function for the treatment of cancers and infectious diseases. PMID:24311787

  7. Mapping of binding epitopes of a human decay-accelerating factor monoclonal antibody capable of enhancing rituximab-mediated complement-dependent cytotoxicity.

    PubMed

    Guo, Bo; Ma, Zheng-wei; Li, Hua; Xu, Gui-lian; Zheng, Ping; Zhu, Bo; Wu, Yu-Zhang; Zou, Qiang

    2008-08-01

    Complement-dependent cytotoxicity (CDC) is thought to be one of the most important mechanisms of action of therapeutic monoclonal antibodies (mAbs). The decay-accelerating factor (DAF) overexpressed in certain tumors limits the CDC effect of the therapeutic anticancer antibodies. The use of DAF blocking antibodies targeted specifically at cancer cells in combination with immunotherapeutic mAbs of cancer may improve the therapeutic effect in cancer patients. In this study, the lysis of Raji cells mediated by CDC was determined after blocking DAF function by anti-DAF polyclonal antibody and 3 mAbs (DG3, DG9, DA11) prepared in our laboratory, respectively, in the presence of the anti-CD20 chimeric mAb rituximab. The binding domains of the three anti-DAF mAbs were identified using yeast surface display technique, and the mimic epitopes of mAb DG3 were screened from a random phage-display nonapeptide library. The results showed that blocking DAF function by anti-DAF polyclonal antibody enhanced complement-mediated killing of Raji cells. Among the 3 mAbs against DAF, only DG3 was found to be able to remarkably enhance the CDC effect of the therapeutic mAb rituximab. DG3 bound to the third short consensus repeat (SCR) of DAF. Binding of DG3 to immobilized DAF was inhibited by mimic epitope peptides screened from the peptide library. Our results suggest that a higher level of DAF expressed by certain tumor cells is significant to abolish the CDC effect of therapeutic anticancer antibodies, and mAbs binding to SCR3 can enhance the complement-mediated killing of Raji cells. It is of significance to identify the DAF epitopes required in inhibiting CDC not only for better understanding of the relationship between the structure and function of DAF, but also for designing and developing anti-DAF mAbs capable of enhancing CDC.

  8. Staphylococcus aureus Biofilms Induce Macrophage Dysfunction Through Leukocidin AB and Alpha-Toxin

    PubMed Central

    Scherr, Tyler D.; Hanke, Mark L.; Huang, Ouwen; James, David B. A.; Horswill, Alexander R.; Bayles, Kenneth W.; Fey, Paul D.; Torres, Victor J.

    2015-01-01

    ABSTRACT The macrophage response to planktonic Staphylococcus aureus involves the induction of proinflammatory microbicidal activity. However, S. aureus biofilms can interfere with these responses in part by polarizing macrophages toward an anti-inflammatory profibrotic phenotype. Here we demonstrate that conditioned medium from mature S. aureus biofilms inhibited macrophage phagocytosis and induced cytotoxicity, suggesting the involvement of a secreted factor(s). Iterative testing found the active factor(s) to be proteinaceous and partially agr-dependent. Quantitative mass spectrometry identified alpha-toxin (Hla) and leukocidin AB (LukAB) as critical molecules secreted by S. aureus biofilms that inhibit murine macrophage phagocytosis and promote cytotoxicity. A role for Hla and LukAB was confirmed by using hla and lukAB mutants, and synergy between the two toxins was demonstrated with a lukAB hla double mutant and verified by complementation. Independent confirmation of the effects of Hla and LukAB on macrophage dysfunction was demonstrated by using an isogenic strain in which Hla was constitutively expressed, an Hla antibody to block toxin activity, and purified LukAB peptide. The importance of Hla and LukAB during S. aureus biofilm formation in vivo was assessed by using a murine orthopedic implant biofilm infection model in which the lukAB hla double mutant displayed significantly lower bacterial burdens and more macrophage infiltrates than each single mutant. Collectively, these findings reveal a critical synergistic role for Hla and LukAB in promoting macrophage dysfunction and facilitating S. aureus biofilm development in vivo. PMID:26307164

  9. Intracellular delivery of etoposide loaded biodegradable nanoparticles: cytotoxicity and cellular uptake studies.

    PubMed

    Yadav, Khushwant S; Jacob, Sheeba; Sachdeva, Geetanjali; Sawant, Krutika K

    2011-08-01

    The preferred delivery systems for anticancer drugs would be the one which would have selective and effective destruction of cancer cells. In the present study etoposide (ETO) loaded nanoparticles (NP) were prepared using PLGA (ETO-PLGA NP), PLGA-MPEG block copolymer (ETO-PLGA-MPEG NP) and PLGA-Pluronic copolymer (ETO-PLGA-PLU NP) and they were evaluated for cytotoxicity and cellular uptake studies using two cancer cell lines, L1210 and DU145. The IC50 values for L1210 cells were 18.0, 6.2, 4.8 and 5.4 microM and for DU145 cells the IC50 values were 98.4, 75.1, 60.1 and 71.3 microM for ETO, ETO-PLGA NP, ETO-PLGA-MPEG NP and ETO-PLGA-PLU NP respectively. The increased cytotoxicities were attributed to increased uptake of the NPs by the cells. Moreover the ETO loaded PLGA-MPEG NP and PLGA-Pluronic NP showed a sustained cytotoxic effect till 5 days on both the cell lines. Results of the long term cytotoxicity study concluded that the drug loaded PLGA nanoparticulate formulations were efficient in decreasing the viability of the L1210 cells over a period of three days, whereas the pure drug exerted its maximum efficiency on the day one itself. Z-stack confocal images of NPs showed fluorescence activity in each section of DU 145 and L1210 cells indicating that the nanoparticles were internalized by the cells. The study concluded that ETO loaded PLGA NPs had higher cytotoxicity compared with that of the free drug and ETO-PLGA-MPEG NP and ETO-PLGA-PLU NP had higher cell uptake efficiency compared with that of ETO-PLGA NP. The developed PLGA based NPs shows promise to be used for cancer therapy.

  10. Structure determination and total synthesis of a novel antibacterial substance, AB0022A, produced by a cellular slime mold.

    PubMed

    Sawada, T; Aono, M; Asakawa, S; Ito, A; Awano, K

    2000-09-01

    A novel antibacterial substance, AB0022A, was isolated from the cellular slime mold Dictyostelium purpureum K1001. It inhibited the growth of Gram-positive bacteria, and its MICs ranged from 0.39 to 50 microg/ml. Because AB0022A was a highly substituted aromatic compound, we could not determine its structure based on only its physico-chemical and spectral data. We therefore used a dehalogenated derivative from AB0022A and deduced that its structure was 1,9-dihydroxy-3,7-dimethoxy-2-hexanoyl-4,6,8-trichlorodibenzofuran . To confirm this structure, we synthesized the compound having the deduced structure. The synthetic compound was identical to naturally occurring AB0022A.

  11. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    PubMed Central

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  12. Time-and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells

    DTIC Science & Technology

    2007-07-01

    lectin, ricin communis agglutinin, which is not directly cytotoxic but does have an affinity for red blood cells and can lead to agglutination and...Time- and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells Sharmaine Ramasamy and David Proll Human...Disease Control (CDC) Select Agent List. Using human small airway epithelial cells , this is the first study to investigate the time- and dose-dependent

  13. Antibody-dependent cellular cytotoxicity and neutralizing activity in sera of HIV-1-infected mothers and their children.

    PubMed Central

    Broliden, K; Sievers, E; Tovo, P A; Moschese, V; Scarlatti, G; Broliden, P A; Fundaro, C; Rossi, P

    1993-01-01

    The prognostic and protective role of antibodies mediating cellular cytotoxicity (ADCC) and neutralization was evaluated in sera of HIV-1-infected mothers and their consecutively followed children. The presence and titres of ADCC mediating and/or neutralizing antibodies in maternal sera did not predict HIV-1 infection in their respective children. No significant difference in the sera from the children was seen when comparing the presence of neutralizing antibodies between the uninfected and infected children. Stratification of the infected group according to clinical status revealed differences. Only one of 24 AIDS patients had a high neutralizing titre against IIIB. Four patients had a very low titre and the remaining had no detectable neutralizing antibodies at all. In contrast, 10/17 infected non-AIDS children had neutralizing antibodies. Similarly, no significant difference was seen when comparing the presence of ADCC-mediating antibodies between the uninfected and the infected group of children. However, a significantly higher frequency of ADCC was seen in the seropositive non-AIDS children compared with the AIDS children. This study clearly shows that the presence of antibodies mediating ADCC and neutralization in infected children, 0-2 years old, is associated with a better clinical status and delayed disease progression. PMID:8324904

  14. Leptin Protects Host Cells from Entamoeba histolytica Cytotoxicity by a STAT3-Dependent Mechanism

    PubMed Central

    Verkerke, Hans P.; Paul, Shom N.; Mackey, Aaron J.; Petri, William A.

    2012-01-01

    The adipocytokine leptin links nutritional status to immune function. Leptin signaling protects from amebiasis, but the molecular mechanism is not understood. We developed an in vitro model of ameba-host cell interaction to test the hypothesis that leptin prevents ameba-induced apoptosis in host epithelial cells. We demonstrated that activation of mammalian leptin signaling increased cellular resistance to amebic cytotoxicity, including caspase-3 activation. Exogenous expression of the leptin receptor conferred resistance in susceptible cells, and leptin stimulation enhanced protection. A series of leptin receptor signaling mutants showed that resistance to amebic cytotoxicity was dependent on activation of STAT3 but not the Src homology-2 domain-containing tyrosine phosphatase (SHP-2) or STAT5. A common polymorphism in the leptin receptor (Q223R) that increases susceptibility to amebiasis in humans and mice was found to increase susceptibility to amebic cytotoxicity in single cells. The Q223R polymorphism also decreased leptin-dependent STAT3 activation by 21% relative to that of the wild-type (WT) receptor (P = 0.035), consistent with a central role of STAT3 signaling in protection. A subset of genes uniquely regulated by STAT3 in response to leptin was identified. Most notable were the TRIB1 and suppressor of cytokine signaling 3 (SOCS3) genes, which have opposing roles in the regulation of apoptosis. Overall apoptotic genes were highly enriched in this gene set (P < 1E−05), supporting the hypothesis that leptin regulation of host apoptotic genes via STAT3 is responsible for protection. This is the first demonstration of a mammalian signaling pathway that restricts amebic pathogenesis and represents an important advance in our mechanistic understanding of how leptin links nutrition and susceptibility to infection. PMID:22331430

  15. Unambiguous Identification of β-Tubulin as the Direct Cellular Target Responsible for the Cytotoxicity of Chalcone by Photoaffinity Labeling.

    PubMed

    Zhou, Bo; Yu, Xingxin; Zhuang, Chunlin; Villalta, Peter; Lin, Yong; Lu, Junxuan; Xing, Chengguo

    2016-07-05

    Chalcone is a simple and potentially privileged structure in medicinal chemistry with a diverse repertoire of biological activities, among which cytotoxicity is of particular interest. The sharp structure-activity relationship (SAR) for chalcone's cytotoxicity suggests structure-specific target interactions. Despite the numerous putative targets proposed, evidence for direct target interactions in cells is unavailable. In this study, guided by the sharp cytotoxic SAR, we developed a cytotoxic chalcone-based photoaffinity labeling (PAL) probe, (E)-3-(3-azidophenyl)-1-[3,5-dimethoxy-4-(prop-2-yn-1-yloxy)phenyl]-2-methylprop-2-en-1-one (C95; IC50 : 0.38±0.01 μm), along with two structurally similar non-cytotoxic probes. These probes were used to search for the direct cellular target responsible for chalcone's cytotoxicity through intact cell-based PAL experiments, in which β-tubulin was identified to specifically interact with the cytotoxic probe (i.e., C95) but not the non-cytotoxic probes. A set of phenotypical and biochemical assays further reinforced β-tubulin as the cytotoxic target of chalcones. Peptide mass quantitation by mass spectrometric analysis revealed one peptide potentially labeled by C95, providing information on chalcone's binding site on β-tubulin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The hypertension drug, verapamil, activates Nrf2 by promoting p62-dependent autophagic Keap1 degradation and prevents acetaminophen-induced cytotoxicity.

    PubMed

    Lee, Da Hyun; Park, Jeong Su; Lee, Yu Seol; Sung, Su Haeng; Lee, Yong-Ho; Bae, Soo Han

    2017-02-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) provides a cellular defense against oxidative stress by inducing the expression of antioxidant and detoxification enzymes. The calcium antagonist, verapamil, is an FDA-approved drug prescribed for the treatment of hypertension. Here, we show that verapamil acts as a potent Nrf2 activator without causing cytotoxicity, through degradation of Kelch-like ECH-associated protein 1 (Keap1), a Nrf2 repressor. Furthermore, verapamilinduced Keap1 degradation is prominently mediated by a p62-dependent autophagic pathway. Correspondingly, verapamil protects cells from acetaminophen-induced oxidative damage through Nrf2 activation. These results demonstrated the underlying mechanisms for the protective role of verapamil against acetaminophen-induced cytotoxicity. [BMB Reports 2017; 50(2): 91-96].

  17. Evaluation of cytotoxicity of different tobacco product preparations.

    PubMed

    Arimilli, Subhashini; Damratoski, Brad E; Bombick, Betsy; Borgerding, Michael F; Prasad, G L

    2012-12-01

    Acute exposure to cigarette smoke or its components triggers diverse cellular effects, including cytotoxicity. However, available data regarding the potential cytotoxic effects of smokeless tobacco (ST) extracts lack consensus. Here, we investigated the relative biological effects of 2S3 reference ST, and whether ST elicits differential cellular/molecular responses compared to combustible tobacco product preparations (TPPs) prepared from 3R4F cigarettes. Total particulate matter (TPM) and whole smoke conditioned medium (WS-CM) were employed as combustible TPPs, while the ST extract was used as non-combustible TPP. HL60, THP1 cells and human PBMCs were used to examine the effects of TPPs in short-term cell culture. Corresponding EC(50) values, normalized for nicotine content of the TPPs, suggest that combustible TPPs induced higher cytotoxicity as follows: WS-CM TPM ≥ ≫ST extract>nicotine. While all three TPPs induced detectable levels of DNA damage and IL8 secretion, the combustible TPPs were significantly more potent than the ST preparation. The major PBMC subsets showed differential cytotoxicity to combustible TPPs as follows: CD4>CD8>monocytes>NK cells. These findings suggest that, relative cytotoxic and other cell biological effects of TPPs are dose-dependent, and that ST extract is the least cytotoxic TPP tested in this study. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Cytotoxicity and cellular uptake of doxorubicin and its formamidine derivatives in HL60 sensitive and HL60/MX2 resistant cells.

    PubMed

    Kik, Krzysztof; Wasowska-Lukawska, Malgorzata; Oszczapowicz, Irena; Szmigiero, Leszek

    2009-04-01

    In this work a comparison was made of the cytotoxicity and cellular uptake of doxorubicin (DOX) and two of its derivatives containing a formamidino group (-N=CH-N<) at the 3' position with morpholine (DOXM) or hexamethyleneimine (DOXH) ring. All tests were performed in doxorubicin-sensitive HL60 and -resistant HL60/MX2 cells which are known for the presence of altered topoisomerase II. Cytotoxic activity of DOX toward HL60/MX2 cells was about 195 times lower when compared with the sensitive HL60 cell line. DOXM and DOXH were approximately 20 times more active in resistant cells than DOX. It was found that the uptake of DOX was lower in resistant cells by about 16%, while that of DOXM and DOXH was lower by about 36% and 19%, respectively. Thus the changes in the cellular uptake of anthracyclines are not associated with the fact that cytotoxicity of DOXM and DOXH exceed the cytotoxicity of DOX. Experiments in cell-free system containing human topoisomerase II showed that topoisomerase II is not inhibited by DOXM and DOXH. Formamidinoanthracyclines may be more useful than parent drugs in therapy against tumor cells with altered topoisomerase II activity.

  19. Diabody-based recombinant formats of humanized IgG-like bispecific antibody with effective retargeting of lymphocytes to tumor cells.

    PubMed

    Asano, Ryutaro; Kawaguchi, Hiroko; Watanabe, Yasuhiro; Nakanishi, Takeshi; Umetsu, Mitsuo; Hayashi, Hiroki; Katayose, Yu; Unno, Michiaki; Kudo, Toshio; Kumagai, Izumi

    2008-10-01

    Recently, recombinant antibodies have been dissected into antigen-binding regions and rebuilt into multivalent high-avidity formats. These new structural designs are expected to improve in vivo pharmacokinetics and efficacy in clinical use. Here, we designed effective recombinant bispecific antibody (BsAb) formats based on hEx3, a humanized bispecific diabody with epidermal growth factor receptor and CD3 retargeting. The bispecific and bivalent IgG-like antibodies engineered from hEx3 (or its single-chain form, hEx3-scDb) and the human Fc region showed stronger binding to each target cell than did monovalent diabody formats, and their affinity was identical to that of the corresponding parent IgG. The bivalent effect of the constructed IgG-like BsAbs resulted in cell cytotoxicity 10 times that of monovalent diabodies, and further, the fusion of Fc portion contributed intense cytotoxicity in peripheral blood mononuclear cells by the induction of the antibody-dependent cellular cytotoxicity. The growth-inhibition effects of IgG-like BsAbs were superior to those of the approved therapeutic antibody cetuximab, which recognizes the same epidermal growth factor receptor antigen, even when peripheral blood mononuclear cells were used as effector cells. We thus demonstrated a critical improvement in the effect of hEx3 by the bottom-up construction of IgG-like BsAbs; in adoptive immunotherapy, monotherapy without supplemental molecules may be able to induce antibody-dependent cellular cytotoxicity.

  20. Effect of PEG molecular weight on stability, T₂ contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs).

    PubMed

    Park, Yoonjee C; Smith, Jared B; Pham, Tuan; Whitaker, Ragnhild D; Sucato, Christopher A; Hamilton, James A; Bartolak-Suki, Elizabeth; Wong, Joyce Y

    2014-07-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are currently unavailable as MRI contrast agents for detecting atherosclerosis in the clinical setting because of either low signal enhancement or safety concerns. Therefore, a new generation of SPIONs with increased circulation time, enhanced image contrast, and less cytotoxicity is essential. In this study, monodisperse SPIONs were synthesized and coated with polyethylene glycol (PEG) of varying molecular weights. The resulting PEGylated SPIONs were characterized, and their interactions with vascular smooth muscle cells (VSMCs) were examined. SPIONs were tested at different concentrations (100 and 500 ppm Fe) for stability, T2 contrast, cytotoxicity, and cellular uptake to determine an optimal formulation for in vivo use. We found that at 100 ppm Fe, the PEG 2K SPIONs showed adequate stability and magnetic contrast, and exhibited the least cytotoxicity and nonspecific cellular uptake. An increase in cell viability was observed when the SPION-treated cells were washed with PBS after 1h incubation compared to 5 and 24h incubation without washing. Our investigation provides insight into the potential safe application of SPIONs in the clinic. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples.

    PubMed

    Reddy, Venkat; Klein, Christian; Isenberg, David A; Glennie, Martin J; Cambridge, Geraldine; Cragg, Mark S; Leandro, Maria J

    2017-07-01

    A proportion of RA and SLE patients treated with standard doses of rituximab (RTX) display inefficient B cell deletion and poor clinical responses that can be augmented by delivering higher doses, indicating that standard-dose RTX is a sub-optimal therapy in these patients. This study aimed to investigate whether better responses could be achieved with mechanistically different anti-CD20 mAbs. We compared RTX with obinutuzumab (OBZ), a new-generation, glycoengineered type II anti-CD20 mAb, in a series of in vitro assays measuring B cell cytotoxicity in RA and SLE patient samples. We found that OBZ was at least 2-fold more efficient than RTX at inducing B-cell cytotoxicity in in vitro whole blood assays. Dissecting this difference, we found that RTX elicited more potent complement-dependent cellular cytotoxicity than OBZ. In contrast, OBZ was more effective at evoking Fc gamma receptor-mediated effector mechanisms, including activation of NK cells and neutrophils, probably due to stronger interaction with Fc gamma receptors and the ability of OBZ to remain at the cell surface following CD20 engagement, whereas RTX became internalized. OBZ was also more efficient at inducing direct cell death. This was true for all CD19 + B cells as a whole and in naïve (IgD + CD27 - ) and switched (IgD - CD27 + ) memory B cells specifically, a higher frequency of which is associated with poor clinical response after RTX. Taken together, these data provide a mechanistic basis for resistance to rituximab-induced B-cell depletion, and for considering obinutuzumab as an alternative B-cell depleting agent in RA and SLE. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Culture supernatants from V. cholerae O1 El Tor strains isolated from different geographic areas induce cell vacuolation and cytotoxicity.

    PubMed

    Vidal, Jorge E; Enríquez-Rincón, Fernando; Giono-Cerezo, Silvia; Ribas-Aparicio, Rosa María; Figueroa-Arredondo, Paula

    2009-01-01

    To investigate whether the HlyA-induced vacuolating effect is produced by V. cholerae O1 ElTor strains isolated from different geographic origins, including Mexico. Supernatant-induced haemolysis, vacuolating activity and cytotoxicity in Vero cells were recorded. PCR, RFLP analysis and molecular cloning were performed. All ElTor strains analyzed induced cellular vacuolation. Ribotype 2 strains isolates from the U.S. gulf coast yielded the highest titer of vacuolating activity. Eight of nine strains were haemolytic, while all strains were PCR positive for the hlyA gene. We cloned the hlyA gene from two ElTor strains, a toxigenic (2514-88, ctxAB+) and a non-toxigenic Mexican strain (CM 91-3, ctxAB-). Supernatant from those recombinant E. coli strains induced haemolysis, cell vacuolation and cytotoxicity. RFLP-PCR analysis revealed similarities in the hlyA gene from all strains tested. The HlyA-induced vacuolating effect is a widespread phenotype of epidemic V. cholerae O1 ElTor strains.

  3. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity

    NASA Astrophysics Data System (ADS)

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei

    2015-10-01

    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.

  4. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity.

    PubMed

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei

    2015-10-28

    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.

  5. Nanosilica induced dose-dependent cytotoxicity and cell type-dependent multinucleation in HepG2 and L-02 cells

    NASA Astrophysics Data System (ADS)

    Yu, Yongbo; Duan, Junchao; Li, Yang; Yu, Yang; Hu, Hejing; Wu, Jing; Zhang, Yannan; Li, Yanbo; CaixiaGuo; Zhou, Xianqing; Sun, Zhiwei

    2016-11-01

    The prevalent exposure to nanosilica gained concerns about health effects of these particles on human beings. Although nanosilica-induced multinucleation has been confirmed previously, the underlying mechanism was still not clear; this study was to investigate the origination of multinucleated cells caused by nanosilica (62 nm) in both HepG2 and L-02 cells. Cell viability and cellular uptake was determined by MTT assay and transmission electron microscope (TEM), respectively. Giemsa staining was applied to detect multinucleation. To clarify the origination of multinucleated cells, fluorescent probes, PKH26 and PKH67, time-lapse observation were further conducted by confocal microscopy. Results indicated that nanosilica particles were internalized into cells and induced cytotoxicity in a dose-dependent manner. Quantification analysis showed that nanosilica significantly increased the rates of binucleated and multinucleated cells, which suggested mitotic catastrophe induction. Moreover, dynamic visualization verified that multinucleation resulted from cell fusion in HepG2 cells not in L-02 cells after nanosilica exposure, suggesting cell type-dependent multinucleation formation. Both multinucleation and cell fusion were involved in genetic instability, which emphasized the significance to explore the multinucleation induced by nanosilica via environmental, occupational and consumer product exposure.

  6. Modulation in vitro and in vivo of cytotoxicity but not cellular levels of doxorubicin by the calmodulin inhibitor trifluoperazine is dependent on the level of resistance.

    PubMed Central

    Ganapathi, R.; Schmidt, H.; Grabowski, D.; Melia, M.; Ratliff, N.

    1988-01-01

    The role of the calmodulin inhibitor trifluoperazine (TFP) in modulating the cellular levels and cytotoxicity in vitro and antitumour effects in vivo of doxorubicin (DOX), was evaluated in progressively DOX-resistant (5- to 40-fold) sublines of B16-BL6 mouse melanoma. In parental-sensitive B16-BL6 cells treated for 3 h, the IC50 of DOX was 0.1 microgram ml-1, and a less than 2-fold enhancement in DOX cell kill in the presence of a noncytotoxic concentration of 5 microM TFP was observed. However, in the DOX-resistant sublines, the IC50 was 0.7 to 5.0 micrograms ml-1 DOX in the absence of 5 microM TFP and 0.3 to 0.7 microgram ml-1 DOX in the presence of 5 microM TFP. The 2- to 7.5-fold decrease in the IC50 of DOX in the presence of 5 microM TFP, was dependent on the level of DOX-resistance in the various sublines. Compared to parental-sensitive cells, a 2-fold decrease in DOX-accumulation was evident only in the 40-fold DOX-resistant subline. Further, maximal enhancement (50%) of cellular DOX accumulation in the presence of 5 microM TFP was observed only in the 40-fold resistant cells treated with 5.0 micrograms ml-1 DOX. Retention of DOX in the 40-fold resistant subline was only 20% lower than similarly treated sensitive cells, and the inclusion of TFP increased DOX retention less than 10-15%. Antitumour studies in mice with experimental pulmonary metastases revealed that although DOX and DOX plus TFP had similar antitumour activity with the parental sensitive B16-BL6 cells, the combination of DOX plus TFP was significantly more effective than DOX alone with the DOX-resistant sublines. No overt toxicity was observed in normal mice treated with doses of TFP, DOX or DOX plus TFP used for in vivo chemotherapy studies. Results from this study suggest that gross cellular DOX levels do not appear to correlate with the magnitude of resistance, and the effects of TFP in modulating DOX resistance is possibly due to mechanisms other than mere alterations in cellular drug

  7. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    PubMed

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  8. Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications

    DTIC Science & Technology

    2007-07-01

    monoclonal antibodies (mAbs) that bind the two NH2-terminal immunoglobulin domains of CD22 and specifically block the interaction of CD22 with its...ligand blocking mAbs that effectively crosslink CD22 have distinct functional properties and facilitate assembly of an effector protein complex. These...immune mechanisms such as antibody and complement dependent cellular cytotoxicity. We hypothesize that enhancing the intrinsic pro-apoptotic

  9. Cellular pharmacodynamics of the cytotoxic guanidino-containing drug CHS 828. Comparison with methylglyoxal-bis(guanylhydrazone).

    PubMed

    Ekelund, S; Sjöholm, A; Nygren, P; Binderup, L; Larsson, R

    2001-04-20

    N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N"-4-pyridylguanidine (CHS 828) is a new guanidino-containing compound with antitumoral activity both in vitro and in vivo. Its activity profile differs from those of standard cytotoxic drugs but the mechanism of action is not yet fully understood. CHS 828 is presently in early phase I and II clinical trials. In the present study, the pharmacodynamic effects at the cellular level of CHS 828 was compared to another compound containing two guanidino groups, methylglyoxal-bis(guanylhydrazone) (MGBG). MGBG is known to inhibit the synthesis of polyamines, which are important in, e.g., proliferation and macromolecular synthesis. The concentration-response relationship of CHS 828 closely resembled that of MGBG and the drugs were similar with respect to inhibition of DNA and protein synthesis. On the other hand, CHS 828 induced a significant increase in cellular metabolism while MGBG did not. The cytotoxic effect of MGBG was reversed by the addition of exogenous polyamines, while that of CHS 828 was unaffected. Unlike MGBG, there was also no effect of CHS 828 on the levels of decarboxylating enzymes in the polyamine biosynthesis. In conclusion, CHS 828 does not appear to share any major mechanisms of action with the polyamine synthesis inhibitor MGBG. Further studies will be required to define the exact mechanism of action of CHS 828.

  10. BST-2 Expression Modulates Small CD4-Mimetic Sensitization of HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity

    PubMed Central

    Prévost, Jérémie; von Bredow, Benjamin; Ding, Shilei; Brassard, Nathalie; Medjahed, Halima; Coutu, Mathieu; Melillo, Bruno; Bibollet-Ruche, Frédéric; Hahn, Beatrice H.; Kaufmann, Daniel E.; Smith, Amos B.; Sodroski, Joseph; Sauter, Daniel; Kirchhoff, Frank; Gee, Katrina; Neil, Stuart J.; Evans, David T.

    2017-01-01

    ABSTRACT Antibodies recognizing conserved CD4-induced (CD4i) epitopes on human immunodeficiency virus type 1 (HIV-1) Env and able to mediate antibody-dependent cellular cytotoxicity (ADCC) have been shown to be present in sera from most HIV-1-infected individuals. These antibodies preferentially recognize Env in its CD4-bound conformation. CD4 downregulation by Nef and Vpu dramatically reduces exposure of CD4i HIV-1 Env epitopes and therefore reduce the susceptibility of HIV-1-infected cells to ADCC mediated by HIV-positive (HIV+) sera. Importantly, this mechanism of immune evasion can be circumvented with small-molecule CD4 mimetics (CD4mc) that are able to transition Env into the CD4-bound conformation and sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. However, HIV-1 developed additional mechanisms to avoid ADCC, including Vpu-mediated BST-2 antagonism, which decreases the overall amount of Env present at the cell surface. Accordingly, BST-2 upregulation in response to alpha interferon (IFN-α) was shown to increase the susceptibility of HIV-1-infected cells to ADCC despite the activity of Vpu. Here we show that BST-2 upregulation by IFN-β and interleukin-27 (IL-27) also increases the surface expression of Env and thus boosts the ability of CD4mc to sensitize HIV-1-infected cells to ADCC by sera from HIV-1-infected individuals. IMPORTANCE HIV-1 evolved sophisticated strategies to conceal Env epitopes from ADCC-mediating antibodies present in HIV+ sera. Vpu-mediated BST-2 downregulation was shown to decrease ADCC responses by limiting the amount of Env present at the cell surface. This effect of Vpu was shown to be attenuated by IFN-α treatment. Here we show that in addition to IFN-α, IFN-β and IL-27 also affect Vpu-mediated BST-2 downregulation and greatly enhance ADCC responses against HIV-1-infected cells in the presence of CD4mc. These findings may inform strategies aimed at HIV prevention and eradication. PMID:28331088

  11. Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis

    PubMed Central

    Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won

    2014-01-01

    Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875

  12. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis.

    PubMed

    Hall, Arnaldur; Parhamifar, Ladan; Lange, Marina Krarup; Meyle, Kathrine Damm; Sanderhoff, May; Andersen, Helene; Roursgaard, Martin; Larsen, Anna Karina; Jensen, Per Bo; Christensen, Claus; Bartek, Jiri; Moghimi, Seyed Moein

    2015-03-01

    Polyethylenimines (PEIs) are among the most efficient polycationic non-viral transfectants. PEI architecture and size not only modulate transfection efficiency, but also cytotoxicity. However, the underlying mechanisms of PEI-induced multifaceted cell damage and death are largely unknown. Here, we demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis that ultimately modulate cell death. In comparison to linear PEI, the branched architectures induced greater plasma membrane destabilization and were more detrimental to glycolytic activity and OXPHOS capacity as well as being a more potent inhibitor of the cytochrome c oxidase. Accordingly, the branched architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden of reactive oxygen species (ROS). The differences in metabolic and redox imprints were further reflected in the transfection performance of the polycations, but co-treatment with the GSH precursor N-acetyl-cysteine (NAC) counteracted redox dysregulation and increased the number of viable transfected cells. Integrated biomembrane integrity and metabolomic analysis provides a rapid approach for mechanistic understanding of multifactorial polycation-mediated cytotoxicity, and could form the basis for combinatorial throughput platforms for improved design and selection of safer polymeric vectors. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody.

    PubMed

    Monnet, Céline; Jorieux, Sylvie; Souyris, Nathalie; Zaki, Ouafa; Jacquet, Alexandra; Fournier, Nathalie; Crozet, Fabien; de Romeuf, Christophe; Bouayadi, Khalil; Urbain, Rémi; Behrens, Christian K; Mondon, Philippe; Fontayne, Alexandre

    2014-01-01

    While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGen™) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling(®) platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs.

  14. Luminescent cyclometalated iridium(III) polypyridine indole complexes--synthesis, photophysics, electrochemistry, protein-binding properties, cytotoxicity, and cellular uptake.

    PubMed

    Lau, Jason Shing-Yip; Lee, Pui-Kei; Tsang, Keith Hing-Kit; Ng, Cyrus Ho-Cheong; Lam, Yun-Wah; Cheng, Shuk-Han; Lo, Kenneth Kam-Wing

    2009-01-19

    A series of luminescent cyclometalated iridium(III) polypyridine indole complexes, [Ir(N--C)(2)(N--N)](PF(6)) (HN--C = 2-phenylpyridine (Hppy), N--N = 4-((2-(indol-3-yl)ethyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine (bpy-ind) (1a), N--N = 4-((5-((2-(indol-3-yl)ethyl)aminocarbonyl)pentyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine (bpy-C6-ind) (1b); HN--C = 7,8-benzoquinoline (Hbzq), N--N = bpy-ind (2a), N--N = bpy-C6-ind (2b); and HN--C = 2-phenylquinoline (Hpq), N--N = bpy-ind (3a), N--N = bpy-C6-ind (3b)), have been synthesized, characterized, and their photophysical and electrochemical properties and lipophilicity investigated. Photoexcitation of the complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence (lambda(em) = 540-616 nm, tau(o) = 0.13-5.15 mus). The emission of the complexes has been assigned to a triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir) --> pi*(N--N)) excited state, probably with some mixing of triplet intraligand ((3)IL) (pi --> pi*) (pq) character for complexes 3a,b. Electrochemical measurements revealed that all the complexes showed an irreversible indole oxidation wave at ca. +1.1 V versus SCE, a quasi-reversible iridium(IV/III) couple at ca. +1.3 V, and a reversible diimine reduction couple at ca. -1.3 V. The interactions of these complexes with an indole-binding protein, bovine serum albumin (BSA), have been studied by emission titrations, and the K(a) values are on the order of 10(4) M(-1). Additionally, the cytotoxicity of the complexes toward human cervix epithelioid carcinoma (HeLa) cells has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC(50) values of the complexes ranged from 1.1 to 6.3 microM, which are significantly smaller than that of cisplatin (30.7 microM) under the same experimental conditions. Furthermore, the cellular uptake of the complexes has been investigated by flow cytometry and laser

  15. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles

    PubMed Central

    Penders, Jelle; Stolzoff, Michelle; Hickey, Daniel J; Andersson, Martin; Webster, Thomas J

    2017-01-01

    Gold nanoparticles (AuNPs) of various shapes (including spheres, stars and flowers), with similar dimensions, were synthesized and evaluated for their antibacterial effects toward Staphylococcus aureus, a bacterium responsible for numerous life-threatening infections worldwide. Optical growth curve measurements and Gompertz modeling showed significant AuNP shape- and concentration-dependent decreases in bacterial growth with increases in bacterial growth lag time. To evaluate prospective use in in vivo systems, the cytotoxicity of the same AuNPs was evaluated toward human dermal fibroblasts in vitro by 3-(4,5 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) viability assays and confocal microscopy. No indication of any mammalian cell toxicity or morphological effects was found. Additionally, it was observed that the AuNPs were readily internalized in fibroblasts after 4 days of incubation. Most importantly, the results of the present study showed that gold nanoflowers in particular possessed the most promising non-cytotoxic mammalian cell behavior with the greatest shape-dependent antibacterial activity-promising properties for their future investigation in a wide range of anti-infection applications. PMID:28408817

  16. Sensitive Detection of the Natural Killer Cell-Mediated Cytotoxicity of Anti-CD20 Antibodies and Its Impairment by B-Cell Receptor Pathway Inhibitors

    PubMed Central

    Knödgen, Eva; Göckeritz, Elisa; Vondey, Verena; Neumann, Lars; Herter, Sylvia; Klein, Christian; Hallek, Michael

    2018-01-01

    The antibody-dependent cell-mediated cytotoxicity (ADCC) of the anti-CD20 monoclonal antibodies (mAbs) rituximab and obinutuzumab against the cell line Raji and isolated CLL cells and its potential impairment by kinase inhibitors (KI) was determined via lactate dehydrogenase release or calcein retention, respectively, using genetically modified NK92 cells expressing CD16-176V as effector cells. Compared to peripheral blood mononuclear cells, recombinant effector cell lines showed substantial alloreactivity-related cytotoxicity without addition of mAbs but afforded determination of ADCC with reduced interassay variability. The cytotoxicity owing to alloreactivity was less susceptible to interference by KI than the ADCC of anti-CD20 mAbs, which was markedly diminished by ibrutinib, but not by idelalisib. Compared to rituximab, the ADCC of obinutuzumab against primary CLL cells showed approximately 30% higher efficacy and less interference with KI. Irreversible BTK inhibitors at a clinically relevant concentration of 1 μM only weakly impaired the ADCC of anti-CD20 mAbs, with less influence in combinations with obinutuzumab than with rituximab and by acalabrutinib than by ibrutinib or tirabrutinib. In summary, NK cell line-based assays permitted the sensitive detection of ADCC of therapeutic anti-CD20 mAbs against CLL cells and of the interference of KI with this important killing mechanism. PMID:29750146

  17. A perillyl alcohol-conjugated analog of 3-bromopyruvate without cellular uptake dependency on monocarboxylate transporter 1 and with activity in 3-BP-resistant tumor cells.

    PubMed

    Chen, Thomas C; Yu, Jiali; Nouri Nigjeh, Eslam; Wang, Weijun; Myint, Phyo Thazin; Zandi, Ebrahim; Hofman, Florence M; Schönthal, Axel H

    2017-08-01

    The anticancer agent 3-bromopyruvate (3-BP) is viewed as a glycolytic inhibitor that preferentially kills glycolytic cancer cells through energy depletion. However, its cytotoxic activity is dependent on cellular drug import through transmembrane monocarboxylate transporter 1 (MCT-1), which restricts its anticancer potential to MCT-1-positive tumor cells. We created and characterized an MCT-1-independent analog of 3-BP, called NEO218. NEO218 was synthesized by covalently conjugating 3-BP to perillyl alcohol (POH), a natural monoterpene. The responses of various tumor cell lines to treatment with either compound were characterized in the presence or absence of supplemental pyruvate or antioxidants N-acetyl-cysteine (NAC) and glutathione (GSH). Drug effects on glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enzyme activity were investigated by mass spectrometric analysis. The development of 3-BP resistance was investigated in MCT-1-positive HCT116 colon carcinoma cells in vitro. Our results show that NEO218: (i) pyruvylated GAPDH on all 4 of its cysteine residues and shut down enzymatic activity; (ii) severely lowered cellular ATP content below life-sustaining levels, and (iii) triggered rapid necrosis. Intriguingly, supplemental antioxidants effectively prevented cytotoxic activity of NEO218 as well as 3-BP, but supplemental pyruvate powerfully protected cells only from 3-BP, not from NEO218. Unlike 3-BP, NEO218 exerted its potent cytotoxic activity irrespective of cellular MCT-1 status. Treatment of HCT116 cells with 3-BP resulted in prompt development of resistance, based on the emergence of MCT-1-negative cells. This was not the case with NEO218, and highly 3-BP-resistant cells remained exquisitely sensitive to NEO218. Thus, our study identifies a mechanism by which tumor cells develop rapid resistance to 3-BP, and presents NEO218 as a superior agent not subject to this cellular defense. Furthermore, our results offer alternative interpretations of previously

  18. Bioenergetic metabolites regulate base excision repair dependent cell death in response to DNA damage

    PubMed Central

    Tang, Jiang-bo; Goellner, Eva M.; Wang, Xiao-hong; Trivedi, Ram N.; Croix, Claudette M. St; Jelezcova, Elena; Svilar, David; Brown, Ashley R.; Sobol, Robert W.

    2009-01-01

    Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance (Polß deficiency or repair inhibition) enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polß triggers cell death dependent on PARP activation yet independent of poly(ADP-ribose) (PAR)-mediated AIF nuclear translocation or PARG, suggesting that cytotoxicity is not from PAR or PAR-catabolite signaling. Cell death is rescued by the NAD+ metabolite NMN and is synergistic with inhibition of NAD+ biosynthesis, demonstrating that DNA damage-induced cytotoxicity mediated via BER inhibition is primarily dependent on cellular metabolite bioavailability. We offer a mechanistic justification for the elevated alkylation-induced cytotoxicity of Polß deficient cells, suggesting a linkage between DNA repair, cell survival and cellular bioenergetics. PMID:20068071

  19. Effects of ADAM10 and ADAM17 Inhibitors on Natural Killer Cell Expansion and Antibody-dependent Cellular Cytotoxicity Against Breast Cancer Cells In Vitro.

    PubMed

    Pham, Dang-Huan; Kim, Ju-Sun; Kim, Sang-Ki; Shin, Dong-Jun; Uong, Nguyen-Thanh-Tung; Hyun, Hoon; Yoon, Mee Sun; Kang, Sin Jae; Ryu, Young Jae; Cho, Jin Seong; Yoon, Jung Han; Lee, Ji Shin; Cho, Duck; Lee, Soo-Hyeon; Park, Min Ho

    2017-10-01

    The inhibition of a disintegrin and metalloproteinase (ADAM) has the potential to become a novel approach for natural killer (NK) cell-based cancer immunotherapy. Thus, the aim of this study was to investigate the influence of ADAM10 and ADAM17 inhibitors on expanded NK cell to enhance antibody-dependent cellular cytotoxicity (ADCC) in breast cancer cell lines. NK cells were expanded in medium supplemented with an ADAM10 or ADAM17 inhibitor to prevent the shedding of soluble CD16/FcγRIII. The expression level of CD16 and production of interferon-gamma (IFN-γ) was detected by flow cytometry using specific antibodies. ADCC activity of expanded NK cells was estimated in trastuzumab treated breast cancer cell lines such as MCF-7, MDA-MB-231, SKBR3, and BT-474 cells. The ADAM17 inhibitor increased the purity of expanded NK cells to 90% after 14 days at 5 and 10 μM in vitro (p=0.043). However, the expansion rate of NK cells was decreased at 10 μM of the ADAM 17 inhibitor (p=0.043). Inhibition of ADAM10 suppressed the expansion of NK cells, although the NK purity was increased at 1 μM of the inhibitor. The expression of CD16 was significantly increased at 1 and 5 μM of the ADAM17 inhibitor (p=0.046, 0.028, respectively) during the culturing period. Inhibition of ADAM10 reduced the expression of CD16 on NK cells. The cytotoxic activity of the ADAM17 inhibitor treated NK cells against MCF-7 (p=0.039) and BT-474 (p=0.027) cells was significantly elevated. The ADCC activity of NK cells treated with 5 μM of ADAM17 inhibitor was significantly increased against SKBR-3 and BT-474 (p=0.027). Inhibition of ADAM17 increased the production of IFN-γ in expanded NK cells. The inhibition of ADAM17 enhanced the purity of expanded NK cells and the ADCC activity of these cells against trastuzumab treated breast cancer cell lines. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium.

    PubMed Central

    Chitambar, C R; Seligman, P A

    1986-01-01

    We have previously shown that human leukemic cells proliferate normally in serum-free media containing various transferrin forms, but the addition of transferrin-gallium leads to inhibition of cellular proliferation. Because gallium has therapeutic potential, the effects of transferrin-gallium on leukemic cell proliferation, transferrin receptor expression, and cellular iron utilization were studied. The cytotoxicity of gallium is considerably enhanced by its binding to transferrin and cytotoxicity can be reversed by transferrin-iron but not by other transferrin forms. Exposure to transferrin-gallium leads to a marked increase in cell surface transferrin binding sites, but despite this, cellular 59Fe incorporation is inappropriately low. Although shunting of transferrin-gallium to another cellular compartment has not been ruled out, other studies suggest that transferrin-gallium impairs intracellular release of 59Fe from transferrin by interfering with processes responsible for intracellular acidification. These studies, taken together, demonstrate that inhibition of cellular iron incorporation by transferrin-gallium is a prerequisite for inhibition of cellular proliferation. PMID:3465751

  1. Necitumumab, a fully human IgG1 mAb directed against the EGFR for the potential treatment of cancer.

    PubMed

    Dienstmann, Rodrigo; Tabernero, Josep

    2010-12-01

    Necitumumab (IMC-11F8), under development by ImClone Systems in collaboration with Bristol-Myers Squibb, is a fully human IgG1 mAb targeting the epidermal growth factor receptor (EGFR), for the potential intravenous treatment of cancer, in particular NSCLC. In vitro studies demonstrate that necitumumab inhibits downstream targets in the EGFR pathway (eg, MAPK), which are important for cellular proliferation, differentiation, invasion and metastasis. Furthermore, because necitumumab is an IgG1 construct, it has the potential to induce antibody-dependent cell-mediated cytotoxicity against tumor cells. Preclinical studies indicated that the antitumor activity of necitumumab is either comparable with or superior to that of ImClone's chimeric anti-EGFR mAb cetuximab. In a phase I clinical trial in patients with advanced solid malignancies, necitumumab displayed nonlinear pharmacokinetic behavior. The toxicity profile of necitumumab is acceptable, with skin toxicity being the most frequently reported adverse event in the phase I and II clinical trials conducted to date. Preliminary data from a phase II clinical trial of necitumumab in combination with chemotherapy for the first-line treatment of advanced colon cancer are promising. Success in the ongoing phase III clinical trials in patients with advanced NSCLC would lead to necitumumab becoming a valuable addition to future therapeutic strategies in oncology.

  2. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells.

    PubMed

    Punfa, Wanisa; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Ampasavate, Chadarat; Limtrakul, Pornngarm

    2012-06-01

    To compare the anti-cancer activity and cellular uptake of curcumin (Cur) delivered by targeted and non-targeted drug delivery systems in multidrug-resistant cervical cancer cells. Cur was entrapped into poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Cur-NPs) in the presence of modified-pluronic F127 stabilizer using nano-precipitation technique. On the surface of Cur-NPs, the carboxy-terminal of modified pluronic F127 was conjugated to the amino-terminal of anti-P-glycoprotein (P-gp) (Cur-NPs-APgp). The physical properties of the Cur-NPs, including particle size, zeta potential, particle morphology and Cur release kinetics, were investigated. Cellular uptake and specificity of the Cur-NPs and Cur-NPs-APgp were detected in cervical cancer cell lines KB-V1 (higher expression of P-gp) and KB-3-1 (lower expression of P-gp) using fluorescence microscope and flow cytometry, respectively. Cytotoxicity of the Cur-NPs and Cur-NPs-APgp was determined using MTT assay. The particle size of Cur-NPs and Cur-NPs-APgp was 127 and 132 nm, respectively. The entrapment efficiency and actual loading of Cur-NPs-APgp (60% and 5 μg Cur/mg NP) were lower than those of Cur-NPs (99% and 7 μg Cur/mg NP). The specific binding of Cur-NPs-APgp to KB-V1 cells was significantly higher than that to KB-3-1 cells. Cellular uptake of Cur-NPs-APgp into KB-V1 cells was higher, as compared to KB-3-1 cells. However, the cellular uptake of Cur-NPs and Cur-NPs-IgG did not differ between the two types of cells. Besides, the cytotoxicity of Cur-NPs-APgp in KB-V1 cells was higher than those of Cur and Cur-NPs. The results demonstrate that Cur-NPs-APgp targeted to P-gp on the cell surface membrane of KB-V1 cells, thus enhancing the cellular uptake and cytotoxicity of Cur.

  3. Cytotoxicity and cellular response mechanisms of water-soluble platinum(II) complexes of lidocaine and phenylcyanamide derivatives.

    PubMed

    Tabrizi, Leila; Chiniforoshan, Hossein

    2017-02-01

    Three new platinum(II) complexes of lidocaine and phenylcyanamide derivative ligands of formula K[Pt(3,5-(NO 2 ) 2 pcyd) 2 (LC)], 1, K[Pt(3,5-(CF 3 ) 2 pcyd) 2 (LC)], 2, K[Pt(3,5-Cl 2 pcyd) 2 (LC)], 3 (LC: lidocaine, 3,5-(NO 2 ) 2 pcyd: 3,5-dinitro phenylcyanamide, 3,5-(CF 3 ) 2 pcyd: 3,5-bis(trifluoromethyl) phenylcyanamide, 3,5-Cl 2 pcyd: 3,5-dichloro phenylcyanamide) have been synthesized and fully characterized. Cellular uptake, DNA platination and cytotoxicity against a panel of human tumor cell lines were evaluated. The complexes 1-3 revealed a significant in vitro antiproliferative activity against human ovarian carcinoma (A2780), colorectal adenocarcinoma (HT29), breast (MCF-7), liver hepatocellular carcinoma (HepG-2) and lung adenocarcinoma (A549) cancer cell lines. All the complexes are more active than cisplatin and follow the trend 1 > 2 > 3. Mechanistic studies showed that the trend in cytotoxicity of the Pt(II) complexes is mainly consistent with their ability to accumulate into cancer cells and to increase intracellular basal reactive oxygen species levels, which consequently results in the loss of mitochondrial membrane potential and apoptosis induction. The complex 1 caused to approximately 80-fold higher DNA platination level with respect to cisplatin. The complexes 1-3 can considerably stimulate the production of hydrogen peroxide in a time-dependent manner. Also, the complexes 1-3 induced an increase in reactive oxygen species (ROS) production that was superior to that induced by antimycin. The complex 1 had the most effect on ROS production in comparison with other complexes.

  4. Influenza virus A(H1N1)2009 antibody-dependent cellular cytotoxicity in young children prior to the H1N1 pandemic.

    PubMed

    Mesman, Annelies W; Westerhuis, Brenda M; Ten Hulscher, Hinke I; Jacobi, Ronald H; de Bruin, Erwin; van Beek, Josine; Buisman, Annemarie M; Koopmans, Marion P; van Binnendijk, Robert S

    2016-09-01

    Pre-existing immunity played a significant role in protection during the latest influenza A virus H1N1 pandemic, especially in older age groups. Structural similarities were found between A(H1N1)2009 and older H1N1 virus strains to which humans had already been exposed. Broadly cross-reactive antibodies capable of neutralizing the A(H1N1)2009 virus have been implicated in this immune protection in adults. We investigated the serological profile of a group of young children aged 9 years (n=55), from whom paired blood samples were available, just prior to the pandemic wave (March 2009) and shortly thereafter (March 2010). On the basis of A(H1N1)2009 seroconversion, 27 of the 55 children (49 %) were confirmed to be infected between these two time points. Within the non-infected group of 28 children (51 %), high levels of seasonal antibodies to H1 and H3 HA1 antigens were detected prior to pandemic exposure, reflecting past infection with H1N1 and H3N2, both of which had circulated in The Netherlands prior to the pandemic. In some children, this reactivity coincided with specific antibody reactivity against A(H1N1)2009. While these antibodies were not able to neutralize the A(H1N1)2009 virus, they were able to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro upon interaction with the A(H1N1)2009 virus. This finding suggests that cross-reactive antibodies could contribute to immune protection in children via ADCC.

  5. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells

    NASA Astrophysics Data System (ADS)

    Sun, Xin-Yuan; Gan, Qiong-Zhi; Ouyang, Jian-Ming

    2017-02-01

    Urinary crystals with various sizes are present in healthy individuals and patients with kidney stone; however, the cellular uptake mechanism of calcium oxalate of various sizes has not been elucidated. This study aims to compare the internalization of nano-/micron-sized (50 nm, 100 nm, and 1 μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The internalization and adhesion of COM and COD crystals to Vero cells were enhanced with decreasing crystal size. Cell death rate was positively related to the amount of adhered and internalized crystals and exhibited higher correlation with internalization than that with adhesion. Vero cells mainly internalized nano-sized COM and COD crystals through clathrin-mediated pathways as well as micron-sized crystals through macropinocytosis. The internalized COM and COD crystals were distributed in the lysosomes and destroyed lysosomal integrity to some extent. The results of this study indicated that the size of crystal affected cellular uptake mechanism, and may provide an enlightenment for finding potential inhibitors of crystal uptake, thereby decreasing cell injury and the occurrence of kidney stones.

  6. Synthesis of Mg-Fe-Cl hydrotalcite-like nanoplatelets as an oral phosphate binder: evaluations of phosphorus intercalation activity and cellular cytotoxicity

    NASA Astrophysics Data System (ADS)

    Lung, Yung-Feng; Sun, Ying-Sui; Lin, Chun-Kai; Uan, Jun-Yen; Huang, Her-Hsiung

    2016-09-01

    The patients with end-stage of renal disease (ESRD) need to take oral phosphate binder. Traditional phosphate binders may leave the disadvantage of aluminum intoxication or cardiac calcification. Herein, Mg-Fe-Cl hydrotalcite-like nanoplatelet (HTln) is for the first time characterized as potential oral phosphate binder, with respect to its phosphorus uptake capacity in cow milk and cellular cytotoxicity. A novel method was developed for synthesizing the Mg-Fe-Cl HTln powder in different Mg2+: Fe3+ ratios where the optimization was 2.8:1. Addition of 0.5 g Mg-Fe-Cl HTln in cow milk could reduce its phosphorus content by 40% in 30 min and by 65% in 90 min. In low pH environment, the Mg-Fe-Cl HTln could exhibit relatively high performance for uptaking phosphorus. During a 90 min reaction of the HTln in milk, no phosphorus restoration occurred. In-vitro cytotoxicity assay of Mg-Fe-Cl HTln revealed no potential cellular cytotoxicity. The cells that were cultured in the HTln extract-containing media were even more viable than cells that were cultured in extract-free media (blank control). The Mg-Fe-Cl HTln extract led to hundred ppm of Mg ion and some ppm of Fe ion in the media, should be a positive effect on the good cell viability.

  7. Dose-dependent cytotoxicity evaluation of graphite nanoparticles for diamond-like carbon film application on artificial joints.

    PubMed

    Liao, T T; Deng, Q Y; Wu, B J; Li, S S; Li, X; Wu, J; Leng, Y X; Guo, Y B; Huang, N

    2017-01-24

    While a diamond-like carbon (DLC)-coated joint prosthesis represents the implant of choice for total hip replacement in patients, it also leads to concern due to the cytotoxicity of wear debris in the form of graphite nanoparticles (GNs), ultimately limiting its clinical use. In this study, the cytotoxicity of various GN doses was evaluated. Mouse macrophages and osteoblasts were incubated with GNs (<30 nm diameter), followed by evaluation of cytotoxicity by means of assessing inflammatory cytokines, results of alkaline phosphatase assays, and related signaling protein expression. Cytotoxicity evaluation showed that cell viability decreased in a dose-dependent manner (10-100 μg ml -1 ), and steeply declined at GNs concentrations greater than 30 μg ml -1 . Noticeable cytotoxicity was observed as the GN dose exceeded this threshold due to upregulated receptor of activator of nuclear factor kB-ligand expression and downregulated osteoprotegerin expression. Meanwhile, activated macrophage morphology was observed as a result of the intense inflammatory response caused by the high doses of GNs (>30 μg ml -1 ), as observed by the increased release of TNF-α and IL-6. The results suggest that GNs had a significant dose-dependent cytotoxicity in vitro, with a lethal dose of 30 μg ml -1 leading to dramatic increases in cytotoxicity. Our GN cytotoxicity evaluation indicates a safe level for wear debris-related arthropathy and could propel the clinical application of DLC-coated total hip prostheses.

  8. Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.

    PubMed

    Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C

    2007-06-01

    Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for

  9. Characterization of cadmium uptake and cytotoxicity in human osteoblast-like MG-63 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levesque, Martine; Martineau, Corine; Jumarie, Catherine

    Since bone mass is maintained constant by the balance between osteoclastic bone resorption and osteoblastic bone formation, alterations in osteoblast proliferation and differentiation may disturb the equilibrium of bone remodeling. Exposure to cadmium (Cd) has been associated with the alteration of bone metabolism and the development of osteoporosis. Because little information is available about the direct effects of Cd on osteoblastic cells, we have characterized in vitro the cellular accumulation and cytotoxicity of Cd in human osteoblastic cells. Incubation of osteoblast-like MG-63 cells with increasing concentrations of Cd in serum-free culture medium reduced cell viability in a time- and concentration-dependentmore » manner, suggesting that Cd accumulates in osteoblasts. Consequently, an uptake time-course could be characterized for the cellular accumulation of {sup 109}Cd in serum-free culture medium. In order to characterize the mechanisms of Cd uptake, experiments have been conducted under well-defined metal speciation conditions in chloride and nitrate transport media. The results revealed a preferential uptake of Cd{sup 2+} species. The cellular accumulation and cytotoxicity of Cd increased in the absence of extracellular calcium (Ca), suggesting that Cd may enter the cells in part through Ca channels. However, neither the cellular accumulation nor the cytotoxicity of Cd was modified by voltage-dependent Ca channel (VDCC) modulators or potassium-induced depolarization. Moreover, exposure conditions activating or inhibiting capacitative Ca entry (CCE) failed to modify the cellular accumulation and cytotoxicity of Cd, which excludes the involvement of canonical transient receptor potential (TRPC) channels. The cellular accumulation and cytotoxicity of Cd were reduced by 2-APB, a known inhibitor of the Mg and Ca channel TRPM7 and were increased in the absence of extracellular magnesium (Mg). The inhibition of Cd uptake by Mg and Ca was not additive

  10. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    PubMed

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  11. Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation.

    PubMed

    Cifuentes-Rius, Anna; Ivask, Angela; Das, Shreya; Penya-Auladell, Nuria; Fabregas, Laura; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Voelcker, Nicolas H

    2017-11-29

    Gold nanoclusters (Au NCs) have become a promising nanomaterial for cancer therapy because of their biocompatibility and fluorescent properties. In this study, the effect of ultrasmall protein-stabilized 2 nm Au NCs on six types of mammalian cells (fibroblasts, B-lymphocytes, glioblastoma, neuroblastoma, and two types of prostate cancer cells) under electromagnetic radiation is investigated. Cellular association of Au NCs in vitro is concentration-dependent, and Au NCs have low intrinsic toxicity. However, when Au NC-incubated cells are exposed to a 1 GHz electromagnetic field (microwave radiation), cell viability significantly decreases, thus demonstrating that Au NCs exhibit specific microwave-dependent cytotoxicity, likely resulting from localized heating. Upon i.v. injection in mice, Au NCs are still present at 24 h post administration. Considering the specific microwave-dependent cytotoxicity and low intrinsic toxicity, our work suggests the potential of Au NCs as effective and safe nanomedicines for cancer therapy.

  12. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqiang; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying

    2016-05-01

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  13. Synthesis, cytotoxicity, cellular uptake and influence on eicosanoid metabolism of cobalt-alkyne modified fructoses in comparison to auranofin and the cytotoxic COX inhibitor Co-ASS.

    PubMed

    Ott, Ingo; Koch, Thao; Shorafa, Hashem; Bai, Zhenlin; Poeckel, Daniel; Steinhilber, Dieter; Gust, Ronald

    2005-06-21

    Propargylhexacarbonyldicobalt complexes with fructopyranose ligands were prepared and investigated for cytotoxicity in the MCF-7 human breast cancer cell line. The antiproliferative effects depended on the presence of isopropylidene protecting groups in the carbohydrate ligand and correlated with the cellular concentration of the complexes. IC(50) values of > 20 microM demonstrated that the fructose derivatives were only moderately active compared to the references auranofin and the aspirin (ASS) derivative [2-acetoxy(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS). In continuation of our studies on the mode of action of cobalt-alkyne complexes we studied the influence of the compounds on the formation of 12-HHT (COX-1 product) and 12-HETE (12-LOX product) by human platelets as an indication of the interference in the eicosanoid metabolism, which is discussed as a target system of cytostatics. Co-ASS was an efficient COX-1 inhibitor without LOX inhibitory activity and auranofin inhibited both COX-1 and 12-LOX eicosanoid production. The missing activity of the fructopyranose complexes at the 12-LOX and the only moderate effects at COX-1 indicate that COX/LOX inhibition may be in part responsible for the pharmacological effects of auranofin and Co-ASS but not for those of the fructopyranose complexes.

  14. Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects.

    PubMed

    Paillas, Salomé; Ladjohounlou, Riad; Lozza, Catherine; Pichard, Alexandre; Boudousq, Vincent; Jarlier, Marta; Sevestre, Samuel; Le Blay, Marion; Deshayes, Emmanuel; Sosabowski, Jane; Chardès, Thierry; Navarro-Teulon, Isabelle; Mairs, Robert J; Pouget, Jean-Pierre

    2016-09-10

    We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with (125)I [(125)I-mAbs]). We showed that the cytotoxicity of (125)I-mAbs targeting the cell membrane of p53(+/+) HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-β-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. (125)I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca(2+) fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2'-deoxyuridine to the nucleus was comparable to that of (125)I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by (125)I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. Low-energy Auger electrons, such as those emitted by (125)I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with (125)I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. Our findings describe the mechanisms involved in the efficacy of (125)I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467-484.

  15. [Cytotoxicity of chimera peptides incorporating sequences of cyclin kinases inhibitors].

    PubMed

    Kharchenko, V P; Kulinich, V G; Lunin, V G; Filiasova, E I; Shishkin, A M; Sergeenko, O V; Riazanova, E M; Voronina, O L; Bozhenko, V K

    2007-01-01

    The study is concerned with proapoptotic properties of chimera peptides which incorporate sequences of inhibitors of cyclin kinases p161NK4a and p21CIP/WAF1 as well as internalized sequences (Antp and tat). Sequences of the p16 type appeared to be more cytotoxic than the p21 one. Cytotoxic effect proved dependent on orientation with respect to the C or N terminal point of a polypeptide chain rather than on chimera sequence extent. Although p16 endogenous synthesis did not influence chimera peptide levels, apoptosis did not take place in certain cellular lines. Due to the rather unsophisticated nature of such synthesis, it might be used in designing individually-tailored chemotherapeutic drugs.

  16. Heme Mediates Cytotoxicity from Artemisinin and Serves as a General Anti-Proliferation Target

    PubMed Central

    Zhang, Shiming; Gerhard, Glenn S.

    2009-01-01

    Heme (Fe2+ protoporphyrin IX) is an essential molecule that has been implicated the potent antimalarial action of artemisinin and its derivatives, although the source and nature of the heme remain controversial. Artemisinins also exhibit selective cytotoxicity against cancer cells in vitro and in vivo. We demonstrate that intracellular heme is the physiologically relevant mediator of the cytotoxic effects of artemisinins. Increasing intracellular heme synthesis through the addition of aminolevulinic acid, protoporphyrin IX, or transferrin-bound iron increased the cytotoxicity of dihydroartemisinin, while decreasing heme synthesis through the addition of succinyl acetone decreased its cytotoxic activity. A simple and robust high throughput assay was developed to screen chemical compounds that were capable of interacting with heme. A natural products library was screened which identified the compound coralyne, in addition to artemisinin, as a heme interacting compound with heme synthesis dependent cytotoxic activity. These results indicate that cellular heme may serve a general target for the development of both anti-parasitic and anti-cancer therapeutics. PMID:19862332

  17. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients

    PubMed Central

    Romano, Emanuela; Kusio-Kobialka, Monika; Foukas, Periklis G.; Baumgaertner, Petra; Meyer, Christiane; Ballabeni, Pierluigi; Michielin, Olivier; Weide, Benjamin; Romero, Pedro; Speiser, Daniel E.

    2015-01-01

    Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4–specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14++CD16− monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68+/CD163+ macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti–CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients. PMID:25918390

  18. Antioxidant and cytotoxic activities of three species of tropical seaweeds.

    PubMed

    Chia, Yin Yin; Kanthimathi, M S; Khoo, Kong Soo; Rajarajeswaran, Jayakumar; Cheng, Hwee Ming; Yap, Wai Sum

    2015-09-29

    Three species of seaweeds (Padina tetrastromatica, Caulerpa racemosa and Turbinaria ornata) are widely consumed by Asians as nutraceutical food due to their antioxidant properties. Studies have shown that these seaweeds exhibit bioactivities which include antimicrobial, antiviral, anti-hypertensive and anticoagulant activities. However, investigations into the mechanisms of action pertaining to the cytotoxic activity of the seaweeds are limited. The aim of this study was to determine the antioxidant and cytotoxic activities of whole extracts of P. tetrastromatica, C. racemosa and T. ornata, including the cellular events leading to the apoptotic cell death of the extract treated-MCF-7 cells. Bioassay guided fractionation was carried out and the compounds identified. Powdered samples were sequentially extracted for 24 h. Their antioxidant activities were assessed by the DPPH radical, superoxide, nitric oxide and hydroxyl radical scavenging assays. The cytotoxic activity of the extract-treated MCF-7cells was assessed using the MTT assay. The most potent fraction was subjected to bioassay guided fractionation with column chromatography. All the fractions were tested for cytotoxic activity, caspase activity and effect on DNA fragmentation. All three seaweeds showed potent radical scavenging activities in the various assays. The activity of the cellular antioxidant enzymes, superoxide dismutase, catalase and glutathione reductase, in MCF-7 cells, decreased in a time-dependent manner. The partially purified fractions exhibited higher cytotoxic activity, as assessed by the MTT assay, than the whole extracts in the breast adenocarcinoma cell line, MCF-7. LC-MS analysis revealed the presence of bioactive alkaloids such as camptothecin, lycodine and pesudopelletierine. Based on the results obtained, all three seaweeds are rich sources of enzymatic and non-enzymatic antioxidants which could contribute to their reported medicinal benefits.

  19. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.

    PubMed

    Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias

    2017-09-01

    In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.

  20. Selective expression of inhibitory Fcgamma receptor by metastatic melanoma impairs tumor susceptibility to IgG-dependent cellular response.

    PubMed

    Cassard, Lydie; Cohen-Solal, Joel F G; Fournier, Emilie M; Camilleri-Broët, Sophie; Spatz, Alain; Chouaïb, Salem; Badoual, Cécile; Varin, Audrey; Fisson, Sylvain; Duvillard, Pierre; Boix, Charlotte; Loncar, Shannon M; Sastre-Garau, Xavier; Houghton, Alan N; Avril, Marie-Françoise; Gresser, Ion; Fridman, Wolf H; Sautès-Fridman, Catherine

    2008-12-15

    During melanoma progression, patients develop anti-tumor immunity including the production of anti-tumor antibodies. Although the strategies developed by malignant cells to escape anti-tumor cellular immunity have been extensively investigated, little is known about tumor resistance to humoral immunity. The main effect of IgG antibodies is to activate the immune response by binding to host Fc gamma receptors (FcgammaR) expressed by immune cells. We previously reported in a limited study that some human metastatic melanoma cells ectopically express the FcgammaRIIB1, an inhibitory isoform of FcgammaR. By analyzing a large panel of different types of human primary and metastatic solid tumors, we report herein that expression of FcgammaRIIB is restricted to melanoma and is acquired during tumor progression. We show that FcgammaRIIB expression prevents the lysis of human metastatic melanoma cells by NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) in vitro, independently of the intracytoplasmic region of FcgammaRIIB. Using experimental mouse models, we demonstrate that expression of FcgammaRIIB protects B16F0 melanoma tumors from the ADCC induced by monoclonal and polyclonal anti-tumor IgG in vivo. Thus, our results identify FcgammaRIIB as a marker of human metastatic melanoma that impairs the tumor susceptibility to FcgammaR-dependent innate effector responses. (c) 2008 Wiley-Liss, Inc.

  1. Protective effects of anethole dithiolethione against oxidative stress-induced cytotoxicity in human Jurkat T cells.

    PubMed

    Khanna, S; Sen, C K; Roy, S; Christen, M O; Packer, L

    1998-07-01

    The protective effects of anethole dithiolethione (ADT) against H2O2- or 4-hydroxynonenal (HNE)-induced cytotoxicity in human Jurkat T cells were investigated. Jurkat T cells were pretreated with ADT (10-50 microM) for 18 hr and then challenged with H202 or HNE for up to 4 hr. Cytotoxicity was assessed by measuring: 1) leakage of lactate dehydrogenase from cells to medium; and 2) exclusion of the DNA intercalating fluorescent probe propidium iodide by viable cells. Pretreatment of cells with ADT (10 or 25 microM) for 18 hr significantly protected cells against H202- or HNE-induced cytotoxicity. Treatment of cells with ADT (10-50 microM) for 72 hr significantly increased the activities of catalase and glutathione reductase. The maximum effect of ADT treatment on the activity of these enzymes was observed when cells were treated with 25 microM of ADT for 72 hr. A significant increase in cellular GSH was observed in cells that were treated with ADT for 72 hr. Using monobromobimane as a thiol probe, we consistently observed that cells pretreated for 18 hr with ADT (25 or 50 microM) had also increased total thiol content. Exposure of Jurkat T cells to H202 or HNE resulted in a time-dependent decrease in cellular GSH. ADT (10-50 microM, 18 hr) pretreatment circumvented H202-dependent lowering of cellular GSH. In conclusion, ADT proved to be a potent cytoprotective thiol antioxidant with multifaceted mechanisms of action, suggesting that the drug has a remarkable therapeutic potential.

  2. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays.

    PubMed

    Guo, Xiaoqing; Li, Yan; Yan, Jian; Ingle, Taylor; Jones, Margie Yvonne; Mei, Nan; Boudreau, Mary D; Cunningham, Candice K; Abbas, Mazhar; Paredes, Angel M; Zhou, Tong; Moore, Martha M; Howard, Paul C; Chen, Tao

    2016-11-01

    The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.

  3. Optimized expression and purification of NavAb provide the structural insight into the voltage dependence.

    PubMed

    Irie, Katsumasa; Haga, Yukari; Shimomura, Takushi; Fujiyoshi, Yoshinori

    2018-01-01

    Voltage-gated sodium channels are crucial for electro-signalling in living systems. Analysis of the molecular mechanism requires both fine electrophysiological evaluation and high-resolution channel structures. Here, we optimized a dual expression system of NavAb, which is a well-established standard of prokaryotic voltage-gated sodium channels, for E. coli and insect cells using a single plasmid vector to analyse high-resolution protein structures and measure large ionic currents. Using this expression system, we evaluated the voltage dependence and determined the crystal structures of NavAb wild-type and two mutants, E32Q and N49K, whose voltage dependence were positively shifted and essential interactions were lost in voltage sensor domain. The structural and functional comparison elucidated the molecular mechanisms of the voltage dependence of prokaryotic voltage-gated sodium channels. © 2017 Federation of European Biochemical Societies.

  4. Frequency-dependent micromechanics of cellularized biopolymer networks

    NASA Astrophysics Data System (ADS)

    Jones, Chris; Kim, Jihan; McIntyre, David; Sun, Bo

    Mechanical interactions between cells and the extracellular matrix (ECM) influence many cellular behaviors such as growth, differentiation, and migration. These are dynamic processes in which the cells actively remodel the ECM. Reconstituted collagen gel is a common model ECM for studying cell-ECM interactions in vitro because collagen is the most abundant component of mammalian ECM and gives the ECM its material stiffness. We embed micron-sized particles in collagen and use holographic optical tweezers to apply forces to the particles in multiple directions and over a range of frequencies up to 10 Hz. We calculate the local compliance and show that it is dependent on both the direction and frequency of the applied force. Performing the same measurement on many particles allows us to characterize the spatial inhomogeneity of the mechanical properties and shows that the compliance decreases at higher frequencies. Performing these measurements on cell-populated collagen gels shows that cellular remodeling of the ECM changes the mechanical properties of the collagen and we investigate whether this change is dependent on the local strain and distance from nearby cells.

  5. Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects

    PubMed Central

    Paillas, Salomé; Ladjohounlou, Riad; Lozza, Catherine; Pichard, Alexandre; Boudousq, Vincent; Jarlier, Marta; Sevestre, Samuel; Le Blay, Marion; Deshayes, Emmanuel; Sosabowski, Jane; Chardès, Thierry; Navarro-Teulon, Isabelle; Mairs, Robert J.

    2016-01-01

    Abstract Aims: We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with 125I [125I-mAbs]). Results: We showed that the cytotoxicity of 125I-mAbs targeting the cell membrane of p53+/+ HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-β-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. 125I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca2+ fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2′-deoxyuridine to the nucleus was comparable to that of 125I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by 125I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. Innovation: Low-energy Auger electrons, such as those emitted by 125I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with 125I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. Conclusion: Our findings describe the mechanisms involved in the efficacy of 125I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467–484. PMID:27224059

  6. Advances in Therapeutic Fc Engineering – Modulation of IgG-Associated Effector Functions and Serum Half-life

    PubMed Central

    Saxena, Abhishek; Wu, Donghui

    2016-01-01

    Today, monoclonal immunoglobulin gamma (IgG) antibodies have become a major option in cancer therapy especially for the patients with advanced or metastatic cancers. Efficacy of monoclonal antibodies (mAbs) is achieved through both its antigen-binding fragment (Fab) and crystallizable fragment (Fc). Fab can specifically recognize tumor-associated antigen (TAA) and thus modulate TAA-linked downstream signaling pathways that may lead to the inhibition of tumor growth, induction of tumor apoptosis, and differentiation. The Fc region can further improve mAbs’ efficacy by mediating effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cell-mediated phagocytosis. Moreover, Fc is the region interacting with the neonatal Fc receptor in a pH-dependent manner that can slow down IgG’s degradation and extend its serum half-life. Loss of the antibody Fc region dramatically shortens its serum half-life and weakens its anticancer effects. Given the essential roles that the Fc region plays in the modulation of the efficacy of mAb in cancer treatment, Fc engineering has been extensively studied in the past years. This review focuses on the recent advances in therapeutic Fc engineering that modulates its related effector functions and serum half-life. We also discuss the progress made in aglycosylated mAb development that may substantially reduce the cost of manufacture but maintain similar efficacies as conventional glycosylated mAb. Finally, we highlight several Fc engineering-based mAbs under clinical trials. PMID:28018347

  7. Cytotoxicity Induced by a Redox-silent Analog of Tocotrienol in Human Mesothelioma H2452 Cell Line via Suppression of Cap-dependent Protein Translation.

    PubMed

    Sato, Ayami; Ueno, Haruka; Takase, Akari; Ando, Akira; Sekine, Yuko; Yano, Tomohiro

    2016-04-01

    De novo synthesis of proteins is regulated by cap-dependent protein translation. Aberrant activation of the translation is a hallmark of many cancer types including malignant mesothelioma (MM). We previously reported that a redox-silent analog of α-tocotrienol, 6-O-carboxypropyl-α-tocotrienol (T3E) induces potent cytotoxicity against human MM cells. However, the detailed mechanism of cytotoxicity of T3E remains unclear. In this study, we investigated if T3E induced potent cytotoxicity aganist MM cells. T3E reduced the formation of the cap-dependent translation complex and induced inactivation of oncogene from rat sarcoma virus (RAS). These events were associated with T3E cytotoxicity in MM cells. Furthermore, atorvastatin, an inhibitor of RAS function, had similar effects on MM cells. Moreover, 4EGI-1, a specific inhibitor of the cap-dependent translation complex, induced severe cytotoxicity in MM cells. Overall, T3E had a cytotoxic effect on MM cells via disruption of the activated cap-dependent translation complex through inactivation of RAS. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Short-term exposure to engineered nanomaterials affects cellular epigenome

    PubMed Central

    Lu, Xiaoyan; Miousse, Isabelle R.; Pirela, Sandra V.; Melnyk, Stepan; Koturbash, Igor; Demokritou, Philip

    2015-01-01

    Extensive incorporation of engineered nanomaterials (ENMs) into industrial and biomedical applications increases the risks of exposure to these potentially hazardous materials. While the geno- and cytotoxic effects of ENMs have been investigated, the potential of ENMs to target the cellular epigenome remains largely unknown. Our goal was to determine whether or not industry relevant ENMs can affect the epigenome at low cytotoxic doses. A panel of cells relevant to inhalation exposures such as human and murine macrophages (THP-1 and RAW264.7, respectively) and human small airway epithelial cells (SAEC) were exposed to printer-emitted engineered nanoparticles (PEPs), mild steel welding fumes (MS-WF), copper oxide (CuO), and titanium dioxide (TiO2) nanoparticles. Toxicological effects, including cytotoxicity, oxidative stress, and inflammatory responses were assessed, taking into consideration in-vitro dosimetry. The effects of ENMs on cellular epigenome were determined by addressing the global and transposable elements (TEs)-associated DNA methylation and expression of DNA methylation machinery and TEs. The percentage of ENMs-induced cytotoxicity for all cell lines was in the range of 0-15%. Oxidative stress was evident in SAEC after exposure to PEPs and in THP-1 when exposed to CuO. Additionally, exposure to ENMs resulted in modest alterations in DNA methylation of two most abundant TEs in mammalian genomes, LINE-1 and Alu/SINE, their transcriptional reactivation, and decreased expression of DNA methylation machinery in a cell-, dose-, and ENM-dependent manner. These results indicate that exposure to ENMs at environmentally relevant concentrations, aside from the geno- and cytotoxic effects, can also affect the epigenome of target cells. PMID:25938281

  9. Elicitation of anti-vesicular stomatitis virus cytotoxic T lymphocytes by using purified viral and cellular antigens incorporated into phospholipid vesicles.

    PubMed

    Ruebush, M J; Hale, A H; Harris, D T

    1981-05-01

    We evaluated the minimal molecular and cellular requirements for elicitation of anti-vesicular stomatitis virus (VSV) cytotoxic T lymphocytes (CTL). The results indicated that lipid vesicles containing the purified major surface glyco-protein of VSV (G protein) and purified H-2K(k) glycoproteins elicited specific H-2K(k)-restricted anti-VSV CTL. These antiviral CTL were shown to be Ly 1(-),2(+). However, both Ly 1(+),2(-) and Ly1(-),2(+) T-cell subpopulations were shown to be required for elicitation of these CTL.

  10. A cell-based fluorescent assay to detect the activity of AB toxins that inhibit protein synthesis

    USDA-ARS?s Scientific Manuscript database

    AB-type protein toxins, produced by numerous bacterial pathogens and some plants, elicit a cytotoxic effect involving the inhibition of protein synthesis. To develop an improved method to detect the inhibition of protein synthesis by AB-type toxins, the present study characterized a Vero cell line t...

  11. Cellular context-dependent consequences of Apc mutations on gene regulation and cellular behavior.

    PubMed

    Hashimoto, Kyoichi; Yamada, Yosuke; Semi, Katsunori; Yagi, Masaki; Tanaka, Akito; Itakura, Fumiaki; Aoki, Hitomi; Kunisada, Takahiro; Woltjen, Knut; Haga, Hironori; Sakai, Yoshiharu; Yamamoto, Takuya; Yamada, Yasuhiro

    2017-01-24

    The spectrum of genetic mutations differs among cancers in different organs, implying a cellular context-dependent effect for genetic aberrations. However, the extent to which the cellular context affects the consequences of oncogenic mutations remains to be fully elucidated. We reprogrammed colon tumor cells in an Apc Min/+ (adenomatous polyposis coli) mouse model, in which the loss of the Apc gene plays a critical role in tumor development and subsequently, established reprogrammed tumor cells (RTCs) that exhibit pluripotent stem cell (PSC)-like signatures of gene expression. We show that the majority of the genes in RTCs that were affected by Apc mutations did not overlap with the genes affected in the intestine. RTCs lacked pluripotency but exhibited an increased expression of Cdx2 and a differentiation propensity that was biased toward the trophectoderm cell lineage. Genetic rescue of the mutated Apc allele conferred pluripotency on RTCs and enabled their differentiation into various cell types in vivo. The redisruption of Apc in RTC-derived differentiated cells resulted in neoplastic growth that was exclusive to the intestine, but the majority of the intestinal lesions remained as pretumoral microadenomas. These results highlight the significant influence of cellular context on gene regulation, cellular plasticity, and cellular behavior in response to the loss of the Apc function. Our results also imply that the transition from microadenomas to macroscopic tumors is reprogrammable, which underscores the importance of epigenetic regulation on tumor promotion.

  12. Cellular context-dependent consequences of Apc mutations on gene regulation and cellular behavior

    PubMed Central

    Hashimoto, Kyoichi; Yamada, Yosuke; Semi, Katsunori; Yagi, Masaki; Tanaka, Akito; Itakura, Fumiaki; Aoki, Hitomi; Kunisada, Takahiro; Woltjen, Knut; Haga, Hironori; Sakai, Yoshiharu; Yamamoto, Takuya; Yamada, Yasuhiro

    2017-01-01

    The spectrum of genetic mutations differs among cancers in different organs, implying a cellular context-dependent effect for genetic aberrations. However, the extent to which the cellular context affects the consequences of oncogenic mutations remains to be fully elucidated. We reprogrammed colon tumor cells in an ApcMin/+ (adenomatous polyposis coli) mouse model, in which the loss of the Apc gene plays a critical role in tumor development and subsequently, established reprogrammed tumor cells (RTCs) that exhibit pluripotent stem cell (PSC)-like signatures of gene expression. We show that the majority of the genes in RTCs that were affected by Apc mutations did not overlap with the genes affected in the intestine. RTCs lacked pluripotency but exhibited an increased expression of Cdx2 and a differentiation propensity that was biased toward the trophectoderm cell lineage. Genetic rescue of the mutated Apc allele conferred pluripotency on RTCs and enabled their differentiation into various cell types in vivo. The redisruption of Apc in RTC-derived differentiated cells resulted in neoplastic growth that was exclusive to the intestine, but the majority of the intestinal lesions remained as pretumoral microadenomas. These results highlight the significant influence of cellular context on gene regulation, cellular plasticity, and cellular behavior in response to the loss of the Apc function. Our results also imply that the transition from microadenomas to macroscopic tumors is reprogrammable, which underscores the importance of epigenetic regulation on tumor promotion. PMID:28057861

  13. Synthesis, characterization and cellular location of cytotoxic constitutional organometallic isomers of rhenium delivered on a cyanocobalmin scaffold.

    PubMed

    Santoro, Giuseppe; Zlateva, Theodora; Ruggi, Albert; Quaroni, Luca; Zobi, Fabio

    2015-04-21

    Constitutional isomers of cyanocobalamin adducts based on a fluorescent rhenium tris-carbonyl diimine complex were prepared, characterized and tested against PC-3 cancer cells. The adducts differ only in the relative binding position of the organometallic species which is either bound at the cyano or the 5'-hydroxo group of vitamin B12. When tested for their cytotoxic potency, the species showed IC50 values in the low μM rage. Upon conjugation to the vitamin an energy transfer process causes an extremely low quantum yield of fluorescence emission, making the conjugates unsuitable for fluorescence imaging. However, by exploiting the vibrational signature of the fac-[Re(CO)3](+) core, their cellular distribution was evaluated via FTIR spectromicroscopy.

  14. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity

    PubMed Central

    Balakrishna, Shrilatha; Lomnicki, Slawo; McAvey, Kevin M; Cole, Richard B; Dellinger, Barry; Cormier, Stephania A

    2009-01-01

    Background Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs). Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230) as the EPFR because we have previously shown that it forms a EPFR on Cu(II)O surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B) to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species. Results Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS) generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels for both types of combustion-generated particle systems. Conclusion The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx). The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine particles and the

  15. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes

    PubMed Central

    Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang

    2016-01-01

    HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4+ T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8+ T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6-/- CD8+ T cells to Rag1-/- mice demonstrated specific impairment in CD8+ T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin 1 – dynactin mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFNγ) production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226

  16. CD83 Antibody Inhibits Human B Cell Responses to Antigen as well as Dendritic Cell-Mediated CD4 T Cell Responses.

    PubMed

    Wong, Kuan Y; Baron, Rebecca; Seldon, Therese A; Jones, Martina L; Rice, Alison M; Munster, David J

    2018-05-15

    Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83 + human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83 + B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83 - ) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (<20%). In contrast, the anti-CD20 mAb rituximab depleted >80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  17. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody

    PubMed Central

    Zhang, Di; Whitaker, Brian; Derebe, Mehabaw G.; Chiu, Mark L.

    2018-01-01

    ABSTRACT Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities. PMID:29359992

  18. Size-dependent cytotoxicity and inflammatory responses of PEGylated silica-iron oxide nanocomposite size series

    NASA Astrophysics Data System (ADS)

    Injumpa, Wishulada; Ritprajak, Patcharee; Insin, Numpon

    2017-04-01

    incubation with the highest concentration of 1000 μg/mL. Although 1000 μg/mL of all sizes of the nanocomposites decreased macrophage viability, the cytotoxicity of the nanocomposites was notably less than silica. The inflammatory response of macrophage was also observed by ELISA, and we found that the size of 20 and 40 nm, but not 100 and 200 nm, obviously stimulated IL-6 production. From this study, the preparations of multifunctional superparamagnetic nanocomposites of different sizes along with the size-dependent effects on cellular toxicity and inflammatory response were demonstrated and could be applied for designing of new drug carriers.

  19. Effect of dispersants of multi-walled carbon nanotubes on cellular uptake and biological responses

    PubMed Central

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Kim, Yoong-Ahm; Park, Ki Chul; Tsukahara, Tamotsu; Usui, Yuki; Aoki, Kaoru; Shimizu, Masayuki; Ogihara, Nobuhide; Hara, Kazuo; Takanashi, Seiji; Okamoto, Masanori; Ishigaki, Norio; Nakamura, Koichi; Kato, Hiroyuki

    2011-01-01

    Although there have been many reports about the cytotoxicity of multi-walled carbon nanotubes (MWCNTs), the results are still controversial. To investigate one possible reason, the authors investigated the influence of MWCNT dispersants on cellular uptake and cytotoxicity. Cytotoxicity was examined (measured by alamarBlue® assay), as well as intracellular MWCNT concentration and cytokine secretion (measured by flow cytometry) in human bronchial epithelial cells (BEAS-2B) exposed to a type of highly purified MWCNT vapor grown carbon fiber (VGCF®, Shōwa Denkō Kabushiki-gaisha, Tokyo, Japan) in three different dispersants (gelatin, carboxylmethyl cellulose, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine). The authors also researched the relationship between the intracellular concentration of MWCNTs and cytotoxicity by using two cell lines, BEAS-2B and MESO-1 human malignant pleural mesothelioma cells. The intracellular concentration of VGCF was different for each of the three dispersants, and the levels of cytotoxicity and inflammatory response were correlated with the intracellular concentration of VGCF. A relationship between the intracellular concentration of VGCF and cytotoxic effects was observed in both cell lines. The results indicate that dispersants affect VGCF uptake into cells and that cytotoxicity depends on the intracellular concentration of VGCF, not on the exposed dosage. Thus, toxicity appears to depend on exposure time, even at low VGCF concentrations, because VGCF is biopersistent. PMID:22228997

  20. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors.

    PubMed

    Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard

    2016-06-15

    A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies. © 2016 UICC.

  1. Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin.

    PubMed

    Raji, Grace R; Sruthi, T V; Edatt, Lincy; Haritha, K; Sharath Shankar, S; Sameer Kumar, V B

    2017-10-01

    Recent studies indicate that horizontal transfer of genetic material can act as a communication tool between heterogenous populations of tumour cells, thus altering the chemosensitivity of tumour cells. The present study was designed to check whether the horizontal transfer of miRNAs released by cisplatin resistant (Cp-r) Hepatocarcinoma cells can alter the sensitivity of cervical cancer cells. For this exosomes secreted by cisplatin resistant and cisplatin sensitive HepG2 cells (EXres and EXsen) were isolated and characterised. Cytotoxicity analysis showed that EXres can make Hela cells resistant to cisplatin. Analysis of miR-106a/b levels in EXres and EXsen showed that their levels vary. Mechanistic studies showed that miR-106a/b play an important role in EXsen and EXres mediated change in chemosensitivity of Hela cells to cisplatin. Further SIRT1 was identified as a major target of miR-106a/b using in silico tools and this was proved by experimentation. Also the effect of miR-106a/b in chemosensitivity was seen to be dependent on regulation of SIRT1 by miR-106a/b. In brief, this study brings into light, the SIRT1 dependent mechanism of miR-106a/b mediated regulation of chemosensitivity upon the horizontal transfer from one cell type to another. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A study on the cytotoxicity of carbon-based materials

    DOE PAGES

    Saha, Dipendu; Heldt, Caryn L.; Gencoglu, Maria F.; ...

    2016-05-25

    With an aim to understand the origin and key contributing factors towards carboninduced cytotoxicity, we have studied five different carbon samples with diverse surface area, pore width, shape and size, conductivity and surface functionality. All the carbon materials were characterized with surface area and pore size distribution, x-ray photoelectron spectroscopy (XPS) and electron microscopic imaging. We performed cytotoxicity study in Caco-2 cells by colorimetric assay, oxidative stress analysis by reactive oxygen species (ROX) detection, cellular metabolic activity measurement by adenosine triphosphate (ATP) depletion and visualization of cellular internalization by TEM imaging. The carbon materials demonstrated a varying degree of cytotoxicitymore » in contact with Caco-2 cells. The lowest cell survival rate was observed for nanographene, which possessed the minimal size amongst all the carbon samples under study. None of the carbons induced oxidative stress to the cells as indicated by the ROX generation results. Cellular metabolic activity study revealed that the carbon materials caused ATP depletion in cells and nanographene caused the highest depletion. Visual observation by TEM imaging indicated the cellular internalization of nanographene. This study confirmed that the size is the key cause of carbon-induced cytotoxicity and it is probably caused by the ATP depletion within the cell.« less

  3. Antibody distance from the cell membrane regulates antibody effector mechanisms

    PubMed Central

    Cleary, Kirstie L.S.; Chan, H.T. Claude; James, Sonja; Glennie, Martin J.; Cragg, Mark S.

    2017-01-01

    Immunotherapy using monoclonal antibodies (mAb) such as rituximab is an established means of treating haematological malignancies. Antibodies can elicit a number of mechanisms to delete target cells, including complement dependent cytotoxicity (CDC), antibody dependent cellular cytotoxicity (ADCC) and antibody dependent cellular phagocytosis (ADCP). The inherent properties of the target molecule help define which of these mechanisms are more important for efficacy. However, why mAb binding to different epitopes within the same target elicits different levels of therapeutic activity, is often unclear. To specifically address whether distance from the target cell membrane influences the aforementioned effector mechanisms, a panel of fusion proteins consisting of a CD20 or CD52 epitope attached to various CD137 scaffold molecules were generated. The CD137 scaffold was modified through the removal or addition of cysteine-rich extracellular domains, to produce a panel of chimeric molecules which held the target epitope at different distances along the protein. It was shown that CDC and ADCC favoured a membrane proximal epitope, whilst ADCP favoured an epitope positioned further away. These findings were then confirmed using reagents targeting the membrane proximal or distal domains of CD137 itself before investigating these properties in vivo where a clear difference in the splenic clearance of transfected tumour cells was observed. Together, this work demonstrates how altering the position of the antibody epitope is able to change the effector mechanisms engaged and facilitates the selection of mAbs designed to delete target cells through specific effector mechanisms and provide more effective therapeutic agents. PMID:28404636

  4. Natural deep eutectic solvents: cytotoxic profile.

    PubMed

    Hayyan, Maan; Mbous, Yves Paul; Looi, Chung Yeng; Wong, Won Fen; Hayyan, Adeeb; Salleh, Zulhaziman; Mohd-Ali, Ozair

    2016-01-01

    The purpose of this study was to investigate the cytotoxic profiles of different ternary natural deep eutectic solvents (NADESs) containing water. For this purpose, five different NADESs were prepared using choline chloride as a salt, alongside five hydrogen bond donors (HBD) namely glucose, fructose, sucrose, glycerol, and malonic acid. Water was added as a tertiary component during the eutectics preparation, except for the malonic acid-based mixture. Coincidentally, the latter was found to be more toxic than any of the water-based NADESs. A trend was observed between the cellular requirements of cancer cells, the viscosity of the NADESs, and their cytotoxicity. This study also highlights the first time application of the conductor-like screening model for real solvent (COSMO-RS) software for the analysis of the cytotoxic mechanism of NADESs. COSMO-RS simulation of the interactions between NADESs and cellular membranes' phospholipids suggested that NADESs strongly interacted with cell surfaces and that their accumulation and aggregation possibly defined their cytotoxicity. This reinforced the idea that careful selection of NADESs components is necessary, as it becomes evident that organic acids as HBD highly contribute to the increasing toxicity of these neoteric mixtures. Nevertheless, NADESs in general seem to possess relatively less acute toxicity profiles than their DESs parents. This opens the door for future large scale utilization of these mixtures.

  5. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value < 0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic

  6. Effects of in vivo hydrocortisone on lymphocyte-mediated cytotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, P.; Zaytoun, A.M.; Lee, J.H. Jr.

    To examine the effects of in vivo hydrocortisone sodium succinate (HC) on natural killer (NK) cell and antibody-dependent cellular cytotoxicity (ADCC), 11 normal adults received a single intravenous bolus of 400 mg hydrocortisone. Lymphocytes were tested for NK activity and ADCC using 51chromium (51Cr)-release and single cell cytotoxicity assays against Molt-4 and sensitized RL O leads to target cells, respectively. Four hours after injection, both NK and ADCC activity were transiently increased in the 51Cr-release system. At 4 hours, there was a twofold increase in the relative frequency of potentially cytotoxic target binding cells but the absolute number of thesemore » cells did not change. However, the percentage lysis of bound targets at 4 hours was not altered. These data suggest that: 1) lymphocytes participating in NK and ADCC reactions are refractory to the kinetic and functional effects of HC; 2) the increased lytic activity observed at 4 hours is due to a selective depletion of noncytotoxic cells from the circulation; and 3) NK and ADCC activity did not differ in their responses to HC.« less

  7. Cytotoxicity of β-D-glucose/sucrose-coated silver nanoparticles depends on cell type, nanoparticles concentration and time of incubation

    NASA Astrophysics Data System (ADS)

    Vergallo, Cristian; Panzarini, Elisa; Carata, Elisabetta; Ahmadi, Meysam; Mariano, Stefania; Tenuzzo, Bernardetta Anna; Dini, Luciana

    2016-06-01

    The use of silver NanoParticles (AgNPs) in several consumer commercialized products, like food contact materials, medical devices and cosmetics has increased significantly, owing to their antibacterial and antifungal properties. Even though the NPs are widely diffused, due to the great variety in size, coating or shape, controversial data on their possible detrimental health effects still exist. Herein, by performing an easy and fast green method synthesis, we used β-D-glucose/sucrose to stabilize AgNPs and avoid the release of cytotoxic soluble silver ions Ag+ in the culture medium. The cytotoxic effects of these β-D-Glucose/Sucrose-Coated AgNPs (AgNPs-GS) was assessed on two cell culture models, which are human liver HepG2 and human Peripheral Blood Lymphocytes (PBLs) cells. AgNPs-GS, as determined by Transmission Electron Microscopy (TEM) analyses, had an average diameter of 30±5 nm, a spherical shape and were well-dispersed in the freshly-prepared solution. In addition, they were found spectrophotometrically stable throughout the experiment. Cytotoxicity, determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, was evaluated by using two AgNPs-GS amounts, indicated as highest (10×103 of NPs/cell) and lowest (2×103 NPs/cell) concentration for 6, 12 and 24 h. The highest concentration of AgNPs-GS was significantly cytotoxic for both HepG2 and PBLs cells at all times, when compared with the negative control; conversely, the lowest amount of AgNPs-GS was toxic only for HepG2 cells. A significant increase of Reactive Oxygen Species (ROS) levels, determined by Nitro Blue Tetrazolium (NBT) reduction assay, was observed only in PBLs after treatment with NPs, by reaching maximum levels after the incubation with the lowest amount of NPs for 24 h. Significant morphological changes, depending on NPs/cell amount, characteristic of cell toxicity, like shape, cytoplasm, and nucleus alterations, were observed in lymphocytes and Hep

  8. Cytotoxicity of Protein-Carbon Nanotubes on J774 Macrophages Is a Functionalization Grade-Dependent Effect

    PubMed Central

    Montes-Fonseca, Silvia Lorena; Sánchez-Ramírez, Blanca; Luna-Velasco, Antonia; Arzate-Quintana, Carlos; Silva-Cazares, Macrina Beatriz; González Horta, Carmen

    2015-01-01

    Carbon nanotubes (CNTs) are used as carriers in medicine due to their ability to be functionalized with chemical substances. However, cytotoxicity analysis is required prior to use for in vivo models. The aim of this study was to evaluate the cytotoxic effect of CNTs functionalized with a 46 kDa surface protein from Entamoeba histolytica (P46-CNTs) on J774A macrophages. With this purpose, CNTs were synthesized by spray pyrolysis and purified (P-CNTs) using sonication for 48 h. A 46 kDa protein, with a 4.6–5.4 pI range, was isolated from E. histolytica HM1:IMSS strain trophozoites using an OFFGEL system. The P-CNTs were functionalized with the purified 46 kDa protein, classified according to their degree of functionalization, and characterized by Raman and Infrared spectroscopy. In vitro cytotoxicity was evaluated by MTT, apoptosis, and morphological assays. The results demonstrated that P46-CNTs exhibited cytotoxicity dependent upon the functionalized grade. Contrary to what was expected, P46-CNTs with a high grade of functionalization were more toxic to J774 macrophages than P46-CNTs with a low grade of functionalization, than P-CNTs, and had a similar level of toxicity as UP-CNT. This suggests that the nature of the functionalized protein plays a key role in the cytotoxicity of these nanoparticles. PMID:26075262

  9. Cell Specific Cytotoxicity and Uptake of Graphene Nanoribbons

    PubMed Central

    Chowdhury, Sayan Mullick; Lalwani, Gaurav; Zhang, Kevin; Yang, Jeong Yun; Neville, Kayla; Sitharaman, Balaji

    2012-01-01

    The synthesis of oxidized graphene nanoribbons (O-GNR) via longitudinal unzipping of carbon nanotubes opens avenues for their further development for a variety of biomedical applications. Evaluation of the cyto- and bio-compatibility is necessary to develop any new material for in vivo biomedical applications. In this study, we report the cytotoxicity screening of O-GNRs water-solubilized with PEG-DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)]), using six different assays, in four representative cell lines; Henrietta Lacks cells (HeLa) derived from cervical cancer tissue, National Institute of Health 3T3 mouse fibroblast cells (NIH-3T3), Sloan Kettering breast cancer cells (SKBR3) and Michigan cancer foundation-7 breast cancer cells (MCF7). These cell lines significantly differed in their response to O-GNR-PEG-DSPE formulations; assessed and evaluated using various endpoints (lactate dehydrogenase (LDH) release, cellular metabolism, lysosomal integrity and cell proliferation) for cytotoxicity. In general, all the cells showed a dose-dependent (10–400 μg/ml) and time-dependent (12–48 h) decrease in cell viability. However, the degree of cytotoxicity was significantly lower in MCF7 or SKBR3 cells compared to HeLa cells. These cells were 100% viable upto 48 hours, when incubated at 10μg/ml O-GNR-PEG-DSPE concentration, and showed decrease in cell viability above this concentration with ~78% of cells viable at the highest concentration (400 μg/ml). In contrast, significant cell death (5–25% cell death depending on the time point, and the assay) was observed for HeLa cells even at a low concentration of 10μg/ml. The decrease in cell viability was steep with increase in concentration with the CD50 values ≥ 100μg/ml depending on the assay, and time point. Transmission electron microscopy of the various cells treated with the O-GNR solutions show higher uptake of the O-GNR-PEG-DSPEs into HeLa cells compared to other cell

  10. The Cellular Bases of Antibody Responses during Dengue Virus Infection

    PubMed Central

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618

  11. Real-time cell toxicity profiling of Tox21 10K compounds reveals cytotoxicity dependent toxicity pathway linkage

    PubMed Central

    Huang, Ruili; Lin, Ja-An; Sedykh, Alexander; Zhao, Jinghua; Tice, Raymond R.; Paules, Richard S.; Xia, Menghang; Auerbach, Scott S.

    2017-01-01

    Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell lines (HEK293, HepG2) using two multiplexed, real-time assay technologies. One technology measures the metabolic activity of cells (i.e., cell viability, glo) while the other evaluates cell membrane integrity (i.e., cell death, flor). Using glo technology, more actives and greater temporal variations were seen in HEK293 cells, while results for the flor technology were more similar across the two cell types. Chemicals were grouped into classes based on their cytotoxicity kinetics profiles and these classes were evaluated for their associations with activity in the Tox21 nuclear receptor and stress response pathway assays. Some pathways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity classes, while others, such as activation of TP53, were associated with the slow-responding cytotoxicity classes. By clustering pathways based on their degree of association to the different cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying biological processes between pathways, for example, activation of H2AX and heat shock factor. Others involving nuclear receptor activity are likely due to shared chemical structures rather than pathway level interactions. Based on the linkage between androgen receptor antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary, the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data related to their cytotoxicity mechanisms, and with our analysis, it is

  12. Potentiometric Biosensor for Studying Hydroquinone Cytotoxicity in vitro

    PubMed Central

    Wang, Yanyan; Chen, Qiang; Zeng, Xiangqun

    2009-01-01

    Many processes in living cells have electrochemical characteristics that are suitable for measurement by potentiometric biosensors. Potentiometric biosensors allow non invasive, real-time monitoring of the extracellular environment changes by measuring the potential at cell/sensor interface. This can be used as an indicator for overall cell cytotoxicity. The present work employs a potentiometric sensor array to investigate the cytotoxicity of hydroquinone to cultured mammalian V79 cells. Various electrode substrates (Au, PPy-HQ and PPy-PS) used for cell growth were designed and characterized. The controllable release of hydroquinone from PPy substrates was studied. Our results showed that hydroquinone exposure affected cell proliferation and delayed cell growth and attachment in a dose-dependent manner. Additionally, we have shown that exposure of V79 cells to hydroquinone at low doses (i.e 5μM) for more than 15 hours allows V79 cells to gain enhanced adaptability to survive exposure to high toxic HQ doses afterwards. Compared with traditional methods, the potentiometric biosensor not only provides non-invasive and real time monitoring of the cellular reactions but also is more sensitive for in vitro cytotoxicity study. By real time and non-invasive monitoring of the extracellular potential in vitro, the potentiometric sensor system represents a promising biosensor system for drug discovery. PMID:19926470

  13. Cellular Response to Reagent-Free Electron-Irradiated Gelatin Hydrogels.

    PubMed

    Wisotzki, Emilia I; Friedrich, Ralf P; Weidt, Astrid; Alexiou, Christoph; Mayr, Stefan G; Zink, Mareike

    2016-06-01

    As a biomaterial, it is well established that gelatin exhibits low cytotoxicity and can promote cellular growth. However, to circumvent the potential toxicity of chemical crosslinkers, reagent-free crosslinking methods such as electron irradiation are highly desirable. While high energy irradiation has been shown to exhibit precise control over the degree of crosslinking, these hydrogels have not been thoroughly investigated for biocompatibility and degradability. Here, NIH 3T3 murine fibroblasts are seeded onto irradiated gelatin hydrogels to examine the hydrogel's influence on cellular viability and morphology. The average projected area of cells seeded onto the hydrogels increases with irradiation dose, which correlates with an increase in the hydrogel's shear modulus up to 10 kPa. Cells on these hydrogels are highly viable and exhibits normal cell cycles, particularly when compared to those grown on glutaraldehyde crosslinked gelatin hydrogels. However, proliferation is reduced on both types of crosslinked samples. To mimic the response of the hydrogels in physiological conditions, degradability is monitored in simulated body fluid to reveal strongly dose-dependent degradation times. Overall, given the low cytotoxicity, influence on cellular morphology and variability in degradation times of the electron irradiated gelatin hydrogels, there is significant potential for application in areas ranging from regenerative medicine to mechanobiology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells

    PubMed Central

    Salinthone, Sonemany; Schillace, Robynn V.; Marracci, Gail H.; Bourdette, Dennis N.; Carr, Daniel W.

    2008-01-01

    The antioxidant lipoic acid (LA) treats and prevents the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In an effort to understand the therapeutic potential of LA in MS, we sought to define the cellular mechanisms that mediate the effects of LA on human natural killer (NK) cells, which are important in innate immunity as the first line of defense against invading pathogens and tumor cells. We discovered that LA stimulates cAMP production in NK cells in a dose-dependent manner. Studies using pharmacological inhibitors and receptor transfection experiments indicate that LA stimulates cAMP production via activation of the EP2 and EP4 prostanoid receptors and adenylyl cyclase. In addition, LA suppressed interleukin (IL)-12/IL-18 induced IFNγ secretion and cytotoxicity in NK cells. These novel findings suggest that LA may inhibit NK cell function via the cAMP signaling pathway. PMID:18562016

  15. The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress.

    PubMed

    Martino, Thiago; Kudrolli, Tarana A; Kumar, Binod; Salviano, Isis; Mencalha, André; Coelho, Marsen Garcia P; Justo, Graça; Costa, Paulo R Ribeiro; Sabino, Kátia C Carvalho; Lupold, Shawn E

    2018-02-01

    The targeted induction of reactive oxygen species (ROS) is a developing mechanism for cancer therapy. LQB-118 is a pterocarpanquinone and ROS-inducing agent with proven antineoplastic activity. Here, LQB-118 efficacy and mechanism of activity, were examined in Prostate Cancer (PCa) cell and tumor models. PC3, LNCaP, and LAPC4 PCa cells were applied. Dicoumarol treatment was used to inhibit quinone reductase activity. N-acetylcysteine (NAC) was applied as a ROS scavenger. ROS production was quantified by H 2 DCFDA flow cytometry. LQB-118 treated cells were evaluated for changes in lipid peroxidation, viability, and apoptosis. Treatment-induced gene expression was measured by RT-qPCR and Western Blot. SOD1 knockdown was achieved with siRNA or miRNA mimic transfection. MicroRNA specificity was determined by 3'UTR reporter assay. Oral LQB-118 treatment (10 mg/kg/day) efficacy was determined in athymic male nude mice bearing subcutaneous PC3 xenograft tumors. LQB-118 treatment triggered PCa cell death and apoptosis. Therapeutic activity was at least partially dependent upon quinone reduction and ROS generation. LQB-118 treatment caused an increase in cellular ROS and lipid peroxidation. Treated cells exhibited elevated levels of NQO1, Nrf2, and SOD1. The miRNAs miR-206, miR-1, and miR-101 targeted and reduced SOD1 expression. The knockdown of SOD1, by siRNA or miRNA, enhanced LQB-118 cytotoxicity. Orally administered LQB-118 treatment significantly reduced the growth of established PCa xenograft tumors. LQB-118 is a developing and orally active pterocarpanquinone agent that effectively kills PCa cells through quinone reduction and ROS generation. The inhibition SOD1 expression enhances LQB-118 activity, presumably by impairing the cellular antioxidant response. © 2017 Wiley Periodicals, Inc.

  16. A NEW SENSITIVE ASSAY FOR ANTIBODY AGAINST CELL SURFACE ANTIGENS BASED ON INHIBITION OF CELL-DEPENDENT ANTIBODY-MEDIATED CYTOTOXICITY

    PubMed Central

    Halloran, Phil; Schirrmacher, Volker; Festenstein, Hilliard

    1974-01-01

    Inhibition of cell-dependent antibody-mediated cytotoxicity has been investigated as a new assay for antibody against cell surface antigens. The cytotoxicity system consisted of effector cells (normal mouse spleen cells), target cells (61Cr-labeled chicken erythrocytes), and antitarget cell antibody. Addition of antibody against cell surface antigens in the effector cell population regularly inhibited the cytotoxicity measured in this system. This cytotoxicity inhibition assay (CIA) detected antibody with a variety of specificities: anti-H-2, anti-Thy 1.2, anti-immunoglobulin, and antimouse bone marrow-derived lymphocyte antigen. When the inhibition by anti-H-2 sera was analyzed using effector cells from congenic mice, the activity was found to be directed against specificities mapping in the H-2K, H-2D, and I regions of the H-2 complex, correlating well with the specificities characterized by complement-dependent assays. A comparison between the sensitivity of the CIA and complement-dependent lysis revealed that the CIA was 2–11 times more sensitive for anti-H-2 antisera and 20–780 times more sensitive for certain antisera against subpopulations of the spleen cells (i.e., T cells or B cells). The CIA proved to be precise, sensitive, and reliable. It may become a very useful antibody assay in various species including man. PMID:4547657

  17. Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration.

    PubMed

    Gravel, Annie; Dubuc, Isabelle; Wallaschek, Nina; Gilbert-Girard, Shella; Collin, Vanessa; Hall-Sedlak, Ruth; Jerome, Keith R; Mori, Yasuko; Carbonneau, Julie; Boivin, Guy; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39 , U90 , and U100 , without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state. IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the

  18. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    PubMed Central

    Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M

    2012-01-01

    Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316

  19. The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg; Dimov, I.

    2014-09-15

    The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practicallymore » unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.« less

  20. Anti-cancer Activity of Novel TM4SF5-Targeting Antibodies through TM4SF5 Neutralization and Immune Cell-Mediated Cytotoxicity

    PubMed Central

    Ahn, Hye-Mi; Ryu, Jihye; Song, Jin Myeong; Lee, Yunhee; Kim, Hye-Jin; Ko, Dongjoon; Choi, Inpyo; Kim, Sang Jick; Lee, Jung Weon; Kim, Semi

    2017-01-01

    The transmembrane four L6 family member 5 (TM4SF5) protein is a novel molecular target for the prevention and treatment of hepatocellular carcinoma. TM4SF5 is highly expressed in liver, colon, esophageal, and pancreatic cancers and is implicated in tumor progression. Here, we screened monoclonal antibodies that specifically bound to the extracellular loop 2 (EC2) of TM4SF5 from a phage-displayed murine antibody (single-chain variable fragment; scFv) library. We constructed and characterized chimeric antibodies, Ab27 and Ab79, of scFv fused with Fc domain of human IgG1. The affinity (KD) of Ab27 and Ab79 for soluble EC2 was approximately 9.2 nM and 16.9 nM, respectively, as determined by surface plasmon resonance analysis. Ab27 and Ab79 efficiently bound to native TM4SF5 on the cell surface were internalized into the cancer cells, leading to a decrease in cell surface TM4SF5. Ab27 and Ab79 inhibited the proliferation and invasion of TM4SF5-positive liver and colon cancer cells and reduced FAK and c-Src phosphorylation. Ab27 and Ab79 also enhanced anoikis sensitivity and reduced survivin. Ab27 mediated antibody-dependent cell-mediated cytotoxicity in vitro. Ab27 and Ab79 efficiently inhibited tumor growth in a liver cancer xenograft model. These results strongly support the further development of Ab27 as a novel anti-cancer agent in the clinic. PMID:28255353

  1. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells.

    PubMed

    Lee, Yong Chan; Chuang, Chun-Yu; Lee, Pak-Kei; Lee, Jin-Soo; Harper, Richart W; Buckpitt, Alan B; Wu, Reen; Oslund, Karen

    2008-05-01

    Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.

  2. Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility.

    PubMed

    Tarantola, Marco; Schneider, David; Sunnick, Eva; Adam, Holger; Pierrat, Sebastien; Rosman, Christina; Breus, Vladimir; Sönnichsen, Carsten; Basché, Thomas; Wegener, Joachim; Janshoff, Andreas

    2009-01-27

    In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods. The method is validated by conventional cytotoxicity testing and accompanied by fluorescence and dark-field microscopy to visualize changes in the cytoskeleton integrity and to determine the location of the particles within the cell.

  3. Putrescine-Dependent Re-Localization of TvCP39, a Cysteine Proteinase Involved in Trichomonas vaginalis Cytotoxicity

    PubMed Central

    Carvajal-Gamez, Bertha Isabel; Quintas-Granados, Laura Itzel; Arroyo, Rossana; Vázquez-Carrillo, Laura Isabel; Ramón-Luing, Lucero De los Angeles; Carrillo-Tapia, Eduardo; Alvarez-Sánchez, María Elizbeth

    2014-01-01

    Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP) involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB) (an inhibitor of putrescine biosynthesis), diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization. PMID:25251406

  4. [Drug Dependence and Cytotoxicity of Law-evading Drugs: Their Identities Explored from Basic Research].

    PubMed

    Funada, Masahiko

    2016-01-01

      Cases of people experiencing disturbed consciousness or dyspnea, causing traffic accidents, or requiring ambulance transport to hospital due to abuse of law-evading chemical substances have become a serious social problem in Japan. Most law-evading herbal products are marketed as incense or herbs and consist of finely chopped, dry vegetative matter mixed with chemical substances (drugs). Analysis of the chemical substances in these herbal products has demonstrated that they contain synthetic cannabinoids. Because there are many cannabinoid compounds, even if a particular drug is regulated, similar compounds that differ only slightly in structure may be added in their place. Therefore a cat-and-mouse game exists between regulations on chemical substances and their propagation. This paper summarizes the pharmacological actions and dangers of chemical substances contained in law-evading herbal products by focusing on synthetic cannabinoids, as a group of chemical substances contained in these products. Furthermore, comprehensive designations of synthetic cannabinoids have been introduced as a new method of regulation that emphasizes the similarity of chemical structures; this paper also outlines the comprehensive designations. We established a psychic-dependence liability and cytotoxicity screening system for synthetic cannabinoids using animals (behavioral analysis in vivo) and cell cultures (cytotoxicity analysis in vitro). With our drug-screening system, we were able rapidly to evaluate and quantify psychic-dependence liabilities and cytotoxicity of synthetic cannabinoids contained in law-evading herbal products. These scientific data using our screening system contributed to the establishment of legislation for comprehensive designations of synthetic cannabinoids.

  5. Polymeric nanocomposites loaded with fluoridated hydroxyapatite Ln3+ (Ln = Eu or Tb)/iron oxide for magnetic targeted cellular imaging

    PubMed Central

    Pan, Jie; Liu, Wei-Jiao; Hua, Chao; Wang, Li-Li; Wan, Dong; Gong, Jun-Bo

    2015-01-01

    Objective To fabricate polymeric nanocomposites with excellent photoluminescence, magnetic properties, and stability in aqueous solutions, in order to improve specificity and sensitivity of cellular imaging under a magnetic field. Methods Fluoridated Ln3+-doped HAP (Ln3+-HAP) NPs and iron oxides (IOs) can be encapsulated with biocompatible polymers via a modified solvent exaction/evaporation technique to prepare polymeric nanocomposites with fluoridated Ln3+-HAP/iron oxide. The nanocomposites were characterized for surface morphology, fluorescence spectra, magnetic properties and in vitro cytotoxicity. Magnetic targeted cellular imaging of such nanocomposites was also evaluated with confocal laser scanning microscope using A549 cells with or without magnetic field. Results The fabricated nanocomposites showed good stability and excellent luminescent properties, as well as low in vitro cytotoxicity, indicating that the nanocomposites are suitable for biological applications. Nanocomposites under magnetic field achieved much higher cellular uptake via an energy-dependent pathway than those without magnetic field. Conclusion The nanocomposites fabricated in this study will be a promising tool for magnetic targeted cellular imaging with improved specificity and enhanced selection. PMID:26487962

  6. Children with Invasive Staphylococcus aureus Disease Exhibit a Potently Neutralizing Antibody Response to the Cytotoxin LukAB

    PubMed Central

    DuMont, Ashley L.; James, David B. A; Yoong, Pauline; Saville, Benjamin R.; Soper, Nicole; Torres, Victor J.; Creech, C. Buddy

    2014-01-01

    Despite the importance of Staphylococcus aureus as a common invasive bacterial pathogen, the humoral response to infection remains inadequately defined, particularly in children. The purpose of this study was to assess the humoral response to extracellular staphylococcal virulence factors, including the bicomponent leukotoxins, which are critical for the cytotoxicity of S. aureus toward human neutrophils. Children with culture-proven S. aureus infection were prospectively enrolled and stratified by disease type. Fifty-three children were enrolled in the study, of which 90% had invasive disease. Serum samples were obtained during the acute (within 48 h) and convalescent (4 to 6 weeks postinfection) phases, at which point both IgG titers against S. aureus exotoxins were determined, and the functionality of the generated antibodies was evaluated. Molecular characterization of clinical isolates was also performed. We observed a marked rise in antibody titer from acute-phase to convalescent-phase sera for LukAB, the most recently described S. aureus bicomponent leukotoxin. LukAB production by the isolates was strongly correlated with cytotoxicity in vitro, and sera containing anti-LukAB antibodies potently neutralized cytotoxicity. Antibodies to S. aureus antigens were detectable in healthy pediatric controls but at much lower titers than in sera from infected subjects. The discovery of a high-titer, neutralizing antibody response to LukAB during invasive infections suggests that this toxin is produced in vivo and that it elicits a functional humoral response. PMID:24379282

  7. Extracellular thiol-assisted selenium uptake dependent on the xc− cystine transporter explains the cancer-specific cytotoxicity of selenite

    PubMed Central

    Olm, Eric; Fernandes, Aristi P.; Hebert, Christina; Rundlöf, Anna-Klara; Larsen, Erik H.; Danielsson, Olof; Björnstedt, Mikael

    2009-01-01

    The selenium salt selenite (SeO32−) is cytotoxic in low to moderate concentrations, with a remarkable specificity for cancer cells resistant to conventional chemotherapy. Our data show that selenium uptake and accumulation, rather than intracellular events, are crucial to the specific selenite cytotoxicity observed in resistant cancer cells. We show that selenium uptake depends on extracellular reduction, and that the extracellular environment is a key factor specific to selenite cytotoxicity. The extracellular reduction is mediated by cysteine, and the efficacy is determined by the uptake of cystine by the xc− antiporter and secretion of cysteine by multidrug resistance proteins, both of which are frequently overexpressed by resistant cancer cells. This mechanism provides molecular evidence for the existence of an inverse relationship between resistance to conventional chemotherapy and sensitivity to selenite cytotoxicity, and highlights the great therapeutic potential in treating multidrug-resistant cancer. PMID:19549867

  8. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications.

    PubMed

    Woźniak, Anna; Malankowska, Anna; Nowaczyk, Grzegorz; Grześkowiak, Bartosz F; Tuśnio, Karol; Słomski, Ryszard; Zaleska-Medynska, Adriana; Jurga, Stefan

    2017-06-01

    Metallic nanoparticles, in particular gold nanoparticles (AuNPs), offer a wide spectrum of applications in biomedicine. A crucial issue is their cytotoxicity, which depends greatly on various factors, including morphology of nanoparticles. Because metallic nanoparticles have an effect on cell membrane integrity, their shape and size may affect the viability of cells, due to their different geometries as well as physical and chemical interactions with cell membranes. Variations in the size and shape of gold nanoparticles may indicate particular nanoparticle morphologies that provide strong cytotoxicity effects. Synthesis of different sized and shaped bare AuNPs was performed with spherical (~ 10 nm), nanoflowers (~ 370 nm), nanorods (~ 41 nm), nanoprisms (~ 160 nm) and nanostars (~ 240 nm) morphologies. These nanostructures were characterized and interacting with cancer (HeLa) and normal (HEK293T) cell lines and cell viability tests were performed by WST-1 tests and fluorescent live/dead cell imaging experiments. It was shown that various shapes and sizes of gold nanostructures may affect the viability of the cells. Gold nanospheres and nanorods proved to be more toxic than star, flower and prism gold nanostructures. This may be attributed to their small size and aggregation process. This is the first report concerning a comparison of cytotoxic profile in vitro with a wide spectrum of bare AuNPs morphology. The findings show their possible use in biomedical applications.

  9. Activated human neutrophil response to perfluorocarbon nanobubbles: oxygen-dependent and -independent cytotoxic responses.

    PubMed

    Hwang, Tsong-Long; Fang, Chia-Lang; Al-Suwayeh, Saleh A; Yang, Li-Jia; Fang, Jia-You

    2011-06-10

    Nanobubbles, a type of nanoparticles with acoustically active properties, are being utilized as diagnostic and therapeutic nanoparticles to better understand, detect, and treat human diseases. The objective of this work was to prepare different nanobubble formulations and investigate their physicochemical characteristics and toxic responses to N-formyl-methionyl-leucyl-phenylalanine (fMLP)-activated human neutrophils. The nanobubbles were prepared using perfluoropentane and coconut oil as the respective core and shell, with soybean phosphatidylcholine (SPC) and/or cationic surfactants as the interfacial layers. The cytotoxic effect of the nanobubbles on neutrophils was determined by extracellular O₂(.)⁻ release, intracellular reactive oxygen species (ROS), lactate dehydrogenase (LDH), and elastase release. Particle sizes of the nanobubbles with different percentages of perfluorocarbon, oil, and surfactants in ranged 186-432 nm. The nanobubbles were demonstrated to inhibit the generation of superoxide and intracellular ROS. The cytotoxicity of nanobubbles may be mainly associated with membrane damage, as indicated by the high LDH leakage. Systems with Forestall (FE), a cationic surfactant, or higher SPC contents exhibited the greatest LDH release by 3-fold compared to the control. The further addition of an oil component reduced the cytotoxicity induced by the nanobubbles. Exposure to most of the nanobubble formulations upregulated elastase release by activated neutrophils. Contrary to this result, stearylamine (SA)-containing systems slightly but significantly suppressed elastase release. FE and SA in a free form caused stronger responses by neutrophils than when they were incorporated into nanobubbles. In summary, exposure to nanobubbles resulted in a formulation-dependent toxicity toward human neutrophils that was associated with both oxygen-dependent and -independent pathways. Clinicians should therefore exercise caution when using nanobubbles in patients

  10. Toxicology and cellular effect of manufactured nanomaterials

    DOEpatents

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  11. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    PubMed

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.

  12. Synthetic Lignan Secoisolariciresinol Diglucoside (LGM2605) Reduces Asbestos-Induced Cytotoxicity in an Nrf2-Dependent and -Independent Manner.

    PubMed

    Pietrofesa, Ralph A; Chatterjee, Shampa; Park, Kyewon; Arguiri, Evguenia; Albelda, Steven M; Christofidou-Solomidou, Melpo

    2018-03-02

    Asbestos exposure triggers inflammatory processes associated with oxidative stress and tissue damage linked to malignancy. LGM2605 is the synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant, and anti-inflammatory properties in diverse inflammatory cell and mouse models, including exposure to asbestos fibers. Nuclear factor-E2 related factor 2 (Nrf2) activation and boosting of endogenous tissue defenses were associated with the protective action of LGM2605 from asbestos-induced cellular damage. To elucidate the role of Nrf2 induction by LGM2605 in protection from asbestos-induced cellular damage, we evaluated LGM2605 in asbestos-exposed macrophages from wild-type (WT) and Nrf2 disrupted (Nrf2 - / - ) mice. Cells were pretreated with LGM2605 (50 µM and 100 µM) and exposed to asbestos fibers (20 µg/cm²) and evaluated 8 h and 24 h later for inflammasome activation, secreted cytokine levels (interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα)), cytotoxicity and cell death, nitrosative stress, and Nrf2-regulated enzyme levels. Asbestos exposure induced robust oxidative and nitrosative stress, cell death and cytotoxicity, which were equally mitigated by LGM2605. Inflammasome activation was significantly attenuated in Nrf2 -/- macrophages compared to WT, and the protective action of LGM2605 was seen only in WT cells. In conclusion, in a cell model of asbestos-induced toxicity, LGM2605 acts via protective mechanisms that may not involve Nrf2 activation.

  13. Cell specific cytotoxicity and uptake of graphene nanoribbons.

    PubMed

    Mullick Chowdhury, Sayan; Lalwani, Gaurav; Zhang, Kevin; Yang, Jeong Y; Neville, Kayla; Sitharaman, Balaji

    2013-01-01

    The synthesis of oxidized graphene nanoribbons (O-GNR) via longitudinal unzipping of carbon nanotubes opens avenues for their further development for a variety of biomedical applications. Evaluation of the cyto- and bio-compatibility is necessary to develop any new material for in vivo biomedical applications. In this study, we report the cytotoxicity screening of O-GNRs water-solubilized with PEG-DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)]), using six different assays, in four representative cell lines; Henrietta Lacks cells (HeLa) derived from cervical cancer tissue, National Institute of Health 3T3 mouse fibroblast cells (NIH-3T3), Sloan Kettering breast cancer cells (SKBR3) and Michigan cancer foundation-7 breast cancer cells (MCF7). These cell lines significantly differed in their response to O-GNR-PEG-DSPE formulations; assessed and evaluated using various endpoints (lactate dehydrogenase (LDH) release, cellular metabolism, lysosomal integrity and cell proliferation) for cytotoxicity. In general, all the cells showed a dose-dependent (10-400 μg/ml) and time-dependent (12-48 h) decrease in cell viability. However, the degree of cytotoxicity was significantly lower in MCF7 or SKBR3 cells compared to HeLa cells. These cells were 100% viable upto 48 h, when incubated at 10 μg/ml O-GNR-PEG-DSPE concentration, and showed decrease in cell viability above this concentration with ~78% of cells viable at the highest concentration (400 μg/ml). In contrast, significant cell death (5-25% cell death depending on the time point, and the assay) was observed for HeLa cells even at a low concentration of 10 μg/ml. The decrease in cell viability was steep with increase in concentration with the CD(50) values ≥ 100 μg/ml depending on the assay, and time point. Transmission electron microscopy of the various cells treated with the O-GNR solutions show higher uptake of the O-GNR-PEG-DSPEs into HeLa cells compared to other cell types

  14. Cytotoxicity of Cyclometalated Platinum Complexes Based on Tridentate NCN and CNN-coordinating ligands: Remarkable Coordination Dependence

    PubMed Central

    Vezzu, Dileep A. k.; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-01-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the NʌCʌN-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the CʌNʌN-coordinated platinum complex based on 6-phenyl-2,2′-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by NʌCʌN- and CʌNʌN-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the NʌCʌN-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis was studied by western blot analysis and the activation of PARP via caspase 7 was observed. PMID:24531534

  15. Safety evaluation of a human chimeric monoclonal antibody that recognizes the extracellular loop domain of claudin-2.

    PubMed

    Hashimoto, Yosuke; Hata, Tomoyuki; Tada, Minoru; Iida, Manami; Watari, Akihiro; Okada, Yoshiaki; Doi, Takefumi; Kuniyasu, Hiroki; Yagi, Kiyohito; Kondoh, Masuo

    2018-05-30

    Claudin-2 (CLDN-2), a pore-forming tight junction protein with a tetra-transmembrane domain, is involved in carcinogenesis and the metastasis of some cancers. Although CLDN-2 is highly expressed in the tight junctions of the liver and kidney, whether CLDN-2 is a safe target for cancer therapy remains unknown. We recently generated a rat monoclonal antibody (mAb, clone 1A2) that recognizes the extracellular domains of human and mouse CLDN-2. Here, we investigated the safety of CLDN-2-targeted cancer therapy by using 1A2 as a model therapeutic antibody. Because most human therapeutic mAbs are IgG1 subtype that can induce antibody-dependent cellular cytotoxicity, we generated a human-rat chimeric IgG1 form of 1A2 (xi-1A2). xi-1A2 activated Fcγ receptor IIIa in the presence of CLDN-2-expressing cells, indicating that xi-1A2 likely exerts antibody-dependent cellular cytotoxicity. At 24 h after its intravenous injection, xi-1A2 was distributed into the liver, kidney, and tumor tissues of mice bearing CLDN-2-expressing fibrosarcoma cells. Treatment of the xenografted mice with xi-1A2 attenuated tumor growth without apparent adverse effects, such as changes in body weight and biochemical markers of liver and kidney injury. These results support xi-1A2 as the lead candidate mAb for safe CLDN-2-targeted cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity.

    PubMed

    Woll, Petter S; Martin, Colin H; Miller, Jeffrey S; Kaufman, Dan S

    2005-10-15

    Human embryonic stem cells (hESCs) provide a unique resource to analyze early stages of human hematopoiesis. However, little is known about the ability to use hESCs to evaluate lymphocyte development. In the present study, we use a two-step culture method to demonstrate efficient generation of functional NK cells from hESCs. The CD56(+)CD45(+) hESC-derived lymphocytes express inhibitory and activating receptors typical of mature NK cells, including killer cell Ig-like receptors, natural cytotoxicity receptors, and CD16. Limiting dilution analysis suggests that these cells can be produced from hESC-derived hemopoietic progenitors at a clonal frequency similar to CD34(+) cells isolated from cord blood. The hESC-derived NK cells acquire the ability to lyse human tumor cells by both direct cell-mediated cytotoxicity and Ab-dependent cellular cytotoxicity. Additionally, activated hESC-derived NK cells up-regulate cytokine production. hESC-derived lymphoid progenitors provide a novel means to characterize specific cellular and molecular mechanisms that lead to development of specific human lymphocyte populations. These cells may also provide a source for innovative cellular immune therapies.

  17. HHV-6A/B Integration and the Pathogenesis Associated with the Reactivation of Chromosomally Integrated HHV-6A/B.

    PubMed

    Collin, Vanessa; Flamand, Louis

    2017-06-26

    Unlike other human herpesviruses, human herpesvirus 6A and 6B (HHV-6A/B) infection can lead to integration of the viral genome in human chromosomes. When integration occurs in germinal cells, the integrated HHV-6A/B genome can be transmitted to 50% of descendants. Such individuals, carrying one copy of the HHV-6A/B genome in every cell, are referred to as having inherited chromosomally-integrated HHV-6A/B (iciHHV-6) and represent approximately 1% of the world's population. Interestingly, HHV-6A/B integrate their genomes in a specific region of the chromosomes known as telomeres. Telomeres are located at chromosomes' ends and play essential roles in chromosomal stability and the long-term proliferative potential of cells. Considering that the integrated HHV-6A/B genome is mostly intact without any gross rearrangements or deletions, integration is likely used for viral maintenance into host cells. Knowing the roles played by telomeres in cellular homeostasis, viral integration in such structure is not likely to be without consequences. At present, the mechanisms and factors involved in HHV-6A/B integration remain poorly defined. In this review, we detail the potential biological and medical impacts of HHV-6A/B integration as well as the possible chromosomal integration and viral excision processes.

  18. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines.

    PubMed

    Collins, Denis M; Gately, Kathy; Hughes, Clare; Edwards, Connla; Davies, Anthony; Madden, Stephen F; O'Byrne, Kenneth J; O'Donovan, Norma; Crown, John

    2017-09-01

    Trastuzumab is an anti-HER2 monoclonal antibody (mAb) therapy capable of antibody-dependent cell-mediated cytotoxicity (ADCC) and used in the treatment of HER2+ breast cancer. Through interactions with FcƴR+ immune cell subsets, trastuzumab functions as a passive immunotherapy. The EGFR/HER2-targeting tyrosine kinase inhibitor (TKI) lapatinib and the next generation TKIs afatinib and neratinib, can alter HER2 levels, potentially modulating the ADCC response to trastuzumab. Using LDH-release assays, we investigated the impact of antigen modulation, assay duration and peripheral blood mononuclear cell (PBMC) activity on trastuzumab-mediated ADCC in breast cancer models of maximal (SKBR3) and minimal (MCF-7) target antigen expression to determine if modulating the ADCC response to trastuzumab using TKIs may be a viable approach for enhancing tumor immune reactivity. HER2 levels were determined in lapatinib, afatinib and neratinib-treated SKBR3 and MCF-7 using high content analysis (HCA). Trastuzumab-mediated ADCC was assessed following treatment with TKIs utilising a colorimetric LDH release-based protocol at 4 and 12h timepoints. PBMC activity was assessed against non-MHC-restricted K562 cells. A flow cytometry-based method (CFSE/7-AAD) was also used to measure trastuzumab-mediated ADCC in medium-treated SKBR3 and MCF-7. HER2 antigen levels were significantly altered by the three TKIs in both cell line models. The TKIs significantly reduced LDH levels directly in SKBR3 cells but not MCF-7. Lapatinib and neratinib augment trastuzumab-related ADCC in SKBR3 but the effect was not consistent with antigen expression levels and was dependent on volunteer PBMC activity (vs. K562). A 12h assay timepoint produced more consistent results. Trastuzumab-mediated ADCC (PBMC:target cell ratio of 10:1) was measured at 7.6±4.7% (T12) by LDH assay and 19±3.2 % (T12) using the flow cytometry-based method in the antigen-low model MCF-7. In the presence of effector cells with high

  19. Feasibility of Ecological Momentary Assessment Using Cellular Telephones in Methamphetamine Dependent Subjects

    PubMed Central

    Galloway, Gantt P; Didier, Ryne; Garrison, Kathleen; Mendelson, John

    2008-01-01

    Background Predictors of relapse to methamphetamine use are poorly understood. State variables may play an important role in relapse, but they have been difficult to measure at frequent intervals in outpatients. Methods We conducted a feasibility study of the use of cellular telephones to collect state variable data from outpatients. Six subjects in treatment for methamphetamine dependence were called three times per weekday for approximately seven weeks. Seven questionnaires were administered that assessed craving, stress, affect and current type of location and social environment. Results 395/606 (65%) of calls attempted were completed. The mean time to complete each call was 4.9 (s.d. 1.8) minutes and the mean time to complete each item was 8.4 (s.d. 4.8) seconds. Subjects rated the acceptability of the procedures as good. All six cellular phones and battery chargers were returned undamaged. Conclusion Cellular telephones are a feasible method for collecting state data from methamphetamine dependent outpatients. PMID:19997532

  20. Dependence of Impedance of Embedded Single Cells on Cellular Behaviour.

    PubMed

    Cho, Sungbo; Castellarnau, Marc; Samitier, Josep; Thielecke, Hagen

    2008-02-21

    Non-invasive single cell analyses are increasingly required for the medicaldiagnostics of test substances or the development of drugs and therapies on the single celllevel. For the non-invasive characterisation of cells, impedance spectroscopy whichprovides the frequency dependent electrical properties has been used. Recently,microfludic systems have been investigated to manipulate the single cells and tocharacterise the electrical properties of embedded cells. In this article, the impedance ofpartially embedded single cells dependent on the cellular behaviour was investigated byusing the microcapillary. An analytical equation was derived to relate the impedance ofembedded cells with respect to the morphological and physiological change ofextracellular interface. The capillary system with impedance measurement showed afeasibility to monitor the impedance change of embedded single cells caused bymorphological and physiological change of cell during the addition of DMSO. By fittingthe derived equation to the measured impedance of cell embedded at different negativepressure levels, it was able to extrapolate the equivalent gap and gap conductivity betweenthe cell and capillary wall representing the cellular behaviour.

  1. Cytotoxic Effect Associated with Overexpression of QNR Proteins in Escherichia coli.

    PubMed

    Machuca, Jesús; Diaz de Alba, Paula; Recacha, Esther; Pascual, Álvaro; Rodriguez-Martinez, José Manuel

    2017-10-01

    The objective was to evaluate the cytotoxic effect associated with overexpression of multiple Qnr-like plasmid-mediated quinolone resistance (PMQR) mechanisms in Escherichia coli. Coding regions of different PMQR genes (qnrA1, qnrB1, qnrC, qnrD1, qnrS1, and qepA2) and efsqnr were cloned into pET29a(+) vector and overexpressed in E. coli BL21. E. coli BL21 with and without an empty pET29a(+) vector were used as controls. The cytotoxic effect associated with PMQR mechanism overexpression was determined by transmission electron microscopy and viability assays. Overexpressed qnr genes produced loss of bacterial viability in the range of 77-97% compared with the controls, comparable with loss of viability associated with EfsQnr overexpression (97%). No loss of viability was observed in E. coli overexpressing QepA2. In transmission electron microscopy assays, signs of cytotoxicity were observed in E. coli cells overexpressing EfsQnr and Qnr proteins (30-45% of the bacterial population showed morphological changes). Morphological changes were observed in less than 5% of bacterial populations from the control strains and E. coli overexpressing QepA2. Overexpression of qnr genes produces a cytotoxic cellular and structural effect in E. coli, the magnitude of which varies depending on the family of Qnr proteins.

  2. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells.

    PubMed

    Tofolean, Ioana Teodora; Ganea, Constanta; Ionescu, Diana; Filippi, Alexandru; Garaiman, Alexandru; Goicea, Alexandru; Gaman, Mihnea-Alexandru; Dimancea, Alexandru; Baran, Irina

    2016-01-01

    We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Synthetic Lignan Secoisolariciresinol Diglucoside (LGM2605) Reduces Asbestos-Induced Cytotoxicity in an Nrf2-Dependent and -Independent Manner

    PubMed Central

    Pietrofesa, Ralph A.; Chatterjee, Shampa; Park, Kyewon; Arguiri, Evguenia; Albelda, Steven M.; Christofidou-Solomidou, Melpo

    2018-01-01

    Asbestos exposure triggers inflammatory processes associated with oxidative stress and tissue damage linked to malignancy. LGM2605 is the synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant, and anti-inflammatory properties in diverse inflammatory cell and mouse models, including exposure to asbestos fibers. Nuclear factor-E2 related factor 2 (Nrf2) activation and boosting of endogenous tissue defenses were associated with the protective action of LGM2605 from asbestos-induced cellular damage. To elucidate the role of Nrf2 induction by LGM2605 in protection from asbestos-induced cellular damage, we evaluated LGM2605 in asbestos-exposed macrophages from wild-type (WT) and Nrf2 disrupted (Nrf2−/−) mice. Cells were pretreated with LGM2605 (50 µM and 100 µM) and exposed to asbestos fibers (20 µg/cm2) and evaluated 8 h and 24 h later for inflammasome activation, secreted cytokine levels (interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα)), cytotoxicity and cell death, nitrosative stress, and Nrf2-regulated enzyme levels. Asbestos exposure induced robust oxidative and nitrosative stress, cell death and cytotoxicity, which were equally mitigated by LGM2605. Inflammasome activation was significantly attenuated in Nrf2−/− macrophages compared to WT, and the protective action of LGM2605 was seen only in WT cells. In conclusion, in a cell model of asbestos-induced toxicity, LGM2605 acts via protective mechanisms that may not involve Nrf2 activation. PMID:29498660

  4. A novel antibody-dependent cellular cytotoxicity epitope in gp120 is identified by two monoclonal antibodies isolated from a long-term survivor of human immunodeficiency virus type 1 infection.

    PubMed Central

    Alsmadi, O; Herz, R; Murphy, E; Pinter, A; Tilley, S A

    1997-01-01

    Two monoclonal antibodies (MAbs), 42F and 43F, were isolated some 14 months apart from a single long-term survivor of human immunodeficiency virus type 1 (HIV-1) infection. These MAbs were found to be indistinguishable in terms of their isotypes, specificities, affinities, and biological activities. Both 42F and 43F directed substantial antibody-dependent cellular cytotoxicity (ADCC) against cells infected with four divergent lab-adapted strains of HIV-1, but no neutralizing activity against these strains was detectable. The ability of MAbs 42F and 43F, as well as that of MAbs against two other gp120 epitopes, to direct ADCC against uninfected CD4+ cells to which recombinant gp120SF2 had been adsorbed (i.e., "innocent bystanders") was demonstrated to be less efficient by at least an order of magnitude than their ability to direct ADCC against HIV-1-infected cells. Flow cytometry analyses showed that 42F and 43F also bind to native primary isolate Envs from clades B and E expressed on cell surfaces. By direct binding and competition assays, it was demonstrated that the 42F/43F epitope lies in a domain of gp120 outside the previously described CD4-binding site and V3 loop ADCC epitope clusters. Immunoblot analysis revealed that the 42F/43F epitope is not dependent on disulfide bonds or N-linked glycans in gp120. Epitope mapping of 42F and 43F by binding to linear peptides demonstrated specificity of these MAbs for a sequence of 10 amino acids in the C5 domain comprising residues 491 to 500 (Los Alamos National Laboratory numbering for the HXB2 strain). Thus, 42F and 43F define a new ADCC epitope in gp120. Because of the relative conservation of this epitope and the fact that it appears to have been significantly immunogenic in the individual from which these MAbs were derived, it may prove to be a useful component of HIV vaccines. Furthermore, these MAbs may be used as tools to probe the potential importance of ADCC as an antiviral activity in HIV-1 infection. PMID

  5. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure

    PubMed Central

    Hino, Shinjiro; Sakamoto, Akihisa; Nagaoka, Katsuya; Anan, Kotaro; Wang, Yuqing; Mimasu, Shinya; Umehara, Takashi; Yokoyama, Shigeyuki; Kosai, Ken-ichiro; Nakao, Mitsuyoshi

    2012-01-01

    Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis. PMID:22453831

  6. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.

    PubMed

    Hino, Shinjiro; Sakamoto, Akihisa; Nagaoka, Katsuya; Anan, Kotaro; Wang, Yuqing; Mimasu, Shinya; Umehara, Takashi; Yokoyama, Shigeyuki; Kosai, Ken-Ichiro; Nakao, Mitsuyoshi

    2012-03-27

    Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis.

  7. Characterization of the Fluorescence Properties of 4-Dialkylaminochalcones and Investigation of the Cytotoxic Mechanism of Chalcones.

    PubMed

    Zhou, Bo; Jiang, Peixin; Lu, Junxuan; Xing, Chengguo

    2016-07-01

    Understanding the mechanisms responsible for the various biological activities of chalcones, particularly the direct cellular targets, presents an unmet challenge. Here, we prepared a series of fluorescent chalcone derivatives as chemical probes for their mechanistic investigation. Upon systematic physicochemical characterization, we explored their potential to elucidate the mode of action of chalcones' cytotoxicity. The fluorescence of the chalcones was found to be highly sensitive to structural and environmental factors. Structurally, a 4-dialkylamino group on the B ring, suitable electronic properties of the A ring substituents, and the planar conformation of the chalcone's core structure were essential for optimal fluorescence. Environmental factors influencing fluorescence included solvent polarity, pH, and the interactions of the chalcones with proteins and detergents. It was found that 18 chalcones showed a fluorescent brightness greater than 6000 M(-1)  cm(-1) in DMSO. However, water dramatically quenched the fluorescence, although it could be partially recovered in the presence of BSA or detergents. As expected, these fluorescent chalcones showed a sharp structure-activity relationship in their cellular cytotoxicity, leading to the identification of structurally similar cytotoxic and non-cytotoxic fluorescent chalcones as chemical probes. Confocal microscopy results revealed the co-localization of the cytotoxic probe C8 and tubulin in cells, supporting tubulin as the direct cellular target responsible for the cytotoxicity of chalcones. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate.

    PubMed

    Luo, Yangchao; Teng, Zi; Wang, Thomas T Y; Wang, Qin

    2013-08-07

    Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS)-stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with different zein/CAS mass ratios. The prepared nanoparticles demonstrated good stabilities to maintain particle size (120-140 nm) in cell culture medium and HBSS buffer at 37 °C. The nanoparticles showed no cytotoxicity for Caco-2 cells for 72 h. CAS not only significantly enhanced cell uptake of zein nanoparticles in a concentration- and time-dependent manner but also remarkably improved epithelial transport through Caco-2 cell monolayer. The cell uptake of zein-CAS nanoparticles indicated an energy-dependent endocytosis process as evidenced by cell uptake under blocking conditions, that is, 4 °C, sodium azide, and colchicine. Fluorescent microscopy clearly showed the internalization of zein-CAS nanoparticles. This study may shed some light on the cellular evaluations of hydrophobic protein nanoparticles.

  9. Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in BXPC-3 and PANC-1 human pancreatic cancer cells.

    PubMed

    Wang, Lin; Zhu, Zhi-Xia; Zhang, Wen-Ying; Zhang, Wei-Min

    2011-09-01

    Previous studies have shown that both pemetrexed, a cytotoxic drug, and erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), inhibit the cell growth of pancreatic cancer cells. However, whether they exert a synergistic antitumor effect on pancreatic cancer cells remains unknown. The present study aimed to assess the synergistic effect of erlotinib in combination with pemetrexed using different sequential administration schedules on the proliferation of human pancreatic cancer BXPC-3 and PANC-1 cells and to probe its cellular mechanism. The EGFR and K-ras gene mutation status was examined by quantitative PCR high-resolution melting (qPCR-HRM) analysis. BXPC-3 and PANC-1 cells were incubated with pemetrexed and erlotinib using different administration schedules. MTT assay was used to determine cytotoxicity, and cell cycle distribution was determined by flow cytometry. The expression and phosphorylation of EGFR, HER3, AKT and MET were determined using Western blotting. Both pemetrexed and erlotinib inhibited the proliferation of BXPC-3 and PANC-1 cells in a dose- and time-dependent manner in vitro. Synergistic effects on cell proliferation were observed when pemetrexed was used in combination with erlotinib. The degree of the synergistic effects depended on the administration sequence, which was most obvious when erlotinib was sequentially administered at 24-h interval following pemetrexed. Cell cycle studies revealed that pemetrexed induced S arrest and erlotinib induced G(0)/G(1) arrest. The sequential administration of erlotinib following pemetrexed induced S arrest. Western blot analyses showed that pemetrexed increased and erlotinib decreased the phosphorylation of EGFR, HER3 and AKT, respectively. However, both pemetrexed and erlotinib exerted no significant effects on the phosphorylation of c-MET. The phosphorylation of EGFR, HER3 and AKT was significantly suppressed by scheduled incubation with pemetrexed followed by erlotinib

  10. Cytotoxicity of cyclometalated platinum complexes based on tridentate NCN and CNN-coordinating ligands: remarkable coordination dependence.

    PubMed

    Vezzu, Dileep A K; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-05-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the N^C^N-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the C^N^N-coordinated platinum complex based on 6-phenyl-2,2'-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by N^C^N- and C^N^N-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the N^C^N-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed that the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis were studied by western blot analysis and the activation of PARP via caspase 7 was observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells.

    PubMed

    Soni, Naina; Jyoti, Kiran; Jain, Upendra Kumar; Katyal, Anju; Chandra, Ramesh; Madan, Jitender

    2017-06-01

    Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag 2+ nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag 2+ nanocrystals. Furthermore, zeta-potential of Nos-Ag 2+ nanocrystals was determined to be -25.3±3.11mV significantly (P<0.05) different from -15.2±3.33mV of Red-Br-Nos-Ag 2+ nanocrystals. The shape of tailored nanocrystals was slightly spherical and or irregular in shape. The architecture of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals was crystalline in nature. FT-IR spectroscopy evinced the successful interaction of Ag 2+ nanocrystals with Nos and Red-Br-Nos, respectively. The superior therapeutic efficacy of tailored nanocrystals was measured in terms of enhanced cytotoxicity, apoptosis and cellular uptake. The Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals exhibited an IC 50 of 16.6μM and 6.5μM, significantly (P<0.05) lower than 38.5μM of Nos and 10.3μM of Red-Br-Nos, respectively. Finally, cellular morphological alterations in B16F1 cells upon internalization of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals provided the evidences for accumulation within membrane-bound cytoplasmic vacuoles and in enlarged lysosomes and thus triggered mitochondria mediated apoptosis via

  12. Dependence of Impedance of Embedded Single Cells on Cellular Behaviour

    PubMed Central

    Cho, Sungbo; Castellarnau, Marc; Samitier, Josep; Thielecke, Hagen

    2008-01-01

    Non-invasive single cell analyses are increasingly required for the medical diagnostics of test substances or the development of drugs and therapies on the single cell level. For the non-invasive characterisation of cells, impedance spectroscopy which provides the frequency dependent electrical properties has been used. Recently, microfludic systems have been investigated to manipulate the single cells and to characterise the electrical properties of embedded cells. In this article, the impedance of partially embedded single cells dependent on the cellular behaviour was investigated by using the microcapillary. An analytical equation was derived to relate the impedance of embedded cells with respect to the morphological and physiological change of extracellular interface. The capillary system with impedance measurement showed a feasibility to monitor the impedance change of embedded single cells caused by morphological and physiological change of cell during the addition of DMSO. By fitting the derived equation to the measured impedance of cell embedded at different negative pressure levels, it was able to extrapolate the equivalent gap and gap conductivity between the cell and capillary wall representing the cellular behaviour. PMID:27879760

  13. Interaction of single-walled carbon nanotubes and saxitoxin: Ab initio simulations and biological responses in hippocampal cell line HT-22.

    PubMed

    Ramos, Patrícia; Schmitz, Marcos; Filgueira, Daza; Votto, Ana Paula; Durruthy, Michael; Gelesky, Marcos; Ruas, Caroline; Yunes, João; Tonel, Mariana; Fagan, Solange; Monserrat, José

    2017-07-01

    Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 10 4  cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL -1 ), STX (200 μg L -1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC. © 2016 SETAC.

  14. Association of Angiotensin-Converting Enzyme (ACE) Gene Polymorphism with Inflammation and Cellular Cytotoxicity in Vitiligo Patients.

    PubMed

    Rashed, Laila; Abdel Hay, Rania; Mahmoud, Rania; Hasan, Nermeen; Zahra, Amr; Fayez, Salwa

    2015-01-01

    Vitiligo is a disorder with profound heterogeneity in its aetio-pathophysiology. Angiotensin converting enzyme (ACE) plays an important role in the physiology of the vasculature, blood pressure and inflammation. An insertion/deletion (I/D) polymorphism of the ACE gene was reported be associated with the development of vitiligo. Our aim was to evaluate the ACE I/D polymorphism in vitiligo patients and controls. Our second aim was to find a possible association between ACE gene polymorphism and inflammatory mediators (as interleukin (IL)-6) and/or cellular cytotoxicity induced by serum nitrite (as a breakdown product of the cytotoxic nitric oxide) in vitiligo patients. This case-control study included 74 vitiligo patients and 75 apparently healthy controls. The distribution of ACE gene I/D genotype was investigated using PCR. Serum ACE, IL-6 and nitrite were measured by colorimetric method, ELISA and Griess assay respectively. The ACE allele frequency was significantly different between vitiligo patients and healthy controls (P = 0.026). However there was no significant difference between the ACE genotyping frequency in both groups (P = 0.115). There were statistically significant higher VIDA score (P = 0.007), and serum IL-6 (P < 0.001) in patients with the DD genotype when compared to other genotypes. Serum nitrite in patients with the DD genotype was significantly higher (P = 0.007) when compared to patients with II genotype. Serum levels of ACE, IL-6 and nitrite in vitiligo patients were statistically significantly higher than those in controls. As a conclusion, ACE gene polymorphism might grant susceptibility to develop vitiligo. Serum IL-6 and nitrite levels might have an important role in the pathogenesis of vitiligo. Targeting these two factors might have an implication in the treatment of some resistant cases.

  15. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher

    2014-03-01

    In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.

  16. NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing

    PubMed Central

    Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn

    2016-01-01

    Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610

  17. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles.

    PubMed

    Garanti, Tanem; Stasik, Aneta; Burrow, Andrea Julie; Alhnan, Mohamed A; Wan, Ka-Wai

    2016-03-16

    Asiatic acid (AA), a pentacyclic triterpene found in Centella Asiatica, has shown neuroprotective and anti-cancer activity against glioma. However, owing to its poor aqueous solubility, effective delivery and absorption across biological barriers, in particular the blood brain barrier (BBB), are challenging. Solid lipid nanoparticles (SLNs) have shown a promising potential as a drug delivery system to carry lipophilic drugs across the BBB, a major obstacle in brain cancer therapy. Nevertheless, limited information is available about the cytotoxic mechanisms of nano-lipidic carriers with AA on normal and glioma cells. This study assessed the anti-cancer efficacy of AA-loaded SLNs against glioblastoma and their cellular uptake mechanism in comparison with SVG P12 (human foetal glial) cells. SLNs were systematically investigated for three different solid lipids; glyceryl monostearate (MS), glyceryl distearate (DS) and glyceryl tristearate (TS). The non-drug containing MS-SLNs (E-MS-SLNs) did not show any apparent toxicity towards normal SVG P12 cells, whilst the AA-loaded MS-SLNs (AA-MS-SLNs) displayed a more favourable drug release profile and higher cytotoxicity towards U87 MG cells. Therefore, MS-SLNs were chosen for further in vitro studies. Cytotoxicity studies of SLNs (± AA) were performed using MTT assay where AA-SLNs showed significantly higher cytotoxicity towards U87 MG cells than SVG P12 normal cells, as confirmed by flow cell cytometry. Cellular uptake of SLNs also appeared to be preferentially facilitated by energy-dependent endocytosis as evidenced by fluorescence imaging and flow cell cytometry. Using the Annexin V-PI double staining technique, it was found that these AA-MS-SLNs displayed concentration-dependent apoptotic activity on glioma cells, which further confirms the potential of exploiting these AA-loaded MS-SLNs for brain cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of Aerva lanata on cell-mediated immune responses and cytotoxic T-lymphocyte generation in normal and tumor-bearing mice.

    PubMed

    Siveen, K S; Kuttan, Girija

    2012-01-01

    Cell-mediated immunity offers protection against virus-infected cells and tumor cells, involves activation of natural killer (NK) cells, production of antigen-specific cytotoxic T-lymphocytes, and release of various cytokines in response to an antigen. Administration of an ethanolic extract of Aerva lanata was found to stimulate cell-mediated immunological responses in normal and tumor-bearing BALB/c mice. A significant enhancement in NK cell activity in both normal and tumor-bearing hosts was observed after administration of A. lanata. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent complement-mediated cytotoxicity (ACC) were significantly enhanced as well in both sets of treated hosts. In addition, in vivo production of IL-2 and IFNg were each significantly enhanced by extract treatment. The stimulatory effect of A. lanata on cytotoxic T-lymphocyte (CTL) production was determined by Winn's neutralization assay using CTL-sensitive EL4 thymoma cells. A. lanata treatment caused a significant increase in CTL production in both in vivo and in vitro models, in each case as indicated by a significant increase in the life-spans of tumor-injected mice. Taken together, all of these results in the murine model indicate that administration of an ethanolic extract of A. lanata could enhance the cell-mediated anti-tumor response.

  19. Deficiency of the ferrous iron transporter FeoAB is linked with metronidazole resistance in Bacteroides fragilis

    PubMed Central

    Veeranagouda, Yaligara; Husain, Fasahath; Boente, Renata; Moore, Jane; Smith, C. Jeffrey; Rocha, Edson R.; Patrick, Sheila; Wexler, Hannah M.

    2014-01-01

    Background Metronidazole is the most commonly used antimicrobial for Bacteroides fragilis infections and is recommended for prophylaxis of colorectal surgery. Metronidazole resistance is increasing and the mechanisms of resistance are not clear. Methods A transposon mutant library was generated in B. fragilis 638R (BF638R) to identify the genetic loci associated with resistance to metronidazole. Results Thirty-two independently isolated metronidazole-resistant mutants had a transposon insertion in BF638R_1421 that encodes the ferrous transport fusion protein (feoAB). Deletion of feoAB resulted in a 10-fold increased MIC of metronidazole for the strain. The metronidazole MIC for the feoAB mutant was similar to that for the parent strain when grown on media supplemented with excess iron, suggesting that the increase seen in the MIC of metronidazole was due to reduced cellular iron transport in the feoAB mutant. The furA gene repressed feoAB transcription in an iron-dependent manner and disruption of furA resulted in constitutive transcription of feoAB, regardless of whether or not iron was present. However, disruption of feoAB also diminished the capacity of BF638R to grow in a mouse intraperitoneal abscess model, suggesting that inorganic ferrous iron assimilation is essential for B. fragilis survival in vivo. Conclusions Selection for feoAB mutations as a result of metronidazole treatment will disable the pathogenic potential of B. fragilis and could contribute to the clinical efficacy of metronidazole. While mutations in feoAB are probably not a direct cause of clinical resistance, this study provides a key insight into intracellular metronidazole activity and the link with intracellular iron homeostasis. PMID:25028451

  20. Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity

    PubMed Central

    Kothandapani, Anbarasi; Sawant, Akshada; Dangeti, Venkata Srinivas Mohan Nimai; Sobol, Robert W.; Patrick, Steve M.

    2013-01-01

    Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin. PMID:23761438

  1. Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites.

    PubMed

    Saha, Naresh; Dubey, Ashutosh K; Basu, Bikramjit

    2012-01-01

    One of the important issues in the development of hydroxyapatite (HA)-based biomaterials is the prosthetic infection, which limits wider use of monolithic HA despite superior cellular response. Recently, we reported that ZnO addition to HA can induce bactericidal property. It is therefore important to assess how ZnO addition influences the cytotoxicity property and cell adhesion/proliferation on HA-ZnO composite surfaces in vitro. In the above perspective, the objective of this study is to investigate the cell type and material composition dependent cellular proliferation and viability of pressureless sintered HA-ZnO composites. The combination of cell viability data as well as morphological observations of cultured human osteoblast-like SaOS2 cells and mouse fibroblast L929 cells suggests that HA-ZnO composites containing 10 Wt % or lower ZnO exhibit the ability to support cell adhesion and proliferation. Both SaOS2 and L929 cells exhibit extensive multidirectional network of actin cytoskeleton and cell flattening on the lower ZnO containing (≤10 Wt %) HA-ZnO composites. The in vitro results illustrate how variation in ZnO content can influence significantly the cell vitality, as evaluated using MTT biochemical assay. Also, the critical statistical analysis reveals that ZnO addition needs to be carefully tailored to ensure good in vitro cytocompatibility. The underlying reasons for difference in biological properties are analyzed. It is suggested that surface wettability as well as dissolution of ZnO, both contribute to the observed differences in cellular viability and proliferation. Copyright © 2011 Wiley Periodicals, Inc.

  2. Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kusi-Appiah, Aubrey E.; Mastronardi, Melanie L.; Qian, Chenxi; Chen, Kenneth K.; Ghazanfari, Lida; Prommapan, Plengchart; Kübel, Christian; Ozin, Geoffrey A.; Lenhert, Steven

    2017-03-01

    Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions.

  3. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  4. Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity.

    PubMed

    Maatouk, Mouna; Elgueder, Dorra; Mustapha, Nadia; Chaaban, Hind; Bzéouich, Imen Mokdad; Loannou, Irina; Kilani, Soumaya; Ghoul, Mohamed; Ghedira, Kamel; Chekir-Ghedira, Leila

    2016-11-01

    Naringenin is one of the most popular flavonoids derived from citrus. It has been reported to be an effective anti-inflammatory compound. Citrus fruit may be used raw, cooked, stewed, or boiled. The present study was conducted to investigate the effect of thermal processes on naringenin in its immunomodulatory and cellular antioxidant activities. The effects of flavonoids on B and T cell proliferation were assessed on splenocytes stimulated or not with mitogens. However, their effects on cytotoxic T lymphocyte (CTL) and natural killer (NK) activities were assessed in splenocytes co-incubated with target cells. The amount of nitric oxide production and the lysosomal enzyme activity were evaluated in vitro on mouse peritoneal macrophages. Cellular antioxidant activity in splenocytes and macrophages was determined by measuring the fluorescence of the dichlorofluorescin (DCF). Our findings revealed that naringenin induces B cell proliferation and enhances NK activity. The highest concentration of native naringenin exhibits a significant proliferation of T cells, induces CTL activity, and inhibits cellular oxidation in macrophages. Conversely, it was observed that when heat-processed, naringenin improves the cellular antioxidant activity in splenocytes, increases the cytotoxic activity of NK cells, and suppresses the cytotoxicity of T cells. However, heat treatment maintains the anti-inflammatory potency of naringenin.

  5. Correlation between luminescence intensity and cytotoxicity in cell-based cytotoxicity assay using luciferase.

    PubMed

    Wakuri, S; Yamakage, K; Kazuki, Y; Kazuki, K; Oshimura, M; Aburatani, S; Yasunaga, M; Nakajima, Y

    2017-04-01

    The luciferase reporter assay has become one of the conventional methods for cytotoxicity evaluation. Typically, the decrease of luminescence expressed by a constitutive promoter is used as an index of cytotoxicity. However, to our knowledge, there have been no reports of the correlation between cytotoxicity and luminescence intensity. In this study, to accurately verify the correlation between them, beetle luciferase was stably expressed in human hepatoma HepG2 cells harboring the multi-integrase mouse artificial chromosome vector. We showed that the cytotoxicity assay using luciferase does not depend on the stability of luciferase protein and the kind of constitutive promoter. Next, HepG2 cells in which green-emitting beetle luciferase was expressed under the control of CAG promoter were exposed to 58 compounds. The luminescence intensity and cytotoxicity curves of cells exposed to 48 compounds showed similar tendencies, whereas those of cells exposed to 10 compounds did not do so, although the curves gradually approached each other with increasing exposure time. Finally, we demonstrated that luciferase expressed under the control of a constitutive promoter can be utilized both as an internal control reporter for normalizing a test reporter and for monitoring cytotoxicity when two kinds of luciferases are simultaneously used in the cytotoxicity assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Protective Effects of Liposomal N-Acetylcysteine against Paraquat-Induced Cytotoxicity and Gene Expression

    PubMed Central

    Mitsopoulos, Panagiotis; Suntres, Zacharias E.

    2011-01-01

    Paraquat (PQ) is a herbicide that preferentially accumulates in the lung and exerts its cytotoxicity via the generation of reactive oxygen species (ROS). There is no specific treatment for paraquat poisoning. Attempts have been made to increase the antioxidant status in the lung using antioxidants (e.g., superoxide dismutase, vitamin E, N-acetylcysteine) but the outcome from such treatments is limited. Encapsulation of antioxidants in liposomes improves their therapeutic potential against oxidant-induced lung damage because liposomes facilitate intracellular delivery and prolong the retention of entrapped agents inside the cell. In the present study, we compared the effectiveness of conventional N-acetylcysteine (NAC) and liposomal-NAC (L-NAC) against PQ-induced cytotoxicity and examined the mechanism(s) by which these antioxidant formulations conferred cytoprotection. The effects of NAC or L-NAC against PQ-induced cytotoxicity in A549 cells were assessed by measuring cellular PQ uptake, intracellular glutathione content, ROS levels, mitochondrial membrane potential, cellular gene expression, inflammatory cytokine release and cell viability. Pretreatment of cells with L-NAC was significantly more effective than pretreatment with the conventional drug in reducing PQ-induced cytotoxicity, as indicated by the biomarkers used in this study. Our results suggested that the delivery of NAC as a liposomal formulation improves its effectiveness in counteracting PQ-induced cytotoxicity. PMID:21584258

  7. Size-Dependent Mechanism of Intracellular Localization and Cytotoxicity of Mono-Disperse Spherical Mesoporous Nano- and Micron-Bioactive Glass Particles

    PubMed Central

    Li, Yuli; Hu, Qing; Miao, Guohou; Zhang, Qing; Yuan, Bo; Zhu, Ye; Fu, Xiaoling; Chen, Xiaofeng; Mao, Chuanbin

    2016-01-01

    Mono-disperse spherical mesoporous nano- and micro- bioactive glass particles (NMBGs) can find potential use in bone tissue engineering. However, their size-dependent interaction with osteoblasts has never been studied. Herein, the proliferation, morphology, cytoskeleton organization and apoptosis of MC3T3-E1 osteoblasts are studied in response to the NMBGs with varying sizes (from 61 to 1085 nm) at different concentrations. Generally, smaller NMBGs at a lower dose show weaker cytotoxicity compared to the larger particles and higher doses, arising from a novel size-dependent mechanism of intracellular localization of NMBGs observed by electron and confocal microscopy. Specifically, NMBGs pass through perinuclear membrane of the cells to initiate endocytosis. Once internalized, the sizes of NMBGs are found to play a significant role in determining their intracellular localization. When the NMBGs are smaller than 174 nm, they are transported via the lysosomal pathway and phagocytized in lysosomes, resulting in little cytotoxicity at later time points. On the contrary, larger NMBGs (over 174 nm) escape from the lysosomes after endocytosis, and are localized inside the intra-cytoplasmic vacuoles or randomly in the cytoplasm of cells. Their lysosomal escape may damage the lysosomes, inducing cell apoptosis and thus the greater cytotoxicity. PMID:27305811

  8. Evaluation of the cytotoxic and antimutagenic effects of biflorin, an antitumor 1,4 o-naphthoquinone isolated from Capraria biflora L.

    PubMed

    Vasconcellos, Marne C; Moura, Dinara J; Rosa, Renato M; Machado, Miriana S; Guecheva, Temenouga N; Villela, Izabel; Immich, Bruna F; Montenegro, Raquel C; Fonseca, Aluísio M; Lemos, Telma L G; Moraes, Maria Elisabete A; Saffi, Jenifer; Costa-Lotufo, Letícia V; Moraes, Manoel O; Henriques, João A P

    2010-10-01

    Biflorin is a natural quinone isolated from Capraria biflora L. Previous studies demonstrated that biflorin inhibits in vitro and in vivo tumor cell growth and presents potent antioxidant activity. In this paper, we report concentration-dependent cytotoxic, genotoxic, antimutagenic, and protective effects of biflorin on Salmonella tiphymurium, yeast Saccharomyces cerevisiae, and V79 mammalian cells, using different approaches. In the Salmonella/microsome assay, biflorin was not mutagenic to TA97a TA98, TA100, and TA102 strains. However, biflorin was able to induce cytotoxicity in haploid S. cerevisiae cells in stationary and exponential phase growth. In diploid yeast cells, biflorin did not induce significant mutagenic and recombinogenic effects at the employed concentration range. In addition, the pre-treatment with biflorin prevented the mutagenic and recombinogenic events induced by hydrogen peroxide (H(2)O(2)) in S. cerevisiae. In V79 mammalian cells, biflorin was cytotoxic at higher concentrations. Moreover, at low concentrations biflorin pre-treatment protected against H(2)O(2)-induced oxidative damage by reducing lipid peroxidation and DNA damage as evaluated by normal and modified comet assay using DNA glycosylases. Our results suggest that biflorin cellular effects are concentration dependent. At lower concentrations, biflorin has significant antioxidant and protective effects against the cytotoxicity, genotoxicity, mutagenicity, and intracellular lipid peroxidation induced by H(2)O(2) in yeast and mammalian cells, which can be attributed to its hydroxyl radical-scavenging property. However, at higher concentrations, biflorin is cytotoxic and genotoxic.

  9. Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant.

    PubMed

    Bielinska, Anna U; Makidon, Paul E; Janczak, Katarzyna W; Blanco, Luz P; Swanson, Benjamin; Smith, Douglas M; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F; Baker, James R

    2014-03-15

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell-mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses.

  10. Cellular toxicity of TiO2-based nanofilaments.

    PubMed

    Magrez, Arnaud; Horváth, Lenke; Smajda, Rita; Salicio, Valérie; Pasquier, Nathalie; Forró, László; Schwaller, Beat

    2009-08-25

    At present, nanofilaments are not exclusively based on carbon atoms but can be produced from many inorganic materials in the form of nanotubes and nanowires. It is essential to systematically assess the acute toxicity of these newly synthesized materials since it cannot be predicted from the known toxicity of the same material in another form. Here, the cellular toxicity of TiO2-based nanofilaments was studied in relation to their morphology and surface chemistry. These structures produced by hydrothermal treatment were titanate nanotubes and nanowires with a Na(x)TiO(2+delta) composition. The cytotoxic effect was mainly evaluated by MTT assays combined with direct cell counting and cytopathological analyses of the lung tumor cells. Our work clearly demonstrated that the presence of Na(x)TiO(2+delta) nanofilaments had a strong dose-dependent effect on cell proliferation and cell death. Nanofilament internalization and alterations in cell morphology were observed. Acid treatment performed to substitute Na(+) with H(+) in the Na(x)TiO(2+delta) nanofilaments strongly enhanced the cytotoxic action. This effect was attributed to structural imperfections, which are left by the atom diffusion during the substitution. On the basis of our findings, we conclude that TiO2-based nanofilaments are cytotoxic and thus precautions should be taken during their manipulation.

  11. Annatto Tocotrienol Induces a Cytotoxic Effect on Human Prostate Cancer PC3 Cells via the Simultaneous Inhibition of Src and Stat3.

    PubMed

    Sugahara, Ryosuke; Sato, Ayami; Uchida, Asuka; Shiozawa, Shinya; Sato, Chiaki; Virgona, Nantiga; Yano, Tomohiro

    2015-01-01

    Prostate cancer is one of the most frequently occurring cancers and often acquires the potential of androgen-independent growth as a malignant phenotype. Androgen-independent prostate cancer has severe chemoresistance towards conventional chemotherapeutic agents, so a new treatment approach is required for curing such prostate cancer. In this context, the present study was undertaken to check if annatto tocotrienol (main component δ-tocotrienol) could suppress cell growth in human prostate cancer (PC3, androgen-independent type) cells via the inhibition of Src and Stat3. The tocotrienol showed cytotoxic effects on PC3 cells in a dose-dependent manner, and the effect depended on G1 arrest in the cell cycle and subsequent induction of apoptosis. In a cytotoxic dose, the tocotrienol suppressed cellular growth via the simultaneous inhibition of Src and Stat3. Similarly, the treatment combination of both Src and Stat3 inhibitors induced cytotoxic effects in PC3 cells in an additive manner compared to each by itself. With respect to cell cycle regulation and the induction of apoptosis, the combination treatment showed a similar effect to that of the tocotrienol treatment. These results suggest that annatto tocotrienol effectively induces cytotoxicity in androgen-independent prostate cancer cells via the suppression of Src and Stat3.

  12. Downregulation of membrane complement inhibitors CD55 and CD59 by siRNA sensitises uterine serous carcinoma overexpressing Her2/neu to complement and antibody-dependent cell cytotoxicity in vitro: implications for trastuzumab-based immunotherapy.

    PubMed

    Bellone, S; Roque, D; Cocco, E; Gasparrini, S; Bortolomai, I; Buza, N; Abu-Khalaf, M; Silasi, D-A; Ratner, E; Azodi, M; Schwartz, P E; Rutherford, T J; Pecorelli, S; Santin, A D

    2012-04-24

    We evaluated the expression of CD46, CD55 and CD59 membrane-bound complement-regulatory proteins (mCRPs) in primary uterine serous carcinoma (USC) and the ability of small interfering RNA (siRNA) against these mCRPs to sensitise USC to complement-dependent cytotoxicity (CDC) and antibody (trastuzumab)-dependent cellular cytotoxicity (ADCC) in vitro. Membrane-bound complement-regulatory proteins expression was evaluated using real-time PCR (RT-PCR) and flow cytometry, whereas Her2/neu expression and c-erbB2 gene amplification were assessed using immunohistochemistry, flow cytometry and fluorescent in-situ hybridisation. The biological effect of siRNA-mediated knockdown of mCRPs on HER2/neu-overexpressing USC cell lines was evaluated in CDC and ADCC 4-h chromium-release assays. High expression of mCRPs was found in USC cell lines when compared with normal endometrial cells (P<0.05). RT-PCR and FACS analyses demonstrated that anti-mCRP siRNAs were effective in reducing CD46, CD55 and CD59 expression on USC (P<0.05). Baseline complement-dependent cytotoxicity (CDC) against USC cell lines was low (mean ± s.e.m.=6.8 ± 0.9%) but significantly increased upon CD55 and CD59 knockdown (11.6 ± 0.8% and 10.7 ± 0.9%, respectively, P<0.05). Importantly, in the absence of complement, both CD55 and CD59, but not CD46, knockdowns significantly augmented ADCC against USC overexpressing Her2/neu. Uterine serous carcinoma express high levels of the mCRPs CD46, CD55 and CD59. Small interfering RNA inhibition of CD55 and CD59, but not CD46, sensitises USC to both CDC and ADCC in vitro, and if specifically targeted to tumour cells, may significantly increase trastuzumab-mediated therapeutic effect in vivo.

  13. In vitro cytotoxicity induced by Clostridium perfringens isolate carrying a chromosomal cpe gene is exclusively dependent on sporulation and enterotoxin production.

    PubMed

    Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami

    2015-08-01

    Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    NASA Astrophysics Data System (ADS)

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-03-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent.

  15. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    PubMed Central

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-01-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent. PMID:28272488

  16. Absence of cytotoxicity towards microglia of iron oxide (α-Fe 2O 3) nanorhombohedra

    DOE PAGES

    Crystal S. Lewis; Wong, Stanislaus S.; Torres, Luisa; ...

    2016-02-26

    Understanding the nature of interactions between nanomaterials, such as commercially ubiquitous hematite (α-Fe 2O 3) nanorhombohedra (N-Rhomb) and biological systems is of critical importance for gaining insight into the practical applicability of nanomaterials. Microglia represent the first line of defense in the central nervous system (CNS) during severe injury or disease such as Parkinson's and Alzheimer's disease as illustrative examples. Hence, to analyze the potential cytotoxic effect of N-Rhomb exposure in the presence of microglia, we have synthesized Rhodamine B (RhB)-labeled α-Fe 2O 3 N-Rhomb, with lengths of 47 ± 10 nm and widths of 35 ± 8 nm. Internalizationmore » of RhB-labeled α-Fe 2O 3 N-Rhomb by microglia in the mouse brain was observed, and a dose-dependent increase in the cellular iron content as probed by cellular fluorescence was detected in cultured microglia after nanoparticle exposure. The cells maintained clear functional viability, exhibiting little to no cytotoxic effects after 24 and 48 hours at acceptable, physiological concentrations. Importantly, the nanoparticle exposure did not induce microglial cells to produce either tumor necrosis factor alpha (TNFα) or interleukin 1-beta (IL1β), two pro-inflammatory cytokines, nor did exposure stimulate the production of nitrites and reactive oxygen species (ROS), which are common indicators for the onset of inflammation. Finally, we propose that under the conditions of our experiments, i.e. in the presence of RhB labeled-α-Fe 2O 3 N-Rhomb maintaining concentrations of up to 100 μg mL–1 after 48 hours of incubation, the in vitro and in vivo internalization of RhB-labeled α-Fe 2O 3 N-Rhomb are likely to be clathrin-dependent, which represents a conventional mechanistic uptake route for most cells. Furthermore, given the crucial role that microglia play in many neurological disorders, understanding the potential cytotoxic effects of these nanostructures is of fundamental importance if

  17. Preventive effects of fructose and N-acetyl-L-cysteine against cytotoxicity induced by the psychoactive compounds N-methyl-5-(2-aminopropyl)benzofuran and 3,4-methylenedioxy-N-methamphetamine in isolated rat hepatocytes.

    PubMed

    Nakagawa, Yoshio; Suzuki, Toshinari; Inomata, Akiko

    2018-02-01

    Psychoactive compounds, N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB) and 3,4-methylenedioxy-N-methamphetamine (MDMA), are known to be hepatotoxic in humans and/or experimental animals. As previous studies suggested that these compounds elicited cytotoxicity via mitochondrial dysfunction and/or oxidative stress in rat hepatocytes, the protective effects of fructose and N-acetyl-l-cysteine (NAC) on 5-MAPB- and MDMA-induced toxicity were studied in rat hepatocytes. These drugs caused not only concentration-dependent (0-4 mm) and time-dependent (0-3 hours) cell death accompanied by the depletion of cellular levels of adenosine triphosphate (ATP) and glutathione (reduced form; GSH) but also an increase in the oxidized form of GSH. The toxic effects of 5-MAPB were greater than those of MDMA. Pretreatment of hepatocytes with either fructose at a concentration of 10 mm or NAC at a concentration of 2.5 mm prevented 5-MAPB-/MDMA-induced cytotoxicity. In addition, the exposure of hepatocytes to 5-MAPB/MDMA caused the loss of mitochondrial membrane potential, although the preventive effect of fructose was weaker than that of NAC. These results suggest that: (1) 5-MAPB-/MDMA-induced cytotoxicity is linked to mitochondrial failure and depletion of cellular GSH; (2) insufficient cellular ATP levels derived from mitochondrial dysfunction were ameliorated, at least in part, by the addition of fructose; and (3) GSH loss via oxidative stress was prevented by NAC. Taken collectively, these results indicate that the onset of toxic effects caused by 5-MAPB/MDMA may be partially attributable to cellular energy stress as well as oxidative stress. Copyright © 2017 John Wiley & Sons, Ltd.

  18. PirAB protein from Xenorhabdus nematophila HB310 exhibits a binary toxin with insecticidal activity and cytotoxicity in Galleria mellonella.

    PubMed

    Yang, Qing; Zhang, Jie; Li, Tianhui; Liu, Shen; Song, Ping; Nangong, Ziyan; Wang, Qinying

    2017-09-01

    PirAB (Photorhabdus insect-related proteins, PirAB) toxin was initially found in the Photorhabdus luminescens TT01 strain and has been shown to be a binary toxin with high insecticidal activity. Based on GenBank data, this gene was also found in the Xenorhabdus nematophila genome sequence. The predicted amino acid sequence of pirA and pirB in the genome of X. nematophila showed 51% and 50% identity with those gene sequences from P. luminescens. The purpose of this experiment is to identify the relevant information for this toxin gene in X. nematophila. The pirA, pirB and pirAB genes of X. nematophila HB310 were cloned and expressed in Escherichia coli BL21 (DE3) using the pET-28a vector. A PirAB-fusion protein (PirAB-F) was constructed by linking the pirA and pirB genes with the flexible linker (Gly) 4 DNA encoding sequence and then efficiently expressed in E. coli. The hemocoel and oral insecticidal activities of the recombinant proteins were analyzed against the larvae of Galleria mellonella. The results show that PirA/B alone, PirA/B mixture, co-expressed PirAB protein, and PirAB-F all had no oral insecticidal activity against the second-instar larvae of G. mellonella. Only PirA/B mixture and co-expressed PirAB protein had hemocoel insecticidal activity against G. mellonella fifth-instar larvae, with an LD 50 of 2.718μg/larva or 1.566μg/larva, respectively. Therefore, we confirmed that PirAB protein of X. nematophila HB310 is a binary insecticidal toxin. The successful expression and purification of PirAB laid a foundation for further studies on the function, insecticidal mechanism and expression regulation of the binary toxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Microwave-induced Apoptosis and Cytotoxicity of NK Cells through ERK1/2 Signaling.

    PubMed

    Zhao, Li; Li, Jing; Hao, Yan Hui; Gao, Ya Bing; Wang, Shui Ming; Zhang, Jing; Dong, Ji; Zhou, Hong Mei; Liu, Shu Chen; Peng, Rui Yun

    2017-05-01

    To investigate microwave-induced morphological and functional injury of natural killer (NK) cells and uncover their mechanisms. NK-92 cells were exposed to 10, 30, and 50 mW/cm2 microwaves for 5 min. Ultrastructural changes, cellular apoptosis and cell cycle regulation were detected at 1 h and 24 h after exposure. Cytotoxic activity was assayed at 1 h after exposure, while perforin and NKG2D expression were detected at 1 h, 6 h, and 12 h after exposure. To clarify the mechanisms, phosphorylated ERK (p-ERK) was detected at 1 h after exposure. Moreover, microwave-induced cellular apoptosis and cell cycle regulation were analyzed after blockade of ERK signaling by using U0126. Microwave-induced morphological and ultrastructural injury, dose-dependent apoptosis (P < 0.001) and cell cycle arrest (P < 0.001) were detected at 1 h after microwave exposure. Moreover, significant apoptosis was still detected at 24 h after 50 mW/cm2 microwave exposure (P < 0.01). In the 30 mW/cm2 microwave exposure model, microwaves impaired the cytotoxic activity of NK-92 cells at 1 h and down regulated perforin protein both at 1 h and 6 h after exposure (P < 0.05). Furthermore, p-ERK was down regulated at 1 h after exposure (P < 0.05), while ERK blockade significantly promoted microwave-induced apoptosis (P < 0.05) and downregulation of perforin (P < 0.01). Microwave dose-dependently induced morphological and functional injury in NK-92 cells, possibly through ERK-mediated regulation of apoptosis and perforin expression. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  20. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity

    PubMed Central

    Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A.; Hoek, Jan B.

    2016-01-01

    We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacological dose (5-20 mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1 mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. PMID:27036367

  1. Production of human monoclonal antibody in eggs of chimeric chickens.

    PubMed

    Zhu, Lei; van de Lavoir, Marie-Cecile; Albanese, Jenny; Beenhouwer, David O; Cardarelli, Pina M; Cuison, Severino; Deng, David F; Deshpande, Shrikant; Diamond, Jennifer H; Green, Lynae; Halk, Edward L; Heyer, Babette S; Kay, Robert M; Kerchner, Allyn; Leighton, Philip A; Mather, Christine M; Morrison, Sherie L; Nikolov, Zivko L; Passmore, David B; Pradas-Monne, Alicia; Preston, Benjamin T; Rangan, Vangipuram S; Shi, Mingxia; Srinivasan, Mohan; White, Steven G; Winters-Digiacinto, Peggy; Wong, Susan; Zhou, Wen; Etches, Robert J

    2005-09-01

    The tubular gland of the chicken oviduct is an attractive system for protein expression as large quantities of proteins are deposited in the egg, the production of eggs is easily scalable and good manufacturing practices for therapeutics from eggs have been established. Here we examined the ability of upstream and downstream DNA sequences of ovalbumin, a protein produced exclusively in very high quantities in chicken egg white, to drive tissue-specific expression of human mAb in chicken eggs. To accommodate these large regulatory regions, we established and transfected lines of chicken embryonic stem (cES) cells and formed chimeras that express mAb from cES cell-derived tubular gland cells. Eggs from high-grade chimeras contained up to 3 mg of mAb that possesses enhanced antibody-dependent cellular cytotoxicity (ADCC), nonantigenic glycosylation, acceptable half-life, excellent antigen recognition and good rates of internalization.

  2. Predicting the F(ab)-mediated effect of monoclonal antibodies in vivo by combining cell-level kinetic and pharmacokinetic modelling.

    PubMed

    Krippendorff, Ben-Fillippo; Oyarzún, Diego A; Huisinga, Wilhelm

    2012-04-01

    Cell-level kinetic models for therapeutically relevant processes increasingly benefit the early stages of drug development. Later stages of the drug development processes, however, rely on pharmacokinetic compartment models while cell-level dynamics are typically neglected. We here present a systematic approach to integrate cell-level kinetic models and pharmacokinetic compartment models. Incorporating target dynamics into pharmacokinetic models is especially useful for the development of therapeutic antibodies because their effect and pharmacokinetics are inherently interdependent. The approach is illustrated by analysing the F(ab)-mediated inhibitory effect of therapeutic antibodies targeting the epidermal growth factor receptor. We build a multi-level model for anti-EGFR antibodies by combining a systems biology model with in vitro determined parameters and a pharmacokinetic model based on in vivo pharmacokinetic data. Using this model, we investigated in silico the impact of biochemical properties of anti-EGFR antibodies on their F(ab)-mediated inhibitory effect. The multi-level model suggests that the F(ab)-mediated inhibitory effect saturates with increasing drug-receptor affinity, thereby limiting the impact of increasing antibody affinity on improving the effect. This indicates that observed differences in the therapeutic effects of high affinity antibodies in the market and in clinical development may result mainly from Fc-mediated indirect mechanisms such as antibody-dependent cell cytotoxicity.

  3. Behavior of platinum(iv) complexes in models of tumor hypoxia: cytotoxicity, compound distribution and accumulation.

    PubMed

    Schreiber-Brynzak, Ekaterina; Pichler, Verena; Heffeter, Petra; Hanson, Buck; Theiner, Sarah; Lichtscheidl-Schultz, Irene; Kornauth, Christoph; Bamonti, Luca; Dhery, Vineet; Groza, Diana; Berry, David; Berger, Walter; Galanski, Markus; Jakupec, Michael A; Keppler, Bernhard K

    2016-04-01

    Hypoxia in solid tumors remains a challenge for conventional cancer therapeutics. As a source for resistance, metastasis development and drug bioprocessing, it influences treatment results and disease outcome. Bioreductive platinum(iv) prodrugs might be advantageous over conventional metal-based therapeutics, as biotransformation in a reductive milieu, such as under hypoxia, is required for drug activation. This study deals with a two-step screening of experimental platinum(iv) prodrugs with different rates of reduction and lipophilicity with the aim of identifying the most appropriate compounds for further investigations. In the first step, the cytotoxicity of all compounds was compared in hypoxic multicellular spheroids and monolayer culture using a set of cancer cell lines with different sensitivities to platinum(ii) compounds. Secondly, two selected compounds were tested in hypoxic xenografts in SCID mouse models in comparison to satraplatin, and, additionally, (LA)-ICP-MS-based accumulation and distribution studies were performed for these compounds in hypoxic spheroids and xenografts. Our findings suggest that, while cellular uptake and cytotoxicity strongly correlate with lipophilicity, cytotoxicity under hypoxia compared to non-hypoxic conditions and antitumor activity of platinum(iv) prodrugs are dependent on their rate of reduction.

  4. Repeated exposure of mouse dermal fibroblasts at a sub-cytotoxic dose of UVB leads to premature senescence: a robust model of cellular photoaging.

    PubMed

    Zeng, Ji-ping; Bi, Bo; Chen, Liang; Yang, Ping; Guo, Yu; Zhou, Yi-qun; Liu, Tian-yi

    2014-01-01

    Photoaging skin is due to accumulative effect of UV irradiation that mainly imposes its damage on dermal fibroblasts. To mimic the specific cellular responses invoked by long term effect of UVB, it is preferable to develop a photo-damaged model in vitro based on repeated UVB exposure instead of a single exposure. To develop a photo-damaged model of fibroblasts by repeated UVB exposure allowing for investigation of molecular mechanism underlying premature senescence and testing of potential anti-photoaging compounds. Mouse dermal fibroblasts (MDFs) at early passages (passages 1-3) were exposed to a series of 4 sub-cytotoxic dose of UVB. The senescent phenotypes were detected at 24 or 48h after the last irradiation including cell viability, ROS generation, mitochondrial membrane potential, cell cycle, production and degradation of extracellular matrix. Repeated exposure of UVB resulted in remarkable features of senescence. It effectively avoided the disadvantages of single dose such as induction of cell death rather than senescence, inadequate stress resulting in cellular self-rehabilitation. Our work confirms the possibility of detecting cellular machinery that mediates UVB damage to fibroblasts in vitro by repeated exposure, while the potential molecular mechanisms including cell surface receptors, protein kinase signal transduction pathways, and transcription factors remain to be further evaluated. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Zinc-Dependent Protection of Tobacco and Rice Cells From Aluminum-Induced Superoxide-Mediated Cytotoxicity

    PubMed Central

    Lin, Cun; Hara, Ayaka; Comparini, Diego; Bouteau, François; Kawano, Tomonori

    2015-01-01

    Al3+ toxicity in growing plants is considered as one of the major factors limiting the production of crops on acidic soils worldwide. In the last 15 years, it has been proposed that Al3+ toxicity are mediated with distortion of the cellular signaling mechanisms such as calcium signaling pathways, and production of cytotoxic reactive oxygen species (ROS) causing oxidative damages. On the other hand, zinc is normally present in plants at high concentrations and its deficiency is one of the most widespread micronutrient deficiencies in plants. Earlier studies suggested that lack of zinc often results in ROS-mediated oxidative damage to plant cells. Previously, inhibitory action of Zn2+ against lanthanide-induced superoxide generation in tobacco cells have been reported, suggesting that Zn2+ interferes with the cation-induced ROS production via stimulation of NADPH oxidase. In the present study, the effect of Zn2+ on Al3+-induced superoxide generation in the cell suspension cultures of tobacco (Nicotiana tabacum L., cell-line, BY-2) and rice (Oryza sativa L., cv. Nipponbare), was examined. The Zn2+-dependent inhibition of the Al3+-induced oxidative burst was observed in both model cells selected from the monocots and dicots (rice and tobacco), suggesting that this phenomenon (Al3+/Zn2+ interaction) can be preserved in higher plants. Subsequently induced cell death in tobacco cells was analyzed by lethal cell staining with Evans blue. Obtained results indicated that presence of Zn2+ at physiological concentrations can protect the cells by preventing the Al3+-induced superoxide generation and cell death. Furthermore, the regulation of the Ca2+ signaling, i.e., change in the cytosolic Ca2+ ion concentration, and the cross-talks among the elements which participate in the pathway were further explored. PMID:26648960

  6. The in vivo mechanism of action of CD20 monoclonal antibodies depends on local tumor burden

    PubMed Central

    Boross, Peter; Jansen, J.H. Marco; de Haij, Simone; Beurskens, Frank J.; van der Poel, Cees E.; Bevaart, Lisette; Nederend, Maaike; Golay, Josée; van de Winkel, Jan G.J.; Parren, Paul W.H.I.; Leusen, Jeanette H.W.

    2011-01-01

    Background CD20 monoclonal antibodies are widely used in clinical practice. Antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity and direct cell death have been suggested to be important effector functions for CD20 antibodies. However, their specific contributions to the in vivo mechanism of action of CD20 immunotherapy have not been well defined. Design and Methods Here we studied the in vivo mechanism of action of type I (rituximab and ofatumumab) and type II (HuMab-11B8) CD20 antibodies in a peritoneal, syngeneic, mouse model with EL4-CD20 cells using low and high tumor burden. Results Interestingly, we observed striking differences in the in vivo mechanism of action of CD20 antibodies dependent on tumor load. In conditions of low tumor burden, complement was sufficient for tumor killing both for type I and type II CD20 antibodies. In contrast, in conditions of high tumor burden, activating FcγR (specifically FcγRIII), active complement and complement receptor 3 were all essential for tumor killing. Our data suggest that complement-enhanced antibody-dependent cellular cytotoxicity may critically affect tumor killing by CD20 antibodies in vivo. The type II CD20 antibody 11B8, which is a poor inducer of complement activation, was ineffective against high tumor burden. Conclusions Tumor burden affects the in vivo mechanism of action of CD20 antibodies. Low tumor load can be eliminated by complement alone, whereas elimination of high tumor load requires multiple effector mechanisms. PMID:21880632

  7. Evaluation of the In Vitro Cytotoxicity of Crosslinked Biomaterials

    PubMed Central

    Wang, Martha O.; Etheridge, Julie M.; Thompson, Joshua A.; Vorwald, Charlotte E.; Dean, David; Fisher, John P.

    2013-01-01

    This study evaluated the in vitro cytotoxicity of poly(propylene fumarate) (PPF). PPF is an aliphatic biodegradable polymer that has been well characterized for use in bone tissue engineering scaffolds. Four different cell types, human mesenchymal stem cells (hMSC), fibroblasts (L929), pre-osteoblasts (MC3T3), and canine mesenchymal stem cells (cMSC), were used to evaluate the cytotoxicity of PPF. These cell types represent the tissues that PPF would interact with in vivo as a bone tissue scaffold. The sol fraction of the PPF films was measured and then utilized to estimate crosslinking density. Cytotoxicity was evaluated using XTT assay and fluorescence imaging. Results showed that PPF supported similar cell metabolic activities of hMSC, L929, MC3T3 and cMSC compared to the non-cytotoxic control, high density polyethylene (HDPE) and were statistically different than those cultured with the cytotoxic control, a polyurethane film containing 0.1% zinc diethyldithiocarbamate (ZCF). Results showed differing cellular responses to ZCF, the cytotoxic control. The L929 cells had the lowest cell metabolic activity levels after exposure to ZCF compared to the cell metabolic activity levels of the MC3T3, hMSC or cMSC cells. Qualitative verification of the results using fluorescence imaging demonstrated no change in cell morphology, vacuolization, or detachment when cultured with PPF compared to HDPE or blank media cultures. Overall the cytotoxicity response of the cells to PPF was demonstrated to be similar to the cytotoxic response of cells to known non-cytotoxic materials (HDPE). PMID:23627804

  8. Cytotoxicity and Genotoxicity of Cypermethrin in Hepatocarcinoma Cells: A Dose- and Time-Dependent Study

    PubMed Central

    AlKahtane, Abdullah A.; Alarifi, Saud; Al-Qahtani, Ahmed A.; Ali, Daoud; Alomar, Suliman Y.; Aleissia, Mohammed S.; Alkahtani, Saad

    2018-01-01

    Most of the agricultural workers are potentially exposed to pesticides through different routes. Inhalation exposures may result in numerous diseases that can adversely affect an individual’s health and capacity to perform at work. The aim of this study was to determine the cytotoxic potential of cypermethrin pesticide on cultured human hepatocarcinoma (HepG2) cells. The HepG2 cells were exposed to cypermethrin (0, 5, 15, 40 ng/mL) for 24 and 48 hours. We observed that cypermethrin caused cell death of HepG2 cells using 3-(4, 5-dimethylthiozolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase tests. Furthermore, cypermethrin reduced HepG2 cells viability in a time and dose dependent basis, that was probably mediated through the induction of reactive oxygen species (ROS) and apoptosis. An increase in ROS generation with a concomitant increase in expression of the proapoptotic protein Bcl-2 and cytochrome c and decrease in the antiapoptosis protein Bax suggested that a mitochondria-mediated pathway was involved in cypermethrin-induced apoptosis. These findings provide insights into the underlying mechanisms involved in cytotoxicity of cypermethrin in HepG2 cells. PMID:29686591

  9. Cytotoxicity and Genotoxicity of Cypermethrin in Hepatocarcinoma Cells: A Dose- and Time-Dependent Study.

    PubMed

    AlKahtane, Abdullah A; Alarifi, Saud; Al-Qahtani, Ahmed A; Ali, Daoud; Alomar, Suliman Y; Aleissia, Mohammed S; Alkahtani, Saad

    2018-01-01

    Most of the agricultural workers are potentially exposed to pesticides through different routes. Inhalation exposures may result in numerous diseases that can adversely affect an individual's health and capacity to perform at work. The aim of this study was to determine the cytotoxic potential of cypermethrin pesticide on cultured human hepatocarcinoma (HepG2) cells. The HepG2 cells were exposed to cypermethrin (0, 5, 15, 40 ng/mL) for 24 and 48 hours. We observed that cypermethrin caused cell death of HepG2 cells using 3-(4, 5-dimethylthiozolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase tests. Furthermore, cypermethrin reduced HepG2 cells viability in a time and dose dependent basis, that was probably mediated through the induction of reactive oxygen species (ROS) and apoptosis. An increase in ROS generation with a concomitant increase in expression of the proapoptotic protein Bcl-2 and cytochrome c and decrease in the antiapoptosis protein Bax suggested that a mitochondria-mediated pathway was involved in cypermethrin-induced apoptosis. These findings provide insights into the underlying mechanisms involved in cytotoxicity of cypermethrin in HepG2 cells.

  10. Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity.

    PubMed

    Dolnik, Olga; Volchkova, Valentina A; Escudero-Perez, Beatriz; Lawrence, Philip; Klenk, Hans-Dieter; Volchkov, Viktor E

    2015-10-01

    The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP. © The Author 2015. Published by Oxford University Press on behalf of the Infectious

  11. Polyelectrolyte complexes of hTERT siRNA and polyethyleneimine: Effect of degree of PEG grafting on biological and cellular activity.

    PubMed

    Safari, Fatemeh; Tamaddon, Ali M; Zarghami, Nosratollah; Abolmali, S; Akbarzadeh, Abolfazl

    2016-09-01

    Gene silencing by siRNA (short interfering RNA)-targeted human telomerase reverse transcriptase (hTERT) is considered a successful strategy for cancer gene therapy. Polyelectrolyte complexes (PEC) of siRNA and cationic polymers such as polyethyleneimine (PEI) have been widely used for cellular transfection; however, they demonstrate some disadvantages such as cytotoxicity and extracellular matrix restrictions. PEG grafting technology was used in an attempt to improve the biocompatibility of PECs. Considering that this technology may compromise the cellular uptake of PECs, we aimed to study the effect of degree of PEI PEGylation on the carrier cytotoxicity, cellular association, and transfection efficiency of hTERT siRNA in the lung cancer cell line A549. Activated NHS ester of methoxy PEG-COOH 5 KDa was grafted to hyperbranched PEI 25 KDa in the molar ratios of 0.2 and 1. The copolymers were characterized by (1)H-NMR spectroscopy. PECs of PEI or PEG-g-PEI with siRNA, alone or co-incubated with heparin sulfate, were studied by the ethidium bromide exclusion assay. Cytotoxicity of the polymers (PEG-g-PEI vs PEI), alone and upon formation of PEC nanoparticles with hTERT siRNA, was determined by a validated MTT assay, in comparison to a scrambled control sequence, in A549 human lung carcinoma cells. The cellular uptake of the PECs of FITC-labeled siRNA was investigated by flow cytometry at different N/P ratios, and the silencing effect of the transfected siRNA was compared to that of the control sequence for different PECs by real time RT-PCR. The cytotoxicity of PEI decreased significantly by PEG grafting, even at a low degree of PEGylation. Moreover, the nonspecific cytotoxicity of PECs decreased by PEG grafting. PECs of PEG-g-PEI showed more biologic stability on incubation with heparin sulfate. Average particle size and zeta potential of PEC nanoparticles were diminished for those of PEG-g-PEI. The cellular association was more pronounced at an N/P ratio of 2.5 for

  12. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    PubMed

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  13. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection

    PubMed Central

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR–HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants. PMID:28066408

  14. The role of the equatorial ligands for the redox behavior, mode of cellular accumulation and cytotoxicity of platinum(IV) prodrugs.

    PubMed

    Göschl, Simone; Varbanov, Hristo P; Theiner, Sarah; Jakupec, Michael A; Galanski, Markus; Keppler, Bernhard K

    2016-07-01

    The current study aims to elucidate the possible reasons for the significantly different pharmacological behavior of platinum(IV) complexes with cisplatin-, carboplatin- or nedaplatin-like cores and how this difference can be related to their main physicochemical properties. Chlorido-containing complexes are reduced fast (within hours) by ascorbate and are able to unwind plasmid DNA in the presence of ascorbate, while their tri- and tetracarboxylato analogs are generally inert under the same conditions. Comparison of the lipophilicity, cellular accumulation and cytotoxicity of the investigated platinum compounds revealed the necessity to define new structure-property/activity relationships (SPRs and SARs). The higher activity and improved accumulation of platinum(IV) complexes bearing Cl(-) in equatorial position cannot only be attributed to passive diffusion facilitated by their lipophilicity. Therefore, further platinum accumulation experiments under conditions where active/facilitated transport mechanisms are suppressed were performed. Under hypothermic conditions (4°C), accumulation of dichloridoplatinum(IV) complexes is reduced down to 10% of the amount determined at 37°C. These findings suggest the involvement of active and/or facilitated transport in cellular uptake of platinum(IV) complexes with a cisplatin-like core. Studies with ATP depletion mediated by oligomycin and low glucose partially confirmed these observations, but their feasibility was severely limited in the adherent cell culture setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancies.

    PubMed

    Sioud, Mouldy; Westby, Phuong; Vasovic, Vlada; Fløisand, Yngvar; Peng, Qian

    2018-04-16

    mAbs have emerged as a promising strategy for the treatment of cancer. However, in several malignancies, no effective antitumor mAbs are yet available. Identifying therapeutic mAbs that recognize common tumor antigens could render the treatment widely applicable. Here, a human single-chain variable fragment (scFv) antibody library was sequentially affinity selected against a panel of human cancer cell lines and an antibody fragment (named MS5) that bound to solid and blood cancer cells was identified. The MS5 scFv was fused to the human IgG1 Fc domain to generate an antibody (MS5-Fc fusion) that induced antibody-dependent cellular cytotoxicity and phagocytosis of cancer cells by macrophages. In addition, the MS5-Fc antibody bound to primary leukemia cells and induced antibody-dependent cellular cytotoxicity. In the majority of analyzed cancer cells, the MS5-Fc antibody induced cell surface redistribution of the receptor complexes, but not internalization, thus maximizing the accessibility of the IgG1 Fc domain to immune effector cells. In vitro stability studies showed that the MS5-Fc antibody was stable after 6 d of incubation in human serum, retaining ∼60% of its initial intact form. After intravenous injections, the antibody localized into tumor tissues and inhibited the growth of 3 different human tumor xenografts (breast, lymphoma, and leukemia). These antitumor effects were associated with tumor infiltration by macrophages and NK cells. In the Ramos B-cell lymphoma xenograft model, the MS5-Fc antibody exhibited a comparable antitumor effect as rituximab, a chimeric anti-CD20 IgG1 mAb. These results indicate that human antibodies with pan-cancer abilities can be generated from phage display libraries, and that the engineered MS5-Fc antibody could be an attractive agent for further clinical investigation.-Sioud, M., Westby, P., Vasovic, V., Fløisand, Y., Peng, Q. Development of a new high-affinity human antibody with antitumor activity against solid and

  16. RRM2 induces NF-{kappa}B-dependent MMP-9 activation and enhances cellular invasiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duxbury, Mark S.; Whang, Edward E.

    2007-03-02

    Ribonucleotide reductase is a dimeric enzyme that catalyzes conversion of ribonucleotide 5'-diphosphates to their 2'-deoxynucleotide forms, a rate-limiting step in the production of 2'-deoxyribonucleoside 5'-triphosphates required for DNA synthesis. The ribonucleotide reductase M2 subunit (RRM2) is a determinant of malignant cellular behavior in a range of human cancers. We examined the effect of RRM2 overexpression on pancreatic adenocarcinoma cellular invasiveness and nuclear factor-{kappa}B (NF-{kappa}B) transcription factor activity. RRM2 overexpression increases pancreatic adenocarcinoma cellular invasiveness and MMP-9 expression in a NF-{kappa}B-dependent manner. RNA interference (RNAi)-mediated silencing of RRM2 expression attenuates cellular invasiveness and NF-{kappa}B activity. NF-{kappa}B is a key mediator ofmore » the invasive phenotypic changes induced by RRM2 overexpression.« less

  17. JBIR-23 and -24, novel anticancer agents from Streptomyces sp. AK-AB27.

    PubMed

    Motohashi, Keiichiro; Hwang, Ji-Hwan; Sekido, Yoshitaka; Takagi, Motoki; Shin-ya, Kazuo

    2009-01-15

    The screening for active compounds against malignant pleural mesothelioma (MPM) cells produced by Streptomyces sp. AK-AB27 resulted in the isolation of two compounds with a dodecahydrodibenzo[b,d]furan skeleton named JBIR-23 (1) and -24 (2). Their structures were established on the basis of extensive NMR and MS analyses. Compounds 1 and 2 exhibited cytotoxic effects against several MPM cell lines.

  18. Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity.

    PubMed

    Noya, Yoichi; Seki, Koh-Ichi; Asano, Hiroshi; Mai, Yosuke; Horinouchi, Takahiro; Higashi, Tsunehito; Terada, Koji; Hatate, Chizuru; Hoshi, Akimasa; Nepal, Prabha; Horiguchi, Mika; Kuge, Yuji; Miwa, Soichi

    2013-12-06

    Smoking is a major risk factor for atherosclerotic vascular diseases, but the mechanism for its genesis is unknown. We have recently shown that the gas phase of cigarette smoke (nicotine- and tar-free cigarette smoke extract; CSE) likely to reach the systemic circulation contains stable substances which cause cytotoxicity like plasma membrane damage and cell death in cultured cells, and also that the plasma membrane damage is caused through sequential activation of protein kinase C (PKC) and NADPH oxidase (NOX) and the resulting generation of reactive oxygen species (PKC/NOX-dependent mechanism), whereas cell death is caused through PKC/NOX-dependent and -independent mechanisms. To identify these stable substances, the CSE was prepared by passing the main-stream smoke of 10 cigarettes through a Cambridge glass fiber filter, trapping of the smoke in a vessel cooled at -80°C, and subsequent dissolution in 10ml of water. The CSE was fractionated into nine fractions using reversed-phase HPLC, and each fraction was screened for cytotoxicity in cultured cells, using propidium iodide uptake assay for cell membrane damage and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction assay for cell viability. The cytotoxicity was positive in two of the nine fractions (Fr2 and Fr5). After extraction of the active fractions into dichloromethane, GC/MS analysis identified 2-cyclopenten-1-one (CPO) in Fr5 but none in Fr2. After derivatization of the active fractions with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, GC/MS analysis identified acrolein, acetone and propionaldehyde in Fr2, and methyl vinyl ketone (MVK) in Fr5. After 4-h incubation, authentic acrolein and MVK induced concentration-dependent cytotoxicity with EC50 values of 75.9±8.2 and 47.0±8.0μM (mean±SEM; n=3), respectively, whereas acetone, propionaldehyde and CPO were without effect. However, after 24-h incubation, CPO induced concentration-dependent

  19. Lysine-based surfactants in nanovesicle formulations: the role of cationic charge position and hydrophobicity in in vitro cytotoxicity and intracellular delivery.

    PubMed

    Nogueira, Daniele Rubert; del Carmen Morán, Maria; Mitjans, Montserrat; Pérez, Lourdes; Ramos, David; de Lapuente, Joaquín; Pilar Vinardell, Maria

    2014-06-01

    Understanding nanomaterial interactions within cells is of increasing importance for assessing their toxicity and cellular transport. Here, the authors developed nanovesicles containing bioactive cationic lysine-based amphiphiles and assessed whether these cationic compounds increase the likelihood of intracellular delivery and modulate toxicity. Different cytotoxic responses were found among the formulations, depending on surfactant, cell line and endpoint assayed. The induction of mitochondrial dysfunction, oxidative stress and apoptosis were the general mechanisms underlying cytotoxicity. Fluorescence microscopy analysis demonstrated that nanovesicles were internalised by HeLa cells and evidenced that their ability to release endocytosed materials into cell cytoplasm depends on the structural parameters of amphiphiles. The cationic charge position and hydrophobicity of surfactants determine the nanovesicle interactions within the cell and, thus, the resulting toxicity and intracellular behaviour after cell uptake of the nanomaterial. The insights into some toxicity mechanisms of these new nanomaterials contribute in reducing the uncertainty surrounding their potential health hazards.

  20. Synergistic Effect of Transient Receptor Potential Antagonist and Amiloride against Maitotoxin Induced Calcium Increase and Cytotoxicity in Human Neuronal Stem Cells.

    PubMed

    Boente-Juncal, Andrea; Vale, Carmen; Alfonso, Amparo; Botana, Luis M

    2018-05-16

    Maitotoxins (MTX) are among the most potent marine toxins identified to date causing cell death trough massive calcium influx. However, the exact mechanism for the MTX-induced calcium entry and cytotoxicity is still unknown. In this work, the effect of MTX-1 on the cytosolic free calcium concentration and cellular viability of human neuronal stem cells was evaluated. MTX elicited a concentration-dependent decrease in cell viability which was already evident after 1 h of treatment with 0.25 nM MTX; however, at a concentration of 0.1 nM, the toxin did not cause cell death even after 14 days of exposure. Moreover, the toxin caused a concentration dependent rise in the cytosolic calcium concentration which was maximal at toxin concentrations of 1 nM and dependent on the presence of extracellular calcium on the bathing solution. Several pharmacological approaches were employed to evaluate the role of canonical transient potential receptor channels (TRPC) on the MTX effects. The results presented here lead to the identification of the TRPC4 channels as contributors to the MTX effects in human neuronal cells. Both, the calcium increase and the cytotoxicity of MTX were either fully (for the calcium increase) or partially (in the case of cytotoxicity) reverted by the blockade of canonical TRPC4 receptors with the selective antagonist ML204. Furthermore, the sodium proton exchanger blocker amiloride also partially inhibited the calcium rise and the cell death elicited by MTX while the combination of amiloride and ML204 fully prevented both the cytotoxicity and the calcium rise elicited by the toxin.

  1. [Design of next generation antibody drug conjugates].

    PubMed

    Zhu, Gui-Dong; Fu, Yang-Xin

    2013-07-01

    Chemotherapy remains one of the major tools, along with surgery, radiotherapy, and more recently targeted therapy, in the war against cancer. There have appeared a plethora of highly potent cytotoxic drugs but the poor discriminability between cancerous and healthy cells of these agents limits their broader application in clinical settings. Therapeutic antibodies have emerged as an important class of biological anticancer agents, thanks to their ability in specific binding to tumor-associated antigens. While this important class of biologics can be used as single agents for the treatment of cancer through antibody-dependent cell cytotoxicity (ADCC), their therapeutical efficacy is often limited. Antitumor antibody drug conjugates (ADCs) combine the target-specificity of monoclonal antibody (mAb) and the highly active cell-killing drugs, taking advantages of the best characteristics out of both components. Thus, insufficiency of most naked mAbs in cancer therapy has been circumvented by arming the immunoglobulin with cytotoxic drugs. Here mAbs are used as vehicles to transport potent payloads to tumor cells. ADCs contain three main components: antibody, linker and cytotoxics (also frequently referred as payload). Antibodies can recognize and specifically bind to the tumor-specific antigens, leading to an antibody-assisted internalization, and payload release. While ADC has demonstrated tremendous success, a number of practical challenges limit the broader applications of this new class of anticancer therapy, including inefficient cellular uptake, low cytotoxicity, and off-target effects. This review article aims to cover recent advances in optimizing linkers with increased stability in circulation while allowing efficient payload release within tumor cells. We also attempt to provide some practical strategies in resolving the current challenges in this attractive research area, particularly to those new to the field.

  2. Cytotoxic Drug Dispersal, Cytotoxic Safety, and Cytotoxic Waste Management: Practices and Proposed India-specific Guidelines

    PubMed Central

    Capoor, Malini R; Bhowmik, Kumar Tapas

    2017-01-01

    This article deals with practices related to cytotoxic drug dispersal, cytotoxic safety, and cytotoxic waste management and attempts at India-specific guidelines for their dispersal and disposal. The articles related to cytotoxic drug dispersal, cytotoxic safety, and cytotoxic waste management were reviewed from PubMed and their applicability in Indian health-care facilities (HCFs) was also reviewed. All HCFs dealing with cytotoxic drugs should consider cytotoxic policy, patient safety and health-care worker safety, and environmental monitoring program as per the available international guidelines customized as per Indian conditions. Utmost care in handling cytotoxic waste is quintessential. The formation of India-specific cytotoxic guidelines requires the inputs from all stakeholders. Cytotoxic waste, cytotoxic safety, and cytotoxic waste management should be the subject of a national strategy with an infrastructure, cradle-to-grave legislation, competent regulatory authority, and trained personnel. PMID:28900329

  3. HA Antibody-Mediated FcγRIIIa Activity Is Both Dependent on FcR Engagement and Interactions between HA and Sialic Acids.

    PubMed

    Cox, Freek; Kwaks, Ted; Brandenburg, Boerries; Koldijk, Martin H; Klaren, Vincent; Smal, Bastiaan; Korse, Hans J W M; Geelen, Eric; Tettero, Lisanne; Zuijdgeest, David; Stoop, Esther J M; Saeland, Eirikur; Vogels, Ronald; Friesen, Robert H E; Koudstaal, Wouter; Goudsmit, Jaap

    2016-01-01

    Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated effector functions appear not to contribute to protection provided by strain-specific HA head-binding antibodies. We used a panel of anti-stem and anti-head influenza A and B monoclonal antibodies with identical human IgG1 Fc domains and investigated their ability to mediate ADCC-associated FcγRIIIa activation. Antibodies which do not interfere with sialic acid binding of HA can mediate FcγRIIIa activation. However, the FcγRIIIa activation was inhibited when a mutant HA, unable to bind sialic acids, was used. Antibodies which block sialic acid receptor interactions of HA interfered with FcγRIIIa activation. The inhibition of FcγRIIIa activation by HA head-binding and sialic acid receptor-blocking antibodies was confirmed in plasma samples of H5N1 vaccinated human subjects. Together, these results suggest that in addition to Fc-FcγR binding, interactions between HA and sialic acids on immune cells are required for optimal Fc-mediated effector functions by anti-HA antibodies.

  4. In vitro assessment of the structure-activity relationship of tyrosinase-dependent cytotoxicity of a series of substituted phenols.

    PubMed

    Naish-Byfield, S; Cooksey, C J; Latter, A M; Johnson, C I; Riley, P A

    1991-01-01

    The rate of oxidation by purified mushroom tyrosinase of 30 compounds was measured by oximetry, and the tyrosinase-dependent cytotoxicity of each estimated in an in vitro assay using exposure of non-melanogenic cells to the agents in the presence and absence of tyrosinase. Cytotoxicity was estimated by immediate inhibition of DNA synthesis; 4-hydroxyanisole was used as the reference material. Compounds that were not oxidized by tyrosinase were found to be non-toxic but there was no direct relationship between the rate of oxidation and the relative cytotoxicity of those materials that acted as substrates for the enzyme. Thioethers were found to be more cytotoxic than the corresponding phenoxyethers. This was partly due to their greater rate of oxidation by tyrosinase and, in the case of propylthiophenol, the consequence of higher effective toxicity of the lipophilic species. The optimum chain length for the side chain of the oxyethers was three saturated carbon atoms and the toxicity appeared to be influenced by the lipophilicity of the compounds, possibly reflecting the relative lipid solubility of the putative toxic ortho-quinones generated from them. The maximum tyrosinase-dependent toxicity observed was in the range 5-6 times the relative toxicity of 4-hydroxyanisole. Sulphinyl and sulphonyl derivatives were inactive. In addition to oxyethers and thioethers, esters and glycosides of oxyethers were also examined and were found to be toxic in the presence of tyrosinase when hydrolysed. The succinates were found to be oxidized and toxic in our test system, suggesting that they rapidly underwent spontaneous hydrolysis. Oximetry data suggest that slight spontaneous hydrolysis of the other compounds occurs but they were not toxic in our assay. Ring-methylated phenoxyethers were oxidized relatively slowly and were non-toxic. Fluorine-substituted phenoxyethers were oxidized slightly more rapidly and exhibited clear toxicity in our system. Sesamol was oxidized to a black

  5. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    PubMed

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  6. Developing a novel fiber optic fluorescence device for multiplexed high-throughput cytotoxic screening.

    PubMed

    Lee, Dennis; Barnes, Stephen

    2010-01-01

    The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.

  7. Treatment of a Solid Tumor Using Engineered Drug-Resistant Immunocompetent Cells and Cytotoxic Chemotherapy

    PubMed Central

    Dasgupta, Anindya; Shields, Jordan E.

    2012-01-01

    Abstract Multimodal therapy approaches, such as combining chemotherapy agents with cellular immunotherapy, suffers from potential drug-mediated toxicity to immune effector cells. Overcoming such toxic effects of anticancer cellular products is a potential critical barrier to the development of combined therapeutic approaches. We are evaluating an anticancer strategy that focuses on overcoming such a barrier by genetically engineering drug-resistant variants of immunocompetent cells, thereby allowing for the coadministration of cellular therapy with cytotoxic chemotherapy, a method we refer to as drug-resistant immunotherapy (DRI). The strategy relies on the use of cDNA sequences that confer drug resistance and recombinant lentiviral vectors to transfer nucleic acid sequences into immunocompetent cells. In the present study, we evaluated a DRI-based strategy that incorporates the immunocompetent cell line NK-92, which has intrinsic antitumor properties, genetically engineered to be resistant to both temozolomide and trimetrexate. These immune effector cells efficiently lysed neuroblastoma cell lines, which we show are also sensitive to both chemotherapy agents. The antitumor efficacy of the DRI strategy was demonstrated in vivo, whereby neuroblastoma-bearing NOD/SCID/γ-chain knockout (NSG) mice treated with dual drug-resistant NK-92 cell therapy followed by dual cytotoxic chemotherapy showed tumor regression and significantly enhanced survival compared with animals receiving either nonengineered cell-based therapy and chemotherapy, immunotherapy alone, or chemotherapy alone. These data show there is a benefit to using drug-resistant cellular therapy when combined with cytotoxic chemotherapy approaches. PMID:22397715

  8. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity.

    PubMed

    Rouleau, Lauren; Antony, Anil Noronha; Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A; Hoek, Jan B

    2016-06-01

    We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacologic dose (5-20mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Modulation of CD4(+) T cell-dependent specific cytotoxic CD8(+) T cells differentiation and proliferation by the timing of increase in the pathogen load.

    PubMed

    Tzelepis, Fanny; Persechini, Pedro M; Rodrigues, Mauricio M

    2007-04-25

    Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8(+) T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8(+) T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8(+) T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8(+) cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8(+) cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8(+) cytotoxic T cells was dependent on MHC class II restricted CD4(+) T cells. Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4(+) T cell-dependent expansion of pathogen-specific CD8(+) cytotoxic T cells.

  10. Cytotoxicity and binding profiles of activated Cry1Ac and Cry2Ab to three insect cell lines

    USDA-ARS?s Scientific Manuscript database

    While Cry1Ac has been known to bind with larval midgut proteins cadherin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (ATP-binding cassette transporter subfamily C2), little is known about the receptors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baselin...

  11. Combined use of anti-ErbB monoclonal antibodies and erlotinib enhances antibody-dependent cellular cytotoxicity of wild-type erlotinib-sensitive NSCLC cell lines

    PubMed Central

    2012-01-01

    Background The epidermal growth factor receptor (EGFR) is an established target for anti-cancer treatment in different tumour types. Two different strategies have been explored to inhibit this pivotal molecule in epithelial cancer development: small molecules TKIs and monoclonal antibodies. ErbB/HER-targeting by monoclonal antibodies such as cetuximab and trastuzumab or tyrosine-kinase inhibitors as gefitinib or erlotinib has been proven effective in the treatment of advanced NSCLC. Results In this study we explored the potential of combining either erlotinib with cetuximab or trastuzumab to improve the efficacy of EGFR targeted therapy in EGFR wild-type NSCLC cell lines. Erlotinib treatment was observed to increase EGFR and/or HER2 expression at the plasma membrane level only in NSCLC cell lines sensitive to the drug inducing protein stabilization. The combined treatment had marginal effect on cell proliferation but markedly increased antibody-dependent, NK mediated, cytotoxicity in vitro. Moreover, in the Calu-3 xenograft model, the combination significantly inhibited tumour growth when compared with erlotinib and cetuximab alone. Conclusion Our results indicate that erlotinib increases surface expression of EGFR and/or HER2 only in EGFR-TKI sensitive NSCLC cell lines and, in turns, leads to increased susceptibility to ADCC both in vitro and in a xenograft models. The combination of erlotinib with monoclonal antibodies represents a potential strategy to improve the treatment of wild-type EGFR NSCLC patients sensitive to erlotinib. PMID:23234355

  12. Cellular membrane collapse by atmospheric-pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation,more » and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.« less

  13. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    PubMed

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  14. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab.

    PubMed

    Fujii, Rika; Friedman, Eitan R; Richards, Jacob; Tsang, Kwong Y; Heery, Christopher R; Schlom, Jeffrey; Hodge, James W

    2016-06-07

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.

  15. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab

    PubMed Central

    Fujii, Rika; Friedman, Eitan R.; Richards, Jacob; Tsang, Kwong Y.; Heery, Christopher R.; Schlom, Jeffrey; Hodge, James W.

    2016-01-01

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC. PMID:27172898

  16. Protection against hydrogen peroxide cytotoxicity in rat-1 fibroblasts provided by the oncoprotein Bcl-2: maintenance of calcium homoeostasis is secondary to the effect of Bcl-2 on cellular glutathione.

    PubMed Central

    Rimpler, M M; Rauen, U; Schmidt, T; Möröy, T; de Groot, H

    1999-01-01

    The oncoprotein Bcl-2 protects cells against apoptosis, but the exact molecular mechanism that underlies this function has not yet been identified. Studying H2O2-induced cell injury in Rat-1 fibroblast cells, we observed that Bcl-2 had a protective effect against the increase in cytosolic calcium concentration and subsequent cell death. Furthermore, overexpression of Bcl-2 resulted in an alteration of cellular glutathione status: the total amount of cellular glutathione was increased by about 60% and the redox potential of the cellular glutathione pool was maintained in a more reduced state during H2O2 exposure compared with non-Bcl-2-expressing controls. In our cytotoxicity model, disruption of cellular glutathione homoeostasis closely correlated with the pathological elevation of cytosolic calcium concentration. Stabilization of the glutathione pool by Bcl-2, N-acetylcysteine or glucose delayed the cytosolic calcium increase and subsequent cell death, whereas depletion of glutathione by dl-buthionine-(S, R)-sulphoximine, sensitized Bcl-2-transfected cells towards cytosolic calcium increase and cell death. We therefore suggest that the protection exerted by Bcl-2 against H2O2-induced cytosolic calcium elevation and subsequent cell death is secondary to its effect on the cellular glutathione metabolism. PMID:10229685

  17. Antibody-dependent cellular cytotoxicity (ADCC) activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells

    PubMed Central

    Fantini, Massimo; Heery, Christopher R.; Gulley, James L.; Tsang, Kwong Yok; Schlom, Jeffrey

    2015-01-01

    Several anti-PD1/PD-L1 monoclonal antibodies (MAb) are currently providing evidence of clinical benefit in subsets of cancer patients. The mode of action of these MAbs is to inhibit PD1 on immune cells interacting with PD-L1 on tumor cells. These MAbs are either designed or engineered to eliminate antibody-dependent cell-mediated cytotoxicity (ADCC), which, however, has been implicated as an important mechanism in several highly effective MAb-mediated cancer therapies. A fully human anti-PD-L1 MAb would potentially be able to block PD-L1/PD1 interactions and also mediate the ADCC lysis of tumor cells. MSB0010718C (designated avelumab) is a fully human IgG1 anti-PD-L1 MAb. The studies reported here demonstrate (a) the ability of avelumab to lyse a range of human tumor cells in the presence of PBMC or NK effectors; (b) IFNγ can enhance tumor cell PD-L1 expression and in some cases enhance ADCC tumor cell lysis; (c) purified NK cells are potent effectors for avelumab; (d) similar levels of avelumab-mediated ADCC lysis of tumor cells are seen using purified NK as effectors from either healthy donors or cancer patients; (e) very low levels of avelumab-mediated lysis are seen using whole PBMCs as targets; this finding complements results seen in analyses of PBMC subsets of patients receiving avelumab; and (f) the addition of IL12 to NK cells greatly enhances avelumab-mediated ADCC. These studies thus provide an additional mode of action for an anti-PD-L1 MAb and support the rationale for further studies to enhance avelumab-mediated ADCC activity. PMID:26014098

  18. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide-dendrimer bioconjugate.

    PubMed

    Burns, Kelly E; Delehanty, James B

    2018-04-27

    In this study, we developed a peptide-dendrimer-drug conjugate system for the pH-triggered direct cytosolic delivery of the cancer chemotherapeutic doxorubicin (DOX) using the pH Low Insertion Peptide (pHLIP). We synthesized a pHLIP-dendrimer-DOX conjugate in which a single copy of pHLIP displayed a generation three dendrimer bearing multiple copies of DOX via disulfide linkages. Biophysical analysis showed that both the dendrimer and a single DOX conjugate inserted into membrane bilayers in a pH-dependent manner. Time-resolved confocal microscopy indicate the single DOX conjugate may undergo a faster rate of membrane translocation, due to greater nuclear localization of DOX at 24 h and 48 h post delivery. At 72 h, however, the levels of DOX nuclear accumulation for both constructs were identical. Cytotoxicity assays revealed that both constructs mediated ∼80% inhibition of cellular proliferation at 10 µM, the dendrimer complex exhibited a 17% greater cytotoxic effect at lower concentrations and greater than three-fold improvement in IC 50 over free DOX. Our findings show proof of concept that the dendrimeric display of DOX on the pHLIP carrier (1) facilitates the pH-dependent and temporally-controlled release of DOX to the cytosol, (2) eliminates the endosomal sequestration of the drug cargo, and (3) augments DOX cytotoxicity relative to the free drug. Published by Elsevier B.V.

  19. In vitro cytotoxicity of traditional versus contemporary dental ceramics.

    PubMed

    Messer, Regina L W; Lockwood, Petra E; Wataha, John C; Lewis, Jill B; Norris, Samuel; Bouillaguet, Serge

    2003-11-01

    The biocompatibility of new dental ceramics has not been assessed with the same scrutiny as has been applied to alloys and composites. Yet, the biocompatibility of ceramics is critical to the long-term success of dental prostheses because ceramics are in close contact with oral tissues for extended periods. Five dental ceramics (2 traditional feldspathic veneer porcelains [Vita Omega and Duceragold], 2 lithium disilicate pressable materials [Stylepress and Empress-2], and a pressable leucite-based material [Empress-1]) were tested for their ability to alter cellular mitochondrial dehydrogenase activity after fabrication using a tetrazolium assay, after aging for 2 weeks in a biologic solution and after post-aging polishing with either a fine diamond or diamond polishing paste. Cellular responses were compared with polytetrafluoroethylene controls (analysis of variance, Tukey pairwise post-hoc comparison, alpha=.05). The feldspathic porcelains caused only mild (<25% of controls) mitochondrial suppression regardless of aging or polishing. The pressable leucite-based material initially caused a 5% stimulation (not significant) of mitochondrial activity, which decreased significantly (P<.05) by 30% with aging to levels comparable to the feldspathic porcelains, and did not change with polishing. Both lithium disilicate materials caused an initial suppression of mitochondrial activity that decreased significantly with aging, but Empress-2 was severely cytotoxic initially (<20% of controls, P<.01), and became more cytotoxic again after polishing. Stylepress was less cytotoxic initially (85% of controls, not significant) and did not become cytotoxic again after polishing. Dental ceramics are not equivalent in their in vitro biologic effects, even within the same class of material, and biologic safety should not be assumed. Most ceramics caused only mild in vitro suppression of cell function to levels that would be acceptable on the basis of standards used to evaluate

  20. Cytotoxic effects of psychotropic benzofuran derivatives, N-methyl-5-(2-aminopropyl)benzofuran and its N-demethylated derivative, on isolated rat hepatocytes.

    PubMed

    Nakagawa, Yoshio; Suzuki, Toshinari; Tada, Yukie; Inomata, Akiko

    2017-03-01

    The novel psychoactive compounds derived from amphetamine have been illegally abused as recreational drugs, some of which are known to be hepatotoxic in humans and experimental animals. The cytotoxic effects and mechanisms of 5-(2-aminopropyl)benzofuran (5-APB) and N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB), both of which are benzofuran analogues of amphetamine, and 3,4-methylenedioxy-N-methamphetamine (MDMA) were studied in freshly isolated rat hepatocytes. 5-MAPB caused not only concentration-dependent (0-4.0 mm) and time-dependent (0-3 h) cell death accompanied by the depletion of cellular ATP and reduced glutathione and protein thiol levels, but also accumulation of oxidized glutathione. Of the other analogues examined at a concentration of 4 mm, 5-MAPB/5-APB-induced cytotoxicity with the production of reactive oxygen species and loss of mitochondrial membrane potential was greater than that induced by MDMA. In isolated rat liver mitochondria, the benzofurans resulted in a greater increase in the rate of state 4 oxygen consumption than did MDMA, with a decrease in the rate of state 3 oxygen consumption. Furthermore, the benzofurans caused more of a rapid mitochondrial swelling dependent on the mitochondrial permeability transition than MDMA. 5-MAPB at a weakly toxic level (1 mm) was metabolized slowly: levels of 5-MAPB and 5-APB were approximately 0.9 mm and 50 μm, respectively, after 3 h incubation. Taken collectively, these results indicate that mitochondria are target organelles for the benzofuran analogues and MDMA, which elicit cytotoxicity through mitochondrial failure, and the onset of cytotoxicity may depend on the initial and/or residual concentrations of 5-MAPB rather than on those of its metabolite 5-APB. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Plasmid-determined cytotoxicity in Yersinia pestis and Yersinia pseudotuberculosis.

    PubMed Central

    Goguen, J D; Walker, W S; Hatch, T P; Yother, J

    1986-01-01

    Yersinia pestis KIM5 was found to be cytotoxic for the IC21 and P388D1 mouse macrophage cell lines, as well as for resident peritoneal macrophages from C57BL/6 mice. Affected cells phagocytosed KIM5 inefficiently, became spherical, detached readily from culture dishes, and retained 51Cr poorly. The cytotoxic effect was dependent on the presence of the 75-kilobase plasmid pCD1. Because this plasmid also encodes the low calcium response (LCR), three Mu d1 insertion mutants previously shown to be LCR- and of reduced virulence in mice were examined for cytotoxicity; all were found to be atoxic. The insertions in these mutants lie within three distinct LCR loci (lcrB, C, and D). Like LCR, cytotoxicity was expressed only at 37 degrees C. Unlike LCR, it was not influenced by Ca2+ concentration, indicating that the V and W antigens are probably not involved. Yersinia pseudotuberculosis was found to have a similar plasmid-dependent cytotoxicity. Thus, biological activity observed as cytotoxicity in vitro may well be a common feature contributing to virulence of the yersiniae. Images PMID:3949380

  2. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin.

    PubMed

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim H J; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Eid, Eltayeb E M; Zainal, Zulkarnain; Saeed, Mohd; Ilowefah, Muna; Fakurazi, Sharida; Mohd Isa, Norhaszalina; El Zowalaty, Mohamed Ezzat

    2013-01-01

    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6-1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells.

  3. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim HJ; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Eid, Eltayeb EM; Zainal, Zulkarnain; Saeed, Mohd; Ilowefah, Muna; Fakurazi, Sharida; Isa, Norhaszalina Mohd; Zowalaty, Mohamed Ezzat El

    2013-01-01

    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6–1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells. PMID:23885175

  4. Lymphocyte-dependent antibody-mediated cytotoxicity in Hashimoto thyroiditis

    PubMed Central

    Calder, Elizabeth A.; Penhale, W. J.; McLeman, Dena; Barnes, E. W.; Irvine, W. J.

    1973-01-01

    In the presence of normal human lymphocytes, decomplemented sera from twentynine out of thirty-nine patients with Hashimoto thyroiditis caused significant lysis of thyroglobulin-coated chicken red blood cells, as estimated by the release of 51Cr; the mean% specific 51Cr release being 14·1 ± 1·9 (SEM). Serum from twenty-one control subjects studied concurrently caused no significant lysis of thyroglobulin-coated chicken red blood cells; the mean% specific 51Cr release being −1·6±0·7 (SEM). The degree of cytotoxicity correlated with the titre of thyroglobulin antibodies in the serum, determined by tanned red cell haemagglutination. The active component in the Hashimoto serum was localized in the 19S fraction, was unaffected by pre-absorption with anti-human IgM serum, but was neutralized by pre-absorption with anti-human IgG serum. These findings suggest that the cytotoxic activity of serum from patients with Hashimoto thyroiditis is due to the presence of thyroglobulin antibody of the IgG class in the form of complexes, either alone or with antigen. It is postulated that non-specific lymphocytes may play an important role in the pathogenesis of Hashimoto thyroiditis, being activated by the presence in the gland of thyroglobulin antibody, either alone or in the form of complexes attached to thyroid cells. PMID:4740445

  5. Ab initio study of the temperature-dependent structural properties of Al(110)

    NASA Astrophysics Data System (ADS)

    Scharoch, Pawel

    2009-09-01

    Temperature-dependent structural properties of Al(110) surface have been studied ab initio employing the concepts of the potential-energy surface (PES) and the free-energy surface (FES), with the latter based on the harmonic approximation for lattice dynamics. Three effects have been identified as contributing to the temperature-dependent multilayer relaxation: the bulk-substrate thermal expansion, the effect of asymmetry of PESs, and the entropy-driven shift of the minima of FESs. Thanks to the proper choice of constraints for PESs and FESs, it was possible to find relative contribution of the three effects to variation with temperature of the first three interlayer distances. A very satisfactory agreement of the calculation results with experimental data has been obtained. Also, a reference of the theoretical data to the experimentally observed anisotropic surface melting has been noticed. A softening phonon mode has been identified which is responsible for both: the entropy-driven spectacular expansion of the second interlayer distance and the loss of the surface stability. The latter can be associated with the anisotropic surface melting. The methodology applied has been found to be complementary to previous theoretical works [N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999); S. Narasimhan, Phys. Rev. B 64, 125409 (2001)], by offering another point of view and additional insight into the relative contribution of different physical effects to the temperature-dependent structural phenomena in Al(110) surface.

  6. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.

    PubMed

    Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel

    2010-09-28

    Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.

  7. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    PubMed

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  8. Cytotoxicity and inhibitory properties against topoisomerase II of doxorubicin and its formamidine derivatives.

    PubMed

    Kik, Krzysztof; Studzian, Kazimierz; Wasowska-Łukawska, Małgorzata; Oszczapowicz, Irena; Szmigiero, Leszek

    2009-01-01

    This work was undertaken to compare cytotoxicity, DNA damaging properties and effect on DNA cleavage by topoisomerase II of the anthracycline drug doxorubicin (DOX) and its two derivatives with a formamidino group containing a cyclic amine moiety such as morpholine (DOXM) or hexamethyleneimine (DOXH). The tetrazolium dye colorimetric assay was used to determine the cytotoxic activity of anthracyclines toward L1210 leukemia cells. DNA damage was measured by alkaline elution technique. The effect of anthracyclines on DNA cleavage was studied in a cell-free system containing supercoiled pBR322 DNA and purified human topoisomerase II. The cytotoxicity data and the results of studies on the mechanism of DNA break formation by anthracyclines at the cellular level and in the cell-free system showed that the presence of the formamidino group in the doxorubicin molecule reduced its ability to stimulate DNA cleavage by DNA topoisomerase II. DNA topoisomerase II is not a primary cellular target for DOXM or DOXH. An advantageous feature of formamidinoanthracyclines is their mechanism of cytotoxic action which is not related to the inhibition of DNA topoisomerase II. Therefore this class of anthracyclines seems to be a good source for selection of an anticancer drug directed toward cancer cells with the developed multidrug resistance attributed to the presence of altered DNA topoisomerase II.

  9. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington’s Disease Monkey Neural Cells

    PubMed Central

    Carter, Richard L.; Prucha, Melinda S.; Yang, Jinjing; Parnpai, Rangsun; Chan, Anthony W. S.

    2016-01-01

    Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics. PMID:27631085

  10. Novel BAFF-Receptor Antibody to Natively Folded Recombinant Protein Eliminates Drug-Resistant Human B-cell Malignancies In Vivo.

    PubMed

    Qin, Hong; Wei, Guowei; Sakamaki, Ippei; Dong, Zhenyuan; Cheng, Wesley A; Smith, D Lynne; Wen, Feng; Sun, Han; Kim, Kunhwa; Cha, Soungchul; Bover, Laura; Neelapu, Sattva S; Kwak, Larry W

    2018-03-01

    Purpose: mAbs such as anti-CD20 rituximab are proven therapies in B-cell malignancies, yet many patients develop resistance. Novel therapies against alternative targets are needed to circumvent resistance mechanisms. We sought to generate mAbs against human B-cell-activating factor receptor (BAFF-R/TNFRSF13C), which has not yet been targeted successfully for cancer therapy. Experimental Design: Novel mAbs were generated against BAFF-R, expressed as a natively folded cell surface immunogen on mouse fibroblast cells. Chimeric BAFF-R mAbs were developed and assessed for in vitro and in vivo monotherapy cytotoxicity. The chimeric mAbs were tested against human B-cell tumor lines, primary patient samples, and drug-resistant tumors. Results: Chimeric antibodies bound with high affinity to multiple human malignant B-cell lines and induced potent antibody-dependent cellular cytotoxicity (ADCC) against multiple subtypes of human lymphoma and leukemia, including primary tumors from patients who had relapsed after anti-CD20 therapy. Chimeric antibodies also induced ADCC against ibrutinib-resistant and rituximab-insensitive CD20-deficient variant lymphomas, respectively. Importantly, they demonstrated remarkable in vivo growth inhibition of drug-resistant tumor models in immunodeficient mice. Conclusions: Our method generated novel anti-BAFF-R antibody therapeutics with remarkable single-agent antitumor effects. We propose that these antibodies represent an effective new strategy for targeting and treating drug-resistant B-cell malignancies and warrant further development. Clin Cancer Res; 24(5); 1114-23. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Preparation and biological activities of anti-HER2 monoclonal antibodies with fully core-fucosylated homogeneous bi-antennary complex-type glycans.

    PubMed

    Tsukimura, Wataru; Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Matsuda, Akio; Takegawa, Kaoru; Furukawa, Kiyoshi; Shirai, Takashi

    2017-12-01

    Recently, the absence of a core-fucose residue in the N-glycan has been implicated to be important for enhancing antibody-dependent cellular cytotoxicity (ADCC) activity of immunoglobulin G monoclonal antibodies (mAbs). Here, we first prepared anti-HER2 mAbs having two core-fucosylated N-glycan chains with the single G2F, G1aF, G1bF, or G0F structure, together with those having two N-glycan chains with a single non-core-fucosylated corresponding structure for comparison, and determined their biological activities. Dissociation constants of mAbs with core-fucosylated N-glycans bound to recombinant Fcγ-receptor type IIIa variant were 10 times higher than those with the non-core-fucosylated N-glycans, regardless of core glycan structures. mAbs with the core-fucosylated N-glycans had markedly reduced ADCC activities, while those with the non-core-fucosylated N-glycans had high activities. These results indicate that the presence of a core-fucose residue in the N-glycan suppresses the binding to the Fc-receptor and the induction of ADCC of anti-HER2 mAbs.

  12. Gelatin promotes murine fibrosarcoma L929 cell detachment and protects the cells from TNFα-induced cytotoxicity.

    PubMed

    Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei; Yao, Guo-Dong; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2016-07-01

    Gelatin has been considered to exist as intermediate substance of collagen catabolism in tissue remodeling or under inflammatory conditions. We have initiated the study on possible biological functions of gelatin that can exist temporally and locally under the conditions of remodeling and inflammation Materials and methods: To this purpose, we investigated cell proliferation and survival on gelatin-coated dishes and the response to tumor necrosis factor α (TNFα)-induced cytotoxicity in L929 cells. Autophagy level, ATP level, and ROS generation are examined. L929 cells detached from the gelatin-coated dishes and formed multicellular aggregates. TNFα-induced cytotoxicity in L929 cells was inhibited by gelatin-coating culture. The cells on gelatin-coated dishes showed reduced cellular ATP levels and increased adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation, leading to increased ROS generation and autophagy. This study showed that gelatin-coated culture protected L929 cells from TNFα-induced cytotoxicity and suggested for a possible pathophysiological function of gelatin in regulating cellular functions.

  13. Biological effects of an aqueous extract of Salix alba on the survival of Escherichia coli AB1157 cultures submitted to the action of stannous chloride.

    PubMed

    Souza, Raphael S S; Almeida, Marcela C; Manoel, Cristiano V; Santos-Filho, Sebastião D; Fonseca, Adenilson S; Bernardo Filho, Mario

    2009-01-01

    Stannous chloride (SnC12) is used in nuclear medicine as a reducing agent to obtain technetium-99m-radiopharmaceuticals. It have been reported that natural products might reduce the genotoxic and cytotoxic effects related to SnC12. This work evaluated the biological effects of an aqueous extract of Salix alba on the survival of Escherichia coli (E. coli) AB1157 (wild type) cultures submitted to the action of SnC12. E. coli AB1157 cultures (exponential growth phase) were collected by centrifugation, washed and resuspended in 0.9% NaCl. Samples were incubated in water bath shaker with: (a) SnC12 (25 microg/ml), (b) Salix alba extract(11.6 mg/ml) and (c) SnC12 (25 microg/ml) + Salix alba extract (11.6 mg/ml). Incubation with 0.9% NaCl was also carried out (control). At 60 min intervals, aliquots were withdrawn, diluted, spread onto Petri dishes with solid LB medium and incubated overnight. The colonies formed were counted and the survival fractions calculated. The extract was not able to protect the E. coli cultures against the lesive action of SnC12. The extract also did not interfere with the survival of the cultures. It suggested that the substances present in the Salix alba aqueous extract did not interfere strongly with cellular metabolism and did not alter the survival fractions of E. coli AB 1157. It is speculated that this extract cannot interfere with the generation of free radicals, the possible main agent responsible for SnC12 lesive action.

  14. Cellular redox homeostasis in endothelial cells treated with nonmodified and Fenton-modified nanodiamond powders.

    PubMed

    Solarska-Ściuk, K; Gajewska, A; Skolimowski, J; Gajek, A; Bartosz, G

    2014-01-01

    Diamond nanoparticles find numerous applications in pharmacy, medicine, cosmetics, and biotechnology. However, possible adverse cellular effects of diamond nanoparticle cells have been reported, which may limit their use. The aim of this study was to compare the effect of nonmodified diamond nanoparticles (D) and diamond nanoparticles modified by the Fenton reaction (D+OH) on human umbilical cord endothelial cells (HUVEC-ST). We found that both D and D+OH show time- and concentration-dependent cytotoxicity, inducing apoptosis and necrosis of HUVEC-ST. Interaction with D and D+OH also induced changes in the production of reactive oxygen and nitrogen species and changes in the level of glutathione and activities of antioxidant enzymes in the cells. These data demonstrate that diamond nanoparticles may induce oxidative stress in human endothelial cells, which contributes to their cytotoxic effects seen at higher concentrations of D and D+OH. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  15. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane.

    PubMed

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Newer cytotoxic agents: attacking cancer broadly.

    PubMed

    Teicher, Beverly A

    2008-03-15

    The plasticity and instability of the cancer genome is impressive and is characterized by gene amplifications and deletions, rearrangements, and many silent and active mutations. Although targeted therapeutics have had effect in some diseases, there remains a large role for new cytotoxic agents that have the potential to be broadly active across multiple cancers. Platinum-based regimens are the basis for treatment of several common tumors. Satraplatin and picoplatin are newer platinum complexes that form bulkier lesions in DNA than their forerunners. Microtubules are a key target for anticancer agents. Vinca alkaloid and similar compounds fragment these critical structures, whereas taxanes stabilize them. Vinflunine is a new fluorinated Vinca alkaloid derivative with vascular disrupting effects, as well as antitumor effects. Epothilones are a new class of microtubule stabilizers. Mitosis has been targeted directly and indirectly by many anticancer agents. The aurora kinases are new targets in this class. Inhibitors of aurora kinases are likely to be cytotoxic. Finally, protein regulation is essential for cellular integrity. With the approval of bortezomib (Velcade, PS-341), the proteosome, a master protein regulator, has been validated as an anticancer target. The five articles in this issue of CCR Focus present the current status of these next generation cytotoxic agents.

  17. Industrial grade 2D molybdenum disulphide (MoS2): an in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation

    NASA Astrophysics Data System (ADS)

    Moore, Caroline; Movia, Dania; Smith, Ronan J.; Hanlon, Damien; Lebre, Filipa; Lavelle, Ed C.; Byrne, Hugh J.; Coleman, Jonathan N.; Volkov, Yuri; McIntyre, Jennifer

    2017-06-01

    The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than research grade materials. The aim of this study was to explore cytotoxicity, cellular uptake and inflammatory responses in established cell-lines that mimic different potential exposure routes (inhalation, A549; ingestion, AGS; monocyte, THP-1) following incubation with MoS2 flakes of varying sizes (50 nm, 117 nm and 177 nm), produced by liquid phase exfoliation. Using high content screening (HCS) and Live/Dead assays, it was established that 1 µg ml-1 (for the three different MoS2 sizes) did not induce toxic effects on any of the cell-lines. Confocal microscopy images revealed a normal cellular morphology in all cases. Transmission electron microscopy (TEM) confirmed the uptake of all MoS2 nanomaterials in all the cell-lines, the MoS2 ultimately locating in single membrane vesicles. At such sub-lethal doses, inflammatory responses are observed, however, associated, at least partially, with the presence of lipopolysaccharide endotoxin in nanomaterial suspensions and surfactant samples. Therefore, the inflammatory response of the cells to the MoS2 or endotoxin contamination was interrogated using a 10-plex ELISA which illustrates cytokine production. The experiments carried out using wild-type and endotoxin hyporesponsive bone marrow derived dendritic cells confirmed that the

  18. Gold-Containing Indoles as Anti-Cancer Agents that Potentiate the Cytotoxic Effects of Ionizing Radiation

    PubMed Central

    Craig, Sandra; Gao, Lei; Lee, Irene; Gray, Thomas; Berdis, Anthony J.

    2012-01-01

    This report describes the design and application of several distinct gold-containing indoles as anti-cancer agents. When used individually, all gold-bearing compounds display cytostatic effects against leukemia and adherent cancer cell lines. However, two gold-bearing indoles show unique behavior by increasing the cytotoxic effects of clinically relevant levels of ionizing radiation. Quantifying the amount of DNA damage demonstrates that each gold-indole enhances apoptosis by inhibiting DNA repair. Both Au(I)-indoles were tested for inhibitory effects against various cellular targets including thioredoxin reductase, a known target of several gold compounds, and various ATP-dependent kinases. While neither compound significantly inhibits the activity of thioreoxin reductase, both showed inhibitory effects against several kinases associated with cancer initiation and progression. The inhibition of these kinases provides a possible mechanism for the ability of these Au(I)-indoles potentiate the cytotoxic effects of ionizing radiation. Clinical applications of combining Au(I)-indoles with ionizing radiation are discussed as a new strategy to achieve chemosensitization of cancer cells. PMID:22289037

  19. Anti-CRLF2 Antibody-Armored Biodegradable Nanoparticles for Childhood B-ALL.

    PubMed

    Raghunathan, Rekha; Mahesula, Swetha; Kancharla, Kranthi; Janardhanan, Preethi; Jadhav, Yeshwant L A; Nadeau, Robert; Villa, German P; Cook, Robert L; Witt, Colleen M; Gelfond, Jonathan A L; Forsthuber, Thomas G; Haskins, William E

    2013-04-01

    B-precursor acute lymphoblastic leukemia (B-ALL) lymphoblast (blast) internalization of anti-cytokine receptor-like factor 2 (CRLF2) antibody-armored biodegradable nanoparticles (AbBNPs) are investigated. First, AbBNPsaere synthesized by adsorbing anti-CRLF2 antibodies to poly(D,L-lactide- co -glycolide) (PLGA) nanoparticles of various sizes and antibody surface density (Ab/BNP) ratios. Second, AbBNPs are incubated with CRLF2-overexpressing (CRLF2+) or control blasts. Third, internalization of AbBNPs by blasts is evaluated by multicolor flow cytometry as a function of receptor expression, AbBNP size, and Ab/BNP ratio. Results from these experiments are con-firmed by electron microscopy, fluorescence microscopy, and Western blotting. The optimal size and Ab/BNP for internalization of AbBNPs by CRLF2+ blasts is 50 nm with 10 Ab/BNP and 100 nm with 25 Ab/BNP. These studies show that internalization of AbBNPs in childhood B-ALL blasts is AbBNP size-and Ab/BNP ratio-dependent. All AbBNP combinations are non-cytotoxic. It is also shown that CD47 is very slightly up-regulated by blasts exposed to AbBNPs. CD47 is "the marker of self" overexpressed by blasts to escape phagocytosis, or "cellular devouring", by beneficial macrophages. The results indicate that precise engineering of AbBNPs by size and Ab/BNP ratio may improve the internalization and selectivity of future biodegradable nanoparticles for the treatment of leukemia patients, including drug-resistant minority children and Down's syndrome patients with CRLF2+B-ALL.

  20. Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-kB-dependent signaling

    PubMed Central

    Castri, Paola; Lee, Yang-ja; Ponzio, Todd; Maric, Dragan; Spatz, Maria; Bembry, Joliet; Hallenbeck, John

    2014-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) and its cleavage products regulate cell viability and NF-kB activity when expressed in neurons. PARP-1 cleavage generates a 24kDa (PARP-124) and an 89kDa fragment (PARP-189). Compared to WT (PARP-1WT), the expression of an uncleavable PARP-1 (PARP-1UNCL) or of PARP-124 conferred protection from oxygen/glucose deprivation (OGD) or OGD/restoration of oxygen and glucose (ROG) damage in vitro, whereas expression of PARP-189 was cytotoxic. Viability experiments were performed in SH-SY5Y, a human neuroblastoma cell line, as well as in rat primary cortical neurons. Following OGD, the higher viability in the presence of PARP-1UNCL or PARP-124 was not accompanied with decreased formation of poly(ADP-riboses) or higher NAD levels. PARP-1 is a known cofactor for NF-kB, hence we investigated whether PARP-1 cleavage influences the inflammatory response. All PARP-1 constructs mimicked PARP-1WT in regards to induction of NF-kB translocation into the nucleus and its increased activation during ischemic challenge. However, expression of PARP-189 construct induced significantly higher NF-kB activity than PARP-1WT; and the same was true for NF-kB-dependent iNOS promoter binding activity. At a protein level, PARP-1UNCL and PARP-124 decreased iNOS (and lower levels of iNOS transcript) and COX-2, and increased Bcl-xL. The increased levels of NF-kB and iNOS transcriptional activities, seen with cytotoxic PARP-189, were accompanied by higher protein expression of COX-2 and iNOS (and higher levels of iNOS transcript) and lower protein expression of Bcl-xL. Taken together, these findings suggest that PARP-1 cleavage products may regulate cellular viability and inflammatory responses in opposing ways during in vitro models of “ischemia”. PMID:24333653

  1. Improved Escherichia coli Bactofection and Cytotoxicity by Heterologous Expression of Bacteriophage ΦX174 Lysis Gene E.

    PubMed

    Chung, Tai-Chun; Jones, Charles H; Gollakota, Akhila; Kamal Ahmadi, Mahmoud; Rane, Snehal; Zhang, Guojian; Pfeifer, Blaine A

    2015-05-04

    Bactofection offers a gene delivery option particularly useful in the context of immune modulation. The bacterial host naturally attracts recognition and cellular uptake by antigen presenting cells (APCs) as the initial step in triggering an immune response. Moreover, depending on the bacterial vector, molecular biology tools are available to influence and/or overcome additional steps and barriers to effective antigen presentation. In this work, molecular engineering was applied using Escherichia coli as a bactofection vector. In particular, the bacteriophage ΦX174 lysis E (LyE) gene was designed for variable expression across strains containing different levels of lysteriolysin O (LLO). The objective was to generate a bacterial vector with improved attenuation and delivery characteristics. The resulting strains exhibited enhanced gene and protein release and inducible cellular death. In addition, the new vectors demonstrated improved gene delivery and cytotoxicity profiles to RAW264.7 macrophage APCs.

  2. 77 FR 1889 - Drivers of CMVs: Restricting the Use of Cellular Phones; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration 49 CFR Part 391 [Docket No. FMCSA-2010-0096] RIN 2126-AB29 Drivers of CMVs: Restricting the Use of Cellular Phones; Technical... Cellular Phones final rule (76 FR 75470) had a clerical error in Sec. 391.15(f)(1) that stated ``paragraph...

  3. Complement-dependent cytotoxicity (CDC) to detect Anti-HLA antibodies: old but gold.

    PubMed

    Saito, Patrícia Keiko; Yamakawa, Roger Haruki; Pereira, Lucieni Christina Marques da Silva; da Silva, Waldir Veríssimo; Borelli, Sueli Donizete

    2014-07-01

    The criterion (gold) standard to detect anti-human leukocyte antigen (HLA) antibodies is the complement-dependent cytotoxicity (CDC) assay. Recently, more sensitive methods have been used for the same purpose. This study analyzed 70 serum samples of patients with end-stage renal disease using CDC, CDC with the addition of anti-human globulin (CDC-AHG), CDC with the addition of dithiothreitol (CDC-DTT), and the recent solid-phase immunoassay (SPI; Labscreen PRA) to detect anti-HLA antibodies. Mean percent panel reactive antibodies (PRA) detected by SPI was 37.5% (±34.2) higher than the values detected by the other methods. Comparative analyses revealed significant difference between CDC and CDC-AHG, and between CDC and SPI (P < 0.0001), but not between CDC-AHG and SPI (P = 0.8026). Although the CDC-AHG method is "old," its performance to detect anti-HLA antibodies in the samples analyzed was comparable to the SPI in the evaluation of percent class I PRA. © 2014 Wiley Periodicals, Inc.

  4. Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae.

    PubMed

    Arteaga Blanco, Luis Andrés; Crispim, Josicelli Souza; Fernandes, Kenner Morais; de Oliveira, Leandro Licursi; Pereira, Monalessa Fábia; Bazzolli, Denise Mara Soares; Martins, Gustavo Ferreira

    2017-10-01

    In the present work, we have investigate the cellular immune response of Galleria mellonella larvae against three strains of the gram-negative bacterium Actinobacillus pleuropneumoniae: low-virulence (780), high-virulence (1022) and the serotype 8 reference strain (R8). Prohemocytes, plasmatocytes, granulocytes, oenocytoids and spherulocytes were distinguished according to their size and morphology, their molecular markers and dye-staining properties and their role in the immune response. Total hemocyte count, differential hemocyte count, lysosome activity, autophagic response, cell viability and caspase-3 activation were determined in circulating hemocytes of naive and infected larvae. The presence of the autophagosome protein LC3 A/B within the circulating hemocytes of G. mellonella was dependent on and related to the infecting A. pleuropneumoniae strain and duration of infection. Hemocytes treated with the high-virulence strain expressed higher levels of LC3 A/B, whereas treatment with the low-virulence strain induced lower expression levels of this protein in the cells. Moreover, our results showed that apoptosis in circulating hemocytes of G. mellonella larvae after exposure to virulent bacterial strains occurred simultaneously with excessive cell death response induced by stress and subsequent caspase-3 activation.

  5. IFNγ enhances cytotoxic efficiency of the cytotoxic T lymphocytes against human glioma cells.

    PubMed

    Shao, Shengwen; Risch, Eric; Burner, Danielle; Lu, Lingeng; Minev, Boris; Ma, Wenxue

    2017-06-01

    Cytotoxic T lymphocytes (CTLs) are a key player in cancer immunotherapies, and MHC class I molecules on the cell surface are crucial for cellular recognition. However, the aberrant expression of MHC class I molecules is frequently found in various malignancies. IFNγ has dual functions in cancer progression, and its effect on tumor immunity is controversial. To investigate whether IFNγ can enhance cytotoxic efficiency of the tumor antigen-specific CTLs, we generated the CTLs using modified human dendritic cells as antigen presenting cells, then studied the activities of CTLs on human leukocyte antigen (HLA)-A2 positive glioma cells treated with, or without IFNγ. The results from both ELISpot and cytotoxicity assays demonstrated that the CTLs recognized and eliminated the HLA-A2 positive glioma cells treated with IFNγ more effectively when compared to the glioma cells deprived of IFNγ treatment. In addition, in vitro experiments showed that the levels of MHC class I molecules were upregulated in all of the HLA-A2 positive glioma cells. Using the publicly accessed TCGA data of low-grade glioma, we found significantly positive associations between IFNγ and both MHC class I molecules and CD8 + T cell activation score (p<0.0001). Furthermore, we found a significantly reduced risk of death in the glioma patients with high T cell activation score in comparison to those with low score (p=0.022). These findings suggest that a clinical application of IFNγ treatment may have potential benefits. Copyright © 2017. Published by Elsevier B.V.

  6. Comparative Proteome of Acetobacter pasteurianus Ab3 During the High Acidity Rice Vinegar Fermentation.

    PubMed

    Wang, Zhe; Zang, Ning; Shi, Jieyan; Feng, Wei; Liu, Ye; Liang, Xinle

    2015-12-01

    As a traditional Asian food for several centuries, vinegar is known to be produced by acetic acid bacteria. The Acetobacter species is the primary starter for vinegar fermentation and has evolutionarily acquired acetic acid resistance, in which Acetobacter pasteurianus Ab3 is routinely used for industrial production of rice vinegar with a high acidity (9 %, w/v). In contrast to the documented short-term and low acetic acid effects on A. pasteurianus, here we investigated the molecular and cellular signatures of long-term and high acetic acid responses by proteomic profiling with bidimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS) analyses. Protein spots of interest were selected based on the threshold ANOVA p value of 0.05 and minimal twofold of differential expression, leading to the identification of 26 proteins that are functionally enriched in oxidoreductase activity, cell membrane, and metabolism. The alterations in protein functioning in respiratory chain and protein denaturation may underlay cellular modifications at the outer membrane. Significantly, we found that at higher acidity fermentation phase, the A. pasteurianus Ab3 cells would adapt to distinct physiological processes from that of an ordinary vinegar fermentation with intermediate acidity, indicating increasing energy requirement and dependency of membrane integrity during the transition of acetic acid production. Together, our study provided new insights into the adaptation mechanisms in A. pasteurianus to high acetic acid environments and yield novel regulators and key pathways during the development of acetic acid resistance.

  7. An Ab Initio Description of the Excitonic Properties of LH2 and Their Temperature Dependence.

    PubMed

    Cupellini, Lorenzo; Jurinovich, Sandro; Campetella, Marco; Caprasecca, Stefano; Guido, Ciro A; Kelly, Sharon M; Gardiner, Alastair T; Cogdell, Richard; Mennucci, Benedetta

    2016-11-10

    The spectroscopic properties of light-harvesting (LH) antennae in photosyntehtic organisms represent a fingerprint that is unique for each specific pigment-protein complex. Because of that, spectroscopic observations are generally combined with structural data from X-ray crystallography to obtain an indirect representation of the excitonic properties of the system. Here, an alternative strategy is presented which goes beyond this empirical approach and introduces an ab initio computational description of both structural and electronic properties and their dependence on the temperature. The strategy is applied to the peripheral light-harvesting antenna complex (LH2) present in purple bacteria. By comparing this model with the one based on the crystal structure, a detailed, molecular level explanation of the absorption and circular dichroism (CD) spectra and their temperature dependence is achieved. The agreement obtained with the experiments at both low and room temperature lays the groundwork for an atomistic understanding of the excitation dynamics in the LH2 system.

  8. Preventing hepatocyte oxidative stress cytotoxicity with Mangifera indica L. extract (Vimang).

    PubMed

    Remirez, Diadelis; Tafazoli, Shahrzad; Delgado, Rene; Harandi, Asghar A; O'Brien, Peter J

    2005-01-01

    Vimang is an aqueous extract of Mangifera indica used in Cuba to improve the quality of life in patients suffering from inflammatory diseases. In the present study we evaluated the effects of Vimang at preventing reactive oxygen species (ROS) formation and lipid peroxidation in intact isolated rat hepatocytes. Vimang at 20, 50 and 100 microg/ml inhibited hepatocyte ROS formation induced by glucose-glucose oxidase. Hepatocyte cytotoxicity and lipid peroxidation induced by cumene hydroperoxide was also inhibited by Vimang in a dose and time dependent manner at the same concentration. Vimang also inhibited superoxide radical formation by xanthine oxidase and hypoxanthine. The superoxide radical scavenging and antioxidant activity of the Vimang extract was likely related to its gallates, catechins and mangiferin content. To our knowledge, this is the first report of cytoprotective antioxidant effects of Vimang in cellular oxidative stress models.

  9. Cytotoxicity of alkylphenols and alkylated non-phenolics in a primary culture of rainbow trout (Onchorhynchus mykiss) hepatocytes.

    PubMed

    Tollefsen, K-E; Blikstad, Camilla; Eikvar, Sissel; Farmen Finne, Eivind; Katharina Gregersen, Inger

    2008-01-01

    Alkylphenols are common aquatic pollutants originating from industrial use of the compounds themselves or as biodegradation products of alkylphenol polyethoxylates. The cytotoxicity of a range of alkylphenols and alkylated non-phenolics were assessed in a primary culture of rainbow trout (Onchorhynchus mykiss) hepatocytes to construct a structure-toxicity relationship for this group of ubiquitous aquatic pollutants. Metabolic inhibition and loss of membrane integrity were used as cytotoxic endpoints through use of the cellular markers Alamar blue and 5-carboxyfluorescein diacetate acetoxymethyl ester, respectively. The results show that cytotoxicity increased with the hydrophobicity of the alkylphenols for compounds with logK(OW)<4.9. Normal chained alkylphenols, branched alkylphenols and multi-substituted alkylphenols with logK(OW)4.9 deviated clearly from this relationship. The alkylphenols displayed greater cytotoxicity than alkylated non-phenolics and it is proposed that most alkylated non-phenolic caused non-polar narcosis (baseline toxicity) whereas the alkylphenols caused polar narcosis. Observations that metabolic inhibition occurred at lower concentrations than loss of membrane integrity for most chemicals indicated that interference with cellular metabolic functions was the main cause of cytotoxicity. Metabolic inhibition corresponded better than loss of membrane integrity to reported acute toxicity to fish, although the in vivo acute toxicity of hydrophobic compounds (logK(OW)>2-3) was clearly underestimated by both endpoints.

  10. Glutamine's protection against cellular injury is dependent on heat shock factor-1.

    PubMed

    Morrison, Angela L; Dinges, Martin; Singleton, Kristen D; Odoms, Kelli; Wong, Hector R; Wischmeyer, Paul E

    2006-06-01

    Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1(+/+)) and knockout (HSF-1(-/-)) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1(+/+) cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1(-/-) cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1(-/-) cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation.

  11. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting.

    PubMed

    Rodríguez-Fanjul, Vanessa; López-Torres, Elena; Mendiola, M Antonia; Pizarro, Ana María

    2018-03-25

    Gold(III) compounds have received increasing attention in cancer research. Three gold complexes of general formula [Au III L]Cl, where L is benzil bis(thiosemicarbazonate), compound 1, benzil bis(4-methyl-3-thiosemicarbazonate), compound 2, or benzil bis(4-cyclohexyl-3-thiosemicarbazonate), compound 3, have been synthesized and fully characterized, including the X-ray crystal structure of compound 3, confirming square-planar geometry around the gold(III) centre. Compound 1 showed moderate cytotoxicity and accumulation in MCF7 breast cancer cells but did not inhibit thioredoxin reductase (TrxR) activity and did not induce reactive oxygen species (ROS) production. Compound 2, the least cytotoxic, was found to be capable of modestly inhibiting TrxR activity and produced low levels of ROS in the MCF7 cell line. The most cytotoxic compound, 3, had the highest cellular accumulation and its distribution pattern showed a clear preference for the cytosol and mitochondria of MCF7 cells. It readily hampered intracellular TrxR activity leading to a dramatic alteration of the cellular redox state and to the induction of cell death. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Cellular changes in motor neuron cell culture produced by cytotoxic cerebrospinal fluid from patients with amyotrophic lateral sclerosis.

    PubMed

    Gomez-Pinedo, U; Yáñez, M; Matías-Guiu, J; Galán, L; Guerrero-Sola, A; Benito-Martin, M S; Vela, A; Arranz-Tagarro, J A; García, A G

    2014-01-01

    The neurotoxic effects of cerebrospinal fluid (CSF) from patients with amyotrophic lateral sclerosis (ALS) have been reported by various authors who have attributed this neurotoxicity to the glutamate in CSF-ALS. Cultures of rat embryonic cortical neurons were exposed to CSF from ALS patients during an incubation period of 24 hours. Optical microscopy was used to compare cellular changes to those elicited by exposure to 100μm glutamate, and confocal microscopy was used to evaluate immunohistochemistry for caspase-3, TNFα, and peripherin. In the culture exposed to CSF-ALS, we observed cells with nuclear fragmentation and scarce or null structural modifications to the cytoplasmic organelles or to plasma membrane maintenance. This did not occur in the culture exposed to glutamate. The culture exposed to CSF-ALS also demonstrated increases in caspase-3, TNFα, and in peripherin co-locating with caspase-3, but not with TNFα, suggesting that TNFα may play an early role in the process of apoptosis. CFS-ALS cytotoxicity is not related to glutamate. It initially affects the nucleus without altering the cytoplasmic membrane. It causes cytoplasmic apoptosis that involves an increase in caspase-3 co-located with peripherin, which is also overexpressed. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  13. Unperturbed Cytotoxic Lymphocyte Phenotype and Function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients

    PubMed Central

    Theorell, Jakob; Bileviciute-Ljungar, Indre; Tesi, Bianca; Schlums, Heinrich; Johnsgaard, Mette Sophie; Asadi-Azarbaijani, Babak; Bolle Strand, Elin; Bryceson, Yenan T.

    2017-01-01

    Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a debilitating disorder linked to diverse intracellular infections as well as physiological stress. Cytotoxic lymphocytes combat intracellular infections. Their function is attenuated by stress. Despite numerous studies, the role of cytotoxic lymphocytes in ME/CFS remains unclear. Prompted by advances in the understanding of defects in lymphocyte cytotoxicity, the discovery of adaptive natural killer (NK) cell subsets associated with certain viral infections, and compelling links between stress, adrenaline, and cytotoxic lymphocyte function, we reassessed the role of cytotoxic lymphocytes in ME/CFS. Forty-eight patients from two independent cohorts fulfilling the Canada 2003 criteria for ME/CFS were evaluated with respect to cytotoxic lymphocyte phenotype and function. Results were compared to values from matched healthy controls. Reproducible differences between patients and controls were not found in cytotoxic lymphocyte numbers, cytotoxic granule content, activation status, exocytotic capacity, target cell killing, or cytokine production. One patient expressed low levels of perforin, explained by homozygosity for the PRF1 p.A91V variant. However, overall, this variant was present in a heterozygous state at the expected population frequency among ME/CFS patients. No single patient displayed any pathological patterns of cellular responses. Increased expansions of adaptive NK cells or deviant cytotoxic lymphocyte adrenaline-mediated inhibition were not observed. In addition, supervised dimensionality reduction analyses of the full, multidimensional datasets did not reveal any reproducible patient/control discriminators. In summary, employing sensitive assays and analyses for quantification of cytotoxic lymphocyte differentiation and function, cytotoxicity lymphocyte aberrances were not found among ME/CFS patients. These assessments of cytotoxic lymphocytes therefore do not provide useful biomarkers

  14. Cytotoxic Helix-Rich Oligomer Formation by Melittin and Pancreatic Polypeptide

    PubMed Central

    Singh, Pradeep K.; Ghosh, Dhiman; Tewari, Debanjan; Mohite, Ganesh M.; Carvalho, Edmund; Jha, Narendra Nath; Jacob, Reeba S.; Sahay, Shruti; Banerjee, Rinti; Bera, Amal K.; Maji, Samir K.

    2015-01-01

    Conversion of amyloid fibrils by many peptides/proteins involves cytotoxic helix-rich oligomers. However, their toxicity and biophysical studies remain largely unknown due to their highly dynamic nature. To address this, we chose two helical peptides (melittin, Mel and pancreatic polypeptide, PP) and studied their aggregation and toxicity. Mel converted its random coil structure to oligomeric helical structure upon binding to heparin; however, PP remained as helix after oligomerization. Interestingly, similar to Parkinson’s associated α-synuclein (AS) oligomers, Mel and PP also showed tinctorial properties, higher hydrophobic surface exposure, cellular toxicity and membrane pore formation after oligomerization in the presence of heparin. We suggest that helix-rich oligomers with exposed hydrophobic surface are highly cytotoxic to cells irrespective of their disease association. Moreover as Mel and PP (in the presence of heparin) instantly self-assemble into stable helix-rich amyloidogenic oligomers; they could be represented as models for understanding the biophysical and cytotoxic properties of helix-rich intermediates in detail. PMID:25803428

  15. Protective effect of Aronia melanocarpa fruit juice in a model of cisplatin-induced cytotoxicity in vitro.

    PubMed

    Valcheva-Kuzmanova, Stefka V; Beronova, Anna B; Momekov, Georgi Tz

    2013-01-01

    The aim of the present study was to investigate the protective potential of Aronia melanocarpa fruit juice in a model of cisplatin-induced cytotoxicity in the human embryonal kidney cell line HEK293T. The cellular viability was assessed using the MTT-dye reduction assay based on the reduction of the yellow tetrazolium dye MTT to a violet formazan product via the mitochondrial succinate dehydrogenase in viable cells. Cisplatin was applied in various concentrations either alone or after a 24-hour pretreatment of the cells with Aronia melanocarpa fruit juice at 0.1 and 0.05 mg/ml. The half maximal inhibitory concentrations (IC50 values) were derived from the concentration-response curves to cisplatin. Applied alone, the anticancer drug caused a prominent decrease of cellular viability with IC50 8.3 +/- 1.1 microM. The juice proved to significantly ameliorate the in vitro cytotoxicity of the platinum drug, in a concentration-dependent manner. The pretreatment of the cells with Aronia melanocarpa fruit juice resulted in a significant increase (p < 0.001) of IC50 for cisplatin to 25.1 +/- 2.7 microM (at 0.05 mg/ml) and 34.4 +/- 3.4 microM (at 0.1 mg/ml), respectively. The protective effect of Aronia melanocarpa fruit juice observed in this study is most probably due to its well appreciated antioxidant activity as oxidative stress plays a central role in the toxic effects of cisplatin.

  16. Overexpression of the Anthocyanidin Synthase Gene in Strawberry Enhances Antioxidant Capacity and Cytotoxic Effects on Human Hepatic Cancer Cells.

    PubMed

    Giampieri, Francesca; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Mazzoni, Luca; Capocasa, Franco; Sabbadini, Silvia; Alvarez-Suarez, Josè M; Afrin, Sadia; Rosati, Carlo; Pandolfini, Tiziana; Molesini, Barbara; Sánchez-Sevilla, José F; Amaya, Iraida; Mezzetti, Bruno; Battino, Maurizio

    2018-01-24

    Food fortification through the increase and/or modulation of bioactive compounds has become a major goal for preventing several diseases, including cancer. Here, strawberry lines of cv. Calypso transformed with a construct containing an anthocyanidin synthase (ANS) gene were produced to study the effects on anthocyanin biosynthesis, metabolism, and transcriptome. Three strawberry ANS transgenic lines (ANS L5, ANS L15, and ANS L18) were analyzed for phytochemical composition and total antioxidant capacity (TAC), and their fruit extracts were assessed for cytotoxic effects on hepatocellular carcinoma. ANS L18 fruits had the highest levels of total phenolics and flavonoids, while those of ANS L15 had the highest anthocyanin concentration; TAC positively correlated with total polyphenol content. Fruit transcriptome was also specifically affected in the polyphenol biosynthesis and in other related metabolic pathways. Fruit extracts of all lines exerted cytotoxic effects in a dose/time-dependent manner, increasing cellular apoptosis and free radical levels and impairing mitochondrial functionality.

  17. [Find your way in the jungle of mAbs].

    PubMed

    Watier, H

    2017-09-01

    The rapidly increasing number of approved monoclonal antibodies (mAbs) and the huge number of mAbs in clinical development are a matter of concern for who wants to easily identify targets, indications, mechanisms of action and possible adverse effects. The current nomenclature being of limited interest, simple rationales will be presented for helping practitioners in rapidly classify mAbs depending on their structure-pharmacology relationship and in evaluating their potential effects, particularly in transfusion medicine. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Hydrodynamic size-dependent cellular uptake of aqueous QDs probed by fluorescence correlation spectroscopy.

    PubMed

    Dong, Chaoqing; Irudayaraj, Joseph

    2012-10-11

    Aqueous quantum dots (QDs) directly synthesized with various thiol ligands have been investigated as imaging probes in living cells. However, the effect of the surface chemistry of these ligands on QDs' cellular uptakes and their intracellular fate remains poorly understood. In this work, four CdTe QDs were directly synthesized under aqueous conditions using four different thiols as stabilizers and their interactions with cells were investigated. Fluorescence correlation spectroscopy (FCS), X-ray photoelectron spectroscopy (XPS), and zeta potential measurements on QDs primarily show that the surface structure of these QDs is highly dependent on the thiol ligands used in the preparation of QDs' precursors, including its layer thicknesses, densities, and surface charges. Subsequently, FCS integrated with the maximum-entropy-method-based FCS (MEMFCS) was used to investigate the concentration distribution and dynamics of these QDs in living A-427 cells. Our findings indicate that QDs' surface characteristics affect cell membrane adsorption and subsequent internalization. More critically, we show that the cellular uptake of aqueous QDs is dependent on their hydrodynamic diameter and might have the potential to escape trapped environments to accumulate in the cytoplasm.

  19. Modulation of innate and adaptive cellular immunity relevant to HIV-1 vaccine design by seminal plasma.

    PubMed

    Selva, Kevin J; Kent, Stephen J; Parsons, Matthew S

    2017-01-28

    Mucosal exposure to HIV-1 infection generally occurs in the presence of semen. Immunomodulation by seminal plasma is well described in the reproductive biology literature. Little is known, however, about the impact of seminal plasma on innate and adaptive anti-HIV-1 cellular immunity. The study investigated the effects of seminal plasma on immune responses considered important for prophylactic HIV-1 vaccine development, namely innate and adaptive cellular immunity mediated by natural killer (NK) cells and T cells, respectively. The ability of seminal plasma to modulate direct, antibody-dependent and cytokine-stimulated NK cell activation was assessed utilizing intracellular cytokine staining. Direct and antibody-dependent cellular cytotoxicity was assessed using lactate dehydrogenase release assays. The effects of seminal plasma on T-cell activation upon stimulation with staphylococcus enterotoxin B or HIV-1 Gag peptides were assessed by intracellular cytokine staining. The impact of seminal plasma on redirected cytolysis mediated by T cells was measured using lactate dehydrogenase release assays. Both direct and antibody-dependent NK cell activation were dramatically impaired by the presence of either HIV-1-uninfected or HIV-1-infected seminal plasma in a dose-dependent manner. Additionally, seminal plasma suppressed both direct and antibody-dependent NK cell-mediated cytolysis, including anti-HIV-1 antibody-dependent cytolysis of gp120-pulsed CEM.NKr-CCR5 cells. Finally, seminal plasma attenuated both HIV-1 Gag-specific and staphylococcus enterotoxin B-induced CTL activation. Semen contains potent immunosuppressors of both NK cell and CD8 T-cell-mediated anti-HIV-1 immune responses. This could impede attempts to provide vaccine-induced immunity to HIV-1.

  20. Unexpected effects of gene deletion on mercury interactions with the methylation-deficient mutant hgcAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hui; Hurt, Jr., Richard Ashley; Johs, Alexander

    2014-01-01

    The hgcA and hgcB gene pair is essential for mercury (Hg) methylation by certain anaerobic bacteria,1 but little is known about how deletion of hgcAB affects cell surface interactions and intracellular uptake of Hg. Here, we compare hgcAB mutants with the wild-type (WT) strains of both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 and observe differences in Hg redox transformations, adsorption, and uptake in laboratory incubation studies. In both strains, deletion of hgcAB increased the reduction of Hg(II) but decreased the oxidation of Hg(0) under anaerobic conditions. The measured cellular thiol content in hgcAB mutants was lower than the WT,more » accounting for decreased adsorption and uptake of Hg. Despite the lack of methylation activity, Hg uptake by the hgcAB continued, albeit at a slower rate than the WT. These findings demonstrate that deletion of the hgcAB gene not only eliminates Hg methylation but also alters cell physiology, resulting in changes to Hg redox reactions, sorption, and uptake by cells.« less

  1. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Seishiro, E-mail: seishiro@nies.go.j; Fujitani, Yuji; Furuyama, Akiko

    Carbon nanotubes (CNT) are cytotoxic to several cell types. However, the mechanism of CNT toxicity has not been fully studied, and dosimetric analyses of CNT in the cell culture system are lacking. Here, we describe a novel, high throughput method to measure cellular uptake of CNT using turbimetry. BEAS-2B, a human bronchial epithelial cell line, was used to investigate cellular uptake, cytotoxicity, and inflammatory effects of multi-walled CNT (MWCNT). The cytotoxicity of MWCNT was higher than that of crocidolite asbestos in BEAS-2B cells. The IC{sub 50} of MWCNT was 12 {mu}g/ml, whereas that of asbestos (crocidolite) was 678 {mu}g/ml. Overmore » the course of 5 to 8 h, BEAS-2B cells took up 17-18% of the MWCNT when they were added to the culture medium at a concentration of 10 {mu}g/ml. BEAS-2B cells were exposed to 2, 5, or 10 {mu}g/ml of MWCNT, and total RNA was extracted for cytokine cDNA primer array assays. The culture supernatant was collected for cytokine antibody array assays. Cytokines IL-6 and IL-8 increased in a dose dependent manner at both the mRNA and protein levels. Migration inhibitory factor (MIF) also increased in the culture supernatant in response to MWCNT. A phosphokinase array study using lysates from BEAS-2B cells exposed to MWCNT indicated that phosphorylation of p38, ERK1, and HSP27 increased significantly in response to MWCNT. Results from a reporter gene assays using the NF-{kappa}B or AP-1 promoter linked to the luciferase gene in transiently transfected CHO-KI cells revealed that NF-{kappa}B was activated following MWCNT exposure, while AP-1 was not changed. Collectively, MWCNT activated NF-{kappa}B, enhanced phosphorylation of MAP kinase pathway components, and increased production of proinflammatory cytokines in human bronchial epithelial cells.« less

  2. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  3. Generation of anti-porcine CD69 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity by flow cytometric analysis.

    PubMed

    Hayashi, Yumiko; Okutani, Mie; Ogawa, Shohei; Tsukahara, Takamitsu; Inoue, Ryo

    2018-05-01

    T cell-mediated cellular immunity and humoral immunity are equally important for the prevention of diseases. To assess activation of human and mouse cellular immunity, early activation markers of lymphocytes are often used in flow cytometry targeting expression of CD69 molecules. Response of humoral immunity against infection or vaccination has been well investigated in pigs, but that of cellular immunity has been largely neglected due to lack of direct evaluation tools. Thus, in pig research a proper assay of antibody reacted with porcine CD69 is still unavailable. In the present study, two anti-porcine CD69 mAb-producing mouse hybridomas, 01-14-22-51 (IgG2b-κ) and 01-22-44-102 (IgG2a-κ), both showing fine reactivity with phorbol 12-myristate 13-acetate (PMA) and ionomycin-stimulated porcine peripheral blood lymphocytes in flow cytometry, were established. When porcine peripheral blood lymphocytes were activated with PMA and ionomycin and analyzed by flow cytometry, it was found that both mAbs generated in this study stained about 70% of lymphocytes. In contrast, after an identical procedure, only 5% and 13.5% of lymphocytes were stained with anti-interferon-γ mAb and anti-tumor necrosis factor-α mAb, respectively. These results indicate that evaluation of cellular immunity activation turns more sensitive after using our newly generated mAbs. © 2018 Japanese Society of Animal Science.

  4. SlpE is a calcium-dependent cytotoxic metalloprotease associated with clinical isolates of Serratia marcescens.

    PubMed

    Stella, Nicholas A; Callaghan, Jake D; Zhang, Liang; Brothers, Kimberly M; Kowalski, Regis P; Huang, Jean J; Thibodeau, Patrick H; Shanks, Robert M Q

    Serralysin-like proteases are found in a wide variety of bacteria. These metalloproteases are frequently implicated in virulence and are members of the widely conserved RTX-toxin family. We identified a serralysin-like protease in the genome of a clinical isolate of Serratia marcescens that is highly similar to the canonical serralysin protein, PrtS. This gene was named serralysin-like protease E, SlpE, and was found in the majority (67%) of tested clinical isolates, but was absent from most tested non-clinical isolates including the insect pathogen and reference S. marcescens strain Db11. Purified recombinant SlpE exhibited calcium-dependent protease activity similar to metalloproteases PrtS and SlpB. Induction of slpE in the low-protease-producing S. marcescens strain PIC3611 highly elevated extracellular protease activity, and extracellular secretion required the lipD type 1 secretion system gene. Transcription of slpE was highly reduced in an eepR transcription factor mutant. Mutation of the slpE gene in a highly proteolytic clinical isolate reduced its protease activity, and evidence suggests that SlpE confers cytotoxicity of S. marcescens to the A549 airway carcinoma cell line. Together, these data reveal SlpE to be an EepR-regulated cytotoxic metalloprotease associated with clinical isolates of an important opportunistic pathogen. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells

    PubMed Central

    Romain, Gabrielle; Senyukov, Vladimir; Rey-Villamizar, Nicolas; Merouane, Amine; Kelton, William; Liadi, Ivan; Mahendra, Ankit; Charab, Wissam; Georgiou, George; Roysam, Badrinath; Lee, Dean A.

    2014-01-01

    The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells. NK cells encountering targets coated with DLE-HuM195 induce rapid target cell apoptosis by promoting simultaneous conjugates to multiple target cells and induce apoptosis in twice the number of target cells within the same period as the wild-type mAb. Enhanced target killing was also associated with increased frequency of NK cells undergoing apoptosis, but this effect was donor-dependent. Antibody-based therapies targeting tumor antigens will benefit from a better understanding of cell-mediated tumor elimination, and our work opens further opportunities for the therapeutic targeting of CD33 in the treatment of acute myeloid leukemia. PMID:25232058

  6. Pharmacologic modification of the cytotoxic effects of cadmium in LLC-PK sub 1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, D.R.; Kahan, B.S.; Niewenhuis, R.J.

    1989-02-09

    Recent results from our laboratories have shown that exposure to cadmium causes LLC-PK{sub 1} cells to shrink, detach and assume a spherical shape. The purpose of the present studies was to determine whether various pharmacologic agents can reduce or prevent these cytotoxic effects of Cd{sup 2+}. Confluent monolayers of LLC-PK{sub 1} cells were incubated with the drugs of interest (50 microM final concentration) for 2 hours. CadCl{sub 2} (final concentration = 75 microM) was then added and the cells were incubated for another 20 hours. Morphologic changes were assessed qualitatively by viewing the cells with a phase contrast microscope. Themore » extent of Cd{sup 2+}-induced cellular damage was also quantified by staining the cells that remained on the growing surface with methylene blue, solubilizing the stained cells, and determining the absorbance at 660 nm. The results showed that several drugs, particularly the calmodulin antagonists trifluoperazine chlorpromazine, and the calcium channel blocker verapamil, significant reduced the severity of Cd{sup 2+}-induced cytotoxicity. By contrast, a variety of other agents, such as chlorpromazine sulfoxide, trifluoperazine sulfoxide, phenytoin and zinc, had no such protective effect. These findings indicate that Ca{sup 2+} antagonists can attenuate the cytotoxic effects of Cd{sup 2+} and that Cd{sup 2+} may produce some of its effects by activating Ca{sup 2+} -dependent systems.« less

  7. Cytotoxicity evaluation of a copaiba oil-based root canal sealer compared to three commonly used sealers in endodontics

    PubMed Central

    Garrido, Angela Delfina Bittencourt; de Cara, Sueli Patricia Harumi Miyagi; Marques, Marcia Martins; Sponchiado, Emílio Carlos; Garcia, Lucas da Fonseca Roberti; de Sousa-Neto, Manoel Damião

    2015-01-01

    Background: The constant development of new root canal sealers has allowed the solution of a large number of clinical cases in endodontics, however, cytotoxicity of such sealers must be tested before their validation as filling materials. The aim of this study was to evaluate the cytotoxic effect of a new Copaiba oil-based root canal sealer (Biosealer [BS]) on osteoblast-like Osteo-1 cells. Materials and Methods: The experimental groups were formed according to the culture medium conditioned with the tested sealers, as follows: Control group (CG) (culture medium without conditioning); Sealer 26 (S26) - culture medium + S26; Endofill (EF) - culture medium + EF; AH Plus (AHP) - culture medium + AHP; and BS - culture medium + BS (Copaiba oil-based sealer). The conditioned culture medium was placed in contact with 2 × 104 cells cultivated on 60 mm diameter Petri dishes for 24 h. Then, hemocytometer count was performed to evaluate cellular viability, using Trypan Blue assay. The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for cellular viability were statistically analyzed (1-way ANOVA, Tukey's test - P < 0.05), with a significance level of 5%. Results: S26, EF and AHP presented decreased cellular viability considerably, with statistical significance compared with CG (P < 0.05). BS maintained cellular viability similar to CG (P > 0.05). Conclusion: The Copaiba oil-based root canal sealer presented promising results in terms of cytotoxicity which indicated its usefulness as a root canal sealer. PMID:25878676

  8. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    PubMed Central

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives

  9. Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Paik Wah; Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur; Abdul Hamid, Zariyantey, E-mail: zyantey@ukm.edu.my

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24 h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-formingmore » unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e{sup +} cells but reduced the total counts of Sca-1{sup +}, CD11b{sup +}, Gr-1{sup +}, and CD45{sup +} cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5 μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12 μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage. - Highlights: • We examine 1,4-BQ toxicity targeting mouse hematopoietic cell lineages. • 1,4-BQ induces concentration-dependent cytotoxicity in bone marrow (BM) cells. • 1,4-BQ shows lineage-related toxicity on hematopoietic stem and

  10. Role of glycogen synthase kinase 3 beta (GSK3beta) in mediating the cytotoxic effects of the histone deacetylase inhibitor trichostatin A (TSA) in MCF-7 breast cancer cells.

    PubMed

    Alao, John P; Stavropoulou, Alexandra V; Lam, Eric W-F; Coombes, R Charles

    2006-10-03

    Histone deacetylase inhibitors (HDACIs) have been shown to induce apoptotic and autophagic cell death in vitro and in vivo. The molecular mechanisms that underlie these cytotoxic effects are not yet clearly understood. Recently, HDACIs were shown to induce Akt dephosphorylation by disrupting HDAC-protein phosphatase 1 (PP1) complexes. This disruption results in the increased association of PP1 with Akt, resulting in the dephosphorylation and consequent inactivation of the kinase. Akt enhances cellular survival through the phosphorylation-dependent inhibition of several pro-apoptotic proteins. Akt is an important negative regulator of GSK3beta, a kinase that has been shown to regulate apoptosis in response to various stimuli. In the present study, we investigated the role of GSK3beta in mediating the cytotoxic effects in MCF-7 breast cancer cells treated with trichostatin A (TSA), a prototype HDACI. We show that TSA induces Akt dephosphorylation in a PP1-dependent manner, resulting in activation of GSK3beta in MCF-7 cells. Similarly, knockdown of HDAC1 and-2 by small interfering RNA (siRNA) resulted in the dephosphorylation of Akt and GSK3beta. Selective inhibition of GSK3beta attenuated TSA induced cytotoxicity and resulted in enhanced proliferation following drug removal. Our findings identify GSK3beta as an important mediator of TSA-induced cytotoxicity in MCF-7 breast cancer cells.

  11. Memories of AB

    NASA Astrophysics Data System (ADS)

    Vaks, V. G.

    2013-06-01

    I had the good fortune to be a student of A. B. Migdal - AB, as we called him in person or in his absence - and to work in the sector he headed at the Kurchatov Institute, along with his other students and my friends, including Vitya Galitsky, Spartak Belyayev and Tolya Larkin. I was especially close with AB in the second half of the 1950s, the years most important for my formation, and AB's contribution to this formation was very great. To this day, I've often quoted AB on various occasions, as it's hard to put things better or more precisely than he did; I tell friends stories heard from AB, because these stories enhance life as AB himself enhanced it; my daughter is named Tanya after AB's wife Tatyana Lvovna, and so on. In what follows, I'll recount a few episodes in my life in which AB played an important or decisive role, and then will share some other memories of AB...

  12. Single N277A substitution in C2 of simian immunodeficiency virus envelope influences vaccine-elicited CD4i neutralizing and anti-V2 antibody responses.

    PubMed

    Tang, Xian; Guo, Jia; Cheng, Lin; Sun, Caijun; Liu, Li; Zuo, Teng; Wang, Hui; Chen, Ling; Zhang, Linqi; Chen, Zhiwei

    2017-05-02

    An effective HIV vaccine remains elusive, and immunogens capable of eliciting protective host humoral immunity have not yet been identified. Although HIV/SIV infections result in the abundant production of CD4-induced (CD4i) antibodies (Abs), these Abs are not protective due to steric restrictions following gp120 binding to CD4 on target cells. Here we report that both DNA- and vaccinia-based vaccines encoding SIV mac239 gp160 readily elicited high levels of CD4i Abs in experimental animals. We identified a highly conserved N-linked glycosylation site N277 in the C2 region which strongly affected the immunogenicity of the CD4i Ab domain. Moreover, a single N277A substitution significantly enhanced the immunogenicity of the V2 domain yielding higher titers and frequency of anti-V2 Ab responses as determined by ELISA and yeast antigen display mapping, respectively. Importantly, immune sera elicited by the N277A-mutated gp160 exhibited elevated antibody-dependent cellular cytotoxicity (ADCC) activity. ADCC activity correlated positively with the anti-V2 Ab titer yet, inversely with CD4i Ab titer. Thus, we identified a determinant of the CD4i domain that might affect vaccine-elicited anti-V2 Ab and ADCC responses to SIV mac239 . Our findings may have implications for design of immunogens to direct B cell recognition in the development of an Ab-based HIV vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Magnetic nanoparticle hyperthermia cancer treatment efficacy dependence on cellular and tissue level particle concentration and particle heating properties

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Misra, Adwiteeya; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. J.

    2015-03-01

    The use of nanotechnology for the treatment of cancer affords the possibility of highly specific tumor targeting and improved treatment efficacy. Iron oxide magnetic nanoparticles (IONPs) have demonstrated success as an ablative mono-therapy and targetable adjuvant therapy. However, the relative therapeutic value of intracellular vs. extracellular IONPs remains unclear. Our research demonstrates that both extracellular and intracellular IONPs generate cytotoxicity when excited by an alternating magnetic field (AMF). While killing individual cells via intracellular IONP heating is an attractive goal, theoretical models and experimental results suggest that this may not be possible due to limitations of cell volume, applied AMF, IONP concentration and specific absorption rate (SAR). The goal of this study was to examine the importance of tumor size (cell number) with respect to IONP concentration. Mouse mammary adenocarcinoma cells were incubated with IONPs, washed, spun into different pellet sizes (0.1, 0.5 and 2 million cells) and exposed to AMF. The level of heating and associated cytotoxicity depended primarily on the number of IONPs /amount Fe per cell pellet volume and the relative volume of the cell pellet. Specifically, larger cell pellets achieved greater relative cytotoxicity due to greater iron amounts, close association and subsequently higher temperatures.

  14. Asbestos-induced endothelial cell activation and injury. Demonstration of fiber phagocytosis and oxidant-dependent toxicity.

    PubMed

    Garcia, J G; Gray, L D; Dodson, R F; Callahan, K S

    1988-10-01

    Vascular endothelial cell injury is important in the development of a variety of chronic interstitial lung disorders. However, the involvement of such injury in the inflammatory response associated with the inhalation of asbestos fibers is unclear and the mechanism of asbestos fiber cytotoxicity remains unknown. In the present study, human umbilical vein endothelial cells were challenged with amosite asbestos and several parameters of cellular function were examined. Electron microscopic examination revealed that endothelial cell exposure to asbestos resulted in active phagocytosis of these particulates. Biochemical evidence of dose-dependent asbestos-mediated endothelial cell activation was indicated by increased metabolism of arachidonic acid. For example, amosite asbestos (500 micrograms/ml) produced a ninefold increase in prostacyclin (PGI2) levels over those levels in non-exposed cells. Incubation of human endothelial cells with asbestos fibers induced specific 51Cr release in both a dose- and time-dependent fashion indicative of cellular injury. Injury induced by amosite asbestos was not significantly attenuated by treatment of the endothelial cell monolayer with either the iron chelator deferoxamine, which prevents hydroxyl radical (.OH) formation, or by the superoxide anion (O2-) scavenger, superoxide dismutase. However, significant dose-dependent protection was observed with the hydrogen peroxide (H2O2) scavenger, catalase. Chelation of elemental iron present within amosite asbestos fibers by deferoxamine produced a 33% reduction in asbestos cytotoxicity, suggesting a potential role for hydroxyl radical-mediated injury via the iron-catalyzed Haber-Weiss reaction.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect

    PubMed Central

    DiLillo, David J.; Ravetch, Jeffrey V.

    2015-01-01

    Summary Passively-administered anti-tumor mAbs rapidly kill tumor targets via FcγR-mediated cytotoxicity (ADCC), a short-term process. However, anti-tumor mAb treatment can also induce a vaccinal effect, in which mAb-mediated tumor death induces a long-term anti-tumor cellular immune response. To determine how such responses are generated, we utilized a murine model of an anti-tumor vaccinal effect against a model neoantigen. We demonstrate that FcγR expression by CD11c+ antigen-presenting cells is required to generate anti-tumor T cell responses upon ADCC-mediated tumor clearance. Using FcγR-humanized mice, we demonstrate that anti-tumor huIgG1 must engage hFcγRIIIA on macrophages to mediate ADCC, but also engage hFcγRIIA, the sole hFcγR expressed by human DCs, to generate a potent vaccinal effect. Thus, while next-generation anti-tumor antibodies with enhanced binding to only hFcγRIIIA are now in clinical use, ideal anti-tumor antibodies must be optimized for both cytotoxic effects as well as hFcγRIIA engagement on DCs to stimulate long-term anti-tumor cellular immunity. PMID:25976835

  16. Evaluation of Cytotoxic Responses Caused by Selected Organophosphorus Esters in Chick Sympathetic Ganglia Cultures

    PubMed Central

    Obersteiner, E. J.; Sharma, R. P.

    1978-01-01

    Ten day old chick sympathetic ganglia cultured in a microslide assembly were treated with a selected group of organophosphate pesticides to evaluate their cytotoxicity ranges, and the usefulness of such a model for screening pesticides. Examination by phase contrast and light microscopy for chemically-induced morphological alteration of nerve fibers, glial cells and neurons provided the criteria for quantitation and assessment of the toxic effects. Concentrations that produced half-maximal effects ranged from 1 × 10-6M (severely toxic) for methylparathian, diazinon, paraoxon, mevinphos, diisopropylfluorophosphate, tri-o-tolyl phosphate and its mixed isomers to a 1 × 10-3M (intermediate) for malathion, leptophos, coumaphos, mono- and dicrotophos. Some or no effects were evident at 1 × 102-M for O'ethyl-O-p-nitrophenyl phenyl phosphonothioate, tri-m-tolylphosphate, chlorpyriphos and triphenyl phosphate. In all instances, nerve fibers were more sensitive than neurons or glial cells to insecticides. All cellular growth was inhibited at 1 × 10-2M (except triphenyl phosphate). Below 1 x 10-7M, no inhibitory effects were evident. The secondary abnormalities included decreased cellular migration, diffuse cellular growth pattern, increased vacuolization, nerve fiber swelling and cellular degeneration. The cytotoxic effects of these chemicals do not appear to be related to in vivo toxicity or cholinesterase inhibition potential. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:565668

  17. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles

    PubMed Central

    Pan-In, Porntip; Wanichwecharungruang, Supason; Hanes, Justin; Kim, Anthony J

    2014-01-01

    Garcinia mangostana Linn extract (GME) is a natural product that has received considerable attention in cancer therapy, and has the potential to reduce side effects of chemotherapeutics and improve efficacy. We formulated GME-encapsulated ethyl cellulose (GME-EC) and a polymer blend of ethyl cellulose and methyl cellulose (GME-EC/MC) nanoparticles. We achieved high drug-loading and encapsulation efficiency using a solvent-displacement method with particle sizes around 250 nm. Cellular uptake and accumulation of GME was higher for GME-encapsulated nanoparticles compared to free GME. In vitro cytotoxicity analysis showed effective anticancer activity of GME-EC and GME-EC/MC nanoparticles in HeLa cells in a dose-dependent manner. GME-EC/MC nanoparticles showed approximately twofold-higher anticancer activity compared to GME-EC nanoparticles, likely due to their enhanced bioavailability. GME-encapsulated nanoparticles primarily entered HeLa cells by clathrin-mediated endocytosis and trafficked through the endolysosomal pathway. As far as we know, this is the first report on the cellular uptake and intracellular trafficking mechanism of drug-loaded cellulose-based nanoparticles. In summary, encapsulation of GME using cellulose-derivative nanoparticles – GME-EC and GME-EC/MC nanoparticles – successfully improved the bioavailability of GME in aqueous solution, enhanced cellular uptake, and displayed effective anticancer activity. PMID:25125977

  18. HicAB toxin-antitoxin complex from Escherichia coli: expression and crystallization.

    PubMed

    Yang, Jingsi; Xu, Bingshuang; Gao, Zengqiang; Zhou, Ke; Liu, Peng; Dong, Yuhui; Zhang, Jianjun; Liu, Quansheng

    2017-09-01

    Toxin-antitoxin (TA) systems are widespread in both bacteria and archaea, where they enable cells to adapt to environmental cues. TA systems play crucial roles in various cellular processes, such as programmed cell death, cell growth, persistence and virulence. Here, two distinct forms of the type II toxin-antitoxin complex HicAB were identified and characterized in Escherichia coli K-12, and both were successfully overexpressed and purified. The two proposed forms, HicAB L and HicAB S , differed in the presence or absence of a seven-amino-acid segment at the N-terminus in the antitoxin HicB. The short form HicAB S readily crystallized under the conditions 0.1 M Tris-HCl pH 8.0, 20%(w/v) PEG 6000, 0.2 M ammonium sulfate. The HicAB S crystal diffracted and data were collected to 2.5 Å resolution. The crystal belonged to space group I222 or I2 1 2 1 2 1 , with unit-cell parameters a = 67.04, b = 66.31, c = 120.78 Å. Matthews coefficient calculation suggested the presence of two molecules each of HicA and HicB S in the asymmetric unit, with a solvent content of 55.28% and a Matthews coefficient (V M ) of 2.75 Å 3  Da -1 .

  19. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes.

    PubMed

    El Sayed Aly, Mohamed Ramadan; Abd El Razek Fodah, Hamadah Hamadah; Saleh, Sherif Yousef

    2014-04-09

    Four sets of rationally designed chalcones were prepared for evaluation of their antiobesity, antioxidant and cytotoxicity activities. These sets include nine oleoyl chalcones as mimics of oleoyl estrone, three monohydroxy chalcones (chalcone ligands), Schiff base-derived chalcones and four copper as well as zinc complexes. Oleoyl chalcones 4d, 4e and particularly 6a as an isosteric isomer of oleoyl estrone, were as active as Orlistat on weight loss and related metabolic parameters using male SD rats in vivo. Chalcone ligands 10a-c and Schiff base-derived chalcones 11 and 14a,b were weakly antioxidants, while, the copper and zinc complexes 15a-d were good antioxidants with zinc chelates 15b,d being more active than their copper analogues 15a,cin vitro. Compounds 10c and 14a showed good cytotoxicity activities as Doxorubicin against PC3 cancer cell line in vitro, while, the copper complex 15c showed promising activity with IC₅₀ value of 5.95 μM. The estimated IC₅₀ value for Doxorubicin was 8.7 μM. Chalcones 14a,b are bifunctional probes for potential investigations in cancer diagnosis and radiotherapy by complexation with Gd(3+) or metal radioisotopes followed by posttranslation of Shiga toxin B-subunits that target globotriosyl ceramide expressing cancer cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Identification of genomic regions contributing to etoposide-induced cytotoxicity

    PubMed Central

    Bleibel, Wasim K.; Duan, Shiwei; Huang, R. Stephanie; Kistner, Emily O.; Shukla, Sunita J.; Wu, Xiaolin; Badner, Judith A.

    2009-01-01

    Etoposide is routinely used in combination based chemotherapy for testicular cancer and small-cell lung cancer; however, myelosuppression, therapy-related leukemia and neurotoxicity limit its utility. To determine the genetic contribution to cellular sensitivity to etoposide, we evaluated cell growth inhibition in Centre d’ Etude du Polymorphisme Humain lymphoblastoid cell lines from 24 multi-generational pedigrees (321 samples) following treatment with 0.02–2.5 µM etoposide for 72 h. Heritability analysis showed that genetic variation contributes significantly to the cytotoxic phenotypes (h2 = 0.17–0.25, P = 4.9 × 10−5−7.3 × 10−3). Whole genome linkage scans uncovered 8 regions with peak LOD scores ranging from 1.57 to 2.55, with the most significant signals being found on chromosome 5 (LOD = 2.55) and chromosome 6 (LOD = 2.52). Linkage-directed association was performed on a subset of HapMap samples within the pedigrees to find 22 SNPs significantly associated with etoposide cytotoxicity at one or more treatment concentrations. UVRAG, a DNA repair gene, SEMA5A, SLC7A6 and PRMT7 are implicated from these unbiased studies. Our findings suggest that susceptibility to etoposide-induced cytotoxicity is heritable and using an integrated genomics approach we identified both genomic regions and SNPs associated with the cytotoxic phenotypes. PMID:19089452

  1. Identification of genomic regions contributing to etoposide-induced cytotoxicity.

    PubMed

    Bleibel, Wasim K; Duan, Shiwei; Huang, R Stephanie; Kistner, Emily O; Shukla, Sunita J; Wu, Xiaolin; Badner, Judith A; Dolan, M Eileen

    2009-03-01

    Etoposide is routinely used in combination-based chemotherapy for testicular cancer and small-cell lung cancer; however, myelosuppression, therapy-related leukemia and neurotoxicity limit its utility. To determine the genetic contribution to cellular sensitivity to etoposide, we evaluated cell growth inhibition in Centre d' Etude du Polymorphisme Humain lymphoblastoid cell lines from 24 multi-generational pedigrees (321 samples) following treatment with 0.02-2.5 microM etoposide for 72 h. Heritability analysis showed that genetic variation contributes significantly to the cytotoxic phenotypes (h (2) = 0.17-0.25, P = 4.9 x 10(-5)-7.3 x 10(-3)). Whole genome linkage scans uncovered 8 regions with peak LOD scores ranging from 1.57 to 2.55, with the most significant signals being found on chromosome 5 (LOD = 2.55) and chromosome 6 (LOD = 2.52). Linkage-directed association was performed on a subset of HapMap samples within the pedigrees to find 22 SNPs significantly associated with etoposide cytotoxicity at one or more treatment concentrations. UVRAG, a DNA repair gene, SEMA5A, SLC7A6 and PRMT7 are implicated from these unbiased studies. Our findings suggest that susceptibility to etoposide-induced cytotoxicity is heritable and using an integrated genomics approach we identified both genomic regions and SNPs associated with the cytotoxic phenotypes.

  2. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals.

    PubMed

    Holland, Jason P; Giansiracusa, Jeffrey H; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R

    2009-04-07

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [(60/62/64)Cu(II)ATSM] and [(60/62/64)Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO(2)-dependent in vitro cellular uptake and retention of [(64)Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k(1) = 9.8 +/- 0.59 x 10(-4) s(-1) and k(2) = 2.9 +/- 0.17 x 10(-3) s(-1)), intracellular reduction (k(3) = 5.2 +/- 0.31 x 10(-2) s(-1)), reoxidation (k(4) = 2.2 +/- 0.13 mol(-1) dm(3) s(-1)) and proton-mediated ligand dissociation (k(5) = 9.0 +/- 0.54 x 10(-5) s(-1)). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have also been conducted. NADH turnover frequencies are found to be dependent on the

  3. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Holland, Jason P.; Giansiracusa, Jeffrey H.; Bell, Stephen G.; Wong, Luet-Lok; Dilworth, Jonathan R.

    2009-04-01

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [60/62/64Cu(II)ATSM] and [60/62/64Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO2-dependent in vitro cellular uptake and retention of [64Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k1 = 9.8 ± 0.59 × 10-4 s-1 and k2 = 2.9 ± 0.17 × 10-3 s-1), intracellular reduction (k3 = 5.2 ± 0.31 × 10-2 s-1), reoxidation (k4 = 2.2 ± 0.13 mol-1 dm3 s-1) and proton-mediated ligand dissociation (k5 = 9.0 ± 0.54 × 10-5 s-1). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have also been conducted. NADH turnover frequencies are found to be dependent on the structure of the ligand and the results confirm

  4. Using the Ab Initio Molecular Dynamics Method for Simulating the Peculiarities in the Temperature Dependence of Liquid Bismuth Properties

    NASA Astrophysics Data System (ADS)

    Yuryev, A. A.; Gelchinski, B. R.; Vatolin, N. A.

    2018-03-01

    The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors' opinion, this dependence feature is attributed to a change in the liquid short-range order structure.

  5. Anticancer Activity of Chloroform Extract and Sub-fractions of Nepeta deflersiana on Human Breast and Lung Cancer Cells: An In vitro Cytotoxicity Assessment.

    PubMed

    Al-Oqail, Mai M; Al-Sheddi, Ebtesam S; Siddiqui, Maqsood A; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Farshori, Nida N

    2015-10-01

    Cancer is one of the major causes of death worldwide. The plant-derived natural products have received considerable attention in recent years due to their diverse pharmacological properties including anticancer effects. Nepeta deflersiana (ND) is used in the folk medicine as antiseptic, carminative, antimicrobial, antioxidant, and for treating rheumatic disorders. However, the anticancer activity of ND chloroform extract has not been explored so far. The present study was aimed to investigate the anticancer activities of chloroform Nepeta deflersiana extract and various sub-fractions (ND-1-ND-15) of ND against human breast cancer cells (MCF-7) and human lung cancer cells (A-549). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays, and cellular morphological alterations using phase contrast light microscope were studied. Cells were exposed with 10-1000 μg/ml of sub-fractions of ND for 24 h. Results showed that selected sub-fractions of the chloroform extract significantly reduced the cell viability of MCF-7 and A-549 cells, and altered the cellular morphology in a concentration-dependent manner. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity compared to other fractions whereas, ND-1 did not cause any cytotoxicity even at higher concentrations. The A-549 cells were found to be more sensitive to growth inhibition by all the extracts as compared to the MCF-7 cells. The present study provides preliminary screening of anticancer activities of chloroform extract and sub-fractions of ND, which can be further used for the development of a potential therapeutic anticancer agent. Nepeta deflersiana extract exhibit cytotoxicity and altered the cellular morphology. Sub-fractions of the chloroform extract of Nepeta deflersiana reduced the cell viability of MCF-7 and A-549 cells. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity. The A-549 cells were found to be more sensitive

  6. A monoclonal antibody against neem leaf glycoprotein recognizes carcinoembryonic antigen (CEA) and restricts CEA expressing tumor growth.

    PubMed

    Das, Arnab; Barik, Subhasis; Banerjee, Saptak; Bose, Anamika; Sarkar, Koustav; Biswas, Jaydip; Baral, Rathindranath; Pal, Smarajit

    2014-10-01

    Carcinoembryonic antigen (CEA) is one of the promising tumor antigens mainly associated with carcinoma of the colon, lung, breast, etc. and received wide attention for cancer immunotherapy. Neem leaf glycoprotein (NLGP), an effective immunomodulator, is able to generate humoral and cellular immune responses in murine tumor models. We have generated a monoclonal antibody (mAb) against NLGP by fusing NLGP-immunized mice splenocytes with nonsecretory myeloma cells. A highly anti-NLGP mAb secreting clone (1C8; IgG2a in nature) has been identified and propagated in culture. 1C8 recognizes human CEA as good as NLGP by enzyme linked immunosorbent assay, Western blotting, and immunoprecipitation. 1C8 detects CEA on colon cancer tissues by immunochistochemistry. By flow cytometry, 1C8 specifically reacts with CEA(+) human (Colo-205, HCT-116, and HT-29) and mouse (CT-26) colon cancer cells, but it showed minimum reactivity with CEA(-) human (MCF7, SiHa, and SCC084) and mouse (B16MelF10) cancer cells. This anti-NLGP 1C8 mAb revealed significant antitumor activity and better survivability in vivo in animals bearing mouse (CT-26 in BALB/c) and human (Colo-205 in athymic nude) CEA(+) cancer cells. 1C8 has no direct influence on proliferation and migration of CEA(+) cells, however, NK cell-dependent strong antibody-dependent cellular cytotoxicity reaction toward CEA(+) cells and normalization of angiogenesis are chiefly associated with tumor growth restriction. Obtained results provided a new immunotherapeutic approach for the effective management of CEA(+) tumors.

  7. Activation of autophagy by stress-activated signals as a cellular self-defense mechanism against the cytotoxic effects of MBIC in human breast cancer cells in vitro.

    PubMed

    Hasanpourghadi, Mohadeseh; Majid, Nazia Abdul; Mustafa, Mohd Rais

    2018-06-01

    We recently reported that methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) is a microtubule targeting agent (MTA) with multiple mechanisms of action including apoptosis in two human breast cancer cell-lines MCF-7 and MDA-MB-231. In the present study, investigation of early molecular events following MBIC treatment demonstrated the induction of autophagy. This early (<24 h) response to MBIC was characterized by accumulation of autophagy markers; LC3-II, Beclin1, autophagic proteins (ATGs) and collection of autophagosomes but with different variations in the two cell-lines. MBIC-induced autophagy was associated with generation of reactive oxygen species (ROS). In parallel, an increased activation of SAPK/JNK pathway was detected, as an intersection of ROS production and induction of autophagy. The cytotoxic effect of MBIC was enhanced by inhibition of autophagy through blockage of SAPK/JNK signaling, suggesting that MBIC-induced autophagy, is a possible cellular self-defense mechanism against toxicity of this agent in both breast cancer cell-lines. The present findings suggest that inhibition of autophagy eliminates the cytoprotective activity of MDA-MB-231 and MCF-7 cells, and sensitizes both the aggressive and non-aggressive human breast cancer cell-lines to the cytotoxic effects of MBIC. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays

    PubMed Central

    2011-01-01

    Background Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized in vitro screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical in vitro toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines. Results Six nanomaterials induced oxidative cell stress while only a single nanomaterial reduced cellular metabolic activity and none of the particles affected cell viability. Results from heterogeneous and chemically identical particles suggested that surface chemistry, surface coating and chemical composition are likely determinants of nanomaterial toxicity. Individual cell lines differed significantly in their response, dependent on the particle type and the toxicity endpoint measured. Conclusion In vitro toxicity of the analyzed engineered nanomaterials cannot be attributed to a defined physicochemical property. Therefore, the accurate identification of nanomaterial cytotoxicity requires a matrix based on a set of sensitive cell lines and in vitro assays measuring different cytotoxicity endpoints. PMID:21345205

  9. Platinum(II)-dendrimer conjugates: synthesis and investigations on cytotoxicity, cellular distribution, platinum release, DNA, and protein binding.

    PubMed

    Kapp, Timo; Dullin, Anja; Gust, Ronald

    2010-02-17

    A set of polyamidoamine dendrimers were modified in such a way that they are able to act as carrier and drug delivery systems for cytostatics. The terminal binding of the non-proteinogenic D,L-2,3-diaminopropionic acid allowed the attachment of the cytotoxic PtX(2) moiety (X = Cl, I: A(PtI(2))(2), A(PtCl(2))(2), B(PtI(2))(2), B(PtCl(2))(2)), while the 2-carboxypentanedioic acid acted as leaving group for [meso-1,2-bis(4-fluorophenyl)ethylenediamine]platinum(II) ((m-4F-Pt)(3)C, (m-4F-Pt)(3)D). Poly(ethylene glycol) chains at C(PtI(2))(3) and C(PtCl(2))(3) as well as (m-4F-Pt)(3)C and (m-4F-Pt)(3)D mediated sufficient water solubility. Additional dansyl residues (B(PtI(2))(2) and (m-4F-Pt)(3)D) made a simultaneous determination of platinum (graphite furnace atomic absorption spectroscopy (GF-AAS)) and dendrimer (fluorimetry) possible. The ethylenediamine-terminated dendrimers were typically accumulated into MCF-7 cells in clathrin-dependent pathways and targeted the platinum moieties to the nuclear compartment. The highest intracellular platinum concentration and DNA binding caused the dendrimers A(PtX(2))(2) and B(PtX(2))(2). A coordinative DNA binding, however, is very unlikely because of low cytotoxic effects. (m-4F-Pt)(3)C and (m-4F-Pt)(3)D are labile conjugates and liberated the m-4F-Pt moiety in biological systems. The effects of these dendrimers were similar to that of the reference compounds m-4F-PtCl(2) and m-4F-Pt(H(2)O)(2).

  10. Cytotoxic Mechanisms Employed by Mouse T Cells to Destroy Pancreatic β-Cells

    PubMed Central

    Varanasi, Vineeth; Avanesyan, Lia; Schumann, Desiree M.; Chervonsky, Alexander V.

    2012-01-01

    Several cytotoxic mechanisms have been attributed to T cells participating in β-cell death in type 1 diabetes. However, sensitivity of β-cells to these mechanisms in vitro and in vivo is likely to be different. Moreover, CD4+ and CD8+ T cells may use distinct mechanisms to cause β-cell demise that possibly involve activation of third-party cytotoxic cells. We used the transfer of genetically modified diabetogenic T cells into normal, mutant, and bone marrow chimeric recipients to test the contribution of major cytotoxic mechanisms in β-cell death. We found that 1) the killing of β-cells by CD4+ T cells required activation of the recipient’s own cytotoxic cells via tumor necrosis factor-α (TNF-α); 2) CD8+ T-cell cytotoxic mechanisms destroying β-cells were limited to perforin and Fas ligand, as double knockouts of these molecules abrogated the ability of T cells to cause diabetes; and 3) individual CD8+ T-cell clones chose their cytotoxic weaponry by a yet unknown mechanism and destroyed their targets via either Fas-independent or Fas-dependent (∼40% of clones) pathways. Fas-dependent destruction was assisted by TNF-α. PMID:22773667

  11. The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load.

    PubMed

    Andreasson, Johan O L; Shastry, Shankar; Hancock, William O; Block, Steven M

    2015-05-04

    The response of motor proteins to external loads underlies their ability to work in teams and determines the net speed and directionality of cargo transport. The mammalian kinesin-2, KIF3A/B, is a heterotrimeric motor involved in intraflagellar transport and vesicle motility in neurons. Bidirectional cargo transport is known to result from the opposing activities of KIF3A/B and dynein bound to the same cargo, but the load-dependent properties of kinesin-2 are poorly understood. We used a feedback-controlled optical trap to probe the velocity, run length, and unbinding kinetics of mouse KIF3A/B under various loads and nucleotide conditions. The kinesin-2 motor velocity is less sensitive than kinesin-1 to external forces, but its processivity diminishes steeply with load, and the motor was observed occasionally to slip and reattach. Each motor domain was characterized by studying homodimeric constructs, and a global fit to the data resulted in a comprehensive pathway that quantifies the principal force-dependent kinetic transitions. The properties of the KIF3A/B heterodimer are intermediate between the two homodimers, and the distinct load-dependent behavior is attributable to the properties of the motor domains and not to the neck linkers or the coiled-coil stalk. We conclude that the force-dependent movement of KIF3A/B differs significantly from conventional kinesin-1. Against opposing dynein forces, KIF3A/B motors are predicted to rapidly unbind and rebind, resulting in qualitatively different transport behavior from kinesin-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The mechanochemical cycle of mammalian kinesin-2 KIF3A/B under load

    PubMed Central

    Andreasson, Johan O.L.; Shastry, Shankar; Hancock, William O.; Block, Steven M.

    2015-01-01

    Summary The response of motor proteins to external loads underlies their ability to work in teams and determines the net speed and directionality of cargo transport. The mammalian kinesin-2, KIF3A/B, is a heterotrimeric motor involved in intraflagellar transport and vesicle motility in neurons. Bidirectional cargo transport is known to result from the opposing activities of KIF3A/B and dynein bound to the same cargo, but the load-dependent properties of kinesin-2 are poorly understood. We used a feedback-controlled optical trap to probe the velocity, run length and unbinding kinetics of mouse KIF3A/B under various loads and nucleotide conditions. The kinesin-2 motor velocity is less sensitive than kinesin-1 to external forces, but its processivity diminishes steeply with load, and the motor was observed occasionally to slip and reattach. Each motor domain was characterized by studying homodimeric constructs, and a global fit to the data resulted in a comprehensive pathway that quantifies the principal force-dependent kinetic transitions. The properties of the KIF3A/B heterodimer are intermediate between the two homodimers, and the distinct load-dependent behavior is attributable to the properties of the motor domains, and not to the neck-linkers or the coiled-coil stalk. We conclude that the force-dependent movement of KIF3A/B differs significantly from conventional kinesin-1. Against opposing dynein forces, KIF3A/B motors are predicted to rapidly unbind and rebind, resulting in qualitatively different transport behavior from kinesin-1. PMID:25866395

  13. Cytotoxic Effects of Temozolomide and Radiation are Additive- and Schedule-Dependent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalmers, Anthony J., E-mail: a.j.chalmers@sussex.ac.u; Genome Damage and Stability Centre, University of Sussex, Falmer; Ruff, Elliot M.

    2009-12-01

    Purpose: Despite aggressive therapy comprising radical radiation and temozolomide (TMZ) chemotherapy, the prognosis for patients with glioblastoma multiforme (GBM) remains poor, particularly if tumors express O{sup 6}-methylguanine-DNA-methyltransferase (MGMT). The interactions between radiation and TMZ remain unclear and have important implications for scheduling and for developing strategies to improve outcomes. Methods and Materials: Factors determining the effects of combination therapy on clonogenic survival, cell-cycle checkpoint signaling and DNA repair were investigated in four human glioma cell lines (T98G, U373-MG, UVW, U87-MG). Results: Combining TMZ and radiation yielded additive cytotoxicity, but only when TMZ was delivered 72 h before radiation. Radiosensitization wasmore » not observed. TMZ induced G2/M cell-cycle arrest at 48-72 h, coincident with phosphorylation of Chk1 and Chk2. Additive G2/M arrest and Chk1/Chk2 phosphorylation was only observed when TMZ preceded radiation by 72 h. The ataxia-telangiectasia mutated (ATM) inhibitor KU-55933 increased radiation sensitivity and delayed repair of radiation-induced DNA breaks, but did not influence TMZ effects. The multiple kinase inhibitor caffeine enhanced the cytotoxicity of chemoradiation and exacerbated DNA damage. Conclusions: TMZ is not a radiosensitizing agent but yields additive cytotoxicity in combination with radiation. Our data indicate that TMZ treatment should commence at least 3 days before radiation to achieve maximum benefit. Activation of G2/M checkpoint signaling by TMZ and radiation has a cytoprotective effect that can be overcome by dual inhibition of ATM and ATR. More specific inhibition of checkpoint signaling will be required to increase treatment efficacy without exacerbating toxicity.« less

  14. Cytotoxicity and Initial Biocompatibility of Endodontic Biomaterials (MTA and Biodentine™) Used as Root-End Filling Materials.

    PubMed

    Escobar-García, Diana María; Aguirre-López, Eva; Méndez-González, Verónica; Pozos-Guillén, Amaury

    2016-01-01

    Objective. The aim of this study was to evaluate the cytotoxicity and cellular adhesion of Mineral Trioxide Aggregate (MTA) and Biodentine (BD) on periodontal ligament fibroblasts (PDL). Methods. PDL cells were obtained from nonerupted third molars and cultured; MTS cellular profusion test was carried out in two groups: MTA and BD, with respective controls at different time periods. Also, the LIVE/DEAD assay was performed at 24 h. For evaluation of cellular adhesion, immunocytochemistry was conducted to discern the expression of Integrin β1 and Vinculin at 12 h and 24 h. Statistical analysis was performed by the Kruskal-Wallis and Mann-Whitney U tests. Results. MTA and BD exhibited living cells up to 7 days. More expressions of Integrin β1 and Vinculin were demonstrated in the control group, followed by BD and MTA, which also showed cellular loss and morphological changes. There was a significant difference in the experimental groups cultured for 5 and 7 days compared with the control, but there was no significant statistical difference between both cements. Conclusions. Neither material was cytotoxic during the time evaluated. There was an increase of cell adhesion through the expression of focal contacts observed in the case of BD, followed by MTA, but not significantly.

  15. Assessment of cytogenetic and cytotoxic effects of chlorhexidine digluconate on cultured human lymphocytes.

    PubMed

    Arabaci, Taner; Türkez, Hasan; Çanakçi, Cenk Fatih; Özgöz, Mehmet

    2013-09-01

    The aim of this study was to assess the genetic and cellular toxicity of Chlorhexidine digluconate (CHX) on peripheral human lymphocytes in vitro. Micronucleus assay was used to investigate the genotoxicity, while the cell viability and proliferation were evaluated by Trypan blue exclusion test and Nuclear Division Index in control and CHX-treated (0.05, 0.1, 0.2, 0.4, 0.5 mg/ml) human blood cultures. A dose-dependent toxic effect was found depending on CHX incubation on the genetic and cell viability of the lymphocytes. Micronucleus frequency was found to be statistically higher at 0.5 mg/ml concentration compared to lower doses and the control group (p < 0.05). A significant reduction was shown in the cell viability and cell proliferation of the exposed lymphocytes at the concentrations of 0.4 and 0.5 mg/ml (p < 0.05), while no significant toxicity was found at lower concentrations compared to control (p > 0.05). This study showed dose-dependent genotoxic and cytotoxic effects of CHX on human lymphocytes in vitro. It should be considered during periodontal irrigation or novel CHX products at lower concentrations should be manufactured for clinical usage.

  16. IgM-mediated opsonization and cytotoxicity in the shark.

    PubMed

    McKinney, E C; Flajnik, M F

    1997-02-01

    Two types of cytotoxic reactions have been observed using cells from the nurse shark: spontaneous cytotoxicity mediated by cells of the macrophage lineage and antibody-dependent killing carried out by a different effector cell population. Previous data showed that removal of phagocytic cells using iron particles abolished macrophage-mediated killing, but not antibody-dependent reactions. The current study used single cell assays and showed that the effector of antibody-driven reactions was the neutrophil. Surprisingly, the mechanism of killing was shown to be phagocytosis mediated by both 7S and 19S immunoglobulin M (IgM). Reactions proceeded with as little as 0.01 microg of purified 19S or 7S IgM and were complete within 4-6 h. In contrast, purified immunoglobulin did not adsorb to macrophages and had no effect on target cell binding or cytotoxicity. Pretreatment of cells with cytochalasin D abolished the phagocytic reaction, but not spontaneous cytotoxicity. These data show that antibody-mediated killing results from opsonization and phagocytosis; the mechanism of macrophage killing is currently unknown. In addition, these data show that the shark neutrophil, not the macrophage lineage, carries a receptor for Fc mu.

  17. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals

    PubMed Central

    Mckenzie, Grahame; Ward, George; Stallwood, Yvette; Briend, Emmanuel; Papadia, Sofia; Lennard, Andrew; Turner, Martin; Champion, Brian; Hardingham, Giles E

    2006-01-01

    Background Notch plays a wide-ranging role in controlling cell fate, differentiation and development. The PI3K-Akt pathway is a similarly conserved signalling pathway which regulates processes such as differentiation, proliferation and survival. Mice with disrupted Notch and PI3K signalling show phenotypic similarities during haematopoietic cell development, suggesting functional interaction between these pathways. Results We show that cellular responsiveness to Notch signals depends on the activity of the PI3K-Akt pathway in cells as diverse as CHO cells, primary T-cells and hippocampal neurons. Induction of the endogenous PI3K-Akt pathway in CHO cells (by the insulin pathway), in T-cells (via TCR activation) or in neurons (via TrKB activation) potentiates Notch-dependent responses. We propose that the PI3K-Akt pathway exerts its influence on Notch primarily via inhibition of GSK3-beta, a kinase known to phosphorylate and regulate Notch signals. Conclusion The PI3K-Akt pathway acts as a "gain control" for Notch signal responses. Since physiological levels of intracellular Notch are often low, coincidence with PI3K-activation may be crucial for induction of Notch-dependent responses. PMID:16507111

  18. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3.

    PubMed

    Wong, Hui Hui; Fung, To Sing; Fang, Shouguo; Huang, Mei; Le, My Tra; Liu, Ding Xiang

    2018-02-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) is an inefficient inducer of interferon (IFN) response. It expresses various proteins that effectively circumvent IFN production at different levels via distinct mechanisms. Through the construction of recombinant IBV expressing proteins 8a, 8b and 8ab encoded by SARS-CoV ORF8, we demonstrate that expression of 8b and 8ab enables the corresponding recombinant viruses to partially overcome the inhibitory actions of IFN activation to achieve higher replication efficiencies in cells. We also found that proteins 8b and 8ab could physically interact with IRF3. Overexpression of 8b and 8ab resulted in the reduction of poly (I:C)-induced IRF3 dimerization and inhibition of the IFN-β signaling pathway. This counteracting effect was partially mediated by protein 8b/8ab-induced degradation of IRF3 in a ubiquitin-proteasome-dependent manner. Taken together, we propose that SARS-CoV may exploit the unique functions of proteins 8b and 8ab as novel mechanisms to overcome the effect of IFN response during virus infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Haloacetic Acid Water Disinfection Byproducts Affect Pyruvate Dehydrogenase Activity and Disrupt Cellular Metabolism.

    PubMed

    Dad, Azra; Jeong, Clara H; Wagner, Elizabeth D; Plewa, Michael J

    2018-02-06

    The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.

  20. On the mechanism of Cr (VI)-induced carcinogenesis: dose dependence of uptake and cellular responses.

    PubMed

    Liu, K; Husler, J; Ye, J; Leonard, S S; Cutler, D; Chen, F; Wang, S; Zhang, Z; Ding, M; Wang, L; Shi, X

    2001-06-01

    Cr (VI) compounds are widely used industrial chemicals and are recognized human carcinogens. The mechanisms of carcinogenesis associated with these compounds remain to be investigated. The present study focused on dose-dependence of Cr (VI)-induced uptake and cellular responses. The results show that Cr (VI) is able to enter the cells (human lung epithelial cell line A549) at low concentration (< 10 microM) and that the Cr (VI) uptake appears to be a combination of saturable transport and passive diffusion. Electron spin resonance (ESR) trapping measurements showed that upon stimulation with Cr (VI), A549 cells were able to generate reactive oxygen species (ROS). The amount of ROS generated depended on the Cr (VI) concentration. ROS generation involved NADPH-dependent flavoenzymes. Cr (VI) affected the following cellular parameters in a dose-dependent manner, (a) activation of nuclear transcription factors NF-kappaB, and p53, (b) DNA damage, (c) induction of cell apoptosis, and (d) inhibition of cell proliferation. The activation of transcription factors was assessed by electrophoretic mobility shift assay and western blot analysis, DNA damage by single cell gel electrophoresis assay, cell apoptosis by DNA fragmentation assay, and cell proliferation by a non-radioactive ELISA kit. At the concentration range used in the present study, no thresholds were found in all of these cell responses to Cr (VI). The results may guide further research to better understand and evaluate the risk of Cr (VI)-induced carcinogenesis at low levels of exposure.

  1. Biological effects of a de novo designed myxoma virus peptide analogue: evaluation of cytotoxicity on tumor cells.

    PubMed

    Istivan, Taghrid S; Pirogova, Elena; Gan, Emily; Almansour, Nahlah M; Coloe, Peter J; Cosic, Irena

    2011-01-01

    The Resonant Recognition Model (RRM) is a physico-mathematical model that interprets protein sequence linear information using digital signal processing methods. In this study the RRM concept was employed for structure-function analysis of myxoma virus (MV) proteins and the design of a short bioactive therapeutic peptide with MV-like antitumor/cytotoxic activity. The analogue RRM-MV was designed by RRM as a linear 18 aa 2.3 kDa peptide. The biological activity of this computationally designed peptide analogue against cancer and normal cell lines was investigated. The cellular cytotoxicity effects were confirmed by confocal immunofluorescence microscopy, by measuring the levels of cytoplasmic lactate dehydrogenase (LDH) and by Prestoblue cell viability assay for up to 72 hours in peptide treated and non-treated cell cultures. Our results revealed that RRM-MV induced a significant dose and time-dependent cytotoxic effect on murine and human cancer cell lines. Yet, when normal murine cell lines were similarly treated with RRM-MV, no cytotoxic effects were observed. Furthermore, the non-bioactive RRM designed peptide RRM-C produced negligible cytotoxic effects on these cancer and normal cell lines when used at similar concentrations. The presence/absence of phosphorylated Akt activity in B16F0 mouse melanoma cells was assessed to indicate the possible apoptosis signalling pathway that could be affected by the peptide treatment. So far, Akt activity did not seem to be significantly affected by RRM-MV as is the case for the original viral protein. Our findings indicate the successful application of the RRM concept to design a bioactive peptide analogue (RRM-MV) with cytotoxic effects on tumor cells only. This 2.345 kDa peptide analogue to a 49 kDa viral protein may be suitable to be developed as a potential cancer therapeutic. These results also open a new direction to the rational design of therapeutic agents for future cancer treatment.

  2. Biological Effects of a De Novo Designed Myxoma Virus Peptide Analogue: Evaluation of Cytotoxicity on Tumor Cells

    PubMed Central

    Istivan, Taghrid S.; Pirogova, Elena; Gan, Emily; Almansour, Nahlah M.; Coloe, Peter J.; Cosic, Irena

    2011-01-01

    Background The Resonant Recognition Model (RRM) is a physico-mathematical model that interprets protein sequence linear information using digital signal processing methods. In this study the RRM concept was employed for structure-function analysis of myxoma virus (MV) proteins and the design of a short bioactive therapeutic peptide with MV-like antitumor/cytotoxic activity. Methodology/Principal Findings The analogue RRM-MV was designed by RRM as a linear 18 aa 2.3 kDa peptide. The biological activity of this computationally designed peptide analogue against cancer and normal cell lines was investigated. The cellular cytotoxicity effects were confirmed by confocal immunofluorescence microscopy, by measuring the levels of cytoplasmic lactate dehydrogenase (LDH) and by Prestoblue cell viability assay for up to 72 hours in peptide treated and non-treated cell cultures. Our results revealed that RRM-MV induced a significant dose and time-dependent cytotoxic effect on murine and human cancer cell lines. Yet, when normal murine cell lines were similarly treated with RRM-MV, no cytotoxic effects were observed. Furthermore, the non-bioactive RRM designed peptide RRM-C produced negligible cytotoxic effects on these cancer and normal cell lines when used at similar concentrations. The presence/absence of phosphorylated Akt activity in B16F0 mouse melanoma cells was assessed to indicate the possible apoptosis signalling pathway that could be affected by the peptide treatment. So far, Akt activity did not seem to be significantly affected by RRM-MV as is the case for the original viral protein. Conclusions/Significance Our findings indicate the successful application of the RRM concept to design a bioactive peptide analogue (RRM-MV) with cytotoxic effects on tumor cells only. This 2.345 kDa peptide analogue to a 49 kDa viral protein may be suitable to be developed as a potential cancer therapeutic. These results also open a new direction to the rational design of therapeutic

  3. Structure dependent selective efficacy of pyridine and pyrrole based Cu(II) Schiff base complexes towards in vitro cytotoxicity, apoptosis and DNA-bases binding in ground and excited state.

    PubMed

    Koley Seth, Banabithi; Saha, Arpita; Haldar, Srijan; Chakraborty, Partha Pratim; Saha, Partha; Basu, Samita

    2016-09-01

    This work highlights a systematic and comparative study of the structure-dependent influence of a series of biologically active Cu(II) Schiff base complexes (CSCs) on their in vitro cytotoxicity, apoptosis and binding with polymeric DNA-bases in ground and photo-excited states. The structure-activity relationship of the closely resembled CSCs towards in vitro cytotoxicity and apoptosis against cervical cancerous HeLa and normal human diploid WI-38 cell lines has been investigated by MTT assay and FACS techniques respectively. The steady-state and time-resolved spectroscopic studies have also been carried out to explore the selective binding affinities of the potential complexes towards different polymeric nucleic acid bases (poly d(A), poly d(T), poly d(G), poly d(C), Poly d(G)-Poly d(C)), which enlighten the knowledge regarding their ability in controlling the structure and medium dependent interactions in 'ground' and 'excited' states. The pyridine containing water soluble complexes (CuL(1) and CuL(3)) are much more cytotoxic than the corresponding pyrrole counterparts (CuL(2) and CuL(4)). Moreover the acidic hydrogens in CuL(1) increase its cytotoxicity much more than methyl substitution as in CuL(3). The results of MTT assay and double staining FACS experiments indicate selective inhibition of cell growth (cell viability 39% (HeLa) versus 85% (WI-38)) and occurrence of apoptosis rather than necrosis. The ground state binding of CuL(1) with polymeric DNA bases, especially with guanine rich DNA (Kb=6.41±0.122×10(5)), that enhances its cytotoxic activity, is further confirmed from its binding isotherms. On the other hand the pyrrole substituted CuL(4) complex exhibits the structure and medium dependent selective electron-transfer in triplet state as observed in laser flash photolysis studies followed by magnetic field (MF) effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nuclear and cytoplasmic delivery of lactoferrin in glioma using chitosan nanoparticles: Cellular location dependent-action of lactoferrin.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf

    2018-08-01

    Lactoferrin (Lf) exerts anti-cancer effects on glioma, however, the exact mechanism remains unclear. Despite possessing a nuclear localization sequence (NLS), Lf was found to allocate only in the cytoplasm of glioma 261. Lf was therefore loaded into nuclear and cytoplasmic targeted nanoparticles (NPs) to determine whether nuclear delivery of Lf would enhance its anti-cancer effect. Upon treatment with 300 and 800 µg/mL Lf loaded chitosan NPs, nuclear targeted Lf-NPs showed 1.3 and 2.7 folds increase in cell viability, whereas cytoplasmic targeted Lf-NPs at 300 µg/mL decreased cell viability by 0.8 folds in comparison to free Lf and controls. Results suggest that the cytotoxicity of Lf on glioma is attributable to its cytoplasmic allocation. Nuclear delivery of Lf induced cell proliferation rather than cytotoxicity, indicating that the mode of action of Lf in glioma is cell location dependent. This calls for caution about the general use of Lf as an anti-cancer protein. Copyright © 2018. Published by Elsevier B.V.

  5. Cytotoxicity of citral against melanoma cells: The involvement of oxidative stress generation and cell growth protein reduction.

    PubMed

    Sanches, Larissa Juliani; Marinello, Poliana Camila; Panis, Carolina; Fagundes, Tatiane Renata; Morgado-Díaz, José Andrés; de-Freitas-Junior, Julio Cesar Madureira; Cecchini, Rubens; Cecchini, Alessandra Lourenço; Luiz, Rodrigo Cabral

    2017-03-01

    Citral is a natural compound that has shown cytotoxic and antiproliferative effects on breast and hematopoietic cancer cells; however, there are few studies on melanoma cells. Oxidative stress is known to be involved in all stages of melanoma development and is able to modulate intracellular pathways related to cellular proliferation and death. In this study, we hypothesize that citral exerts its cytotoxic effect on melanoma cells by the modulation of cellular oxidative status and/or intracellular signaling. To test this hypothesis, we investigated the antiproliferative and cytotoxic effects of citral on B16F10 murine melanoma cells evaluating its effects on cellular oxidative stress, DNA damage, cell death, and important signaling pathways, as these pathways, namely, extracellular signal-regulated kinases 1/2 (ERK1/2), AKT, and phosphatidylinositol-3 kinase, are involved in cell proliferation and differentiation. The p53 and nuclear factor kappa B were also investigated due to their ability to respond to intracellular stress. We observed that citral exerted antiproliferative and cytotoxic effects in B16F10; induced oxidative stress, DNA lesions, and p53 nuclear translocation; and reduced nitric oxide levels and nuclear factor kappa B, ERK1/2, and AKT. To investigate citral specificity, we used non-neoplastic human and murine cells, HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts), and observed that although citral effects were not specific for cancer cells, non-neoplastic cells were more resistant to citral than B16F10. These findings highlight the potential clinical utility of citral in melanoma, with a mechanism of action involving the oxidative stress generation, nitric oxide depletion, and interference in signaling pathways related to cell proliferation.

  6. Characterization of Thermally Activated Metalloenediyne Cytotoxicity in Human Melanoma Cells.

    PubMed

    Keller, Eric J; Porter, Meghan; Garrett, Joy E; Varie, Meredith; Wang, Haiyan; Pollok, Karen E; Turchi, John J; Zaleski, Jeffrey M; Dynlacht, Joseph R

    2018-05-15

    Enediynes are a highly cytotoxic class of compounds. However, metallation of these compounds may modulate their activation, and thus their cytotoxicity. We previously demonstrated that cytotoxicity of two different metalloenediynes, including (Z)-N,N'-bis[1-pyridyl-2-yl-meth-(E)-ylidene]octa-4-ene-2,6-diyne-1,8-diamine] (PyED), is potentiated when the compounds are administered to HeLa cells during hyperthermia treatment at concentrations that are minimally or not cytotoxic at 37°C. In this study, we further characterized the concentration, time and temperature dependence of cytotoxicity of PyED on human U-1 melanoma cells. We also investigated the potential mechanisms by which PyED cytotoxicity is enhanced during hyperthermia treatment. Cell killing with PyED was dependent on concentration, temperature during treatment and time of exposure. Potentiation of cytotoxicity was observed when cells were treated with PyED at temperatures ≥39.5°C, and enhancement of cell killing increased with temperature and with increasing time at a given temperature. All cells treated with PyED were shown to have DNA damage, but substantially more damage was observed in cells treated with PyED during heating. DNA repair was also inhibited in cells treated with the drug during hyperthermia. Thus, potentiation of PyED cytotoxicity by hyperthermia may be due to enhancement of drug-induced DNA lesions, and/or the inhibition of repair of sublethal DNA damage. While the selective thermal activation of PyED supports the potential clinical utility of metalloenediynes as cancer thermochemotherapeutic agents, therapeutic gain could be optimized by identifying compounds that produce minimal toxicity at 37°C but which become activated and show enhancement of cytotoxicity within a tumor subjected to localized hyperthermic or thermal ablative treatment, or which might act as bifunctional agents. We thus also describe the development and initial characterization of a novel cofactor complex of Py

  7. Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin 1, exotoxin A, diphtheria toxin and ricin are all AB-type protein toxins that act within the host cytosol to kill the host cell through a pathway involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. In...

  8. A Simplified Ab Initio Cosmic-ray Modulation Model with Simulated Time Dependence and Predictive Capability

    NASA Astrophysics Data System (ADS)

    Moloto, K. D.; Engelbrecht, N. E.; Burger, R. A.

    2018-06-01

    A simplified ab initio approach is followed to model cosmic-ray proton modulation, using a steady-state three-dimensional stochastic solver of the Parker transport equation that simulates some effects of time dependence. Standard diffusion coefficients based on Quasilinear Theory and Nonlinear Guiding Center Theory are employed. The spatial and temporal dependences of the various turbulence quantities required as inputs for the diffusion, as well as the turbulence-reduced drift coefficients, follow from parametric fits to results from a turbulence transport model as well as from spacecraft observations of these turbulence quantities. Effective values are used for the solar wind speed, magnetic field magnitude, and tilt angle in the modulation model to simulate temporal effects due to changes in the large-scale heliospheric plasma. The unusually high cosmic-ray intensities observed during the 2009 solar minimum follow naturally from the current model for most of the energies considered. This demonstrates that changes in turbulence contribute significantly to the high intensities during that solar minimum. We also discuss and illustrate how this model can be used to predict future cosmic-ray intensities, and comment on the reliability of such predictions.

  9. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil.

    PubMed

    Chen, Xiao-Xin; Leung, George Pak-Heng; Zhang, Zhang-Jin; Xiao, Jian-Bo; Lao, Li-Xing; Feng, Feng; Mak, Judith Choi-Wo; Wang, Ying; Sze, Stephen Cho-Wing; Zhang, Kalin Yan-Bo

    2017-09-01

    Breast cancer is the most frequently diagnosed cancer and cause of cancer death in women worldwide. Current treatments often result in systematic toxicity and drug resistance. Combinational use of non-toxic phytochemicals with chemotherapeutic agents to enhance the efficacy and reduce toxicity would be one promising approach. In this study, bioactive proanthocyanidins from Uncaria rhynchophylla (UPAs) were isolated and their anti-breast cancer effects alone and in combination with 5- fluorouracil (5-FU) were investigated in MDA-MB-231 breast cancer cells. The results showed that UPAs significantly inhibited cell viability and migration ability in a dose-dependent manner. Moreover, UPAs induced apoptosis in a dose-dependent manner which was associated with increased cellular reactive oxygen species production, loss of mitochondrial membrane potential, increases of Bax/Bcl-2 ratio and levels of cleaved caspase 3. Treatments of the cells with UPAs resulted in an increase in G2/M cell cycle arrest. Cytotoxic effects of 5-FU against MDA-MB-231 cells were enhanced by UPAs. The combination treatment of UPAs and 5-FU for 48 h elicited a synergistic cytotoxic effect on MDA-MB-231 cells. Altogether, these data suggest that UPAs are potential therapeutic agents for breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Zoledronic acid renders human M1 and M2 macrophages susceptible to Vδ2+ γδ T cell cytotoxicity in a perforin-dependent manner.

    PubMed

    Fowler, Daniel W; Copier, John; Dalgleish, Angus G; Bodman-Smith, Mark D

    2017-09-01

    Vδ2 + T cells are a subpopulation of γδ T cells in humans that are cytotoxic towards cells which accumulate isopentenyl pyrophosphate. The nitrogen-containing bisphosphonate, zoledronic acid (ZA), can induce tumour cell lines to accumulate isopentenyl pyrophosphate, thus rendering them more susceptible to Vδ2 + T cell cytotoxicity. However, little is known about whether ZA renders other, non-malignant cell types susceptible. In this study we focussed on macrophages (Mϕs), as these cells have been shown to take up ZA. We differentiated peripheral blood monocytes from healthy donors into Mϕs and then treated them with IFN-γ or IL-4 to generate M1 and M2 Mϕs, respectively. We characterised these Mϕs based on their phenotype and cytokine production and then tested whether ZA rendered them susceptible to Vδ2 + T cell cytotoxicity. Consistent with the literature, IFN-γ-treated Mϕs expressed higher levels of the M1 markers CD64 and IL-12p70, whereas IL-4-treated Mϕs expressed higher levels of the M2 markers CD206 and chemokine (C-C motif) ligand 18. When treated with ZA, both M1 and M2 Mϕs became susceptible to Vδ2 + T cell cytotoxicity. Vδ2 + T cells expressed perforin and degranulated in response to ZA-treated Mϕs as shown by mobilisation of CD107a and CD107b to the cell surface. Furthermore, cytotoxicity towards ZA-treated Mϕs was sensitive-at least in part-to the perforin inhibitor concanamycin A. These findings suggest that ZA can render M1 and M2 Mϕs susceptible to Vδ2 + T cell cytotoxicity in a perforin-dependent manner, which has important implications regarding the use of ZA in cancer immunotherapy.

  11. Cytotoxic T lymphocyte antigen 4 decreases humoral and cellular immunity by adenovirus to enhance target GFP gene transfer in C57BL/6 mice.

    PubMed

    Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo

    2015-01-01

    Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.

  12. Cellular Uptake and Delivery of Myeloperoxidase to Lysosomes Promote Lipofuscin Degradation and Lysosomal Stress in Retinal Cells.

    PubMed

    Yogalingam, Gouri; Lee, Amanda R; Mackenzie, Donald S; Maures, Travis J; Rafalko, Agnes; Prill, Heather; Berguig, Geoffrey Y; Hague, Chuck; Christianson, Terri; Bell, Sean M; LeBowitz, Jonathan H

    2017-03-10

    Neutrophil myeloperoxidase (MPO) catalyzes the H 2 O 2 -dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N -retinylidene- N -retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N -retinylidene- N -retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Cellular Uptake and Delivery of Myeloperoxidase to Lysosomes Promote Lipofuscin Degradation and Lysosomal Stress in Retinal Cells*

    PubMed Central

    Yogalingam, Gouri; Lee, Amanda R.; Mackenzie, Donald S.; Maures, Travis J.; Rafalko, Agnes; Prill, Heather; Berguig, Geoffrey Y.; Hague, Chuck; Christianson, Terri; Bell, Sean M.; LeBowitz, Jonathan H.

    2017-01-01

    Neutrophil myeloperoxidase (MPO) catalyzes the H2O2-dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N-retinylidene-N-retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N-retinylidene-N-retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death. PMID:28115520

  14. The anticancer natural product ophiobolin A induces cytotoxicity by covalent modification of phosphatidylethanolamine.

    PubMed

    Chidley, Christopher; Trauger, Sunia A; Birsoy, Kıvanç; O'Shea, Erin K

    2016-07-12

    Phenotypic screens allow the identification of small molecules with promising anticancer activity, but the difficulty in characterizing the mechanism of action of these compounds in human cells often undermines their value as drug leads. Here, we used a loss-of-function genetic screen in human haploid KBM7 cells to discover the mechanism of action of the anticancer natural product ophiobolin A (OPA). We found that genetic inactivation of de novo synthesis of phosphatidylethanolamine (PE) mitigates OPA cytotoxicity by reducing cellular PE levels. OPA reacts with the ethanolamine head group of PE in human cells to form pyrrole-containing covalent cytotoxic adducts and these adducts lead to lipid bilayer destabilization. Our characterization of this unusual cytotoxicity mechanism, made possible by unbiased genetic screening in human cells, suggests that the selective antitumor activity displayed by OPA may be due to altered membrane PE levels in cancer cells.

  15. Alkaline Ceramidase 2 (ACER2) and Its Product Dihydrosphingosine Mediate the Cytotoxicity of N-(4-Hydroxyphenyl)retinamide in Tumor Cells*

    PubMed Central

    Mao, Zhehao; Sun, Wei; Xu, Ruijuan; Novgorodov, Sergei; Szulc, Zdzislaw M.; Bielawski, Jacek; Obeid, Lina M.; Mao, Cungui

    2010-01-01

    Increased generation of dihydrosphingosine (DHS), a bioactive sphingolipid, has been implicated in the cytotoxicity of the synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) in tumor cells. However, how 4-HPR increases DHS remains unclear. Here we demonstrate that 4-HPR increases the expression of ACER2, which catalyzes the hydrolysis of dihydroceramides to generate DHS, and that ACER2 up-regulation plays a key role in mediating the 4-HPR-induced generation of DHS as well as the cytotoxicity of 4-HPR in tumor cells. Treatment with 4-HPR induced the accumulation of dihydroceramides (DHCs) in tumor cells by inhibiting dihydroceramide desaturase (DES) activity, which catalyzes the conversion of DHCs to ceramides. Treatment with 4-HPR also increased ACER2 expression through a retinoic acid receptor-independent and caspase-dependent manner. Overexpression of ACER2 augmented the 4-HPR-induced generation of DHS as well as 4-HPR cytotoxicity, and 4-HPR-induced death in tumor cells, whereas knocking down ACER2 had the opposite effects. ACER2 overexpression, along with treatment with GT11, another DES inhibitor, markedly increased cellular DHS, leading to tumor cell death, whereas ACER2 overexpression or GT11 treatment alone failed to do so, suggesting that both ACER2 up-regulation and DES inhibition are necessary and sufficient to mediate 4-HPR-induced DHS accumulation, cytotoxicity, and death in tumor cells. Taken together, these results suggest that up-regulation of the ACER2/DHS pathway mediates the cytotoxicity of 4-HPR in tumor cells and that up-regulating or activating ACER2 may improve the anti-cancer activity of 4-HRR and other DHC-inducing agents. PMID:20628055

  16. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles.

    PubMed

    Sun, Jing; Wang, Shaochuang; Zhao, Dong; Hun, Fei Han; Weng, Lei; Liu, Hui

    2011-10-01

    Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe(2)O(3)), iron(II,III) oxide (Fe(3)O(4)), magnesium oxide (MgO), aluminum oxide (Al(2)O(3)), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12-24 h and 0.001-100 μg/ml of exposure). The results indicated that Fe(2)O(3), Fe(3)O(4), and Al(2)O(3) NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time. © Springer Science+Business Media B.V. 2011

  17. Hexamethoxylated Monocarbonyl Analogues of Curcumin Cause G2/M Cell Cycle Arrest in NCI-H460 Cells via Michael Acceptor-Dependent Redox Intervention.

    PubMed

    Li, Yan; Zhang, Li-Ping; Dai, Fang; Yan, Wen-Jing; Wang, Hai-Bo; Tu, Zhi-Shan; Zhou, Bo

    2015-09-09

    Curcumin, derived from the dietary spice turmeric, holds promise for cancer prevention. This prompts much interest in investigating the action mechanisms of curcumin and its analogues. Two symmetrical hexamethoxy-diarylpentadienones (1 and 2) as cucumin analogues were reported to possess significantly enhanced cytotoxicity compared with the parent molecule. However, the detailed mechanisms remain unclear. In this study, compounds 1 and 2 were identified as the G2/M cell cycle arrest agents to mediate the cytotoxicity toward NCI-H460 cells via Michael acceptor-dependent redox intervention. Compared with curcumin, they could more easily induce a burst of reactive oxygen species (ROS) and collapse of the redox buffering system. One possible reason is that they could more effectively target intracellular TrxR to convert this antioxidant enzyme into a ROS promoter. Additionally, they caused up-regulation of p53 and p21 and down-regulation of redox-sensitive Cdc25C along with cyclin B1/Cdk1 in a Michael acceptor- and ROS-dependent fashion. Interestingly, in comparison with compound 2, compound 1 displayed a relatively weak ability to generate ROS but increased cell cycle arrest activity and cytotoxicity probably due to its Michael acceptor-dependent microtubule-destabilizing effect and greater GST-inhibitory activity, as well as its enhanced cellular uptake. This work provides useful information for understanding Michael acceptor-dependent and redox-mediated cytotoxic mechanisms of curcumin and its active analogues.

  18. Cytotoxic responses of selected insecticides in chick ganglia cultures.

    PubMed Central

    Sharma, R P; Obersteiner, E J

    1981-01-01

    Various agricultural chemicals, e.g. pesticides, are known to cause different toxic effects in man and animals. Some of these produce responses involving the nervous tissue. Total of 52 such chemicals, representing organophosphates, carbamates and other miscellaneous insecticides were evaluated to determine their relative cytotoxic effects in avian dorsal root ganglia cultures. Many of these chemicals caused a slight stimulation of cellular growth at very low concentrations. At toxic concentrations, a dose-related but nonspecific inhibition of cell growth occurred. The cytotoxic changes included the decreased migration of cells from the culture implant, varicosities in and shortening of various cells and vacuolization and rounding of neuroglial cells. At high concentrations, pigmentary degeneration and complete abolition of cell growth were observed. The toxic effects were numerically scored in a random blind fashion and the concentrations of individual chemicals to produce a half maximal effect (IC50) in culture were determined from the dose-response curves. The IC50 values for various chemicals ranged from approximately 10(-6) M for compounds like methylparathion, diazinon, paraoxon and Vendex to greater than 10(-2) M for chlorpyriphos and methylchlorpyriphos. No significant correlations of nerve fiber or glial cell cytotoxicity were apparent with other toxic or physico-chemical properties such as lethal dose in animals, cholinesterase inhibition, lipophilicity or water solubility of chemicals. Clinically neurotoxic and nonneurotoxic compounds caused similar cytotoxic effects in ganglia cultures. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:7272842

  19. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    PubMed

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  20. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    PubMed Central

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  1. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma

    PubMed Central

    Carpenter, EL; Haglund, EA; Mace, EM; Deng, D; Martinez, D; Wood, AC; Chow, AK; Weiser, DA; Belcastro, LT; Winter, C; Bresler, SC; Asgharzadeh, S; Seeger, RC; Zhao, H; Guo, R; Christensen, JG; Orange, JS; Pawel, BR; Lemmon, MA; Mossé, YP

    2013-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in neuroblastoma, a devastating pediatric cancer of the sympathetic nervous system. Germline and somatically acquired ALK aberrations induce increased autophosphorylation, constitutive ALK activation and increased downstream signaling. Thus, ALK is a tractable therapeutic target in neuroblastoma, likely to be susceptible to both small-molecule tyrosine kinase inhibitors and therapeutic antibodies–as has been shown for other receptor tyrosine kinases in malignancies such as breast and lung cancer. Small-molecule inhibitors of ALK are currently being studied in the clinic, but common ALK mutations in neuroblastoma appear to show de novo insensitivity, arguing that complementary therapeutic approaches must be developed. We therefore hypothesized that antibody targeting of ALK may be a relevant strategy for the majority of neuroblastoma patients likely to have ALK-positive tumors. We show here that an antagonistic ALK antibody inhibits cell growth and induces in vitro antibody-dependent cellular cytotoxicity of human neuroblastoma-derived cell lines. Cytotoxicity was induced in cell lines harboring either wild type or mutated forms of ALK. Treatment of neuroblastoma cells with the dual Met/ALK inhibitor crizotinib sensitized cells to antibody-induced growth inhibition by promoting cell surface accumulation of ALK and thus increasing the accessibility of antigen for antibody binding. These data support the concept of ALK-targeted immunotherapy as a highly promising therapeutic strategy for neuroblastomas with mutated or wild-type ALK. PMID:22266870

  2. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field

    PubMed Central

    Wines, Bruce D.; Billings, Hugh; Mclean, Milla R.; Kent, Stephen J.; Hogarth, P. Mark

    2017-01-01

    Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. PMID:28322167

  3. Cytotoxicity of lidocaine to human corneal endothelial cells in vitro.

    PubMed

    Yu, Hao-Ze; Li, Yi-Han; Wang, Rui-Xin; Zhou, Xin; Yu, Miao-Miao; Ge, Yuan; Zhao, Jun; Fan, Ting-Jun

    2014-04-01

    Lidocaine has been reported to induce apoptosis on rabbit corneal endothelial cells. However, the apoptotic effect and exact mechanism involved in cytotoxicity of lidocaine are not well-established in human corneal endothelial (HCE) cells. In this study, we investigated the apoptosis-inducing effect of lidocaine on HCE cells in vitro. After HCE cells were treated with lidocaine at concentrations of 0.15625-10.0 g/l, the morphology and ultrastructure of the cells were observed by inverted light microscope and transmission electron microscope (TEM). Cell viability was measured by MTT assay, and the apoptotic ratio was evaluated with flow cytometry and fluorescent microscopic counting after FITC-Annexin V/PI and AO/EB staining. DNA fragmentation was detected by electrophoresis, and the activation of caspases was evaluated by ELISA. In addition, changes in mitochondrial membrane potential were determined by JC-1 staining. Results suggest that lidocaine above 1.25 g/l reduced cellular viability and triggered apoptosis in HCE cells in a time- and dose-dependent manner. Diminishment of ΔΨm and the activation of caspases indicate that lidocaine-induced apoptosis was caspase dependent and may be related to mitochondrial pathway. © 2013 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  4. Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2013-06-01

    The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.

  5. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    PubMed

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  6. mAbs

    PubMed Central

    2009-01-01

    The twenty two monoclonal antibodies (mAbs) currently marketed in the U.S. have captured almost half of the top-20 U.S. therapeutic biotechnology sales for 2007. Eight of these products have annual sales each of more than $1 B, were developed in the relatively short average period of six years, qualified for FDA programs designed to accelerate drug approval, and their cost has been reimbursed liberally by payers. With growth of the product class driven primarily by advancements in protein engineering and the low probability of generic threats, mAbs are now the largest class of biological therapies under development. The high cost of these drugs and the lack of generic competition conflict with a financially stressed health system, setting reimbursement by payers as the major limiting factor to growth. Advances in mAb engineering are likely to result in more effective mAb drugs and an expansion of the therapeutic indications covered by the class. The parallel development of biomarkers for identifying the patient subpopulations most likely to respond to treatment may lead to a more cost-effective use of these drugs. To achieve the success of the current top-tier mAbs, companies developing new mAb products must adapt to a significantly more challenging commercial environment. PMID:20061824

  7. Erufosine, a novel alkylphosphocholine, induces apoptosis in CLL through a caspase-dependent pathway.

    PubMed

    Königs, Sonja Katharina; Pallasch, Christian Philipp; Lindner, Lars Hartwin; Schwamb, Janine; Schulz, Alexandra; Brinker, Reinhild; Claasen, Julia; Veldurthy, Aditya; Eibl, Hansjoerg; Hallek, Michael; Wendtner, Clemens-Martin

    2010-08-01

    The alkylphosphocholine (APC) erufosine is a synthetic phospholipid analogue with antineoplastic activity. APC are known to interact with lipid metabolism and modulate cellular signaling pathways, particularly the phosphorylation of Akt. Here, in primary CLL cells induction of apoptosis was detected with an IC50 of 22muM whereas healthy donor PBMC were less sensitive towards erufosine. Treatment with erufosine caused dose-dependent cleavage of PARP, co-incubation with caspase inhibitor z-VAD almost completely abrogated the cytotoxic effect of erufosine indicating a caspase-dependent mechanism of erufosine. Erufosine was shown to induce apoptosis in primary CLL cells and merits further investigation regarding therapeutic options in CLL. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies

    PubMed Central

    von Bredow, Benjamin; Arias, Juan F.; Heyer, Lisa N.; Moldt, Brian; Le, Khoa; Robinson, James E.; Burton, Dennis R.

    2016-01-01

    ABSTRACT Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO. ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. IMPORTANCE This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection. PMID:27122574

  9. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies.

    PubMed

    von Bredow, Benjamin; Arias, Juan F; Heyer, Lisa N; Moldt, Brian; Le, Khoa; Robinson, James E; Zolla-Pazner, Susan; Burton, Dennis R; Evans, David T

    2016-07-01

    Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Anti-inflammatory, gastroprotective, and cytotoxic effects of Sideritis scardica extracts.

    PubMed

    Tadić, Vanja M; Jeremic, Ivica; Dobric, Silva; Isakovic, Aleksandra; Markovic, Ivanka; Trajkovic, Vladimir; Bojovic, Dragica; Arsic, Ivana

    2012-03-01

    Sideritis scardica Griseb. (ironwort, mountain tea), an endemic plant of the Balkan Peninsula, has been used in traditional medicine in the treatment of gastrointestinal complaints, inflammation, and rheumatic disorders. This study aimed to evaluate its gastroprotective and anti-inflammatory activities. Besides, continuously increasing interest in assessing the role of the plant active constituents preventing the risk of cancer was a reason to make a detailed examination of the investigated ethanol, diethyl ether, ethyl acetate, and N-butanol extracts regarding cytotoxicity. Oral administration of the investigated extracts caused a dose-dependent anti-inflammatory effect in a model of carrageenan-induced rat paw edema. Gastroprotective activity of the extracts was investigated using an ethanol-induced acute stress ulcer in rats. The cytotoxic activity of plant extracts was assessed on PBMC, B16, and HL-60 cells and compared to the cytotoxicity of phenolic compounds identified in extracts. Apoptotic and necrotic cell death were analyzed by double staining with fluoresceinisothiocyanate (FITC)-conjugated annexin V and PI. The developed HPLC method enabled qualitative fingerprint analysis of phenolic compounds in the investigated extracts. Compared to the effect of the positive control, the anti-inflammatory drug indomethacine (4 mg/kg), which produced a 50 % decrease in inflammation, diethyl ether and N-butanol extracts exhibited about the same effect in doses of 200 and 100 mg/kg (53.6 and 48.7 %; 48.4 and 49.9 %, respectively). All investigated extracts produced dose-dependent gastroprotective activity with the efficacy comparable to that of the reference drug ranitidine. The diethyl ether extract showed significant dose-dependent cytotoxicity on B16 cells and HL-60 cells, decreasing cell growth to 51.3 % and 77.5 % of control, respectively, when used at 100 µg/mL. It seems that phenolic compounds (apigenin, luteolin, and their corresponding glycosides) are

  11. Cytotoxicity and genotoxicity of nanosilver in stable GADD45α promoter-driven luciferase reporter HepG2 and A549 cells.

    PubMed

    Che, Bizhong; Luo, Qiulin; Zhai, Bingzhong; Fan, Guoqiang; Liu, Zhiyong; Cheng, Kaiming; Xin, Lili

    2017-09-01

    The intense commercial application of silver nanoparticles (AgNPs) has been raising concerns about their potential adverse health effects to human. This study aimed to explore the potency of AgNPs to induce GADD45α gene, an important stress sensor, and its relationships with the cytotoxicity and genotoxicity elicited by AgNPs. Two established HepG2 and A549 cell lines containing the GADD45α promoter-driven luciferase reporter were treated with increasing concentrations of AgNPs for 48 hours. After the treatment, transcriptional activation of GADD45α indicated by luciferase activity, cell viability, cell cycle arrest, and levels of genotoxicity were determined. The uptake and intracellular localization of AgNPs, cellular Ag doses as well as Ag + release were also detected. AgNPs could activate GADD45α gene at the transcriptional level as demonstrated by the dose-dependent increases in luciferase activity in both the reporter cells. The relative luciferase activity was greater than 12× the control level in HepG2-luciferase cells at the highest concentration tested where the cell viability decreased to 17.0% of the control. These results was generally in accordance with the positive responses in cytotoxicity, cell cycle arrest of Sub G1 and G2/M phase, Olive tail moment, micronuclei frequency, and the cellular Ag content. The cytotoxicity and genotoxicity of AgNPs seems to occur mainly via particles uptake and the subsequent liberation of ions inside the cells. And furthermore, the GADD45α promoter-driven luciferase reporter cells, especially the HepG2-luciferase cells, could provide a new and valuable tool for predicting nanomaterials genotoxicity in humans. © 2017 Wiley Periodicals, Inc.

  12. Cellular mechanism of estrogen-induced thymic involution in wall lizard: caspase-dependent action.

    PubMed

    Hareramadas, Batchu; Rai, Umesh

    2006-05-01

    The present study, for the first time in an ectothermic vertebrate, demonstrates the cellular mechanism of estrogen-induced thymic involution. Ovariectomy in lizards during the preparatory phase of the reproductive cycle resulted in distinct differentiation of cortico-medullary regions and increase in cellularity, especially in the cortical region. The ovariectomy-induced changes were reversed following administration of 17-estradiol (E2), suggesting a primary role of E2 in causing thymic atrophy. To understand the cellular mechanism of E2-induced thymic atrophy, in vitro effect of E2 was investigated on thymocyte proliferation and apoptosis. E2 decreased the uptake of tritiated thymidine (3H-TdR) by thymocytes in a dose-dependent manner, suggesting that estrogen directly inhibits the thymocyte proliferation. Unlike proliferation, E2 did not have any direct effect on thymocyte apoptosis, as evident by DNA gel electrophoretic, flow cytometric or fluorescence microscopic studies. However, in the presence of thymic epithelial cell-rich stromal components (TEC), E2 treatment at low or high concentrations resulted in depolarization of plasma membrane, DNA fragmentation and decrease in DNA content. This suggests that E2 indirectly, through TEC-secreted factors, controls thymocyte apoptosis. Similar result was observed following fluorescence microscopy. The indirect effect of E2 was further ascertained with the findings that E2-pretreated TEC-conditioned medium accelerated the thymocyte apoptosis. Nevertheless, exposure of thymocytes to E2 was seen to be inevitable for the apoptotic action of TEC-secreted paracrine factors. In the presence of TEC, a positive reaction for caspase-3, -7 and -9 and enzyme substrate, poly(ADP-ribose) polymerase (PARP) in response to E2 suggests the caspase-dependent thymocyte apoptosis in the wall lizard Hemidactylus flaviviridis. Further, E2 was shown to act through genomic pathway, since the receptor antagonist tamoxifen and transcription

  13. Circulating miR-200c is up-regulated in paediatric patients with familial hypercholesterolaemia and correlates with miR-33a/b levels: implication of a ZEB1-dependent mechanism.

    PubMed

    D'Agostino, Marco; Martino, Francesco; Sileno, Sara; Barillà, Francesco; Beji, Sara; Marchetti, Lorenza; Gangi, Fabio Maria; Persico, Luca; Picozza, Mario; Montali, Anna; Martino, Eliana; Zanoni, Cristina; Avitabile, Daniele; Parrotto, Sandro; Capogrossi, Maurizio Colognesi; Magenta, Alessandra

    2017-09-15

    Hypercholesterolaemia provokes reactive oxygen species (ROS) increase and is a major risk factor for cardiovascular disease (CVD) development. We previously showed that circulating miR-33a/b expression levels were up-regulated in children with familial hypercholesterolaemia (FH). miR-33a/b control cholesterol homoeostasis and recently miR-33b has been demonstrated to directly target the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1). The latter acts in a negative feedback loop with the miR-200 family. Our previous studies showed that the ROS-dependent miR-200c up-regulation induces endothelial dysfunction and provokes a ZEB1-dependent apoptosis and senescence. In the present study, we aimed to verify whether circulating miR-200c was induced in FH children, and whether a correlation existed with miR-33a/b Total RNA was extracted from plasma of 28 FH children and 25 age-matched healthy subjects (HS) and miR-200c levels were measured. We found that miR-200c was up-regulated in FH compared with HS (4.00 ± 0.48-fold increase, P <0.05) and exhibited a positive correlation with miR-33a/b. miR-200c did not correlate with plasma lipids, but correlated with C-reactive protein (CRP) plasma levels and glycaemia (GLI). Ordinary least squares (OLS) regression analysis revealed that miR-200c was significantly affected by GLI and by miR-33a ( P <0.01; P <0.001 respectively). Moreover, we found that miR-33 overexpression, in different cell lines, decreased ZEB1 expression and up-regulated both the intracellular and the extracellular miR-200c expression levels. In conclusion, circulating miR-200c is up-regulated in FH, probably due to oxidative stress and inflammation and via a miR-33a/b -ZEB1-dependent mechanism. The present study could provide the first evidence to point to the use of miR-33a/b and miR-200c , as early biomarkers of CVD, in paediatric FH. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR

    PubMed Central

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-01-01

    Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO2 particles. PMID:28387727

  15. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR.

    PubMed

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-04-07

    Titanium dioxide (TiO₂) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO₂ nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2 nfkb-RE ), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO₂ NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO₂ NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO₂ NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO₂ NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO₂ particles.

  16. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells.

    PubMed

    Srikanth, Koigoora; Mahajan, Amit; Pereira, Eduarda; Duarte, Armando Costa; Venkateswara Rao, Janapala

    2015-10-01

    Aluminium oxide nanoparticles (Al2 O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2 O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2 O3 NPs on fish cell lines. The current study was aimed to investigate Al2 O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE-214). A dose-dependent decline in cell viability was observed in CHSE-214 cells exposed to Al2 O3 NPs. Oxidative stress induced by Al2 O3 NPs in CHSE-214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose-dependent manner. However, a significant increase in glutathione sulfo-transferase and lipid peroxidation was observed in CHSE-214 cells exposed to Al2 O3 NPs in a dose-dependent manner. Significant morphological changes in CHSE-214 cells were observed when exposed to Al2 O3 NPs at 6, 12 and 24 h. The cells started to detach and appear spherical at 6 h followed by loss of cellular contents resulting in the shrinking of the cells. At 24 h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2 O3 NPs induce cytotoxicity and oxidative stress in a dose-dependent manner in CHSE-214 cells. Thus, our current work may serve as a base-line study for future evaluation of toxicity studies using CHSE-214 cells. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Cellular entry of G3.5 poly (amido amine) dendrimers by clathrin- and dynamin-dependent endocytosis promotes tight junctional opening in intestinal epithelia.

    PubMed

    Goldberg, Deborah S; Ghandehari, Hamidreza; Swaan, Peter W

    2010-08-01

    This study investigates the mechanisms of G3.5 poly (amido amine) dendrimer cellular uptake, intracellular trafficking, transepithelial transport and tight junction modulation in Caco-2 cells in the context of oral drug delivery. Chemical inhibitors blocking clathrin-, caveolin- and dynamin-dependent endocytosis pathways were used to investigate the mechanisms of dendrimer cellular uptake and transport across Caco-2 cells using flow cytometry and confocal microscopy. Dendrimer cellular uptake was found to be dynamin-dependent and was reduced by both clathrin and caveolin endocytosis inhibitors, while transepithelial transport was only dependent on dynamin- and clathrin-mediated endocytosis. Dendrimers were quickly trafficked to the lysosomes after 15 min of incubation and showed increased endosomal accumulation at later time points, suggesting saturation of this pathway. Dendrimers were unable to open tight junctions in cell monolayers treated with dynasore, a selective inhibitor of dynamin, confirming that dendrimer internalization promotes tight junction modulation. G3.5 PAMAM dendrimers take advantage of several receptor-mediated endocytosis pathways for cellular entry in Caco-2 cells. Dendrimer internalization by dynamin-dependent mechanisms promotes tight junction opening, suggesting that dendrimers act on intracellular cytoskeletal proteins to modulate tight junctions, thus catalyzing their own transport via the paracellular route.

  18. Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1.

    PubMed

    Wang, Kening; Tomaras, Georgia D; Jegaskanda, Sinthujan; Moody, M Anthony; Liao, Hua-Xin; Goodman, Kyle N; Berman, Phillip W; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Haynes, Barton F; Cohen, Jeffrey I

    2017-10-01

    The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice. IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were

  19. Cystatin F as a regulator of immune cell cytotoxicity.

    PubMed

    Kos, Janko; Nanut, Milica Perišić; Prunk, Mateja; Sabotič, Jerica; Dautović, Esmeralda; Jewett, Anahid

    2018-05-10

    Cysteine cathepsins are lysosomal peptidases involved in the regulation of innate and adaptive immune responses. Among the diverse processes, regulation of granule-dependent cytotoxicity of cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells during cancer progression has recently gained significant attention. The function of cysteine cathepsins is regulated by endogenous cysteine protease inhibitors-cystatins. Whereas other cystatins are generally cytosolic or extracellular proteins, cystatin F is present in endosomes and lysosomes and is thus able to regulate the activity of its target directly. It is delivered to endosomal/lysosomal vesicles as an inactive, disulphide-linked dimer. Proteolytic cleavage of its N-terminal part leads to the monomer, the only form that is a potent inhibitor of cathepsins C, H and L, involved in the activation of granzymes and perforin. In NK cells and CTLs the levels of active cathepsin C and of granzyme B are dependent on the concentration of monomeric, active cystatin F. In tumour microenvironment, inactive dimeric cystatin F can be secreted from tumour cells or immune cells and further taken up by the cytotoxic cells. Subsequent monomerization and inhibition of cysteine cathepsins within the endosomal/lysosomal vesicles impairs granzyme and perforin activation, and provokes cell anergy. Further, the glycosylation pattern has been shown to be important in controlling secretion of cystatin F from target cells, as well as internalization by cytotoxic cells and trafficking to endosomal/lysosomal vesicles. Cystatin F is therefore an important mediator used by bystander cells to reduce NK and T-cell cytotoxicity.

  20. Penicillium spp.: prolific producer for harnessing cytotoxic secondary metabolites.

    PubMed

    Koul, Mytre; Singh, Shashank

    2017-01-01

    Secondary metabolites from fungal endophytes have become an interesting, attractive, and alternative source for novel pharmaceuticals. Several novel compounds with diversified chemical structures have been isolated from endophytic fungi. The genus Penicillium has been exploited worldwide for its biosynthetic potential for producing highly versatile cytotoxic secondary metabolites. Many of the compounds isolated from various species of the genus Penicillium have shown promising in-vitro as well as in-vivo growth-inhibitory properties against different human cancers. Thus, in relation to this genus, Penicillium represents the most dependable source of cytotoxic compounds with potential applications as leads for anticancer drugs. This review outlines endophytic secondary metabolites from the genus Penicillium with a relevant role as cytotoxic agents.

  1. Rhodium metalloinsertor binding generates a lesion with selective cytotoxicity for mismatch repair-deficient cells.

    PubMed

    Bailis, Julie M; Weidmann, Alyson G; Mariano, Natalie F; Barton, Jacqueline K

    2017-07-03

    The DNA mismatch repair (MMR) pathway recognizes and repairs errors in base pairing and acts to maintain genome stability. Cancers that have lost MMR function are common and comprise an important clinical subtype that is resistant to many standard of care chemotherapeutics such as cisplatin. We have identified a family of rhodium metalloinsertors that bind DNA mismatches with high specificity and are preferentially cytotoxic to MMR-deficient cells. Here, we characterize the cellular mechanism of action of the most potent and selective complex in this family, [Rh(chrysi)(phen)(PPO)] 2+ (Rh-PPO). We find that Rh-PPO binding induces a lesion that triggers the DNA damage response (DDR). DDR activation results in cell-cycle blockade and inhibition of DNA replication and transcription. Significantly, the lesion induced by Rh-PPO is not repaired in MMR-deficient cells, resulting in selective cytotoxicity. The Rh-PPO mechanism is reminiscent of DNA repair enzymes that displace mismatched bases, and is differentiated from other DNA-targeted chemotherapeutics such as cisplatin by its potency, cellular mechanism, and selectivity for MMR-deficient cells.

  2. Cellular roles of neuronal calcium sensor-1 and calcium/calmodulin-dependent kinases in fungi.

    PubMed

    Tamuli, Ranjan; Kumar, Ravi; Deka, Rekha

    2011-04-01

    The neuronal calcium sensor-1 (NCS-1) possesses a consensus signal for N-terminal myristoylation and four EF-hand Ca(2+)-binding sites, and mediates the effects of cytosolic Ca(2+). Minute changes in free intracellular Ca(2+) are quickly transformed into changes in the activity of several kinases including calcium/calmodulin-dependent protein kinases (Ca(2+)/CaMKs) that are involved in regulating many eukaryotic cell functions. However, our current knowledge of NCS-1 and Ca(2+)/CaMKs comes mostly from studies of the mammalian enzymes. Thus far very few fungal homologues of NCS-1 and Ca(2+)/CaMKs have been characterized and little is known about their cellular roles. In this minireview, we describe the known sequences, interactions with target proteins and cellular roles of NCS-1 and Ca(2+)/CaMKs in fungi. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fc functional antibodies in humans with severe H7N9 and seasonal influenza

    PubMed Central

    Vanderven, Hillary A.; Liu, Lu; Ana-Sosa-Batiz, Fernanda; Nguyen, Thi H.O.; Wan, Yanmin; Hogarth, P. Mark; Tilmanis, Danielle; Parsons, Matthew S.; Hurt, Aeron C.; Davenport, Miles P.; Kotsimbos, Tom; Cheng, Allen C.; Kedzierska, Katherine; Zhang, Xiaoyan; Xu, Jianqing; Kent, Stephen J.

    2017-01-01

    BACKGROUND. Both seasonal and novel avian influenza viruses can result in severe infections requiring hospitalization. Anti-influenza antibodies (Abs) with Fc-mediated effector functions, such as Ab-dependent cellular cytotoxicity (ADCC), are of growing interest in control of influenza but have not previously been studied during severe human infections. As such, the objective of this study was to examine Fc-mediated Ab functions in humans hospitalized with influenza infection. METHODS. Serum Ab response was studied in subjects hospitalized with either pandemic H7N9 avian influenza virus in China (n = 18) or circulating seasonal influenza viruses in Melbourne, Australia (n = 16). Recombinant soluble Fc receptor dimer ELISAs, natural killer (NK) cell activation assays, and Ab-dependent killing assays with influenza-infected target cells were used to assess the Fc functionality of anti-influenza hemagglutinin (HA) Abs during severe human influenza infection. RESULTS. We found that the peak generation of Fc functional HA Abs preceded that of neutralizing Abs for both severe H7N9 and seasonal influenza infections. Subjects who succumbed to complications of H7N9 infection demonstrated reduced HA-specific Fc receptor–binding Abs (in magnitude and breadth) immediately prior to death compared with those who survived. Subjects who recovered from H7N9 and severe seasonal influenza infections demonstrated increased Fc receptor–binding Abs not only against the homologous infecting strain but against HAs from different influenza A subtypes. CONCLUSION. Collectively, survivors of severe influenza infection rapidly generate a functional Ab response capable of mediating ADCC against divergent influenza viruses. Broadly binding HA Abs with Fc-mediated functions may be a useful component of protective immunity to severe influenza infection. FUNDING. The National Health and Medical Research Council ([NHMRC] grants 1023294, 1041832, and 1071916), the Australian Department of Health

  4. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies.

    PubMed

    Roy, Gargi; Martin, Tom; Barnes, Arnita; Wang, Jihong; Jimenez, Rod Brian; Rice, Megan; Li, Lina; Feng, Hui; Zhang, Shu; Chaerkady, Raghothama; Wu, Herren; Marelli, Marcello; Hatton, Diane; Zhu, Jie; Bowen, Michael A

    2018-04-01

    The conserved glycosylation site Asn 297 of a monoclonal antibody (mAb) can be decorated with a variety of sugars that can alter mAb pharmacokinetics and recruitment of effector proteins. Antibodies lacking the core fucose at Asn 297 (afucosylated mAbs) show enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and increased efficacy. Here, we describe the development of a robust platform for the manufacture of afucosylated therapeutic mAbs by engineering a Chinese hamster ovary (CHO) host cell line to co-express a mAb with GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD), a prokaryotic enzyme that deflects an intermediate in the de novo synthesis of fucose to a dead-end product, resulting in the production of afucosylated mAb (GlymaxX™ Technology, ProBioGen). Expression of the mAb and RMD genes was coordinated by co-transfection of separate mAb and RMD vectors or use of an internal ribosome entry site (IRES) element to link the translation of RMD with either the glutamine synthase selection marker or the mAb light chain. The GS-IRES-RMD vector format was more suitable for the rapid generation of high yielding cell lines, secreting afucosylated mAb with titers exceeding 6.0 g/L. These cell lines maintained production of afucosylated mAb over 60 generations, ensuring their suitability for use in large-scale manufacturing. The afucosylated mAbs purified from these RMD-engineered cell lines showed increased binding in a CD16 cellular assay, demonstrating enhancement of ADCC compared to fucosylated control mAb. Furthermore, the afucosylation in these mAbs could be controlled by simple addition of L-fucose in the culture medium, thereby allowing the use of a single cell line for production of the same mAb in fucosylated and afucosylated formats for multiple therapeutic indications.

  5. In vitro cytotoxicity and differential cellular sensitivity of derivatives of diamino acids. II. N1-methyl, N1-allyl, N1-(2-chloroethyl) and N1-propargyl nitrosoureas.

    PubMed

    Dulude, H; Salvador, R; Gallant, G

    1995-01-01

    The in vitro cytotoxicity and differential cellular sensitivity of a series of new N1-methyl, N1-allyl, N1-2-chloroethyl and N1-propargyl nitrosourea derivatives of diamino acids were determined in the National Cancer Institute's primary antitumor drug screen. The compounds tested showed an in vitro anticancer activity similar to commercialized nitrosoureas such as CCNU, BCNU, MeCCNU, chlorozotocin, streptozotocin and PCNU. The alkylating moiety of the nitrosoureas seems to play a role in the general selectivity of our compounds. The N1-methyl and N1-2-chloroethyl nitrosourea derivatives are more selective for central nervous system cell lines, the N1-allyl nitrosourea derivatives are more selective for lung cancer cell lines and the N1-propargyl nitrosoureas are more selective for leukemia cell lines.

  6. HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response-Implications on HSCT Outcome.

    PubMed

    Kraemer, Thomas; Celik, Alexander A; Huyton, Trevor; Kunze-Schumacher, Heike; Blasczyk, Rainer; Bade-Döding, Christina

    2015-01-01

    The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire. To investigate the self-peptide repertoire of HLA-E (∗) 01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E (∗) 01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E (∗) 01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection. Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.

  7. p53-competent cells and p53-deficient cells display different susceptibility to oxygen functionalized graphene cytotoxicity and genotoxicity.

    PubMed

    Petibone, Dayton M; Mustafa, Thikra; Bourdo, Shawn E; Lafont, Andersen; Ding, Wei; Karmakar, Alokita; Nima, Zeid A; Watanabe, Fumiya; Casciano, Daniel; Morris, Suzanne M; Dobrovolsky, Vasily N; Biris, Alexandru S

    2017-11-01

    Due to the distinctive physical, electrical, and chemical properties of graphene nanomaterials, numerous efforts pursuing graphene-based biomedical and industrial applications are underway. Oxidation of pristine graphene surfaces mitigates its otherwise hydrophobic characteristic thereby improving its biocompatibility and functionality. Yet, the potential widespread use of oxidized graphene derivatives raises concern about adverse impacts on human health. The p53 tumor suppressor protein maintains cellular and genetic stability after toxic exposures. Here, we show that p53 functional status correlates with oxygen functionalized graphene (f-G) cytotoxicity and genotoxicity in vitro. The f-G exposed p53-competent cells, but not p53-deficient cells, initiated G 0 /G 1 phase cell cycle arrest, suppressed reactive oxygen species, and entered apoptosis. There was p53-dependent f-G genotoxicity evident as increased structural chromosome damage, but not increased gene mutation or chromatin loss. In conclusion, the cytotoxic and genotoxic potential for f-G in exposed cells was dependent on the p53 functional status. These findings have broad implications for the safe and effective implementation of oxidized graphene derivatives into biomedical and industrial applications. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  8. In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models

    NASA Astrophysics Data System (ADS)

    Pojo, M.; Cerqueira, S. R.; Mota, T.; Xavier-Magalhães, A.; Ribeiro-Samy, S.; Mano, J. F.; Oliveira, J. M.; Reis, R. L.; Sousa, N.; Costa, B. M.; Salgado, A. J.

    2013-05-01

    Glioblastoma (GBM) is simultaneously the most common and most malignant subtype tumor of the central nervous system. These are particularly dramatic diseases ranking first among all human tumor types for tumor-related average years of life lost and for which curative therapies are not available. Recently, the use of nanoparticles as drug delivery systems (DDS) for tumor treatment has gained particular interest. In an attempt to evaluate the potential of carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles as a DDS, we aimed to evaluate its cytotoxicity and internalization efficiency in GBM cell models. CMCht/PAMAM-mediated cytotoxicity was evaluated in a GBM cell line (U87MG) and in human immortalized astrocytes (hTERT/E6/E7) by MTS and double-stranded DNA quantification. CMCht/PAMAM internalization was assessed by double fluorescence staining. Both cells lines present similar internalization kinetics when exposed to a high dose (400 μg/mL) of these nanoparticles. However, the internalization rate was higher in tumor GBM cells as compared to immortalized astrocytes when cells were exposed to lower doses (200 μg/mL) of CMCht/PAMAM for short periods (<24 h). After 48 h of exposure, both cell lines present 100 % of internalization efficiency for the tested concentrations. Importantly, short-term exposures (1, 6, 12, 24, and 48 h) did not show cytotoxicity, and long-term exposures (7 days) to CMCht/PAMAM induced only low levels of cytotoxicity in both cell lines ( 20 % of decrease in metabolic activity). The high efficiency and rate of internalization of CMCht/PAMAM we show here suggest that these nanoparticles may be an attractive DDS for brain tumor treatment in the future.

  9. Cellular Auxin Homeostasis under High Temperature Is Regulated through a SORTING NEXIN1–Dependent Endosomal Trafficking Pathway[C][W

    PubMed Central

    Hanzawa, Taiki; Shibasaki, Kyohei; Numata, Takahiro; Kawamura, Yukio; Gaude, Thierry; Rahman, Abidur

    2013-01-01

    High-temperature-mediated adaptation in plant architecture is linked to the increased synthesis of the phytohormone auxin, which alters cellular auxin homeostasis. The auxin gradient, modulated by cellular auxin homeostasis, plays an important role in regulating the developmental fate of plant organs. Although the signaling mechanism that integrates auxin and high temperature is relatively well understood, the cellular auxin homeostasis mechanism under high temperature is largely unknown. Using the Arabidopsis thaliana root as a model, we demonstrate that under high temperature, roots counterbalance the elevated level of intracellular auxin by promoting shootward auxin efflux in a PIN-FORMED2 (PIN2)-dependent manner. Further analyses revealed that high temperature selectively promotes the retrieval of PIN2 from late endosomes and sorts them to the plasma membrane through an endosomal trafficking pathway dependent on SORTING NEXIN1. Our results demonstrate that recycling endosomal pathway plays an important role in facilitating plants adaptation to increased temperature. PMID:24003052

  10. Interleukin-2-dependent long-term cultures of low-density lymphocytes allow the proliferation of lymphokine-activated killer cells with natural killer, Ti gamma/delta or TNK phenotype.

    PubMed

    Testa, U; Care, A; Montesoro, E; Fossati, C; Giannella, G; Masciulli, R; Fagioli, M; Bulgarini, D; Habetswallner, D; Isacchi, G

    1990-01-01

    We have developed a culture system for "long-term" growth of human lymphokine-activated killer (LAK) cells exhibiting an elevated, wide-spectrum antitumor cytotoxicity. The system allows the exponential growth of monocyte-depleted low-density lymphocytes in the presence of human serum and recombinant human interleukin-2 (10(3) U/ml), alone or in combination with interleukin-1 alpha or beta (both at 10 U/ml). Eighteen cultures were established from 18 normal adult donors. The membrane phenotypes of the final LAK cell population, assessed by a panel of monoclonal antibodies (mAb), consist of three main types: (a) NKH-1+, Ti alpha/beta-, Ti gamma/delta-, and CD3- lymphocytes; (b) NKH-1+, Ti alpha/beta-, Ti gamma/delta+, and CD3+ lymphocytes and (c) NKH-1+, Ti alpha/beta+, Ti gamma/delta- and CD3+ lymphocytes. Northern blot analysis showed that all these cell populations express relatively high levels of perforin RNA, particularly cells exhibiting the first phenotype. This culture system may provide a tool for cellular and molecular studies on the mechanisms of antitumor cytotoxicity, as well as the basis for new adoptive immunotherapy protocols in advanced center.

  11. Mitigation of Quantum Dot Cytotoxicity by Microencapsulation

    PubMed Central

    Romoser, Amelia; Ritter, Dustin; Majitha, Ravish; Meissner, Kenith E.; McShane, Michael; Sayes, Christie M.

    2011-01-01

    When CdSe/ZnS-polyethyleneimine (PEI) quantum dots (QDs) are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG) mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the “first line of defense” for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor. PMID:21814567

  12. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    NASA Astrophysics Data System (ADS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-06-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  13. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting thatmore » fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity

  14. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Kumar, Dhiraj; Mutreja, Isha; Chitcholtan, Kenny; Sykes, Peter

    2017-11-01

    Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.

  15. SK3/TRPC1/Orai1 complex regulates SOCE-dependent colon cancer cell migration: a novel opportunity to modulate anti-EGFR mAb action by the alkyl-lipid Ohmline

    PubMed Central

    Guéguinou, Maxime; Harnois, Thomas; Crottes, David; Uguen, Arnaud; Deliot, Nadine; Gambade, Audrey; Chantôme, Aurélie; Haelters, Jean Pierre; Jaffrès, Paul Alain; Jourdan, Marie Lise; Weber, Günther; Soriani, Olivier; Bougnoux, Philippe; Mignen, Olivier; Bourmeyster, Nicolas; Constantin, Bruno; Lecomte, Thierry

    2016-01-01

    Background Barely 10-20% of patients with metastatic colorectal cancer (mCRC) receive a clinical benefit from the use of anti-EGFR monoclonal antibodies (mAbs). We hypothesized that this could depends on their efficiency to reduce Store Operated Calcium Entry (SOCE) that are known to enhance cancer cells. Results In the present study, we demonstrate that SOCE promotes migration of colon cancer cell following the formation of a lipid raft ion channel complex composed of TRPC1/Orai1 and SK3 channels. Formation of this complex is stimulated by the phosphorylation of the reticular protein STIM1 by EGF and activation of the Akt pathway. Our data show that, in a positive feedback loop SOCE activates both Akt pathway and SK3 channel activity which lead to SOCE amplification. This amplification occurs through the activation of Rac1/Calpain mediated by Akt. We also show that Anti-EGFR mAbs can modulate SOCE and cancer cell migration through the Akt pathway. Interestingly, the alkyl-lipid Ohmline, which we previously showed to be an inhibitor of SK3 channel, can dissociated the lipid raft ion channel complex through decreased phosphorylation of Akt and modulation of mAbs action. Conclusions This study demonstrates that the inhibition of the SOCE-dependent colon cancer cell migration trough SK3/TRPC1/Orai1 channel complex by the alkyl-lipid Ohmline may be a novel strategy to modulate Anti-EGFR mAb action in mCRC. PMID:27102434

  16. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects

    PubMed Central

    2016-01-01

    Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose–response curve. PMID:27617882

  17. Effect of prostaglandin E2 on cytotoxic activity and granzyme A protease release by murine adherent IL-2 activated killer cells.

    PubMed

    Vaillier, D; Daculsi, R; Gualde, N

    1994-04-01

    The effects of prostaglandin E2 (PGE2) have been studied on a highly purified population of murine IL-2 activated killer cells obtained by selecting plastic-adherent splenocytes (AK cells) after incubation with high doses of recombinant IL-2. AK cells were highly cytotoxic for YAC-1 target cells. The cytotoxic activity was detectable at one hour after initiation of the cytotoxic assay and then increased with time. Cytotoxic activity of AK cells was inhibited by the addition of PGE2 or forskolin during the cytotoxic assay. When AK cells were generated in the presence of PGE2, the yielding cytotoxic activity was lower than the one expressed by "regular" AK cells but were insensitive to the inhibitory effect of PGE2 even if their lytic capability was still suppressed by forskolin. The presence of PGE2 during the AK cell culture had no effect on the cellular proliferation. Moreover, using tetrazolium-based colorimetric assay which reflects the cellular activation, it was observed that AK cells cultured in presence of PGE2 had an increased capacity to cleave the tetrazolium salt to formazan. Since the cytotoxic activity of killer cells is related to expression of serine esterase enzymes we evaluated the effects of PGE2 on serine esterase (Granzyme A) release after one hour of incubation of AK cells either alone or in presence of PGE2, YAC-1 cells or both. We observed that (i) AK cells spontaneously release granzyme A, (ii) the level of granzyme A was significantly increased when AK cells were incubated either with YAC-1 cells or PGE2 but did not change when YAC-1 cells and PGE2 were both associated with AK cells.

  18. A Novel Aerobic Degradation Pathway for Thiobencarb Is Initiated by the TmoAB Two-Component Flavin Mononucleotide-Dependent Monooxygenase System in Acidovorax sp. Strain T1

    PubMed Central

    Chu, Cui-Wei; Liu, Bin; Li, Na; Yao, Shi-Gang; Cheng, Dan; Zhao, Jia-Dong; Qiu, Ji-Guo; Yan, Xin; He, Jian

    2017-01-01

    ABSTRACT Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C—S bond, generating diethylcarbamothioic S-acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum, alkanesulfonate monooxygenase from Pseudomonas savastanoi, and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C—S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC, was located 7,129 bp downstream of tmoAB, and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD+ as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis. IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation

  19. A Novel Aerobic Degradation Pathway for Thiobencarb Is Initiated by the TmoAB Two-Component Flavin Mononucleotide-Dependent Monooxygenase System in Acidovorax sp. Strain T1.

    PubMed

    Chu, Cui-Wei; Liu, Bin; Li, Na; Yao, Shi-Gang; Cheng, Dan; Zhao, Jia-Dong; Qiu, Ji-Guo; Yan, Xin; He, Qin; He, Jian

    2017-12-01

    Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C-S bond, generating diethylcarbamothioic S -acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum , alkanesulfonate monooxygenase from Pseudomonas savastanoi , and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C-S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC , was located 7,129 bp downstream of tmoAB , and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD + as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis. IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil

  20. Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus.

    PubMed

    Ericson, Megan E; Subramanian, Chitra; Frank, Matthew W; Rock, Charles O

    2017-08-01

    The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus , but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated in strains lacking FA kinase activity. SaeRS-mediated transcription is restored in FA kinase-negative strains when the intracellular FA pool is reduced either by growth with FA-depleted bovine serum albumin to extract the FA into the medium or by the heterologous expression of Neisseria gonorrhoeae acyl-acyl carrier protein synthetase to activate FA for phospholipid synthesis. These data show that FAs act as negative regulators of SaeRS signaling, and FA kinase activates SaeRS-dependent virulence factor production by lowering inhibitory FA levels. Thus, FA kinase plays a role in cellular lipid homeostasis by activating FA for incorporation into phospholipid, and it indirectly regulates SaeRS signaling by maintaining a low intracellular FA pool. IMPORTANCE The SaeRS two-component system is a master transcriptional activator of virulence factor production in response to the host environment in S. aureus , and strains lacking FA kinase have severely attenuated SaeRS-dependent virulence factor transcription. FA kinase is required for the activation of exogenous FAs, and it plays a role in cellular lipid homeostasis by recycling cellular FAs into the phospholipid biosynthetic pathway. Activation of the sensor kinase, SaeS, is mediated by its membrane anchor domain, and the FAs which accumulate in FA kinase knockout strains are potent inhibitors of SaeS-dependent signaling. This work identifies FAs as physiological effectors for the SaeRS system and reveals a connection between cellular lipid homeostasis and the regulation of virulence factor transcription. FA kinase is widely

  1. Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements.

    PubMed

    Bhatia, Sujata K; Yetter, Ann B

    2008-08-01

    Medical devices and implanted biomaterials are often assessed for biological reactivity using visual scores of cell-material interactions. In such testing, biomaterials are assigned cytotoxicity ratings based on visual evidence of morphological cellular changes, including cell lysis, rounding, spreading, and proliferation. For example, ISO 10993 cytotoxicity testing of medical devices allows the use of a visual grading scale. The present study compared visual in vitro cytotoxicity ratings to quantitative in vitro cytotoxicity measurements for biomaterials to determine the level of correlation between visual scoring and a quantitative cell viability assay. Biomaterials representing a spectrum of biological reactivity levels were evaluated, including organo-tin polyvinylchloride (PVC; a known cytotoxic material), ultra-high molecular weight polyethylene (a known non-cytotoxic material), and implantable tissue adhesives. Each material was incubated in direct contact with mouse 3T3 fibroblast cell cultures for 24 h. Visual scores were assigned to the materials using a 5-point rating scale; the scorer was blinded to the material identities. Quantitative measurements of cell viability were performed using a 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay; again, the assay operator was blinded to material identities. The investigation revealed a high degree of correlation between visual cytotoxicity ratings and quantitative cell viability measurements; a Pearson's correlation gave a correlation coefficient of 0.90 between the visual cytotoxicity score and the percent viable cells. An equation relating the visual cytotoxicity score and the percent viable cells was derived. The results of this study are significant for the design and interpretation of in vitro cytotoxicity studies of novel biomaterials.

  2. Ab initio relaxation times and time-dependent Hamiltonians within the steepest-entropy-ascent quantum thermodynamic framework

    NASA Astrophysics Data System (ADS)

    Kim, Ilki; von Spakovsky, Michael R.

    2017-08-01

    Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.

  3. A comparative assessment of cytotoxicity of commonly used agricultural insecticides to human and insect cells.

    PubMed

    Yun, Xinming; Huang, Qingchun; Rao, Wenbing; Xiao, Ciying; Zhang, Tao; Mao, Zhifan; Wan, Ziyi

    2017-03-01

    The cytotoxic potential of 13 commonly used agricultural insecticides was examined using cell-based systems with three human HepG2, Hek293, HeLa cells and three insect Tn5B1-4, Sf-21, and Drosophila S2 cells. Data showed that (1) an enhancement of some insecticides (e.g. pyrethroids) on cells proliferation; (2) an inhibition of some insecticides on cells viability; (3) various levels of susceptibility of different cells to the same insecticide; and (4) the cell type dependent sensitivity to different insecticides. The degree of cytotoxicity of insecticides on human cells was significantly lower than that on insect cells (P<0.05). Methomyl, even 20μg/ml, showed little cytotoxicity at 24h exposure whereas emamectin benzoate possessed the strongest cytotoxic potential in a dose-dependent fashion. The results revealed comparable cytotoxic property of agricultural insecticides against intact cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cellular GFP Toxicity and Immunogenicity: Potential Confounders in in Vivo Cell Tracking Experiments.

    PubMed

    Ansari, Amir Mehdi; Ahmed, A Karim; Matsangos, Aerielle E; Lay, Frank; Born, Louis J; Marti, Guy; Harmon, John W; Sun, Zhaoli

    2016-10-01

    Green Fluorescent protein (GFP), used as a cellular tag, provides researchers with a valuable method of measuring gene expression and cell tracking. However, there is evidence to suggest that the immunogenicity and cytotoxicity of GFP potentially confounds the interpretation of in vivo experimental data. Studies have shown that GFP expression can deteriorate over time as GFP tagged cells are prone to death. Therefore, the cells that were originally marked with GFP do not survive and cannot be accurately traced over time. This review will present current evidence for the immunogenicity and cytotoxicity of GFP in in vivo studies by characterizing these responses.

  5. Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietsch, Constanze, E-mail: constanze.pietsch@unibas.ch; Bucheli, Thomas D.; Wettstein, Felix E.

    Contamination of animal feed with mycotoxins is a major problem for fish feed mainly due to usage of contaminated ingredients for production and inappropriate storage of feed. The use of cereals for fish food production further increases the risk of a potential contamination. Potential contaminants include the mycotoxin deoxynivalenol (DON) which is synthesized by globally distributed fungi of the genus Fusarium. The toxicity of DON is well recognized in mammals. In this study, we confirm cytotoxic effects of DON in established permanent fish cell lines. We demonstrate that DON is capable of influencing the metabolic activity and cell viability inmore » fish cells as determined by different assays to indicate possible cellular targets of this toxin. Evaluation of cell viability by measurement of membrane integrity, mitochondrial activity and lysosomal function after 24 h of exposure of fish cell lines to DON at a concentration range of 0-3000 ng ml{sup -1} shows a biphasic effect on cells although differences in sensitivity occur. The cell lines derived from rainbow trout are particularly sensitive to DON. The focus of this study lies, furthermore, on the effects of DON at different concentrations on production of reactive oxygen species (ROS) in the different fish cell lines. The results show that DON mainly reduces ROS production in all cell lines that were used. Thus, our comparative investigations reveal that the fish cell lines show distinct species-related endpoint sensitivities that also depend on the type of tissue from which the cells were derived and the severity of exposure. - Highlights: > DON uptake by cells is not extensive. > All fish cell lines are sensitive to DON. > DON is most cytotoxic to rainbow trout cells. > Biphasic cellular responses were frequently observed. > Our results are similar to studies on mammalian cell lines.« less

  6. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  7. Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition.

    PubMed Central

    Osornio-Vargas, Alvaro R; Bonner, James C; Alfaro-Moreno, Ernesto; Martínez, Leticia; García-Cuellar, Claudia; Ponce-de-León Rosales, Sergio; Miranda, Javier; Rosas, Irma

    2003-01-01

    Exposure to urban airborne particulate matter (PM) is associated with adverse health effects. We previously reported that the cytotoxic and proinflammatory effects of Mexico City PM10 (less than or equal to 10 micro m mean aerodynamic diameter) are determined by transition metals and endotoxins associated with these particles. However, PM2.5 (less than or equal to 2.5 micro m mean aerodynamic diameter) could be more important as a human health risk because this smaller PM has the potential to reach the distal lung after inhalation. In this study, we compared the cytotoxic and proinflammatory effects of Mexico City PM10 with those of PM2.5 using the murine monocytic J774A.1 cell line in vitro. PMs were collected from the northern zone or the southeastern zone of Mexico City. Elemental composition and bacterial endotoxin on PMs were measured. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) production by J774A.1 cells was measured in the presence or absence of recombinant endotoxin-neutralizing protein (rENP). Both northern and southeastern PMs contained endotoxin and a variety of transition metals. Southeastern PM10 contained the highest endotoxin levels, 2-fold higher than that in northern PM10. Northern and southeastern PM2.5 contained the lowest endotoxin levels. Accordingly, southeastern PM10 was the most potent in causing secretion of the proinflammatory cytokines TNF-alpha and IL-6. All PM2.5 and PM10 samples caused cytotoxicity, but northern PMs were the most toxic. Cytokine secretion induced by southeastern PM10 was reduced 50-75% by rENP. These results indicate major differences in PM10 and PM2.5. PM2.5 induces cytotoxicity in vitro through an endotoxin-independent mechanism that is likely mediated by transition metals. In contrast, PM10 with relatively high levels of endotoxin induces proinflammatory cytokine release via an endotoxin-dependent mechanism. PMID:12896848

  8. Leukocyte function-associated antigen-1-dependent lysis of Fas+ (CD95+/Apo-1+) innocent bystanders by antigen-specific CD8+ CTL.

    PubMed

    Kojima, H; Eshima, K; Takayama, H; Sitkovsky, M V

    1997-09-15

    Exquisite specificity toward Ag-bearing cells (cognate targets) is one of the most important properties of CD8+ CTL-mediated cytotoxicity. Using highly Ag-specific CD8+ CTL lines and clones, which spare noncognate, Ag-free targets, we found that in the presence of Ag-bearing targets the CTL acquire the ability to lyse noncognate target cells (bystanders). It is shown that the unexpectedly rapid and efficient lysis of bystanders by Ag-activated CTL is mediated by a Fas ligand (FasL)/Fas-based mechanism and does not depend on perforin. The CTL lysed Fas-expressing bystanders, but spared the Fas-negative or anti-Fas mAb-resistant bystander cells. Accordingly, the FasL-deficient gld/gld CTL did not kill bystanders, while perforin-deficient CTL did. Unlike anti-Fas mAb-induced cell death, the lysis of bystanders was not only FasL/Fas dependent but also required adhesion molecule LFA-1 on the surface of the activated CTL. Lysis of bystanders is viewed as acceptable "collateral" damage, but the persistent presence of activated CTL could result in immunopathologies involving functional Fas-expressing tissues.

  9. Length-dependence of intramolecular electron transfer in σ-bonded rigid molecular rods: an ab initio molecular orbital study

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Karna, Shashi P.

    2002-01-01

    The dependence of electron transfer (ET) coupling element, VAB, on the length of rigid-rod-like systems consisting of bicyclo[1.1.1]pentane (BCP), cubane (CUB), and bicyclo[2.2.2]octane (BCO) monomers, has been investigated with the use of ab initio Hartree-Fock (HF) method employing Marcus-Hush two-state (TS) model. The value of VAB decreases exponentially with increase in the number of the cage units of the σ-bonded molecules. The calculated decay constant, β, shows good agreement with previously reported data. For molecular length⩾15 Å, the value of VAB becomes negligibly small, suggesting complete suppression of the through bond direct tunneling contribution to ET process.

  10. Cellular mechanism of resistance of human colorectal adenocarcinoma cells against apoptosis-induction by Russell's Viper venom L-amino acid oxidase (Rusvinoxidase).

    PubMed

    Mukherjee, Ashis K; Saviola, Anthony J; Mackessy, Stephen P

    2018-04-24

    The present study highlights the cellular mechanism of resistance in human adenocarcinoma (Colo-205) cells against apoptosis induction by Rusvinoxidase, an L-amino acid oxidase purified from Russell's Viper venom (RVV). The significantly lower cytotoxicity as well as apoptotic activity of Rusvinoxidase towards Colo-205 cells (compared to MCF-7 breast cancer cells) is correlated with lower depletion of cellular glutathione content and increased down-regulation of catalase activity of Colo-205 cells following Rusvinoxidase treatment. Exposure to Rusvinoxidase subsequently diminished reactive oxygen species (ROS) production and failed to impair mitochondrial membrane potential, resulting in apoptosis induction resistance in Colo-205 cells. Further, higher expression levels of caspase 8, compared to caspase 9, indicate that Rusvinoxidase preferentially triggers the extrinsic pathway of apoptosis in Colo-205 cells. A time-dependent lower ratio of the relative expression of Bax and Bcl-xL (pro- and anti-apoptotic proteins) in Colo-205 cells, compared to our previous study on MCF-7 cells, unambiguously supports a higher cellular resistance mechanism in Colo-205 cells against Rusvinoxidase-induced apoptosis. Copyright © 2018. Published by Elsevier B.V.

  11. A semi high-throughput method for screening small bispecific antibodies with high cytotoxicity.

    PubMed

    Sugiyama, Aruto; Umetsu, Mitsuo; Nakazawa, Hikaru; Niide, Teppei; Onodera, Tomoko; Hosokawa, Katsuhiro; Hattori, Shuhei; Asano, Ryutaro; Kumagai, Izumi

    2017-06-06

    Small bispecific antibodies that induce T-cell-mediated cytotoxicity have the potential to damage late-stage tumor masses to a clinically relevant degree, but their cytotoxicity is critically dependent on their structural and functional properties. Here, we constructed an optimized procedure for identifying highly cytotoxic antibodies from a variety of the T-cell-recruiting antibodies engineered from a series of antibodies against cancer antigens of epidermal growth factor receptor family and T-cell receptors. By developing and applying a set of rapid operations for expression vector construction and protein preparation, we screened the cytotoxicity of 104 small antibodies with diabody format and identified some with 10 3 -times higher cytotoxicity than that of previously reported active diabody. The results demonstrate that cytotoxicity is enhanced by synergistic effects between the target, epitope, binding affinity, and the order of heavy-chain and light-chain variable domains. We demonstrate the importance of screening to determine the critical rules for highly cytotoxic antibodies.

  12. Modulation of the antioxidant/pro-oxidant balance, cytotoxicity and antiviral actions of grape seed extracts.

    PubMed

    Ignea, Codruţa; Dorobanţu, Cristina Mihaela; Mintoff, Christopher Paul; Branza-Nichita, Norica; Ladomery, Michael R; Kefalas, Panagiotis; Chedea, Veronica Sanda

    2013-12-15

    Grape seed extracts (GSEs) were investigated in yeast cells harbouring defects in their antioxidant system (regarding the cellular growth and growth recovery from H2O2 insult). GSEs antioxidant activity was detected in wild-type and mutant strains Δcta1, Δgsh1 and Δoye2glr1, while pro-oxidant activity in Δsod1 cells was seen. Assessment of proliferation of prostate cancer PC3 and HBV-replicating HepG2 2.2.15 cells treated with GSEs has shown higher cytotoxicity of red grape seed extract (RW) than white grape seed extract (WW) subjective to dose and period of administration. No antiviral effect was detected by measuring the secreted virion particles in HepG2 2.2.15 cells treated with GSEs. The GSEs play a dual antioxidant/pro-oxidant role in vivo according with the cellular antioxidant system deficiencies and exhibit cytotoxic properties in PC3 and HepG2 2.2.15 cell lines, but no antiviral action against HBV. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. In Vitro Cytotoxic Evaluation of MgO Nanoparticles and Their Effect on the Expression of ROS Genes

    PubMed Central

    Kumaran, Rangarajulu Senthil; Choi, Yong-Keun; Singh, Vijay; Song, Hak-Jin; Song, Kyung-Guen; Kim, Kwang Jin; Kim, Hyung Joo

    2015-01-01

    Water-dispersible MgO nanoparticles were tested to investigate their cytotoxic effects on oxidative stress gene expression. In this in vitro study, genes related to reactive oxygen species (ROS), glutathione S-transferase (GST) and catalase, were quantified using real-time polymerase chain reactions (molecular level) and molecular beacon technologies (cellular level). The monodispersed MgO nanoparticles, 20 nm in size, were used to treat human cancer cell lines (liver cancer epithelial cells) at different concentrations (25, 75 and 150 µg/mL) and incubation times (24, 48 and 72 h). Both the genetic and cellular cytotoxic screening methods produced consistent results, showing that GST and catalase ROS gene expression was maximized at 150 µg/mL nanoparticle treatment with 48 h incubation. However, the genotoxic effect of MgO nanoparticles was not significant compared with control experiments, which indicates its significant potential applications in nanomedicine as a diagnostic and therapeutic tool. PMID:25854426

  14. Synthesis, characterization and cytotoxic evaluation of chitosan nanoparticles: in vitro liver cancer model

    NASA Astrophysics Data System (ADS)

    Loutfy, Samah A.; Alam El-Din, Hanaa M.; Elberry, Mostafa H.; Allam, Nanis G.; Hasanin, M. T. M.; Abdellah, Ahmed M.

    2016-09-01

    To evaluate the cytotoxic effect of chitosan nanoparticles (CS-NPs) on an in vitro human liver cancer cell model (HepG2) and their possible application as a drug delivery system, we synthesized water-soluble CS-NPs, investigated their properties and extensively evaluated their cytotoxic activity on the cellular and molecular levels. A human liver cancer cell line was used as a model of human liver cancer. The CS-NPs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta analysis. The cytotoxic effects of the CS-NPs on HepG2 cells were monitored by sulforhodamine B colorimetric assays for cytotoxicity screening and flow cytometric analysis. Molecular investigations including DNA fragmentation and the expression of some apoptotic genes on the transcriptional RNA level were conducted. Treatment of HepG2 with different concentrations of 150 nm diameter CS-NPs did not show alteration of cell morphology after 24 h of cell exposure. Also, when cells were treated with 100 μg ml-1 of CS-NPs, 12% of them were killed and IC50 reached 239 μg ml-1 after 48 h of cell exposure. Flow cytometry evaluation of the CS-NPs revealed mild accumulation in the G2/M phase followed by cellular DNA fragmentation after 48 h of cell exposure. Extensive evaluation of the cytotoxic effect of the CS-NPs showed messenger RNA (mRNA) apoptotic gene expression (p53, Bak, Caspase3) after 24 h of cell exposure with no expression of the mRNA of the caspase 3 gene after 48 h of cell exposure, suggesting the involvement of an intrinsic apoptotic caspase-independent pathway by increasing the exposure time of 100 μg ml-1 of the CS-NPs. The engineered CS-NPs were controlled to a 150 nm size and charges of 40 mV and a concentration of 100 μg ml-1 revealed a genotoxic effect on HepG2 after 48 h of cell exposure through intrinsic apoptotic caspase-independent mechanisms. Further quantitative analysis on the molecular and protein levels is still required

  15. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity.

    PubMed

    Popat, Amirali; Karmakar, Surajit; Jambhrunkar, Siddharth; Xu, Chun; Yu, Chengzhong

    2014-05-01

    Curcumin (CUR), a naturally derived anti-cancer cocktail is arguably the most widely studied neutraceutical. Despite a lot of promises, it is yet to reach the market as an active anti-cancer formulation. In the present study, we have prepared highly soluble (3 mg/ml) CUR-γ-hydroxypropyl cyclodextrin (CUR-CD) hollow spheres. CUR-CD hollow spheres were prepared by a novel and scalable spray drying method. CUR-CD was then encapsulated into positively charged biodegradable chitosan (CUR-CD-CS) nanoparticles. The CUR-CD-CS nanoparticles were characterised by TEM, SEM, DLS, drug loading and in vitro release. We tested the efficacy of these CUR-CD-CS nanoparticles in SCC25 cell lines using MTT assay and investigated its cellular uptake mechanism. We also studied Oligo DNA loading in CUR-CD-CS nanoparticles and its delivery via confocal imaging and FACS analysis. Our results demonstrated that CUR-CD-CS nanoparticles showed superior in vitro release performance and higher cytotoxicity in SCC25 cell line amongst all tested formulations. The cytotoxicity results were corroborated by cell cycle analysis and apoptosis test, showing nearly 100% apoptotic cell death in the case of CUR-CD-CS nanoparticles. Compared to CS nanoparticles, CS-CD nanoformulation showed higher cellular delivery of Cy3-Oligo DNA which was tested quantitatively using flowcytometry analysis, indicating that CD not only enhanced CUR solubility but also boosted the cellular uptake. Our study shows that rationally designed bio-degradable natural biomaterials have great potential as next generation nano-carriers for hydrophobic drug delivery such as CUR with potential of dual drug-gene delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Neutron Reflection Study of Surface Adsorption of Fc, Fab, and the Whole mAb.

    PubMed

    Li, Zongyi; Li, Ruiheng; Smith, Charles; Pan, Fang; Campana, Mario; Webster, John R P; van der Walle, Christopher F; Uddin, Shahid; Bishop, Steve M; Narwal, Rojaramani; Warwicker, Jim; Lu, Jian Ren

    2017-07-12

    Characterizing the influence of fragment crystallization (Fc) and antigen-binding fragment (Fab) on monoclonal antibody (mAb) adsorption at the air/water interface is an important step to understanding liquid mAb drug product stability during manufacture, shipping, and storage. Here, neutron reflection is used to study the air/water adsorption of a mAb and its Fc and Fab fragments. By varying the isotopic contrast, the adsorbed amount, thickness, orientation, and immersion of the adsorbed layers could be determined unambiguously. While Fc adsorption reached saturation within the hour, its surface adsorbed amount showed little variation with bulk concentration. In contrast, Fab adsorption was slower and the adsorbed amount was concentration dependent. The much higher Fc adsorption, as compared to Fab, was linked to its lower surface charge. Time and concentration dependence of mAb adsorption was dominated by Fab behavior, although both Fab and Fc behaviors contributed to the amount of mAb adsorbed. Changing the pH from 5.5 to 8.8 did not much perturb the adsorbed amount of Fc, Fab, or mAb. However, a small decrease in adsorption was observed for the Fc over pH 8-8.8 and vice versa for the Fab and mAb, consistent with a dominant Fab behavior. As bulk concentration increased from 5 to 50 ppm, the thicknesses of the Fc layers were almost constant at 40 Å, while Fab and mAb layers increased from 45 to 50 Å. These results imply that the adsorbed mAb, Fc, and Fab all retained their globular structures and were oriented with their short axial lengths perpendicular to the interface.

  17. Generation and Characterization of a Bispecific Antibody Targeting Both PD-1 and c-MET.

    PubMed

    Wu, Yi; Yu, Min; Sun, Zujun; Hou, Weihua; Wang, Yuxiong; Yuan, Qingyun; Mo, Wei

    2018-02-08

    Bispecific antibodies, BsAbs, are molecules with the ability to bind to two different epitopes on the same or different antigens. c-MET, cellular-mesenchymal to epithelial transition factor, is deregulated in many types of human malignancies. Abnormal c-MET activation in cancer correlates with poor prognosis. PD-1, programmed death-1, is an additional inhibitory receptor expressed by T cells. Blocking the interactions between PD-1 and PD-L1 has emerged as a promising immunotherapy for treating cancer. The goal of this study was to identify a novel bispecific antibody targeting both c-MET and PD-1 as an anti-cancer therapeutic candidate. The BsAb was produced using 293E expression system and purified by Protein A affinity chromatography. Then the binding specificity and affinity of the BsAb was examined by FACS and biolayer light interferometry. The ability of the BsAb to inhibit the proliferation of tuman cells was measured using the CellTiter 96 Aqueous One Solution Cell Proliferation Assay kit; the potential signaling pathway involved was identified by Western Blot. Cytokine secreted by PHA-L stimulated PBMC was measured by ELISA. Effects of BsAb on PBMC-mediated lysis of MKN45 cells was measured by LDH cytotoxicity assay. Based on the original sequences of PD-1 and c-MET mAb, a BsAb gene was designed, cloned into pCEP4 vector for expression in 293E cells. The BsAb was obtained after purification of the cell culture supernatant. It can bind to PD-1 and c-MET simultaneously, the calculated affinity was 11.5 nM for PD-1 and 9.09 nM for c-MET. The BsAb enhanced IFN-γ production over control IgG by 2-3 folds. It also inhibit the c-MET pathway activation and the proliferation of tumor cells significantly, comparable to JnJ-38877605. The BsAb showed dose-dependent cytotoxic activity against MKN45 cells. Our results indicated that a novel BsAb recognizing PD-1 and c-MET was successfully generated. It could redirect T cells to kill tumor cells, while retaining its

  18. Attentional Bias For Prescription Opioid Cues Among Opioid Dependent Chronic Pain Patients

    PubMed Central

    Garland, Eric L.; Froeliger, Brett; Passik, Steven D.; Howard, Matthew O.

    2012-01-01

    Recurrent use of prescription opioid analgesics by chronic pain patients may result in opioid dependence, which involves implicit neurocognitive operations that organize and impel craving states and compulsive drug taking behavior. Prior studies have identified an attentional bias (AB) towards heroin among heroin dependent individuals. The aim of this study was to determine whether opioid-dependent chronic pain patients exhibit an AB towards prescription opioidrelated cues. Opioid-dependent chronic pain patients (n = 32) and a comparison group of non-dependent opioid users with chronic pain (n = 33) completed a dot probe task designed to measure opioid AB. Participants also rated their opioid craving and self-reported arousal associated with opioid-related and neutral images, pain severity, and relief from pain treatments. Repeated-measures ANOVA revealed a significant group (opioid-dependent vs. non-dependent opioid user) × presentation duration (200 ms. vs. 2000 ms.) interaction, such that opioid-dependent individuals evidenced a significant AB towards opioid cues presented for 200 ms but not for cues presented for 2000 ms, whereas non-dependent opioid users did not exhibit a significant mean AB at either stimulus duration. Among opioid-dependent individuals, 200 ms opioid AB was significantly associated with opioid craving, while among non-dependent opioid users, 200 ms opioid AB was significantly associated with relief from pain treatments. Furthermore, dependent and non-dependent opioid users experienced opioid cues as significantly more arousing than neutral cues. Opioid dependence among chronic pain patients appears to involve an automatic AB towards opioid-related cues. When coupled with chronic pain, attentional fixation on opioid cues may promote compulsive drug use and addictive behavior. PMID:22968666

  19. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field.

    PubMed

    Wines, Bruce D; Billings, Hugh; Mclean, Milla R; Kent, Stephen J; Hogarth, P Mark

    2017-01-01

    There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fcdependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. This brief review highlights the importance of Fc properties for immunity to HIV, particularly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ectodomains to detect functionally relevant viral antigen-specific antibodies. The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the essential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reliably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. We propose the assay has broader implications for the evaluation of the quality of antibody responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Cytotoxic activity of aminoderivatized cationic chitosan derivatives.

    PubMed

    Lee, Jung-Kul; Lim, Hyun-Soo; Kim, Jung-Hoe

    2002-10-21

    Chitosan derivatives were prepared by dialkylaminoalkylation and reductive amination followed by quaternization. In this study, the cytotoxic activity of the chitosan derivatives was investigated and a relationship between structure and activity is suggested. The cationic chitosan derivatives elicited dose-dependent inhibitory effects on the proliferation of tumor cell lines.

  1. Cytotoxicity of protein corona-graphene oxide nanoribbons on human epithelial cells

    NASA Astrophysics Data System (ADS)

    Mbeh, Doris A.; Akhavan, Omid; Javanbakht, Taraneh; Mahmoudi, Morteza; Yahia, L.'Hocine

    2014-11-01

    Graphene oxide nanoribbons (GONRs) were synthesized using an oxidative unzipping of multi-walled carbon nanotubes. The interactions of the GONRs with various concentrations of fetal bovine serum or human plasma serum indicated that the GONRs were functionalized substantially by the albumin originated from the two different protein sources. Then, concentration-dependent cytotoxicity of the protein-functionalized GONRs on human epithelial cells was studied. Although the GONRs with concentrations ≤50 μg/mL did not exhibit significant cytotoxicity on the cells (with the cell viability >85%), the concentration of 100 μg/mL exhibited significant cytotoxicity including prevention of cell proliferation and induction of cell apoptosis. These results can provide more in-depth understanding about cytotoxic effects of graphene nanostructures which can be functionalized by the proteins of media.

  2. Effects of murine leukemia virus env gene proteins on macrophage-mediated cytotoxicity in vitro

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Takemoto, L. J.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    F5b Tumor cells were incubated with concentrated culture supernatants taken from cells resistant (F5m) or sensitive (F5b) to contact-dependent macrophage cytotoxicity. Macrophage cell line B6MP102 and murine peritoneal macrophages killed targets incubated with supernatants taken from sensitive cells but poorly killed cells incubated in supernatants isolated from resistant cells. Membranes from cells resistant to macrophage killing, F5m, were fused into F5b cells. The fused F5b cells were killed significantly less than F5b cells fused with F5b cell membranes or untreated F5b cells. The decreased killing of F5b cells corresponded to increased concentrations of gp70(a) molecules on F5b cells. Affinity purified gp70(a) was added to cytotoxicity assays but failed to inhibit macrophage cytotoxicity. P15E molecules were detectable on both F5b and F5m cells. In addition, a synthetic peptide found to exhibit the inhibitory properties of p15E was added to cytotoxicity assays. P15E synthetic peptide also did not inhibit macrophage cytotoxicity. Therefore, env gene proteins of murine leukemia virus do not appear responsible for inducing tumor cell resistance to activated macrophage contact-dependent cytotoxicity.

  3. Molecular Characterization of abLIM, a Novel Actin-binding and Double Zinc Finger Protein

    PubMed Central

    Roof, Dorothy J.; Hayes, Annmarie; Adamian, Michael; Chishti, Athar H.; Li, Tiansen

    1997-01-01

    Molecules that couple the actin-based cytoskeleton to intracellular signaling pathways are central to the processes of cellular morphogenesis and differentiation. We have characterized a novel protein, the actin-binding LIM (abLIM) protein, which could mediate such interactions between actin filaments and cytoplasmic targets. abLIM protein consists of a COOH-terminal cytoskeletal domain that is fused to an NH2-terminal domain consisting of four double zinc finger motifs. The cytoskeletal domain is ∼50% identical to erythrocyte dematin, an actin-bundling protein of the red cell membrane skeleton, while the zinc finger domains conform to the LIM motif consensus sequence. In vitro expression studies demonstrate that abLIM protein can bind to F-actin through the dematin-like domain. Transcripts corresponding to three distinct isoforms have a widespread tissue distribution. However, a polypeptide corresponding to the full-length isoform is found exclusively in the retina and is enriched in biochemical extracts of retinal rod inner segments. abLIM protein also undergoes extensive phosphorylation in light-adapted retinas in vivo, and its developmental expression in the retina coincides with the elaboration of photoreceptor inner and outer segments. Based on the composite primary structure of abLIM protein, actin-binding capacity, potential regulation via phosphorylation, and isoform expression pattern, we speculate that abLIM may play a general role in bridging the actin-based cytoskeleton with an array of potential LIM protein-binding partners. The developmental time course of abLIM expression in the retina suggests that the retina-specific isoform may have a specialized role in the development or elaboration of photoreceptor inner and outer segments. PMID:9245787

  4. The effects of carbon nanotubes on lung and dermal cellular behaviors

    PubMed Central

    Luanpitpong, Sudjit; Wang, Liying; Rojanasakul, Yon

    2016-01-01

    Carbon nanotubes (CNTs) hold great promise to create new and better products, but their adverse health effect is a major concern. Human exposure to CNTs is primarily through inhalation and dermal contact, especially during the manufacturing and handling processes. Numerous animal studies have demonstrated the potential pulmonary and dermal hazards associated with CNT exposure, while in vitro studies have assessed the effects of CNT exposure on various cellular behaviors and have been used to perform mechanistic studies. In this review, we provide an overview of the pathological effects of CNTs and examine the acute and chronic effects of CNT exposure on lung and dermal cellular behaviors, beyond the generally discussed cytotoxicity. We then examine the linkage of cellular behaviors and disease pathogenesis, and discuss the pertinent mechanisms. PMID:24981653

  5. E1A enhances cellular sensitivity to DNA-damage-induced apoptosis through PIDD-dependent caspase-2 activation.

    PubMed

    Radke, Jay R; Siddiqui, Zeba K; Figueroa, Iris; Cook, James L

    Expression of the adenoviral protein, E1A, sensitizes mammalian cells to a wide variety of apoptosis-inducing agents through multiple cellular pathways. For example, E1A sensitizes cells to apoptosis induced by TNF-superfamily members by inhibiting NF-kappa B (NF- κ B)-dependent gene expression. In contrast, E1A sensitization to nitric oxide, an inducer of the intrinsic apoptotic pathway, is not dependent upon repression of NF- κ B-dependent transcription but rather is dependent upon caspase-2 activation. The latter observation suggested that E1A-induced enhancement of caspase-2 activation might be a critical factor in cellular sensitization to other intrinsic apoptosis pathway-inducing agents. Etoposide and gemcitabine are two DNA damaging agents that induce intrinsic apoptosis. Here we report that E1A-induced sensitization to both of these agents, like NO, is independent of NF- κ B activation but dependent on caspase-2 activation. The results show that caspase-2 is a key mitochondrial-injuring caspase during etoposide and gemcitabine-induced apoptosis of E1A-positive cells, and that caspase-2 is required for induction of caspase-3 activity by both chemotherapeutic agents. Expression of PIDD was required for caspase-2 activation, mitochondrial injury and enhanced apoptotic cell death. Furthermore, E1A-enhanced sensitivity to injury-induced apoptosis required PIDD cleavage to PIDD-CC. These results define the PIDD/caspase-2 pathway as a key apical, mitochondrial-injuring mechanism in E1A-induced sensitivity of mammalian cells to chemotherapeutic agents.

  6. Cell-type-specific and differentiation-status-dependent variations in cytotoxicity of tributyltin in cultured rat cerebral neurons and astrocytes.

    PubMed

    Oyanagi, Koshi; Tashiro, Tomoko; Negishi, Takayuki

    2015-08-01

    Tributyltin (TBT) is an organotin used as an anti-fouling agent for fishing nets and ships and it is a widespread environmental contaminant at present. There is an increasing concern about imperceptible but serious adverse effect(s) of exposure to chemicals existing in the environment on various organs and their physiological functions, e.g. brain and mental function. Here, so as to contribute to improvement of and/or advances in in vitro cell-based assay systems for evaluating brain-targeted adverse effect of chemicals, we tried to evaluate cell-type-specific and differentiation-status-dependent variations in the cytotoxicity of TBT towards neurons and astrocytes using the four culture systems differing in the relative abundance of these two types of cells; primary neuron culture (> 95% neurons), primary neuron-astrocyte (2 : 1) mix culture, primary astrocyte culture (> 95% astrocytes), and passaged astrocyte culture (100% proliferative astrocytes). Cell viability was measured at 48 hr after exposure to TBT in serum-free medium. IC50's of TBT were 198 nM in primary neuron culture, 288 nM in primary neuron-astrocyte mix culture, 2001 nM in primary astrocyte culture, and 1989 nM in passaged astrocyte culture. Furthermore, in primary neuron-astrocyte mix culture, vulnerability of neurons cultured along with astrocytes to TBT toxicity was lower than that of neurons cultured purely in primary neuron culture. On the other hand, astrocytes in primary neuron-astrocyte mix culture were considered to be more vulnerable to TBT than those in primary or passaged astrocyte culture. The present study demonstrated variable cytotoxicity of TBT in neural cells depending on the culture condition.

  7. Size- and structure-dependent toxicity of silica particulates

    NASA Astrophysics Data System (ADS)

    Hanada, Sanshiro; Miyaoi, Kenichi; Hoshino, Akiyoshi; Inasawa, Susumu; Yamaguchi, Yukio; Yamamoto, Kenji

    2011-03-01

    Nano- and micro-particulates firmly attach with the surface of various biological systems. In some chronic pulmonary disease such as asbestosis and silicosis, causative particulates will induce chronic inflammatory disorder, followed by poor prognosis diseases. However, nano- and micro-scale specific toxicity of silica particulates is not well examined enough to recognize the risk of nano- and micro-particulates from the clinical aspect. To clarify the effect of the size and structure of silica particulates on the cellular damage and the biological response, we assessed the cytotoxicity of the various kinds of silica particles including amorphous and crystalline silica, in mouse alveolar macrophage culture, focusing on the fibrotic and inflammatory response. Our study showed that the cytotoxicity, which depends on the particle size and surface area, is correlated with their inflammatory response. By contrast, production of TGF-β, which is one of the fibrotic agents in lung, by addition of crystal silica was much higher than that of amorphous silica. We conclude that fibrosis and inflammation are induced at different phases and that the size- and structure-differences of silica particulates affect the both biological responses, caused by surface activity, radical species, and so on.

  8. Constitutive expression of tdTomato protein as a cytotoxicity and proliferation marker for space radiation biology

    NASA Astrophysics Data System (ADS)

    Chishti, Arif A.; Hellweg, Christine E.; Berger, Thomas; Baumstark-Khan, Christa; Feles, Sebastian; Kätzel, Thorben; Reitz, Günther

    2015-01-01

    The radiation risk assessment for long-term space missions requires knowledge on the biological effectiveness of different space radiation components, e.g. heavy ions, on the interaction of radiation and other space environmental factors such as microgravity, and on the physical and biological dose distribution in the human body. Space experiments and ground-based experiments at heavy ion accelerators require fast and reliable test systems with an easy readout for different endpoints. In order to determine the effect of different radiation qualities on cellular proliferation and the biological depth dose distribution after heavy ion exposure, a stable human cell line expressing a novel fluorescent protein was established and characterized. tdTomato, a red fluorescent protein of the new generation with fast maturation and high fluorescence intensity, was selected as reporter of cell proliferation. Human embryonic kidney (HEK/293) cells were stably transfected with a plasmid encoding tdTomato under the control of the constitutively active cytomegalovirus (CMV) promoter (ptdTomato-N1). The stably transfected cell line was named HEK-ptdTomato-N1 8. This cytotoxicity biosensor was tested by ionizing radiation (X-rays and accelerated heavy ions) exposure. As biological endpoints, the proliferation kinetics and the cell density reached 100 h after irradiation reflected by constitutive expression of the tdTomato were investigated. Both were reduced dose-dependently after radiation exposure. Finally, the cell line was used for biological weighting of heavy ions of different linear energy transfer (LET) as space-relevant radiation quality. The relative biological effectiveness of accelerated heavy ions in reducing cellular proliferation peaked at an LET of 91 keV/μm. The results of this study demonstrate that the HEK-ptdTomato-N1 reporter cell line can be used as a fast and reliable biosensor system for detection of cytotoxic damage caused by ionizing radiation.

  9. Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies.

    PubMed

    Haq, Izharul; Raj, Abhay; Markandeya

    2018-04-01

    The azo dyes in textile industry are a major source of environmental pollution and cause serious threat to aquatic flora and fauna. The present study aims to evaluate the potential of previously isolated lignin peroxidase (LiP) enzyme producing Serratia liquefaciens in degradation of Azure-B (AB) dye. S. liquefaciens showed rapid decolourisation of AB dye (100 mg L -1 ) in mineral salt medium (MSM) supplemented with 0.2% glucose and yeast extract, and more than 90% dye decolourisation was observed at 48 h when incubated at 30 °C. Decolourisation conditions were optimized by Response Surface Methodology (RSM) using Box-Behnken Designs (BBD). The dye degradation was further confirmed by ATR-FTIR and GC-MS analysis. Toxicological studies of untreated (UT) and bacterial treated (BT) AB dye solutions were studied by using phytotoxicity, genotoxicity and cytotoxicity endpoints. Phytotoxicity assay using Vigna radiata indicated that bacterial treatment led to detoxification of AB dye. Genotoxicity assay with Allium cepa showed that pure AB dye solutions significantly reduced mitotic index (MI) and induced various chromosomal abnormalities (CAs) like c-mitosis, stickiness, chromosome break, anaphase bridges, vagrant chromosomes and binucleated and micronucleated cell in the root tip cells, whereas, bacterial treated solutions induced relatively less genotoxicity in nature. Improved cell survivability (%) was also noted in kidney cell line (NRK-52E) after S. liquefaciens treated dye solutions than the pure dye solutions. The findings suggest that S. liquefaciens could be a potential bacterium for azo dye degradation, as it is effective in lowering of toxic effects of AB dye. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Screening ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    EPA Science Inventory

    An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...

  11. Regulation of NK92-MI cell cytotoxicity by substance P.

    PubMed

    Fu, W X; Qin, B; Zhou, A P; Yu, Q Y; Huang, Q J; Liang, Z F

    2011-08-01

    The neuropeptide substance P (SP) can regulate a number of immunological functions in vitro and in vivo and may regulate natural killer (NK) cell activity. Here, we investigated whether SP has a role in regulating NK92-MI cell function in vitro, and how it influences NK cell activity. We found that SP dose dependently increased the cytotoxicity of NK92-MI cells and had a maximal effect at a concentration of 10(-12) and 10(-10) m. Furthermore, the expression of cytotoxic-associated molecules (perforin, granzyme) and activating receptor NKp46 [a member of natural cytotoxicity receptors (NCRs)] was observed to be upregulated by SP at optimal concentration, at which SP enhanced the cytotoxicity of NK92-MI cells. Neurokinin-1 receptor (NK-1R), a functional receptor of SP, was found on NK92-MI cells, and the observed effects of SP on NK92-MI cells could be more partially blocked by an NK-1R antagonist. Our data suggest that SP induces NK92-MI cell cytotoxicity by directly increasing the expression of cytotoxic granules and upregulates NK92-MI cell receptor-mediated functions indirectly. Thus, SP may regulate NK cell function mainly through NK-1R. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  12. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens

    PubMed Central

    Stella, Nicholas A.; Hunt, Kristin M.; Brothers, Kimberly M.; Zhang, Liang; Thibodeau, Patrick H.

    2015-01-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. PMID:25939509

  13. Attentional bias for prescription opioid cues among opioid dependent chronic pain patients.

    PubMed

    Garland, Eric L; Froeliger, Brett E; Passik, Steven D; Howard, Matthew O

    2013-12-01

    Recurrent use of prescription opioid analgesics by chronic pain patients may result in opioid dependence, which involves implicit neurocognitive operations that organize and impel craving states and compulsive drug taking behavior. Prior studies have identified an attentional bias (AB) towards heroin among heroin dependent individuals. The aim of this study was to determine whether opioid-dependent chronic pain patients exhibit an AB towards prescription opioid-related cues. Opioid-dependent chronic pain patients (n = 32) and a comparison group of non-dependent opioid users with chronic pain (n = 33) completed a dot probe task designed to measure opioid AB. Participants also rated their opioid craving and self-reported arousal associated with opioid-related and neutral images, pain severity, and relief from pain treatments. Repeated-measures ANOVA revealed a significant group (opioid-dependent vs. non-dependent opioid user) × presentation duration (200. vs. 2,000 ms.) interaction, such that opioid-dependent individuals evidenced a significant AB towards opioid cues presented for 200 ms but not for cues presented for 2,000 ms, whereas non-dependent opioid users did not exhibit a significant mean AB at either stimulus duration. Among opioid-dependent individuals, 200 ms opioid AB was significantly associated with opioid craving, while among non-dependent opioid users, 200 ms opioid AB was significantly associated with relief from pain treatments. Furthermore, dependent and non-dependent opioid users experienced opioid cues as significantly more arousing than neutral cues. Opioid dependence among chronic pain patients appears to involve an automatic AB towards opioid-related cues. When coupled with chronic pain, attentional fixation on opioid cues may promote compulsive drug use and addictive behavior.

  14. Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers.

    PubMed

    Deng, Jun; Yao, Mengyun; Gao, Changyou

    2017-04-15

    Nanoparticles (NPs) can have profound effects on cell biology. However, the potential adverse effects of gold nanoparticles (AuNPs) with different surface chirality and structures have not been elucidated. In this study, monolayers of poly(acryloyl-l(d)-valine (l(d)-PAV) chiral molecules were anchored on the surfaces of gold nanocubes (AuNCs) and nanooctahedras (AuNOs), respectively. The l-PAV-AuNCs and d-PAV-AuNCs, or the l-PAV-AuNOs and d-PAV-AuNOs, had identical physicochemical properties in terms of size, morphology and ligand density except of the reverse molecular chirality on the particle surfaces, respectively. The l-PAV capped AuNCs and AuNOs exhibited larger cytotoxicity to A549 cells than the D-PAV coated ones, and the PAV-AuNOs had larger cytotoxicity than PAV-AuNCs when being capped with the same type of enantiomers, respectively. The cytotoxicity was positively correlated with the cellular uptake amount, and thereby the production of intracellular reactive oxygen species (ROS). • Gold nanoparticles with different structure and surface chirality are fabricated. • The structure and surface chirality at the nanoscale can influence cytotoxicity and genotoxicity. • A new perspective on designing nanoparticles for drug delivery, bioimaging and diagnosis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials

    PubMed Central

    Garza, Kristine M; Soto, Karla F; Murr, Lawrence E

    2008-01-01

    We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots – along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20–80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations of polycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production. PMID:18488419

  16. Cytotoxicity and gene expression profiling of polyhexamethylene guanidine hydrochloride in human alveolar A549 cells.

    PubMed

    Jung, Ha-Na; Zerin, Tamanna; Podder, Biswajit; Song, Ho-Yeon; Kim, Yong-Sik

    2014-06-01

    In Korea, lung disease of children and pregnant women associated with humidifier disinfectant use has become a major concern. A common sterilizer is polyhexamethylene guanidine (PHMG), a member of the guanidine family of antiseptics. This study was done to elucidate the putative cytotoxic effect of PHMG and the PHMG-mediated altered gene expression in human alveolar epithelial A549 cells in vitro. Cell viability analyses revealed the potent cytotoxicity of PHMG, with cell death evident at as low as 5 μg/mL. Death was dose- and time-dependent, and was associated with formation of intracellular reactive oxygen species, and apoptosis significantly, at even 2 μg/mL concentration. The gene expression profile in A549 cells following 24 h exposure to 5 μg/mL of PHMG was investigated using DNA microarray analysis. Changes in gene expression relevant to the progression of cell death included induction of genes related to apoptosis, autophagy, fibrosis, and cell cycle. However, the expressions of genes encoding antioxidant and detoxifying enzymes were down-regulated or not affected. The altered expression of selected genes was confirmed by quantitative reverse transcription-polymerase chain reaction and Western blot analyses. The collective data suggest that PHMG confers cellular toxicity through the generation of intracellular reactive oxygen species and alteration of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite.

    PubMed

    Yin, H; Too, H P; Chow, G M

    2005-10-01

    The safety and toxicity of nanoparticles are of growing concern despite their significant scientific interests and promising potentials in many applications. The properties of nanoparticles depend not only on the size but also the structure, microstructure and surface coating. These in turn are controlled by the synthesis and processing conditions. The dependence of cytotoxicity on particle size and on the presence of oleic acid as surfactant on nickel ferrite particles were investigated in vitro using the Neuro-2A cell line as a model. For nickel ferrite particles without oleic acid prepared by ball milling, cytotoxicity was independent of particle size within the given mass concentrations and surface areas accessible to the cells. For nickel ferrite particles coated with oleic acid prepared by the polyol method, the cytotoxicity significantly increased when one or two layers of oleic acid were deposited. Large particles (150+/-50 nm diameter) showed a higher cytotoxicity than smaller particles (10+/-3 nm diameter).

  18. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance☆

    PubMed Central

    Maciag, Anna E.; Holland, Ryan J.; Robert Cheng, Y.-S.; Rodriguez, Luis G.; Saavedra, Joseph E.; Anderson, Lucy M.; Keefer, Larry K.

    2013-01-01

    JS-K is a nitric oxide (NO)-releasing prodrug of the O2-arylated diazeniumdiolate family that has demonstrated pronounced cytotoxicity and antitumor properties in a variety of cancer models both in vitro and in vivo. The current study of the metabolic actions of JS-K was undertaken to investigate mechanisms of its cytotoxicity. Consistent with model chemical reactions, the activating step in the metabolism of JS-K in the cell is the dearylation of the diazeniumdiolate by glutathione (GSH) via a nucleophilic aromatic substitution reaction. The resulting product (CEP/NO anion) spontaneously hydrolyzes, releasing two equivalents of NO. The GSH/GSSG redox couple is considered to be the major redox buffer of the cell, helping maintain a reducing environment under basal conditions. We have quantified the effects of JS-K on cellular GSH content, and show that JS-K markedly depletes GSH, due to JS-K's rapid uptake and cascading release of NO and reactive nitrogen species. The depletion of GSH results in alterations in the redox potential of the cellular environment, initiating MAPK stress signaling pathways, and inducing apoptosis. Microarray analysis confirmed signaling gene changes at the transcriptional level and revealed alteration in the expression of several genes crucial for maintenance of cellular redox homeostasis, as well as cell proliferation and survival, including MYC. Pre-treating cells with the known GSH precursor and nucleophilic reducing agent N-acetylcysteine prevented the signaling events that lead to apoptosis. These data indicate that multiplicative depletion of the reduced glutathione pool and deregulation of intracellular redox balance are important initial steps in the mechanism of JS-K's cytotoxic action. PMID:24024144

  19. Cytotoxicity and the induction of the stress protein Hsp 70 in Chang liver cells in response to zearalenone-induced oxidative stress.

    PubMed

    Lee, Hyungkyoung; Kang, Changgeun; Yoo, Yong-San; Hah, Do-Yun; Kim, Chung Hui; Kim, Euikyung; Kim, Jong Shu

    2013-09-01

    Zearalenone (ZEN) has been implicated in several cases of mycotoxicosis in farm animals and humans. The toxic effects of ZEN have been well characterized, but little is known regarding the mechanisms of ZEN toxicity, including the involvement of the oxidative stress pathway. Using Chang liver cells as a model, the aim of this study was to determine if ZEN could elevate the expression of the heat shock protein Hsp 70, induce cytotoxicity and modulate the levels of glutathione (GSH) and thiobarbituric acid reactive substance (TBARS). In addition, the cytoprotective effects of N-acetylcysteine amide (NACA) pre-treatment were assessed. Finally, the involvement of oxidative stress in ZEN-induced toxicity was confirmed. The results of this study demonstrated that ZEN-induced Hsp 70 expression in a dose- and time-dependent manners. This effect occurred at low-ZEN concentrations, and could therefore be considered a biomarker of ZEN-induced toxicity. The cytotoxicity was reduced when Chang liver cells were exposed to sub-lethal heat shock prior to ZEN treatment, demonstrating a cytoprotective effect of Hsp 70. This cytoprotective effect suggested that Hsp 70 might play a key role in the cellular defense mechanism. When cells were pre-treated with NACA prior to ZEN treatment, the cells were also protected from toxicity. This NACA cytoprotective effect suggested the involvement of oxidative stress in ZEN-induced toxicity, and this mechanism was supported by reduced Hsp 70 expression, inhibited cytolethality, increased GSH levels and decreased TBARS formation when cells were pre-treated with NACA prior to ZEN exposure. Our data clearly demonstrated that ZEN induced cytotoxicity in Chang liver cells by inhibiting cell proliferation, decreasing GSH levels and increasing TBARS formation in a dose-dependent manner. ZEN also, induced Hsp 70 expression, and the side effects of ZEN were significantly alleviated by pre-treatment with NACA. Oxidative stress is likely to be one of the

  20. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming-Chung; Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Chen, Chia-Ling

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-likemore » cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an

  1. Cytotoxic chemotherapy and the evolution of cellular and viral resistance to antiretroviral therapy in HIV- infected individuals with lymphoma.

    PubMed

    McFaul, Katie; Liptrott, Neill; Cox, Alison; Martin, Phillip; Egan, Deirdre; Owen, Andrew; Kelly, Sarah; Karolia, Zeenat; Shaw, Kate; Bower, Mark; Boffito, Marta

    2016-09-01

    The use of combination antiretroviral therapy (cART) and cytotoxic chemotherapy for HIV-associated lymphoma runs the risks of inducing HIV drug resistance. This study examined two possible mechanisms: altered expression of membrane drug transporter protein (MTP) and acquisition of mutations in pro-viral DNA. Expression levels of MTP and pro-viral DNA resistance mutation analysis were performed on peripheral blood mononuclear cells (PBMC) before, during, and after chemotherapy. Twenty nine patients completed the three time point estimations. There were no significant variations before, during, and after chemotherapy in the expression of four MTPs: ABCB1, ABCC1, ABCC2, and SLCO3A1 (OATP3A1). Pro-viral DNA sequencing revealed that only one patient developed a new nucleos/tide reverse transcriptase inhibitor-associated mutation (184V) during the course of the study, giving a mutation rate of 0.0027 per person per year. In conclusion, concomitant administration of cytotoxic chemotherapy and cART does not induce expression of MTP. Furthermore, no significant changes in viral resistance were observed pre- and post-chemotherapy, suggesting mutagenic cytotoxic chemotherapy seems not to induce mutations in HIV pro-viral DNA.

  2. Natural Mineral Particles Are Cytotoxic to Rainbow Trout Gill Epithelial Cells In Vitro

    PubMed Central

    de Capitani, Christian; Burkhardt-Holm, Patricia; Pietsch, Constanze

    2014-01-01

    Worldwide increases in fluvial fine sediment are a threat to aquatic animal health. Fluvial fine sediment is always a mixture of particles whose mineralogical composition differs depending on the sediment source and catchment area geology. Nonetheless, whether particle impact in aquatic organisms differs between mineral species remains to be investigated. This study applied an in vitro approach to evaluate cytotoxicity and uptake of four common fluvial mineral particles (quartz, feldspar, mica, and kaolin; concentrations: 10, 50, 250 mg L−1) in the rainbow trout epithelial gill cell line RTgill-W1. Cells were exposed for 24, 48, 72, and 96 h. Cytotoxicity assays for cell membrane integrity (propidium iodide assay), oxidative stress (H2DCF-DA assay), and metabolic activity (MTT assay) were applied. These assays were complemented with cell counts and transmission electron microscopy. Regardless of mineral species, particles ≤2 µm in diameter were taken up by the cells, suggesting that particles of all mineral species came into contact and interacted with the cells. Not all particles, however, caused strong cytotoxicity: Among all assays the tectosilicates quartz and feldspar caused sporadic maximum changes of 0.8–1.2-fold compared to controls. In contrast, cytotoxicity of the clay particles was distinctly stronger and even differed between the two particle types: mica induced concentration-dependent increases in free radicals, with consistent 1.6–1.8-fold-changes at the 250 mg L−1 concentration, and a dilated endoplasmic reticulum. Kaolin caused concentration-dependent increases in cell membrane damage, with consistent 1.3–1.6-fold increases at the 250 mg L−1 concentration. All effects occurred in the presence or absence of 10% fetal bovine serum. Cell numbers per se were marginally affected. Results indicate that (i.) natural mineral particles can be cytotoxic to gill epithelial cells, (ii.) their cytotoxic potential differs between mineral species

  3. Curcumin analog cytotoxicity against breast cancer cells: exploitation of a redox-dependent mechanism.

    PubMed

    Sun, Aiming; Lu, Yang J; Hu, Haipeng; Shoji, Mamoru; Liotta, Dennis C; Snyder, James P

    2009-12-01

    A series of novel curcumin analogs, symmetrical dienones, were previously shown to possess cytotoxic, anti-angiogenic and anti-tumor activities. Analogs 1 (EF24) and 2 (EF31) share the dienone scaffold and serve as Michael acceptors. We propose that the anti-cancer effects of 1 and 2 are mediated in part by redox-mediated induction of apoptosis. In order to support this concept, 1 and 2 were treated with L-glutathione (GSH) and cysteine-containing dipeptides under mild conditions to form colorless water-soluble adducts, which were identified by LC/MS. Comparison of the cytotoxic action of 1, 2 and the corresponding conjugates, 1-(GSH)(2) and 2-(GSH)(2), illustrated that the two classes of compounds exhibit essentially identical cell killing capabilities. Compared with the yellow, somewhat light sensitive and nearly water insoluble compounds 1 and 2, the glutathione conjugates represent a promising new series of stable and soluble anti-tumor pro-drugs.

  4. Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir.

    PubMed

    Mujib, Shariq; Liu, Jun; Rahman, A K M Nur-Ur; Schwartz, Jordan A; Bonner, Phil; Yue, Feng Yun; Ostrowski, Mario A

    2017-08-15

    Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS. IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and

  5. Ab-initio study of liquid systems: Concentration dependence of electrical resistivity of binary liquid alloy Rb1-xCsx

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Sharma, Nalini; Chandel, Surjeet; Ahluwalia, P. K.

    2013-02-01

    The electrical resistivity (ρL) of Rb1-XCsX binary alloys has been made calculated using Troullier Martins ab-initio pseudopotentials. The present results of the electrical resistivity (ρL) of Rb1-XCsX binary alloys have been found in good agreement with the experimental results. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys. Hence ab-initio pseudopotentials can be used instead of model pseudopotentials having problem of transferability.

  6. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.

    2017-01-01

    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility.

  7. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles

    PubMed Central

    Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.

    2017-01-01

    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility. PMID:28045082

  8. [Acquirement of autologous murine cytotoxic T lymphocytes via cryopreservation of lymphocytes].

    PubMed

    Wang, Lei; Peng, Na; Hu, Xiaoyan; Liang, Wentao; Liang, Kai; Peng, Guizhu

    2016-11-01

    Objective To evaluate the effects of cryopreservation on the proliferation and killing activity of lymphocytes, and explore a novel protocol of preparing autologous mouse cytotoxic T lymphocytes (CTLs). Methods Mononuclear cells derived from spleen (5.0×10 6 /mL) were cryopreserved in CELLBANKER2 for 6 days and recovered in water bath at 39DegreesCelsius. The fresh lymphocytes and post-cryopreservation lymphocytes were induced by CD3 mAb (100 ng/mL) and recombinant mouse interleukin 2 (rmIL-2, 100 ng/mL) to obtain cytokine-induced killer cells (CIKs). Dendritic cells (DCs) were co-cultured with fresh allogenic lymphocytes and post-cryopreservation autologous lymphocytes to obtain CTLs. The viable cells were counted by trypan blue staining; the percentages of CD3 + T cells and regulatory T cells (Tregs) were determined by flow cytometry; the levels of supernatant IFN-γ were detected through ELISA and the cytotoxicity was evaluated by lactate dehydrogenase (LDH) assay. Results The rate of viable lymphocytes declined to 78% after cryopreservation, and there were no significant differences in the percentages of CD3 + T cells and Tregs between pre-cryopreservation and post-cryopreservation. There were no significant differences in the proliferation of Tregs, the level of IFN-γ and the cytotoxicity between the fresh CIKs and cryopreservation CIKs, and the similar results were get between the autologous CTLs and allogenic CTLs. Conclusion The autologous CTLs acquired via cryopreservation of lymphocytes is equivalent to the allogenic CTLs with the similar proliferation and killing activity in vitro.

  9. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  10. Feline leukemia virus infection requires a post-receptor binding envelope-dependent cellular component.

    PubMed

    Hussain, Naveen; Thickett, Kelly R; Na, Hong; Leung, Cherry; Tailor, Chetankumar S

    2011-12-01

    Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.

  11. Development of cytotoxicity-sensitive human cells using overexpression of long non-coding RNAs.

    PubMed

    Tani, Hidenori; Torimura, Masaki

    2015-05-01

    Biosensors using live cells are analytical devices that have the advantage of being highly sensitive for their targets. Although attention has primarily focused on reporter gene assays using functional promoters, cell viability assays are still efficient. We focus on long non-coding RNAs (lncRNAs) that are involved in the molecular mechanisms associated with responses to cellular stresses as a new biological material. Here we have developed human live cells transfected with lncRNAs that can be used as an intelligent sensor of cytotoxicity for a broad range of environmental stresses. We identified three lncRNAs (GAS5, IDI2-AS1, and SNHG15) that responded to cycloheximide in HEK293 cells. Overexpression of these lncRNAs sensitized human cells to cell death in response to various stresses (cycloheximide, ultraviolet irradiation, mercury II chloride, or hydrogen peroxide). In particular, dual lncRNA (GAS5 plus IDI2-AS1, or GAS5 plus SNHG15) overexpression sensitized cells to cell death by more cellular stresses. We propose a method for highly sensitive biosensors using overexpression of lncRNAs that can potentially measure the cytotoxicity signals of various environmental stresses. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. In vitro and in vivo anti-tumor efficacy of 10-hydroxycamptothecin polymorphic nanoparticle dispersions: shape- and polymorph-dependent cytotoxicity and delivery of 10-hydroxycamptothecin to cancer cells.

    PubMed

    Wang, Hongdi; Feng, Jialing; Liu, Guijin; Chen, Baoqiong; Jiang, Yanbin; Xie, Qiuling

    2016-05-01

    Nanotechnology associated with a crystal engineering approach was proposed for improving the solubility and efficacy of hydrophobic drugs in this study. 10-hydroxycamptothecin polymorphic nanoparticle dispersions (HCPT-PNDs) were prepared using the supercritical anti-solvent technique coupled with the high-pressure homogenization method. Shape- and polymorph-dependent tumor suppression was observed in both in vitro and in vivo models, where needle-shaped HCPT-PND exhibited dramatic improvement of antitumor efficacy. A benefit of controllable size and a large surface-to-volume ratio of needle-shaped nanoparticles is the improvement of dissolution properties, which facilitates enhancing pharmacokinetic and pharmaco-dynamic properties. The needle-shaped HCPT-PND, which with longer blood retention time and more effective cellular uptake, makes it possible to accumulate drug in tumor tissues and exhibit higher cytotoxicity. No severe systemic toxicity was observed due to sustained-dissolution and the low dose of drug in normal tissues. The results suggest that the needle-shaped HCPT-PND is an interesting nano-formulation of HCPT. Nanotechnology has enabled the production of novel therapeutics drugs against cancer. Here, the authors investigated the use of a crystal engineering approach for the modification of camptothecin in order to improve its water solubility. Physicochemical and biological properties were studied. The results would suggest the applicability of this approach for nano-formulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Enhanced tumor control with combination mTOR and PD-L1 inhibition in syngeneic oral cavity cancers

    PubMed Central

    Moore, Ellen C.; Cash, Harrison A.; Caruso, Andria M.; Uppaluri, Ravindra; Hodge, James W.; Van Waes, Carter; Allen, Clint T.

    2016-01-01

    Significant subsets of patients with oral cancer fail to respond to single-agent programmed death (PD) blockade. Syngeneic models of oral cancer were used to determine if blocking oncogenic signaling improved in vivo responses to PD-L1 monoclonal antibody (mAb). Anti-PD-L1 enhanced durable primary tumor control and survival when combined with mTOR (rapamycin), but not in combination with MEK inhibition (PD901) in immunogenic MOC1 tumors. Conversely, PD-L1 mAb did not enhance tumor control in poorly immunogenic MOC2 tumors. Rapamycin enhanced expansion of peripheral antigen-specific CD8 T cells and IFNγ production following ex vivo antigen stimulation. More CD8 T cells infiltrated and were activated after PD-L1 mAb treatment in mice with immunogenic MOC1 tumors, which was stable or increased by the addition of rapamycin, but suppressed when PD901 was added. Rapamycin increased IFNγ production capacity in peripheral and tumor-infiltrating CD8 T cells. In vivo antibody depletion revealed a CD8 T cell, and not NK cell, -dependent mechanism of tumor growth inhibition after treatment with rapamycin and PD-L1 mAb, ruling out significant effects from NK cell–mediated antibody-dependent cellular cytotoxicity. Rapamycin also enhanced IFNγ or PD-L1 mAb treatment–associated induction of MHC class I expression on MOC1 tumor cells, an effect abrogated by depleting infiltrating CD8 T cells from the tumor microenvironment. This data conflicts with traditional views of rapamycin as a universal immunosuppressant, and when combined with evidence of enhanced antitumor activity with the combination of rapamycin and PD-L1 mAb, suggests that this treatment combination deserves careful evaluation in the clinical setting. PMID:27076449

  14. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    PubMed

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Norartocarpetin from a folk medicine Artocarpus communis plays a melanogenesis inhibitor without cytotoxicity in B16F10 cell and skin irritation in mice

    PubMed Central

    2013-01-01

    Background Many natural products used in preventive medicine have also been developed as cosmeceutical ingredients in skin care products, such as Scutellaria baicalensis and Gardenia jasminoides. Norartocarpetin is one of the antioxidant and antityrosinase activity compound in Artocarpus communis; however, the cytotoxicity, skin irritation and antimelanogenesis mechanisms of norartocarpetin have not been investigated yet. Methods In the present study, cell viability in vitro and skin irritation in vivo are used to determine the safety of norartocarpetin. The melanogenesis inhibition of norartocarpetin was determined by cellular melanin content and tyrosinase in B16F10 melanoma cell. Moreover, we examined the related-melanogenesis protein by western blot analysis for elucidating the antimelanogenesis mechanism of norartocarpin. Results The result of the present study demonstrated that norartocarpetin not only present non-cytotoxic in B16F10 and human fibroblast cells but also non-skin irritation in mice. Moreover, our result also first found that norartocarpetin downregulated phospho-cAMP response element-binding (phospho-CREB) and microphthalmia-associated transcription factor (MITF) expression, which in turn decreased both synthesis of tyrosinases (TRP-1 and TRP-2) and cellular melanin content. This process is dependent on norartocarpetin phosphorylation by mitogen-activated protein kinases such as phospho-JNK and phospho-p38, and it results in decreased melanogenesis. Conclusion The present study suggests that norartocarpetin could be used as a whitening agent in medicine and/or cosmetic industry and need further clinical study. PMID:24325567

  16. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides

    NASA Astrophysics Data System (ADS)

    Rosenow, Phil; Bannow, Lars C.; Fischer, Eric W.; Stolz, Wolfgang; Volz, Kerstin; Koch, Stephan W.; Tonner, Ralf

    2018-02-01

    While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The origin of the computational problems is the strong distortion exerted by the N atoms on most host materials. Here, these issues are resolved by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, it is shown that the distortion field of a single N atom must be allowed to decrease so far that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing us to compute band gaps in very good agreement with experimentally derived reference values. In addition to existing approaches, these results offer a promising ab initio avenue to the electronic structure of dilute nitride semiconductor compounds.

  18. NHLBI-AbDesigner: an online tool for design of peptide-directed antibodies.

    PubMed

    Pisitkun, Trairak; Hoffert, Jason D; Saeed, Fahad; Knepper, Mark A

    2012-01-01

    Investigation of physiological mechanisms at a cellular level often requires production of high-quality antibodies, frequently using synthetic peptides as immunogens. Here we describe a new, web-based software tool called NHLBI-AbDesigner that allows the user to visualize the information needed to choose optimal peptide sequences for peptide-directed antibody production (http://helixweb.nih.gov/AbDesigner/). The choice of an immunizing peptide is generally based on a need to optimize immunogenicity, antibody specificity, multispecies conservation, and robustness in the face of posttranslational modifications (PTMs). AbDesigner displays information relevant to these criteria as follows: 1) "Immunogenicity Score," based on hydropathy and secondary structure prediction; 2) "Uniqueness Score," a predictor of specificity of an antibody against all proteins expressed in the same species; 3) "Conservation Score," a predictor of ability of the antibody to recognize orthologs in other animal species; and 4) "Protein Features" that show structural domains, variable regions, and annotated PTMs that may affect antibody performance. AbDesigner displays the information online in an interactive graphical user interface, which allows the user to recognize the trade-offs that exist for alternative synthetic peptide choices and to choose the one that is best for a proposed application. Several examples of the use of AbDesigner for the display of such trade-offs are presented, including production of a new antibody to Slc9a3. We also used the program in large-scale mode to create a database listing the 15-amino acid peptides with the highest Immunogenicity Scores for all known proteins in five animal species, one plant species (Arabidopsis thaliana), and Saccharomyces cerevisiae.

  19. EB66 cell line, a duck embryonic stem cell-derived substrate for the industrial production of therapeutic monoclonal antibodies with enhanced ADCC activity.

    PubMed

    Olivier, Stéphane; Jacoby, Marine; Brillon, Cédric; Bouletreau, Sylvana; Mollet, Thomas; Nerriere, Olivier; Angel, Audrey; Danet, Sévérine; Souttou, Boussad; Guehenneux, Fabienne; Gauthier, Laurent; Berthomé, Mathilde; Vié, Henri; Beltraminelli, Nicola; Mehtali, Majid

    2010-01-01

    Monoclonal antibodies (mAbs) represent the fastest growing class of therapeutic proteins. The increasing demand for mAb manufacturing and the associated high production costs call for the pharmaceutical industry to improve its current production processes or develop more efficient alternative production platforms. The experimental control of IgG fucosylation to enhance antibody dependent cell cytotoxicity (ADCC) activity constitutes one of the promising strategies to improve the efficacy of monoclonal antibodies and to potentially reduce the therapeutic cost. We report here that the EB66 cell line derived from duck embryonic stem cells can be efficiently genetically engineered to produce mAbs at yields beyond a 1 g/L, as suspension cells grown in serum-free culture media. EB66 cells display additional attractive grown characteristics such as a very short population doubling time of 12 to 14 hours, a capacity to reach very high cell density (> 30 million cells/mL) and a unique metabolic profile resulting in low ammonium and lactate accumulation and low glutamine consumption, even at high cell densities. Furthermore, mAbs produced on EB66 cells display a naturally reduced fucose content resulting in strongly enhanced ADCC activity. The EB66 cells have therefore the potential to evolve as a novel cellular platform for the production of high potency therapeutic antibodies.

  20. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells.

    PubMed

    Pi, Jiang; Jin, Hua; Liu, Ruiying; Song, Bing; Wu, Qing; Liu, Li; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Cai, Jiye

    2013-02-01

    Selenium nanoparticles (Se NPs) have been recognized as promising materials for biomedical applications. To prepare Se NPs which contained cancer targeting methods and to clarify the cellular localization and cytotoxicity mechanisms of these Se NPs against cancer cells, folic acid protected/modified selenium nanoparticles (FA-Se NPs) were first prepared by a one-step method. Some morphologic and spectroscopic methods were obtained to prove the successfully formation of FA-Se NPs while free folate competitive inhibition assay, microscope, and several biological methods were used to determine the in vitro uptake, subcellular localization, and cytotoxicity mechanism of FA-Se NPs in MCF-7 cells. The results indicated that the 70-nm FA-Se NPs were internalized by MCF-7 cells through folate receptor-mediated endocytosis and targeted to mitochondria located regions through endocytic vesicles transporting. Then, the FA-Se NPs entered into mitochondria; triggered the mitochondria-dependent apoptosis of MCF-7 cells which involved oxidative stress, Ca(2)+ stress changes, and mitochondrial dysfunction; and finally caused the damage of mitochondria. FA-Se NPs released from broken mitochondria were transported into nucleus and further into nucleolus which then induced MCF-7 cell cycle arrest. In addition, FA-Se NPs could induce cytoskeleton disorganization and induce MCF-7 cell membrane morphology alterations. These results collectively suggested that FA-Se NPs could be served as potential therapeutic agents and organelle-targeted drug carriers in cancer therapy.

  1. The entomopathogenic fungus Nomuraea rileyi impairs cellular immunity of its host Helicoverpa armigera.

    PubMed

    Zhong, Ke; Liu, Zhan-Chi; Wang, Jia-Lin; Liu, Xu-Sheng

    2017-09-01

    In this study, we investigated the effect of the entomopathogenic fungus Nomuraea rileyi on Helicoverpa armigera cellular immune responses. Nomuraea rileyi infection had no effect on total hemocyte count (THC), but impaired hemocyte-mediated phagocytosis, nodulation, and encapsulation responses. Nomuraea rileyi infection led to a significant reduction in hemocyte spreading. An in vitro assay revealed that plasma from N. rileyi infected H. armigera larvae suppressed the spreading ability of hemocytes from naïve larvae. We infer that N. rileyi suppresses the cellular immune response of its host, possibly by secreting exogenous, cytotoxic compounds into the host's hemolymph. © 2017 Wiley Periodicals, Inc.

  2. The AB Doradus system revisited: The dynamical mass of AB Dor A/C

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Ros, E.; Tognelli, E.; Jauncey, D. L.; Lestrade, J.-F.; Reynolds, J. E.

    2017-10-01

    Context. The study of pre-main-sequence (PMS) stars with model-independent measurements of their masses is essential to check the validity of theoretical models of stellar evolution. The well-known PMS binary AB Dor A/C is an important benchmark for this task, since it displays intense and compact radio emission, which makes possible the application of high-precision astrometric techniques to this system. Aims: We aim to revisit the dynamical masses of the components of AB Dor A/C to refine earlier comparisons between the measurements of stellar parameters and the predictions of stellar models. Methods: We observed in phase-reference mode the binary AB Dor A/C, 0.2'' separation, with the Australian Long Baseline Array at 8.4 GHz. The astrometric information resulting from our observations was analyzed along with previously reported VLBI, optical (Hipparcos), and infrared measurements. Results: The main star AB Dor A is clearly detected in all the VLBI observations, which allowed us to analyze the orbital motion of the system and to obtain model-independent dynamical masses of 0.90 ± 0.08 M⊙ and 0.090 ± 0.008 M⊙, for AB Dor A and AB Dor C, respectively. Comparisons with PMS stellar evolution models favor and age of 40-50 Myr for AB Dor A and of 25-120 Myr for AB Dor C. Conclusions: We show that the orbital motion of the AB Dor A/C system is remarkably well determined, leading to precise estimates of the dynamical masses. Comparison of our results with the prediction of evolutionary models support the observational evidence that theoretical models tend to slightly underestimate the mass of the low-mass stars.

  3. Study of Galfenol direct cytotoxicity and remote microactuation in cells.

    PubMed

    Vargas-Estevez, Carolina; Blanquer, Andreu; Dulal, Prabesh; Pérez Del Real, Rafael; Duch, Marta; Ibáñez, Elena; Barrios, Leonardo; Murillo, Gonzalo; Torras, Núria; Nogués, Carme; Stadler, Bethanie J H; Plaza, José A; Esteve, Jaume

    2017-09-01

    Remote microactuators are of great interest in biology and medicine as minimally-invasive tools for cellular stimulation. Remote actuation can be achieved by active magnetostrictive transducers which are capable of changing shape in response to external magnetic fields thereby creating controlled displacements. Among the magnetostrictive materials, Galfenol, the multifaceted iron-based smart material, offers high magnetostriction with robust mechanical properties. In order to explore these capabilities for biomedical applications, it is necessary to study the feasibility of material miniaturization in standard fabrication processes as well as evaluate the biocompatibility. Here we develop a technology to fabricate, release, and suspend Galfenol-based microparticles, without affecting the integrity of the material. The morphology, composition and magnetic properties of the material itself are characterized. The direct cytotoxicity of Galfenol is evaluated in vitro using human macrophages, osteoblast and osteosarcoma cells. In addition, cytotoxicity and actuation of Galfenol microparticles in suspension are evaluated using human macrophages. The biological parameters analyzed indicate that Galfenol is not cytotoxic, even after internalization of some of the particles by macrophages. The microparticles were remotely actuated forming intra- and extracellular chains that did not impact the integrity of the cells. The results propose Galfenol as a suitable material to develop remote microactuators for cell biology studies and intracellular applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor.

    PubMed

    Lavilla Lerma, Leyre; Benomar, Nabil; Valenzuela, Antonio Sánchez; Casado Muñoz, María del Carmen; Gálvez, Antonio; Abriouel, Hikmate

    2014-12-01

    Enterococcus faecalis and Enterococcus faecium isolated from various traditional fermented foods of both animal and vegetable origins have shown multidrug resistance to several antibiotics and tolerance to biocides. Reduced susceptibility was intra and inter-species dependent and was due to specific and unspecific mechanisms such as efflux pumps. EfrAB, a heterodimeric ABC transporter efflux pump, was detected in 100% of multidrug resistant (MDR) E. faecalis strains and only in 12% of MDR E. faecium strains. EfrAB expression was induced by half of minimum inhibitory concentration (MIC) of gentamicin, streptomycin and chloramphenicol. However, expression of efrA and efrB genes was highly dependent on the strain tested and on the antimicrobial used. Our results indicated that 3 mM EDTA highly reduced the MICs of almost all drugs tested. Nevertheless, the higher reductions (>8 folds) were obtained with gentamicin, streptomycin, chlorhexidine and triclosan. Reductions of MICs were correlated with down-regulation of EfrAB expression (10-140 folds) in all three MDR enterococci strains. This is the first report describing the role of EfrAB in the efflux of antibiotics and biocides which reflect also the importance of EfrAB in multidrug resistance in enterococci. EDTA used at low concentration as food preservative could be one of the best choices to prevent spread of multidrug resistant enterococci throughout food chain by decreasing EfrAB expression. EfrAB could be an attractive target not only in enterococci present in food matrix but also those causing infections as well by using EDTA as therapeutic agent in combination with low doses of antibiotics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Comparison of In Vitro Activity of Liposomal Nystatin against Aspergillus Species with Those of Nystatin, Amphotericin B (AB) Deoxycholate, AB Colloidal Dispersion, Liposomal AB, AB Lipid Complex, and Itraconazole

    PubMed Central

    Oakley, Karen L.; Moore, Caroline B.; Denning, David W.

    1999-01-01

    We compared the in vitro activity of liposomal nystatin (Nyotran) with those of other antifungal agents against 60 Aspergillus isolates. Twelve isolates were itraconazole resistant. For all isolates, geometric mean (GM) MICs (micrograms per milliliter) were 2.30 for liposomal nystatin, 0.58 for itraconazole, 0.86 for amphotericin B (AB) deoxycholate, 9.51 for nystatin, 2.07 for liposomal AB, 2.57 for AB lipid complex, and 0.86 for AB colloidal dispersion. Aspergillus terreus (GM, 8.72 μg/ml; range, 8 to 16 μg/ml) was significantly less susceptible to all of the polyene drugs than all other species (P = 0.0001). PMID:10223948

  6. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    PubMed Central

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  7. Analysis of the Effects of Cell Stress and Cytotoxicity on In ...

    EPA Pesticide Factsheets

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, concentration-dependent responses of 1063 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a diverse battery of 821 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to better distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress / cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least two viability/cytotoxicity assays within the concentration range tested (typically up to 100 M) activated a median of 12% of assay endpoints while those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (e.g., receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering of specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a g

  8. Synthesis of bifunctional molecules containing [12]aneN3 and coumarin moieties as effective DNA condensation agents and new non-viral gene vectors.

    PubMed

    Yue, Pan; Zhang, Ying; Guo, Zhi-Fo; Cao, Ao-Cheng; Lu, Zhong-Lin; Zhai, Yong-Gong

    2015-04-21

    A series of bifunctional molecules with different combinations of macrocyclic polyamine [12]aneN3 and coumarin moieties, 4a/b and 5a/b, were synthesized by a two-step copper(I)-mediated alkyne–azide click reactions between 1,3,5-tris(azidomethyl)benzene and Boc-protected N-propynyl-[12]aneN3/7-propynyloxycoumarins. Agarose gel electrophoresis experiments indicated that bifunctional molecules 4b and 5b effectively induced complete plasmid DNA condensation at concentrations up to 40 μM. It was found that the structural variation had a major impact on the condensation behavior of these compounds. The electrostatic interaction involving the [12]aneN3 moiety can be compensated by the binding contribution of the coumarin units during the DNA condensation process. These two types of interaction showed different effects on the reversibility of DNA condensation. Results from studies using dynamic laser scattering, atomic force microscopy, and EB replacement assay further supported the above conclusion. Cytotoxicity assays on bifunctional compounds 4a/b and 5a/b indicated their low cytotoxicity. Results from cellular uptake and cell transfection experiments proved that bifunctional compounds 4b and 5b successfully served as non-viral gene vectors. Furthermore, methyl substituents attached to the coumarin unit (4b and 5b) greatly enhanced their DNA condensation capability and gene transfection. These bifunctional molecules, with the advantages of lower cytotoxicity, good water solubility, and potential structural modification, will have great potential for the development of new non-viral gene delivery agents.

  9. Hypoxia affects cellular responses to plant extracts.

    PubMed

    Liew, Sien-Yei; Stanbridge, Eric J; Yusoff, Khatijah; Shafee, Norazizah

    2012-11-21

    Microenvironmental conditions contribute towards varying cellular responses to plant extract treatments. Hypoxic cancer cells are known to be resistant to radio- and chemo-therapy. New therapeutic strategies specifically targeting these cells are needed. Plant extracts used in Traditional Chinese Medicine (TCM) can offer promising candidates. Despite their widespread usage, information on their effects in hypoxic conditions is still lacking. In this study, we examined the cytotoxicity of a series of known TCM plant extracts under normoxic versus hypoxic conditions. Pereskia grandifolia, Orthosiphon aristatus, Melastoma malabathricum, Carica papaya, Strobilanthes crispus, Gynura procumbens, Hydrocotyle sibthorpioides, Pereskia bleo and Clinacanthus nutans leaves were dried, blended into powder form, extracted in methanol and evaporated to produce crude extracts. Human Saos-2 osteosarcoma cells were treated with various concentrations of the plant extracts under normoxia or hypoxia (0.5% oxygen). 24h after treatment, an MTT assay was performed and the IC(50) values were calculated. Effect of the extracts on hypoxia inducible factor (HIF) activity was evaluated using a hypoxia-driven firefly luciferase reporter assay. The relative cytotoxicity of each plant extract on Saos-2 cells was different in hypoxic versus normoxic conditions. Hypoxia increased the IC(50) values for Pereskia grandifola and Orthosiphon aristatus extracts, but decreased the IC(50) values for Melastoma malabathricum and Carica papaya extracts. Extracts of Strobilanthes crispus, Gynura procumbens, Hydrocotyle sibthorpioides had equivalent cytotoxic effects under both conditions. Pereskia bleo and Clinacanthus nutans extracts were not toxic to cells within the concentration ranges tested. The most interesting result was noted for the Carica papaya extract, where its IC(50) in hypoxia was reduced by 3-fold when compared to the normoxic condition. This reduction was found to be associated with HIF

  10. Effects of folic acid deficiency and MTHFRC677T polymorphisms on cytotoxicity in human peripheral blood lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Xiayu; Liang Ziqing; Zou Tianning

    2009-02-13

    Apoptosis (APO) and necrosis (NEC) are two different types of cell death occurring in response to cellular stress factors. Cells with DNA damage may undergo APO or NEC. Folate is an essential micronutrient associated with DNA synthesis, repair and methylation. Methylenetetrahydrofolate reductase (MTHFR) regulates intracellular folate metabolism. Folate deficiency and MTHFR C677T polymorphisms have been shown to be related to DNA damage. To verify the cytotoxic effects of folate deficiency on cells with different MTHFR C677T genotypes, 15 human peripheral lymphocyte cases with different MTHFR C677T genotypes were cultured in folic acid (FA)-deficient and -sufficient media for 9 days. Cytotoxicitymore » was quantified using the frequencies of APO and NEC as endpoints, the nuclear division index (NDI), and the number of viable cells (NVC). These results showed that FA is an important factor in reducing cytotoxicity and increasing cell proliferation. Lymphocytes with the TT genotype proliferated easily under stress and exhibited different responses to FA deficiency than lymphocytes with the CC and CT genotypes. A TT individual may accumulate more cytotoxicity under cytotoxic stress, suggesting that the effects of FA deficiency on cytotoxicity are greater than the effects in individuals with the other MTHFR C677T variants.« less

  11. CRTAM determines the CD4+ cytotoxic T lymphocyte lineage

    PubMed Central

    Takeuchi, Arata; Badr, Mohamed El Sherif Gadelhaq; Miyauchi, Kosuke; Ishihara, Chitose; Onishi, Reiko; Guo, Zijin; Sasaki, Yoshiteru; Ike, Hiroshi; Takumi, Akiko; Tsuji, Noriko M.; Murakami, Yoshinori; Katakai, Tomoya; Kubo, Masato

    2016-01-01

    Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene. PMID:26694968

  12. Celecoxib-Induced Cytotoxic Effect Is Potentiated by Inhibition of Autophagy in Human Urothelial Carcinoma Cells

    PubMed Central

    Ho, I-Lin; Chang, Hong-Chiang; Chuang, Yuan-Ting; Lin, Wei-Chou; Lee, Ping-Yi; Chang, Shih-Chen; Chiang, Chih-Kang; Pu, Yeong-Shiau; Chou, Chien-Tso; Hsu, Chen-Hsun; Liu, Shing-Hwa

    2013-01-01

    Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, can elicit anti-tumor effects in various malignancies. Here, we sought to clarify the role of autophagy in celecoxib-induced cytotoxicity in human urothelial carcinoma (UC) cells. The results shows celecoxib induced cellular stress response such as endoplasmic reticulum (ER) stress, phosopho-SAPK/JNK, and phosopho-c-Jun as well as autophagosome formation in UC cells. Inhibition of autophagy by 3-methyladenine (3-MA), bafilomycin A1 or ATG7 knockdown potentiated celecoxib-induced apoptosis. Up-regulation of autophagy by rapamycin or GFP-LC3B-transfection alleviated celecoxib-induced cytotoxicity in UC cells. Taken together, the inhibition of autophagy enhances therapeutic efficacy of celecoxib in UC cells, suggesting a novel therapeutic strategy against UC. PMID:24349176

  13. The cytotoxic activity of miltefosine against Leishmania and macrophages is associated with dynamic changes in plasma membrane proteins.

    PubMed

    Fernandes, Kelly Souza; de Souza, Paulo Eduardo Narcizo; Dorta, Miriam Leandro; Alonso, Antonio

    2017-01-01

    In this study, we combined electron paramagnetic resonance (EPR) spectroscopy with an analysis of biophysical cellular parameters to study the mechanisms underlying the in vitro anti-leishmanial activity of miltefosine (MT). A thiol-specific spin label attached to membrane-bound proteins of Leishmania amazonensis and peritoneal macrophages indicated that MT may bind to plasma membrane proteins in large quantities via a detergent-like action and cause structural changes associated with a marked increase in dynamics and exposure to an aqueous environment. EPR spectra of a spin-labeled stearic acid indicated strong interactions between the probe and membrane proteins and a marked increase in the membrane fluidity of MT-treated cells. The cytotoxicity of MT was found to depend on the cell concentration used in the assay. This dependence was described by an equation involving the 50% inhibitory concentrations of MT in the aqueous medium (c w50 ) and the cell membrane (c m50 ) and the membrane-aqueous medium partition coefficient of MT (K). With a c w50 of 8.7μM, macrophages were less sensitive to MT than amastigotes and promastigotes of Leishmania, which had c w50 values of 2.4-3.1μM. The estimated c m50 of MT for Leishmania was 1.8M, which appears sufficient to cause ruptures or formation of pores in the plasma membrane. Additionally, we demonstrated that the changes in the plasma membrane detected by EPR spectroscopy occurred at cytotoxic concentrations of MT, as assessed through in vitro assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparisons of Transcriptional Profiles of Gut Genes between Cry1Ab-Resistant and Susceptible Strains of Ostrinia nubilalis Revealed Genes Possibly Related to the Adaptation of Resistant Larvae to Transgenic Cry1Ab Corn.

    PubMed

    Yao, Jianxiu; Zhu, Yu-Cheng; Lu, Nanyan; Buschman, Lawrent L; Zhu, Kun Yan

    2017-01-30

    A microarray developed on the basis of 2895 unique transcripts from larval gut was used to compare gut gene expression profiles between a laboratory-selected Cry1Ab-resistant (R) strain and its isoline susceptible (S) strain of the European corn borer (Ostrinia nubilalis) after the larvae were fed the leaves of transgenic corn (MON810) expressing Cry1Ab or its non-transgenic isoline for 6 h. We revealed 398 gut genes differentially expressed (i.e., either up- or down-regulated genes with expression ratio ≥2.0) in S-strain, but only 264 gut genes differentially expressed in R-strain after being fed transgenic corn leaves. Although the percentages of down-regulated genes among the total number of differentially expressed genes (50% in S-strain and 45% in R-strain) were similar between the R- and S-strains, the expression ratios of down-regulated genes were much higher in S-strain than in R-strain. We revealed that 17 and 9 significantly up- or down-regulated gut genes from S and R-strain, respectively, including serine proteases and aminopeptidases. These genes may be associated with Cry1Ab toxicity by degradation, binding, and cellular defense. Overall, our study suggests enhanced adaptation of Cry1Ab-resistant larvae on transgenic Cry1Ab corn as revealed by lower number and lower ratios of differentially expressed genes in R-strain than in S-strain of O. nubilalis.

  15. Effects of Escherichia coli subtilase cytotoxin and Shiga toxin 2 on primary cultures of human renal tubular epithelial cells.

    PubMed

    Márquez, Laura B; Velázquez, Natalia; Repetto, Horacio A; Paton, Adrienne W; Paton, James C; Ibarra, Cristina; Silberstein, Claudia

    2014-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.

  16. CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

    PubMed Central

    Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise

    2011-01-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686

  17. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells.

    PubMed

    Asare, Nana; Instanes, Christine; Sandberg, Wiggo J; Refsnes, Magne; Schwarze, Per; Kruszewski, Marcin; Brunborg, Gunnar

    2012-01-27

    Serious concerns have been expressed about potential risks of engineered nanoparticles. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines; including the potential effects on reproduction and fertility, are relevant for this risk evaluation. In this study, we examined effects of silver particles of nano- (20nm) and submicron- (200nm) size, and titanium dioxide nanoparticles (TiO(2)-NPs; 21nm), with emphasis on reproductive cellular- and genotoxicity. Ntera2 (NT2, human testicular embryonic carcinoma cell line), and primary testicular cells from C57BL6 mice of wild type (WT) and 8-oxoguanine DNA glycosylase knock-out (KO, mOgg1(-/-)) genotype were exposed to the particles. The latter mimics the repair status of human testicular cells vs oxidative damage and is thus a suitable model for human male reproductive toxicity studies. The results suggest that silver nano- and submicron-particles (AgNPs) are more cytotoxic and cytostatic compared to TiO(2)-NPs, causing apoptosis, necrosis and decreased proliferation in a concentration- and time-dependent manner. The 200nm AgNPs in particular appeared to cause a concentration-dependent increase in DNA-strand breaks in NT2 cells, whereas the latter response did not seem to occur with respect to oxidative purine base damage analysed with any of the particles tested. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Characterization and cytotoxicity of PAHs in PM2.5 emitted from residential solid fuel burning in the Guanzhong Plain, China.

    PubMed

    Sun, Jian; Shen, Zhenxing; Zeng, Yaling; Niu, Xinyi; Wang, Jinhui; Cao, Junji; Gong, Xuesong; Xu, Hongmei; Wang, Taobo; Liu, Hongxia; Yang, Liu

    2018-05-28

    The emission factors (EFs) of polycyclic aromatic hydrocarbons (PAHs) in PM 2.5 were measured from commonly used stoves and fuels in the rural Guanzhong Plain, China. The toxicity of the PM 2.5 also was measured using in vitro cellular tests. EFs of PAHs varied from 0.18 mg kg -1 (maize straw charcoal burning in a clean stove) to 83.3 mg kg -1 (maize straw burning in Heated Kang). The two largest influencing factors on PAH EFs were air supply and volatile matter proportion in fuel. Improvements in these two factors could decrease not only EFs of PAHs but also the proportion of 3-ring to 5-ring PAHs. Exposure to PM 2.5 extracts caused a concentration-dependent decline in cell viability but an increase in reactive oxygen species (ROS), tumor necrosis factor a (TNF-α) and interleukin 6 (IL-6). PM 2.5 emitted from maize burning in Heated Kang showed the highest cytotoxicity, and EFs of ROS and inflammatory factors were the highest as well. In comparison, maize straw charcoal burning in a clean stove showed the lowest cytotoxicity, which indicated a clean stove and fuel treatment were both efficient methods for reducing cytotoxicity of primary PM 2.5 . The production of these bioreactive factors were highly correlated with 3-ring and 4-ring PAHs. Specifically, pyrene, anthracene and benzo(a)anthracene had the highest correlations with ROS production (R = 0.85, 0.81 and 0.80, respectively). This study shows that all tested stoves emitted PM 2.5 that was cytotoxic to human cells; thus, there may be no safe levels of exposure to PM 2.5 emissions from cooking and heating stoves using solid fuels. The study may also provide a new approach for evaluating the cytotoxicity of primary emitted PM 2.5 from solid fuel burning as well as other PM 2.5 sources. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells.

    PubMed

    Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko

    2015-02-01

    Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.

  20. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells

    PubMed Central

    Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko

    2015-01-01

    Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer. PMID:25692008

  1. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs.

    PubMed

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Zaręba, Magdalena; Wałajtys-Rode, Elżbieta; Wołowiec, Stanisław

    2017-01-15

    In search for soluble derivatives of PAMAM dendrimers as potential carriers for hydrophobic drugs, the conjugates of PAMAM G3 with biotin, further converted into glycodendrimer with d-glucoheptono-1,4-lactone, were prepared. Polyamidoamine dendrimer (PAMAM) of third generation, G3 was functionalized with four biotin equivalents covalently attached to terminal amine nitrogens via amide bond G3 4B . The remaining 28 amine groups were blocked by glucoheptoamide substituents (gh) to give G3 4B28gh or with one fluorescein equivalent (attached by reaction of G3 4B with fluorescein isothiocyanate, FITC) via thiourea bond as FITC followed by exhaustive glucoheptoamidation to get G3 4B27gh1F . As a control the G3 substituted totally with 32 glucoheptoamide residues, G3 gh and its fluorescein labeled analogue G3 31gh1F were synthesized. The glucoheptoamidation of PAMAM G0 dendrimer with glucoheptono-1,4-lactone was performed in order to fully characterize the 1 H NMR spectra of glucoheptoamidated PAMAM dendrimers and to control the derivatization of G3 with glucoheptono-1,4-lactone. Another two derivatives of G3, namely G3 4B28gh1F' and G3 32ghF' , with ester bonded fluorescein were also obtained. Biological properties of obtained dendrimer conjugates were estimated in vitro with human cell lines: normal fibroblast (BJ) and two cancer glioblastoma (U-118 MG) and squamous carcinoma (SCC-15), including cytotoxicity by reduction of XTT and neutral red (NR) assays. Cellular uptake of dendrimer conjugates was evaluated with confocal microscopy. Obtained results confirmed, that biotinylated bioconjugates have always lower cytotoxicity and 3-4 times higher cellular uptake than non-biotinylated dendrimer conjugates in all cell lines. Comparison of various cell lines revealed different dose-dependent cell responses and the lower cytotoxicity of examined dendrimer conjugates for normal fibroblasts and squamous carcinoma, as compared with much higher cytotoxic effects seen in

  2. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    PubMed

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  3. Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure.

    PubMed

    Efeoglu, Esen; Casey, Alan; Byrne, Hugh J

    2017-10-09

    Although consumer exposure to nanomaterials is ever increasing, with potential increased applications in areas such as drug and/or gene delivery, contrast agents and diagnosis, the determination of the cyto- and geno-toxic effects of nanomaterials on human health and the environment still remains challenging. Although many techniques have been established and adapted to determine the cytotoxicity and genotoxicity of nano-sized materials, these techniques remain limited by the number of assays required, total cost, and use of labels and they struggle to explain the underlying interaction mechanisms. In this study, Raman microspectroscopy is employed as an in vitro label-free, high content screening technique to observe toxicological changes within the cell in a multi-parametric fashion. The evolution of spectral markers as a function of time and applied dose has been used to elucidate the mechanism of action of polyamidoamine (PAMAM) dendrimers associated with cytotoxicity and their impact on nuclear biochemistry. PAMAM dendrimers are chosen as a model nanomaterial due to their widely studied cytotoxic and genotoxic properties and commercial availability. Point spectra were acquired from the cytoplasm to monitor the cascade of toxic events occurring in the cytoplasm upon nanoparticle exposure, whereas the spectra acquired from the nucleus and the nucleolus were used to explore PAMAM-nuclear material interaction as well as genotoxic responses.

  4. Measurement of cytotoxicity and irritancy potential of sugar-based surfactants on skin-related 3D models.

    PubMed

    Lu, Biao; Miao, Yong; Vigneron, Pascale; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Pezron, Isabelle; Egles, Christophe; Vayssade, Muriel

    2017-04-01

    Sugar-based surfactants present surface-active properties and relatively low cytotoxicity. They are often considered as safe alternatives to currently used surfactants in cosmetic industries. In this study, four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or a maltose headgroup through an amide linkage, were synthesized and compared to two standard surfactants. The cytotoxic and irritant effects of surfactants were evaluated using two biologically relevant models: 3D dermal model (mouse fibroblasts embedded in collagen gel) and reconstituted human epidermis (RHE, multi-layered human keratinocytes). Results show that three synthesized surfactants possess lower cytotoxicity compared to standard surfactants as demonstrated in the 3D dermal model. Moreover, the IC50s of surfactants against the 3D dermal model are higher than IC50s obtained with the 2D dermal model (monolayer mouse fibroblasts). Both synthesized and standard surfactants show no irritant effects after 48h of topical application on RHE. Throughout the study, we demonstrate the difficulty to link the physico-chemical properties of surfactants and their cytotoxicity in complex models. More importantly, our data suggest that, prior to in vivo tests, a complete understanding of surfactant cytotoxicity or irritancy potential requires a combination of cellular and tissue models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ultrasonic Characteristics and Cellular Properties of Anabaena Gas Vesicles.

    PubMed

    Yang, Yaoheng; Qiu, Zhihai; Hou, Xuandi; Sun, Lei

    2017-12-01

    Ultrasound imaging is a common modality in clinical examination and biomedical research, but has not played a significant role in molecular imaging for lack of an appropriate contrast agent. Recently, biogenic gas vesicles (GVs), naturally formed by cyanobacteria and haloarchaea, have exhibited great potential as an ultrasound molecular imaging probe with a much smaller size (∼100 nm) and improved imaging contrast. However, the basic acoustic and biological properties of GVs remain unclear, which hinders future application. Here, we studied the fundamental acoustic properties of a rod-shaped gas vesicle from Anabaena, a kind of cyanobacterium, including attenuation, oscillation resonance, and scattering, as well as biological behaviors (cellular internalization and cytotoxicity). We found that GVs have two resonance peaks (85 and 120 MHz). We also observed a significant non-linear effect and its pressure dependence as well. Ultrasound B-mode imaging reveals sufficient echogenicity of GVs for ultrasound imaging enhancement at high frequencies. Biological characterization also reveals endocytosis and non-toxicity. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  6. Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems.

    PubMed

    Wang, Ting; Wang, Lu; Li, Xiaoming; Hu, Xingjie; Han, Yuping; Luo, Yao; Wang, Zejun; Li, Qian; Aldalbahi, Ali; Wang, Lihua; Song, Shiping; Fan, Chunhai; Zhao, Yun; Wang, Maolin; Chen, Nan

    2017-06-07

    Nanoparticles (NPs) have shown great promise as intracellular imaging probes or nanocarriers and are increasingly being used in biomedical applications. A detailed understanding of how NPs get "in and out" of cells is important for developing new nanomaterials with improved selectivity and less cytotoxicity. Both physical and chemical characteristics have been proven to regulate the cellular uptake of NPs. However, the exocytosis process and its regulation are less explored. Herein, we investigated the size-regulated endocytosis and exocytosis of carboxylated polystyrene (PS) NPs. PS NPs with a smaller size were endocytosed mainly through the clathrin-dependent pathway, whereas PS NPs with a larger size preferred caveolae-mediated endocytosis. Furthermore, our results revealed exocytosis of larger PS NPs and tracked the dynamic process at the single-particle level. These results indicate that particle size is a key factor for the regulation of intracellular trafficking of NPs and provide new insight into the development of more effective cellular nanocarriers.

  7. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Poulsen, Christopher; Mehalick, Leslie A.; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 µM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propridium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2 to 10.0 µM long-chain bases and GML were not cytotoxic; 40.0 to 80.0 µM long-chain bases, but not GML, were cytotoxic; and 80.0 µM long-chain bases induced cellular damage and death in less than 20 minutes. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26005054

  8. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Poulsen, Christopher; Mehalick, Leslie A; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-08-19

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 μM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propidium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2-10.0 μM long-chain bases and GML were not cytotoxic; 40.0-80.0 μM long-chain bases, but not GML, were cytotoxic; and 80.0 μM long-chain bases induced cellular damage and death in less than 20 min. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer.

    PubMed

    Ujhelyi, Zoltán; Fenyvesi, Ferenc; Váradi, Judit; Fehér, Pálma; Kiss, Tímea; Veszelka, Szilvia; Deli, Mária; Vecsernyés, Miklós; Bácskay, Ildikó

    2012-10-09

    The objective of this study was to examine the cellular effects of the members of two non-ionic amphiphilic tenside groups and their mixtures on human Caco-2 cell monolayers as dependent upon their chemical structures and physicochemical properties. The first group of polyethylene glycol esters is represented by Polysorbates and Labrasol alone and in blends, while the members of the second group. Capryol 90, Capryol PGMC, Lauroglycol 90 and Lauroglycol FCC were used as propylene glycol esters. They are increasingly used in SMEDDS as recent tensides or co-tensides to increase hydrophobic bioavailability of a drug. Critical micelle concentration was measured by determination of surface tension. CMC refers to the ability of solubilization of surfactants. Cytotoxicity tests were performed on Caco-2 cell monolayers by MTT and LDH methods. Paracellular permeability as a marker of the integrity of cell monolayers, was examined with Lucifer yellow assays combined with TransEpithelial Electrical Resistance (TEER) measurements. The effect of these surfactants on tight junctions as evidence for paracellular pathway was also characterized. The results of cytotoxicity assays were in agreement, and showed significant differences among the cytotoxic properties of surfactants in a concentration-dependent manner. Polysorbates 20, 60, 80 are the most toxic compounds. In the case of Labrasol, the degree of esterification and lack of sorbit component decreased cytotoxicity. If the hydrophyl head was changed from polyethylene glycol to propylene glycol the main determined factor of cytotoxicity was the monoester content and the length of carbon chain. In our CMC experiments, we found that only Labrasol showed expressed cytotoxicity above the CMC. It refers to good ability of micelle solubilization of Labrasol. In our paracellular transport experiments each of polyethylene glycol surfactants (Polysorbates and Labrasol) altered TEER values, but propylene glycol esters did not modify the

  10. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer.

    PubMed

    Sarkar, Surojit; Hewison, Martin; Studzinski, George P; Li, Yan Chun; Kalia, Vandana

    2016-01-01

    The discovery of vitamin D receptor (VDR) expression in immune cells has opened up a new area of research into immunoregulation by vitamin D, a niche that is distinct from its classical role in skeletal health. Today, about three decades since this discovery, numerous cellular and molecular targets of vitamin D in the immune system have been delineated. Moreover, strong clinical associations between vitamin D status and the incidence/severity of many immune-regulated disorders (e.g. infectious diseases, cancers and autoimmunity) have prompted the idea of using vitamin D supplementation to manipulate disease outcome. While much is known about the effects of vitamin D on innate immune responses and helper T (T(H)) cell immunity, there has been relatively limited progress on the frontier of cytotoxic T lymphocyte (CTL) immunity--an arm of host cellular adaptive immunity that is crucial for the control of such intracellular pathogens as human immunodeficiency virus (HIV), tuberculosis (TB), malaria, and hepatitis C virus (HCV). In this review, we discuss the strong historical and clinical link between vitamin D and infectious diseases that involves cytotoxic T lymphocyte (CTL) immunity, present our current understanding as well as critical knowledge gaps in the realm of vitamin D regulation of host CTL responses, and highlight potential regulatory connections between vitamin D and effector and memory CD8 T cell differentiation events during infections.

  11. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance.

    PubMed

    Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa

    2015-03-01

    Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.

  12. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.

    PubMed

    Malek, Sri Nurestri Abdul; Shin, Sim Kae; Wahab, Norhanom Abdul; Yaacob, Hashim

    2009-05-06

    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.

  13. Macrophage Solubilization and Cytotoxicity of Indium-Containing Particles In Vitro

    PubMed Central

    Morgan, Daniel L.

    2013-01-01

    Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic. PMID:23872580

  14. Synthesis, molecular structure, spectral analysis and cytotoxic activity of two new aroylhydrazones

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra Kumar; Singh, Ashok Kumar; Siddiqui, Sahabjada; Arshad, Mohammad; Jafri, Asif

    2017-05-01

    Two new aroylhydrazones viz 4-nitro-N‧-(1-(pyridin-2-yl)ethylidene)benzohydrazide, NPHY (4) and 4-nitro-N‧-(1-(thiophen-2-yl)ethylidene)benzohydrazide, NPHT (5) have been prepared and characterized by 1H NMR, 13C NMR, FT-IR, UV-Visible spectroscopy and mass spectrometry. All quantum calculations were performed at DFT level of theory using B3LYP functional and 6-31G (d,p) as basis set. TD-DFT calculated electronic transitions are found to be in good agreement with experimental findings. The assignments for normal vibrational modes have been done by computing Potential Energy Distribution (PED) using Gar2ped. HOMO-LUMO analysis was performed and reactivity descriptors were also computed. Global electrophilicity index (ω) of 6.12-6.26 eV shows these aroylhydrazones to be strong electrophiles. Intramolecular interactions were analyzed by 'Atoms in molecule' (AIM) approach. Also, the computed first static hyperpolarizabilities (β0) of these hydrazones indicate their future application as an attractive non-linear optical (NLO) material. Cytotoxicity evaluated by MTT assay, suggested that the synthesized aroylhydrazones significantly reduce the cell viability of breast cancer cell lines (MCF7) and human prostate adenocarcinoma (DU145) in a dose dependent manner. Cytotoxic potencies (IC50) of these hydrazones against MCF7 and DU145 cell lines were found in range of 54.67-85.67 μM. The result of ROS activity provides supportive data for molecular mechanism of these hydrazones, which is related to apoptotic cellular death. Nuclear condensation assay performed by DAPI staining shows fragmented and condensed nuclei in MCF7 cells, suggesting cell death by apoptosis.

  15. The Effect of Ultrafine Process on the Dissolution, Antibacterial Activity, and Cytotoxicity of Coptidis rhizoma

    PubMed Central

    Jiang, Zhen-Yu; Deng, Hai-Ying; Yu, Zhi-Jun; Ni, Jun-Yan; Kang, Si-He

    2016-01-01

    Background: The dosage of herb ultrafine particle (UFP) depended on the increased level of its dissolution, toxicity, and efficacy. Objective: The dissolution, antibacterial activity, and cytotoxicity of Coptidis rhizoma (CR) UFP were compared with those of traditional decoction (TD). Materials and Methods: The dissolution of berberine (BBR) of CR TD and UFP was determined by high-performance liquid chromatography. The antibacterial activity of CR extract was assayed by plate-hole diffusion and broth dilution method; the inhibitory effect of rat serums against bacteria growth was evaluated after orally given CR UFP or TD extract. The cytotoxicity of CR extract was evaluated by 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay. Results: The dissolution amount of BBR from CR UFP increased 6–8-folds in comparison to TD at 2 min, the accumulative amount of BBR in both UFP and TD group increased in a time-dependent manner. The minimal inhibitory concentrations and minimal bactericidal concentrations of CR UFP extract decreased to 1/2~1/4 of those of TD extract. The inhibitory effect of rat serums against bacteria growth decreased time-dependently, and no statistical difference was observed between two groups at each time point. The 50% cytotoxic concentrations of UFP extract increased 1.66~1.97 fold than those of TD. Conclusions: The antibacterial activity and cytotoxicity of CR UFP increased in a dissolution-effect manner in vitro, the increased level of cytotoxicity was lower than that of antibacterial activity, and the inhibitory effect of rat serums containing drugs of UFP group did not improve. SUMMARY Ultrafine grinding process caused a rapid increase of BBR dissolution from CR.The antibacterial activity and cytotoxicity of UFP extract in vitro increased in a dissolution-effect manner, but the cytotoxicity increased lower than the antibacterial activity.The antibacterial activity of rat serums of UFP group did not improve in comparison to that

  16. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Mehalick, Leslie A; Poulsen, Christopher; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-12-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2-10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0-80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.

  17. Diode laser surgery. Ab interno and ab externo versus conventional surgery in rabbits.

    PubMed

    Karp, C L; Higginbotham, E J; Edward, D P; Musch, D C

    1993-10-01

    Fibroblastic proliferation of subconjunctival tissues remains a primary mechanism of failure in filtration surgery. Minimizing the surgical manipulation of episcleral tissues may reduce scarring. Laser sclerostomy surgery involves minimal tissue dissection, and is gaining attention as a method of potentially improving filter duration in high-risk cases. Twenty-five New Zealand rabbits underwent filtration surgery in one eye, and the fellow eye remained as the unoperated control. Ten rabbits underwent ab externo diode laser sclerostomy surgery, ten underwent ab interno diode sclerostomy surgery, and five had posterior sclerostomy procedures. Filtration failure was defined as a less-than-4-mmHg intraocular pressure (IOP) difference between the operative and control eyes. The mean time to failure for the ab externo, ab interno, and conventional posterior sclerostomy techniques measured 17.4 +/- 11.5, 13.1 +/- 6.7, and 6.0 +/- 3.1 days, respectively. In a comparison of the laser-treated groups with the conventional procedure, the time to failure was significantly longer (P = 0.02) for the ab externo filter. The mean ab interno sclerostomy duration was longer than the posterior lip procedure, but this difference was not statistically significant (P = 0.15). The overall level of IOP reduction was similar in the three groups. These data suggest that diode laser sclerostomy is a feasible technique in rabbits, and the ab externo approach resulted in longer filter duration than the conventional posterior lip procedure in this model.

  18. Potentiation of luteolin cytotoxicity by flavonols fisetin and quercetin in human chronic lymphocytic leukemia cell lines.

    PubMed

    Sak, Katrin; Kasemaa, Kristi; Everaus, Hele

    2016-09-14

    Despite numerous studies chronic lymphocytic leukemia (CLL) still remains an incurable disease. Therefore, all new compounds and novel strategies which are able to eradicate CLL cells should be considered as valuable clues for a potential future remedy against this malignancy. In the present study, the cytotoxic profiles of natural flavonoids were described in two human CLL cell lines, HG-3 and EHEB, indicating the flavone luteolin as the most potent flavonoid with half-maximal inhibitory constants (IC50) of 37 μM and 26 μM, respectively. Luteolin significantly increased the apoptotic cell population in both cell lines by increasing the activities of caspases-3 and -9 and triggering the intrinsic apoptotic pathway. Two flavonols, fisetin and quercetin, were somewhat less efficient in suppressing cellular viability, whereas baicalein, chrysin, (+)-catechin and hesperetin exerted only a small or no response at doses as high as 100 μM. Both fisetin and quercetin were able to augment the cytotoxic activity of luteolin in both cell lines by reducing the IC50 values up to four fold. As a result of this, luteolin displayed cytotoxicity activity already at low micromolar concentrations that could potentially be physiologically achievable through oral ingestion. No other tested flavonoids were capable of sensitizing CLL cells to luteolin pointing to a specific binding of fisetin and quercetin to the cellular targets which interfere with the signaling pathways induced by luteolin. Although further molecular studies to unravel this potentiating mechanism are certainly needed, this phenomenon could contribute to future remedies for prevention and treatment of chronic lymphocytic leukemia.

  19. Ab initio calculation of the G peak intensity of graphene: Laser-energy and Fermi-energy dependence and importance of quantum interference effects

    NASA Astrophysics Data System (ADS)

    Reichardt, Sven; Wirtz, Ludger

    2017-05-01

    We present the results of a diagrammatic, fully ab initio calculation of the G peak intensity of graphene. The flexibility and generality of our approach enables us to go beyond the previous analytical calculations in the low-energy regime. We study the laser and Fermi energy dependence of the G peak intensity and analyze the contributions from resonant and nonresonant electronic transitions. In particular, we explicitly demonstrate the importance of quantum interference and nonresonant states for the G peak process. Our method of analysis and computational concept is completely general and can easily be applied to study other materials as well.

  20. Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy

    PubMed Central

    Perez Horta, Zulmarie; Goldberg, Jacob L; Sondel, Paul M

    2016-01-01

    Tumor-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the clinic, becoming an important approach for cancer immunotherapy. Due to its limited expression on normal tissue, the GD2 disialogangloside expressed on neuroblastoma cells is an excellent candidate for mAb therapy. In 2015, dinutuximab (an anti-GD2 mAb) was approved by the US FDA and is currently used in a combination immunotherapeutic regimen for the treatment of children with high-risk neuroblastoma. Here, we review the extensive preclinical and clinical development of anti-GD2 mAbs and the different mechanisms by which they mediate tumor cell killing. In addition, we discuss different mAb-based strategies that capitalize on the targeting ability of anti-GD2 mAbs to potentially deliver, as monotherapy, or in combination with other treatments, improved antitumor efficacy. PMID:27485082

  1. In vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells.

    PubMed

    Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria

    2011-01-01

    The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and a sediment solvent extract are exposed to the RTG-2 fish cell line. Both the alamar blue (AB) and neutral red (NR) assays are used to assess cytotoxicity after 24-h and 96-h exposure. Methodology for preparation of a sediment solvent extract suitable for biological testing and analytical determination is also described. With the RTG-2 cells, the AB and NR assays had comparable sensitivity for each individual OT compound exposure after 24 h, with TPT being the most toxic compound tested. The individual OT compound concentrations required to induce a 50% toxic effect on the cells (369 ng ml⁻¹ TBT, 1,905 ng ml⁻¹ DBT) did not equate to the concentrations of these contaminants present in the sediment extract that induced a 50% effect on the cells (294 ng ml⁻¹ TBT, 109 ng ml⁻¹ DBT). The solvent extract therefore exhibited a greater toxicity, and this suggests that the toxic effects observed were not due to OT compounds alone. The presence of other contaminants in the solvent extract is confirmed with chemical analysis, warranting further toxicity testing of contaminant mixtures and exposure to the cell line to further elucidate a complete toxicity evaluation. © 2010 SETAC.

  2. Cytotoxicity and genotoxicity property of hydroxyapatite-mullite eluates.

    PubMed

    Kalmodia, Sushma; Sharma, Vyom; Pandey, Alok K; Dhawan, Alok; Basu, Bikramjit

    2011-02-01

    Long-term biomedical applications of implant materials may cause osteolysis, aseptic losing and toxicity. Therefore, we investigated the cytotoxic and genotoxic potential of hydroxyapatite (HA) mullite eluates in L929 mouse fibroblast cells. The spark plasma sintered HA-20% mullite biocomposite (HA20M) were ground using mortar and pestle as well as ball milling. The cells were exposed for 6 h to varying concentrations (10, 25, 50, 75 and 100%) of the eluates of HA-20% mullite (87 nm), HA (171 nm) and mullite (154 nm). The scanning electron microscopy and MTT assay revealed the concentration dependent toxicity of H20M eluate at and above 50%. The analysis of the DNA damaging potential of HA, mullite and HA20M eluates using Comet assay demonstrated a significant DNA damage by HA20M which was largely related to the presence of mullite. The results collectively demonstrate the cytotoxic and genotoxic potential of HA20M eluate in L929 cells is dependent on particle size, concentration and composition.

  3. Synthesis of mono Mannich bases of 2-(4-hydroxybenzylidene)-2,3-dihydroinden-1-one and evaluation of their cytotoxicities.

    PubMed

    Tugrak, Mehtap; Yamali, Cem; Sakagami, Hiroshi; Gul, Halise Inci

    2016-10-01

    Chalcones and Mannich bases are a group of compounds known for their cytotoxicities. In this study restricted chalcone analogue, compound 2-(4-hydroxybenzylidene)-2,3-dihydroinden-1-one MT1, was used as a starting compound to synthesize new mono Mannich bases since Mannich bases may induce more cytotoxicity than chalcone analogue that they are derived from by producing additional alkylating center for cellular thiols. In this study, cyclic and acyclic amines were used to synthesize Mannich bases. All compounds were tested against Ca9-22 (gingival carcinoma), HSC-2, HSC-3 and HSC-4 (oral squamous cell carcinoma) as tumour cell lines and HGF (gingival fibroblasts), HPC (pulp cells) and HPLF (periodontal ligament fibroblasts) human normal oral cells as non tumour cell lines. Cytotoxicity, selectivity index (SI) values and potency selectivity expression (PSE) values expressed as a percentage were determined for the compounds. According to data obtained, the compound MT8 with the highest PSE value bearing N-methylpiperazine moiety seems to be a good candidate to develop new cytotoxic compounds and is suited for further investigation.

  4. Comparative cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human and sperm whale (Physeter macrocephalus) skin cells.

    PubMed

    Li Chen, Tânia; LaCerte, Carolyne; Wise, Sandra S; Holmes, Amie; Martino, Julieta; Wise, John Pierce; Thompson, W Douglas; Wise, John Pierce

    2012-01-01

    Chromium (Cr) is a global marine pollutant, present in marine mammal tissues. Hexavalent chromium [Cr(VI)] is a known human carcinogen. In this study, we compare the cytotoxic and clastogenic effects of Cr(VI) in human (Homo sapiens) and sperm whale (Physeter macrocephalus) skin fibroblasts. Our data show that increasing concentrations of both particulate and soluble Cr(VI) induce increasing amounts of cytotoxicity and clastogenicity in human and sperm whale skin cells. Furthermore, the data show that sperm whale cells are resistant to these effects exhibiting less cytotoxicity and genotoxicity than the human cells. Differences in Cr uptake accounted for some but not all of the differences in particulate and soluble Cr(VI) genotoxicity, although it did explain the differences in particulate Cr(VI) cytotoxicity. Altogether, the data indicate that Cr(VI) is a genotoxic threat to whales, but also suggest that whales have evolved cellular mechanisms to protect them against the genotoxicity of environmental agents such as Cr(VI). Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Alpha-ketoglutarate and N-acetyl cysteine protect PC12 cells from cyanide-induced cytotoxicity and altered energy metabolism.

    PubMed

    Satpute, R M; Hariharakrishnan, J; Bhattacharya, R

    2008-01-01

    Cyanide is a rapidly acting neurotoxin that inhibits cellular respiration and energy metabolism leading to histotoxic hypoxia. This results in the dissipation of mitochondrial membrane potential (MMP) accompanied by decreased cellular ATP content which in turn is responsible for increased levels of intracellular calcium ions ([Ca(2+)](i)) and total lactic acid content of the cells. Rat pheochromocytoma (PC12) cells possess much of the biochemical machinery associated with synaptic neurons. In the present study, we evaluated the cytoprotective effects of alpha-ketoglutarate (A-KG) and N-acetylcysteine (NAC) against cyanide-induced cytotoxicity and altered energy metabolism in PC12 cells. Cyanide-antagonism by A-KG is attributed to cyanohydrin formation whereas NAC is known for its antioxidant properties. Data on leakage of intracellular lactate dehydrogenase and mitochondrial function (MTT assay) revealed that simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM) significantly prevented the cytotoxicity of cyanide. Also, cellular ATP content was found to improve, followed by restoration of MMP, intracellular calcium [Ca(2+)](i) and lactic acid levels. Treatment with A-KG and NAC also attenuated the levels of peroxides generated by cyanide. The study indicates that combined administration of A-KG and NAC protected the cyanide-challenged PC12 cells by resolving the altered energy metabolism. The results have implications in the development of new treatment regimen for cyanide poisoning.

  6. Suppressing the cytotoxicity of CuO nanoparticles by uptake of curcumin/BSA particles

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Ying; Luo, Peihua; Li, Guanqun; Zheng, Botuo; Chen, Wei; Mao, Zhengwei; Gao, Changyou

    2016-05-01

    The adverse effects of metal-based nanoparticles on human beings and the environment have received extensive attention recently. It is urgently required to develop a simple and effective method to suppress the toxicity of metal-based nanomaterials. In this study, a hydrophobic antioxidant and a chelation agent curcumin (CUR) were encapsulated into bovine serum albumin (BSA) particles by a simple co-precipitation method, and followed by glutaraldehyde cross-linking. The CUR/BSA particles had an average size of 300 nm in diameter with a negatively charged surface and sustained curcumin release properties. The cellular uptake and cytotoxicity of CUR/BSA particles were followed on A549 cells, HepG2 cells and RAW264.7 cells. The CUR/BSA particles had higher intracellular accumulation and lower cytotoxicity compared with the free curcumin at the same drug concentration. The CUR/BSA particles could suppress the cytotoxicity generated by CuO nanoparticles as a result of decrease of both the intracellular reactive oxygen species (ROS) level and Cu2+ concentration, while the free curcumin did not show any obvious detoxicating effect. The detoxicating effects of CUR/BSA particles were further studied in an intratracheal instillation model in vivo, demonstrating significant reduction of toxicity and inflammatory response in rat lungs induced by CuO nanoparticles. The concept-proving study demonstrates the potential of the CUR/BSA particles in suppressing cytotoxicity of metal-based nanomaterials, which is a paramount requirement for the safe application of nanotechnology.

  7. Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts

    PubMed Central

    Mattana, C. M.; Cangiano, M. A.; Alcaráz, L. E.; Sosa, A.; Escobar, F.; Sabini, C.; Sabini, L.; Laciar, A. L.

    2014-01-01

    Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE) and ethanolic extract (EE) of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 μg/mL of HAE and EE showed that 500 μg/mL and 100 μg/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 μg/mL for EE and 1020 μg/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings. PMID:25530999

  8. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    PubMed

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

  9. Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy.

    PubMed

    Yang, Guozi; Kong, Qingyu; Wang, Guanjun; Jin, Haofan; Zhou, Lei; Yu, Dehai; Niu, Chao; Han, Wei; Li, Wei; Cui, Jiuwei

    2014-12-01

    Recent evidence indicates that limited availability and cytotoxicity have restricted the development of natural killer (NK) cells in adoptive cellular immunotherapy (ACI). While it has been reported that low-dose ionizing radiation (LDIR) could enhance the immune response in animal studies, the influence of LDIR at the cellular level has been less well defined. In this study, the authors aim to investigate the direct effects of LDIR on NK cells and the potential mechanism, and explore the application of activation and expansion of NK cells by LDIR in ACI. The authors found that expansion and cytotoxicity of NK cells were markedly augmented by LDIR. The levels of IFN-γ and TNF-α in the supernatants of cultured NK cells were significantly increased after LDIR. Additionally, the effect of the P38 inhibitor (SB203580) significantly decreased the expanded NK cell cytotoxicity, cytokine levels, and expression levels of FasL and perforin. These findings indicate that LDIR induces a direct expansion and activation of NK cells through possibly the P38-MAPK pathway, which provides a potential mechanism for stimulation of NK cells by LDIR and a novel but simplified approach for ACI.

  10. MSAT and cellular hybrid networking

    NASA Astrophysics Data System (ADS)

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  11. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth

    PubMed Central

    Knoop, Henning; Bockmayr, Alexander; Steuer, Ralf

    2017-01-01

    Cyanobacteria are an integral part of Earth’s biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2. Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions. PMID:28720699

  12. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy

    PubMed Central

    Han, Jae Woong; Gurunathan, Sangiliyandi; Choi, Yun-Jung; Kim, Jin-Hoi

    2017-01-01

    Background Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. Materials and methods AgNPs were synthesized and characterized using various analytical techniques such as UV–visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Results The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm). High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. Conclusion The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner. Therefore, AgNPs can be used for differentiation therapy, along with chemotherapeutic agents, for improving cancer treatment by targeting specific chemotherapy-resistant cells within a tumor. Furthermore, understanding the

  13. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy.

    PubMed

    Han, Jae Woong; Gurunathan, Sangiliyandi; Choi, Yun-Jung; Kim, Jin-Hoi

    2017-01-01

    Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. AgNPs were synthesized and characterized using various analytical techniques such as UV-visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm). High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner. Therefore, AgNPs can be used for differentiation therapy, along with chemotherapeutic agents, for improving cancer treatment by targeting specific chemotherapy-resistant cells within a tumor. Furthermore, understanding the molecular mechanisms of apoptosis and differentiation in stem

  14. Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA-PEG micellar nano systems with various PLA:PEG ratios.

    PubMed

    Phan, Quoc Thong; Le, Mai Huong; Le, Thi Thu Huong; Tran, Thi Hong Ha; Xuan, Phuc Nguyen; Ha, Phuong Thu

    2016-06-30

    Targeting delivery system use natural drugs for tumor cells is an appealing platform help to reduce the side effects and enhance the therapeutic effects of the drug. In this study, we synthesized curcumin (Cur) loaded (D, L Poly lactic - Poly ethylenglycol) micelle (Cur/PLA-PEG) with the ratio of PLA/PEG of 3:1 2:1 1:1 1:2 and 1:3 (w/w) and another micelle modified by folate (Cur/PLA-PEG-Fol) for targeting cancer therapy. The PLA-PEG copolymer was synthesized by ring opening polymerization method. After loading onto the micelle, solubility of Cur increased from 0.38 to 0.73mgml(-1). The average size of prepared Cur/PLA-PEG micelles was from 60 to 69nm (corresponding to the ratio difference of PLA/PEG) and the drug encapsulating efficiency was from 48.8 to 91.3%. Compared with the Cur/PLA-PEG micelles, the size of Cur/PLA-PEG-Fol micelles were from 80 to 86nm and showed better in vitro cellular uptake and cytotoxicity towards HepG2 cells. The cytotoxicity of the NPs however depends much on the PEG component. The results demonstrated that Folate-modified micelles could serve as a potential nano carrier to improve solubility, anti-cancer activity of Cur and targeting ability of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosas, Maria F.; Vieira, Yuri A.; Postigo, Raul

    2008-10-10

    The foot-and-mouth disease virus (FMDV) 3A protein is involved in virulence and host range. A distinguishing feature of FMDV 3B among picornaviruses is that three non-identical copies are encoded in the viral RNA and required for optimal replication in cell culture. Here, we have studied the involvement of the 3AB region on viral infection using constitutive and transient expression systems. BHK-21 stably transformed clones expressed low levels of FMDV 3A or 3A(B) proteins in the cell cytoplasm. Transformed cells stably expressing these proteins did not exhibit inner cellular rearrangements detectable by electron microscope analysis. Upon FMDV infection, clones expressing eithermore » 3A alone or 3A(B) proteins showed a significant increase in the percentage of infected cells, the number of plaque forming units and the virus yield. The 3A-enhancing effect was specific for FMDV as no increase in viral multiplication was observed in transformed clones infected with another picornavirus, encephalomyocarditis virus, or the negative-strand RNA virus vesicular stomatitis virus. A potential role of 3A protein in viral RNA translation was discarded by the lack of effect on FMDV IRES-dependent translation. Increased viral susceptibility was not caused by a released factor; neither the supernatant of transformed clones nor the addition of purified 3A protein to the infection medium was responsible for this effect. Unlike stable expression, high levels of 3A or 3A(B) protein transient expression led to unspecific inhibition of viral infection. Therefore, the effect observed on viral yield, which inversely correlated with the intracellular levels of 3A protein, suggests a transacting role operating on the FMDV multiplication cycle.« less

  16. Ubiquitylation-dependent regulation of NEIL1 by Mule and TRIM26 is required for the cellular DNA damage response.

    PubMed

    Edmonds, Matthew J; Carter, Rachel J; Nickson, Catherine M; Williams, Sarah C; Parsons, Jason L

    2017-01-25

    Endonuclease VIII-like protein 1 (NEIL1) is a DNA glycosylase involved in initiating the base excision repair pathway, the major cellular mechanism for repairing DNA base damage. Here, we have purified the major E3 ubiquitin ligases from human cells responsible for regulation of NEIL1 by ubiquitylation. Interestingly, we have identified two enzymes that catalyse NEIL1 polyubiquitylation, Mcl-1 ubiquitin ligase E3 (Mule) and tripartite motif 26 (TRIM26). We demonstrate that these enzymes are capable of polyubiquitylating NEIL1 in vitro, and that both catalyse ubiquitylation of NEIL1 within the same C-terminal lysine residues. An siRNA-mediated knockdown of Mule or TRIM26 leads to stabilisation of NEIL1, demonstrating that these enzymes are important in regulating cellular NEIL1 steady state protein levels. Similarly, a mutant NEIL1 protein lacking residues for ubiquitylation is more stable than the wild type protein in vivo We also demonstrate that cellular NEIL1 protein is induced in response to ionising radiation (IR), although this occurs specifically in a Mule-dependent manner. Finally we show that stabilisation of NEIL1, particularly following TRIM26 siRNA, contributes to cellular resistance to IR. This highlights the importance of Mule and TRIM26 in maintaining steady state levels of NEIL1, but also those required for the cellular DNA damage response. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Pseudosymmetric features of non-centrosymmetric AB type crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazhulina, A.P., E-mail: asyagazhulina@yandex.ru; Marychev, M.O.

    2016-07-15

    This work is supplement to our previous investigation (Gazhulina and Marychev, 2015) [1]. We have considered pseudosymmetric features with respect to the operation of inversion (pseudoinversion) for 340 non-centrosymmetric AB type crystals. Analysis of the features of particular structure types allowed us to determine the positions of pseudoinversion centers, subdivide them into separate types, and classify the entire set of crystals studied with respect to the types of pseudoinversion centers and peculiarities of the behavior of the degree of pseudoinversion depending on the ratio of atomic numbers of A and B components. For each group of crystals, average values andmore » lower boundaries of the maximum pseudoinversion are determined and distribution with respect to the degree of pseudoinversion is constructed. - Graphical abstract: A group of 340 non-centrosymmetric AB type crystals have been considered for their pseudosymmetry features with respect to the operation of inversion. Positions of pseudoinversion centers, subdivision of them into separate types, classification of the entire set of crystals studied with respect to the types of pseudoinversion centers and peculiarities of the behavior of the degree of pseudoinversion are established and discussed. Display Omitted - Highlights: • We consider pseudoinversion of 340 non-centrosymmetric AB type crystals. • AB type crystals are divided into three groups with respect to pseudoinversion. • Positions and types of pseudoinversion centers are determined. • Lower boundaries of the maximum pseudoinversion are determined.« less

  18. 3-D DNA methylation phenotypes correlate with cytotoxicity levels in prostate and liver cancer cell models

    PubMed Central

    2013-01-01

    Background The spatial organization of the genome is being evaluated as a novel indicator of toxicity in conjunction with drug-induced global DNA hypomethylation and concurrent chromatin reorganization. 3D quantitative DNA methylation imaging (3D-qDMI) was applied as a cell-by-cell high-throughput approach to investigate this matter by assessing genome topology through represented immunofluorescent nuclear distribution patterns of 5-methylcytosine (MeC) and global DNA (4,6-diamidino-2-phenylindole = DAPI) in labeled nuclei. Methods Differential progression of global DNA hypomethylation was studied by comparatively dosing zebularine (ZEB) and 5-azacytidine (AZA). Treated and untreated (control) human prostate and liver cancer cells were subjected to confocal scanning microscopy and dedicated 3D image analysis for the following features: differential nuclear MeC/DAPI load and codistribution patterns, cell similarity based on these patterns, and corresponding differences in the topology of low-intensity MeC (LIM) and low in intensity DAPI (LID) sites. Results Both agents generated a high fraction of similar MeC phenotypes across applied concentrations. ZEB exerted similar effects at 10–100-fold higher drug concentrations than its AZA analogue: concentration-dependent progression of global cytosine demethylation, validated by measuring differential MeC levels in repeat sequences using MethyLight, and the concurrent increase in nuclear LIM densities correlated with cellular growth reduction and cytotoxicity. Conclusions 3D-qDMI demonstrated the capability of quantitating dose-dependent drug-induced spatial progression of DNA demethylation in cell nuclei, independent from interphase cell-cycle stages and in conjunction with cytotoxicity. The results support the notion of DNA methylation topology being considered as a potential indicator of causal impacts on chromatin distribution with a conceivable application in epigenetic drug toxicology. PMID:23394161

  19. Chirality-dependent cellular uptake of chiral nanocarriers and intracellular delivery of different amounts of guest molecules

    NASA Astrophysics Data System (ADS)

    Kehr, Nermin Seda; Jose, Joachim

    2017-12-01

    We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.

  20. Naphthalene metabolism in relation to target tissue anatomy, physiology, cytotoxicity and tumorigenic mechanism of action

    PubMed Central

    Bogen, Kenneth T.; Benson, Janet M.; Yost, Garold S.; Morris, John B.; Dahl, Alan R.; Clewell, Harvey J.; Krishnan, Kannan; Omiecinski, Curtis J.

    2014-01-01

    This report provides a summary of deliberations conducted under the charge for members of Module C Panel participating in the Naphthalene State-of-the-Science Symposium (NS3), Monterey, CA, October 9–12, 2006. The panel was charged with reviewing the current state of knowledge and uncertainty about naphthalene metabolism in relation to anatomy, physiology and cytotoxicity in tissues observed to have elevated tumor incidence in these rodent bioassays. Major conclusions reached concerning scientific claims of high confidence were that: (1) rat nasal tumor occurrence was greatly enhanced, if not enabled, by adjacent, histologically related focal cellular proliferation; (2) elevated incidence of mouse lung tumors occurred at a concentration (30 ppm) cytotoxic to the same lung region at which tumors occurred, but not at a lower and less cytotoxic concentration (tumorigenesis NOAEL = 10 ppm); (3) naphthalene cytotoxicity requires metabolic activation (unmetabolized naphthalene is not a proximate cause of observed toxicity or tumors); (4) there are clear regional and species differences in naphthalene bioactivation; and (5) target tissue anatomy and physiology is sufficiently well understood for rodents, non-human primates and humans to parameterize species-specific physiologically based pharmacokinetic (PBPK) models for nasal and lung effects. Critical areas of uncertainty requiring resolution to enable improved human cancer risk assessment were considered to be that: (1) cytotoxic naphthalene metabolites, their modes of cytotoxic action, and detailed low-dose dose–response need to be clarified, including in primate and human tissues, and neonatal tissues; (2) mouse, rat, and monkey inhalation studies are needed to better define in vivo naphthalene uptake and metabolism in the upper respiratory tract; (3) in vivo validation studies are needed for a PBPK model for monkeys exposed to naphthalene by inhalation, coupled to cytotoxicity studies referred to above; and (4