Science.gov

Sample records for ab-initio density functional

  1. Ab initio derivation of model energy density functionals

    NASA Astrophysics Data System (ADS)

    Dobaczewski, Jacek

    2016-08-01

    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.

  2. Ab initio and density functional studies of hydrocarbon adsorption in zeolites.

    SciTech Connect

    Curtiss, L. A.

    1998-08-21

    The adsorption energies of methane and ethane in zeolites are investigated with ab initio molecular orbital theory and density functional theory. In this work we have used zeolite cluster models containing two, three, and five tetrahedral (Si, Al) atoms and have found equilibrium structures for complexes of methane, ethane, and propane with an acid site. If a large enough cluster is used and correlation effects are included via perturbation theory, the calculated adsorption energy for ethane is about 5 kcal/mol compared with the experimental value of 7.5 kcal/mol. The B3LYP density functional method gives a much smaller binding of {approximately}1 kcal/mol for ethane. The reason for the failure of density fictional theory is unclear.

  3. Electron transfer and localization in endohedral metallofullerenes: Ab initio density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Shenyuan; Yoon, Mina; Hicke, Christian; Zhang, Zhenyu; Wang, Enge

    2008-09-01

    Endohedral metallofullerenes constitute an appealing class of nanoscale building blocks for fabrication of a wide range of materials. One open question of fundamental importance is the precise nature of charge redistribution within the carbon cages (Cn) upon metal encapsulation. Using ab initio density functional theory, we systematically study the electronic structure of metallofullerenes, focusing on the spatial charge redistribution. For large metallofullerenes (n>32) , the valence electrons of the metal atoms are all transferred to the fullerene states. Surprisingly, the transferred charge is found to be highly localized inside the cage near the metal cations rather than uniformly distributed on the surfaces of the carbon cage as traditionally believed. This counterintuitive charge localization picture is attributed to the strong metal-cage interactions within the systems. These findings may prove to be instrumental in the design of fullerene-based functional nanomaterials.

  4. Ab-initio simulations of materials using VASP: Density-functional theory and beyond.

    PubMed

    Hafner, Jürgen

    2008-10-01

    During the past decade, computer simulations based on a quantum-mechanical description of the interactions between electrons and between electrons and atomic nuclei have developed an increasingly important impact on solid-state physics and chemistry and on materials science-promoting not only a deeper understanding, but also the possibility to contribute significantly to materials design for future technologies. This development is based on two important columns: (i) The improved description of electronic many-body effects within density-functional theory (DFT) and the upcoming post-DFT methods. (ii) The implementation of the new functionals and many-body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures. In this review, I discuss the implementation of various DFT functionals [local-density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functional mixing DFT, and exact (Hartree-Fock) exchange] and post-DFT approaches [DFT + U for strong electronic correlations in narrow bands, many-body perturbation theory (GW) for quasiparticle spectra, dynamical correlation effects via the adiabatic-connection fluctuation-dissipation theorem (AC-FDT)] in the Vienna ab initio simulation package VASP. VASP is a plane-wave all-electron code using the projector-augmented wave method to describe the electron-core interaction. The code uses fast iterative techniques for the diagonalization of the DFT Hamiltonian and allows to perform total-energy calculations and structural optimizations for systems with thousands of atoms and ab initio molecular dynamics simulations for ensembles with a few hundred atoms extending over several tens of ps. Applications in many different areas (structure and phase stability, mechanical and dynamical properties, liquids, glasses and quasicrystals, magnetism and magnetic nanostructures, semiconductors and insulators, surfaces

  5. Ab initio downfolding for electron-phonon-coupled systems: Constrained density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Nomura, Yusuke; Arita, Ryotaro

    2015-12-01

    We formulate an ab initio downfolding scheme for electron-phonon-coupled systems. In this scheme, we calculate partially renormalized phonon frequencies and electron-phonon coupling, which include the screening effects of high-energy electrons, to construct a realistic Hamiltonian consisting of low-energy electron and phonon degrees of freedom. We show that our scheme can be implemented by slightly modifying the density functional-perturbation theory (DFPT), which is one of the standard methods for calculating phonon properties from first principles. Our scheme, which we call the constrained DFPT, can be applied to various phonon-related problems, such as superconductivity, electron and thermal transport, thermoelectricity, piezoelectricity, dielectricity, and multiferroicity. We believe that the constrained DFPT provides a firm basis for the understanding of the role of phonons in strongly correlated materials. Here, we apply the scheme to fullerene superconductors and discuss how the realistic low-energy Hamiltonian is constructed.

  6. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  7. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost. PMID:26851913

  8. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    NASA Astrophysics Data System (ADS)

    Borges, P. D.; Scolfaro, L.

    2014-12-01

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  9. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    SciTech Connect

    Borges, P. D. E-mail: lscolfaro@txstate.edu; Scolfaro, L. E-mail: lscolfaro@txstate.edu

    2014-12-14

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  10. Ab initio joint density-functional theory of solvated electrodes, with model and explicit solvation

    NASA Astrophysics Data System (ADS)

    Arias, Tomas

    2015-03-01

    First-principles guided design of improved electrochemical systems has the potential for great societal impact by making non-fossil-fuel systems economically viable. Potential applications include improvements in fuel-cells, solar-fuel systems (``artificial photosynthesis''), supercapacitors and batteries. Economical fuel-cell systems would enable zero-carbon footprint transportation, solar-fuel systems would directly convert sunlight and water into hydrogen fuel for such fuel-cell vehicles, supercapacitors would enable nearly full recovery of energy lost during vehicle braking thus extending electric vehicle range and acceptance, and economical high-capacity batteries would be central to mitigating the indeterminacy of renewable resources such as wind and solar. Central to the operation of all of the above electrochemical systems is the electrode-electrolyte interface, whose underlying physics is quite rich, yet remains remarkably poorly understood. The essential underlying technical challenge to the first principles studies which could explore this physics is the need to properly represent simultaneously both the interaction between electron-transfer events at the electrode, which demand a quantum mechanical description, and multiscale phenomena in the liquid environment such as the electrochemical double layer (ECDL) and its associated shielding, which demand a statistical description. A direct ab initio approach to this challenge would, in principle, require statistical sampling and thousands of repetitions of already computationally demanding quantum mechanical calculations. This talk will begin with a brief review of a recent advance, joint density-functional theory (JDFT), which allows for a fully rigorous and, in principle, exact representation of the thermodynamic equilibrium between a system described at the quantum-mechanical level and a liquid environment, but without the need for costly sampling. We then shall demonstrate how this approach applies in

  11. Defects and defect healing in amorphous Si3N4-xHy: An ab initio density functional theory study

    NASA Astrophysics Data System (ADS)

    Hintzsche, L. E.; Fang, C. M.; Marsman, M.; Jordan, G.; Lamers, M. W. P. E.; Weeber, A. W.; Kresse, G.

    2013-10-01

    We present an ab initio density functional theory study of the dominant defects in hydrogenated amorphous silicon nitrides covering different stoichiometries, the influence of hydrogen, and the influence of the annealing history. Whereas nitrogen (N) lone pair states dominate the valence band edge in stoichiometric a-Si3N4, we find that K defects, threefold coordinated silicon (Si) atoms, and Si-Si bond-related states dominate electronic defect contributions in the gap for N-deficient a-Si3N4-x. Hydrogen saturates the dangling Si bonds, significantly reducing the number of electronic defects related to undercoordinated Si atoms.

  12. Joint Density Functional Theory for the electrode/electrolyte interface: Benchmarking liquid structure with experiment and ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Letchworth-Weaver, Kendra; Umbright, Christine; Chan, Maria; Fenter, Paul; Arias, T. A.

    Understanding the physics of the interface between a charged electrode surface and a fluid electrolyte would inform design of electrochemical energy storage and conversion devices. However, such studies require a simultaneously accurate yet inherently multi-scale theory. Joint density-functional theory (JDFT) bridges the relevant length-scales by joining a fully ab initio description of the electrode with a low computational cost, yet atomically detailed classical DFT description of the liquid electrolyte structure. Leveraging JDFT within our framework to treat charged systems in periodic boundary conditions, we can predict the voltage-dependent structure and energetics of solvated ions at the interface between graphitic and single-crystalline metallic electrodes and technologically relevant liquid electrolytes. First, we elucidate the physical origin of the experimentally measured voltage-dependent differential capacitance of an Ag(111) electrode in aqueous NaF electrolyte, examining the crucial role of ion de-solvation and physisorption onto the electrode surface. We go on to compare the JDFT-predicted interfacial liquid structure next to a graphitic electrode with results obtained from X-ray reflectivity measurements and ab initio molecular dynamics simulations.

  13. Linear optical properties and their bond length dependence of yttrium bromide from ab initio and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Alipour, Mojtaba; Mohajeri, Afshan

    2011-08-01

    We have employed conventional ab initio and density functional theory methods to study the electronic properties such as the mean static dipole polarizability, α¯, anisotropy of the polarizability, Δ α, and dipole moment, μ, of yttrium bromide. The bond length dependence of properties is determined at different levels of theory and appropriate expansions around experimental internuclear distance have been presented. Moreover, the first and second geometrical derivatives for each property are quantified and their level of theory dependence has been analyzed. To study the effect of molecular rotation and vibration on the electronic properties, the rovibrational corrections have also been carried out. It is found that these corrections are less pronounced for considered properties of YBr. In all calculations, the electron correlation effects have been considered and discussed. The obtained results show that the electron correlation is more significant in the calculation of the mean and the anisotropy of dipole polarizability.

  14. Catalytic hydrogenation of cresol: first-principles density-functional calculations and ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Liu, Zhimin; Jentoft, Friederike; Wang, Sanwu

    2015-03-01

    Biomass is an important renewable energy resource. Cresol is one of components in crude bio-oil generated from biomass, and hydrogenation of cresol is often involved in the upgrading process. We studied catalytic hydrogenation of cresol on the Pt(111) surface with and without the presence of water. In particular, we used first-principles density-functional theory and ab initio molecular dynamics simulations to obtain adsorption geometries, binding energies, reaction energies, activation energies, and reaction pathways for hydrogenation of cresol with possible products of 2-methylcyclohexanone and 2-methylcyclohexanol. Our theoretical results are used to explain the available experimental measurements, which show a strong influence of water. Supported by DOE (DE-SC0004600). This research used the supercomputer resources at NERSC, of XSEDE, at TACC and at the Tandy Supercomputing Center.

  15. Monoligand Zn(II) Complexes:  Ab Initio Benchmark Calculations and Comparison with Density Functional Theory Methodologies.

    PubMed

    Rayón, Víctor M; Valdés, Haydee; Díaz, Natalia; Suárez, Dimas

    2008-02-01

    A systematic theoretical study on several models of Zn(II) complexes has been carried out employing both ab initio correlated wave function and density functional methods. The performance of five different functionals namely PW91, PBE, B3LYP, MPWLYP1M, and TPSS in the prediction of metal-ligand bond distances, binding energies, and proton affinities has been assessed comparing the results to those obtained with the MP2 and CCSD(T) wave function methodologies. Several basis sets ranging from double-ζ up to quintuple-ζ quality have been used, including the recently developed all-electron correlation consistent basis sets for zinc. It is shown that all the tested functionals overestimate both the metal-ligand bond distances and the binding energies, being that the B3LYP and TPSS functionals are the ones that perform the best. An analysis of the metal-ligand interaction energy shows that induction and charge-transfer effects play a prominent role in the bonding of these systems, even for those complexes with the less polarizable ligands. This finding highlights the importance of a correct description of the polarization of the monomers' charge densities by any theoretical method which aims to be applied to the study of Zn(II) complexes.

  16. Thermal decomposition of 1,3,3-trinitroazetidine (TNAZ): A density functional theory and ab initio study

    SciTech Connect

    Veals, Jeffrey D.; Thompson, Donald L.

    2014-04-21

    Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO{sub 2} or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO{sub 2} elimination by N–N and C–N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO{sub 2} group elimination or by a concerted H-atom and nitroalkyl NO{sub 2} group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO{sub 2} elimination by N–N bond fission, HONO elimination involving the nitramine NO{sub 2} group, HONO elimination involving a nitroalkyl NO{sub 2} group, and finally NO{sub 2} elimination by C–N bond fission.

  17. Ab initio phonon dispersion in crystalline naphthalene using van der Waals density functionals

    NASA Astrophysics Data System (ADS)

    Brown-Altvater, Florian; Rangel, Tonatiuh; Neaton, Jeffrey B.

    2016-05-01

    Acene molecular crystals are of current interest in organic optoelectronics, both as active materials and for exploring and understanding new phenomena. Phonon scattering can be an important facilitator and dissipation mechanism in charge separation and carrier transport processes. Here, we carry out density functional theory (DFT) calculations of the structure and the full phonon dispersion of crystalline naphthalene, a well-characterized acene crystal for which detailed neutron-diffraction measurements, as well as infrared and Raman spectroscopy, are available. We evaluate the performance, relative to experiments, of DFT within the local density approximation (LDA); the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE); and a recent van der Waals-corrected nonlocal correlation (vdW-DF-cx) functional. We find that the vdW-DF-cx functional accurately predicts lattice parameters of naphthalene within 1%. Intermolecular and intramolecular phonon frequencies across the Brillouin zone are reproduced within 7.8% and 1%, respectively. As expected, LDA (PBE) underestimates (overestimates) the lattice parameters and overestimates (underestimates) phonon frequencies, demonstrating their shortcomings for predictive calculations of weakly bound materials. If the unit cell is fixed to the experimental lattice parameters, PBE is shown to lead to improved phonon frequencies. Our study provides a detailed understanding of the phonon spectrum of naphthalene, and highlights the importance of including van der Waals dispersion interactions in predictive calculations of lattice parameters and phonon frequencies of molecular crystals and related organic materials.

  18. Using force-matching to reveal essential differences between density functionals in ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Swanson, Jessica M. J.

    2011-05-01

    The exchange-correlation (XC) functional and value of the electronic fictitious mass μ can be two major sources of systematic errors in ab initio Car-Parrinello Molecular Dynamics (CPMD) simulations, and have a significant impact on the structural and dynamic properties of condensed-phase systems. In this work, an attempt is made to identify the origin of differences in liquid water properties generated from CPMD simulations run with the BLYP and HCTH/120 XC functionals and two different values of μ (representative of "small" and "large" limits) by analyzing the effective pairwise atom-atom interactions. The force-matching (FM) algorithm is used to map CPMD interactions into non-polarizable, empirical potentials defined by bonded interactions, pairwise short-ranged interactions in numerical form, and Coulombic interactions via atomic partial charges. The effective interaction models are derived for the BLYP XC functional with μ = 340 a.u. and μ = 1100 a.u. (BLYP-340 and BLYP-1100 simulations) and the HCTH/120 XC functional with μ = 340 a.u. (HCTH-340 simulation). The BLYP-340 simulation results in overstructured water with slow dynamics. In contrast, the BLYP-1100 and HCTH-340 simulations both produce radial distribution functions (indicative of structure) that are in reasonably good agreement with experiment. It is shown that the main difference between the BLYP-340 and HCTH-340 effective potentials arises in the short-ranged nonbonded interactions (in hydrogen bonding regions), while the difference between the BLYP-340 and BLYP-1100 interactions is mainly in the long-ranged electrostatic components. Collectively, these results demonstrate how the FM method can be used to further characterize various simulation ensembles (e.g., density-functional theory via CPMD). An analytical representation of each effective interaction water model, which is easy to implement, is presented.

  19. Ab initio quasi-particle approximation bandgaps of silicon nanowires calculated at density functional theory/local density approximation computational effort

    SciTech Connect

    Ribeiro, M.

    2015-06-21

    Ab initio calculations of hydrogen-passivated Si nanowires were performed using density functional theory within LDA-1/2, to account for the excited states properties. A range of diameters was calculated to draw conclusions about the ability of the method to correctly describe the main trends of bandgap, quantum confinement, and self-energy corrections versus the diameter of the nanowire. Bandgaps are predicted with excellent accuracy if compared with other theoretical results like GW, and with the experiment as well, but with a low computational cost.

  20. Ab initio benchmark calculations on Ca(II) complexes and assessment of density functional theory methodologies.

    PubMed

    Suárez, Dimas; Rayón, Víctor M; Díaz, Natalia; Valdés, Haydée

    2011-10-20

    A set of benchmark results for the geometries, binding energies, and protonation affinities of 24 complexes of small organic ligands with Ca(II) is provided. The chosen level of theory is CCSD(T)/CBS obtained by means of a composite procedure. The performance of four density functionals, namely, PW91, PBE, B3LYP, and TPSS and several Pople-type basis sets, namely, 6-31G(d), 6-31+G(d), 6-31+G(2d,p) and 6-311+G(d) have been assessed. Additionally, the nature of the metal ligand bonding has been analyzed by means of the Symmetry Adapted Perturbation Theory (SAPT). We have found that the B3LYP hybrid functional, in conjunction with either the polarized double-ζ 6-31+G(2d,p) or the triple-ζ 6-311+G(d) basis sets, yields the closest results compared to the benchmark data. The SAPT analysis stresses the importance of induction effects in the binding of these complexes and suggests that consideration of classical electrostatic contributions alone may not be reliable enough for the prediction of relative binding energies for Ca(II) complexes.

  1. Insights on co-catalyst-promoted enamine formation between dimethylamine and propanal through ab initio and density functional theory study.

    PubMed

    Patil, Mahendra P; Sunoj, Raghavan B

    2007-10-26

    The mechanistic details on enamine formation between dimethylamine and propanal are unraveled using the ab initio and density functional theory methods. The addition of secondary amine to the electrophile and simultaneous proton transfer results in a carbinolamine intermediate, which subsequently undergoes dehydration to form enamine. The direct addition of amine as well as the dehydration of the resulting carbinolamine intermediate is predicted to possess fairly high activation barrier implying that a unimolecular process is unlikely to be responsible for enamine formation. Different models are therefore proposed which could explain the relative ease of enamine formation under neat condition as well as under the influence of methanol as the co-catalyst. The explicit inclusion of either the reagent or the co-catalyst is considered in the transition states as stabilizing agents. The participation of the reagent or the co-catalyst as a monofunctional ancillary species is found to stabilize the transition states relative to the unassisted or the direct addition/dehydration pathways. The reduction in enthalpy of activation is found to be much more dramatic when two co-catalysts participate in an active bifunctional mode in the rate-determining dehydration step. The transition structures exhibited characteristic features of a relay proton transfer mechanism. The free energy of activation associated with the two methanol-assisted pathway is found to be 16.7 kcal/mol lower than that of the unassisted pathway. The results are found to be in concurrence with the available reports on the rate acceleration by co-catalysts in the Michael reaction between enamine and methyl vinyl ketone under neat conditions.

  2. Structural and electronic properties of aqueous NaCl solutions from ab initio molecular dynamics simulations with hybrid density functionals

    NASA Astrophysics Data System (ADS)

    Gaiduk, Alex P.; Zhang, Cui; Gygi, François; Galli, Giulia

    2014-06-01

    We present a study of a dilute solution (1 M) of NaCl in water, carried out using ab initio molecular dynamics with semilocal and hybrid functionals. We showed that the structural and electronic properties of the solute and the solvent are the same as those obtained in the infinite dilution limit, i.e. for aqueous ions in the presence of a uniform compensating background. Compared to semilocal functionals, simulations with hybrid functionals yield a less structured solution with a smaller number of hydrogen bonds and a larger coordination number for the Cl- anion. In addition, hybrid functionals predict qualitatively correct positions of the energy levels of the ions with respect to the valence band of water.

  3. Ensemble v-representable ab initio density-functional calculation of energy and spin in atoms: A test of exchange-correlation approximations

    SciTech Connect

    Kraisler, Eli; Makov, Guy; Kelson, Itzhak

    2010-10-15

    The total energies and the spin states for atoms and their first ions with Z=1-86 are calculated within the the local spin-density approximation (LSDA) and the generalized-gradient approximation (GGA) to the exchange-correlation (xc) energy in density-functional theory. Atoms and ions for which the ground-state density is not pure-state v-representable are treated as ensemble v-representable with fractional occupations of the Kohn-Sham system. A recently developed algorithm which searches over ensemble v-representable densities [E. Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations. It is found that for many atoms, the ionization energies obtained with the GGA are only modestly improved with respect to experimental data, as compared to the LSDA. However, even in those groups of atoms where the improvement is systematic, there remains a non-negligible difference with respect to the experiment. The ab initio electronic configuration in the Kohn-Sham reference system does not always equal the configuration obtained from the spectroscopic term within the independent-electron approximation. It was shown that use of the latter configuration can prevent the energy-minimization process from converging to the global minimum, e.g., in lanthanides. The spin values calculated ab initio fit the experiment for most atoms and are almost unaffected by the choice of the xc functional. Among the systems with incorrectly obtained spin, there exist some cases (e.g., V, Pt) for which the result is found to be stable with respect to small variations in the xc approximation. These findings suggest a necessity for a significant modification of the exchange-correlation functional, probably of a nonlocal nature, to accurately describe such systems.

  4. Ab initio-driven nuclear energy density functional method. A proposal for safe/correlated/improvable parametrizations of the off-diagonal EDF kernels

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Bender, M.; Ebran, J.-P.; Lesinski, T.; Somà, V.

    2015-12-01

    This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come.

  5. Ab initio and density functional computations of the vibrational spectrum, molecular geometry and some molecular properties of the antidepressant drug sertraline (Zoloft) hydrochloride

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda; Kandemirli, Fatma; Bayari, Sevgi Haman

    2007-02-01

    Sertraline hydrochloride is a highly potent and selective inhibitor of serotonin (5HT). It is a basic compound of pharmaceutical application for antidepressant treatment (brand name: Zoloft). Ab initio and density functional computations of the vibrational (IR) spectrum, the molecular geometry, the atomic charges and polarizabilities were carried out. The infrared spectrum of sertraline is recorded in the solid state. The observed IR wave numbers were analysed in light of the computed vibrational spectrum. On the basis of the comparison between calculated and experimental results and the comparison with related molecules, assignments of fundamental vibrational modes are examined. The X-ray geometry and experimental frequencies are compared with the results of our theoretical calculations.

  6. Molecular structure, vibrational spectra and HOMO, LUMO analysis of yohimbine hydrochloride by density functional theory and ab initio Hartree-Fock calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha

    2011-11-01

    Yohimbine hydrochloride (YHCl) is an aphrodisiac and promoted for erectile dysfunction, weight loss and depression. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of yohimbine hydrochloride have been determined using ab initio, Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set. A complete vibrational assignment is provided for the observed Raman and IR spectra of YHCl. The UV absorption spectrum was examined in ethanol solvent and compared with the calculated one in gas phase as well as in solvent environment (polarizable continuum model, PCM) using TD-DFT/6-31G basis set. These methods are proposed as a tool to be applied in the structural characterization of YHCl. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap are presented.

  7. Density functional computational thermochemistry: Accurate determination of the enthalpy of formation of perfluoropropane from DFT and ab initio calculations on isodesmic reactions

    NASA Astrophysics Data System (ADS)

    Ventura, Oscar N.; Segovia, Marc

    2005-02-01

    The experimental enthalpy of formation of perfluoropropane (C 3F 8), reported originally as -1729 kJ/mol and latter corrected to -1784.7 kJ/mol, is reexamined at the light of density functional and model chemistry (G3, CBS-4, CBS-Q) calculations of several isodesmic reactions relating C 3F 8 to smaller fluoroalkanes. The average enthalpy of formation of C 3F 8 obtained from all reactions studied was -1739 ± 12 kJ/mol at the DFT level and -1748 ± 12 kJ/mol at the ab initio level, thus ruling out the larger experimental value. A value of -1732 ± 5 kJ/mol is recommended from careful analysis of the theoretical results.

  8. Doping-enhanced hyperpolarizabilities of silicon clusters: A global ab initio and density functional theory study of Si10 (Li, Na, K)n (n = 1, 2) clusters

    NASA Astrophysics Data System (ADS)

    Karamanis, Panaghiotis; Marchal, Remi; Carbonniére, Philippe; Pouchan, Claude

    2011-07-01

    A global theoretical study of the (hyper)polarizabilities of alkali doped Si10 is presented and discussed. First, a detailed picture about the low lying isomers of Si10Li, Si10Na, Si10K, Si10Li2, Si10Na2, and Si10K2 has been obtained in a global manner. Then, the microscopic first (hyper)polarizabilities of the most stable configurations have been determined by means of ab initio methods of high predictive capability such as those based on the Møller-Plesset perturbation and coupled cluster theory, paying extra attention to the (hyper)polarizabilities of the open shell mono-doped systems Si10Li, Si10Na, Si10K, and the influence of spin contamination. These results were used to assess the performance of methods of low computational cost based on density functional theory (DFT) in the reliable computation of these properties in order to proceed with an in-depth study of their evolution as a function of the alkali metal, the cluster composition, and the cluster structure. The most interesting outcomes of the performed (hyper)polarizability study indicate that while alkali doping leaves the per atom polarizability practically unaffected, influences dramatically the hyperpolarizabilities of Si10. The lowest energy structures of the mono-doped clusters are characterized by significantly enhanced hyperpolarizabilities as compared to the analogue neutral or charged bare silicon clusters Si10 and Si11, while, certain patterns governed by the type and the number of the doping agents are followed. The observed hyperpolarizability increase is found to be in close connection with specific cluster to alkali metal charge transfer excited states and to the cluster structures. Moreover, an interesting correlation between the anisotropy of the electron density, and the hyperpolarizabilities of these systems has been observed. Finally, it is important to note that the presented method assessment points out that among the various DFT functionals used in this work, (B3LYP, B3PW91

  9. Nuclear Zero Point Effects as a Function of Density in Ice-like Structures and Liquid Water from vdW-DF Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Pamuk, Betül; Allen, Philip B.; Soler, Jose M.; Fernández-Serra, Marivi

    2014-03-01

    The contributions of nuclear zero point vibrations to the structures of liquid water and ice are not negligible. Recently, we have explained the source of an anomalous isotope shift in hexagonal ice, representing itself as an increase in the lattice volume when H is replaced by D, by calculating free energy within the quasiharmonic approximation, with ab initio density functional theory. In this work, we extend our studies to analyze the zero point effect in other ice-like structures under different densities: clathrate hydrates, LDL and HDL-like amorphous ices with different densities, and a highly dense ice phase, ice VIII. We show that there is a transition from anomalous isotope effect to normal isotope effect as the density increases. We also analyze nuclear zero point effects in liquid water using different vdW-DFs and make connections to this anomalous-normal isotope effect transition in ice. This work is supported by DOE Early Career Award No. DE-SC0003871.

  10. Structure, energetics, and electronic properties of the surface of a promoted MoS{sub 2} catalyst: An ab initio local density functional study

    SciTech Connect

    Raybaud, P.; Hafner, J.; Kresse, G.; Kasztelan, S.; Toulhoat, H.

    2000-02-15

    The determination of the local structure of cobalt- or nickel-promoted MoS{sub 2}-based hydrodesulfurization catalysts is of interest for understanding the mechanism leading to an increased activity brought by cobalt or nickel, the so-called synergetic effect. For that reason, the authors carried out ab initio calculations using density functional theory under the generalized gradient approximation for periodic systems. The edge substitution model emerges as the most stable structure and provides an excellent agreement with local structures experimentally determined on real catalysts by in situ extended X-ray absorption fine structure. The authors studied the absorption of sulfur on the active edge surface of the promoted MoS{sub 2} catalyst and determined the equilibrium coverage under sulfiding conditions. It is demonstrated that the incorporation of promoter atoms has a strong influence on the sulfur-metal bond energy at the surface and in particular leads to a reduction of the equilibrium S coverage of the active metal sites. A comparative study on the effects of Co, Ni, and Cu atoms as promoters was performed. Detailed results on the surface electronic structure of promoted MoS{sub 2} are presented.

  11. Phase diagram of the CulnSe{sub 2}-CuGaSe{sub 2} pseudobinary system studied by combined ab initio density functional theory and thermodynamic calculation

    SciTech Connect

    Xue, H. T.; Tang, F. L.; Lu, W. J.; Li, X. K.; Zhang, Y.; Feng, Y. D.

    2014-08-07

    The phase diagram of the CuInSe{sub 2}-CuGaSe{sub 2} pseudobinary system was determined using a combination of special quasirandom structure approach, ab initio density functional theory calculations, and thermodynamic modelling. It is shown that the CuIn{sub 1−x}Ga{sub x}Se{sub 2} solution phase has a tendency to phase separation at low temperature. The calculated consolute temperature is 485 K. It is found that both the binodal and spinodal curves are significantly asymmetric and on both curves there are a local maximum and a local minimum, which have not been reported in the previous studies. Our phase diagram can well explain the finding that the inhomogeneity of CuIn{sub 0.25}Ga{sub 0.75}Se{sub 2} is higher than that of CuIn{sub 0.75}Ga{sub 0.25}Se{sub 2} at the same temperature, while the previous phase diagrams cannot. Hence, our phase diagram should be more reliable and applicable.

  12. Molecular structure, vibrational spectra, NBO analysis and molecular packing prediction of 3-nitroacetanilide by ab initio HF and density functional theory.

    PubMed

    Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou

    2014-01-24

    Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G(*) basis set. The -311++G(**) basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of C-H bond length and the elongation of N-H bond length suggest the existence of weak C-H⋯O and N-H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P2(1) space group, with lattice parameters Z=4, a=14.9989 Å, b=4.0367 Å, c=12.9913 Å, ρ=0.998 g cm(-3).

  13. Ab Initio Study of Covalently Functionalized Graphene and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Hammouri, Mahmoud; Vasiliev, Igor; Magedov, Igor; Frolova, Liliya; Kalugin, Nikolai

    2014-03-01

    The electronic and structural properties of carbon nanomaterials can be affected by chemical functionalization. We apply ab initio computational methods based on density functional theory to study the properties of graphene and single-walled carbon nanotubes functionalized with benzyne. Our calculations are carried out using the SIESTA electronic structure code combined with the generalized gradient approximation for the exchange correlation functional. The calculated binding energies, densities of states, and band structures of functionalized graphene and carbon nanotubes are analyzed in comparison with the available experimental data. The surfaces of carbon nanotubes are found to be significantly more reactive toward benzyne molecules than the surface of graphene. The strength of interaction between benzyne and carbon nanotubes is affected by the curvature of the nanotube sidewall. The binding energies of benzyne molecules attached to both semiconducting zigzag and metallic armchair nanotubes increase with decreasing the nanotube diameter. Supported by NSF CHE-1112388, NMSU GREG Award, NSF ECCS-0925988, NIH-5P20RR016480-12, and NIH- P20 GM103451.

  14. The ab-initio density matrix renormalization group in practice

    SciTech Connect

    Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  15. The ab-initio density matrix renormalization group in practice

    NASA Astrophysics Data System (ADS)

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-01

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  16. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  17. The structure and binding energies of the van der Waals complexes of Ar and N2 with phenol and its cation, studied by high level ab initio and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Vincent, Mark A.; Hillier, Ian H.; Morgado, Claudio A.; Burton, Neil A.; Shan, Xiao

    2008-01-01

    We have investigated, using both ab initio and density functional theory methods, the minimum energy structures and corresponding binding energies of the van der Waals complexes between phenol and argon or the nitrogen molecule, and the corresponding complexes involving the phenol cation. Structures were obtained at the MP2 level using a large basis, and the corresponding energies were corrected for basis set superposition error (BSSE), higher order electron correlation effects, and for basis set size. The structures of the global minima were further refined for the effects of BSSE and the corresponding binding energies were evaluated. For each neutral species, we find only a single true minimum, π bonded for argon and OH bonded for nitrogen. For both cationic species, we find that the OH-bonded complex is preferred over other minima which we have identified as having Ar or N2 between exogeneous atoms. The ab initio calculations are generally in excellent agreement with experimental binding energies and rotational constants. We find that the B3LYP functional is particularly poor at describing these complexes, while a density functional theory (DFT) method with an empirical correction for dispersive interactions (DFT-D) is very successful, as are some of the new functionals proposed by Zhao and Truhlar [J. Phys. Chem. A 109, 5656 (2005); J. Chem. Theory Comput. 2, 1009 (2006); Phys. Chem. Chem. Phys. 7, 2701 (2005); J. Phys. Chem. A 108, 6908 (2004)]. Both the ab initio and DFT-D methods accurately predict the intermolecular vibrational modes.

  18. The structure and binding energies of the van der Waals complexes of Ar and N2 with phenol and its cation, studied by high level ab initio and density functional theory calculations.

    PubMed

    Vincent, Mark A; Hillier, Ian H; Morgado, Claudio A; Burton, Neil A; Shan, Xiao

    2008-01-28

    We have investigated, using both ab initio and density functional theory methods, the minimum energy structures and corresponding binding energies of the van der Waals complexes between phenol and argon or the nitrogen molecule, and the corresponding complexes involving the phenol cation. Structures were obtained at the MP2 level using a large basis, and the corresponding energies were corrected for basis set superposition error (BSSE), higher order electron correlation effects, and for basis set size. The structures of the global minima were further refined for the effects of BSSE and the corresponding binding energies were evaluated. For each neutral species, we find only a single true minimum, pi bonded for argon and OH bonded for nitrogen. For both cationic species, we find that the OH-bonded complex is preferred over other minima which we have identified as having Ar or N(2) between exogeneous atoms. The ab initio calculations are generally in excellent agreement with experimental binding energies and rotational constants. We find that the B3LYP functional is particularly poor at describing these complexes, while a density functional theory (DFT) method with an empirical correction for dispersive interactions (DFT-D) is very successful, as are some of the new functionals proposed by Zhao and Truhlar [J. Phys. Chem. A 109, 5656 (2005); J. Chem. Theory Comput. 2, 1009 (2006); Phys. Chem. Chem. Phys. 7, 2701 (2005); J. Phys. Chem. A 108, 6908 (2004)]. Both the ab initio and DFT-D methods accurately predict the intermolecular vibrational modes.

  19. Adsorption of TCDD molecule onto CNTs and BNNTs: Ab initio van der Waals density-functional study

    NASA Astrophysics Data System (ADS)

    Darvish Ganji, M.; Alinezhad, H.; Soleymani, E.; Tajbakhsh, M.

    2015-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCCD) is one of the most dangerous compounds that infect the environment and hence its removal is crucial for safety in human life. In this work, we have investigated the interaction of TCDD with boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) by using the density functional theory (DFT) calculations. Our first-principles results have been validated by experiment and also other theoretical values for the similar system. The adsorption energies for TCDD molecule on the BNNTs and CNT are calculated. It was found that TCDD adsorption ability of BNNT is slightly stronger than that of CNT and TCDD molecule prefers to be adsorbed on BNNTs with molecular axis parallel to the tube axis. The results obtained indicate that TCDD is weakly bound to the outer surface of all the considered nanotubes and the obtained adsorption energy values and binding distance are typical for the physisorption. We also evaluated the influence of curvature and introduced defects on the TCDD adsorption ability of BNNTs. Furthermore, we have analyzed the electronic structure and charge population for the energetically most favorable complexes and the results indicate that no significant hybridization between the respective orbitals of the two entities was accomplished.

  20. A Comparison of Density Functional Theory with Ab initio Approaches for Systems Involving First Transition Row Metals

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Density functional theory (DFT) is found to give a better description of the geometries and vibrational frequencies of FeL and FeL(sup +) systems than second order Moller Plesset perturbation theory (MP2). Namely, the DFT correctly predicts the shift in the CO vibrational frequency between free CO and the Sigma(sup -) state of FeCO and yields a good result for the Fe-C distance in the quartet states of FeCH4(+) 4 These are properties where the MP2 results are unsatisfactory. Thus DFT appears to be an excellent approach for optimizing the geometries and computing the zero-point energies of systems containing first transition row atoms. Because the DFT approach is biased in favor of the 3d(exp 7) occupation, whereas the more traditional approaches are biased in favor of the 3d(exp 6) occupation, differences are found in the relative ordering of states. It is shown that if the dissociation is computed to the most appropriate atomic asymptote and corrected to the ground state asymptote using the experimental separations, the DFT results are in good agreement with high levels of theory. The energetics at the DFT level are much superior to the MP2 and in most cases in good agreement with high levels of theory.

  1. IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-aminouracil.

    PubMed

    Singh, J S

    2014-09-15

    Infrared (IR) and Raman spectra of uracil and 5-aminouracil have been recorded and analyzed between the region 200-4000 cm(-1). The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-aminouracil by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, the most of B3LYP/6-311++G** vibrational frequencies are in the excellent agreement with available experimental assignments and helped in the reassignments of some fundamental vibrational modes. On the basis of calculated results, the assignments of some missing frequencies in the experimental study are proposed. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a') and non-planar (a″) are given by 25a'+11a″, of which 30 modes (21a'+9a″) correspond to the uracil moiety and 6 modes (4a'+2a″) to the NH2 group. Kekule ring stretching mode is found to be comparatively higher frequency magnitude than the mode of uracil due to the involvement of hydrogen bonding of amino group. But, the ring breathing is found to be lower frequency magnitude compared to those for uracil which could be due to mass effect of the NH2 group in place of the hydrogen atom. All other bands have also been assigned different fundamentals/overtones/combinations.

  2. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies.

    PubMed

    Feng, Yong; Liu, Lei; Wang, Jin-Ti; Huang, Hao; Guo, Qing-Xiang

    2003-01-01

    Composite ab initio CBS-Q and G3 methods were used to calculate the bond dissociation energies (BDEs) of over 200 compounds listed in CRC Handbook of Chemistry and Physics (2002 ed.). It was found that these two methods agree with each other excellently in the calculation of BDEs, and they can predict BDEs within 10 kJ/mol of the experimental values. Using these two methods, it was found that among the examined compounds 161 experimental BDEs are valid because the standard deviation between the experimental and theoretical values for them is only 8.6 kJ/mol. Nevertheless, 40 BDEs listed in the Handbook may be highly inaccurate as the experimental and theoretical values for them differ by over 20 kJ/mol. Furthermore, 11 BDEs listed in the Handbook may be seriously flawed as the experimental and theoretical values for them differ by over 40 kJ/mol. Using the 161 cautiously validated experimental BDEs, we then assessed the performances of the standard density functional (DFT) methods including B3LYP, B3P86, B3PW91, and BH&HLYP in the calculation of BDEs. It was found that the BH&HLYP method performed poorly for the BDE calculations. B3LYP, B3P86, and B3PW91, however, performed reasonably well for the calculation of BDEs with standard deviations of about 12.1-18.0 kJ/mol. Nonetheless, all the DFT methods underestimated the BDEs by 4-17 kJ/mol in average. Sometimes, the underestimation by the DFT methods could be as high as 40-60 kJ/mol. Therefore, the DFT methods were more reliable for relative BDE calculations than for absolute BDE calculations. Finally, it was observed that the basis set effects on the BDEs calculated by the DFT methods were usually small except for the heteroatom-hydrogen BDEs. PMID:14632451

  3. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies.

    PubMed

    Feng, Yong; Liu, Lei; Wang, Jin-Ti; Huang, Hao; Guo, Qing-Xiang

    2003-01-01

    Composite ab initio CBS-Q and G3 methods were used to calculate the bond dissociation energies (BDEs) of over 200 compounds listed in CRC Handbook of Chemistry and Physics (2002 ed.). It was found that these two methods agree with each other excellently in the calculation of BDEs, and they can predict BDEs within 10 kJ/mol of the experimental values. Using these two methods, it was found that among the examined compounds 161 experimental BDEs are valid because the standard deviation between the experimental and theoretical values for them is only 8.6 kJ/mol. Nevertheless, 40 BDEs listed in the Handbook may be highly inaccurate as the experimental and theoretical values for them differ by over 20 kJ/mol. Furthermore, 11 BDEs listed in the Handbook may be seriously flawed as the experimental and theoretical values for them differ by over 40 kJ/mol. Using the 161 cautiously validated experimental BDEs, we then assessed the performances of the standard density functional (DFT) methods including B3LYP, B3P86, B3PW91, and BH&HLYP in the calculation of BDEs. It was found that the BH&HLYP method performed poorly for the BDE calculations. B3LYP, B3P86, and B3PW91, however, performed reasonably well for the calculation of BDEs with standard deviations of about 12.1-18.0 kJ/mol. Nonetheless, all the DFT methods underestimated the BDEs by 4-17 kJ/mol in average. Sometimes, the underestimation by the DFT methods could be as high as 40-60 kJ/mol. Therefore, the DFT methods were more reliable for relative BDE calculations than for absolute BDE calculations. Finally, it was observed that the basis set effects on the BDEs calculated by the DFT methods were usually small except for the heteroatom-hydrogen BDEs.

  4. A Density Functional Theory and ab Initio Investigation of the Oxidation Reaction of CO by IO Radicals.

    PubMed

    Khanniche, Sarah; Louis, Florent; Cantrel, Laurent; Černušák, Ivan

    2016-03-17

    To get an insight into the possible reactivity between iodine oxides and CO, a first step was to study the thermochemical properties and kinetic parameters of the reaction between IO and CO using theoretical chemistry tools. All stationary points involved were optimized using the Becke's three-parameter hybrid exchange functional coupled with the Lee-Yang-Parr nonlocal correlation functional (B3LYP) and the Møller-Plesset second-order perturbation theory (MP2). Single-point energy calculations were performed using the coupled cluster theory with the iterative inclusion of singles and doubles and the perturbative estimation for triple excitations (CCSD(T)) and the aug-cc-pVnZ (n = T, Q, and 5) basis sets on geometries previously optimized at the aug-cc-pVTZ level. The energetics was then recalculated using the one-component DK-CCSD(T) approach with the relativistic ANO basis sets. The spin-orbit coupling for the iodine containing species was calculated a posteriori using the restricted active space state interaction method in conjunction with the multiconfigurational perturbation theory (CASPT2/RASSI) employing the complete active space (CASSCF) wave function as the reference. The CCSD(T) energies were also corrected for BSSE for molecular complexes and refined with the extrapolation to CBS limit while the DK-CCSD(T) values were refined with the extrapolation to FCI. The exploration of the potential energy surface revealed a two-steps mechanism with a trans and a cis pathway. The rate constants for the direct and complex mechanism were computed as a function of temperature (250-2500 K) using the canonical transition state theory. The three-parameter Arrhenius expressions obtained for the direct and indirect mechanism at the DK-CCSD(T)-cf level of theory is 1.49 × 10(-17) × T(1.77) exp(-47.4 (kJ mol(-1))/RT).

  5. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine).

    PubMed

    Singh, J S

    2015-02-25

    FT-IR (400-4000 cm(-1)) and Raman spectra (200-4000 cm(-1)) of uracil and 5-methyluracil (thymine) have been recorded and analyzed. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-methyluracil (thymine) by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, most of the B3LYP/6-311++G(∗∗) vibrational frequencies are in excellent agreement with the available experimental assignments and helped to propose in the reassignments of some missing frequencies in experimental study. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a') and non-planar (a″) for all 39 normal vibrational modes of 5-methyluracil are given by 26a'+13a″, of which 30 modes (21a'+9a″) correspond to the uracil moiety and 9 modes (5a'+4a″) to the CH3 group. Consistent assignments have been made for the internal modes of CH3 group, especially for the anti-symmetric CH3 stretching and bending modes. A possible explanation could be the planarity of pyrimidine ring and non-planarity at carbon site of methyl group which might cause the splitting of frequencies including three components due to the substitution of CH3 group at the site of C5 atom on pyrimidine ring of uracil. The three non-equivalent CH bonds of CH3 group are

  6. Magneto-structural correlations in a family of Fe(II)Re(IV)(CN)2 single-chain magnets: density functional theory and ab initio calculations.

    PubMed

    Zhang, Yi-Quan; Luo, Cheng-Lin; Wu, Xin-Bao; Wang, Bing-Wu; Gao, Song

    2014-04-01

    Until now, the expressions of the anisotropic energy barriers Δξ and ΔA, using the uniaxial magnetic anisotropy D, the intrachain coupling strength J, and the high-spin ground state S for single-chain magnets (SCMs) in the intermediate region between the Ising and the Heisenberg limits, were unknown. To explore this relationship, we used density functional theory and ab initio methods to obtain expressions of Δξ and ΔA in terms of D, J, and S of six R4Fe(II)-Re(IV)Cl4(CN)2 (R = diethylformamide (1), dibutylformamide (2), dimethylformamide (3), dimethylbutyramide (4), dimethylpropionamide (5), and diethylacetamide (6)) SCMs in the intermediate region. The ΔA value for compounds 1-3 was very similar to the magnetic anisotropic energy of a single Fe(II), while the value of Δξ was predicted using the exchange interaction of Fe(II) with the neighboring Re(IV), which could be expressed as 2JSReSFe. Similar to compounds 1-3, the anisotropy energy barrier ΔA of compounds 4 and 5 was also equal to (Di - Ei)SFe(2), but the correlation energy Δξ was closely equal to 2JSReSFe(cos 98.4 - cos 180) due to the reversal of the spins on the opposite Fe(II). For compound 6, one unit cell of Re(IV)Fe(II) was regarded as a domain wall since it had two different Re(IV)-Fe(II) couplings. Thus, the Δξ of compound 6 was expressed as 4J″SRe1Fe1SRe2Fe2, where J″ was the coupling constant of the neighboring unit cells of Re1Fe1 and Re2Fe2, and ΔA was equal to the anisotropic energy barrier of one domain wall given by DRe1Fe1(S(2)Re1Fe1 - 1/4). PMID:24673387

  7. Accurate Prediction of Hyperfine Coupling Constants in Muoniated and Hydrogenated Ethyl Radicals: Ab Initio Path Integral Simulation Study with Density Functional Theory Method.

    PubMed

    Yamada, Kenta; Kawashima, Yukio; Tachikawa, Masanori

    2014-05-13

    We performed ab initio path integral molecular dynamics (PIMD) simulations with a density functional theory (DFT) method to accurately predict hyperfine coupling constants (HFCCs) in the ethyl radical (CβH3-CαH2) and its Mu-substituted (muoniated) compound (CβH2Mu-CαH2). The substitution of a Mu atom, an ultralight isotope of the H atom, with larger nuclear quantum effect is expected to strongly affect the nature of the ethyl radical. The static conventional DFT calculations of CβH3-CαH2 find that the elongation of one Cβ-H bond causes a change in the shape of potential energy curve along the rotational angle via the imbalance of attractive and repulsive interactions between the methyl and methylene groups. Investigation of the methyl-group behavior including the nuclear quantum and thermal effects shows that an unbalanced CβH2Mu group with the elongated Cβ-Mu bond rotates around the Cβ-Cα bond in a muoniated ethyl radical, quite differently from the CβH3 group with the three equivalent Cβ-H bonds in the ethyl radical. These rotations couple with other molecular motions such as the methylene-group rocking motion (inversion), leading to difficulties in reproducing the corresponding barrier heights. Our PIMD simulations successfully predict the barrier heights to be close to the experimental values and provide a significant improvement in muon and proton HFCCs given by the static conventional DFT method. Further investigation reveals that the Cβ-Mu/H stretching motion, methyl-group rotation, methylene-group rocking motion, and HFCC values deeply intertwine with each other. Because these motions are different between the radicals, a proper description of the structural fluctuations reflecting the nuclear quantum and thermal effects is vital to evaluate HFCC values in theory to be comparable to the experimental ones. Accordingly, a fundamental difference in HFCC between the radicals arises from their intrinsic molecular motions at a finite temperature, in

  8. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    SciTech Connect

    Guedj, C.; Hung, L.; Sottile, F.; Zobelli, A.; Blaise, P.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO{sub 2}) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO{sub 2}, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO{sub 2} may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  9. Communication: Unraveling the {sup 4}He droplet-mediated soft-landing from ab initio-assisted and time-resolved density functional simulations: Au@{sup 4}He{sub 300}/TiO{sub 2}(110)

    SciTech Connect

    Lara-Castells, María Pilar de Aguirre, Néstor F.; Stoll, Hermann; Mitrushchenkov, Alexander O.; Mateo, David; Pi, Martí

    2015-04-07

    An ab-initio-based methodological scheme for He-surface interactions and zero-temperature time-dependent density functional theory for superfluid {sup 4}He droplets motion are combined to follow the short-time collision dynamics of the Au@{sup 4}He{sub 300} system with the TiO{sub 2}(110) surface. This composite approach demonstrates the {sup 4}He droplet-assisted sticking of the metal species to the surface at low landing energy (below 0.15 eV/atom), thus providing the first theoretical evidence of the experimentally observed {sup 4}He droplet-mediated soft-landing deposition of metal nanoparticles on solid surfaces [Mozhayskiy et al., J. Chem. Phys. 127, 094701 (2007) and Loginov et al., J. Phys. Chem. A 115, 7199 (2011)].

  10. Ab Initio Modeling of the Herpesvirus VP26 Core Domain Assessed by CryoEM Density

    PubMed Central

    Baker, Matthew L; Jiang, Wen; Wedemeyer, William J; Rixon, Frazer J; Baker, David; Chiu, Wah

    2006-01-01

    Efforts in structural biology have targeted the systematic determination of all protein structures through experimental determination or modeling. In recent years, 3-D electron cryomicroscopy (cryoEM) has assumed an increasingly important role in determining the structures of these large macromolecular assemblies to intermediate resolutions (6–10 Å). While these structures provide a snapshot of the assembly and its components in well-defined functional states, the resolution limits the ability to build accurate structural models. In contrast, sequence-based modeling techniques are capable of producing relatively robust structural models for isolated proteins or domains. In this work, we developed and applied a hybrid modeling approach, utilizing cryoEM density and ab initio modeling to produce a structural model for the core domain of a herpesvirus structural protein, VP26. Specifically, this method, first tested on simulated data, utilizes the cryoEM density map as a geometrical constraint in identifying the most native-like models from a gallery of models generated by ab initio modeling. The resulting model for the core domain of VP26, based on the 8.5-Å resolution herpes simplex virus type 1 (HSV-1) capsid cryoEM structure and mutational data, exhibited a novel fold. Additionally, the core domain of VP26 appeared to have a complementary interface to the known upper-domain structure of VP5, its cognate binding partner. While this new model provides for a better understanding of the assembly and interactions of VP26 in HSV-1, the approach itself may have broader applications in modeling the components of large macromolecular assemblies. PMID:17069457

  11. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  12. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  13. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094

  14. Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method

    NASA Astrophysics Data System (ADS)

    Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2015-04-01

    We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.

  15. Ab initio and density functional theoretical design and screening of model crown ether based ligand (host) for extraction of lithium metal ion (guest): effect of donor and electronic induction.

    PubMed

    Boda, Anil; Ali, Sk Musharaf; Rao, Hanmanth; Ghosh, Sandip K

    2012-08-01

    The structures, energetic and thermodynamic parameters of model crown ethers with different donor, cavity and electron donating/ withdrawing functional group have been determined with ab initio MP2 and density functional theory in gas and solvent phase. The calculated values of binding energy/ enthalpy for lithium ion complexation are marginally higher for hard donor based aza and oxa crown compared to soft donor based thia and phospha crown. The calculated values of binding enthalpy for lithium metal ion with 12C4 at MP2 level of theory is in good agreement with the available experimental result. The binding energy is altered due to the inductive effect imparted by the electron donating/ withdrawing group in crown ether, which is well correlated with the values of electron transfer. The role of entropy for extraction of hydrated lithium metal ion by different donor and functional group based ligand has been demonstrated. The HOMO-LUMO gap is decreased and dipole moment of the ligand is increased from gas phase to organic phase because of the dielectric constant of the solvent. The gas phase binding energy is reduced in solvent phase as the solvent molecules weaken the metal-ligand binding. The theoretical values of extraction energy for LiCl salt from aqueous solution in different organic solvent is validated by the experimental trend. The study presented here should contribute to the design of model host ligand and screening of solvent for metal ion recognition and thus can contribute in planning the experiments.

  16. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  17. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.

    PubMed

    Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models. PMID:26374007

  18. Antagonistic properties of a natural product - Bicuculline with the gamma-aminobutyric acid receptor: Studied through electrostatic potential mapping, electronic and vibrational spectra using ab initio and density functional theory

    NASA Astrophysics Data System (ADS)

    Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Asthana, B. P.

    2011-12-01

    (+)-Bicuculline (hereinafter referred to as bicuculline), a phthalide isoquinoline alkaloid is of current interest as an antagonist of gamma-aminobutyric acid (GABA). Its inhibitor properties have been studied through molecular electrostatic potential (MEP) mapping of this molecule and GABA receptor. The hot site on the potential surface of bicuculline, which is also isosteric with GABA receptor, has been used to interpret the inhibitor property. A systematic quantum chemical study of the possible conformations, their relative stabilities, FT-Raman, FT-IR and UV-vis spectroscopic analysis of bicuculline has been reported. The optimized geometries, wavenumber and intensity of the vibrational bands of all the conformers of bicuculline have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP functional and 6-311G(d,p) basis set. Mulliken atomic charges, HOMO-LUMO gap Δ E, ionization potential, dipole moments and total energy have also been obtained for the optimized geometries of both the molecules. TD-DFT method is used to calculate the electronic absorption parameters in gas phase as well as in solvent environment using integral equation formalism-polarizable continuum model (IEF-PCM) employing 6-31G basis set and the results thus obtained are compared with the UV absorption spectra. The combination of experimental and calculated results provides an insight into the structural and vibrational spectroscopic properties of bicuculline.

  19. Comparison between Gaussian-type orbitals and plane wave ab initio density functional theory modeling of layer silicates: Talc [Mg{sub 3}Si{sub 4}O{sub 10}(OH){sub 2}] as model system

    SciTech Connect

    Ulian, Gianfranco; Valdrè, Giovanni; Tosoni, Sergio

    2013-11-28

    The quantum chemical characterization of solid state systems is conducted with many different approaches, among which the adoption of periodic boundary conditions to deal with three-dimensional infinite condensed systems. This method, coupled to the Density Functional Theory (DFT), has been proved successful in simulating a huge variety of solids. Only in relatively recent years this ab initio quantum-mechanic approach has been used for the investigation of layer silicate structures and minerals. In the present work, a systematic comparison of different DFT functionals (GGA-PBEsol and hybrid B3LYP) and basis sets (plane waves and all-electron Gaussian-type orbitals) on the geometry, energy, and phonon properties of a model layer silicate, talc [Mg{sub 3}Si{sub 4}O{sub 10}(OH){sub 2}], is presented. Long range dispersion is taken into account by DFT+D method. Results are in agreement with experimental data reported in literature, with minimal deviation given by the GTO/B3LYP-D* method regarding both axial lattice parameters and interaction energy and by PW/PBE-D for the unit-cell volume and angular values. All the considered methods adequately describe the experimental talc infrared spectrum.

  20. Comparison between Gaussian-type orbitals and plane wave ab initio density functional theory modeling of layer silicates: talc [Mg3Si4O10(OH)2] as model system.

    PubMed

    Ulian, Gianfranco; Tosoni, Sergio; Valdrè, Giovanni

    2013-11-28

    The quantum chemical characterization of solid state systems is conducted with many different approaches, among which the adoption of periodic boundary conditions to deal with three-dimensional infinite condensed systems. This method, coupled to the Density Functional Theory (DFT), has been proved successful in simulating a huge variety of solids. Only in relatively recent years this ab initio quantum-mechanic approach has been used for the investigation of layer silicate structures and minerals. In the present work, a systematic comparison of different DFT functionals (GGA-PBEsol and hybrid B3LYP) and basis sets (plane waves and all-electron Gaussian-type orbitals) on the geometry, energy, and phonon properties of a model layer silicate, talc [Mg3Si4O10(OH)2], is presented. Long range dispersion is taken into account by DFT+D method. Results are in agreement with experimental data reported in literature, with minimal deviation given by the GTO∕B3LYP-D* method regarding both axial lattice parameters and interaction energy and by PW/PBE-D for the unit-cell volume and angular values. All the considered methods adequately describe the experimental talc infrared spectrum.

  1. Spin-Orbit Effect on the Molecular Properties of TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4): A Density Functional Theory and Ab Initio Study.

    PubMed

    Moon, Jiwon; Kim, Joonghan

    2016-09-29

    Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.

  2. Ab initio and density functional theory calculations of molecular structure and vibrational spectra of 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Kumar, J. Sharmi; Devi, T. S. Renuga; Ramkumaar, G. R.; Bright, A.

    2016-01-01

    The FTIR and FT-Raman spectra of 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid were recorded and the structural and spectroscopic data of the molecule in the ground state were calculated using Hartree-Fock and Density Functional Method (B3LYP). The most stable conformer was optimized and the structural and vibrational parameters were determined. With the observed FTIR and FT-Raman data, a complete vibrational band assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties, Mulliken and natural atomic charge distribution were calculated using both Hartree-Fock and Density Functional Method and compared. UV-Visible and HOMO-LUMO analysis were carried out. 1H and 13C NMR chemical shifts of the molecule were calculated using gauge including atomic orbital method and were compared with experimental results. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. The first order hyperpolarizability (β) and molecular electrostatic potential of the molecule was computed using DFT calculations. The electron density based local reactivity descriptor such as Fukui functions were calculated to explain the chemically reactive site in the molecule.

  3. Ab initio and density functional theory calculations of molecular structure and vibrational spectra of 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid.

    PubMed

    Kumar, J Sharmi; Devi, T S Renuga; Ramkumaar, G R; Bright, A

    2016-01-01

    The FTIR and FT-Raman spectra of 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid were recorded and the structural and spectroscopic data of the molecule in the ground state were calculated using Hartree-Fock and Density Functional Method (B3LYP). The most stable conformer was optimized and the structural and vibrational parameters were determined. With the observed FTIR and FT-Raman data, a complete vibrational band assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties, Mulliken and natural atomic charge distribution were calculated using both Hartree-Fock and Density Functional Method and compared. UV-Visible and HOMO-LUMO analysis were carried out. (1)H and (13)C NMR chemical shifts of the molecule were calculated using gauge including atomic orbital method and were compared with experimental results. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. The first order hyperpolarizability (β) and molecular electrostatic potential of the molecule was computed using DFT calculations. The electron density based local reactivity descriptor such as Fukui functions were calculated to explain the chemically reactive site in the molecule.

  4. Ab initio density functional theory investigation of the structural, electronic and optical properties of Ca3Sb2 in hexagonal and cubic phases

    NASA Astrophysics Data System (ADS)

    Arghavani Nia, Borhan; Sedighi, Matin; Shahrokhi, Masoud; Moradian, Rostam

    2013-11-01

    A density functional theory study of structural, electronical and optical properties of Ca3Sb2 compound in hexagonal and cubic phases is presented. In the exchange-correlation potential, generalized gradient approximation (PBE-GGA) has been used to calculate lattice parameters, bulk modulus, cohesive energy, dielectric function and energy loss spectra. The electronic band structure of this compound has been calculated using the above two approximations as well as another form of PBE-GGA, proposed by Engle and Vosko (EV-GGA). It is found that the hexagonal phase of Ca3Sb2 has an indirect gap in the Γ→N direction; while in the cubic phase there is a direct-gap at the Γ point in the PBE-GGA and EV-GGA. Effects of applying pressure on the band structure of the system studied and optical properties of these systems were calculated.

  5. Ab Initio and Density Functional Theory Modeling of the Chiroptical Response of Glycine and Alanine in Solution Using Explicit Solvation and Molecular Dynamics.

    PubMed

    Kundrat, Matthew D; Autschbach, Jochen

    2008-11-11

    We investigate ways in which simple point charge (SPC) water models can be used in place of more expensive quantum mechanical water molecules to efficiently model the solvent effect on a solute molecule's chiroptical responses. The effect that SPC waters have on the computed circular dichroism of a solvated glycine molecule are comparable to, albeit somewhat weaker than, that of quantum mechanical waters at the coupled cluster CC2 level of theory. The effects of SPC waters in fact correlate better with QM-CC2 waters than quantum mechanical waters computed with density functional theory (DFT) methods, since they do not promote spurious charge transfer excitations that are a known deficiency with most popular density functionals. Furthermore, the near zero order scaling of point charge waters allows multiple layers of explicit solvation to be modeled with negligible computational cost, which is not practical with CC2 or DFT levels. As a practical example, we model the molar rotations of glycine and alanine, and track their convergence.

  6. Ab initio density functional theory investigation of the structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases

    SciTech Connect

    Arghavani Nia, Borhan; Sedighi, Matin; Shahrokhi, Masoud; Moradian, Rostam

    2013-11-15

    A density functional theory study of structural, electronical and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. In the exchange–correlation potential, generalized gradient approximation (PBE-GGA) has been used to calculate lattice parameters, bulk modulus, cohesive energy, dielectric function and energy loss spectra. The electronic band structure of this compound has been calculated using the above two approximations as well as another form of PBE-GGA, proposed by Engle and Vosko (EV-GGA). It is found that the hexagonal phase of Ca{sub 3}Sb{sub 2} has an indirect gap in the Γ→N direction; while in the cubic phase there is a direct-gap at the Γ point in the PBE-GGA and EV-GGA. Effects of applying pressure on the band structure of the system studied and optical properties of these systems were calculated. - Graphical abstract: A density functional theory study of structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. Display Omitted - Highlights: • Physical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases are investigated. • It is found that the hexagonal phase is an indirect gap semiconductor. • Ca{sub 3}Sb{sub 2} is a direct-gap semiconductor at the Γ point in the cubic phase. • By increasing pressure the semiconducting band gap and anti-symmetry gap are decreased.

  7. Molecular structure and vibrational spectra of three substituted 4-thioflavones by density functional theory and ab initio Hartree-Fock calculations

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Liu, Xiang-Ru; Zhang, Xian-Zhou

    2011-01-01

    The vibrational frequencies of three substituted 4-thioflavones in the ground state have been calculated using the Hartree-Fock and density functional method (B3LYP) with 6-31G* and 6-31+G** basis sets. The structural analysis shows that there exists H-bonding in the selected compounds and the hydrogen bond lengths increase with the augment of the conjugate parameters of the substituent group on the benzene ring. A complete vibrational assignment aided by the theoretical harmonic wavenumber analysis was proposed. The theoretical spectrograms for FT-IR spectra of the title compounds have been constructed. In addition, it is noted that the selected compounds show significant activity against Shigella flexniri. Several electronic properties and thermodynamic parameters were also calculated.

  8. Magnetic properties of the double perovskite Sr2FeOsO6: microscopic insights from ab-initio density-functional theory study

    NASA Astrophysics Data System (ADS)

    Kanungo, Sudipta; Yan, Binghai; Jansen, Martin; Felser, Claudia

    2015-03-01

    Using density-functional theory calculations, we investigated the electronic and magnetic properties of the ordered 3d-5d double perovskite Sr2FeOsO6, which has recently drawn attention for interesting antiferromagnetic (AFM) phase transitions in low temperature observed in experiments. The calculated effective magnetic exchange interactions reveal the importance of long-range super-superexchange interactions in this compound. The competition between the ferromagnetic (FM) Os-O-Fe short-range interaction and AFM Os-O-Fe-O-Os long-range interaction induces strong magnetic frustration along the crystallographic c axis. This strong magnetic frustration is proposed to drive the magnetic phase transition between two AFM phases (AFM1 to AFM2) and related lattice distortion, which were also observed in the experiment.

  9. Thermodynamic prediction of glass formation tendency, cluster-in-jellium model for metallic glasses, ab initio tight-binding calculations, and new density functional theory development for systems with strong electron correlation

    SciTech Connect

    Yao, Yongxin

    2009-01-01

    also plays an important role, as it may directly track the movement of every atom. Simulation time is a major limit for molecular dynamics, not only because of “slow” computer speed, but also because of the accumulation error in the numerical treatment of the motion equations. There is also a great concern about the reliability of the emperical potentials if using classical molecular dynamics. Ab initio methods based on density functional theory(DFT) do not have this problem, however, it suffers from small simulation cells and is more demanding computationally. When crystal phase is involved, size effect of the simulation cell is more pronounced since long-range elastic energy would be established. Simulation methods which are more efficient in computation but yet have similar reliability as the ab initio methods, like tight-binding method, are highly desirable. While the complexity of metallic glasses comes from the atomistic level, there is also a large field which deals with the complexity from electronic level. The only “ab initio” method applicable to solid state systems is density functional theory with local density approximation( LDA) or generalized gradient approximation(GGA) for the exchange-correlation energy. It is very successful for simple sp element, where it reaches an high accuracy for determining the surface reconstruction. However, there is a large class of materials with strong electron correlation, where DFT based on LDA or GGA fails in a fundamental way. An “ab initio” method which can generally apply to correlated materials, as LDA for simple sp element, is still to be developed. The thesis is prepared to address some of the above problems.

  10. An ab-initio density functional theory investigation of fullerene/Zn-phthalocyanine (C60/ZnPc) interface with face-on orientation

    SciTech Connect

    Javaid, Saqib; Javed Akhtar, M.

    2015-07-28

    We have employed density functional theory to study the C60/ZnPc interface with face-on orientation, which has recently been tailored experimentally. For this purpose, adsorption of ZnPc on C60 has been studied, while taking into account different orientations of C60. Out of various adsorption sites investigated, 6:6 C-C bridge position in apex configuration of C60 has been found energetically the most favourable one with C60-ZnPc adsorption distance of ∼2.77 Å. The adsorption of ZnPc on C60 ensues both charge re-organization and charge transfer at the interface, resulting in the formation of interface dipole. Moreover, by comparing results with that of C60/CuPc interface, we show that the direction of interface dipole can be tuned by the change of the central atom of the phthalocyanine molecule. These results highlight the complexity of electronic interactions present at the C60/Phthalocyanine interface.

  11. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-halogenated uracils (5-X-uracils; X=F, Cl, Br, I).

    PubMed

    Singh, J S

    2014-01-01

    Raman (200-4000 cm(-1)) and FT-IR (400-4000 cm(-1)) spectra of uracil and 5-halogenated uracils (5-X-uracils; X=F, Cl, Br, I) have been recorded and analyzed in the range 200-4000 cm(-1). The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Ab initio and DFT calculations [using Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP)] were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-halogenated uracils by employing Gaussian-03 program. Gauss View software was used to make the vibrational analysis. Raman and IR spectra have been computed theoretically for the uracil and 5-halogenated molecules. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. Quantum chemical calculations helped in the reassignments of some fundamental vibrational modes. Most of the B3LYP/6-311++G(**) vibrational frequencies are in excellent agreement with available experimental assignments. The ring breathing and kekule stretching modes are found to lower magnitudes compared to those for uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X=F, Cl, Br, I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations.

  12. The electronic spectrum of AgCl2: Ab initio benchmark versus density-functional theory calculations on the lowest ligand-field states including spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Ramírez-Solís, A.; Poteau, R.; Daudey, J. P.

    2006-01-01

    The XΠg2, Σg+2, and Δg2 states of AgCl2 have been studied through benchmark ab initio complete active space self-consistent field plus second-order complete active space multireference Möller-Plesset algorithm (CASSCF +CASPT2) and complete active space self-consistent field plus averaged coupled pair functional (CASSCF +ACPF) and density-functional theory (DFT) calculations using especially developed basis sets to study the transition energies, geometries, vibrational frequencies, Mulliken charges, and spin densities. The spin-orbit (SO) effects were included through the effective Hamiltonian formalism using the ΛSΣ ACPF energies as diagonal elements. At the ACPF level, the ground state is Πg2 in contradiction with ligand-field theory, SCF, and large CASSCF; the adiabatic excitation energies for the Σg+2 and Δg2 states are 1640 and 18230cm-1, respectively. The inclusion of the SO effects leads to a pure Ω =3/2(Πg2) ground state, a Ω =1/2 (66%Πg2 and 34%Σg+2) A state, a Ω =1/2 (34%Πg2 and 66%Σg+2) B state, a Ω =5/2(Δg2)C state, and a Ω =3/2(99%Δg2)D state. The X-A, X-B, X-C, and X-D transition energies are 485, 3715, 17 246, and 20110cm-1, respectively. The B97-2, B3LYP, and PBE0 functionals overestimate by ≈100% the XΠg2-Σg+2Te but provide a qualitative energetic ordering in good agreement with ACPF results. B3LYP with variable exchange leads to a 42% optimal Hartree-Fock exchange for transition energies but all equilibrium geometries get worsened. Asymptotic corrections to B3LYP do not provide improved values. The nature of the bonding in the XΠg2 state is very different from that of CuCl2 since the Mulliken charge on the metal is 1.1 while the spin density is only 0.35. DFT strongly delocalizes the spin density providing even smaller values of around 0.18 on Ag not only for the ground state, but also for the Σg+2 state.

  13. An ab initio potential function for the ν13 vibrational mode of 1,3-butadiene

    NASA Astrophysics Data System (ADS)

    Senent, M. L.

    1995-06-01

    The restricted potential of the ν13 torsional mode of 1,3-butadiene has been determined from ab initio calculations. The relative energy and geometry of the second rotamer were calculated with the optimized couple cluster method with double substitutions. This ab initio level provides that the second stable structure attaches to a gauche form situated at 140.8°. The potential energy function was obtained by fitting to a symmetry-adapted Fourier series the total electronic energies of several selected conformations. These energies were calculated by the Möller-Plesset perturbation theory up to the second order (MP2) with full and partial optimization of the geometry. Torsional Raman band positions and fundamental frequencies were determined from the periodic potentials with a good agreement with experimental data. The convenience of performing fully optimized calculations to determine the restricted function is also refuted.

  14. Isovector splitting of nucleon effective masses, ab initio benchmarks and extended stability criteria for Skyrme energy functionals

    SciTech Connect

    Lesinski, T.; Meyer, J.

    2006-10-15

    We study the effect of the splitting of neutron and proton effective masses with isospin asymmetry on the properties of the Skyrme energy density functional. We discuss the ability of the latter to predict observables of infinite matter and finite nuclei, paying particular attention to controlling the agreement with ab initio predictions of the spin-isospin content of the nuclear equation of state, as well as diagnosing the onset of finite size instabilities, which we find to be of critical importance. We show that these various constraints cannot be simultaneously fulfilled by the standard Skyrme force, calling at least for an extension of its P-wave part.

  15. Ab-initio study of germanium di-interstitial using a hybrid functional (HSE)

    NASA Astrophysics Data System (ADS)

    Igumbor, E.; Ouma, C. N. M.; Webb, G.; Meyer, W. E.

    2016-01-01

    In this work, we present ab-initio calculation results of Ge di-interstitials (I2(Ge)) in the framework of the density functional theory (DFT) using the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional. The formation energy, transition levels and minimum energy configurations were obtained for I2(Ge) -2, -1, 0, +1 and +2 charge states. The calculated formation energies show that for all charge states of I2(Ge), the double tetrahedral (T) configuration formed the most stable defect with a binding energy of 1.24 eV in the neutral state. We found the (+2/+1) charge state transition level for the T lying below the conduction band minimum and (+2/+1) for the split[110]-tetrahedral configuration lying deep at 0.41 eV above the valence band maximum. The di-interstitials in Ge exhibited the properties of both shallow and deep donor levels at (+2/+1) within the band gap and depending on the configurations. I2(Ge) gave rise to negative-U, with effective-U values of -0.61 and -1.6 eV in different configurations. We have compared our results with calculations of di-interstitials in silicon and available experimental data.

  16. Communication: Novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations.

    PubMed

    Mizukami, Wataru; Kurashige, Yuki; Yanai, Takeshi

    2010-09-01

    An investigation into spin structures of poly(m-phenylenecarbene), a prototype of magnetic organic molecules, is presented using the ab initio density matrix renormalization group method. It is revealed by achieving large-scale multireference calculations that the energy differences between high-spin and low-spin states (spin-gaps) of polycarbenes decrease with increasing the number of carbene sites. This size-dependency of the spin-gaps strikingly contradicts the predictions with single-reference methods including density functional theory. The wave function analysis shows that the low-spin states are beyond the classical spin picture, namely, much of multireference character, and thus are manifested as strongly correlated quantum states. The size dependence of the spin-gaps involves an odd-even oscillation, which cannot be explained by the integer-spin Heisenberg model with a single magnetic-coupling constant.

  17. Ab initio density functional theory study of non-polar (101{sup ¯}0), (112{sup ¯}0) and semipolar (202{sup ¯}1) GaN surfaces

    SciTech Connect

    Mutombo, P.; Romanyuk, O.

    2014-05-28

    The atomic structures of non-polar GaN(101{sup ¯}0), (112{sup ¯}0) and semipolar GaN(202{sup ¯}1), (202{sup ¯}1{sup ¯}) surfaces were studied using ab initio calculations within density functional theory. The bulk-like truncated (1 × 1) structure with buckled Ga-N or Ga-Ga dimers was found stable on the non-polar GaN(101{sup ¯}0) surface in agreement with previous works. Ga-N heterodimers were found energetically stable on the GaN(112{sup ¯}0)-(1 × 1) surface. The formation of vacancies and substitution site defects was found unfavorable for non-polar GaN surfaces. Semipolar GaN(202{sup ¯}1)-(1 × 1) surface unit cells consist of non-polar (101{sup ¯}0) and semipolar (101{sup ¯}1) nano-facets. The (101{sup ¯}1) nano-facets consist of two-fold coordinated atoms, which form N-N dimers within a (2 × 1) surface unit cell on a GaN(202{sup ¯}1) surface. Dimers are not formed on the GaN(202{sup ¯}1{sup ¯}) surface. The stability of the surfaces with single (101{sup ¯}0) or (101{sup ¯}1) nano-facets was analyzed. A single non-polar (101{sup ¯}0)-(1 × 1) nano-facet was found stable on the GaN(202{sup ¯}1) surface, but unstable on the GaN(202{sup ¯}1{sup ¯}) surface. A single (101{sup ¯}1) nano-facet was found unstable. Semipolar GaN surfaces with (202{sup ¯}1) and (202{sup ¯}1{sup ¯}) polarity can be stabilized with a Ga overlayer at Ga-rich experimental conditions.

  18. Ab initio density matrix renormalization group study of magnetic coupling in dinuclear iron and chromium complexes

    SciTech Connect

    Harris, Travis V.; Morokuma, Keiji; Kurashige, Yuki; Yanai, Takeshi

    2014-02-07

    The applicability of ab initio multireference wavefunction-based methods to the study of magnetic complexes has been restricted by the quickly rising active-space requirements of oligonuclear systems and dinuclear complexes with S > 1 spin centers. Ab initio density matrix renormalization group (DMRG) methods built upon an efficient parameterization of the correlation network enable the use of much larger active spaces, and therefore may offer a way forward. Here, we apply DMRG-CASSCF to the dinuclear complexes [Fe{sub 2}OCl{sub 6}]{sup 2−} and [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+}. After developing the methodology through systematic basis set and DMRG M testing, we explore the effects of extended active spaces that are beyond the limit of conventional methods. We find that DMRG-CASSCF with active spaces including the metal d orbitals, occupied bridging-ligand orbitals, and their virtual double shells already capture a major portion of the dynamic correlation effects, accurately reproducing the experimental magnetic coupling constant (J) of [Fe{sub 2}OCl{sub 6}]{sup 2−} with (16e,26o), and considerably improving the smaller active space results for [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+} with (12e,32o). For comparison, we perform conventional MRCI+Q calculations and find the J values to be consistent with those from DMRG-CASSCF. In contrast to previous studies, the higher spin states of the two systems show similar deviations from the Heisenberg spectrum, regardless of the computational method.

  19. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  20. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE PAGES

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-11

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  1. Insights into the function of silver as an oxidation catalyst by ab initio atomistic thermodynamics

    NASA Astrophysics Data System (ADS)

    Li, Wei-Xue; Stampfl, Catherine; Scheffler, Matthias

    2003-10-01

    To help understand the high activity of silver as an oxidation catalyst, e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of methanol to formaldehyde, the interaction and stability of many different oxygen species at the Ag(111) surface has been studied for a wide range of coverages. Through calculation of the free energy, as obtained from density-functional theory and taking into account the temperature and pressure via the oxygen chemical potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a thin surface-oxide structure is most stable for the temperature and pressure range of ethylene epoxidation and we propose it (and possibly other similar structures) contains the species actuating the catalysis. For higher temperatures, low coverages of chemisorbed oxygen are most stable, which could also play a role in oxidation reactions. For temperatures greater than about 775 K there are no stable oxygen species, except for the possibility of O atoms adsorbed at undercoordinated surface sites (i.e., imperfections, defects). At low temperatures (≲400 K at atmospheric pressure), provided kinetic limitations can be overcome, thicker oxidelike structures are predicted. Due to their low thermal stability, however, they can be ruled out as playing an important role in the heterogeneous reactions under technical conditions. Bulk dissolved oxygen and a molecular ozonelike species adsorbed at a surface vacancy, as have been proposed in the literature, are found to be energetically unfavorable. The employed theoretical approach for calculating free energies and predicting the lowest energy structures in contact with species in the environment (“ab initio, atomistic thermodynamics”), affords investigation of a system that seamlessly connects standard (T=0 K) density-functional theory results, characteristic of “typical” theoretical surface science studies, through to those valid for the conditions of catalysis. Though the error

  2. Surface electron density models for accurate ab initio molecular dynamics with electronic friction

    NASA Astrophysics Data System (ADS)

    Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.

    2016-06-01

    Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.

  3. Nuclear motion effects on the density matrix of crystals: an ab initio Monte Carlo harmonic approach.

    PubMed

    Pisani, Cesare; Erba, Alessandro; Ferrabone, Matteo; Dovesi, Roberto

    2012-07-28

    In the frame of the Born-Oppenheimer approximation, nuclear motions in crystals can be simulated rather accurately using a harmonic model. In turn, the electronic first-order density matrix (DM) can be expressed as the statistically weighted average over all its determinations each resulting from an instantaneous nuclear configuration. This model has been implemented in a computational scheme which adopts an ab initio one-electron (Hartree-Fock or Kohn-Sham) Hamiltonian in the CRYSTAL program. After selecting a supercell of reasonable size and solving the corresponding vibrational problem in the harmonic approximation, a Metropolis algorithm is adopted for generating a sample of nuclear configurations which reflects their probability distribution at a given temperature. For each configuration in the sample the "instantaneous" DM is calculated, and its contribution to the observables of interest is extracted. Translational and point symmetry of the crystal as reflected in its average DM are fully exploited. The influence of zero-point and thermal motion of nuclei on such important first-order observables as x-ray structure factors and Compton profiles can thus be estimated.

  4. Enhanced thermal decomposition of nitromethane on functionalized graphene sheets: ab initio molecular dynamics simulations.

    PubMed

    Liu, Li-Min; Car, Roberto; Selloni, Annabella; Dabbs, Daniel M; Aksay, Ilhan A; Yetter, Richard A

    2012-11-21

    The burning rate of the monopropellant nitromethane (NM) has been observed to increase by adding and dispersing small amounts of functionalized graphene sheets (FGSs) in liquid NM. Until now, no plausible mechanisms for FGSs acting as combustion catalysts have been presented. Here, we report ab initio molecular dynamics simulations showing that carbon vacancy defects within the plane of the FGSs, functionalized with oxygen-containing groups, greatly accelerate the thermal decomposition of NM and its derivatives. This occurs through reaction pathways involving the exchange of protons or oxygens between the oxygen-containing functional groups and NM and its derivatives. FGS initiates and promotes the decomposition of the monopropellant and its derivatives, ultimately forming H(2)O, CO(2), and N(2). Concomitantly, oxygen-containing functional groups on the FGSs are consumed and regenerated without significantly changing the FGSs in accordance with experiments indicating that the FGSs are not consumed during combustion. PMID:23101732

  5. FTIR, FT-Raman, ab initio and density functional studies on 4-methyl-1,3-dioxolan-2-one and 4,5-dichloro-1,3-dioxolan-2-one

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Saravanan, I.; Ravindran, P.; Mohan, S.

    2010-09-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 4-methyl-1,3-dioxolan-2-one and 4,5-dichloro-1,3-dioxolan-2-one have been recorded in the range 3700-400 and 3700-100 cm -1, respectively. The complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out using the observed FTIR and FT-Raman data. The vibrational frequencies determined experimentally were compared with those obtained theoretically from ab initio HF and DFT-B3LYP gradient calculations employing 6-311++G** and cc-pVTZ basis sets for the optimised geometries of the compounds. The geometries and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The normal coordinate analysis was also carried out with ab initio force fields utilising Wilson's FG matrix method. The interactions of the skeletal vibrational modes were investigated.

  6. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  7. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with precise calculations. Thus the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule has become a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), will be presented in this paper. The reactive sites of the inhibitors are determined and explained. The accuracy of structure determination of the inhibitors are tested theoretically.

  8. Transport and optical properties of CH2 plastics: Ab initio calculation and density-of-states-based analysis

    NASA Astrophysics Data System (ADS)

    Knyazev, D. V.; Levashov, P. R.

    2015-11-01

    This work covers an ab initio calculation of transport and optical properties of plastics of the effective composition CH2 at density 0.954 g/cm3 in the temperature range from 5 kK up to 100 kK. The calculation is based on the quantum molecular dynamics, density functional theory and the Kubo-Greenwood formula. The temperature dependence of the static electrical conductivity σ1DC (T) has an unusual shape: σ1DC(T) grows rapidly for 5 kK ≤ T ≤ 10 kK and is almost constant for 20 kK ≤ T ≤ 60 kK. The additional analysis based on the investigation of the electron density of states (DOS) was performed. The rapid growth of σ1DC(T) at 5 kK ≤ T ≤ 10 kK is connected with the increase of DOS at the electron energy equal to the chemical potential ɛ = μ. The frequency dependence of the dynamic electrical conductivity σ1(ω) at 5 kK has the distinct non-Drude shape with the peak at ω ≈ 10 eV. This behavior of σ1(ω) was explained by the dip at the electron DOS.

  9. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.

    PubMed

    Chaudret, Robin; Gresh, Nohad; Narth, Christophe; Lagardère, Louis; Darden, Thomas A; Cisneros, G Andrés; Piquemal, Jean-Philip

    2014-09-01

    We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles. To understand the benefits of the use of Gaussian electrostatics, we evaluate first the accuracy of GEM, which is a pure density-based Gaussian electrostatics model on a test Ca(II)-H2O complex. GEM is shown to further improve the agreement of MM polarization with ab initio reference results. Indeed, GEM introduces nonclassical effects by modeling the short-range quantum behavior of electric fields and therefore enables a straightforward (and selective) inclusion of the sole overlap-dependent exchange-polarization repulsive contribution by means of a Gaussian damping function acting on the GEM fields. The S/G-1 scheme is then introduced. Upon limiting the use of Gaussian electrostatics to metal centers only, it is shown to be able to capture the dominant quantum effects at play on the metal coordination sphere. S/G-1 is able to accurately reproduce ab initio total interaction energies within closed-shell metal complexes regarding each individual contribution including the separate contributions of induction, polarization, and charge-transfer. Applications of the method are provided for various systems including the HIV-1 NCp7-Zn(II) metalloprotein. S/G-1 is then extended to heavy metal complexes. Tested on Hg(II) water complexes, S/G-1 is shown to accurately model polarization up to quadrupolar

  10. 7Be(p,(gamma))8B S-factor From Ab Initio Wave Functions

    SciTech Connect

    Navratil, P; Bertulani, C; Caurier, E

    2005-08-15

    Nuclear structure of {sup 7}Be, {sup 8}B and {sup 7,8}Li is studied within the ab initio no-core shell model (NCSM). Starting from the high-precision CD-Bonn 2000 nucleon-nucleon (NN) interaction, wave functions of {sup 7}Be and {sup 8}B bound states are obtained in basis spaces up to 10{h_bar}{Omega} and used to calculate channel cluster form factors (overlap integrals) of the {sup 8}B ground state with {sup 7}Be+p. Due to the use of the harmonic oscillator (HO) basis, the overlap integrals have incorrect asymptotic properties. We fix this problem in two alternative ways. First, by a Woods-Saxon (WS) potential solution fit to the interior of the NCSM overlap integrals. Second, by a direct matching with the Whittaker function. The corrected overlap integrals are then used for the {sup 7}Be(p,{gamma}){sup 8}B S-factor calculation. We study the convergence of the S-factor with respect to the NCSM HO frequency and the model space size. Our S-factor results are in agreement with recent direct measurement data.

  11. Novel zinc(II) and copper(II) complexes of a Mannich base derived from lawsone: Synthesis, single crystal X-ray analysis, ab initio density functional theory calculations and vibrational analysis.

    PubMed

    Neves, Amanda P; Vargas, Maria D; Téllez Soto, Claudio A; Ramos, Joanna M; Visentin, Lorenzo do C; Pinheiro, Carlos B; Mangrich, Antônio S; de Rezende, Edivaltrys I P

    2012-08-01

    Zinc(II) and copper(II) complexes of a tridentate Mannich base L1 derived from 2-hydroxy-1,4-naphthoquinone, pyridinecarboxyaldehyde and 2-aminomethylpyridine, [ZnL1Cl(2)]·H(2)O 1 and [CuL1Cl(2)]·2H(2)O 2, have been synthesized and fully characterized. The structure of complex 1 has been elucidated by a single crystal X-ray diffraction study: the zinc atom is pentacoordinate and the coordination geometry is a distorted square base pyramid, with a geometric structural parameter τ equal to 0.149. Vibrational spectroscopy and ab initio DFT calculations of both compounds have confirmed that the two complexes exhibit similar structures. Full assignment of the vibrational spectra was also supported by careful analysis of the distorted geometries generated by the normal modes. PMID:22513170

  12. Investigating short-range magnetism in strongly correlated materials via magnetic pair distribution function analysis and ab initio theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin; Page, Katharine; Brunelli, Michela; Staunton, Julie; Billinge, Simon

    Short-range magnetic correlations are known to exist in a variety of strongly correlated electron systems, but our understanding of the role they play is challenged by the difficulty of experimentally probing such correlations. Magnetic pair distribution function (mPDF) analysis is a newly developed neutron total scattering method that can reveal short-range magnetic correlations directly in real space, and may therefore help ameliorate this difficulty. We present temperature-dependent mPDF measurements of the short-range magnetic correlations in the paramagnetic phase of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. We observe significant correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range-ordered spin arrangement. With no free parameters, ab initio calculations using the self-interaction-corrected local spin density approximation of density functional theory quantitatively reproduce the magnetic correlations to a high degree of accuracy. These results yield valuable insight into the magnetic exchange in MnO and showcase the utility of the mPDF technique for studying magnetic properties of strongly correlated electron systems.

  13. Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 2,4-bis(2-methoxyphenyl)-1-phenylanthracene-9,10-dione by ab initio HF and density functional methods.

    PubMed

    Joseph, Tomy; Varghese, Hema Tresa; Panicker, C Yohannan; Thiemann, Thies; Viswanathan, K; Van Alsenoy, Christian; Manojkumar, T K

    2014-01-01

    Anthraquinone derivatives are most important class of a system that absorb in the visible region. In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy for 2,4-bis(2-methoxyphenyl)-1-phenylanthracene-9,10-dione. Theoretical calculations were performed by ab initio HF and DFT methods using 6-31G(*) basis set. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated geometrical parameters (DFT) are in agreement with that of similar derivatives. The calculated first hyperpolarizability of the title compound is 4.69×10(-30) esu, which is 36.08 times that of urea and the title compound and the series of compounds it represents are attractive candidates for further studies in non linear optical applications.

  14. Vibrational spectral investigation, NBO, first hyperpolarizability and UV-Vis spectral analysis of 3,5-dichlorobenzonitrile and m-bromobenzonitrile by ab initio and density functional theory methods.

    PubMed

    Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M

    2015-02-01

    The FT-IR and FT-Raman spectra of 3,5-dichlorobenzonitrile and m-bromobenzonitrile have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The optimized geometry, wave numbers and intensity of vibrational bonds of title molecules are obtained by ab initio and DFT level of theory with complete relaxation in the potential energy surface using 6-311++G(d, p) basis set. A complete vibrational assignments aided by the theoretical harmonic frequency, analysis have been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The UV-Vis spectral analysis of the molecules has also been done which confirms the charge transfer of the molecules. Furthermore, the first hyperpolarizability and total dipole moment of the molecules have been calculated. PMID:25440585

  15. Spectroscopic (FT-IR and FT-Raman) investigation, first order hyperpolarizability, NBO, HOMO-LUMO and MEP analysis of 6-nitrochromone by ab initio and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Senthil kumar, J.; Jeyavijayan, S.; Arivazhagan, M.

    2015-02-01

    The vibrational spectral analysis is carried out using FT-Raman and FT-IR spectroscopy in the range 3500-50 cm-1 and 4000-400 cm-1, respectively, for 6-nitrochromone (6NC). The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization and normal coordinates force field calculation based on ab initio HF and DFT gradient calculations employing the HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) basis set. Stability of the molecule has been analyzed using NBO analysis. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Thermodynamic properties like entropy, heat capacity, zero-point energy and Mulliken's charge analysis have been calculated for the 6NC. The complete assignments were performed on the basis of total energy distribution (TED) of the vibrational modes with scaled quantum mechanical (SQM) method. The MEP map shows the negative potential sites are on oxygen atoms as well as the positive potential sites are around the hydrogen atoms.

  16. Spectroscopic (FT-IR and FT-Raman) investigation, first order hyperpolarizability, NBO, HOMO-LUMO and MEP analysis of 6-nitrochromone by ab initio and density functional theory calculations.

    PubMed

    Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M

    2015-02-01

    The vibrational spectral analysis is carried out using FT-Raman and FT-IR spectroscopy in the range 3500-50 cm(-1) and 4000-400 cm(-1), respectively, for 6-nitrochromone (6NC). The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization and normal coordinates force field calculation based on ab initio HF and DFT gradient calculations employing the HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) basis set. Stability of the molecule has been analyzed using NBO analysis. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Thermodynamic properties like entropy, heat capacity, zero-point energy and Mulliken's charge analysis have been calculated for the 6NC. The complete assignments were performed on the basis of total energy distribution (TED) of the vibrational modes with scaled quantum mechanical (SQM) method. The MEP map shows the negative potential sites are on oxygen atoms as well as the positive potential sites are around the hydrogen atoms. PMID:25448928

  17. Physical origins of weak H2 binding on carbon nanostructures: Insight from ab initio studies of chemically functionalized graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ulman, Kanchan; Bhaumik, Debarati; Wood, Brandon C.; Narasimhan, Shobhana

    2014-05-01

    We have performed ab initio density functional theory calculations, incorporating London dispersion corrections, to study the absorption of molecular hydrogen on zigzag graphene nanoribbons whose edges have been functionalized by OH, NH2, COOH, NO2, or H2PO3. We find that hydrogen molecules always preferentially bind at or near the functionalized edge, and display induced dipole moments. Binding is generally enhanced by the presence of polar functional groups. The largest gains are observed for groups with oxygen lone pairs that can facilitate local charge reorganization, with the biggest single enhancement in adsorption energy found for "strong functionalization" by H2PO3 (115 meV/H2 versus 52 meV/H2 on bare graphene). We show that for binding on the "outer edge" near the functional group, the presence of the group can introduce appreciable contributions from Debye interactions and higher-order multipole electrostatic terms, in addition to the dominant London dispersion interactions. For those functional groups that contain the OH moiety, the adsorption energy is linearly proportional to the number of lone pairs on oxygen atoms. Mixed functionalization with two different functional groups on a graphene edge can also have a synergistic effect, particularly when electron-donating and electron-withdrawing groups are combined. For binding on the "inner edge" somewhat farther from the functional group, most of the binding again arises from London interactions; however, there is also significant charge redistribution in the π manifold, which directly reflects the electron donating or withdrawing capacity of the functional group. Our results offer insight into the specific origins of weak binding of gas molecules on graphene, and suggest that edge functionalization could perhaps be used in combination with other strategies to increase the uptake of hydrogen in graphene. They also have relevance for the storage of hydrogen in porous carbon materials, such as activated

  18. 7Be(p,gamma)8B S-factor from Ab Initio Wave Functions

    SciTech Connect

    Navratil, P; Bertulani, C A; Caurier, E

    2006-10-12

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) predicts low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. We present here a brief overview of the first steps taken toward nuclear reaction applications. In particular, we discuss our calculation of the {sup 7}Be(p,{gamma}){sup 8}B S-factor. We also present our first results of the {sup 3}He({alpha},{gamma}){sup 7}Be S-factor and of the S-factor of the mirror reaction {sup 3}H({alpha},{gamma}){sup 7}Li. The {sup 7}Be(p,{gamma}){sup 8}B and {sup 3}He({alpha},{gamma}){sup 7}Be reactions correspond to the most important uncertainties in solar model predictions of neutrino fluxes.

  19. Physical origins of weak H2 binding on carbon nanostructures: Insight from ab initio studies of chemically functionalized graphene nanoribbons

    DOE PAGES

    Ulman, Kanchan; Bhaumik, Debarati; Wood, Brandon C.; Narasimhan, Shobhana

    2014-05-05

    Here, we have performed ab initio density functional theory calculations, incorporating London dispersion corrections, to study the absorption of molecular hydrogen on zigzag graphene nanoribbons whose edges have been functionalized by OH, NH2, COOH, NO2, or H2PO3. We find that hydrogen molecules always preferentially bind at or near the functionalized edge, and display induced dipole moments. Binding is generally enhanced by the presence of polar functional groups. Furthermore, the largest gains are observed for groups with oxygen lone pairs that can facilitate local charge reorganization, with the biggest single enhancement in adsorption energy found for “strong functionalization” by H2PO3 (115more » meV/H2 versus 52 meV/H2 on bare graphene). We show that for binding on the “outer edge” near the functional group, the presence of the group can introduce appreciable contributions from Debye interactions and higher-order multipole electrostatic terms, in addition to the dominant London dispersion interactions. For those functional groups that contain the OH moiety, the adsorption energy is linearly proportional to the number of lone pairs on oxygen atoms. Mixed functionalization with two different functional groups on a graphene edge can also have a synergistic effect, particularly when electron-donating and electron-withdrawing groups are combined. For binding on the “inner edge” somewhat farther from the functional group, most of the binding again arises from London interactions; however, there is also significant charge redistribution in the π manifold, which directly reflects the electron donating or withdrawing capacity of the functional group. These results offer insight into the specific origins of weak binding of gas molecules on graphene, and suggest that edge functionalization could perhaps be used in combination with other strategies to increase the uptake of hydrogen in graphene. They also have relevance for the storage of hydrogen in

  20. The Most Stable Structures of Si Clusters Based on ab initio Calculation of TB-LMTO and Real-Space Green's Function Method

    NASA Astrophysics Data System (ADS)

    Xie, Z. L.; Dy, K. S.; Wu, S. Y.

    1996-03-01

    An efficient ab initio scheme has been developed by using TB LMTO method to calculate the electronic structure and the full electron density of atomic clusters. In this scheme, the real-space Green's function (RSG) is used to obtain the full electronic density which includes the correction for non-spherical effects. Meanwhile, the real space Green's function can facilitate the calculation of the electronic structure for large clusters with restricted computer memory and CPU resources by using matrix reversion method developed by Wu and his co-workers. With the full electron density of atomic clusters, the total energies of clusters can be calculated. We have applied this ab initio scheme to evaluate the structural properties for Si clusters of 11-14 atoms. Diffrent geometrical arrangements have been examined as posible candidates of the most stable structure for each size cluster, and by calculating their cohesive energies, the most stable structure can be determined for a given size cluster. Our calculations have given similar results of previous investigations using the tight-binding molecular dynamics method.

  1. Accurate ab initio potential for the krypton dimer and transport properties of the low-density krypton gas.

    PubMed

    Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo

    2015-05-28

    A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range.

  2. Accurate ab initio potential for the krypton dimer and transport properties of the low-density krypton gas.

    PubMed

    Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo

    2015-05-28

    A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range. PMID:26026447

  3. Interpolating moving least-squares methods for fitting potential energy surfaces : computing high-density potential energy surface data from low-density ab initio data points.

    SciTech Connect

    Dawes, R.; Thompson, D. L.; Guo, Y.; Wagner, A. F.; Minkoff, M.; Chemistry; Univ. of Missouri-Columbia; Oklahoma State Univ.

    2007-05-11

    A highly accurate and efficient method for molecular global potential energy surface (PES) construction and fitting is demonstrated. An interpolating-moving-least-squares (IMLS)-based method is developed using low-density ab initio Hessian values to compute high-density PES parameters suitable for accurate and efficient PES representation. The method is automated and flexible so that a PES can be optimally generated for classical trajectories, spectroscopy, or other applications. Two important bottlenecks for fitting PESs are addressed. First, high accuracy is obtained using a minimal density of ab initio points, thus overcoming the bottleneck of ab initio point generation faced in applications of modified-Shepard-based methods. Second, high efficiency is also possible (suitable when a huge number of potential energy and gradient evaluations are required during a trajectory calculation). This overcomes the bottleneck in high-order IMLS-based methods, i.e., the high cost/accuracy ratio for potential energy evaluations. The result is a set of hybrid IMLS methods in which high-order IMLS is used with low-density ab initio Hessian data to compute a dense grid of points at which the energy, Hessian, or even high-order IMLS fitting parameters are stored. A series of hybrid methods is then possible as these data can be used for neural network fitting, modified-Shepard interpolation, or approximate IMLS. Results that are indicative of the accuracy, efficiency, and scalability are presented for one-dimensional model potentials as well as for three-dimensional (HCN) and six-dimensional (HOOH) molecular PESs

  4. Ab initio ground-state potential energy function and vibration-rotation energy levels of imidogen, NH.

    PubMed

    Koput, Jacek

    2015-06-30

    The accurate ground-state potential energy function of imidogen, NH, has been determined from ab initio calculations using the multireference averaged coupled-pair functional (MR-ACPF) method in conjunction with the correlation-consistent core-valence basis sets up to octuple-zeta quality. The importance of several effects, including electron correlation beyond the MR-ACPF level of approximation, the scalar relativistic, adiabatic, and nonadiabatic corrections were discussed. Along with the large one-particle basis set, all of these effects were found to be crucial to attain "spectroscopic" accuracy of the theoretical predictions of vibration-rotation energy levels of NH.

  5. Fourfold Clusters of Rovibrational Energies in H2Te Studied With an Ab Initio Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.

  6. Molecular structure and vibrational assignment of 1-[N-(2-pyridyl) aminomethylidene}-2(1H)-Naphtalenone by density functional theory (DFT) and ab initio Hartree-Fock (HF) calculations.

    PubMed

    Tanak, Hasan; Toy, Mehmet

    2016-01-01

    The molecular geometry and vibrational frequencies of 1-[N-(2-pyridyl)aminomethylidene}-2(1H)-Naphtalenone in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-311++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The computed vibrational frequencies were used to determine the types of molecular motions associated with each of the experimental bands observed. In addition, calculated results are related to the linear correlation plot of computed data versus experimental geometric parameters and IR data. From the results it was concluded that the B3LYP method is superior to the HF method for the vibrational frequencies. Using the time-dependent density functional theory (TD-DFT) and Hartree-Fock (TD-HF) methods, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and experimental ones is determined. PMID:25468437

  7. Molecular structure and vibrational assignment of 1-[N-(2-pyridyl) aminomethylidene}-2(1H)-Naphtalenone by density functional theory (DFT) and ab initio Hartree-Fock (HF) calculations

    NASA Astrophysics Data System (ADS)

    Tanak, Hasan; Toy, Mehmet

    2016-01-01

    The molecular geometry and vibrational frequencies of 1-[N-(2-pyridyl)aminomethylidene}-2(1H)-Naphtalenone in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-311++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The computed vibrational frequencies were used to determine the types of molecular motions associated with each of the experimental bands observed. In addition, calculated results are related to the linear correlation plot of computed data versus experimental geometric parameters and IR data. From the results it was concluded that the B3LYP method is superior to the HF method for the vibrational frequencies. Using the time-dependent density functional theory (TD-DFT) and Hartree-Fock (TD-HF) methods, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and experimental ones is determined.

  8. Ab initio studies of 1,3,5,7-tetranitro-1,3,5,7-tetrazocine/1,3-dimethyl-2-imidazolidinone cocrystal under high pressure using dispersion corrected density functional theory

    SciTech Connect

    Gu, Bang-Ming; Lin, He; Zhu, Shun-Guan

    2014-04-14

    A detailed study of structural, electronic, and thermodynamic properties of 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)/1,3-dimethyl-2-imidazolidinone (DMI) cocrystal under the hydrostatic pressure of 0–100 GPa was performed by using dispersion-corrected density functional theory (DFT-D) method. The calculated crystal structure is in reasonable agreement with the experimental data at the ambient pressure. Based on the analysis of lattice constants, bond lengths, bond angles, and dihedral angles under compression, it is found that HMX molecules in HMX/DMI cocrystal are seriously distorted. In addition, as the pressure increases, the band gap decreases gradually, which suggests that HMX/DMI cocrystal is becoming more metallic. Some important intermolecular interactions between HMX and DMI are also observed in the density of states spectrum. Finally, its thermodynamic properties were characterized, and the results show that HMX/DMI cocrystal is more easily formed in the low pressure.

  9. Ab initio study of the effect of pressure on the structural and electronic properties of cubic LaAlO3 by density function theory using GGA, LDA and PBEsol exchange correlation potentials

    NASA Astrophysics Data System (ADS)

    Benam, M. R.; Abdoshahi, N.; Majidiyan Sarmazdeh, M.

    2014-08-01

    In this paper the effect of pressure on the structural and electronic properties of cubic-LaAlO3 including the equilibrium lattice constant, bulk modulus, derivative of bulk modulus and band structure have been calculated by density functional theory (DFT) using GGA, LDA, and PBEsol exchange correlation potentials. It is found that the change of the lattice constant with pressure has an exponential behavior: with increasing pressure, the lattice constant decreases first sharply at low pressures, and then more slowly at high pressures. Furthermore, the lattice constant calculated by the PBEsol method and the bulk modulus calculated by LDA and PBEsol methods are closer to the available experimental values than those obtained using other exchange correlation potentials. Regarding the electronic properties, it is shown that an increase in pressure increases the band gap, the change being 0.26 eV at 34.00 GPa. The total density of state (t-DOS) calculations demonstrate that increasing pressure has a significant effect on the core and conduction band, but little effect on the valence band. The band structure calculations indicate that, in this material, the band gap changes from indirect to direct at a pressure of about 25 GPa. Also, increasing pressure produces a clear curvature in the band structure near the bottom of the conduction band, a behavior consistent with the strong pressure dependence of the transport properties.

  10. Investigation of the Fe{sup 3+} centers in perovskite KMgF{sub 3} through a combination of ab initio (density functional theory) and semi-empirical (superposition model) calculations

    SciTech Connect

    Emül, Y.; Erbahar, D.; Açıkgöz, M.

    2015-08-14

    Analyses of the local crystal and electronic structure in the vicinity of Fe{sup 3+} centers in perovskite KMgF{sub 3} crystal have been carried out in a comprehensive manner. A combination of density functional theory (DFT) and a semi-empirical superposition model (SPM) is used for a complete analysis of all Fe{sup 3+} centers in this study for the first time. Some quantitative information has been derived from the DFT calculations on both the electronic structure and the local geometry around Fe{sup 3+} centers. All of the trigonal (K-vacancy case, K-Li substitution case, and normal trigonal Fe{sup 3+} center case), FeF{sub 5}O cluster, and tetragonal (Mg-vacancy and Mg-Li substitution cases) centers have been taken into account based on the previously suggested experimental and theoretical inferences. The collaboration between the experimental data and the results of both DFT and SPM calculations provides us to understand most probable structural model for Fe{sup 3+} centers in KMgF{sub 3}.

  11. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV-vis spectra, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis, thermodynamic properties of benzophenone 2,4-dicarboxylic acid by ab initio HF and density functional method

    NASA Astrophysics Data System (ADS)

    Chaitanya, K.

    2012-02-01

    The FT-IR (4000-450 cm -1) and FT-Raman spectra (3500-100 cm -1) of benzophenone 2,4-dicarboxylic acid (2,4-BDA) have been recorded in the condensed state. Density functional theory calculation with B3LYP/6-31G(d,p) basis set have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman activities and bonding features of the title compounds. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability ( β0) and related properties ( β, α0 and Δ α) of 2,4-BDA is calculated using HF/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charges is also calculated. Because of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-vis spectra and electronic absorption properties were explained and illustrated from the frontier molecular orbitals.

  12. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface.

    PubMed

    Moses-DeBusk, Melanie; Yoon, Mina; Allard, Lawrence F; Mullins, David R; Wu, Zili; Yang, Xiaofan; Veith, Gabriel; Stocks, G Malcolm; Narula, Chaitanya K

    2013-08-28

    Although there are only a few known examples of supported single-atom catalysts, they are unique because they bridge the gap between homogeneous and heterogeneous catalysis. Here, we report the CO oxidation activity of monodisperse single Pt atoms supported on an inert substrate, θ-alumina (Al2O3), in the presence of stoichiometric oxygen. Since CO oxidation on single Pt atoms cannot occur via a conventional Langmuir-Hinshelwood scheme (L-H scheme) which requires at least one Pt-Pt bond, we carried out a first-principles density functional theoretical study of a proposed pathway which is a variation on the conventional L-H scheme and inspired by the organometallic chemistry of platinum. We find that a single supported Pt atom prefers to bond to O2 over CO. CO then bonds with the oxygenated Pt atom and forms a carbonate which dissociates to liberate CO2, leaving an oxygen atom on Pt. Subsequent reaction with another CO molecule regenerates the single-atom catalyst. The energetics of the proposed mechanism suggests that the single Pt atoms will get covered with CO3 unless the temperature is raised to eliminate CO2. We find evidence for CO3 coverage at room temperature supporting the proposed mechanism in an in situ diffuse reflectance infrared study of CO adsorption on the catalyst's supported single atoms. Thus, our results clearly show that supported Pt single atoms are catalytically active and that this catalytic activity can occur without involving the substrate. Characterization by electron microscopy and X-ray absorption studies of the monodisperse Pt/θ-Al2O3 are also presented.

  13. Metal screening for CMOS application through vacuum and interface work function ab-initio calculations: benefits and limitations

    NASA Astrophysics Data System (ADS)

    Fonseca, Leonardo

    2005-03-01

    Future reduction of transistor dimensions in line with historical trends cannot be achieved with the current SiO2/polysilicon technology due to limited effective oxide thickness (EOT) scalability and excessive power consumption caused by high gate leakage current. Among the proposed solutions, the high permissivity dielectric (high-K)/metal combination seems to be a promising route. While considerable progress has been made towards identifying a favorable high-K dielectric, with HfO2 and its silicates and nitrides as the leading candidates, n- and p-type metal gates with appropriate work functions still lack. A rough, ``first order'' metal gate screening can be performed with considerable confidence through measurement and calculation of metal vacuum work functions (WFs). However, charge exchange at metal/dielectric interfaces cause the metal effective WF on a particular dielectric to differ from its vacuum value, sometimes by as much as 1 eV [1]. For that reason, metal effective WF ab-initio calculations using interface models are of primary importance if theory is to be used as a guide for correctly identifying metal gates. In this talk I will discuss the role of interface states on the pinning of metal Fermi levels and show results for model HfO2/Si and Al2O3/Si interfaces that correctly reproduce experimental data with polysilicon as the gate metal [2]. Next I will describe results of theoretical metal screening for polysilicon replacement. We have found that while vacuum WF calculations can be quite accurate, hence useful as a predictive tool, metal/dielectric interface calculations are severely limited in accuracy by the lack of experimental information on the atomistic structure of the interfaces and possibly by an unexpected and still unclear drawback of density functional theory (DFT) within the local density approximation (LDA) [3]. Improvements based on empirical scaling of the DFT/LDA calculated metal/dielectric valence band offset and on bulk GW

  14. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    SciTech Connect

    Roemelt, Michael

    2015-07-28

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.

  15. Structure, electronic density of states and electric field gradients of icosahedral AlCuFe: An ab initio study of the original and a modified Cockayne model

    NASA Astrophysics Data System (ADS)

    Zijlstra, E. S.; Kortus, J.; Krajčí, M.; Stadnik, Z. M.; Bose, S. K.

    2004-03-01

    We present a detailed analysis of electronic properties of the Cockayne model of icosahedral AlCuFe, both in its original form and after a structural relaxation using the ab initio density functional approach. The electronic density of states (DOS) and electric field gradients (EFG’s) of the Al and Fe atoms in the original and the relaxed Cockayne models were calculated and compared with available photoemission, Mössbauer, and nuclear quadrupole resonance spectroscopy data. The relaxed and the original models show significantly different electronic properties. Both models are deficient in describing the available experimental data. The DOS’s show two Fe-d peaks, where there is only one such peak in the photoemission spectroscopy data. These models also cannot account for the shape of the Mössbauer spectra. We show that the interchange between 12 Cu and 12 Fe atoms, each belonging to a single symmetry class, results in a smaller number of Cu-Fe nearest-neighbor pairs and a lowering of the total energy by an amount of ΔE˜50 meV/atom. This “modified” version of the Cockayne model was further relaxed for the final comparison between the calculation and experimental results. The modified model shows a considerable improvement: The DOS has only one Fe-d peak, in agreement with photoemission spectroscopy data, and the calculated EFG’s account very well for the experimental Mössbauer spectra.

  16. Ab-initio study of structural, mechanical and electronic properties of functionalized carbon nanotubes

    SciTech Connect

    Milowska, Karolina Z.; Birowska, Magdalena; Majewski, Jacek A.

    2013-12-04

    We present exemplary results of extensive studies of structural, mechanical and electronic properties of covalent functionalization of carbon nanotubes (CNTs). We report new results for metallic (9,0), and semiconducting (10,0) single-wall carbon nanotubes (CNT) functionalized with -COOH, -OH, and both groups with concentration up to 12.5%. Our studies are performed in the framework of the density functional theory (DFT). We discuss here the stability, local and global changes in structure, elastic moduli (Young's, Shear, and Bulk), electronic structure and resulting band gaps, as a function of the density of the adsorbed molecules.

  17. Ab initio molecular dynamics.

    PubMed

    Laasonen, Kari

    2013-01-01

    In this chapter, an introduction to ab initio molecular dynamics (AIMD) has been given. Many of the basic concepts, like the Hellman-Feynman forces, the difference between the Car-Parrinello molecular dynamics and AIMD, have been explained. Also a very versatile AIMD code, the CP2K, has been introduced. On the application, the emphasis was on the aqueous systems and chemical reactions. The biochemical applications have not been discussed in depth.

  18. Communication: Hole localization in Al-doped quartz SiO{sub 2} within ab initio hybrid-functional DFT

    SciTech Connect

    Gerosa, Matteo; Bottani, Carlo Enrico

    2015-09-21

    We investigate the long-standing problem of hole localization at the Al impurity in quartz SiO{sub 2}, using a relatively recent DFT hybrid-functional method in which the exchange fraction is obtained ab initio, based on an analogy with the static many-body COHSEX approximation to the electron self-energy. As the amount of the admixed exact exchange in hybrid functionals has been shown to be determinant for properly capturing the hole localization, this problem constitutes a prototypical benchmark for the accuracy of the method, allowing one to assess to what extent self-interaction effects are avoided. We obtain good results in terms of description of the charge localization and structural distortion around the Al center, improving with respect to the more popular B3LYP hybrid-functional approach. We also discuss the accuracy of computed hyperfine parameters, by comparison with previous calculations based on other self-interaction-free methods, as well as experimental values. We discuss and rationalize the limitations of our approach in computing defect-related excitation energies in low-dielectric-constant insulators.

  19. Epitaxial strain induced ferroelectricity in rocksalt binary compound: Hybrid functional Ab initio calculation and soft mode group theory analysis

    NASA Astrophysics Data System (ADS)

    Kim, Bog G.

    2011-05-01

    We have studied the detailed mechanism of epitaxial strain induced ferroelectricity in rocksalt binary compound by ab initio calculation and soft mode group theory analysis. By applying compressive strain, cubic binary rocksalt (F m3m) transforms into tetragonal (I 4/mmm) structure. With increasing compressive strain, tetragonal structure becomes unstable against spontaneous transformation to lower symmetry tetragonal structure (I 4/mm), evident both from ab initio calculation and from soft mode group theory analysis. For the tensile strain, phase transition sequence can be cubic binary rocksalt to tetragonal (I 4/mmm) and to orthorhombic structure (I m2m). From ab initio calculation and space group analysis, we propose that the epitaxial strain induced ferroelectricity of rocksalt binary compound is the generic property.

  20. 7Be(p,(gamma))8B S-factor from Ab Initio No-Core Shell Model Wave Functions

    SciTech Connect

    Navratil, P; Bertulani, C A; Caurier, E

    2005-12-02

    Nuclear structure of {sup 7}Be, {sup 8}B and {sup 7,8}Li is studied within the ab initio no-core shell model (NCSM). Starting from high-precision nucleon-nucleon (NN) interactions, wave functions of {sup 7}Be and {sup 8}B bound states are obtained in basis spaces up to 10 h bar{Omega} and used to calculate channel cluster form factors (overlap integrals) of the {sup 8}B ground state with {sup 7}Be+p. Due to the use of the harmonic oscillator (HO) basis, the overlap integrals have incorrect asymptotic properties. We fix this problem in two alternative ways. First, by a Woods-Saxon (WS) potential solution fit to the interior of the NCSM overlap integrals. Second, by a direct matching with the Whittaker function. The corrected overlap integrals are then used for the {sup 7}Be(p,{gamma}){sup 8}B S-factor calculation. We study the convergence of the S-factor with respect to the NCSM HO frequency and the model space size. Our S-factor results are in agreement with recent direct measurement data. We also test the spectroscopic factors and the corrected overlap integrals from the NCSM in describing the momentum distributions in knockout reactions with {sup 8}B projectiles. A good agreement with the available experimental data is also found, attesting the overall consistency of the calculations.

  1. Ab initio design of low work function complex oxides for thermionic energy conversion

    NASA Astrophysics Data System (ADS)

    Mack, Stephanie; Li, Guo; Neaton, Jeffrey

    Understanding and controlling work functions, or band edge energies, is of interest for a variety of applications in optoelectronics and energy conversion. In particular, while recent advances in device design have improved the feasibility of thermionic generators, new low work function materials are needed to enable their widespread use. Perovskite-based oxides (ABO3) are a diverse class of materials that, depending on the transition metal atoms on the A and B sites, can give rise to myriad emergent and collective phenomena. Here, we use density functional theory calculations to examine how the work function of one such oxide, SrRuO3 (SRO), can be tuned by monolayers of SrTiO3 (STO) and other polar or near-polar oxides. We find that SRO work functions can be tuned by over 1 eV with one layer of STO, although the calculated reduction in work function is an order of magnitude less than would be expected from the bulk polarization. We understand the variation in work function via a detailed analysis of Born effective charges at the surface, which are as small as 10% of their bulk values, and charge rearrangement at the STO surface and SRO/STO interface.

  2. Ab Initio Study of Polonium

    SciTech Connect

    Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2008-05-20

    Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.

  3. Curvy-steps approach to constraint-free extended-Lagrangian ab initio molecular dynamics, using atom-centered basis functions: convergence toward Born-Oppenheimer trajectories.

    PubMed

    Herbert, John M; Head-Gordon, Martin

    2004-12-15

    A dynamical extension of the "curvy-steps" approach to linear-scaling self-consistent field calculations is presented, which yields an extended-Lagrangian formulation of ab initio molecular dynamics. An exponential parametrization of the one-electron density matrix, expressed in terms of atom-centered Gaussian basis functions, facilitates propagation along the manifold of density matrices in a geometrically correct fashion that automatically enforces idempotency constraints. The extended Lagrangian itself is constraint free, thus neither density matrix purification nor expensive, iterative solution for Lagrange multipliers is required. Propagation is highly efficient, and time steps compare favorably to those used in Car-Parrinello molecular dynamics simulations. The behavior of the method, especially with regard to the maintenance of adiabatic decoupling of nuclei and electrons, is examined for a sequence of diatomic molecules, and comparison is made to trajectories propagated on the converged Born-Oppenheimer surface. Certain claims to the contrary notwithstanding, our results demonstrate that vibrational frequencies may depend on the value of the fictitious mass parameter, even in an atom-centered basis. Light-atom stretching frequencies can be significantly redshifted, even when the nuclear and electronic energy scales are well separated. With a sufficiently small fictitious mass and a short time step, accurate frequencies can be obtained; we characterize appropriate values of these parameters for a wide range of vibrational frequencies.

  4. Communication: Energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach

    SciTech Connect

    Liu, Zhen-Fei; Neaton, Jeffrey B.

    2014-10-07

    The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.

  5. Communication: Energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Fei; Neaton, Jeffrey B.

    2014-10-01

    The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.

  6. Ab initio modeling of graphene layer functionalized with boron and nitrogen

    SciTech Connect

    Woińska, Magdalena; Milowska, Karolina; Majewski, Jacek A.

    2013-12-04

    We present a computational study of the phenomenon of opening the band gap in graphene by means of functionalization with boron and nitrogen atoms. For most of the considered structures, we observe a nonzero energy gap with the width slightly dependent on the concentration of the substituent atoms. Additionally, elastic properties for graphene functionalized with B/N atoms for concentrations of 2% and 4% have been predicted. N-substitution almost does not influence the elastic moduli of graphene, while changes caused by B-substitution are more remarkable.

  7. Ab-initio study of encapsulated and functionalized silicon nanotube with a monoatomically thin Cu wire

    NASA Astrophysics Data System (ADS)

    Chandel, Surjeet Kumar; Kumar, Arun; Ahluwalia, P. K.; Sharma, Raman

    2015-06-01

    First principle calculations based on DFT have been performed to study the interaction of monoatomically thin Cu wire with silicon nanotube in armchair configuration having chirality (6, 6) both by placing it inside (encapsulation) and outside (functionalisation) the tube. The lowest energy for positioning monoatomically thin Cu wire inside and outside surfaces of SiNT were found to possess cohesive energies of 4.03 eV and 4.02 eV respectively and hence the stability of both SiNTs is found to be almost same. However, From the electronic band structures study, the conductance in case of SiNT for the encapsulated and functionalized positioning of the Cu wire have been found to be 2G0 and 4G0 respectively showing enhanced conductance for the functionalized SiNT.

  8. Ab-initio study of encapsulated and functionalized silicon nanotube with a monoatomically thin Cu wire

    SciTech Connect

    Chandel, Surjeet Kumar; Ahluwalia, P. K.; Sharma, Raman; Kumar, Arun

    2015-06-24

    First principle calculations based on DFT have been performed to study the interaction of monoatomically thin Cu wire with silicon nanotube in armchair configuration having chirality (6, 6) both by placing it inside (encapsulation) and outside (functionalisation) the tube. The lowest energy for positioning monoatomically thin Cu wire inside and outside surfaces of SiNT were found to possess cohesive energies of 4.03 eV and 4.02 eV respectively and hence the stability of both SiNTs is found to be almost same. However, From the electronic band structures study, the conductance in case of SiNT for the encapsulated and functionalized positioning of the Cu wire have been found to be 2G{sub 0} and 4G{sub 0} respectively showing enhanced conductance for the functionalized SiNT.

  9. Ab initio simulation of diffractometer instrumental function for high-resolution X-ray diffraction1

    PubMed Central

    Mikhalychev, Alexander; Benediktovitch, Andrei; Ulyanenkova, Tatjana; Ulyanenkov, Alex

    2015-01-01

    Modeling of the X-ray diffractometer instrumental function for a given optics configuration is important both for planning experiments and for the analysis of measured data. A fast and universal method for instrumental function simulation, suitable for fully automated computer realization and describing both coplanar and noncoplanar measurement geometries for any combination of X-ray optical elements, is proposed. The method can be identified as semi-analytical backward ray tracing and is based on the calculation of a detected signal as an integral of X-ray intensities for all the rays reaching the detector. The high speed of calculation is provided by the expressions for analytical integration over the spatial coordinates that describe the detection point. Consideration of the three-dimensional propagation of rays without restriction to the diffraction plane provides the applicability of the method for noncoplanar geometry and the accuracy for characterization of the signal from a two-dimensional detector. The correctness of the simulation algorithm is checked in the following two ways: by verifying the consistency of the calculated data with the patterns expected for certain simple limiting cases and by comparing measured reciprocal-space maps with the corresponding maps simulated by the proposed method for the same diffractometer configurations. Both kinds of tests demonstrate the agreement of the simulated instrumental function shape with the measured data. PMID:26089760

  10. Ab initio Wannier-function-based many-body approach to Born charges of crystalline insulators

    NASA Astrophysics Data System (ADS)

    Sony, Priya; Shukla, Alok

    2004-12-01

    In this paper we present an approach aimed at performing many-body calculations of Born-effective charges of crystalline insulators by including the electron-correlation effects. The scheme is implemented entirely in the real space, using Wannier functions as single-particle orbitals. Correlation effects are computed by including virtual excitations from the Hartree-Fock mean field, and the excitations are organized as per a Bethe Goldstone-like many-body hierarchy. The results of our calculations suggest that the approach presented here is promising.

  11. Ab initio and metadynamics studies on the role of essential functional groups in biomineralization of calcium carbonate and environmental situations.

    PubMed

    Saharay, Moumita; Kirkpatrick, R James

    2014-12-28

    The interactions of proteins, polysaccharides and other biomolecules with Ca(2+), CO3(2-), and water are central to the understanding of biomineralization and crystallization of calcium carbonate (CaCO3), and their association with the natural organic matter (NOM) in the environment. A molecular-level investigation of how such interactions and thermodynamic forces drive the nucleation and growth of crystalline CaCO3 in living organisms remains elusive. This paper presents ab initio and metadynamics studies of the interactions of Ca(2+), CO3(2-), and water with the essential amino acids/functional groups, e.g. arginine/NH2(+), aspartate or glutamate/COO(-), aspartic or glutamic acid/COOH, and serine/OH, of protein/organic molecules that are likely to be critical to the biomineralization of CaCO3. These functional groups were modeled as guanidinium (Gdm(+)), acetate (AcO(-)), acetic acid (AcOH), and ethanol (EtOH) molecules, respectively. The Gdm(+)-Ca(2+)-CO3(2-) and AcO(-)-Ca(2+)-CO3(2-) systems were found to form stable ion-complexes irrespective of the presence of near neighbor water molecules. The strong electrostatic interactions of these functional groups with their counter-ions significantly affect the fundamental vibrational frequencies of the functional groups, mainly the NH2 stretching (str.) and degenerate (deg.) scissors modes of Gdm(+) and -C=OO, CC, and CO str. modes of AcO(-). The free-energy calculations reveal that EtOH forms weakly bound molecular complexes with the Ca(2+)-CO3(2-) ion pairs in water. However, the interaction strength of EtOH with crystalline CaCO3 can increase significantly due to combined effect of H-bond and electron donor acceptor (EDA) type of interactions. These results indicate that -NH2(+) and -COO(-) bearing molecules serve as potential nucleation sites promoting crystallization of CaCO3 phases while -OH bearing molecules are likely to control the morphology of the crystalline phases by attaching to the growing crystal

  12. Ab initio and metadynamics studies on the role of essential functional groups in biomineralization of calcium carbonate and environmental situations.

    PubMed

    Saharay, Moumita; Kirkpatrick, R James

    2014-12-28

    The interactions of proteins, polysaccharides and other biomolecules with Ca(2+), CO3(2-), and water are central to the understanding of biomineralization and crystallization of calcium carbonate (CaCO3), and their association with the natural organic matter (NOM) in the environment. A molecular-level investigation of how such interactions and thermodynamic forces drive the nucleation and growth of crystalline CaCO3 in living organisms remains elusive. This paper presents ab initio and metadynamics studies of the interactions of Ca(2+), CO3(2-), and water with the essential amino acids/functional groups, e.g. arginine/NH2(+), aspartate or glutamate/COO(-), aspartic or glutamic acid/COOH, and serine/OH, of protein/organic molecules that are likely to be critical to the biomineralization of CaCO3. These functional groups were modeled as guanidinium (Gdm(+)), acetate (AcO(-)), acetic acid (AcOH), and ethanol (EtOH) molecules, respectively. The Gdm(+)-Ca(2+)-CO3(2-) and AcO(-)-Ca(2+)-CO3(2-) systems were found to form stable ion-complexes irrespective of the presence of near neighbor water molecules. The strong electrostatic interactions of these functional groups with their counter-ions significantly affect the fundamental vibrational frequencies of the functional groups, mainly the NH2 stretching (str.) and degenerate (deg.) scissors modes of Gdm(+) and -C=OO, CC, and CO str. modes of AcO(-). The free-energy calculations reveal that EtOH forms weakly bound molecular complexes with the Ca(2+)-CO3(2-) ion pairs in water. However, the interaction strength of EtOH with crystalline CaCO3 can increase significantly due to combined effect of H-bond and electron donor acceptor (EDA) type of interactions. These results indicate that -NH2(+) and -COO(-) bearing molecules serve as potential nucleation sites promoting crystallization of CaCO3 phases while -OH bearing molecules are likely to control the morphology of the crystalline phases by attaching to the growing crystal

  13. Optical properties of crystalline and amorphous silicon slabs with adsorbed metal clusters and with dopants: A combined ab-initio electronic structure and density matrix treatment

    NASA Astrophysics Data System (ADS)

    Kilin, Dimitri; Micha, David; Ramirez, Jessica

    2011-03-01

    The optical absorbance and surface photovoltage of slabs of Si with varying number of layers have been calculated starting from their atomic structure. Results have been obtained for nanostructured surfaces with adsorbed metal clusters and for group III and V dopants, from ab initio DFT with periodic boundary conditions for extended systems, and from time-dependent DFT for supercells. Density matrix equations of motion (EOM) have been parametrized in a basis set of Kohn-Sham orbitals, for both crystalline and amorphous Si slabs. Results for properties and from electronic charge distributions provide insight on slab confinement effects for electronically excited states and for particle-hole creation. In addition, the integrodifferential EOMs have been solved for an initial femtosecond pulse excitation to analyze the nature of electron transfer at the surfaces, relevant to photovoltaics. Work supported by the NSF and by the Dreyfus Foundation to DM.

  14. A partition function-based weighting scheme in force field parameter development using ab initio calculation results in global configurational space.

    PubMed

    Wu, Yao; Dai, Xiaodong; Huang, Niu; Zhao, Lifeng

    2013-06-01

    In force field parameter development using ab initio potential energy surfaces (PES) as target data, an important but often neglected matter is the lack of a weighting scheme with optimal discrimination power to fit the target data. Here, we developed a novel partition function-based weighting scheme, which not only fits the target potential energies exponentially like the general Boltzmann weighting method, but also reduces the effect of fitting errors leading to overfitting. The van der Waals (vdW) parameters of benzene and propane were reparameterized by using the new weighting scheme to fit the high-level ab initio PESs probed by a water molecule in global configurational space. The molecular simulation results indicate that the newly derived parameters are capable of reproducing experimental properties in a broader range of temperatures, which supports the partition function-based weighting scheme. Our simulation results also suggest that structural properties are more sensitive to vdW parameters than partial atomic charge parameters in these systems although the electrostatic interactions are still important in energetic properties. As no prerequisite conditions are required, the partition function-based weighting method may be applied in developing any types of force field parameters.

  15. Physical origins of weak H2 binding on carbon nanostructures: Insight from ab initio studies of chemically functionalized graphene nanoribbons

    SciTech Connect

    Ulman, Kanchan; Bhaumik, Debarati; Wood, Brandon C.; Narasimhan, Shobhana

    2014-05-05

    Here, we have performed ab initio density functional theory calculations, incorporating London dispersion corrections, to study the absorption of molecular hydrogen on zigzag graphene nanoribbons whose edges have been functionalized by OH, NH2, COOH, NO2, or H2PO3. We find that hydrogen molecules always preferentially bind at or near the functionalized edge, and display induced dipole moments. Binding is generally enhanced by the presence of polar functional groups. Furthermore, the largest gains are observed for groups with oxygen lone pairs that can facilitate local charge reorganization, with the biggest single enhancement in adsorption energy found for “strong functionalization” by H2PO3 (115 meV/H2 versus 52 meV/H2 on bare graphene). We show that for binding on the “outer edge” near the functional group, the presence of the group can introduce appreciable contributions from Debye interactions and higher-order multipole electrostatic terms, in addition to the dominant London dispersion interactions. For those functional groups that contain the OH moiety, the adsorption energy is linearly proportional to the number of lone pairs on oxygen atoms. Mixed functionalization with two different functional groups on a graphene edge can also have a synergistic effect, particularly when electron-donating and electron-withdrawing groups are combined. For binding on the “inner edge” somewhat farther from the functional group, most of the binding again arises from London interactions; however, there is also significant charge redistribution in the π manifold, which directly reflects the electron donating or withdrawing capacity of the functional group. These results offer insight into the specific origins of weak binding of gas molecules on graphene, and suggest that edge functionalization could perhaps be used in combination with other strategies to increase the uptake of

  16. Ab Initio Studies of Calcium Carbonate Hydration.

    PubMed

    Lopez-Berganza, Josue A; Diao, Yijue; Pamidighantam, Sudhakar; Espinosa-Marzal, Rosa M

    2015-11-25

    Ab initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate. Structural and energetics analysis of the hydration of these clusters revealed a first hydration shell composed of 12 water molecules. Bond-length and charge densities were also determined for different cluster sizes. The solvation of calcium carbonate in bulk water was investigated by placing the explicitly solvated CaCO3·nH2O clusters in a polarizable continuum model (PCM). The findings of this study provide new insights into the energetics and structure of hydrated calcium carbonate and contribute to the understanding of mechanisms where calcium carbonate formation or dissolution is of relevance.

  17. Exploring the ab initio/classical free energy perturbation method: The hydration free energy of water

    NASA Astrophysics Data System (ADS)

    Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.

    2000-08-01

    The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to

  18. Macromolecular ab initio phasing enforcing secondary and tertiary structure

    PubMed Central

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  19. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.

  20. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  1. Toward Reliable Prediction of Hyperfine Coupling Constants Using Ab Initio Density Matrix Renormalization Group Method: Diatomic (2)Σ and Vinyl Radicals as Test Cases.

    PubMed

    Lan, Tran Nguyen; Kurashige, Yuki; Yanai, Takeshi

    2014-05-13

    The density matrix renormalization group (DMRG) method is used in conjunction with the complete active space (CAS) procedure, the CAS configuration interaction (CASCI), and the CAS self-consistent field (CASSCF) to evaluate hyperfine coupling constants (HFCCs) for a series of diatomic (2)Σ radicals (BO, CO(+), CN, and AlO) and vinyl (C2H3) radical. The electron correlation effects on the computed HFCC values were systematically investigated using various levels of active space, which were increasingly extended from single valence space to large-size model space entailing double valence and at least single polarization shells. In addition, the core correlation was treated by including the core orbitals in active space. Reasonably accurate results were obtained by the DMRG-CASSCF method involving orbital optimization, while DMRG-CASCI calculations with Hartree-Fock orbitals provided poor agreement of the HFCCs with the experimental values. To achieve further insights into the accuracy of HFCC calculations, the orbital contributions to the total spin density were analyzed at a given nucleus, which is directly related to the FC term and is numerically sensitive to the level of correlation treatment and basis sets. The convergence of calculated HFCCs with an increasing number of renormalized states was also assessed. This work serves as the first study on the performance of the ab initio DMRG method for HFCC prediction.

  2. An ab initio calculation of first and second derivatives of the electric dipole moment function for certain infrared-active modes of SF 6

    NASA Astrophysics Data System (ADS)

    Scanlon, Kerin; Eades, Robert A.; Dixon, David A.

    Certain first and second derivatives of the dipole moment function for SF 6 have been calculated from ab initio molecular orbital theory in the finite difference approximation. All calculations were carried out in normal coordinates with an experimental force field and geometry. A double-zeta basis with d-functions on the sulfur was employed. Calculated harmonic frequencies in cm -1 are 1084 (ω 3) and (648(ω 4) and calculated intensities in km/mole are 1612 (ν 3) and 209 (ν 4). Second derivatives of the dipole moment function for ν 1 + ν 3 x and ν 2 a+ν 3 x in units of e-amu -1 Å are 0.0552 and -0.0119, respectively. A comparison with the values determined from an STO-3G basis is presented together with a comparison of the derived quantities from experiment.

  3. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  4. Entropy of Liquid Water from Ab Initio Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Spanu, Leonardo; Zhang, Cui; Galli, Giulia

    2012-02-01

    The debate on the structural properties of water has been mostly based on the calculation of pair correlation functions. However, the simulation of thermodynamic and spectroscopic quantities may be of great relevance for the characterization of liquid water properties. We have computed the entropy of liquid water using a two-phase thermodynamic model and trajectories generated by ab initio molecular dynamics simulations [1]. In an attempt to better understand the performance of several density functionals in simulating liquid water, we have performed ab initio molecular dynamics using semilocal, hybrid [2] and van der Waals density functionals [3]. We show that in all cases, at the experimental equilibrium density and at temperatures in the vicinity of 300 K, the computed entropies are underestimated, with respect to experiment, and the liquid exhibits a degree of tetrahedral order higher than in experiments. We also discuss computational strategies to simulate spectroscopic properties of water, including infrared and Raman spectra.[4pt] [1] C.Zhang, L.Spanu and G.Galli, J.Phys.Chem. B 2011 (in press)[0pt] [2] C.Zhang, D.Donadio, F.Gygi and G.Galli, J. Chem. Theory Comput. 7, 1443 (2011)[0pt] [3] C.Zhang, J.Wu, G.Galli and F.Gygi, J. Chem. Theory Comput. 7, 3061 (2011)

  5. Ab initio charge-carrier mobility model for amorphous molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2016-05-01

    Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.

  6. Ab initio calculations of nitramine dimers

    NASA Astrophysics Data System (ADS)

    Koh-Fallet, Sharon; Schweigert, Igor

    2015-06-01

    Elevated temperatures and pressures are typically thought to have opposing effects on the reaction channels of nitramine decomposition. These high temperatures promote reactions with loose transition structures (positive activation entropies and volumes), such as N-N bond homolysis. Elevated pressures promote reactions with tight transition structures (negative activation entropies and volumes), such as intramolecular and intermolecular H transfer. However, no quantitative data exists regarding the range of temperatures and pressures at which these effects become pronounced. We are pursuing ab initio calculations of the corresponding unimolecular and bimolecular transition structures with the objective of estimating the relevant thermochemical parameters and quantifying the effects of elevated temperature and pressures on the corresponding rate constants. Here, we present density functional theory and complete active space calculations of gas-phase molecular dimers of nitramines as an intermediate step toward modeling transition structures directly in the condensed phase. This work was supported by the Naval Research Laboratory via the American Society for Engineering and Education and by the Office of Naval Research, both directly and through the Naval Research Laboratory.

  7. Ab initio two-component Ehrenfest dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-21

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  8. Ab initio two-component Ehrenfest dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-01

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H2 and O2. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  9. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis.

    PubMed

    Friesner, Richard A; Guallar, Victor

    2005-01-01

    We describe large scale ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic reactions. First, technical aspects of the methodology are reviewed, including the hybrid density functional theory (DFT) methods that are typically employed for the QM aspect of the calculations, and various approaches to defining the interface between the QM and MM regions in QM/MM approaches. The modeling of the enzymatic catalytic cycle for three examples--methane monooxygenase, cytochrome P450, and triose phosphate isomerase--are discussed in some depth, followed by a brief summary of other systems that have been investigated by ab initio methods over the past several years. Finally, a discussion of the qualitative and quantitative conclusions concerning enzymatic catalysis that are available from modern ab initio approaches is presented, followed by a conclusion briefly summarizing future prospects.

  10. The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2 : Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.

    2016-01-01

    Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.

  11. CheMPS2: A free open-source spin-adapted implementation of the density matrix renormalization group for ab initio quantum chemistry

    NASA Astrophysics Data System (ADS)

    Wouters, Sebastian; Poelmans, Ward; Ayers, Paul W.; Van Neck, Dimitri

    2014-06-01

    The density matrix renormalization group (DMRG) has become an indispensable numerical tool to find exact eigenstates of finite-size quantum systems with strong correlation. In the fields of condensed matter, nuclear structure and molecular electronic structure, it has significantly extended the system sizes that can be handled compared to full configuration interaction, without losing numerical accuracy. For quantum chemistry (QC), the most efficient implementations of DMRG require the incorporation of particle number, spin and point group symmetries in the underlying matrix product state (MPS) ansatz, as well as the use of so-called complementary operators. The symmetries introduce a sparse block structure in the MPS ansatz and in the intermediary contracted tensors. If a symmetry is non-abelian, the Wigner-Eckart theorem allows to factorize a tensor into a Clebsch-Gordan coefficient and a reduced tensor. In addition, the fermion signs have to be carefully tracked. Because of these challenges, implementing DMRG efficiently for QC is not straightforward. Efficient and freely available implementations are therefore highly desired. In this work we present CheMPS2, our free open-source spin-adapted implementation of DMRG for ab initio QC. Around CheMPS2, we have implemented the augmented Hessian Newton-Raphson complete active space self-consistent field method, with exact Hessian. The bond dissociation curves of the 12 lowest states of the carbon dimer were obtained at the DMRG(28 orbitals, 12 electrons, DSU(2) = 2500)/cc-pVDZ level of theory. The contribution of 1 s core correlation to the X1Σg+ bond dissociation curve of the carbon dimer was estimated by comparing energies at the DMRG(36o, 12e, DSU(2) = 2500)/cc-pCVDZ and DMRG-SCF(34o, 8e, DSU(2) = 2500)/cc-pCVDZ levels of theory.

  12. Ab initio study of chemical bond interactions between covalently functionalized carbon nanotubes via amide, ester and anhydride linkages

    NASA Astrophysics Data System (ADS)

    Ben Doudou, Bessem; Chen, Jun; Vivet, Alexandre; Poilâne, Christophe

    2016-03-01

    In this paper, we have investigated the chemical bond interactions between covalently functionalized zigzag (5,0) and (8,0) SWCNT-SWCNT via various covalent linkages. Side-to-side junctions connected via amide, ester and anhydride linkages were particularly studied. The geometries and energy of the forming reaction were investigated using first-principles density functional theory. Furthermore, the band structures and the total density of states (DOS) of the junctions have also been analyzed. Our results show that several promising structures could be obtained by using chemical connection strategy and particularly the junctions formed by coupling amino functionalized SWCNT and carboxylic acid functionalized SWCNT was more favorable.

  13. Finite Elements in Ab Initio Electronic-Structure Calulations

    NASA Astrophysics Data System (ADS)

    Pask, J. E.; Sterne, P. A.

    Over the course of the past two decades, the density functional theory (DFT) (see e.g., [1]) of Hohenberg, Kohn, and Sham has proven to be an accurate and reliable basis for the understanding and prediction of a wide range of materials properties from first principles (ab initio), with no experimental input or empirical parameters. However, the solution of the Kohn-Sham equations of DFT is a formidable task and this has limited the range of physical systems which can be investigated by such rigorous, quantum mechanical means. In order to extend the interpretive and predictive power of such quantum mechanical theories further into the domain of "real materials", involving nonstoichiometric deviations, defects, grain boundaries, surfaces, interfaces, and the like; robust and efficient methods for the solution of the associated quantum mechanical equations are critical. The finite-element (FE) method (see e.g., [2]) is a general method for the solution of partial differential and integral equations which has found wide application in diverse fields ranging from particle physics to civil engineering. Here, we discuss its application to large-scale ab initio electronic-structure calculations.

  14. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials.

  15. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  16. Ab initio study of hot electrons in GaAs

    PubMed Central

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron–phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron–phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron–phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  17. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  18. Ab Initio Calculations of Excited Carrier Dynamics in Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Jhalani, Vatsal; Bernardi, Marco

    Bulk wurtzite GaN is the primary material for blue light-emission technology. The radiative processes in GaN are regulated by the dynamics of excited (or so-called ``hot'') carriers, through microscopic processes not yet completely understood. We present ab initio calculations of electron-phonon (e-ph) scattering rates for hot carriers in GaN. Our work combines density functional theory to compute the electronic states, and density functional perturbation theory to obtain the phonon dispersions and e-ph coupling matrix elements. These quantities are interpolated on fine Brillouin zone grids with maximally localized Wannier functions, to converge the e-ph scattering rates within 5 eV of the band edges. We resolve the contribution of the different phonon modes to the total scattering rate, and study the impact on the relaxation times of the long-range Fröhlich interaction due to the longitudinal-optical phonon modes.

  19. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    SciTech Connect

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-17

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  20. Ab initio RNA folding

    NASA Astrophysics Data System (ADS)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  1. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  2. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems. PMID:25877566

  3. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-01

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  4. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  5. Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: an efficient route to construct ab initio tight-binding parameters for eg perovskites

    NASA Astrophysics Data System (ADS)

    Franchini, C.; Kováčik, R.; Marsman, M.; Sathyanarayana Murthy, S.; He, J.; Ederer, C.; Kresse, G.

    2012-06-01

    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the eg states of the prototypical Jahn-Teller magnetic perovskite LaMnO3 at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without the additional on-site Hubbard U term, hybrid DFT and partially self-consistent GW. By suitably mapping the MLWFs onto an effective eg tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise ‘noninteracting’ TB parameters and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.

  6. AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS

    SciTech Connect

    Turchi, P A

    2004-04-14

    Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.

  7. {sup 7}Be(p,{gamma}){sup 8}B S factor from ab initio no-core shell model wave functions

    SciTech Connect

    Navratil, P.; Bertulani, C.A.; Caurier, E.

    2006-06-15

    Nuclear structure of {sup 7}Be, {sup 8}B, and {sup 7,8}Li is studied within the ab initio no-core shell model (NCSM). Starting from high-precision nucleon-nucleon (NN) interactions, wave functions of {sup 7}Be and {sup 8}B bound states are obtained in basis spaces up to 10({Dirac_h}/2{pi}){omega} and used to calculate channel cluster form factors (overlap integrals) of the {sup 8}B ground state with {sup 7}Be+p. Due to the use of the harmonic oscillator (HO) basis, the overlap integrals have incorrect asymptotic properties. We fix this problem in two alternative ways. First, by a Woods-Saxon potential solution fit to the interior of the NCSM overlap integrals. Second, by a direct matching with the Whittaker function. The corrected overlap integrals are then used for the {sup 7}Be(p,{gamma}){sup 8}B S-factor calculation. We study the convergence of the S factor with respect to the NCSM HO frequency and the model space size. Our S factor results agree with recent direct measurement data. We also test the spectroscopic factors and the corrected overlap integrals from the NCSM in describing the momentum distributions in knockout reactions with {sup 8}B projectiles. A good agreement with the available experimental data is also found, attesting to the overall consistency of the calculations.

  8. Ab initio study of palladium and silicon carbide

    SciTech Connect

    Schuck, Paul C; Stoller, Roger E; Shrader, David

    2011-01-01

    Ab initio methods have been used to investigate the properties of Pd as impurity in bulk SiC at five charge states within the framework of density functional theory using the local density spin approximation. Pd interstitials and substitutionals have similar energy to their intrinsic counterparts. In addition, Pd substitutes for a vacancy, di-vacancy, and tri-vacancy with similar energies. Pd will also diffuse through SiC via an interstitial mechanism employing the tetrahedral sites and Pd can substitute for Si and C at positive charge states. Removing electrons (p-type doping) from SiC lowers the formation and migration energies of Pd defects in SiC for most configurations.

  9. The anharmonic potential function of methylene fluoride. SCF ab initio computations of the cubic force field and analysis of vibration-rotation interaction constants

    NASA Astrophysics Data System (ADS)

    Gaw, Jeffrey F.; Handy, Nicholas C.; Palmieri, Paolo; Esposti, Alessandra Degli

    1988-07-01

    The harmonic and the cubic force fields of CH2F2 have been evaluated ab initio from the SCF energy expression by analytic derivative methods. The computed cubic force constants were used as starting values in a least squares analysis of the experimental vibration-rotation constants of CH2F2 and CD2F2. A simple scaling procedure of the ab initio cubic force constants provides a complete cubic force field for the molecule and the best fit with the experimental data.

  10. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon

    PubMed Central

    2013-01-01

    The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785

  11. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.

    PubMed

    Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C

    2013-02-27

    : The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.

  12. i-TTM Model for Ab Initio-Based Ion-Water Interaction Potentials. 1. Halide-Water Potential Energy Functions.

    PubMed

    Arismendi-Arrieta, Daniel J; Riera, Marc; Bajaj, Pushp; Prosmiti, Rita; Paesani, Francesco

    2016-03-01

    New potential energy functions (i-TTM) describing the interactions between halide ions and water molecules are reported. The i-TTM potentials are derived from fits to electronic structure data and include an explicit treatment of two-body repulsion, electrostatics, and dispersion energy. Many-body effects are represented through classical polarization within an extended Thole-type model. By construction, the i-TTM potentials are compatible with the flexible and fully ab initio MB-pol potential, which has recently been shown to accurately predict the properties of water from the gas to the condensed phase. The accuracy of the i-TTM potentials is assessed through extensive comparisons with CCSD(T)-F12, DF-MP2, and DFT data as well as with results obtained with common polarizable force fields for X(-)(H2O)n clusters with X(-) = F(-), Cl(-), Br(-), and I(-), and n = 1-8. By construction, the new i-TTM potentials will enable direct simulations of vibrational spectra of halide-water systems from clusters to bulk and interfaces.

  13. Melting of sodium under high pressure. An ab-initio study

    SciTech Connect

    González, D. J.; González, L. E.

    2015-08-17

    We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.

  14. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  15. Properties of metals during the heating by intense laser irradiation using ab initio simulations

    NASA Astrophysics Data System (ADS)

    Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane

    2011-10-01

    Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.

  16. Intrinsic acidity of aluminum, chromium (III) and iron (III) μ 3-hydroxo functional groups from ab initio electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Dixon, David A.; Felmy, Andrew R.

    2000-05-01

    Density functional calculations are performed on M 3(OH) 7(H 2O) 62+ and M 3O(OH) 6(H 2O) 6+ clusters for MAl, Cr(III), and Fe(III), allowing determination of the relative acidities of the μ 3-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, Fe 3OH and Al 3OH groups have nearly the same intrinsic acidity, while Cr 3OH groups are significantly more acidic. The gas-phase acidity of the Fe 3OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. [ J. R. Rustad et al. (1996)Geochim. Cosmochim. Acta 60, 1563]. Acidities of aquo functional groups were also computed for Al and Cr. The AlOH 2 site is more acidic than the Al 3OH site, whereas the Cr 3OH site is more acidic than the CrOH 2 site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  17. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  18. Ab initio study of helium behavior in titanium tritides

    SciTech Connect

    Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-03-01

    Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].

  19. Ab initio calculation of the shock Hugoniot of bulk silicon

    NASA Astrophysics Data System (ADS)

    Strickson, Oliver; Artacho, Emilio

    2016-03-01

    We describe how ab initio molecular dynamics can be used to determine the Hugoniot locus (states accessible by a shock wave) for materials with a number of stable phases, and with an approximate treatment of plasticity and yield, without having to simulate these phenomena directly. We consider the case of bulk silicon, with forces from density-functional theory, up to 70 GPa. The fact that shock waves can split into multiple waves due to phase transitions or yielding is taken into account here by specifying the strength of any preceding waves explicitly based on their yield strain. Points corresponding to uniaxial elastic compression along three crystal axes and a number of postshock phases are given, including a plastically yielded state, approximated by an isotropic stress configuration following an elastic wave of predetermined strength. The results compare well to existing experimental data for shocked silicon.

  20. Quantum plasmonics: from jellium models to ab initio calculations

    NASA Astrophysics Data System (ADS)

    Varas, Alejandro; García-González, Pablo; Feist, Johannes; García-Vidal, F. J.; Rubio, Angel

    2016-08-01

    Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT) calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.

  1. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  2. Vibrational and ab initio molecular dynamics studies of bradykinin

    NASA Astrophysics Data System (ADS)

    Święch, Dominika; Kubisiak, Piotr; Andrzejak, Marcin; Borowski, Piotr; Proniewicz, Edyta

    2016-07-01

    In this study, the comprehensive theoretical and experimental investigations of Raman (RS) and infrared absorption (IR) spectra of bradykinin (BK) are presented. The ab initio Born-Oppenheimer molecular dynamics (BOMD) calculations, in the presence of water molecules that form the first coordination sphere, were used for conformational analysis of the BK structure. Based on the Density Functional Theory (DFT) calculations at the B3LYP/6-311G(d) level the vibrational spectra were interpreted. The calculated frequencies were scaled by means of the effective scaling frequency factor (ESFF) method. The theoretical data, which confirm the compact structure of BK in the presence of the water molecules revealed the remarkable effect of the intermolecular hydrogen bonding on the BK structural properties.

  3. Summation of Parquet diagrams as an ab initio method in nuclear structure calculations

    SciTech Connect

    Bergli, Elise; Hjorth-Jensen, Morten

    2011-05-15

    Research Highlights: > We present a Green's function based approach for doing ab initio nuclear structure calculations. > In particular the sum the subset of so-called Parquet diagrams. > Applying the theory to a simple but realistic model, results in good agreement with other ab initio methods. > This opens up for ab initio calculations for medium-heavy nuclei. - Abstract: In this work we discuss the summation of the Parquet class of diagrams within Green's function theory as a possible framework for ab initio nuclear structure calculations. The theory is presented and some numerical details are discussed, in particular the approximations employed. We apply the Parquet method to a simple model, and compare our results with those from an exact solution. The main conclusion is that even at the level of approximation presented here, the results shows good agreement with other comparable ab initio approaches.

  4. Ab initio molecular dynamics simulation of pressure-induced phase transformation of BeO

    SciTech Connect

    Xiao, H. Y.; Duan, G.; Zu, X. T.; Weber, W. J.

    2011-05-05

    Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ → RS and ZB → RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ → RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchange–correlation functional employed and the way of applying pressure.

  5. Structures of 13-atom clusters of fcc transition metals by ab initio and semiempirical calculations

    NASA Astrophysics Data System (ADS)

    Longo, R. C.; Gallego, L. J.

    2006-11-01

    We report the results of ab initio calculations of the structures and magnetic moments of Ni13 , Pd13 , Pt13 , Cu13 , Ag13 , and Au13 that were performed using a density-functional method that employs linear combinations of pseudoatomic orbitals as basis sets (SIESTA). Our structural results for Pt13 , Cu13 , Ag13 , and Au13 show that a buckled biplanar structure (BBP) is more stable than the icosahedral configuration, in keeping with results obtained recently by Chang and Chou [Phys. Rev. Lett. 93, 133401 (2004)] using the Vienna ab initio simulation package with a plane-wave basis. However, for Ni13 and Pd13 we found that the icosahedral structure is more stable than BBP. For all these clusters, two semiempirical methods based on spherically symmetric potentials both found the icosahedral structure to be the more stable, while the modified embedded atom model method, which uses a direction-dependent potential, found BBP to be the more stable structure. When low-energy structures found in recent ab initio studies of Pt13 , Cu13 , and Au13 other than Chang and Chou were optimized with SIESTA, those reported for Pt13 and Cu13 were found to be less stable than BBP, but the two-dimensional planar configuration reported for Au13 proved to be more stable than BBP.

  6. The spectroscopic (FT-IR, FT-Raman and NMR), NCA, Fukui function analysis first order hyperpolarizability, TGA of 6-chloro-3,4dihydro-2H-1,2,4-benzothiazine-7-sulphonamide1,1-dioxide by ab initio HF and Density Functional method.

    PubMed

    Elamurugu Porchelvi, E; Muthu, S

    2014-04-01

    The Fourier-Transform Infrared and Fourier-Transform Raman spectra of 6-Chloro-3,4dihydro-2H-1,2,4-benzothiazine-7sulphonamide1,1-dioxide(6CDBSD) was recorded in the region 4000-450cm(-1) and 4000-100cm(-1)respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wave numbers of 6CDBSD were carried out by HF and DFT (B3LYP) method with 6-31G (d,p) basis set. The difference between the observed and scaled wavenumber value of most of the fundamentals is very small. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The linear polariazability (α) and the first order hyperpolarizability (βtot) values of the investigated molecule have been computed using HF and DFT with 6-31G (d,p) basis set. Stability of the molecule arising from hyper conjugative interaction and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The (1)H and (13)C Nuclear Magnetic Resonance (NMR) chemical shifts of the molecules were calculated using the Gauge-Invariant Atomic orbital (GIAO) method, confirms with the experimental values. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. Thermal stability of 6CDBSD was studied by thermo gravimetric analysis (TGA). Next Fukui functions was calculated to identify changes in the reactivity of molecule. Finally molecular electrostatic potential (MEP) and other molecular properties were performed.

  7. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Mukamel, Shaul

    2015-07-01

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  8. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    SciTech Connect

    Kowalewski, Markus Mukamel, Shaul

    2015-07-28

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  9. Effect of nitrogen and vacancy defects on the thermal conductivity of diamond: An ab initio Green's function approach

    NASA Astrophysics Data System (ADS)

    Katcho, N. A.; Carrete, J.; Li, Wu; Mingo, N.

    2014-09-01

    We show that impurities and vacancies affect the thermal conductivity much more strongly than what is predicted by widely accepted models. When local distortions around point defects are strong, standard perturbative approaches fail, and phonon scattering can only be accounted for by an exact Green's function calculation. We apply the theory to the study, from first-principles, of nitrogen and vacancy defects in diamond. The thermal conductivity is computed by solving the linearized Boltzmann transport equation. The Born approximation underestimates the phonon scattering cross sections of nitrogen and vacancies by factors of 3 and 10, respectively. Thermal conductivity calculations are in good agreement with experiment.

  10. Density functional theory and Ab initio studies of vibrational spectroscopic (FT-IR, FT-Raman and UV) first order hyperpolarizabilities, NBO, HOMO-LUMO and TD-DFT analysis of the 1,2-Dihydropyrazolo (4,3-E) Pyrimidin-4-one

    NASA Astrophysics Data System (ADS)

    Ramachandran, G.; Muthu, S.; Uma Maheswari, J.

    2013-02-01

    Fourier transform Raman and Fourier transform infrared spectra of 1,2-Dihydropyrazolo (4,3-E) Pyrimidin-4-one were recorded in the regions 3500-100 cm-1 and 4000-400 cm-1 respectively in the solid phase. 1,2-Dihydropyrazolo (4, 3-E) Pyrimidin-4-one is used to treat hyperuricemia and its complication including chronic gout. The equilibrium geometry harmonic vibrational frequencies, infrared intensities and Raman intensities were calculated by Hartee Fock and density functional B3LYP methods with 6-31G (d, p) basis set, using Gaussian 03W program package on a Pentium IV/1.6 GHz personal computer. The thermodynamic functions of the title compound were also performed at the above methods and basis set. A detailed interpretation of the infrared and Raman spectra of 1,2-Dihydropyrazolo (4,3-E) Pyrimidin-4-one is reported. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis of the compound was recorded. The calculated HOMO and LUMO energies show that chemical activity of the molecule. The first order hyperpolarizability (β) of this novel molecular system and related properties of 1,2-Dihydropyrazolo (4,3-E) Pyrimidin-4-one are calculated using HF/6-31G (d, p) method on the finite field approach. The experimental spectra also coincide satisfactorily with those of theoretically constructed spectra.

  11. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics.

    PubMed

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems. PMID:27176426

  12. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  13. DFT-based ab initio study of structural and electronic properties of lithium fluorooxoborate LiB6O9F and experimentally observed second harmonic generation

    NASA Astrophysics Data System (ADS)

    Andriyevsky, B.; Doll, K.; Cakmak, G.; Jansen, M.; Niemer, A.; Betzler, K.

    2011-09-01

    An ab initio density functional theory-based study of the electronic band structure, the elastic, electric, elastoelectric, and linear and nonlinear optical properties of the new ion conductor LiB6O9F, has been performed. The computed band structure reveals a wide direct band gap. The coefficients of the second order nonlinear susceptibility χ(2) were found to be comparable to those of KH2PO4. Corresponding experimental investigations of second harmonic generation comply with the respective ab initio calculations.

  14. Ab initio phonon limited transport

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu

    We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)

  15. An ab initio MO study of butalene

    NASA Astrophysics Data System (ADS)

    Ohta, Katsuhisa; Shima, Toru

    1994-01-01

    Butalene as a structural isomer of p-benzyne has been studied by using an ab initio GVB wavefunction. The geometry of butalene, which is shown to be almost rectangular, is first optimized as a local minimum on the energy surface at the ab initio level. However, the energy barrier of conversion to p-benzyne is as small as 1.6 kcal/mol, and experimental isolation of butalene is predicted to be difficult from a force-constant analysis.

  16. Adsorption orientation and STM imaging of meta-benzyne resolved by scanning tunnelling microscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Simic-Milosevic, Violeta; Bocquet, Marie-Laure; Morgenstern, Karina

    2009-08-01

    Dissociative adsorption of doubly substituted benzene molecules leads to a molecule with two missing hydrogen atoms. We use scanning tunnelling microscopy at 5 K and density functional theory to investigate these benzyne molecules on Cu(1 1 1). Benzyne is either imaged as a depression, as a ring-shaped protrusion, or as a circular protrusion at different tunnelling parameters. Submolecular resolution and ab initio calculations give information on the adsorption properties about the in-situ formed biradical species.

  17. Ab-initio modeling of an anion C- 60 pseudopotential for fullerene-based compounds

    NASA Astrophysics Data System (ADS)

    Vrubel, Ivan I.; Polozkov, Roman G.; Ivanov, Vadim K.

    2016-08-01

    An anion C- 60 pseudopotential is determined from an ab-initio-based approach. First, ab-initio calculations are performed to calculate the electronic charge density and the total electrostatic potential. Second, the effective dependence of the pseudopotential on the radial degree of freedom is extracted from the angular average of the total electrostatic potential. Finally, the resulting effective pseudopotential is fitted to a simple analytical form which can be applied in further dynamical simulations of fullerene-based compounds.

  18. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  19. Spectroscopic studies (FTIR, FT-Raman and UV-Visible), normal coordinate analysis, NBO analysis, first order hyper polarizability, HOMO and LUMO analysis of (1R)-N-(Prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine molecule by ab initio HF and density functional methods

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Ramachandran, G.

    2014-03-01

    The Fourier transform infrared (FT-IR) and FT-Raman of (1R)-N-(Prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine (1RNPDA) were recorded in the regions 4000-400 cm-1 and 4000-100 cm-1 respectively. A complete assignment and analysis of the fundamental vibrational modes of the molecule were carried out. The observed fundamental modes have been compared with the harmonic vibrational frequencies computed using HF method by employing 6-31G(d,p) basis set and DFT(B3LYP) method by employing 6-31G(d,p) basis set. The vibrational studies were interpreted in terms of Potential Energy Distribution (PED). The complete vibrational frequency assignments were made by Normal Co-ordinate Analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The first order hyper polarizability (β0) of this molecular system and related properties (α, μ, and Δα) are calculated using B3LYP/6-31G(d,p) method based on the finite-field approach. The thermodynamic functions of the title compound were also performed at the above methods and basis set. A detailed interpretation of the infrared and Raman spectra of 1RNPDA is reported. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated using the GIAO method confirms with the experimental values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using Natural Bond Orbital (NBO) analysis. UV-vis spectrum of the compound was recorded and electronic properties such as excitation energies, oscillator strength and wavelength were performed by TD-DFT/B3LYP using 6-31G(d,p) basis set. The HOMO and LUMO energy gap reveals that the energy gap reflects the chemical activity of the molecule. The observed and calculated wave numbers are formed to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed spectra.

  20. Ab-initio calculations on melting of thorium

    NASA Astrophysics Data System (ADS)

    Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.

  1. Structural and magnetic properties of Tcn@C60 endohedral metallofullerenes: An ab initio study

    NASA Astrophysics Data System (ADS)

    Kim, Eunja; Weck, Philippe F.; Czerwinski, Kenneth R.; Tománek, David

    2010-03-01

    We use ab initio spin density functional calculations to study the equilibrium structure and magnetic properties of Tcn@C60 endohedral metallofullerenes. The radionuclide ^99mTc is well established in biomedicine as a potent in vivo diagnostic radiopharmaceutical; its encapsulation in the inert C60 shell is expected to limit possible cytotoxicity of radiometal nanoparticles catabolized by the biological host. We find that C60 can endohedrally accommodate Tcn clusters with up to n=7. The encapsulation does not change significantly the structure of the enclosed clusters, but reduces the magnetic moment due to a stronger Tc--C hybridization for the larger clusters.

  2. Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.

    2016-06-01

    The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.

  3. Efficient Use of an Adapting Database of Ab Initio Calculations To Generate Accurate Newtonian Dynamics.

    PubMed

    Shaughnessy, M C; Jones, R E

    2016-02-01

    We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm.

  4. Ab Initio Electronic Structure Calculations of Cytochrome P450 -- Ligand Interactions

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Ellis, S. W.; Tucker, G. T.

    1997-03-01

    The Cytochrome P450 superfamily of enzymes are of great interest in pharmacology as they participate in an enormous range of physiological processes including drug deactivation and xenobiotic detoxification. We apply ab initio electronic structure calculations to model the interactions of the haem molecule at the P450 active site with substrate and inhibitor ligands. These calculations, based on density function theory, were performed with the CETEP code which uses a plane wave basis set and pseudopotentials to perform efficient LDA, GGA and spin dependent calculations. A change in the spin state of the haem iron atom is observed on binding of a substrate molecule, consistent with the accepted reaction mechanism.

  5. Ab initio potentials of F+Li{sub 2} accessible at ultracold temperatures

    SciTech Connect

    Wright, K. W. A.; Lane, Ian C.

    2010-09-15

    Ab initio calculations for the strongly exoergic Li{sub 2}+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li{sub 2} molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.

  6. Ab initio description of second-harmonic generation from crystal surfaces

    NASA Astrophysics Data System (ADS)

    Tancogne-Dejean, Nicolas; Giorgetti, Christine; Véniard, Valérie

    2016-09-01

    We propose an ab initio framework to derive the dielectric and the second-order susceptibility tensors for crystal surfaces. The single-surface response is extracted from a supercell scheme. We evaluate macroscopic quantities, taking into account the local fields. The first- and second-order susceptibilities are evaluated within time-dependent density functional theory, in the long-wavelength limit. We apply our formalism to the calculation of the second-harmonic generation for clean and hydrogenated silicon surfaces. The agreement with measured second-order susceptibility components is significantly better, illustrating the importance of local-field effects.

  7. Efficient Use of an Adapting Database of Ab Initio Calculations To Generate Accurate Newtonian Dynamics.

    PubMed

    Shaughnessy, M C; Jones, R E

    2016-02-01

    We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm. PMID:26669825

  8. Site occupancy trend of Co in Ni{sub 2}MnIn: Ab initio approach

    SciTech Connect

    Pal, Soumyadipta Mahadevan, Priya; Biswas, C.

    2015-06-24

    The trend of site occupation of Co at Ni sites of Ni{sub 2}MnIn system is studied in austenitic phase having L2{sub 1} structure by ab initio density functional theory (DFT) calculation. The Co atoms prefer to be at Ni sites rather than Mn site and are ferromagetically coupled with Ni and Mn. The ground state has tetragonal structure for Ni{sub 1.5}Co{sub 0.5}MnIn and Ni{sub 1.25}Co{sub 0.75}MnIn. The Co tends to form cluster.

  9. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method.

    PubMed

    Akin-Ojo, Omololu; Song, Yang; Wang, Feng

    2008-08-14

    A new method called adaptive force matching (AFM) has been developed that is capable of producing high quality force fields for condensed phase simulations. This procedure involves the parametrization of force fields to reproduce ab initio forces obtained from condensed phase quantum-mechanics/molecular-mechanics (QM/MM) calculations. During the procedure, the MM part of the QM/MM is iteratively improved so as to approach ab initio quality. In this work, the AFM method has been tested to parametrize force fields for liquid water so that the resulting force fields reproduce forces calculated using the ab initio MP2 and the Kohn-Sham density functional theory with the Becke-Lee-Yang-Parr (BLYP) and Becke three-parameter LYP (B3LYP) exchange correlation functionals. The AFM force fields generated in this work are very simple to evaluate and are supported by most molecular dynamics (MD) codes. At the same time, the quality of the forces predicted by the AFM force fields rivals that of very expensive ab initio calculations and are found to successfully reproduce many experimental properties. The site-site radial distribution functions (RDFs) obtained from MD simulations using the force field generated from the BLYP functional through AFM compare favorably with the previously published RDFs from Car-Parrinello MD simulations with the same functional. Technical aspects of AFM such as the optimal QM cluster size, optimal basis set, and optimal QM method to be used with the AFM procedure are discussed in this paper.

  10. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  11. On the room-temperature phase diagram of high pressure hydrogen: An ab initio molecular dynamics perspective and a diffusion Monte Carlo study

    SciTech Connect

    Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge

    2014-07-14

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.

  12. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  13. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  14. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573

  15. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum

    NASA Technical Reports Server (NTRS)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.

    1993-01-01

    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  16. Ab initio calculations of As-vacancy interactions in silicon

    SciTech Connect

    Xie, J.; Chen, S.P.

    1999-04-01

    Atomistic simulation of a vacancy-assisted dopant diffusion in silicon needs details of the dopant-vacancy interaction, i.e., the potential as a functional of dopant-vacancy separations. In this paper, the authors present a detailed study on the energetics of As-vacancy reaction in silicon and the lattice distortions surrounding the As-vacancy defect by using an ab initio plane wave pseudopotential method and the density functional theory (DFT). A potential-energy diagram as a function of As-vacancy separation is provided, which can be used in the atomistic diffusion simulations. The authors also calculate the binding energy and the formation energy of different complexes such as AsV, As{sub 2}V and AsV{sub 2} (V represents vacancy). They find that the stable configuration of As{sub 2}V is As-V-As, while the stable configuration of AsV{sub 2} is As-V-V. The nature of the binding between As and vacancy is explained from the lattice distortions and the change of chemical bond configuration introduced by the As-vacancy complex.

  17. Ab initio modelling of methane hydrate thermophysical properties.

    PubMed

    Jendi, Z M; Servio, P; Rey, A D

    2016-04-21

    The key thermophysical properties of methane hydrate were determined using ab initio modelling. Using density functional theory, the second-order elastic constants, heat capacity, compressibility, and thermal expansion coefficient were calculated. A wide and relevant range of pressure-temperature conditions were considered, and the structures were assessed for stability using the mean square displacement and radial distribution functions. Methane hydrate was found to be elastically isotropic with a linear dependence of the bulk modulus on pressure. Equally significant, multi-body interactions were found to be important in hydrates, and water-water interactions appear to strongly influence compressibility like in ice Ih. While the heat capacity of hydrate was found to be higher than that of ice, the thermal expansion coefficient was significantly lower, most likely due to the lower rigidity of hydrates. The mean square displacement gave important insight into stability, heat capacity, and elastic moduli, and the radial distribution functions further confirmed stability. The presented results provide a much needed atomistic thermoelastic characterization of methane hydrates and are essential input for the large-scale applications of hydrate detection and production. PMID:27019976

  18. Ab initio calculations of reactions with light nuclei

    NASA Astrophysics Data System (ADS)

    Quaglioni, Sofia; Hupin, Guillaume; Calci, Angelo; Navrátil, Petr; Roth, Robert

    2016-03-01

    An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review ab initio calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the ab initio no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the A-nucleon system are coupled to (A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.

  19. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  20. Towards an ab initio description of correlated materials

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls

  1. An efficient approach to ab initio Monte Carlo simulation

    SciTech Connect

    Leiding, Jeff; Coe, Joshua D.

    2014-01-21

    We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β{sup 0}), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where—depending on the quality of the reference system potential—acceptance probabilities were enhanced by factors of 1.2–28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.

  2. Ab initio simulations of MgO under extreme conditions

    NASA Astrophysics Data System (ADS)

    Cebulla, Daniel; Redmer, Ronald

    2014-04-01

    We determined the phase diagram of magnesium oxide with finite-temperature density functional theory molecular dynamics simulations up to temperatures and pressures as relevant for the deep interior of super-Earths and in rocky cores of giant planets such as Jupiter. The equation of state data, the Hugoniot, and a ramp compression curve are computed and compared to earlier results from diamond anvil cell and (decaying) shock wave experiments. In addition, the dynamical electrical conductivity and the reflectivity along the experimental Hugoniot curve are calculated in order to characterize electronic structure changes under compression. The structural properties of MgO are identified using pair correlation functions and self-diffusion coefficients. The solid-solid coexistence line is calculated by comparing the free enthalpies of the B1 and the B2 phase. The free energy of the solid phases is determined via thermodynamic relations using the ab initio simulation results and phonon calculations in the harmonic approximation. Our results indicate that the solid B2 phase of MgO does not occur in the interior of the Earth but may play an important role in super-Earths and in rocky planetary cores.

  3. Ab-initio study of magnetic properties and phase transitions in Ga (Mn) N with Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Sbai, Y.; Ait Raiss, A.; Salmani, E.; Bahmad, L.; Benyoussef, A.

    2015-12-01

    On the basis of ab-initio calculations and Monte Carlo simulations the magnetic and electronic properties of Gallium nitride (GaN) doped with the transition metal Manganese (Mn) were studied. The ab initio calculations were done using the AKAI-KKR-CPA method within the Local Density Approximation (LDA) approximation. We doped our Diluted Magnetic Semiconductor (DMS), with different concentrations of magnetic impurities Mn and plotted the density of state (DOS) for each one. Showing a half-metallic behavior and ferromagnetic state especially for Ga0.95Mn0.05N making this DMS a strong candidate for spintronic applications. Moreover, the magnetization and susceptibility of our system as a function of the temperature has been calculated and give for various system size L to study the size effect. In addition, the transition temperature was deduced from the peak of the susceptibility. The Ab initio results are in good agreement with literature especially for (x=0.05) of Mn which gives the most interesting results.

  4. Protons in polar media: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, Tycho

    1998-10-01

    The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations

  5. Skutterudites under pressure: An ab initio study

    SciTech Connect

    Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.

    2014-03-07

    Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.

  6. FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole.

    PubMed

    Rai, Amareshwar K; Singh, Rachana; Singh, K N; Singh, V B

    2006-02-01

    FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value. PMID:16098806

  7. Ab initio Raman spectroscopy of water under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia

    Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.

  8. Exploring the free energy surface using ab initio molecular dynamics.

    PubMed

    Samanta, Amit; Morales, Miguel A; Schwegler, Eric

    2016-04-28

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525

  9. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock; David A. Walthall

    2006-05-07

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various different energy sources potentially including fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch synthesis involves the initiation or activation of CO and H{sub 2} bonds, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. Commercially viable catalysts include supported Co and Co-alloys. Over the first two years of this project we have used ab initio methods to determine the adsorption energies for all reactants, intermediates, and products along with the overall reaction energies and their corresponding activation barriers over the Co(0001) surface. Over the third year of the project we developed and advanced an ab initio-based kinetic Monte Carlo simulation code to simulate Fischer Tropsch synthesis. This report details our work over the last year which has focused on the derivation of kinetic parameters for the elementary steps involved in FT synthesis from ab initio density functional theoretical calculations and the application of the kinetic Monte Carlo algorithm to simulate the initial rates of reaction for FT over the ideal Co(0001) surface. The results from our simulations over Co(0001) indicate the importance of stepped surfaces for the activation of adsorbed CO. In addition, they demonstrate that the dominant CH{sub x}* surface intermediate under steady state conditions is CH*. This strongly suggests that hydrocarbon coupling

  10. An ab Initio Benchmark and DFT Validation Study on Gold(I)-Catalyzed Hydroamination of Alkynes.

    PubMed

    Ciancaleoni, Gianluca; Rampino, Sergio; Zuccaccia, Daniele; Tarantelli, Francesco; Belanzoni, Paola; Belpassi, Leonardo

    2014-03-11

    High level ab initio calculations have been carried out on an archetypal gold(I)-catalyzed reaction: hydroamination of ethyne. We studied up to 12 structures of possible gold(I)-coordinated species modeling different intermediates potentially present in a catalytic cycle for the addition of a protic nucleophile to an alkyne. The benchmark is used to evaluate the performances of some popular density functionals for describing geometries and relative energies of stationary points along the reaction profile. Most functionals (including hybrid or meta-hybrid) give accurate structures but large nonsystematic errors (4-12 kcal/mol) along the reaction energy profile. The double hybrid functional B2PLYP outperforms all considered functionals and compares very nicely with our reference ab initio benchmark energies. Moreover, we present an assessment of the accuracy of commonly used approaches to include relativistic effects, such as relativistic effective potentials and a scalar ZORA Hamiltonian, by a comparison with the results obtained using a relativistic all-electron four-component Dirac-Kohn-Sham method. The contribution of nonscalar relativistic effects in gold(I)-catalyzed reactions, as we investigated here, is expected to be on the order of 1 kcal/mol. PMID:26580180

  11. High density H2 associative absorption on Titanium alpha-borozene (Ti2B6H6): An ab-initio case study

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Alireza; Tymzcak, C. J.

    2011-03-01

    Hydrogen is considered as a clean energy carrier that could be a future replacement for our addiction to fossil fuels. However, in order to have hydrogen economy at its highest efficiently we need to store hydrogen at high volumetric and gravimetric density. Using the all electron hybrid density functional theory, we have designed a benzene-like-molecule, Ti2B6H6, which has the promise of achieving this goal. Our results show that the molecule can associatively absorb the hydrogen up to ten percent by weight of hydrogen, which exceeds the 2015 US department of energy target. In this presentation we will discuss the mechanisms of H2 absorption and possible applications of this novel molecule. This research is funded by the Welch Foundation under Grant J. 1675 and the Texas Southern University High Performance Computing Center.

  12. An ab initio molecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules.

    PubMed

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-11-21

    We have presented a first principles simulation study of the structural and dynamical properties of a liquid-vapor interfacial system of a concentrated (5.3 M) aqueous NaCl solution. We have used ab initio molecular dynamics to examine the structural and dynamical properties of the bulk and interfacial regions. The structural aspects of the system that have been considered here include the inhomogeneous density profiles of ions and water molecules, hydrogen bond distributions, orientational profiles, and also vibrational frequency distributions in the bulk and interfacial regions. It is found that the sodium ions are mostly located in the interior, while the chloride anions occupy a significant portion of the interface of the slab. The water dipoles at the interface prefer to orient parallel to the surface. The dynamical aspects of the interfaces are investigated in terms of diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational spectral diffusion. The results of the interfacial dynamics are compared with those of the corresponding bulk region. It is observed that the interfacial molecules exhibit faster diffusion and orientational relaxation with respect to the bulk. However, the interfacial molecules are found to have longer hydrogen bond lifetimes than those of the bulk. We have also investigated the correlations of hydrogen bond relaxation with the vibrational frequency fluctuations of interfacial water molecules.

  13. Scalar relativistic calculations of hyperfine coupling constants using ab initio density matrix renormalization group method in combination with third-order Douglas-Kroll-Hess transformation: case studies on 4d transition metals.

    PubMed

    Nguyen Lan, Tran; Kurashige, Yuki; Yanai, Takeshi

    2015-01-13

    We have developed a new computational scheme for high-accuracy prediction of the isotropic hyperfine coupling constant (HFCC) of heavy molecules, accounting for the high-level electron correlation effects, as well as the scalar-relativistic effects. For electron correlation, we employed the ab initio density matrix renormalization group (DMRG) method in conjunction with a complete active space model. The orbital-optimization procedure was employed to obtain the optimized orbitals required for accurately determining the isotropic HFCC. For the scalar-relativistic effects, we initially derived and implemented the Douglas-Kroll-Hess (DKH) hyperfine coupling operators up to the third order (DKH3) by using the direct transformation scheme. A set of 4d transition-metal radicals consisting of Ag atom, PdH, and RhH2 were chosen as test cases. Good agreement between the isotropic HFCC values obtained from DMRG/DKH3 and experiment was archived. Because there are no available gas-phase values for PdH and RhH2 radicals in the literature, the results from the present high-level theory may serve as benchmark data.

  14. Ab-initio study of transition metal hydrides

    SciTech Connect

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  15. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  16. Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.

    One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.

  17. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  18. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches.

    PubMed

    Ramírez-Solís, A; Poteau, R; Vela, A; Daudey, J P

    2005-04-22

    The X2Pi g-2Sigma g+, X2Pi g-2Delta g, X2Pi g-2Sigma u+, X2Pi g-2Pi u transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the X2Pi g-2Sigma g+ and X2Pi g-2Delta g transition energies, many of them even placing the 2Delta g ligand field state above the charge transfer 2Pi u and 2Sigma u+ states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the LambdaSSigma density defined by the orientation of the 3d hole (sigma, pi, or delta) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the X2Pi g state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio

  19. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches

    NASA Astrophysics Data System (ADS)

    Ramírez-Solís, A.; Poteau, R.; Vela, A.; Daudey, J. P.

    2005-04-01

    The XΠg2-Σg +2, XΠg2-Δg2, XΠg2-Σu +2, XΠg2-Πu2 transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the XΠg2-Σg +2 and XΠg2-Δg2 transition energies, many of them even placing the Δg2 ligand field state above the charge transfer Πu2 and Σu +2 states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the ΛSΣ density defined by the orientation of the 3d hole (σ, π, or δ) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the XΠg2 state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio values. These findings show that not only large

  20. An investigation of ab initio shell-model interactions derived by no-core shell model

    NASA Astrophysics Data System (ADS)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  1. Raman spectra, ab initio molecular orbital calculations, vibrational analysis, and thermodynamic functions for NH/sub 3/:AlX/sub 3/ (X = F, Cl, Br)

    SciTech Connect

    Papatheodorou, G.N.; Curtiss, L.A.; Maroni, V.A.

    1983-03-15

    Raman spectra of gaseous NH/sub 3/:AlCl/sub 3/ and NH/sub 3/:AlBr/sub 3/ were recorded at 400 /sup 0/C. The observed Raman frequencies in combination with reported infrared frequencies for NH/sub 3/:AlCl/sub 3/ and ab initio molecular orbital calculations on NH/sub 3/:AlCl/sub 3/ and NH/sub 3/:AlF/sub 3/ were used to derive force constants for all three NH/sub 3/:AlX/sub 3/ complexes (X = F, Cl, Br) based on an adjusted valence force field (AVFF) concept. The resulting force constant calculations produced complete sets of A/sub 1/ and E mode frequencies for each complex. Statistical mechanical analyses were then performed using the A/sub 1/ and E mode frequencies together with estimated values for the torsional mode of each complex and published enthalpy data. From these analyses, the relative thermodynamic stability of each complex was determined. At 700 and 1000 K, NH/sub 3/:AlCl/sub 3/ was found to be more stable than NH/sub 3/:AlBr/sub 3/. It was further predicted that the reaction of gaseous NH/sub 3/ with solid AlF/sub 3/ to form NH/sub 3/:AlF/sub 3/ is not favored in this temperature range, which provides an explanation for the lack of success in prior efforts to produce NH/sub 3/:AlF/sub 3/.

  2. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces.

    PubMed

    Herron, Jeffrey A; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-23

    Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation. PMID:27503889

  3. Ab initio study of structural and electronic properties of Cun@C60

    NASA Astrophysics Data System (ADS)

    Dhiman, Shobhna; Kumar, Ranjan; Dharamvir, Keya

    2013-06-01

    Ab initio investigation of structural and electronic properties of copper doped endohedral fullerene has been performed using numerical atomic orbital density functional theory. We have obtained the ground state structures for Cun@C60 (n=1-10). Which shows that C60 molecule can accommodate maximum of nine copper atoms, for n > 9 the cage eventually break. Encapsulated large number of copper atoms leads to deformation of cage with diameter varies from 7.00Å to 8.38Å. Binding energy/Cu atom is found to increase till n = 4 and after that it decreases with the number of Cu atoms with a sudden increase for n=10 and electronic affinity increases till n=2 then decreases uniformly till up to n=7 with a further sharp decrease for n=10. Ionization potential and Homo-Lumo gap shows a oscillatory nature. The results obtained are consistent with available theoretical and experimental results. The ab-initio calculations were performed using SIESTA code with generalized gradient approximation (GGA).

  4. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP).

    PubMed

    Aryal, Sitaram; Matsunaga, Katsuyuki; Ching, Wai-Yim

    2015-07-01

    Hydroxyapatite (HAP) is an important bioceramic which constitutes the mineral components of bones and hard tissues in mammals. It is bioactive and used as bioceramic coatings for metallic implants and bone fillers. HAP readily absorbs a large amount of impurities. Knowledge on the elastic and mechanical properties of impurity-doped HAP is a subject of great importance to its potential for biomedical applications. Zn and Mg are the most common divalent cations HAP absorbs. Using density function theory based ab initio methods, we have carried out a large number of ab initio calculations to obtain the bulk elastic and mechanical properties of HAP with Zn or Mg doped in different concentration at the Ca1 and Ca2 sites using large 352-atom supercells. Detailed information on their dependece on the concetraion of the substitued impurity is obtained. Our results show that Mg enhances overall elastic and bulk mechanical properties whereas Zn tends to degrade except at low concentrations. At a higher concentration, the mechanical properties of Zn and Mg doped HAP also depend significantly on impurity distribution between the Ca1 and Ca2 sites. There is a strong evidence that Zn prefers Ca2 site for substituion whereas Mg has no such preference. These results imply that proper control of dopant concentration and their site preference must carefully considered in using doped HAP for specific biomedical applications.

  5. Ab initio up to the melting point: Anharmonicity and vacancies in aluminum

    NASA Astrophysics Data System (ADS)

    Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.

    2009-03-01

    At elevated temperatures, the heat capacity of metals strongly deviates from the harmonic prediction. This was pointed out long agoootnotetextM. Born and E. Brody, Zeitschrift f"ur Physik 6, 132 (1921) and various explanations have been considered. Ab initio calculations showedootnotetextB. Grabowski, T. Hickel, J. Neugebauer, Phys. Rev. B 76, 24309 (2007) that a dominant part can be explained by quasiharmonic excitations. However, the detailed balance of further contributions, such as explicit anharmonicity and vacancies, is not clarified yet even for simple elementary metals. Aluminum is a prototypical example. Even though intensively studied, the ambiguous experimental situation has made a classification of the mechanisms impossible. To resolve the situation, we have calculated the full volume and temperature dependent ab initio free energy surface employing density-functional theory. In particular, we have included anharmonic and vacancy contributions using numerically highly efficient methods to coarse grain the configuration space. To obtain accurate vacancy energies, we have included the full spectrum of excitations: quasiharmonic, electronic, and explicitly anharmonic. The results are in contradiction to common belief, nevertheless the essential physics can be captured by a simple model.

  6. Deviational simulation of phonon transport in graphene ribbons with ab initio scattering

    SciTech Connect

    Landon, Colin D.; Hadjiconstantinou, Nicolas G.

    2014-10-28

    We present a deviational Monte Carlo method for solving the Boltzmann-Peierls equation with ab initio 3-phonon scattering, for temporally and spatially dependent thermal transport problems in arbitrary geometries. Phonon dispersion relations and transition rates for graphene are obtained from density functional theory calculations. The ab initio scattering operator is simulated by an energy-conserving stochastic algorithm embedded within a deviational, low-variance Monte Carlo formulation. The deviational formulation ensures that simulations are computationally feasible for arbitrarily small temperature differences, while the stochastic treatment of the scattering operator is both efficient and exhibits no timestep error. The proposed method, in which geometry and phonon-boundary scattering are explicitly treated, is extensively validated by comparison to analytical results, previous numerical solutions and experiments. It is subsequently used to generate solutions for heat transport in graphene ribbons of various geometries and evaluate the validity of some common approximations found in the literature. Our results show that modeling transport in long ribbons of finite width using the homogeneous Boltzmann equation and approximating phonon-boundary scattering using an additional homogeneous scattering rate introduces an error on the order of 10% at room temperature, with the maximum deviation reaching 30% in the middle of the transition regime.

  7. Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Vigil-Fowler, Derek; Lischner, Johannes; Neaton, Jeffrey B.; Louie, Steven G.

    2014-06-01

    Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semiconductors. Our calculations include electron-electron and electron-phonon interactions, and require no experimental input other than the structure of the material. We apply our approach to study the relaxation time and mean free path of hot carriers in Si, and map the band and k dependence of these quantities. We demonstrate that a hot carrier distribution characteristic of Si under solar illumination thermalizes within 350 fs, in excellent agreement with pump-probe experiments. Our work sheds light on the subpicosecond time scale after sunlight absorption in Si, and constitutes a first step towards ab initio quantification of hot carrier dynamics in materials.

  8. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces

    NASA Astrophysics Data System (ADS)

    Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-01

    Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.

  9. Ab initio calculations of the optical properties of crystalline and liquid InSb

    SciTech Connect

    Sano, Haruyuki; Mizutani, Goro

    2015-11-15

    Ab initio calculations of the electronic and optical properties of InSb were performed for both the crystalline and liquid states. Two sets of atomic structure models for liquid InSb at 900 K were obtained by ab initio molecular dynamics simulations. To reduce the effect of structural peculiarities in the liquid models, an averaging of the two sets of the calculated electronic and optical properties corresponding to the two liquid models was performed. The calculated results indicate that, owing to the phase transition from crystal to liquid, the density of states around the Fermi level increases. As a result, the energy band gap opening near the Fermi level disappears. Consequently, the optical properties change from semiconductor to metallic behavior. Namely, owing to the melting of InSb, the interband transition peaks disappear and a Drude-like dispersion is observed in the optical dielectric functions. The optical absorption at a photon energy of 3.06 eV, which is used in Blu-ray Disc systems, increases owing to the melting of InSb. This increase in optical absorption is proposed to result from the increased optical transitions below 2 eV.

  10. Electronic and optical properties of K-doped ZnO: Ab initio study

    NASA Astrophysics Data System (ADS)

    Aimouch, D. E.; Meskine, S.; Hayn, R.; Zaoui, A.; Boukortt, A.

    2016-08-01

    We present the results of ab initio calculations of K-doped ZnO in the wurtzite structure using a supercell of 32 atoms and density functional theory. A complete analysis of its electronic, optical and magnetic properties is provided. The local spin density approximation (LSDA) has been used to analyze the density of states and to understand the K influence at different concentration values. The material is revealed to become a p-type doped semiconductor. The optical constant or refractive index, the dielectric function, and the absorption coefficient were determined and show a good agreement with available experimental data. Potassium doping leads to an absorption peak at about 380 nm. That peak might improve the absorption characteristics of ZnO for solar cell or optical applications.

  11. Ab initio study of heterojunction discontinuities in the ZnO/Cu2O system

    NASA Astrophysics Data System (ADS)

    Zemzemi, M.; Alaya, S.; Ben Ayadi, Z.

    2014-06-01

    Solar cells based on transparent conductive oxides such as ZnO/Cu2O constitute a very advanced way to build high-performance cells. In this work, we are interested in the characterization of the interface through nanoscale modeling based on ab initio approaches (density functional theory, local density approximation, and pseudopotential). This work aims to build a supercell containing a heterojunction ZnO/Cu2O and study the structural properties and the discontinuity of the valence band (band offset) from a semiconducting to another phase. We build a zinc oxide in the wurtzite structure along [0001] on which we place the copper oxide in the hexagonal (CdI2-type) structure. We choose the method of Van de Walle and Martin to calculate the energy offset. This approach fits well the density functional theory. Our calculation of the band offset gives a value that corresponds to other experimental and theoretical values.

  12. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  13. Ab-initio study of napthelene based conducting polymer

    SciTech Connect

    Ruhela, Ankur; Kanchan, Reena; Srivastava, Anurag; Sinha, O. P.

    2014-04-24

    In this paper, we have identified structural and electronic properties of conducting polymers by using DFT based ATK-VNL ab-initio tool. Naphthalene derivative structures were stabilized by varying the bond length between two atoms of the molecule C-N and C-C. We have also studied the molecular energy spectrum of naphthalene derivatives and found the HOMOLUMO for the same. A comparison of structural and electronic properties of naphthalene derivatives by attaching the functional group of amine, have been performed and found that they show good semi conducting properties.

  14. Ab-Initio Shell Model with a Core

    SciTech Connect

    Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P

    2008-06-04

    We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.

  15. Ab initio Computations of the Electronic, Mechanical, and Thermal Properties of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray

    2011-01-01

    Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.

  16. Ab initio study of the effect of vacancies on the thermal conductivity

    NASA Astrophysics Data System (ADS)

    Protik, Nakib; Carrete, Jesus; Mingo, Natalio; Katcho, Nebil; Broido, David

    Point defects and vacancies in particular can have a profound impact on phonon thermal transport. Examples are seen in diamond and cubic boron arsenide where large C and As vacancy concentrations give much lower thermal conductivity than expected. Here, we calculate the phonon-vacancy scattering rates using an ab initioGreen's function approach, which treats the scattering to all orders in contrast to standard perturbation theory approaches. The lattice thermal conductivity, k, is calculated from first principles by solving the Boltzmann transport equation for phonons, with interatomic force constants determined using density functional theory. The reduction in k with vacancy defect density is assessed. The phonon-vacancy scattering can show significant differences using the Green's function method compared to what would be predicted from the perturbative Born approximation, consistent with previous findings for diamond.

  17. Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics.

    PubMed

    Thomas, Martin; Kirchner, Barbara

    2016-02-01

    We present a new approach for calculating vibrational circular dichroism spectra by ab initio molecular dynamics. In the context of molecular dynamics, these spectra are given by the Fourier transform of the cross-correlation function of magnetic dipole moment and electric dipole moment. We obtain the magnetic dipole moment from the electric current density according to the classical definition. The electric current density is computed by solving a partial differential equation derived from the continuity equation and the condition that eddy currents should be absent. In combination with a radical Voronoi tessellation, this yields an individual magnetic dipole moment for each molecule in a bulk phase simulation. Using the chiral alcohol 2-butanol as an example, we show that experimental spectra are reproduced very well. Our approach requires knowing only the electron density in each simulation step, and it is not restricted to any particular electronic structure method. PMID:26771403

  18. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    SciTech Connect

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.

  19. {ital Ab initio} full charge-density study of the atomic volume of {alpha}-phase Fr, Ra, Ac, Th, Pa, U, Np, and Pu

    SciTech Connect

    Vitos, L.; Kollar, J.; Skriver, H.L.

    1997-02-01

    We have used a full charge-density technique based on the linear muffin-tin orbitals method in first-principles calculations of the atomic volumes of the light actinides including Fr, Ra, and Ac in their low-temperature crystallographic phases. The good agreement between the theoretical and experimental values along the series support the picture of itinerant 5f electronic states in Th to Pu. The increased deviation between theory and experiment found in Np and Pu may be an indication of correlation effects not included in the local density approximation. {copyright} {ital 1997} {ital The American Physical Society}

  20. Surface structure of CdSe Nanorods revealed by combined X-rayabsorption fine structure measurements and ab-initio calculations

    SciTech Connect

    Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul

    2006-01-27

    We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.

  1. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination

    SciTech Connect

    Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung

    2014-09-01

    A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination. Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ{sub 1} and ϕ{sub 2}) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ{sub DS} list as a criterion to select optimized phases ϕ{sub am} from ϕ{sub 1} or ϕ{sub 2} of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕ{sub SAD} has been developed. Based on this work, reflections with an angle θ{sub DS} in the range 35–145° are selected for an optimized improvement, where θ{sub DS} is the angle between the initial phase ϕ{sub SAD} and a preliminary density-modification (DM) phase ϕ{sub DM}{sup NHL}. The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.

  2. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination

    PubMed Central

    Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung

    2014-01-01

    Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ1 and ϕ2) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θDS list as a criterion to select optimized phases ϕam from ϕ1 or ϕ2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕSAD has been developed. Based on this work, reflections with an angle θDS in the range 35–145° are selected for an optimized improvement, where θDS is the angle between the initial phase ϕSAD and a preliminary density-modification (DM) phase ϕDM NHL. The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination. PMID:25195747

  3. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination.

    PubMed

    Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung

    2014-09-01

    Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (φ1 and φ2) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ(DS) list as a criterion to select optimized phases φ(am) from φ1 or φ2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases φ(SAD) has been developed. Based on this work, reflections with an angle θ(DS) in the range 35-145° are selected for an optimized improvement, where θ(DS) is the angle between the initial phase φ(SAD) and a preliminary density-modification (DM) phase φ(DM)(NHL). The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.

  4. Ab initio melting curve of osmium

    NASA Astrophysics Data System (ADS)

    Burakovsky, L.; Burakovsky, N.; Preston, D. L.

    2015-11-01

    The melting curve of osmium up to a pressure P of 500 GPa is obtained from an extensive suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. The ab initio P =0 melting point of Os is 3370 ±75 K; this range encompasses all of the available data in the literature and corroborates the conclusion of J. W. Arblaster [Platinum Metals Rev. 49, 166 (2005)], 10.1595/147106705X70264 that the melting temperature of pure Os is 3400 ±50 K and that the 3300 K typically quoted in the literature is the melting point of impure Os. The T =0 equation of state (EOS) of Os and the P dependence of the optimized c /a ratio for the hexagonal unit cell, both to pressures ˜900 GPa, are obtained in the ab initio approach as validation of its use. Although excellent agreement with the available experimental data (P ≲80 GPa) is found, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes the QMD data to higher pressures, in agreement with the more recent experimental EOS by Godwal et al. The theoretical melting curve of Os obtained earlier by Joshi et al. is shown to be inconsistent with our QMD results, and the possible reason for this discrepancy is suggested. Regularities in the melting curves of Os and five other third-row transition metals (Ta, W, Re, Pt, Au) could be used to estimate the currently unknown melting curves of Hf and Ir.

  5. Quantitative Comparison of a New Ab Initio Micrometeor Ablation Model with an Observationally Verifiable Standard Model

    NASA Astrophysics Data System (ADS)

    Meisel, David D.; Szasz, Csilla; Kero, Johan

    2008-06-01

    The Arecibo UHF radar is able to detect the head-echos of micron-sized meteoroids up to velocities of 75 km/s over a height range of 80 140 km. Because of their small size there are many uncertainties involved in calculating their above atmosphere properties as needed for orbit determination. An ab initio model of meteor ablation has been devised that should work over the mass range 10-16 kg to 10-7 kg, but the faint end of this range cannot be observed by any other method and so direct verification is not possible. On the other hand, the EISCAT UHF radar system detects micrometeors in the high mass part of this range and its observations can be fit to a “standard” ablation model and calibrated to optical observations (Szasz et al. 2007). In this paper, we present a preliminary comparison of the two models, one observationally confirmable. Among the features of the ab initio model that are different from the “standard” model are: (1) uses the experimentally based low pressure vaporization theory of O’Hanlon (A users’s guide to vacuum technology, 2003) for ablation, (2) uses velocity dependent functions fit from experimental data on heat transfer, luminosity and ionization efficiencies measured by Friichtenicht and Becker (NASA Special Publication 319: 53, 1973) for micron sized particles, (3) assumes a density and temperature dependence of the micrometeoroids and ablation product specific heats, (4) assumes a density and size dependent value for the thermal emissivity and (5) uses a unified synthesis of experimental data for the most important meteoroid elements and their oxides through least square fits (as functions of temperature, density, and/or melting point) of the tables of thermodynamic parameters given in Weast (CRC Handbook of Physics and Chemistry, 1984), Gray (American Institute of Physics Handbook, 1972), and Cox (Allen’s Astrophysical Quantities 2000). This utilization of mostly experimentally determined data is the main reason for

  6. Ab-initio phasing in protein crystallography

    NASA Astrophysics Data System (ADS)

    van der Plas, J. L.; Millane, Rick P.

    2000-11-01

    The central problem in the determination of protein structures form x-ray diffraction dada (x-ray crystallography) corresponds to a phase retrieval problem with undersampled amplitude data. Algorithms for this problem that have an increased radius of convergence have the potential for reducing the amount of experimental work, and cost, involved in determining protein structures. We describe such an algorithm. Application of the algorithm to a simulated crystallographic problem shows that it converges to the correct solution, with no initial phase information, where currently used algorithms fail. The results lend support to the possibility of ab initio phasing in protein crystallography.

  7. Ab initio study of pressure induced structural and electronic properties in TmPo

    SciTech Connect

    Makode, Chandrabhan Pataiya, Jagdish; Sanyal, Sankar P.; Panwar, Y. S.; Aynyas, Mahendra

    2015-06-24

    We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.

  8. Ab initio study of nitrogen-multisubstituted neutral and positively charged C{sub 20} fullerene

    SciTech Connect

    Rani, Anita; Kumar, Ranjan

    2014-04-24

    Ab initio investigation of structural and electronic properties of Nitrogen doped fullerenes, obtained from C{sub 20} by replacing up to 10 C atoms with N atoms, are studied by means of first principals density functional theory calculations using numerical orbitals as basis sets. We have obtained the ground state structures for C{sub 20−n}N{sub n} for n=1-10. While substituting nitrogen atoms, we cannot substitute more than 9 nitrogen atoms. Nitrogen doping in C20 shows a significant change in density of states. For a better comparison with experimental measurements, we have also considered some positively charged ions and report the differences between properties of these ions and the corresponding neutral molecules.

  9. Ab initio study of He point defects in fcc Au-Ag alloys

    SciTech Connect

    Zhu, Zi Qiang; Yang, Li; Nie, JL; Peng, SM; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-04-25

    The relative stabilities of He defects in two fcc Au-Ag alloys (Au3Ag2 and AuAg) are investigated using ab initio method based on density functional theory. The results show that the stabilities of He defects in the two alloys mainly depend on the atomic arrangements of the nearest neighboring host metals. A He interstitial prefers to stay at a site with more Ag neighboring atoms, while the favorable substitutional site has more Au neighboring atoms in Au-Ag alloys. Moreover, the substitutional He defects are the most stable configurations in both the alloys, and the octahedral He interstitials are energetically more favorable than the tetrahedral interstitials. It is of interest to note that the properties of He defects slightly depend on the mass-density of Au-Ag alloys. The results also demonstrate that the relative stabilities of He defects are primarily attributed to the hybridization between metals d states and He p states.

  10. High-pressure elastic properties of cubic Ir2P from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Wei; Bioud, Nadhira; Fu, Zhi-Jian; Wei, Xiao-Ping; Song, Ting; Li, Zheng-Wei

    2016-10-01

    A study of the high-pressure elastic properties of new synthetic Ir2P in the anti-fluorite structure is conducted using ab initio calculations based on density functional theory. The elastic constants C11, C12 and C44 for the cubic Ir2P are obtained by the stress-strain method and the elastic stability calculations under pressure indicate that it is stable at least 100 GPa. Additionally, the electronic density of states, the aggregate elastic moduli, that is bulk modulus, shear modulus, and Young's modulus along with the Debye temperature, Poisson's ratio, and elastic anisotropy factor are all successfully obtained. Moreover, the pressure dependence of the longitudinal and shear wave velocities in three different directions [100], [110], and [111] for Ir2P are also predicted for the first time.

  11. Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: a combined maximum entropy method X-ray electron density and ab initio electronic structure study.

    PubMed

    Cargnoni, Fausto; Nishibori, Eiji; Rabiller, Philippe; Bertini, Luca; Snyder, G Jeffrey; Christensen, Mogens; Gatti, Carlo; Iversen, Bo Brummerstadt

    2004-08-20

    The experimental electron density of the high-performance thermoelectric material Zn4Sb3 has been determined by maximum entropy (MEM) analysis of short-wavelength synchrotron powder diffraction data. These data are found to be more accurate than conventional single-crystal data due to the reduction of common systematic errors, such as absorption, extinction and anomalous scattering. Analysis of the MEM electron density directly reveals interstitial Zn atoms and a partially occupied main Zn site. Two types of Sb atoms are observed: a free spherical ion (Sb3-) and Sb2(4-) dimers. Analysis of the MEM electron density also reveals possible Sb disorder along the c axis. The disorder, defects and vacancies are all features that contribute to the drastic reduction of the thermal conductivity of the material. Topological analysis of the thermally smeared MEM density has been carried out. Starting with the X-ray structure ab initio computational methods have been used to deconvolute structural information from the space-time data averaging inherent to the XRD experiment. The analysis reveals how interstitial Zn atoms and vacancies affect the electronic structure and transport properties of beta-Zn4Sb3. The structure consists of an ideal A12Sb10 framework in which point defects are distributed. We propose that the material is a 0.184:0.420:0.396 mixture of A12Sb10, A11BCSb10 and A10BCDSb10 cells, in which A, B, C and D are the four Zn sites in the X-ray structure. Given the similar density of states (DOS) of the A12Sb10, A11BCSb10 and A10BCDSb10 cells, one may electronically model the defective stoichiometry of the real system either by n-doping the 12-Zn atom cell or by p-doping the two 13-Zn atom cells. This leads to similar calculated Seebeck coefficients for the A12Sb10, A11BCSb10 and A10BCDSb10 cells (115.0, 123.0 and 110.3 microV K(-1) at T=670 K). The model system is therefore a p-doped semiconductor as found experimentally. The effect is dramatic if these cells are

  12. Three-cluster dynamics within an ab initio framework

    DOE PAGES

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less

  13. Ab-initio investigation of spin-dependent transport properties in Fe-doped armchair graphyne nanoribbons

    NASA Astrophysics Data System (ADS)

    GolafroozShahri, S.; Roknabadi, M. R.; Shahtahmasebi, N.; Behdani, M.

    2016-12-01

    An ab-initio study on the spin-polarized transport properties of H-passivated Fe-doped graphyne nanoribbons is presented. All the calculations were based on density functional theory (DFT). Doping single magnetic atom on graphyne nanoribbons leads to metallicity which can significantly improve the conductivity. The currents are not degenerate for both up and down spin electrons and they are considerably spin-polarized. Therefore a relatively good spin-filtering can be expected. For configurations with geometric symmetry spin-rectifying is also observed. Therefore they can be applied as a dual spin-filter or a dual spin-diode in spintronic equipment.

  14. Ab initio study of the cubic-to-hexagonal phase transition promoted by interstitial hydrogen in iron

    NASA Astrophysics Data System (ADS)

    Castedo, A.; Sanchez, J.; Fullea, J.; Andrade, M. C.; de Andres, P. L.

    2011-09-01

    Using ab initio density-functional theory, we study the role of interstitial hydrogen on the energetics of the phase transformation of iron from bcc to hcp along Bain’s pathway. The impurity creates an internal stress field that can be released through a tetragonal distortion of the lattice, promoting the bcc (ferromagnetic) → fcc (frustrated antiferromagnetic) → hcp (ferromagnetic) transition. The transformation between crystal systems is accompanied by a drastic magnetic reorganization and sudden variations of the unit cell volume, which can be one of the reasons for embrittlement and mechanical failure of iron upon hydrogen adsorption.

  15. Magnetic properties and pairing tendencies of the iron-based superconducting ladder BaFe2S3: Combined ab initio and density matrix renormalization group study

    DOE PAGES

    Patel, Niravkumar D.; Nocera, Alberto; Alvarez, Gonzalo; Arita, Ryotaro; Moreo, Adriana; Dagotto, Elbio

    2016-08-10

    The recent discovery of superconductivity under high pressure in the two-leg ladder compound BaFe2S3 [H. Takahashi et al., Nat. Mater. 14, 1008 (2015)] opens a broad avenue of research, because it represents the first report of pairing tendencies in a quasi-one-dimensional iron-based high-critical-temperature superconductor. Similarly, as in the case of the cuprates, ladders and chains can be far more accurately studied using many-body techniques and model Hamiltonians than their layered counterparts, particularly if several orbitals are active. In this publication, we derive a two-orbital Hubbard model from first principles that describes individual ladders of BaFe2S3. The model is studied withmore » the density matrix renormalization group. These first reported results are exciting for two reasons: (i) at half-filling, ferromagnetic order emerges as the dominant magnetic pattern along the rungs of the ladder, and antiferromagnetic order along the legs, in excellent agreement with neutron experiments; and (ii) with hole doping, pairs form in the strong coupling regime, as found by studying the binding energy of two holes doped on the half-filled system. In addition, orbital selective Mott phase characteristics develop with doping, with only oneWannier orbital receiving the hole carriers while the other remains half-filled. Lastly, these results suggest that the analysis of models for iron-based two-leg ladders could clarify the origin of pairing tendencies and other exotic properties of iron-based high-critical-temperature superconductors in general.« less

  16. Magnetic properties and pairing tendencies of the iron-based superconducting ladder BaFe2S3 : Combined ab initio and density matrix renormalization group study

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar D.; Nocera, Alberto; Alvarez, Gonzalo; Arita, Ryotaro; Moreo, Adriana; Dagotto, Elbio

    2016-08-01

    The recent discovery of superconductivity under high pressure in the two-leg ladder compound BaFe2S3 [H. Takahashi et al., Nat. Mater. 14, 1008 (2015), 10.1038/nmat4351] opens a broad avenue of research, because it represents the first report of pairing tendencies in a quasi-one-dimensional iron-based high-critical-temperature superconductor. Similarly, as in the case of the cuprates, ladders and chains can be far more accurately studied using many-body techniques and model Hamiltonians than their layered counterparts, particularly if several orbitals are active. In this publication, we derive a two-orbital Hubbard model from first principles that describes individual ladders of BaFe2S3 . The model is studied with the density matrix renormalization group. These first reported results are exciting for two reasons: (i) at half-filling, ferromagnetic order emerges as the dominant magnetic pattern along the rungs of the ladder, and antiferromagnetic order along the legs, in excellent agreement with neutron experiments; and (ii) with hole doping, pairs form in the strong coupling regime, as found by studying the binding energy of two holes doped on the half-filled system. In addition, orbital selective Mott phase characteristics develop with doping, with only one Wannier orbital receiving the hole carriers while the other remains half-filled. These results suggest that the analysis of models for iron-based two-leg ladders could clarify the origin of pairing tendencies and other exotic properties of iron-based high-critical-temperature superconductors in general.

  17. Accurate ab initio quartic force fields for borane and BeH2

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.

    1992-01-01

    The quartic force fields of BH3 and BeH2 have been computed ab initio using an augmented coupled cluster (CCSD(T)) method and basis sets of spdf and spdfg quality. For BH3, the computed spectroscopic constants are in very good agreement with recent experimental data, and definitively confirm misassignments in some older work, in agreement with recent ab initio studies. Using the computed spectroscopic constants, the rovibrational partition function for both molecules has been constructed using a modified direct numerical summation algorithm, and JANAF-style thermochemical tables are presented.

  18. Optical spectroscopy of the bulk and interfacial hydrated electron from ab initio calculations.

    PubMed

    Uhlig, Frank; Herbert, John M; Coons, Marc P; Jungwirth, Pavel

    2014-09-01

    The optical spectrum of the hydrated (aqueous) electron, e(aq)(–), is the primary observable by means of which this species is detected, monitored, and studied. In theoretical calculations, this spectrum has most often been simulated using one-electron models. Here, we present ab initio simulations of that spectrum in both bulk water and, for the first time, at the water/vapor interface, using density functional theory and its time-dependent variant. Our results indicate that this approach provides a reliable description, and quantitative agreement with the experimental spectrum for the bulk species is obtained using a “tuned” long-range corrected functional. The spectrum of the interfacial electron is found to be very similar to the bulk spectrum.

  19. Assessing the elastic properties and ductility of Fe-Cr-Al alloys from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Nurmi, E.; Wang, G.; Kokko, K.; Vitos, L.

    2016-01-01

    Fe-Al is one of the best corrosion resistant alloys at high temperatures. The flip side of Al addition to Fe is the deterioration of the mechanical properties. This problem can be solved by adding a suitable amount of third alloying component. In the present work, we use ab initio calculations based on density functional theory to study the elastic properties of Fe?Cr?Al? alloys for Al and Cr contents up to 20 at.%. We assess the ductility as a function of chemistry by making use of the semi-empirical correlations between the elastic parameters and mechanical properties. In particular, we derive the bulk modulus to shear modulus ratio and the Cauchy pressure and monitor their trends in terms of chemical composition. The present findings are contrasted with the previously established oxidation resistance of Fe-Cr-Al alloys.

  20. The constrained space orbital variation analysis for periodic ab initio calculations

    SciTech Connect

    Cruz Hernandez, N.; Zicovich-Wilson, Claudio Marcelo; Fdez Sanz, Javier

    2006-05-21

    The constrained space orbital variation (CSOV) method for the analysis of the interaction energy has been implemented in the periodic ab initio CRYSTAL03 code. The method allows for the partition of the energy of two interacting chemical entities, represented in turn by periodic models, into contributions which account for electrostatic effects, mutual polarization and charge transfer. The implementation permits one to carry out the analysis both at the Hartree-Fock and density functional theory levels, where in the latter the most popular exchange-correlation functionals can be used. As an illustrating example, the analysis of the interaction between CO and the MgO (001) surface has been considered. As expected by the almost fully ionic character of the support, our periodic CSOV results, in general agree with those previously obtained using the embedded cluster approach, showing the reliability of the present implementation.

  1. Ab initio Study of HZnF

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Léonard, C.; Chambaud, G.

    2009-11-01

    On the basis of highly correlated ab initio calculations, an accurate determination of the electronic structure and of the rovibrational spectroscopy has been performed for the electronic ground state of the HZnF system. Using effective core pseudopotentials for the Zn and F atoms and associated aug-cc-pVQZ basis sets, we have calculated, at the multireference configuration interaction level including the Davidson correction, the three-dimensional potential energy surface of the X1Σ+ ground state. The rovibrational energy levels have been obtained variationally, and the results have been discussed and compared with existing experimental data on the ground state of the close system HZnCl, which exhibits a complicated vibration-rotation spectrum. Our analysis shows that the nature of the H-ZnF bond is quite similar to that of the H-ZnCl bond, according to their bond lengths, harmonic frequencies of the H-Zn stretching mode, and dissociation energies into H and ZnF/ZnCl. The ab initio study of the electronic ground and excited states of ZnH and ZnH+ are also presented using similar level of calculations. Characteristic constants are given for the first bounded electronic states correlating to the first two dissociation asymptotes of the neutral and ionic diatomics.

  2. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  3. Ab initio non-relativistic spin dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Frisch, Michael J.; Li, Xiaosong

    2014-12-01

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li3 molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  4. Ab initio global optimization of the structures of Si{sub n}H, n=4-10, using parallel genetic algorithms

    SciTech Connect

    Ona, Ofelia; Facelli, Julio C.; Bazterra, Victor E.; Caputo, Maria C.; Ferraro, Marta B.

    2005-11-15

    The results of ab initio global optimizations of the structures of Si{sub n}H, n=4-10, atomic clusters using a parallel genetic algorithm are presented. Driving the global search with the parallel implementation of the genetic algorithm are presented and using the density functional theory as implemented in the Carr-Parinello molecular dynamics code to calculate atomic cluster energies and perform the local optimization of their structures, we have been able to demonstrate that it is possible to perform global optimizations of the structure of atomic clusters using ab initio methods. The results show that this approach is able to find many structures that were not previously reported in the literature. Moreover, in most cases the new structures have considerable lower energies than those previously known. The results clearly demonstrate that these calculations are now possible and in spite of their larger computational demands provide more reliable results.

  5. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  6. Bulk Modulus of Sc2O3: Ab initio Calculations and Experimental Results

    SciTech Connect

    S Barzilai; I Halvey; O Yeheskel

    2011-12-31

    The bulk modulus of scandia is evaluated by ab initio calculation, based on density functional theory, and compared with bulk modulus measurement on nearly fully dense scandia and with the value attained from the equation of state based on diamond anvil cell measurements. The current results are in the upper range of the bulk moduli results in the literature. The scatter in the literature results might be explained by the differences in the specific volumes of the measured and calculated cases. For the specific volume of 59.65{+-}0.07 {angstrom}{sup 3} the average measured isothermal bulk modulus of scandia from the present study and recent literature results is 188{+-}10 GPa.

  7. Ab initio and DFT studies on vibrational spectra of some halides of group IIIB elements

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Jianying; Tang, Guodong; Zhu, Longgen

    2005-11-01

    The vibrational spectra of some group IIIB elements halides MX 3 and their dimmers, M 2X 6 (M = Sc(III), Y(III), La(III); X = F, Cl, Br, I), have been systematically investigated by ab initio restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational frequencies, calculated by two methods with different basis sets, are compared to each other. The effect of the methods and the basis sets used on the calculated vibrational frequencies are discussed. Some vibrational frequencies of these complexes are also predicted.

  8. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics.

    PubMed

    Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-05-14

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.

  9. Ab initio cluster calculations of hydrogenated GaAs(001) surfaces

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Li, L.; Hicks, R. F.

    2000-04-01

    Hydrogen adsorption on the (2×4) and (4×2) reconstructions of gallium arsenide (001) has been studied by internal reflectance infrared spectroscopy and ab initio cluster calculations with density-functional theory. The calculations are made on Ga5As4H11,13, Ga4As5H11,13, and Ga7As8H19 clusters, which model the arsenic- and gallium-dimer termination of the semiconductor surface. Excellent agreement has been achieved between the vibrational frequencies predicted by the theory and those observed in experiments. On the (2×4), hydrogen adsorbs on arsenic dimers to form isolated and coupled arsenic-monohydrogen bonds, and arsenic-dihydrogen bonds. Conversely, on the (4×2), hydrogen adsorbs on gallium dimers to form terminal and bridged gallium hydrides. The latter species occur in isolated or coupled structures involving two or three Ga atoms.

  10. Electronic states of lithium passivated germanium nanowires: An ab-initio study

    SciTech Connect

    Trejo, A.; Carvajal, E.; Vázquez-Medina, R.; Cruz-Irisson, M.

    2014-05-15

    A study of the electronic and structural properties of germanium nanowires (GeNWs) was performed using the ab-initio Density Functional Theory within the generalized gradient approximation where electron-ion interactions are described by ultrasoft pseudopotentials. To study the effects of the lithium in the surface of the GeNWs we compare the electronic band structures of Hydrogen passivated GeNWs with those of partial and totally Li passivated GeNWs. The nanowires were constructed in the [001], [111] and [110] directions, using the supercell model to create different wire diameters. The results show that in the case of partial Li passivation there are localized orbitals near the valence band maximum, which would create a p-doped-kind of state. The total Li passivation created metallic states for all the wires.

  11. Ab Initio Calculation of Structure and Thermodynamic Properties of Zintl Aluminide SrAl2

    NASA Astrophysics Data System (ADS)

    Fu, Zhi-Jian; Jia, Li-Jun; Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong; Sun, Xiao-Wei; Chen, Qi-Feng

    2015-12-01

    The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl2 at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory methodwithin the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl2 are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations inthe thermal expansion α are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.

  12. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics

    SciTech Connect

    Nakamura, Makoto Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-05-14

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.

  13. Pressure-induced phase transition in wurtzite ZnTe: an ab initio study.

    PubMed

    Alptekin, Sebahaddin

    2012-03-01

    A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in wurtzite ZnTe. A first-order phase transition from the wurtzite structure to a Cmcm structure was successfully observed in a constant-pressure molecular dynamics simulation. This phase transformation was also analyzed using enthalpy calculations. We also investigated the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy-volume calculations, and found that both structures show quite similar equations of state and transform into a Cmcm structure at 16 GPa using enthalpy calculations, in agreement with experimental observations. The transition phase, lattice parameters and bulk properties we obtained are comparable with experimental and theoretical data.

  14. Structural phase transition of CdTe: an ab initio study.

    PubMed

    Alptekin, Sebahaddin

    2013-01-01

    A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in zinc-blende CdTe. We found that CdTe undergoes a structural first-order phase transition to [Formula: see text] (binary β-tin) tetragonal structure in the constant pressure molecular dynamics simulation at 20 GPa. When the pressure was increased to 50 GPa, the phase of tetragonal structure converted to a new Imm2 orthorhombic structure. These phase transformations were also calculated by using the enthalpy calculations. Transition phases, lattice parameters and bulk properties we attained are comparable with experimental and theoretical data.

  15. Ab initio investigation of the sum-frequency hyperpolarizability of small chiral molecules

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Fischer, Peer; Buckingham, A. David

    2000-11-01

    Using a sum-over-states procedure based on configuration interaction singles /6-311++G **, we have computed the sum-frequency hyperpolarizability βijk(-3 ω;2 ω, ω) of two small chiral molecules, R-monofluoro-oxirane and R-(+)-propylene oxide. Excitation energies were scaled to fit experimental UV-absorption data and checked with ab initio values from time-dependent density functional theory. The isotropic part of the computed hyperpolarizabilities, β¯(-3ω;2ω,ω) , is much smaller than that reported previously from sum-frequency generation experiments on aqueous solutions of arabinose. Comparison is made with a single-centre chiral model.

  16. Structure and lattice dynamics of rare-earth ferroborate crystals: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.; Serdtsev, A. V.; Kashchenko, M. A.; Klimin, S. A.

    2016-08-01

    The ab initio calculation of the crystal structure and the phonon spectrum of crystals RFe3(BO3)4 ( R = Pr, Nd, Sm) has been performed in the framework of the density functional theory. The ion coordinates in the unit cell, the lattice parameters, the frequencies and the types of fundamental vibrations, and also the intensities of lines in the Raman spectrum and infrared reflection spectra have been found. The elastic constants of the crystals have been calculated. For low-frequency A 2 mode in PrFe3(BO3)4, a "seed" vibration frequency that strongly interacts with the electronic excitation on a praseodymium ion was found. The calculation results satisfactory agree with the experimental data.

  17. Communication: comparing ab initio methods of obtaining effective U parameters for closed-shell materials.

    PubMed

    Yu, Kuang; Carter, Emily A

    2014-03-28

    The density functional theory (DFT)+U method is an efficient and effective way to calculate the ground-state properties of strongly correlated transition metal compounds, with the effective U parameters typically determined empirically. Two ab initio methods have been developed to compute the U parameter based on either constrained DFT (CDFT) or unrestricted Hartree-Fock (UHF) theory. Previous studies have demonstrated the success of both methods in typical open-shell materials such as FeO and NiO. In this Communication we report numerical instability issues that arise for the CDFT method when applied to closed-shell transition metals, by using ZnO and Cu2O as examples. By contrast, the UHF method behaves much more robustly for both closed- and open-shell materials, making it more suitable for treating closed-shell transition metals, as well as main group elements. PMID:24697417

  18. Communication: Comparing ab initio methods of obtaining effective U parameters for closed-shell materials

    NASA Astrophysics Data System (ADS)

    Yu, Kuang; Carter, Emily A.

    2014-03-01

    The density functional theory (DFT)+U method is an efficient and effective way to calculate the ground-state properties of strongly correlated transition metal compounds, with the effective U parameters typically determined empirically. Two ab initio methods have been developed to compute the U parameter based on either constrained DFT (CDFT) or unrestricted Hartree-Fock (UHF) theory. Previous studies have demonstrated the success of both methods in typical open-shell materials such as FeO and NiO. In this Communication we report numerical instability issues that arise for the CDFT method when applied to closed-shell transition metals, by using ZnO and Cu2O as examples. By contrast, the UHF method behaves much more robustly for both closed- and open-shell materials, making it more suitable for treating closed-shell transition metals, as well as main group elements.

  19. Ab initio/DFT calculations of butyl ammonium salt of O,O'-dibornyl dithiophosphate.

    PubMed

    Kart, H H; Ozdemir Kart, S; Karakuş, M; Kurt, M

    2014-08-14

    O,O'-dibornyl dithiophosphete has been synthesized by the reaction of P2S5 and borneol in toluene. Fourier Transform Infrared spectra (FT-IR) of the title compound are measured. The molecular geometry, vibrational frequencies, infrared intensities and NMR spectrum of the title compound in the ground state have been calculated by using the density functional theory (DFT) and ab initio Hartree-Fock (HF) methods with the basis set of 6-31G(d). The computed bond lengths and bond angles show the good agreement with the experimental data. Moreover, the vibrational frequencies are calculated and the scaled values have been compared with experimental FT-IR spectra. Assignments of the vibrational modes are made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. The observed and calculated FT-IR and NMR spectra are in good agreement with each other. PMID:24747929

  20. Ab initio/DFT calculations of butyl ammonium salt of O,O‧-dibornyl dithiophosphate

    NASA Astrophysics Data System (ADS)

    Kart, H. H.; Özdemir Kart, S.; Karakuş, M.; Kurt, M.

    2014-08-01

    O,O‧-dibornyl dithiophosphete has been synthesized by the reaction of P2S5 and borneol in toluene. Fourier Transform Infrared spectra (FT-IR) of the title compound are measured. The molecular geometry, vibrational frequencies, infrared intensities and NMR spectrum of the title compound in the ground state have been calculated by using the density functional theory (DFT) and ab initio Hartree-Fock (HF) methods with the basis set of 6-31G(d). The computed bond lengths and bond angles show the good agreement with the experimental data. Moreover, the vibrational frequencies are calculated and the scaled values have been compared with experimental FT-IR spectra. Assignments of the vibrational modes are made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. The observed and calculated FT-IR and NMR spectra are in good agreement with each other.

  1. Diffusion Coefficients in Liquid and Grain Boundary Predicted by Ab Initio Molecular Dynamics

    SciTech Connect

    Jablonski, P.D.; Liu, Z.; Fang, H.; Wang, B.

    2011-04-01

    Molecular dynamics (MD) is a powerful tool to probe the thermodynamic and kinetic properties of solid, glass and liquid phases. In classical molecular dynamics (CMD), empirical models are used to describe the force by considering bond, bend and dihedral angle contributions with parameters fitted to experimental data or first-principles calculations of small clusters. In the ab initio molecular dynamics (AIMD), the forces are calculated on the fly using the first-principles density functional theory as discussed above. In the present work, we use AIMD simulations to follow the random walk of atoms in the liquid state. Based on the mean square displacements (MSD), the diffusion coefficients are calculated from the Einstein equation. Furthermore, we extend this approach to understand the diffusion in grain boundaries.

  2. An ab initio analysis of electronic states associated with a silicon vacancy in cubic symmetry

    NASA Astrophysics Data System (ADS)

    Ogawa, T.; Tsuruta, K.; Iyetomi, H.

    2011-11-01

    The electronic orbitals localized in the vicinity of a vacancy in a silicon crystal are calculated by an ab initio method based on the density functional theory and analyzed in association with the elastic softening observed by the recent ultrasonic experiments, especially focused on an estimate of the electric quadrupole moments. The localized orbitals due to the existence of a vacancy show largely extended properties and the quadrupole moments calculated from the orbitals indicate the strong dependence on cell sizes up to 511 atoms in the basic cell. Asymptotic values of the quadrupole moments in the limit of large size are obtained by an extrapolating method. It is shown that the quadrupole moments are enhanced due to the extension of the orbitals and the ratio of the quadrupole moments of Γ5 and Γ3 symmetries agrees well with the value deduced from the experimental results.

  3. Vibrational study of new Pt(II) and Pd(II) complexes with functionalized nitrogen-containing tertiary phosphine oxides. Ab initio study of ortho-, meta- and para-dimethylphosphinylmethyleneoxyaniline.

    PubMed

    Trendafilova, N; Bauer, G; Georgieva, I; Tosheva, T; Varbanov, S

    2003-01-01

    Vibrational study of new Pt(II) and Pd(II) complexes of functionalized nitrogen-containing tertiary phosphine oxides, namely ortho-, meta- and para-dimethylphosphinylmethyleneoxyaniline (o-, m- and p-dpmoa), (CH3)2P(O)CH2OC6H4NH2, have been presented. Geometry optimization of the ligands was performed at HF/6-31G* and B3LYP/6-31G* levels of the theory. Harmonic frequencies were calculated at HF/6-31G* optimized geometries. Relative gas-phase and solution-phase (H2O and CH3CN) basicities of o-, m- and p-dpmoa ligands have been determined by ab initio calculations at STO-3G level with the Onsager reaction field model. On the basis of the vibrational study, physical and analytical data it was suggested that the ligands in the complexes studied coordinate through the amino group and form square-planar platinum and palladium complexes of the general formula ML2Cl2 (M = Pt, Pd, L = o-, m- and p-dpmoa).

  4. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  5. Discovering chemistry with an ab initio nanoreactor

    PubMed Central

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-01-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881

  6. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  7. Discovering chemistry with an ab initio nanoreactor

    SciTech Connect

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.

  8. Discovering chemistry with an ab initio nanoreactor

    DOE PAGES

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  9. Ab Initio Calculation of the Hoyle State

    SciTech Connect

    Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.

    2011-05-13

    The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.

  10. Ab Initio Force Fields for Imidazolium-Based Ionic Liquids.

    PubMed

    McDaniel, Jesse G; Choi, Eunsong; Son, Chang Yun; Schmidt, J R; Yethiraj, Arun

    2016-07-21

    We develop ab initio force fields for alkylimidazolium-based ionic liquids (ILs) that predict the density, heats of vaporization, diffusion, and conductivity that are in semiquantitative agreement with experimental data. These predictions are useful in light of the scarcity of and sometimes inconsistency in experimental heats of vaporization and diffusion coefficients. We illuminate physical trends in the liquid cohesive energy with cation chain length and anion. These trends are different than those based on the experimental heats of vaporization. Molecular dynamics prediction of the room temperature dynamics of such ILs is more difficult than is generally realized in the literature due to large statistical uncertainties and sensitivity to subtle force field details. We believe that our developed force fields will be useful for correctly determining the physics responsible for the structure/property relationships in neat ILs.

  11. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  12. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  13. Computer simulation of acetonitrile and methanol with ab initio-based pair potentials

    NASA Astrophysics Data System (ADS)

    Hloucha, M.; Sum, A. K.; Sandler, S. I.

    2000-10-01

    This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.

  14. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure

    SciTech Connect

    Hoy, Erik P.; Mazziotti, David A.

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  15. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure.

    PubMed

    Hoy, Erik P; Mazziotti, David A

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  16. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure.

    PubMed

    Hoy, Erik P; Mazziotti, David A

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory. PMID:26277123

  17. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  18. Ab initio X-Ray Absorption Fine Structure Cumulants

    NASA Astrophysics Data System (ADS)

    Vila, F.; Rehr, J. J.; Rossner, H. H.; Krappe, H. J.

    2006-03-01

    Theoretical calculations of vibrational effects in x-ray absorption spectra typically employ semi-phenomenological models, e.g. empirical force constants or correlated Debye or Einstein models. Instead we introduce an efficient and generally applicable ab initio approach based on electronic structure calculations of the dynamical matrix together with the Lanczos recursion algorithm [1] and relations between the cumulants. The approach yields 1) the thermal expansion coefficients (first cumulant of the vibrational distribution function); 2) correlated Debye-Waller factors (second cumulants) and 3) anharmonic contributions (third cumulants). Results are presented for crystalline (Cu, Au, Ge, GaAs) and molecular (GeCl4, C6H6) systems. Our results for the Debye-Waller factors agree well with experiment. [1]H.J. Krappe and H.H. Rossner, Phys. Rev. B70, 104102 (2004).

  19. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.

    PubMed

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  20. Ab initio study of II-(VI)2 dichalcogenides.

    PubMed

    Olsson, P; Vidal, J; Lincot, D

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.

  1. Towards a full ab initio theory of strong electronic correlations in nanoscale devices

    NASA Astrophysics Data System (ADS)

    Jacob, David

    2015-06-01

    In this paper I give a detailed account of an ab initio methodology for describing strong electronic correlations in nanoscale devices hosting transition metal atoms with open d- or f-shells. The method combines Kohn-Sham density functional theory for treating the weakly interacting electrons on a static mean-field level with non-perturbative many-body methods for the strongly interacting electrons in the open d- and f-shells. An effective description of the strongly interacting electrons in terms of a multi-orbital Anderson impurity model is obtained by projection onto the strongly correlated subspace properly taking into account the non-orthogonality of the atomic basis set. A special focus lies on the ab initio calculation of the effective screened interaction matrix U for the Anderson model. Solution of the effective Anderson model with the one-crossing approximation or other impurity solver techniques yields the dynamic correlations within the strongly correlated subspace giving rise e.g. to the Kondo effect. As an example the method is applied to the case of a Co adatom on the Cu(0 0 1) surface. The calculated low-bias tunnel spectra show Fano-Kondo lineshapes similar to those measured in experiments. The exact shape of the Fano-Kondo feature as well as its width depend quite strongly on the filling of the Co 3d-shell. Although this somewhat hampers accurate quantitative predictions regarding lineshapes and Kondo temperatures, the overall physical situation can be predicted quite reliably.

  2. On the hierarchical parallelization of ab initio simulations

    NASA Astrophysics Data System (ADS)

    Ruiz-Barragan, Sergi; Ishimura, Kazuya; Shiga, Motoyuki

    2016-02-01

    A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.

  3. Ab Initio Treatment of Lower Mantle Mineral Solvi.

    NASA Astrophysics Data System (ADS)

    Jung, D. Y.; Oganov, A. R.; Schmidt, M. W.

    2006-12-01

    The lower mantle of the Earth extends from about 670 to 2980 km depth and consists mainly of MgSiO3- perovskite (~ 70 vol%), (Mg,Fe)O magnesiowüstite (~ 20 vol%) and CaSiO3-perovskite (~ 10 vol%). To obtain a realistic picture of the lower mantle, it is necessary to consider the perovskite minerals as coexisting solid solutions with a large miscibility gap, as this is the case in nature. In this work we investigate the solvi of the three binaries in the Ca-perovskite - Mg-perovskite - corundum ternary, i.e. the solid solutions relevant for the Earth's lower mantle minerals in a simplified CMAS system. It is possible to calculate thermodynamic properties, structures and energetics of the individual minerals at extreme conditions of the mantle using ab initio methods, such as the density functional theory (DFT). We use the DFT together with the generalized gradient approximation (GGA) and the projector augmented wave (PAW) method, as implemented in the VASP code. The binary solvi are modelled through a subregular solid solution model together with point defect calculations at different pressures in the lower mantle regime. Point defects in the (Ca,Mg)-perovskite system are simple substitutions, but in MgSiO3-Al2O3 there is a coupled charge substitution of 2Al3+ with Mg2+Si^{4+}. Additionally, different symmetries of the perovskite (and akimotoite/ilmenite for MgSiO3) structures have been taken into account, thus allowing for phase transitions in solid solutions. At pressures and temperatures of the lower mantle, the solvus in the (Ca,Mg)SiO3 system remains wide open and solubilities of Ca in Mg-perovskite and Mg in Ca-perovskite decrease with pressure (at constant temperature and along any adiabatic geotherm). Calculations on the MgSiO3-Al2O3 (akimotoite-corundum) solvus show higher solubilities. Still, we find it unlikely that Ca-perovskite would disappear (i.e. fully dissolve in Mg-perovskite) at conditions of the lower mantle, at last not in the simplified CMAS

  4. Ab Initio: And a New Era of Airline Pilot Training.

    ERIC Educational Resources Information Center

    Gesell, Laurence E.

    1995-01-01

    Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)

  5. Phonocatalysis. An ab initio simulation experiment

    NASA Astrophysics Data System (ADS)

    Kim, Kwangnam; Kaviany, Massoud

    2016-06-01

    Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon) energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent) requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.

  6. Density Density Correlation Function for a Bose-Einstein Condensate Analog Black Hole

    NASA Astrophysics Data System (ADS)

    Anderson, Paul; Balbinot, Roberto; Fabbri, Alessandro; Parentani, Renaud

    2013-04-01

    The density density correlation function is computed for an analog black hole which consists of a Bose-Einstein condensate with an acoustic horizon. The method used relies only on quantum field theory in curved spacetime techniques. A comparison with the results obtained by ab initio full condensed matter calculations is given, confirming the validity of the approximation used provided the profile of the flow varies smoothly on scales compared to the condensate healing length.

  7. Ab Initio Calculation of the Ultraviolet-Visible (UV-vis) Absorption Spectrum, Electron-Loss Function, and Reflectivity of Solids.

    PubMed

    Ferrari, Anna Maria; Orlando, Roberto; Rérat, Michel

    2015-07-14

    The field frequency has recently been taken into account in the coupled-perturbed Hartree-Fock or Kohn-Sham method implemented in the CRYSTAL code for calculating the high-frequency dielectric constant of semiconductors up to the first electronic transitions. In this work, we document how the code has been generalized and improved in order to compute the full ultraviolet-visible (UV-vis) absorption spectrum, the electron loss function, and the reflectivity from the real and imaginary parts of the electric response property. We show how spectra are modified when the crystalline orbital relaxation due to the dynamic electric field is taken into account, and how this modification increases with the percentage of Hartree-Fock exchange in the unperturbed hybrid Hamiltonian.

  8. Elastic properties of amorphous boron suboxide based solids studied using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Music, Denis; Schneider, Jochen M.

    2008-05-01

    We have studied the correlation between chemical composition, structure, chemical bonding and elastic properties of amorphous B6O based solids using ab initio molecular dynamics. These solids are of different chemical compositions, but the elasticity data appear to be a function of density. This is in agreement with previous experimental observations. As the density increases from 1.64 to 2.38 g cm-3, the elastic modulus increases from 74 to 253 GPa. This may be understood by analyzing the cohesive energy and the chemical bonding of these compounds. The cohesive energy decreases from -7.051 to -7.584 eV/atom in the elastic modulus range studied. On the basis of the electron density distributions, Mulliken analysis and radial distribution functions, icosahedral bonding is the dominating bonding type. C and N promote cross-linking of icosahedra and thus increase the density, while H hinders the cross-linking by forming OH groups. The presence of icosahedral bonding is independent of the density.

  9. Structure, dynamics, and electronic structure of liquid Ag-Se alloys investigated by ab initio simulation

    NASA Astrophysics Data System (ADS)

    Kirchhoff, F.; Holender, J. M.; Gillan, M. J.

    1996-07-01

    Ab initio molecular-dynamics simulations have been used to investigate the structure, dynamics, and electronic properties of the liquid alloy Ag1-xSex at 1350 K and at the three compositions x=0.33, 0.42, and 0.65. To provide a point of reference, calculations are also presented for the equilibrium structure and the electronic structure of the α-Ag2Se crystal. The calculations are based on density-functional theory in the local-density approximation and on the pseudopotential plane-wave method. For the solid, we find excellent agreement with experiment for the equilibrium lattice parameters and the atomic coordinates of the 12-atom orthorhombic unit cell, and we present an analysis of the electronic density of states and density distribution. The reliability of the liquid simulations is confirmed by detailed comparisons with very recent neutron-diffraction results for the partial structure factors and radial distribution functions (RDF) of the stoichiometric liquid Ag2Se. Comparison with the predictions of an empirical interaction model due to Rino et al. is also given for l-Ag2Se. The ab initio simulations show a dramatic change of the Se-Se RDF with increasing Se content. This change is due to the formation of Se clusters bound by covalent bonds, the Se-Se bond length being almost the same as in pure c-Se and l-Se. The clusters are predominantly chainlike, but for higher x there is a significant fraction of threefold coordinated Se atoms. It is shown that the equilibrium fractions of Se present as isolated atoms and in clusters can be understood on a simple charge-balance model based on an ionic interpretation. The Ag diffusion coefficient in the simulated stoichiometric liquid is consistent with experimental values measured in the high-temperature superionic solid. The Ag and Se diffusion coefficients both increase with Se content, in spite of the Se clustering. An analysis of the Se-Se bond dynamics reveals surprisingly short bond lifetimes of less than 1 ps

  10. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range. PMID:25524926

  11. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range.

  12. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  13. Computation and interpretation of vibrational spectra on the structure of Losartan using ab initio and Density Functional methods.

    PubMed

    Latha, B; Gunasekaran, S; Srinivasan, S; Ramkumaar, G R

    2014-11-11

    The solid phase FTIR and FT-Raman spectra of Losartan have been recorded in the region 400-4000 cm(-1). The spectra were interpreted in terms of fundamental modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by Quantum chemical methods. The vibrational frequencies yield good agreement between observed and calculated values. The infrared and Raman spectra were also predicted from the calculated intensities. 1H and 13C NMR spectra were recorded and resonance chemical shifts of the molecule were calculated. UV-Visible spectrum of the compound was recorded in the region 200-600 nm and the electronic properties HOMO and LUMO energies calculated by TD-HF approach. NBO atomic charges of the molecules and second order perturbation theory analysis of Fock matrix also calculated and interpreted. The geometrical parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, and absorption wavelengths were compared with experimental and theoretical data of the molecule.

  14. Computation and interpretation of vibrational spectra on the structure of Losartan using ab initio and Density Functional methods

    NASA Astrophysics Data System (ADS)

    Latha, B.; Gunasekaran, S.; Srinivasan, S.; Ramkumaar, G. R.

    2014-11-01

    The solid phase FTIR and FT-Raman spectra of Losartan have been recorded in the region 400-4000 cm-1. The spectra were interpreted in terms of fundamental modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by Quantum chemical methods. The vibrational frequencies yield good agreement between observed and calculated values. The infrared and Raman spectra were also predicted from the calculated intensities. (1)H and (13)C NMR spectra were recorded and resonance chemical shifts of the molecule were calculated. UV-Visible spectrum of the compound was recorded in the region 200-600 nm and the electronic properties HOMO and LUMO energies calculated by TD-HF approach. NBO atomic charges of the molecules and second order perturbation theory analysis of Fock matrix also calculated and interpreted. The geometrical parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, and absorption wavelengths were compared with experimental and theoretical data of the molecule.

  15. Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study

    SciTech Connect

    Rio, B. G. del; González, L. E.

    2015-08-17

    Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.

  16. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850

  17. Local Environment Distribution in Ab Initio Liquid Water

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Distasio, Robert A., Jr.; Car, Roberto

    2013-03-01

    We have analyzed the distribution of local environments in liquid water at ambient conditions and its inherent potential energy surface (IPES) based on state-of-the-art ab initio molecular dynamics simulations performed on 128 molecules implementing hybrid PBE0 exchange [PRB 79, 085102 (2009)] and van der Waals (vdW) interactions [PRL 102, 073005 (2009)]. The local environments of molecules are characterized in terms of the local structure index (LSI) [JCP 104, 7671 (1996)] which is able to distinguish high- and low-density molecular environments. In agreement with simulations based on model potentials, we find that the distribution of LSI is unimodal at ambient conditions and bimodal in the IPES, consistent with the existence of polymorphism in amorphous phases of water. At ambient conditions spatial LSI fluctuations extend up to ~7 Å and their dynamical correlation decays on a time scale of ~3 ps, as found for density fluctuations in a recent study [PRL 106, 037801 (2011)]. DOE: DE-SC0008626, DOE: DE-SC0005180, NSF: CHE-0956500

  18. Incorporating Ab Initio energy into threading approaches for protein structure prediction

    PubMed Central

    2011-01-01

    Background Native structures of proteins are formed essentially due to the combining effects of local and distant (in the sense of sequence) interactions among residues. These interaction information are, explicitly or implicitly, encoded into the scoring function in protein structure prediction approaches—threading approaches usually measure an alignment in the sense that how well a sequence adopts an existing structure; while the energy functions in Ab Initio methods are designed to measure how likely a conformation is near-native. Encouraging progress has been observed in structure refinement where knowledge-based or physics-based potentials are designed to capture distant interactions. Thus, it is interesting to investigate whether distant interaction information captured by the Ab Initio energy function can be used to improve threading, especially for the weakly/distant homologous templates. Results In this paper, we investigate the possibility to improve alignment-generating through incorporating distant interaction information into the alignment scoring function in a nontrivial approach. Specifically, the distant interaction information is introduced through employing an Ab Initio energy function to evaluate the “partial” decoy built from an alignment. Subsequently, a local search algorithm is utilized to optimize the scoring function. Experimental results demonstrate that with distant interaction items, the quality of generated alignments are improved on 68 out of 127 query-template pairs in Prosup benchmark. In addition, compared with state-to-art threading methods, our method performs better on alignment accuracy comparison. Conclusions Incorporating Ab Initio energy functions into threading can greatly improve alignment accuracy. PMID:21342587

  19. Engineering Room-temperature Superconductors Via ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen

    The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.

  20. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava

    subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated

  1. High-level ab initio computations of the absorption spectra of organic iridium complexes.

    PubMed

    Plasser, Felix; Dreuw, Andreas

    2015-02-12

    The excited states of fac-tris(phenylpyridinato)iridium [Ir(ppy)3] and the smaller model complex Ir(C3H4N)3 are computed using a number of high-level ab initio methods, including the recently implemented algebraic diagrammatic construction method to third-order ADC(3). A detailed description of the states is provided through advanced analysis methods, which allow a quantification of different charge transfer and orbital relaxation effects and give extended insight into the many-body wave functions. Compared to the ADC(3) benchmark an unexpected striking difference of ADC(2) is found for Ir(C3H4N)3, which derives from an overstabilization of charge transfer effects. Time-dependent density functional theory (TDDFT) using the B3LYP functional shows an analogous but less severe error for charge transfer states, whereas the ωB97 results are in good agreement with ADC(3). Multireference configuration interaction computations, which are in reasonable agreement with ADC(3), reveal that static correlation does not play a significant role. In the case of the larger Ir(ppy)3 complex, results at the TDDFT/B3LYP and TDDFT/ωB97 levels of theory are presented. Strong discrepancies between the two functionals, which are found with respect to the energies, characters, as well as the density of the low lying states, are discussed in detail and compared to experiment. PMID:25584785

  2. Local Structure in Ab Initio Liquid Water: Signatures of Amorphous Phases

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Distasio, Robert A., Jr.; Martelli, Fausto; Car, Roberto

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate ab initio liquid water. At ambient conditions, the LSI probability distribution, P(I), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P(I) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies among water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- and high-density amorphous phases of ice are present in the IPES of ambient liquid water This work was supported by the DOE: DE-SC0008626, DE-SC0005180.

  3. Ab Initio No-Core Shell Model

    SciTech Connect

    Barrett, B R; Navratil, P; Vary, J P

    2011-04-11

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN

  4. Operator evolution for ab initio theory of light nuclei

    NASA Astrophysics Data System (ADS)

    Schuster, Micah; Quaglioni, Sofia; Johnson, Calvin; Jurgenson, Eric; Navrátil, Petr

    2014-09-01

    The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range; short ranges have the largest absolute renormalization when including two- and three-body induced terms, while at long ranges the induced three-body contribution takes on increased relative importance. The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores

  5. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    SciTech Connect

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  6. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  7. THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY

    SciTech Connect

    Turchi, P A

    2004-09-24

    Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.

  8. Ab initio calculation of x-ray absorption of iron up to 3 Mbar and 8000 K

    NASA Astrophysics Data System (ADS)

    Mazevet, S.; Recoules, V.; Bouchet, J.; Guyot, F.; Harmand, M.; Ravasio, A.; Benuzzi-Mounaix, A.

    2014-03-01

    Using ab initio simulations within the generalized gradient approximation, we calculate x-ray absorption near edge spectra (XANES) at the iron K edge throughout the high-pressure phase diagram and up to extreme density and temperature conditions that are representative of the Earth's inner core (up to 3 Mbar and 8000 K). We show that XANES spectra near the Fe K edge exhibit clear signatures for the different high-temperature, high-pressure phases of iron. This suggests that XANES spectroscopy might be used to resolve ongoing controversies regarding both the high-pressure melting curve of iron and the nature of the solid phases undergoing melting up to several Mbar. In contrast to diffraction measurements, it also offers a severe constraint for density functional theory predictions of the transport properties of iron by providing direct information on the electronic structure of iron at these extreme conditions.

  9. Ab-initio calculations and phase diagram assessments of An-Al systems (An = U, Np, Pu)

    NASA Astrophysics Data System (ADS)

    Sedmidubský, D.; Konings, R. J. M.; Souček, P.

    2010-02-01

    The enthalpies of formation of binary intermetallic compounds AnAl n(n=2,3,4, An=U,Np,Pu) were assessed from first principle calculations of total energies performed using full potential APW + lo technique within density functional theory ( WIEN2k). The substantial contribution to entropies, S298°, arising from lattice vibrations was calculated by direct method within harmonic crystal approximation ( Phonon software + VASP for obtaining Hellmann-Feynman forces). The electronic heat capacity and the corresponding contribution to entropy were estimated from the density of states at Fermi level obtained from electronic structure calculations. The phase diagrams of the relevant systems An-Al were calculated based on the thermodynamic data assessed from ab-initio calculations, known equilibrium and calorimetry data by employing the FactSage program.

  10. Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations

    SciTech Connect

    Gall, D.; Sta''dele, M.; Ja''rrendahl, K.; Petrov, I.; Desjardins, P.; Haasch, R. T.; Lee, T.-Y.; Greene, J. E.

    2001-03-15

    Experimental and ab initio computational methods are employed to conclusively show that ScN is a semiconductor rather than a semimetal; i.e., there is a gap between the N 2p and the Sc 3d bands. Previous experimental investigators reported, in agreement with band structure calculations showing a band overlap of 0.2 eV, that ScN is a semimetal while others concluded that it is a semiconductor with a band gap larger than 2 eV. We have grown high quality, single crystalline ScN layers on MgO(001) and on TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. ScN optical properties were determined by transmission, reflection, and spectroscopic ellipsometry while in-situ x-ray and ultraviolet valence band photoelectron spectroscopy were used to determine the density of states (DOS) below the Fermi level. The measured DOS exhibits peaks at 3.8 and 5.2 eV stemming from the N 2p bands and at 15.3 eV due to the N 2s bands. The imaginary part of the measured dielectric function {epsilon}{sub 2} consists of two primary features due to direct X- and {Gamma}-point transitions at photon energies of 2.7 and 3.8 eV, respectively. For comparison, the ScN band structure was calculated using an ab initio Kohn--Sham approach which treats the exchange interactions exactly within density-functional theory. Calculated DOS and the complex dielectric function are in good agreement with our ScN valence-band photoelectron spectra and measured optical properties, respectively. We conclude, combining experimental and computational results, that ScN is a semiconductor with an indirect {Gamma}--X bandgap of 1.3{+-}0.3eV and a direct X-point gap of 2.4{+-}0.3eV.

  11. Beyond Born-Mayer: Improved Models for Short-Range Repulsion in ab Initio Force Fields.

    PubMed

    Van Vleet, Mary J; Misquitta, Alston J; Stone, Anthony J; Schmidt, J R

    2016-08-01

    Short-range repulsion within intermolecular force fields is conventionally described by either Lennard-Jones (A/r(12)) or Born-Mayer (A exp(-Br)) forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of intermolecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, and robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Finally, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach. PMID:27337546

  12. Conductivity of carbon-based molecular junctions from ab-initio methods

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fei; Luo, Yi

    2014-12-01

    Carbon nanomaterials (CNMs) are prompting candidates for next generational electronics. In this review we provide a mini overview of recent results on the conductivity of carbon-based molecular junctions obtained from ab-initio methods. CNMs used as nanoelectrodes and molecular materials in molecular junctions are discussed. The functionalities that include the nanomechanically controlled molecular conductance switches, negative differential resistance devices, and electronic rectifiers realized by using CNMs have been demonstrated.

  13. Emergence of quasi-one-dimensional physics in a nearly-isotropic three-dimensional molecular crystal: Ab initio modeling of Mo3S7(dmit) 3

    NASA Astrophysics Data System (ADS)

    Jacko, A. C.; Janani, C.; Koepernik, Klaus; Powell, B. J.

    2015-03-01

    We report density functional theory calculations for Mo3S7(dmit) 3 . We derive an ab initio tight-binding model from overlaps of Wannier orbitals; finding a layered model with interlayer hopping terms ˜3 /4 the size of the in-plane terms. The in-plane Hamiltonian interpolates the kagomé and honeycomb lattices. It supports states localized to dodecahedral rings within the plane, which populate one-dimensional (1D) bands and lead to a quasi-1D spin-one model on a layered honeycomb lattice once interactions are included. Two lines of Dirac cones also cross the Fermi energy.

  14. Properties of the In{sub 2}O{sub 3}-Si interface: An ab initio study of a model geometry

    SciTech Connect

    Höffling, Benjamin; Bechstedt, Friedhelm

    2014-05-15

    The In{sub 2}O{sub 3}(001)-Si(001) heterojunction is studied by means of the ab initio density functional theory, quasiparticle corrections, and the supercell method. We construct a model interface based on the idea of a coincidence lattice, only Si-O interface bonds and biaxially strained In{sub 2}O{sub 3}. The properties of the interface and their consequences for the junction are mainly described in terms of electronic band levels and charge redistribution. The results indicate a type II heterostructure caused by interface dipole alteration due to electron rearrangements.

  15. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.

    2016-07-01

    Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and

  16. Conformational studies by liquid crystal NMR and ab initio calculations: methyl nicotinate and methyl isonicotinate

    NASA Astrophysics Data System (ADS)

    Kon, Masao; Kurokawa, Hideki; Takeuchi, Hiroshi; Konaka, Shigehiro

    1992-04-01

    Conformational properties of methyl nicotinate and methyl isonicotinate have been studied by liquid crystal 1H-NMR spectroscopy combined with ab initio calculations. The solvent used is a mixture of 80 mol.% of EBBA and 20 mol.% of MBBA.Ab initio calculations have been performed with 4-21G and MINI-4 basis sets to estimate molecular structures and the potential functions for internal rotation. Some structural parameters and the energy difference between rotational isomers have been refined by using observed dipolar coupling constants. The correlation between internal rotation and reorientational molecular motion has been taken into account according to the theory of Emsley, Luckhurst and Stockley. The parameters of the mean external potential are found to take similar values for methyl nicotinate and methyl isonicotinate. The energy difference of the two stable conformers of methyl nicotinate is in agreement with the analysis neglecting the correlation between the two motions.

  17. Simulating ionic thermal trasport by equilibrium ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Marcolongo, Aris; Umari, Paolo; Baroni, Stefano

    2014-03-01

    The Green-Kubo approach to thermal transport is often considered to be incompatible with ab-initio molecular dynamics (AIMD) because a suitable quantum-mechanical definition of the heat current is not readily available, due to the ill-definedness of the microscopic energy density to which it is related by the continuity equation. We argue that a similar difficulty actually exists in classical mechanics as well, and we address the conditions that have to be fulfilled in order for the physically well defined transport coefficients to be independent of the ill defined microscopic energy density from which they derive. We then provide two alternative approaches to calculating thermal conductivites from equilibrium AIMD. The first is based on the Green-Kubo formula, supplemented with an expression for the energy current, which is a generalization of Thouless' expression for the adiabatic charge current. The second approach, which avoids the recourse to an energy current altogether, rests on an efficient and accurate extrapolation to infinite wavelengths of the energy-density time correlation functions. The two methods are compared on a simple classical test bed, and their implementation in AIMD is demonstrated with the calculation of the thermal conductivity of simple fluids.

  18. Ab-initio Calculation of Optoelectronic and Structural Properties of Cubic Lithium Oxide (Li2O)

    NASA Astrophysics Data System (ADS)

    Ziegler, Joshua; Polin, Daniel; Malozovsky, Yuriy; Bagayoko, Diola

    Using the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), we performed ab-initio, density functional theory (DFT) calculations of optoelectronic, transport, and bulk properties of Li2S. In so doing, we avoid ``band gap'' and problems plaguing many DET calculations [AIP Advances 4, 127104 (2014)]. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). With the BZW-EF method, our results possess the full, physical content of DFT and agree with available, corresponding experimental ones. In particular, we found a room temperature indirect band gap of 6.659 eV that compares favorably with experimental values ranging from 5 to 7.99 eV. We also calculated total and partial density of states (DOS and PDOS), effective masses of charge carriers, the equilibrium lattice constant, and the bulk modulus. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.

  19. Ab initio ground and the first excited adiabatic and quasidiabatic potential energy surfaces of H + + CO system

    NASA Astrophysics Data System (ADS)

    George, D. X. F.; Kumar, Sanjay

    2010-08-01

    Ab initio global adiabatic as well as quasidiabatic potential energy surfaces for the ground and the first excited electronic states of the H + + CO system have been computed as a function of the Jacobi coordinates ( R, r, γ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. In addition, nonadiabatic coupling matrix elements arising from radial motion, mixing angle and coupling potential have been computed using the ab initio procedure [Simah et al. (1999) [66

  20. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  1. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.

    PubMed

    Marsalek, Ondrej; Uhlig, Frank; VandeVondele, Joost; Jungwirth, Pavel

    2012-01-17

    liquid cluster and becomes indistinguishable from an equilibrated, solvated electron on a picosecond time scale. In contrast, for solid, cryogenic systems, the electron only partially localizes outside of the cluster, being trapped in a metastable, weakly bound "cushion-like" state. Strongly bound states under cryogenic conditions could only be prepared by cooling equilibrated, liquid, negatively charged clusters. These calculations allow us to rationalize how different isomers of electrons in cryogenic clusters can be observed experimentally. Our results also bring into question the direct extrapolation of properties of cryogenic, negatively charged water clusters to those of electrons in the bulk liquid. Ab initio molecular dynamics represents a unique computational tool for investigating the reactivity of the solvated electron in water. As a prototype, the electron-proton reaction was followed in the 32-water cluster. In accord with experiment, the molecular mechanism is a proton transfer process that is not diffusion limited, but rather controlled by a proton-induced deformation of the excess electron's solvent shell. We demonstrate the necessary ingredients of a successful density functional methodology for the hydrated electron that avoids potential pitfalls, such as self-interaction error, insufficient basis set, or lack of dispersion interactions. We also benchmark the density functional theory methods and outline the path to faithful ab initio simulations of dynamics and reactivity of electrons solvated in extended aqueous systems.

  2. Ab-initio crystal structure prediction. A case study: NaBH{sub 4}

    SciTech Connect

    Caputo, Riccarda; Tekin, Adem

    2011-07-15

    Crystal structure prediction from first principles is still one of the most challenging and interesting issue in condensed matter science. we explored the potential energy surface of NaBH{sub 4} by a combined ab-initio approach, based on global structure optimizations and quantum chemistry. In particular, we used simulated annealing (SA) and density functional theory (DFT) calculations. The methodology enabled the identification of several local minima, of which the global minimum corresponded to the tetragonal ground-state structure (P4{sub 2}/nmc), and the prediction of higher energy stable structures, among them a monoclinic (Pm) one was identified to be 22.75 kJ/mol above the ground-state at T=298 K. In between, orthorhombic and cubic structures were recovered, in particular those with Pnma and F4-bar 3m symmetries. - Graphical abstract: The total electron energy difference of the calculated stable structures. Here, the tetragonal (IT 137) and the monoclinic (IT 6) symmetry groups corresponded to the lowest and the highest energy structures, respectively. Highlights: > Potential energy surface of NaBH{sub 4} is investigated. > This is done a combination of global structure optimizations based on simulated annealing and density functional calculations. > We successfully reproduced experimentally found tetragonal and orthorhombic structures of NaBH{sub 4}. > Furthermore, we found a new stable high energy structure.

  3. Solvation properties of microhydrated sulfate anion clusters: insights from ab initio calculations.

    PubMed

    Wan, Quan; Spanu, Leonardo; Galli, Giulia

    2012-08-01

    Sulfate-water clusters play an important role in environmental and industrial processes, yet open questions remain on their physical and chemical properties. We investigated the smallest hydrated sulfate anion clusters believed to have a full solvation shell, with 12 or 13 water molecules. We used ab initio molecular dynamics and electronic structure calculations based on density functional theory, with semilocal and hybrid functionals. At both levels of theory we found that configurations with the anion at the surface of the cluster are energetically favored compared to fully solvated ones, which are instead metastable. We show that infrared spectra of the anion with different solvation shells have similar vibrational signatures, indicating that a mixture of surface and internally solvated geometries are likely to be present in the experimental samples at low temperature. In addition, the computed electronic density of states of surface and internally solvated clusters are hardly distinguishable at finite temperature, with the highest occupied molecular orbital belonging to the anion in all cases. The equilibrium structure determined for SO(4)(2-)·(H(2)O)(13) differs from that previously reported; we find that the addition of one water molecule to a 12-water cluster modifies its hydration shell and that water-water bonds are preferred over water-anion bonds.

  4. Regioselective synthesis and ab initio calculations of fused heterocycles thermally and under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Salem, Mostafa E.; Ahmed, Ashour A.; Shaaban, Mohamed R.; Shibl, Mohamed F.; Farag, Ahmad M.

    2015-09-01

    Pyrazolo[1,5-a]pyrimidine, triazolo[1,5-a]pyrimidine, and pyrimido[1,2-a]benzimidazole, pyrido[1,2-a]benzimidazole ring systems incorporating phenylsulfonyl moiety were synthesized via the reaction of 3-(N,N-dimethylamino)-1-(thiophen-2-yl)-2-(phenylsulfonyl)prop-2-en-1-one derivatives with the appropriate aminoazoles as 1,3-binucleophiles and 1H-benzimidazol-2-ylacetonitrile using conventional methods as well as microwave irradiation. The regioselectivity of the cyclocondensation reactions was confirmed both experimentally by alternative synthesis of reaction products and theoretically using ab initio quantum chemical calculations namely the Density Functional Theory (DFT). The theoretical work was carried out using the Becke, three parameter, Lee-Yang-Parr hybrid functional (B3LYP) combined with the 6-311++G(d,p) basis set. It was found that the final cyclocondensation reaction product depends mainly on the initial addition to the activated double bond by the nitrogen atom of the 1,3-binucleophiles that has the higher electron density.

  5. Ab initio computations of photodissociation products of CFC alternatives

    SciTech Connect

    Tai, S.; Illinger, K.H.; Kenny, J.E.

    1995-12-31

    Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.

  6. A search for manifestation of two types of collective excitations in dynamic structure of a liquid metal: Ab initio study of collective excitations in liquid Na.

    PubMed

    Bryk, Taras; Wax, J-F

    2016-05-21

    Using a combination of ab initio molecular dynamics and several fit models for dynamic structure of liquid metals, we explore an issue of possible manifestation of non-acoustic collective excitations in longitudinal dynamics having liquid Na as a case study. A model with two damped harmonic oscillators (DHOs) in time domain is used for analysis of the density-density time correlation functions. Another similar model with two propagating contributions and three lowest exact sum rules is considered, as well as an extended hydrodynamic model known as thermo-viscoelastic one which permits two types of propagating modes outside the hydrodynamic region to be used for comparison with ab initio obtained time correlation functions and calculations of dispersions of collective excitations. Our results do not support recent suggestions that, even in simple liquid metals, non-hydrodynamics transverse excitations contribute to the longitudinal collective dynamics and can be detected as a DHO-like spectral shape at their transverse frequency. We found that the thermo-viscoelastic dynamic model permits perfect description of the density-density and current-current time correlation functions of the liquid Na in a wide range of wave numbers, which implies that the origin of the non-hydrodynamic collective excitations contributing to longitudinal dynamics can be short-wavelength heat waves. PMID:27208952

  7. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  8. Ab initio molecular dynamics calculations of ion hydration free energies

    SciTech Connect

    Leung, Kevin; Rempe, Susan B.; Lilienfeld, O. Anatole von

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or '{lambda}-path' technique to compute the intrinsic hydration free energies of Li{sup +}, Cl{sup -}, and Ag{sup +} ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential ({phi}) contributions, we obtain absolute AIMD hydration free energies ({Delta}G{sub hyd}) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model {phi} predictions. The sums of Li{sup +}/Cl{sup -} and Ag{sup +}/Cl{sup -} AIMD {Delta}G{sub hyd}, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag{sup +}+Ni{sup +}{yields}Ag+Ni{sup 2+} in water. The predictions for this reaction suggest that existing estimates of {Delta}G{sub hyd} for unstable radiolysis intermediates such as Ni{sup +} may need to be extensively revised.

  9. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  10. The AB Initio Mia Method: Theoretical Development and Practical Applications

    NASA Astrophysics Data System (ADS)

    Peeters, Anik

    The bottleneck in conventional ab initio Hartree -Fock calculations is the storage of the electron repulsion integrals because their number increases with the fourth power of the number of basis functions. This problem can be solved by a combination of the multiplicative integral approximation (MIA) and the direct SCF method. The MIA approach was successfully applied in the geometry optimisation of some biologically interesting compounds like the neurolepticum Haloperidol and two TIBO derivatives, inactivators of HIV1. In this thesis the potency of the MIA-method is shown by the application of this method in the calculation of the forces on the nuclei. In addition, the MIA method enabled the development of a new model for performing crystal field studies: the supermolecule model. The results for this model are in better agreement with experimental data than the results for the point charge model. This is illustrated by the study of some small molecules in the solid state: 2,3-diketopiperazine, formamide oxime and two polymorphic forms of glycine, alpha-glycine and beta-glycine.

  11. First fully ab initio potential energy surface of methane with a spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.

    2016-09-01

    Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.

  12. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools. PMID:27536341

  13. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    SciTech Connect

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A.

    2015-12-28

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.

  14. Interplay of force constants in the lattice dynamics of disordered alloys: An ab initio study

    NASA Astrophysics Data System (ADS)

    Chouhan, Rajiv K.; Alam, Aftab; Ghosh, Subhradip; Mookerjee, Abhijit

    2014-02-01

    A reliable prediction of interatomic force constants in disordered alloys is an outstanding problem. This is due to the need for a proper treatment of multisite (at least pair) correlation within a random environment. The situation becomes even more challenging for systems with a large difference in atomic size and mass. We propose a systematic density functional theory (DFT) based study to predict the ab initio force constants in random alloys. The method is based on a combination of special quasirandom structures and the augmented space recursion to calculate phonon spectra, density of states (DOS), etc. The bcc TaW and fcc NiPt alloys are considered as the two distinct test cases. The Ta-Ta (W-W) bond distance in the alloy is predicted to be smaller (larger) than those in pure Ta (W), which, in turn, yields stiffer (softer) force constants for Ta (W). Pt-Pt force constants in the alloy, however, are predicted to be softer compared to Ni-Ni, due to the large bond distance of the former. Our calculated force constants, phonon spectra, and DOS are compared with experiments and other theoretical results, wherever available. A correct trend of the present results for the two alloys paves a path for future studies in more complex alloy systems.

  15. Band offset of the ZnO/Cu2O heterojunction from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Zemzemi, M.; Alaya, S.

    2013-12-01

    The ZnO/Cu2O system has known a recent revival of interest in solar cells for its potential use as a heterojunction able to highly perform under visible light. In this work, we are interested on the characterization of the interface through nanoscale modelization based on ab initio (Density Functional Theory (DFT), Local Density Approximation (LDA), Generalized Gradient Approximation (GGA-PBE), and Pseudopotential (PP)). This work aims to build a supercell containing a heterojunction ZnO/Cu2O and study the structural properties and the discontinuity of the valence band (band offset) from a semiconductor to another. We built a zinc oxide in the wurtzite structure along the [0 0 0 1] on which we placed the copper oxide in the hexagonal structure (CdI2-type). We choose the method of Van de Walle and Martin to calculate the energy offset. This approach fits well with the DFT. Our calculations of the band offset gave us a value that corresponds to other experimental and theoretical values.

  16. Design of novel solar thermal fuels with high-throughput ab initio simulations

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Grossman, Jeffrey

    2014-03-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. Previously we have predicted a new class of functional materials that have the potential to address these challenges. Recently, we have developed an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening algorithm we have developed can run through large numbers of molecules composed of earth-abundant elements, and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical design principles to guide further STF materials design through the correlation between isomerization enthalpy and structural properties.

  17. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.

  18. Efficient conformational space exploration in ab initio protein folding simulation

    PubMed Central

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel

    2015-01-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  19. Photo-induced athermal phase transitions of HgX (X = S, Se, Te) by ab initio study

    NASA Astrophysics Data System (ADS)

    Da-hua, Ren; Xin-lu, Cheng; Hong, Zhang

    2016-07-01

    Ab initio calculations of lattice constants, lattice stabilities of HgX (X = S, Se, Te) at different electronic temperatures (T e) have been performed within the density functional theory (DFT). We find that the lattice constants of HgX increase and the phonon frequencies reduce as T e increases. Especially the transverse-acoustic (TA) phonon frequencies of HgX gradually become negative with the elevation of the electron temperature. That is to say ultrafast intense laser induces lattice instabilities of HgX and athermal melting appears for the increase of laser intensity. What is more, with the X atom number increasing, the critical electronic temperatures of HgX are decreased in sequence. This result would be helpful for understanding the athermal melting processes for femtosecond laser micromachining. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217 and 11176020).

  20. AB initio free energy calculations of the solubility of silica in metallic hydrogen and application to giant planet cores

    SciTech Connect

    González-Cataldo, F.; Wilson, Hugh F.; Militzer, B.

    2014-05-20

    By combining density functional molecular dynamics simulations with a thermodynamic integration technique, we determine the free energy of metallic hydrogen and silica, SiO{sub 2}, at megabar pressures and thousands of degrees Kelvin. Our ab initio solubility calculations show that silica dissolves into fluid hydrogen above 5000 K for pressures from 10 and 40 Mbars, which has implications for the evolution of rocky cores in giant gas planets like Jupiter, Saturn, and a substantial fraction of known extrasolar planets. Our findings underline the necessity of considering the erosion and redistribution of core materials in giant planet evolution models, but they also demonstrate that hot metallic hydrogen is a good solvent at megabar pressures, which has implications for high-pressure experiments.

  1. Ab initio molecular dynamics study of the static, dynamic, and electronic properties of liquid mercury at room temperature.

    PubMed

    Calderín, L; González, L E; González, D J

    2009-05-21

    We report a study on several static, dynamic, and electronic properties of liquid Hg at room temperature. We have performed ab initio molecular dynamics simulations using Kohn-Sham density functional theory combined with a nonlocal ultrasoft pseudopotential. The calculated static structure shows good agreement with the available experimental data. We present results for the single-particle dynamics, and recent experimental data are analyzed. The calculated dynamic structure factors S(q,omega) fairly agree with their experimental counterparts as measured by inelastic x-ray (and neutron) scattering experiments. The dispersion relation exhibits a positive dispersion, which however is not so marked as suggested by the experiment; moreover, its slope at the long-wavelength limit provides a good estimate of the experimental sound velocity. We have also analyzed the dynamical processes behind the S(q,omega) in terms of a model including a relaxation mechanism with both fast and slow characteristic time scales. PMID:19466841

  2. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower. PMID:27004873

  3. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-01

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  4. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  5. Realistic multiband k .p approach from ab initio and spin-orbit coupling effects of InAs and InP in wurtzite phase

    NASA Astrophysics Data System (ADS)

    Faria Junior, Paulo E.; Campos, Tiago; Bastos, Carlos M. O.; Gmitra, Martin; Fabian, Jaroslav; Sipahi, Guilherme M.

    2016-06-01

    Semiconductor nanowires based on non-nitride III-V compounds can be synthesized under certain growth conditions to favor the appearance of the wurtzite crystal phase. Despite reports in the literature of ab initio band structures for these wurtzite compounds, we still lack effective multiband models and parameter sets that can be simply used to investigate physical properties of such systems, for instance, under quantum confinement effects. In order to address this deficiency, in this study we calculate the ab initio band structure of bulk InAs and InP in the wurtzite phase and develop an 8 ×8 k .p Hamiltonian to describe the energy bands around the Γ point. We show that our k .p model is robust and can be fitted to describe the important features of the ab initio band structure. The correct description of the spin-splitting effects that arise due to the lack of inversion symmetry in wurtzite crystals is obtained with the k -dependent spin-orbit term in the Hamiltonian, often neglected in the literature. All the energy bands display a Rashba-like spin texture for the in-plane spin expectation value. We also provide the density of states and the carrier density as functions of the Fermi energy. Alternatively, we show an analytical description of the conduction band, valid close to the Γ point. The same fitting procedure is applied to the 6 ×6 valence band Hamiltonian. However, we find that the most reliable approach is the 8 ×8 k .p Hamiltonian for both compounds. The k .p Hamiltonians and parameter sets that we develop in this paper provide a reliable theoretical framework that can be easily applied to investigate electronic, transport, optical, and spin properties of InAs- and InP-based nanostructures.

  6. Ab initio study of the structural, elastic, thermodynamic, electronic and vibration properties of TbMg intermetallic compound

    NASA Astrophysics Data System (ADS)

    Mogulkoc, Y.; Ciftci, Y. O.; Kabak, M.; Colakoglu, K.

    2014-07-01

    The structural, elastic, thermodynamic, electronic and vibrational properties of CsCl-type TbMg have been studied by performing ab initio calculations based on density functional theory using the Vienna Ab initio Simulation Package (VASP). The exchange correlation potential within the generalized-gradient approximation (GGA) of projector augmented wave (PAW) method is used. The calculated structural parameters, such as the lattice constant, bulk modulus, its pressure derivative, formation energy and second-order elastic constants are presented in this paper. The obtained results are compared with related experimental and theoretical studies. The electronic band calculations, total density of states (DOS), partial DOS and charge density are also presented. Formation enthalpy and Cauchy pressure are determined. In order to obtain more information the elastic properties such as Zener anisotropy factor, Poisson’s ratio, Young modulus, isotropic shear modulus, Debye temperature and melting point have been carried out. The elastic constants are calculated in zero and different pressure ranges (0-50 GPa) with bulk modulus. We have performed the thermodynamic properties of TbMg by using quasi-harmonic Debye model. The temperature and pressure variation of the volume, bulk modulus, and thermal expansion coefficient have been predicted over a pressure range of 0-25 GPa for of TbMg. Pressure dependence of the anisotropy factors, Young’s modulus, Poisson’s ratios, bulk modulus and axis compressibility of TbMg are presented along different directions and planes. Finally, the phonon dispersion curves are presented for TbMg.

  7. Infrared signature of micro-hydration in the organophosphate sarin: An ab initio study

    DOE PAGES

    Alam, Todd M.; Pearce, Charles Joseph

    2015-06-28

    The infrared (IR) spectra of micro-hydrated Sarin•(H2O)n clusters containing between one and four explicit waters have been studied using ab initio density functional theory (DFT) methods. The phosphate group P=O bond vibration region (~1270 to 1290 cm–1) revealed the largest frequency variation with hydration, with a frequency red shift reflecting the direct hydrogen bond formation between the P=O of Sarin and water. Small variations to the P-F stretch (~810 to 815 cm–1) and the C-O-P vibrational modes (~995 to 1004 cm–1) showed that the water interactions with these functional groups were minor, and that the structures of Sarin were notmore » extensively perturbed in the hydrated complexes. Increasing the number of explicit hydration waters produced only small vibrational changes in the lowest free energy complexes. These minor changes were consistent with a single water-phosphate hydrogen bond being the dominant structure, though a second water-phosphate hydrogen bond was observed in some complexes and was identified by an additional red shift of the P=O bond vibration. As a result, the H2O•H2O vibrational modes (~3450 to 3660 cm–1) increased in complexity with higher hydration levels and reflect the extended hydrogen bonding networks formed between the explicit waters in the hydrated Sarin clusters.« less

  8. Ab initio studies on the structure of and atomic interactions in cellulose III(I) crystals.

    PubMed

    Ishikawa, Tetsuya; Hayakawa, Daichi; Miyamoto, Hitomi; Ozawa, Motoyasu; Ozawa, Tomonaga; Ueda, Kazuyoshi

    2015-11-19

    The crystal structure of cellulose III(I)was analyzed using first-principles density functional theory (DFT). The geometry was optimized using variable-cell relaxation, as implemented in Quantum ESPRESSO. The Perdew-Burke-Ernzerhof (PBE) functional with a correction term for long-range van der Waals interactions (PBE-D) reproduced the experimental structure well. By using the optimized crystal structure, the interactions existed among the cellulose chains in the crystal were precisely investigated using the NBO analysis. The results showed that the weak bonding nature of CH/O and the hydrogen bonding occur among glucose molecules in the optimized crystal structure. To investigate the strength of interaction, dimeric and trimeric glucose units were extracted from the crystal, and analyzed using MP2 ab initio counterpoise methods with BSSE correction. The results estimated the strength of the interactions. That is, the packed chains along with a-axis interacts with weak bonding nature of CH/O and dispersion interactions by -7.50 kcal/mol, and two hydrogen bonds of O2HO2…O6 and O6HO6…O2 connect the neighboring packed chains with -11.9 kcal/mol. Moreover, FMO4 calculation was also applied to the optimized crystal structure to estimate the strength of the interactions. These methods can well estimate the interactions existed in the crystal structure of cellulose III(I).

  9. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    NASA Astrophysics Data System (ADS)

    Rosenow, Phil; Tonner, Ralf

    2016-05-01

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).

  10. Ab initio thermochemistry of some geochemically relevant molecules in the system Cr-O-H-Cl

    NASA Astrophysics Data System (ADS)

    Ottonello, G.; Vetuschi Zuccolini, M.

    2005-07-01

    A complete theoretical model chemistry algorithm (TMCA) for the prediction of thermodynamic properties of geochemically relevant gaseous and aqueous complexes, based on molecular quantum mechanics, is presented and discussed. Cr species are selected as a case study due to the high nuclear mass and the complex electronic structure of this transition metal. The various derived magnitudes are internally consistent and sufficiently accurate to warrant comparison with the existing (and often conflictual) experimental data and literature estimates. The TMCA is based on density functional theory (DFT) B3LYP/6-31G(d,p) gas phase computations followed by computation of solvation effects by the integral polarized continuum model approach at HF/STO-3G level. Energy corrections due to relativistic effects and electron-electron correlation are accounted for by a newly developed periodic function based on computed ionization potentials and electron affinity of the central metal. Electrostatic entropy contributions to the bulk solvation entropy are accounted for by a Born-model equation based on the electrostatic component of the Integral Equation Formalism—Polarized Continuum Model (IEFPCM) coupling work. As an ancillary result, the TMCA model confirms the validity of the absolute solvation energy terms of the aqueous proton. The TMCA model is of general validity and could be eventually adopted as a standard procedure in the ab initio assessment of gas-phase and aqueous-phase energetics of geochemically relevant species.

  11. Large scale ab initio calculations of extended defects in materials: screw dislocations in bcc metals

    NASA Astrophysics Data System (ADS)

    Dézerald, Lucile; Ventelon, Lisa; Willaime, François; Clouet, Emmanuel; Rodney, David

    2014-06-01

    Ab initio methods, based on the Density Functional Theory (DFT), have been extensively used to study point defects and defect clusters in materials. Present HPC resources and DFT codes now allow similar investigations to be performed on dislocations. The study of these extended defects requires not only larger simulation cells but also a higher accuracy because the energy differences, which are involved, are rather small, typically 50-to-100 meV for supercells containing 50-to-500 atoms. The topology of the Peierls potential of screw dislocations with 1/2 <111>Burgers vector, i.e. the 2D energy landscape seen by these dislocations, is being completely revisited by DFT calculations. From results obtained in all body-centered cubic (bcc) transition metals, except Cr (V, Nb, Ta, Mo, W and Fe), using the PWSCF code, which is part of the Quantum-Espresso package, we concluded that the 2D Peierls potentials have two common features: the single-hump shape of the barrier between two minima of the potential, and the presence of a maximum - and not a minimum as predicted by most empirical potentials - around the split core. In iron, the topology of the Peierls potential is reversed compared to the classical sinusoidal picture: the location of the saddle point and the maximum are indeed inverted with unexpected flat regions. The first results obtained within the framework of the PRACE project, DIMAIM (DIslocations in Metals using Ab Initio Methods), started at the beginning of 2013, will also be presented. In particular, in order to address the twinning-antitwinning asymmetry often observed in bcc metals and regarded as the major contribution to the breakdown of Schmid's law, we have determined the crystal orientation dependence of the Peierls stress, i.e. the critical stress required for dislocation motion. These computationally most expensive simulations were performed on the PRACE Tier-0 system at Barcelona Supercomputing Center (Marenostrum III). The scalability results

  12. Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures

    SciTech Connect

    Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan

    2006-04-05

    A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.

  13. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  14. Ab initio calculations in three-body cluster systems

    SciTech Connect

    Romero-Redondo, C.; Navratil, P.; Quaglioni, S.

    2013-06-10

    In this work we briefly outline the extension of the ab initio no-core shell model/Resonating group method (NCSM/RGM) to three-body cluster states. We present the results for {sup 6}He ground state within a {sup 4}He+n+n cluster basis under this approach.

  15. Quantum molecular mechanics-a noniterative procedure for the fast ab Initio calculation of closed shell systems.

    PubMed

    Moura, Gustavo L C; Simas, Alfredo M

    2012-04-01

    In this article, we advance the foundations of a strategy to develop a molecular mechanics method based not on classical mechanics and force fields but entirely on quantum mechanics and localized electron-pair orbitals, which we call quantum molecular mechanics (QMM). Accordingly, we introduce a new manner of calculating Hartree-Fock ab initio wavefunctions of closed shell systems based on variationally preoptimized nonorthogonal electron pair orbitals constructed by linear combinations of basis functions centered on the atoms. QMM is noniterative and requires only one extremely fast inversion of a single sparse matrix to arrive to the one-particle density matrix, to the electron density, and consequently, to the ab initio electrostatic potential around the molecular system, or cluster of molecules. Although QMM neglects the smaller polarization effects due to intermolecular interactions, it fully takes into consideration polarization effects due to the much stronger intramolecular geometry distortions. For the case of methane, we show that QMM was able to reproduce satisfactorily the energetics and polarization effects of all distortions of the molecule along the nine normal modes of vibration, well beyond the harmonic region. We present the first practical applications of the QMM method by examining, in detail, the cases of clusters of helium atoms, hydrogen molecules, methane molecules, as well as one molecule of HeH(+) surrounded by several methane molecules. We finally advance and discuss the potentialities of an exact formula to compute the QMM total energy, in which only two center integrals are involved, provided that the fully optimized electron-pair orbitals are known.

  16. Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study

    NASA Astrophysics Data System (ADS)

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo

    2016-07-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.

  17. Ab initio quantum mechanical/molecular mechanical simulation of electron transfer process: Fractional electron approach

    SciTech Connect

    Zeng Xiancheng; Hu Hao; Hu Xiangqian; Cohen, Aron J.; Yang Weitao

    2008-03-28

    Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H{sub 2}O){sub 6}{sup 2+/3+} and Ru(H{sub 2}O){sub 6}{sup 2+/3+}. The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.

  18. Ab-Initio Based Computation of Rate Constants for Spin Forbidden Metalloprotein-Substrate Reactions

    NASA Astrophysics Data System (ADS)

    Ozkanlar, Abdullah; Rodriguez, Jorge H.

    2007-03-01

    Some chemical and biochemical reactions are non-adiabatic processes whereby the total spin angular momentum, before and after the reaction, is not conserved. These are named spin- forbidden reactions. The application of ab-initio methods, such as spin density functional theory (SDFT), to the prediction of rate constants is a challenging task of fundamental and practical importance. We apply non-adiabatic transition state theory (NA-TST) in conjuntion with SDFT to predict the rate constant of the spin- forbidden recombination of carbon monoxide with iron tetracarbonyl. To model the surface hopping probability between singlet and triplet states, the Landau-Zener formalism is used. The lowest energy point for singlet-triplet crossing, known as minimum energy crossing point (MECP), was located and used to compute, in a semi-quantum approach, reaction rate constants at 300 K. The predicted rates are in very good agreement with experiment. In addition, we present results for the spin- forbidden ligand binding reactions of iron-containing heme proteins such as myoglobin.

  19. Communication: Towards ab initio self-energy embedding theory in quantum chemistry

    NASA Astrophysics Data System (ADS)

    Lan, Tran Nguyen; Kananenka, Alexei A.; Zgid, Dominika

    2015-12-01

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.

  20. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite.

    PubMed

    Ren, F; Leng, Y; Xin, R; Ge, X

    2010-07-01

    The substitution of magnesium in hydroxyapatite (HA) was examined in HA nano-crystals synthesized by the wet-chemical precipitation method at 90 degrees C. Comprehensive characterization techniques, including X-ray diffraction, X-ray fluorescence, field emission scanning electron microscopy, high-resolution transmission electron microscopy, thermogravimetric analysis and Rietveld refinement, provided experimental evidence of the effects of Mg substitution on the phase, crystallinity, chemical composition, crystal size, morphology, thermal stability and crystal lattice structure of HA. A computational study using ab initio generalized gradient approximation density functional theory was performed to reveal changes in lattice parameters and preferential calcium sites for Mg substitution in HA. The experimental results showed that a limited amount of Mg (Mg/(Mg+Ca) between 5 and 7 mol.%) could successfully substitute for Ca in HA. HA crystallites became smaller and more irregular, and they formed greater agglomerates with Mg substitution. Mg substitution resulted in decreases in the crystallinity and thermal stability of HA. The lattice constants, a and c, decreased with increasing Mg substitution. The simulation results revealed that the Ca(1) sites in HA lattices were energetically favored sites for Mg substitution.

  1. Communication: Towards ab initio self-energy embedding theory in quantum chemistry

    SciTech Connect

    Lan, Tran Nguyen; Kananenka, Alexei A.; Zgid, Dominika

    2015-12-28

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.

  2. Progress in low-resolution ab initio phasing with CrowdPhase

    PubMed Central

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2016-01-01

    Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up (i.e. random phases) each expressing a phenotype in the form of an electron-density map, are presented. Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data. PMID:26960132

  3. TOPICAL REVIEW: Ab initio molecular dynamics: basic concepts, current trends and novel applications

    NASA Astrophysics Data System (ADS)

    Tuckerman, Mark E.

    2002-12-01

    The field of ab initio molecular dynamics (AIMD), in which finite temperature molecular dynamics (MD) trajectories are generated with forces obtained from accurate 'on the fly' electronic structure calculations, is a rapidly evolving and growing technology that allows chemical processes in condensed phases to be studied in an accurate and unbiased way. This article is intended to present the basics of the AIMD method as well as to provide a broad survey of the state of the art of the field and showcase some of its capabilities. Beginning with a derivation of the method from the Born-Oppenheimer approximation, issues including the density functional representation of electronic structure, basis sets, calculation of observables and the Car-Parrinello extended Lagrangian algorithm are discussed. A number of example applications, including liquid structure and dynamics and aqueous proton transport, are presented in order to highlight some of the current capabilities of the approach. Finally, advanced topics such as inclusion of nuclear quantum effects, excited states and scaling issues are addressed.

  4. Communication: Towards ab initio self-energy embedding theory in quantum chemistry.

    PubMed

    Lan, Tran Nguyen; Kananenka, Alexei A; Zgid, Dominika

    2015-12-28

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.

  5. Insights into photodissociation dynamics of acetaldehyde from ab initio calculations and molecular dynamics simulations

    SciTech Connect

    Chen Shilu; Fang Weihai

    2009-08-07

    In the present paper we report a theoretical study on mechanistic photodissociation of acetaldehyde (CH{sub 3}CHO). Stationary structures for H{sub 2} and CO eliminations in the ground state (S{sub 0}) have been optimized with density functional theory method, which is followed by the intrinsic reaction coordinate and ab initio molecular dynamics calculations to confirm the elimination mechanism. Equilibrium geometries, transition states, and intersection structures for the C-C and C-H dissociations in excited states were determined by the complete-active-space self-consistent field (CASSCF) method. Based on the CASSCF optimized structures, the potential energy profiles for the dissociations were refined by performing the single-point calculations using the multireference configuration interaction method. Upon the low-energy irradiation of CH{sub 3}CHO (265 nm<{lambda}<318 nm), the T{sub 1} C-C bond fission following intersystem crossing from the S{sub 1} state is the predominant channel and the minor channel, the ground-state elimination to CH{sub 4}+CO after internal conversion (IC) from S{sub 1} to S{sub 0}, could not be excluded. With the photon energy increasing, another pathway of IC, achieved via an S{sub 1}/S{sub 0} intersection point resulting from the S{sub 1} C-C bond fission, becomes accessible and increases the yield of CH{sub 4}+CO.

  6. Ab initio thermodynamic properties of point defects and O-vacancy diffusion in Mg spinels

    NASA Astrophysics Data System (ADS)

    Łodziana, Zbigniew; Piechota, Jacek

    2006-11-01

    We report ab initio plane wave density functional theory studies of thermodynamic properties of isolated cation substitutions and oxygen vacancies in magnesium spinel, MgAl2O4 . The formation enthalpy of Ca, Cu, and Zn substitutions of Mg cation indicate that transition metal dopants are energetically stable in the bulk of MgAl2O4 at low oxygen chemical potential. The electronic and thermodynamic properties of isolated defects in ternary spinel show close similarities with those in binary oxides; MgO and α-Al2O3 . The formation enthalpy of the oxygen vacancies are also similar in pure magnesium spinel and in binary oxides, but presence of impurity cations in MgAl2O4 significantly lowers formation enthalpy of the oxygen vacancy in their vicinity. Calculated energy barriers for oxygen vacancy hopping are lower in the vicinity of impurity atoms in the spinel structure. Our calculations indicate that the charge state of doped cation is modified by the accompanying oxygen vacancy and the vacancy diffusion is more facile around impurity. The present studies suggest that point defects play an important role in diffusion of oxygen vacancies in MgAl2O4 .

  7. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock

    2002-09-11

    As the US seeks to develop an energy strategy that reduces the reliance on foreign oil, there is a renewed interest in research and development of the Fischer Tropsch synthesis of converting syngas into long chain hydrocarbon products. This report investigates some of the basic elementary steps for Fischer-Tropsch synthesis over ideal Co and Ru metal surfaces by using ab initio density functional theoretical calculations. This includes activation of CO of CO, the hydrogenation of CH{sub x} intermediates, and the adsorption and dissociation of water. The activation of CO is studied in detail showing a strong dependence on the surface coverage, defect sites and Co-Ru alloy formation. The barriers for CO activation over the ideal (0001) surfaces are quite high making CO activation at the terrace sites unlikely under operating conditions. The calculations for the overall reaction energies at the step edges indicate that these sites are much more reactive. The hydrogenation of the CHx intermediates occurs in a sequential fashion. CH1 was found to be the most stable intermediate over various surfaces. The barriers to form both CH* as well as CH{sub 4} are both found to be highly activated and potentially difficult steps. Water which is a reaction product was found to be weakly adsorbed on Co. Analysis of the microscopic reverse reaction of water activation indicates that this process has a very low activation barrier. Consequently, any water which forms desorbs or is activated to form surface hydroxyl intermediates.

  8. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    SciTech Connect

    Liu, Shi-Yu; Liu, Shiyang; Li, De-Jun; Wang, Sanwu; Guo, Jing; Shen, Yaogen

    2015-02-14

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  9. Optimized energy landscape exploration using the ab initio based activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Machado-Charry, Eduardo; Béland, Laurent Karim; Caliste, Damien; Genovese, Luigi; Deutsch, Thierry; Mousseau, Normand; Pochet, Pascal

    2011-07-01

    Unbiased open-ended methods for finding transition states are powerful tools to understand diffusion and relaxation mechanisms associated with defect diffusion, growth processes, and catalysis. They have been little used, however, in conjunction with ab initio packages as these algorithms demanded large computational effort to generate even a single event. Here, we revisit the activation-relaxation technique (ART nouveau) and introduce a two-step convergence to the saddle point, combining the previously used Lanczós algorithm with the direct inversion in interactive subspace scheme. This combination makes it possible to generate events (from an initial minimum through a saddle point up to a final minimum) in a systematic fashion with a net 300-700 force evaluations per successful event. ART nouveau is coupled with BigDFT, a Kohn-Sham density functional theory (DFT) electronic structure code using a wavelet basis set with excellent efficiency on parallel computation, and applied to study the potential energy surface of C20 clusters, vacancy diffusion in bulk silicon, and reconstruction of the 4H-SiC surface.

  10. Ab initio quasiparticle band structure of ABA and ABC-stacked graphene trilayers

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos G.; Capaz, Rodrigo B.; Louie, Steven G.

    2014-01-01

    We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density-functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low-energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the self-energy corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher-energy bands, which is proportional to the nearest-neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the self-energy corrections. Finally, other effects, such as trigonal warping, electron-hole asymmetry, and energy gaps, are discussed in terms of the associated parameters.

  11. Raman spectroscopic features of the neutral vacancy in diamond from ab initio quantum-mechanical calculations.

    PubMed

    Baima, Jacopo; Zelferino, Alessandro; Olivero, Paolo; Erba, Alessandro; Dovesi, Roberto

    2016-01-21

    Quantum-mechanical ab initio calculations are performed to elucidate the vibrational spectroscopic features of a common irradiation-induced defect in diamond, i.e. the neutral vacancy. Raman spectra are computed analytically through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach as a function of both different defect spin states and defect concentration. The experimental Raman features of defective diamond located in the 400-1300 cm(-1) spectral range, i.e. below the first-order line of pristine diamond at 1332 cm(-1), are well reproduced, thus corroborating the picture according to which, at low damage densities, this spectral region is mostly affected by non-graphitic sp(3) defects. No peaks above 1332 cm(-1) are found, thus ruling out previous tentative assignments of different spectral features (at 1450 and 1490 cm(-1)) to the neutral vacancy. The perturbation introduced by the vacancy to the thermal nuclear motion of carbon atoms in the defective lattice is discussed in terms of atomic anisotropic displacement parameters (ADPs), computed from converged lattice dynamics calculations. PMID:26686374

  12. Communication: Towards ab initio self-energy embedding theory in quantum chemistry.

    PubMed

    Lan, Tran Nguyen; Kananenka, Alexei A; Zgid, Dominika

    2015-12-28

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces. PMID:26723581

  13. Ab initio random structure search for 13-atom clusters of fcc elements.

    PubMed

    Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M

    2013-03-27

    The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd13 and Au13, we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au13, which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons.

  14. Progress in low-resolution ab initio phasing with CrowdPhase.

    PubMed

    Jorda, Julien; Sawaya, Michael R; Yeates, Todd O

    2016-03-01

    Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up (i.e. random phases) each expressing a phenotype in the form of an electron-density map, are presented. Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data. PMID:26960132

  15. Role of Dynamical Instability in the Ab Initio Phase Diagram of Calcium

    NASA Astrophysics Data System (ADS)

    Di Gennaro, Marco; Saha, Srijan Kumar; Verstraete, Matthieu J.

    2013-07-01

    In the 32-119 GPa pressure range and at room temperature, a simple cubic phase was reported for calcium in many different experiments. Standard linear response theory, both within density functional perturbation theory and frozen phonon calculations, presents dynamical instabilities for the simple cubic structure in the whole pressure range. Many other possible candidate phases, as well as several possible stabilization mechanisms for the simple cubic phase, have been proposed as the result of ab initio predictions but the role of temperature on the relative stability of the different phases has not been systematically investigated. We revisit the stability of the three most important candidate phases of calcium for the intermediate pressure range and for various temperatures, taking explicitly into account thermal corrections relative to electronic as well as phononic entropy and anharmonic contributions. This corrects the discrepancies among previous theoretical results and experiments and presents a different picture of the temperature driven phase transition, which results from dynamical anharmonic stabilization of simple cubic and destabilization of the tetragonal phase.

  16. The role of anharmonicity in the ab-initio phase diagram of calcium

    NASA Astrophysics Data System (ADS)

    di Gennaro, Marco; Saha, Srijan Kumar; Verstraete, Matthieu Jean

    2013-03-01

    In the 32-119 GPa pressure range and at room temperature, a simple cubic phase was reported for calcium in many different experiments. Standard linear response theory, both within density functional perturbation theory and frozen phonon calculations, presents dynamical instabilities for simple cubic in the whole pressure range. Many other possible candidate phases, as well as several possible stabilization mechanisms for simple cubic phase, have been proposed as the result of ab-initio predictions but the role of temperature on the relative stability of the different phases has not been investigated systematically. We revisit the stability of three candidate phases of calcium for the intermediate pressure range and for various value of temperatures, taking explicitly into account thermal corrections relative to electronic as well as phononic entropy and anharmonic contributions. This corrects the discrepancies among previous theoretical results and experiments, and presents a different picture of the temperature driven phase transition, which results from dynamical anharmonic stabilization of simple cubic and de-stabilization of the tetragonal phase. Transport quantities are calculated in the stabilized phases, to provide additional points of comparison with experiments.

  17. Ab-initio Calculation of the XANES of Lithium Phosphates and LiFePO4

    NASA Astrophysics Data System (ADS)

    Yiu, Y. M.; Yang, Songlan; Wang, Dongniu; Sun, Xueliang; Sham, T. K.

    2013-04-01

    Lithium iron phosphate has been regarded as a promising cathode material for the next generation lithium ion batteries due to its high specific capacity, superior thermal and cyclic stability [1]. In this study, the XANES (X-ray Absorption Near Edge Structure) spectra of lithium iron phosphate and lithium phosphates of various compositions at the Li K, P L3,2, Fe M3,2 and O K-edges have been simulated self-consistently using ab-initio calculations based on multiple scattering theory (the FEFF9 code) and DFT (Density Functional Theory, the Wien2k code). The lithium phosphates under investigation include LiFePO4, γ-Li3PO4, Li4P2O7 and LiPO3. The calculated spectra are compared to the experimental XANES recorded in total electron yield (TEY) and fluorescence yield (FLY). This work was carried out to assess the XANES of possible phases presented in LiFePO4 based Li ion battery applications [2].

  18. An ab initio study of the polytypism in InP

    PubMed Central

    Dacal, Luis C. O.; Cantarero, A.

    2016-01-01

    The existence of polytypism in semiconductor nanostructures gives rise to the appearance of stacking faults which many times can be treated as quantum wells. In some cases, despite of a careful growth, the polytypism can be hardly avoided. In this work, we perform an ab initio study of zincblende stacking faults in a wurtzite InP system, using the supercell approach and taking the limit of low density of narrow stacking faults regions. Our results confirm the type II band alignment between the phases, producing a reliable qualitative description of the band gap evolution along the growth axis. These results show an spacial asymmetry in the zincblende quantum wells, that is expected due to the fact that the wurtzite stacking sequence (ABAB) is part of the zincblende one (ABCABC), but with an unexpected asymmetry between the valence and the conduction bands. We also present results for the complex dielectric function, clearly showing the influence of the stacking on the homostructure values and surprisingly proving that the correspondent bulk results can be used to reproduce the polytypism even in the limit we considered. PMID:27666092

  19. A Comparative Study of Ab-Initio Thermal Conductivity Approaches: The Case of Cubic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Saikat; Lindsay, Lucas; Broido, David; Stewart, Derek

    2013-03-01

    Given its high strength and large thermal conductivity, cubic boron nitride (cBN) provides an important complement to diamond films for heat spreading applications. However, cBN, in contrast to diamond, is a polar material with significant LO-TO splitting in the phonon dispersion. In this talk, we examine the lattice thermal conductivity of cBN using several approaches based on first principles calculations. These approaches include: (1) an analytic modified Callaway-Debye model that relies on parameters from ab-initio harmonic force constants, (2) a fully self-consistent calculation of the thermal conductivity that links an iterative solution of the phonon Boltzmann transport equation (BTE) with harmonic and anharmonic interatomic force constants. The force constants for the BTE are calculated using two approaches: density functional perturbation theory and a real-space supercell approach. We will compare the results from these approaches, highlight the role of normal phonon-phonon scattering, and also examine the impact of optical modes and LO-TO splitting. In addition, we will discuss how isotope scattering affects thermal conductivity and compare this to other boron nitride structures (hexagonal BN, BN sheets and BN nanotubes).

  20. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  1. Ab initio Study of Transition metal binding to the Prion Protein

    NASA Astrophysics Data System (ADS)

    Cox, Daniel L.; Singh, Rajiv R. P.; Pan, Jianping

    2004-03-01

    Fundamental understanding of the prion protein (PrP) is of critical public health importance in view of mad cow and chronic wasting diseases. In recent years, it has been shown that the normal form (PrP^c) binds copper^1), and the structure of the copper binding domain has been elaborated. Hypotheses about toxicity associated with binding of other metals (notably manganese) have been put forward, Accordingly, using the ab initio SIESTA density functional theory code^2), we calculated the binding energy E_B(M) of M-(PrP) complexes relative to initially uncomplexed M ions, with M=Cu,Ni,Zn,Mn and (PrP)^* the minimal binding domain. The binding energy trend is E_B(Ni)>E_B(Cu)>E_B(Zn)>E_B(Mn), consistent with recent experiments apart from the surprising stability of Ni. We will also present preliminary results for binding of initially complexed M ions. *-Supported by U.S. DOE, Office of Basic Energy Sciences, Division of Materials Research 1) G.S. Jackson et al., Proc. Nat. Acad. Sci. (USA) 98, 8531 (2001). 2) P. Ordejón, et al., Phys. Rev. B53, R10441 (1996); J.M. Soler et al., J. Phys. Cond. Matt. 14, 2745 (2002).

  2. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    NASA Astrophysics Data System (ADS)

    Lespade, Laure

    2016-08-01

    Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car-Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  3. Multiple-Timestep ab Initio Molecular Dynamics Using an Atomic Basis Set Partitioning.

    PubMed

    Steele, Ryan P

    2015-12-17

    This work describes an approach to accelerate ab initio Born-Oppenheimer molecular dynamics (MD) simulations by exploiting the inherent timescale separation between contributions from different atom-centered Gaussian basis sets. Several MD steps are propagated with a cost-efficient, low-level basis set, after which a dynamical correction accounts for large basis set relaxation effects in a time-reversible fashion. This multiple-timestep scheme is shown to generate valid MD trajectories, on the basis of rigorous testing for water clusters, the methanol dimer, an alanine polypeptide, protonated hydrazine, and the oxidized water dimer. This new approach generates observables that are consistent with those of target basis set trajectories, including MD-based vibrational spectra. This protocol is shown to be valid for Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory approaches. Recommended pairings include 6-31G as a low-level basis set for 6-31G** or 6-311G**, as well as cc-pVDZ as the subset for accurate dynamics with aug-cc-pVTZ. Demonstrated cost savings include factors of 2.6-7.3 on the systems tested and are expected to remain valid across system sizes.

  4. Ab initio phase stability at high temperatures and pressures in the V-Cr system

    NASA Astrophysics Data System (ADS)

    Landa, Alexander; Soderlind, Per; Yang, Lin

    2015-03-01

    Vanadium metal has seen a surge in research, experimental and theoretical, driven mainly by its importance in applications but also because of its surprising destabilization of the body-centered cubic (bcc) ground-state phase close to 60 GPa. The phase stability of vanadium metal and vanadium-chromium alloys at high temperatures and pressures is explored by means of first-principles electronic-structure calculations. Utilizing the self-consistent ab initio lattice dynamics approach in conjunction with density-functional theory, we show that pressure-induced mechanical instability of body-centered cubic vanadium metal, which results in formation of a rhombohedral phase at around 60 GPa at room temperatures, will prevail significant heating and compression. Furthermore, alloying with chromium decreases the temperature at which stabilization of the body-centered cubic phase occurs at elevated pressure. Computing support for this work came from the LLNL Computing Grand Challenge program. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344 and funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 11-ER-033.

  5. Silicene-derived phases on Ag(111) substrate versus coverage: Ab initio studies

    NASA Astrophysics Data System (ADS)

    Pflugradt, P.; Matthes, L.; Bechstedt, F.

    2014-01-01

    Silicene is systematically investigated as an epitaxial overlayer on an Ag(111) substrate based on the ab initio density functional theory. The geometry and stability of five silicene-silver adsorbate systems with four coincidence lattices, √7 ×√7 on √13 ×√13 , 3×3 on 4×4, 2×2 on √7 ×√7 , and √7 ×√7 on 2√3 ×2√3 , are related to the Si coverage, biaxial strain, and preparation conditions. Their phase diagram is calculated for varying chemical potential of the Si reservoir. The scanning tunneling microscopy images calculated for the optimized atomic geometries agree with those observed experimentally. The destruction of the original honeycomb symmetry and the strong adsorbate-substrate interaction significantly influence the electronic structure. Four peeled-off silicene sheets show conical linear bands, with small gaps. However, the band edges of the 3×3 on 4×4 geometry cannot be explained in terms of gap opening between Dirac cones for symmetry reasons. We confirm the conclusion that the linear bands observed by ARPES are due to folded Ag bands.

  6. Elasticity of grossular-andradite solid solution: an ab initio investigation.

    PubMed

    Lacivita, Valentina; Erba, Alessandro; Dovesi, Roberto; D'Arco, Philippe

    2014-08-01

    Grossular and andradite are garnet end-members stable under upper mantle conditions. We perform ab initio simulations to investigate the dependence of the bulk modulus on chemical composition of the grossular-andradite solid solution, Ca3Fe(2-2x)Al(2x)(SiO4)3. All-electron local basis sets of Gaussian-type orbitals and the hybrid B3LYP density functional are used. Our calculations predict a linear modulus-composition trend, in contrast to previous conjectures based on "heterogeneous" experimental measurements. We estimate the largest deviation from linearity to be about 0.5 GPa under ambient conditions, and to progressively reduce to less than 0.2 GPa at pressure P = 20 GPa. The bulk modulus is computed over the whole composition range 0 ≤x≤ 1 following two independent approaches: fitting energy-volume data to an equation-of-state and calculating elastic tensors. Results from the two methods are in perfect agreement, assuring consistency and high numerical accuracy of the adopted algorithms.

  7. AB INITIO EQUATION OF STATE FOR HYDROGEN-HELIUM MIXTURES WITH RECALIBRATION OF THE GIANT-PLANET MASS-RADIUS RELATION

    SciTech Connect

    Militzer, B.; Hubbard, W. B.

    2013-09-10

    Using density functional molecular dynamics simulations, we determine the equation of state (EOS) for hydrogen-helium mixtures spanning density-temperature conditions typical of giant-planet interiors, {approx}0.2-9 g cm{sup -3} and 1000-80,000 K for a typical helium mass fraction of 0.245. In addition to computing internal energy and pressure, we determine the entropy using an ab initio thermodynamic integration technique. A comprehensive EOS table with 391 density-temperature points is constructed and the results are presented in the form of a two-dimensional free energy fit for interpolation. Deviations between our ab initio EOS and the semi-analytical EOS model by Saumon and Chabrier are analyzed in detail, and we use the results for initial revision of the inferred thermal state of giant planets with known values for mass and radius. Changes are most pronounced for planets in the Jupiter mass range and below. We present a revision to the mass-radius relationship that makes the hottest exoplanets increase in radius by {approx}0.2 Jupiter radii at fixed entropy and for masses greater than {approx}0.5 Jupiter mass. This change is large enough to have possible implications for some discrepant ''inflated giant exoplanets''.

  8. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  9. Metallic VS2 Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching.

    PubMed

    Putungan, Darwin Barayang; Lin, Shi-Hsin; Kuo, Jer-Lai

    2016-07-27

    We systematically investigated the potential of single-layer VS2 polytypes as Na-battery anode materials via density functional theory calculations. We found that sodiation tends to inhibit the 1H-to-1T structural phase transition, in contrast to lithiation-induced transition on monolayer MoS2. Thus, VS2 can have better structural stability in the cycles of charging and discharging. Diffussion of Na atom was found to be very fast on both polytypes, with very small diffusion barriers of 0.085 eV (1H) and 0.088 eV (1T). Ab initio random structure searching was performed in order to explore stable configurations of Na on VS2. Our search found that both the V top and the hexagonal center sites are preferred adsorption sites for Na, with the 1H phase showing a relatively stronger binding. Notably, our random structures search revealed that Na clusters can form as a stacked second layer at full Na concentration, which is not reported in earlier works wherein uniform, single-layer Na adsorption phases were assumed. With reasonably high specific energy capacity (232.91 and 116.45 mAh/g for 1H and 1T phases, respectively) and open-circuit voltage (1.30 and 1.42 V for 1H and 1T phases, respectively), VS2 is a promising alternative material for Na-ion battery anodes with great structural sturdiness. Finally, we have shown the capability of the ab initio random structure searching in the assessment of potential materials for energy storage applications. PMID:27373121

  10. A novel supramolecular compound of cadmium(II): Synthesis, characterization, crystal structure, ab initio HF, DFT calculations and solution study

    NASA Astrophysics Data System (ADS)

    Aghabozorg, Hossein; Manteghi, Faranak; Ghadermazi, Mohammad; Mirzaei, Masoud; Salimi, Ali R.; Shokrollahi, Ardeshir; Derki, Somayyeh; Eshtiagh-Hosseini, Hossein

    2009-02-01

    A novel compound with formula unit (pipzH 2)[Cd(pydc) 2]·6H 2O, was synthesized and characterized by IR, 1H NMR and 13C NMR spectroscopy, elemental analysis, single crystal X-ray diffractometry. Moreover, the solution behavior was studied, and ab initio HF, DFT calculations were carried out. The compound belongs to a great family of supramolecular metal complexes derived from a proton transfer ion pair i.e. (pipzH 2)(pydc), where pipz is piperazine and pydcH 2 is pyridine-2,6-dicarboxylic acid. The compound shows a distorted octahedral geometry around the six-coordinated Cd II atom. A variety of intermolecular O sbnd H···O, N sbnd H···O and C sbnd H···O hydrogen bonds are responsible to extend the supramolecular network of the compound. The geometry parameters of [Cd(pydc) 2] 2- complex and free (pydc) 2- ligand have been optimized with the B3LYP method of density functional theory (DFT) and ab initio Hartree-Fock (HF) methods for comparison. The effect of basis sets has been investigated using four combination basis sets. The electronic properties of the Cd II compound and free (pydc) 2- ligand have been investigated based on the natural bond orbital (NBO) analysis at the B3LYP/A level of theory which verifies that the synergistic effect have been occurred in the compound. In solution study, the protonation constants of pipz and pydc, the equilibrium constants for pydc/pipz proton transfer system and the stoichiometry and stability of the system with Cd 2+ ion in aqueous solution were investigated by potentiometric pH titrations. The stoichiometry of one of the most abundant complexed species in solution was found to be the same as that of the crystalline cadmium complex.

  11. Energetics of neutral Si dopants in InGaAs: An ab initio and semiempirical Tersoff model study

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Wei; Lukose, Binit; Thompson, Michael O.; Clancy, Paulette

    2015-03-01

    A roadblock in utilizing III-V semiconductors for scaled-down electronic devices is their poor dopant activation. As a first step to unravel the dopant behavior in InGaAs, we studied the tendency for dopant formation computationally using two approaches: ab initio and semiempirical methods. We studied a number of structural possibilities, such as the impact of local sites and local and global environments. We will show that the dopant we considered here, Si, has discrete preferences for certain sites and the nature of its surroundings. Substitutional defects are clearly preferred over interstitial locations. We shall show that cation ordering has an impact on dopant energetics. Critically, for large-scale simulations of dopant diffusion in InGaAs alloys, we also present a parameterization of the Abell-Tersoff semiempirical potential for pairwise interactions between silicon atoms and each of the elements constituting InGaAs. In the absence of experimental data, reference parameters for estimating the Tersoff values were obtained using ab initio pseudopotential calculations (density functional theory and generalized gradient approximations). These sets of Tersoff parameters were optimized to describe the bulk structural properties of the mostly theoretical alloys Si-As, Si-Ga, and Si-In. We demonstrate the transferability of these parameters by predicting formation energies of extrinsic point "defects" of Si on a variety of sites in ternary InGaAs alloys with different local compositional configurations, both random and ordered. Tersoff model predictions of the extrinsic "substitution energy" of a Si dopant on a cationic lattice site were found to be independent of the composition of the dopant's second nearest neighbors, but were affected by the strain induced by a local arrangement of In and Ga cationic atoms. This finding is important since common deposition processes used to create InGaAs may lead to specifically ordered patterns within the cation sublattice.

  12. Structure and conformation studies from temperature dependent infrared spectra of xenon solutions and ab initio calculations of cyclobutylgermane.

    PubMed

    Guirgis, Gamil A; Klaassen, Joshua J; Deodhar, Bhushan S; Sawant, Dattatray K; Panikar, Savitha S; Dukes, Horace W; Wyatt, Justin K; Durig, James R

    2012-12-01

    The infrared spectra (3500-220 cm(-1)) of cyclobutylgermane, c-C(4)H(7)GeH(3) have been recorded of the gas. Also variable temperature (-65 to -100 °C) studies of the infrared spectra (3500-400 cm(-1)) of the sample dissolved in liquid xenon were recorded and both the equatorial and axial conformers were identified. The enthalpy difference has been determined from 10 band pairs 8 temperatures to give 112 ± 11 cm(-1) (1.34 ± 0.13 kJ mol(-1)) with the equatorial conformer the more stable form. The percentage of the axial conformer present at ambient temperature is estimated to be 37 ± 1%. From ab initio calculations conformational stabilities have been predicted from both MP2(full) and density functional theory calculations from a variety of basic sets. The r(0) structure parameters have been obtained for both conformers from the previously reported rotational constants from the three isotopologues. The determined heavy atom distances for the equatorial [axial] form are (Å) Ge-C(α)=1.952(3) [1.950(3)], [Formula: see text] , [Formula: see text] [1.551(3)] and angles in degrees (°) ∠GeC(α)C(β)=118.6(5) [113.4(5)], [Formula: see text] , ∠C(α)C(β)C(γ)=87.8(5) [88.8(5)], [Formula: see text] and a puckering angle of 29.1(5) [25.1(5)]. Data from ab initio calculations were used to predict vibrational harmonic force constants, fundamental wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. The results are compared to the corresponding properties of some related molecules.

  13. Metallic VS2 Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching.

    PubMed

    Putungan, Darwin Barayang; Lin, Shi-Hsin; Kuo, Jer-Lai

    2016-07-27

    We systematically investigated the potential of single-layer VS2 polytypes as Na-battery anode materials via density functional theory calculations. We found that sodiation tends to inhibit the 1H-to-1T structural phase transition, in contrast to lithiation-induced transition on monolayer MoS2. Thus, VS2 can have better structural stability in the cycles of charging and discharging. Diffussion of Na atom was found to be very fast on both polytypes, with very small diffusion barriers of 0.085 eV (1H) and 0.088 eV (1T). Ab initio random structure searching was performed in order to explore stable configurations of Na on VS2. Our search found that both the V top and the hexagonal center sites are preferred adsorption sites for Na, with the 1H phase showing a relatively stronger binding. Notably, our random structures search revealed that Na clusters can form as a stacked second layer at full Na concentration, which is not reported in earlier works wherein uniform, single-layer Na adsorption phases were assumed. With reasonably high specific energy capacity (232.91 and 116.45 mAh/g for 1H and 1T phases, respectively) and open-circuit voltage (1.30 and 1.42 V for 1H and 1T phases, respectively), VS2 is a promising alternative material for Na-ion battery anodes with great structural sturdiness. Finally, we have shown the capability of the ab initio random structure searching in the assessment of potential materials for energy storage applications.

  14. Ab initio cluster study of crystalline NaF

    SciTech Connect

    Temple, D.K.

    1992-01-01

    A highly-accurate ab initio cluster model of crystalline NaF has been constructed to explore the limits of cluster methods in the treatment of ionic solids. The focus of this model was the characterization of the lattice environment and its influence on the easily-polarizable fluorine anion. The model consisted of a central all-electron fluorine anion coordinated by pseudopotentials, to represent the nearest-neighbor sodium cations, and a finite array of point charges chosen to generate the correct crystal field from the surrounding infinite ionic lattice. The wavefunction and properties of the anion were calculated using the restricted Hartree-Fock and configuration interaction techniques from quantum chemistry. An extensive analysis of basis set incompleteness errors in the anion wavefunction was performed. Important features were identified in the embedded anion, such as its distortion under the influence of the lattice compressions, its stabilization from the Madelung potential, and its changes in size due to electron correlations. Bulk properties of the rocksalt-structure (B1) NaF crystal were derived from the total mode energies, calculated as a function of the crystal volume. The properties included the zero-pressure lattice constant, cohesive energy, and bulk modulus, and the pressure-volume equation-of-state. A series of test calculations explored the relationships, and their underlying physical mechanisms, between the features of the embedded anion and the bulk properties of the crystal. These features often produced opposing changes in the properties, demonstrating the importance of a thorough and systematic treatment of the embedded anion. The most thorough test calculation gave bulk properties that were within 1% of experiment. Using an embedded anion model for the high-pressure cesium-chloride (B2) phase of NaF, the B1-to-B2 structural transition was correctly predicted at 25 GPa, in excellent agreement with the experimental values of 23 to 27 GPa.

  15. Ab initio molecular dynamics: Concepts, recent developments, and future trends

    PubMed Central

    Iftimie, Radu; Minary, Peter; Tuckerman, Mark E.

    2005-01-01

    The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed “on the fly” from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204

  16. Ab Initio Electronic Relaxation Times and Transport in Noble Metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.

    Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.

  17. Towards AB Initio Calculation of the Circular Dichroism of Peptides

    NASA Astrophysics Data System (ADS)

    Molteni, E.; Onida, G.; Tiana, G.

    2012-08-01

    In this work we plan to use ab initio spectroscopy calculations to compute circular dichroism (CD) spectra of peptides. CD provides information on protein secondary structure content; peptides, instead, remain difficult to address, due to their tendency to adopt multiple conformations in equilibrium. Therefore peptides are an interesting test-case for ab initio calculation of CD spectra. As a first application, we focus on the (83-92) fragment of HIV-1 protease, which is known to be involved in the folding and dimerization of this protein. As a preliminary step, we performed classical molecular dynamics (MD) simulations, in order to obtain a set of representative conformers of the peptide. Then, on some of the obtained conformations, we calculated absorption spectra at the independent particle, RPA and TDLDA levels, showing the presence of charge transfer excitations, and their influence on spectral features.

  18. Ab Initio Calculations Of Light-Ion Reactions

    SciTech Connect

    Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W

    2012-03-12

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  19. Acceleration of the Convergence in ab initio Atomic Relaxations

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan

    2006-03-01

    Atomic relaxations is often required to accurately describe the properties of nanosystems. In ab initio calculations, a common practice is to use a standard search algorithm, such as BFGS (Broyden-Fletcher-Goldfarb-Shanno) or CG (conjugate gradient) method, which starts the atomic relaxations without any knowledge of the Hessian matrix of the system. For example, the initial Hessian in BFGS method is often set to identity, and there is no preconditioning to CG method. One way to accelerate the convergence of the atomic relaxations is to estimate an approximate Hessian matrix of the system and then use it as the initial Hessian in BFGS method or a preconditioner in CG method. Previous attempts to obtain the approximated Hessian were focused on the use of classical force field models which rely on the existence of good parameters. Here, we present an alternative method to estimate the Hessian matrix of a nanosystem. First, we decompose the system into motifs which consist of a few atoms, then calculate the Hessian matrix elements on different motif types from ab initio calculations for small prototype systems. Then we generate the Hessian Matrix of the whole system by putting together these motif Hessians. We have applied our motif-based Hessian matrix in ab initio atomic relaxations in several bulk (with/without impurity) and quantum dot systems, and have found a speed up factor of 2 to 4 depending on the system size.

  20. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  1. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement. PMID:27634258

  2. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  3. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  4. Diffusion within α-CuI studied using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mohn, Chris E.; Stølen, Svein; Hull, Stephen

    2009-08-01

    The structure and dynamics of superionic α-CuI are studied in detail by means of ab initio Born-Oppenheimer molecular dynamics simulations. The extreme cation disorder and a soft immobile face centred cubic sublattice are evident from the highly diffuse atomic density profiles. The Cu-Cu pair distribution function and distribution of Cu-I-Cu bond angles possess distinct peaks at 2.6 Å and 60° respectively, which are markedly lower than the values expected from the average cationic density, pointing to the presence of pronounced short-range copper-copper correlations. Comparison with lattice static calculations shows that these correlations and the marked shift in the cationic density profile in the lang111rang directions are associated with a locally distorted cation sublattice, and that the movements within the tetrahedral cavities involve rapid jumps into and out of shallow basins on the system potential energy surface. On average, the iodines are surrounded by three coppers within their first coordination shell, with the fourth copper being located in a transition zone between two neighbouring iodine cavities. However, time-resolved analysis reveals that the local structure actually involves a mixture of threefold-, fourfold- and fivefold-coordinated iodines. Examination of the ionic trajectories shows that the copper ions jump rapidly to nearest neighbouring tetrahedral cavities (aligned in the lang100rang directions) following a markedly curved trajectory and often involving short-lived (~1 ps) interstitial positions. The nature of the correlated diffusion underlying the unusually high fraction of coppers with short residence time can be attributed to the presence of a large number of 'unsuccessful' jumps and the likelihood of cooperative motion of pairs of coppers. The calculated diffusion coefficient at 750 K, DCu = 2.8 × 10-5 cm2 s-1, is in excellent agreement with that found experimentally.

  5. Ab initio calculation of thermodynamic, transport, and optical properties of CH{sub 2} plastics

    SciTech Connect

    Knyazev, D. V.; Levashov, P. R.

    2015-05-15

    This work covers an ab initio calculation of thermodynamic, transport, and optical properties of plastics of the effective composition CH{sub 2} at density 0.954 g/cm{sup 3} in the temperature range from 5 kK up to 100 kK. The calculation is based on the quantum molecular dynamics, density functional theory, and the Kubo-Greenwood formula. The temperature dependence of the static electrical conductivity σ{sub 1{sub D{sub C}}}(T) has a step-like shape: σ{sub 1{sub D{sub C}}}(T) grows rapidly for 5 kK ≤ T ≤ 10 kK and is almost constant for 20 kK ≤ T ≤ 60 kK. The additional analysis based on the investigation of the electron density of states (DOS) is performed. The rapid growth of σ{sub 1{sub D{sub C}}}(T) at 5 kK ≤ T ≤ 10 kK is connected with the increase of DOS at the electron energy equal to the chemical potential ϵ = μ. The frequency dependence of the dynamic electrical conductivity σ{sub 1}(ω) at 5 kK has the distinct non-Drude shape with the peak at ω ≈ 10 eV. This behavior of σ{sub 1}(ω) was explained by the dip at the electron DOS.

  6. Unified theory of quantized electrons, phonons, and photons out of equilibrium: A simplified ab initio approach based on the generalized Baym-Kadanoff ansatz

    NASA Astrophysics Data System (ADS)

    de Melo, Pedro Miguel M. C.; Marini, Andrea

    2016-04-01

    We present a full ab initio description of the coupled out-of-equilibrium dynamics of photons, phonons, and electrons. In the present approach, the quantized nature of the electromagnetic field as well as of the nuclear oscillations is fully taken into account. The result is a set of integrodifferential equations, written on the Keldysh contour, for the Green's functions of electrons, phonons, and photons where the different kinds of interactions are merged together. We then concentrate on the electronic dynamics in order to reduce the problem to a computationally feasible approach. By using the generalized Baym-Kadanoff ansatz and the completed collision approximation, we introduce a series of efficient but controllable approximations. In this way, we reduce all equations to a set of decoupled equations for the density matrix that describe all kinds of static and dynamical correlations. The final result is a coherent, general, and inclusive scheme to calculate several physical quantities: carrier dynamics, transient photoabsorption, and light emission, all of which include, at the same time, electron-electron, electron-phonon, and electron-photon interactions. We further discuss how all these observables can be easily calculated within the present scheme using a fully atomistic ab initio approach.

  7. Ab initio and relativistic DFT study of spin–rotation and NMR shielding constants in XF{sub 6} molecules, X = S, Se, Te, Mo, and W

    SciTech Connect

    Ruud, Kenneth; Demissie, Taye B.; Jaszuński, Michał

    2014-05-21

    We present an analysis of the spin–rotation and absolute shielding constants of XF{sub 6} molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  8. Triple hydrogen bonding in a circular arrangement: ab initio, DFT and first-principles MD studies of tris-hydroxyaryl enamines.

    PubMed

    Martyniak, Agata; Panek, Jarosław; Jezierska-Mazzarello, Aneta; Filarowski, Aleksander

    2012-09-01

    First-principles Car-Parrinello molecular dynamics, ab initio (MP2) and density functional schemes have been used to explore the tautomeric equilibrium in three tris(amino(R)methylidene)cyclohexane-1,3,5-triones (R = hydrogen, methyl or phenyl group). The dynamic nature of the cyclic hydrogen bonding has been studied by the first-principles MD method. The comparison of the results obtained by aforesaid methods has been accomplished on the basis of calculations of structural and spectroscopic characteristics of the compounds. The conformational analysis of the studied compounds has been carried out at the MP2/6-31+G(d,p) and B3LYP/6-31+G(d,p) levels of theory. The influence of steric and electronic effects on the cyclic hydrogen bonding has been analysed. The extent of the proton delocalization has been modified by the substituents according to the sequence: hydrogen < phenyl < methyl. This fact is verified by the spectroscopic and structural data as well as the energy potential curve. A prevalence of the keto-enamine tautomeric form has been observed in the static ab initio and DFT models, and confirmed by the first-principles MD. PMID:22955961

  9. Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation

    NASA Astrophysics Data System (ADS)

    Bedjaoui, A.; Bouhemadou, A.; Bin-Omran, S.

    2016-04-01

    The structural, elastic and thermodynamic properties of the α (tetragonal) and β (orthorhombic) polymorphs of the Sr2GeN2 compound have been examined in detail using ab initio density functional theory pseudopotential plane-wave calculations. Apart the structural properties at the ambient conditions, all present reported results are predicted for the first time. The calculated equilibrium lattice parameters and inter-atomic bond-lengths of the considered polymorphs are in good agreement with the available experimental data. It is found that α-Sr2GeN2 is energetically more stable than β-Sr2GeN2. The two examined polymorphs are very similar in their crystal structures and have almost identical local environments. The single-crystal and polycrystalline elastic parameters and related properties - including elastic constants, bulk, shear and Young's moduli, Poisson's ratio, anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature - have been predicted. Temperature and pressure dependence of some macroscopic properties - including the unit-cell volume, bulk modulus, volume thermal expansion coefficient, heat capacity and Debye temperature - have been evaluated using ab initio calculations combined with the quasi-harmonic Debye model.

  10. Ab initio phonon properties of half-Heusler NiTiSn, NiZrSn and NiHfSn.

    PubMed

    Andrea, Luc; Hug, Gilles; Chaput, Laurent

    2015-10-28

    A theoretical investigation of phonon properties from first-principles calculations is carried out for the half-Heusler compounds NiXSn, [Formula: see text], Zr and Hf. The crystal structures are optimised via ab initio calculations within the framework of density functional theory. The phonon properties are retrieved from harmonic and anharmonic interatomic force constants calculations using the finite size displacements method and many-body perturbation theory. A solution to the linearized phonon Boltzmann transport equation is then used to compute the ab initio thermal conductivities. For X   =   Ti, Zr and Hf, we found 15.4, 13.3 and 15.8 W m(-1) K(-1) at 300 K, respectively. Thanks to a spectral analysis of the velocities and lifetimes we were able appreciate the differences in the thermal conductivities between the three compounds under study. Our results provide insights to understand the behaviour of the thermal conductivity and therefore to improve the thermoelectric figure of merit for such materials.

  11. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    SciTech Connect

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  12. NBO, HOMO, LUMO analysis and vibrational spectra (FTIR and FT Raman) of 1-Amino 4-methylpiperazine using ab initio HF and DFT methods

    NASA Astrophysics Data System (ADS)

    Mahalakshmi, G.; Balachandran, V.

    2015-01-01

    Experimental FTIR and FT-Raman spectroscopic analysis of 1-Amino-4-methylpiperazine (1A4MP) have been performed. A detailed quantum chemical calculations have been carried out using ab initio HF and density functional theory calculations (B3LYP) with 6-311+G(d,p) basis set. The atomic charges, electronic exchange interaction and charge delocalization of the molecule have been performed by natural bond orbital (NBO) analysis. Electron density distribution and frontier molecular orbitals (FMOs) have been constructed at B3LYP/6-311+G(d,p) level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecule have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach. The dipole moment (μ), polarizability (α), anisotropy polarizability (Δα) and hyperpolarizability (β) of the molecule have been reported.

  13. Ab Initio Calculations of the Interaction between CO 2 and the Acetate Ion

    SciTech Connect

    Steckel, Janice A.

    2012-11-29

    A series of ab initio calculations designed to investigate the interaction of CO{sub 2} with acetate are presented. The lowest energy structure, AC–CO{sub 2}-η{sup 2}, is predicted by CCSD(T)/aVTZ to be bound by -10.6 kcal/mol. Six of the bound complexes have binding energies on the order of -8 kcal/mol, but analysis shows that the η{sup 1}-CT complex is fundamentally different from the others. The η{sup 1}-CT complex is characterized by geometric distortion, large polarization and induction effects and charge transfer whereas the other five complexes have little geometric distortion and negligible charge transfer. The amount of charge that is transferred from the anion to the CO{sub 2} in the η{sup 1}-CT complex is estimated to be about half an electron by NPA, DMA, CHELPG, and Mulliken analyses, whereas the EDA-ALMO-CTA (B3LYP) approach predicts a charge transfer of 75 me{sup –}. However, the transfer of this small amount of charge leads to an energy lowering of -56 kcal/mol, without which the complex would not be bound. The RI-MP2 geometries closely approximate those resulting from the CCSD optimizations, and the optimized second-order opposite spin (O2) method performs well for all the complexes except for the η{sup 1}-CT complex. DFT methods do not reproduce all the ab initio geometries, binding energies and/or energy ordering of these complexes although the range-separated hybrid meta-GGA (M11) and nonlocal (VV10 and vdwDF10) functionals are shown to yield results significantly better than other functionals considered for this system. The fact that there is such variation among DFT methods has implications for DFT-based ab initio molecular dynamics simulations and for the parametrization of classical force fields based on DFT calculations.

  14. Ab initio based force field and molecular dynamics simulations of crystalline TATB.

    PubMed

    Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E

    2004-04-15

    An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608

  15. An accurate potential energy curve for helium based on ab initio calculations

    NASA Astrophysics Data System (ADS)

    Janzen, A. R.; Aziz, R. A.

    1997-07-01

    Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.

  16. A high-precision ab initio determination of the equilibrium geometry and force field of HOC(+)

    NASA Technical Reports Server (NTRS)

    Defrees, D. J.; Bunker, P. R.; Binkley, J. S.; Mclean, A. D.

    1987-01-01

    The results of an ab initio molecular orbital investigation of the isoformyl cation, HOC(+), shape are reported. The effects of expanding the basis set to near the Hartree-Fock limit and of electron correlation were examined, and the results indicate that near the Hartree-Fock limit the HOC(+) is linear. An analytic potential function is presented, from which the calculated rotational energies are only 0.03 percent different from the experimental values. This represents a nearly two orders of magnitude reduction in error from earlier work.

  17. Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel

    SciTech Connect

    E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young

    2006-03-16

    The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.

  18. Ab Initio Simulations of Dense Helium Plasmas

    SciTech Connect

    Wang Cong; He Xiantu; Zhang Ping

    2011-04-08

    We study the thermophysical properties of dense helium plasmas by using quantum molecular dynamics and orbital-free molecular dynamics simulations, where densities are considered from 400 to 800 g/cm{sup 3} and temperatures up to 800 eV. Results are presented for the equation of state. From the Kubo-Greenwood formula, we derive the electrical conductivity and electronic thermal conductivity. In particular, with the increase in temperature, we discuss the change in the Lorenz number, which indicates a transition from strong coupling and degenerate state to moderate coupling and partial degeneracy regime for dense helium.

  19. Ab initio study of the kinetics of hydrogen abstraction reactions on toluene and tetralin

    SciTech Connect

    Beste, Ariana; Britt, Phillip F; Buchanan III, A C; Harrison, Robert J; Hathorn, Bryan C

    2008-01-01

    Hydrogen abstraction reactions play a key role in many thermal and catalytic processes involved in the production of fuels and chemicals. In this paper, the reaction barriers and rate constants for the hydrogen abstraction reactions on toluene and tetralin by the benzyl radical are calculated by ab initio methods. These reactions are representatives of similar reactions occurring in the thermolysis of lignin model compounds containing the phenethyl phenyl ether (PPE) structural moiety. Thermolysis of PPE occurs by a free radical chain mechanism in which the product selectivity arises from competitive hydrogen abstraction at the benzylic and nonbenzylic methylen sites by chain carrying benzyl and phenoxyl radicals. The title reactions serve to calibrate the theoretical methods to be used in the study of PPE through comparison of the rate constants and the reaction enthalpies with reliable experimental values. In this study, we used two different hybrid density functionals (BHandHLYP, B3LYP) and second-order perturbation theory to obtain equilibrium and transition state geometries. Multiple transition states were found for both reactions. BHandHLYP underestimates and second-order perturbation theory overestimates the reaction barriers; B3LYP energy barriers agree well with experiment. Absolute and relative rate constants were calculated using transition state theory. We found that the relative rate constant using the B3LYP functional agrees within a factor of 2.0 with experiment at the experimental temperature of 333 K, indicating that the B3LYP functional will be successful in predicting relative rate constants for hydrogen abstraction reactions participating in the pyrolysis of PPE.

  20. Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.

    PubMed

    Zhang, Dawei; Liu, Chungen

    2016-04-12

    The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems. PMID:26963572

  1. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  2. Investigating the quartz (1010)/water interface using classical and ab initio molecular dynamics.

    PubMed

    Skelton, A A; Wesolowski, D J; Cummings, P T

    2011-07-19

    Two different terminations of the (1010) surface of quartz (α and β) interacting with water are simulated by classical (CMD) (using two different force fields) and ab initio molecular dynamics (AIMD) and compared with previously published X-ray reflectivity (XR) experiments. Radial distribution functions between hydroxyl and water show good agreement between AIMD and CMD using the ClayFF force field for both terminations. The Lopes et al. (Lopes, P. E. M.; Murashov, V.; Tazi, M.; Demchuk, E.; MacKerell, A. D. J. Phys. Chem. B2006, 110, 2782-2792) force field (LFF), however, underestimates the extent of hydroxyl-water hydrogen bonding. The β termination is found to contain hydroxyl-hydroxyl hydrogen bonds; the quartz surface hydroxyl hydrogens and oxygens that hydrogen bond with each other exhibit greatly reduced hydrogen bonding to water. Conversely, the hydroxyl hydrogen and oxygens that are not hydrogen bonded to other surface hydroxyls but are connected to those that are show a considerable amount of hydrogen bonding to water. The electron density distribution of an annealed surface of quartz (1010) obtained by XR is in qualitative agreement with electron densities calculated by CMD and AIMD. In all simulation methods, the interfacial water peak appears farther from the surface than observed by XR. Agreement among AIMD, LFF, and XR is observed for the relaxation of the near-surface atoms; however, ClayFF shows a larger discrepancy. Overall, results show that for both terminations of (1010), LFF treats the near-surface structure more accurately whereas ClayFF treats the interfacial water structure more accurately. It is shown that the number of hydroxyl and water hydrogen bonds to the bridging Si-O-Si oxygens connecting the surface silica groups to the rest of the crystal is much greater for the α than the β termination. It is suggested that this may play a role in the greater resistance to dissolution of the β termination than that of the α termination.

  3. Can an ab initio three-body virial equation describe the mercury gas phase?

    PubMed

    Wiebke, J; Wormit, M; Hellmann, R; Pahl, E; Schwerdtfeger, P

    2014-03-27

    We report a sixth-order ab initio virial equation of state (EOS) for mercury. The virial coefficients were determined in the temperature range from 500 to 7750 K using a three-body approximation to the N-body interaction potential. The underlying two-body and three-body potentials were fitted to highly accurate Coupled-Cluster interaction energies of Hg2 (Pahl, E.; Figgen, D.; Thierfelder, C.; Peterson, K. A.; Calvo, F.; Schwerdtfeger, P. J. Chem. Phys. 2010, 132, 114301-1) and equilateral-triangular configurations of Hg3. We find the virial coefficients of order four and higher to be negative and to have large absolute values over the entire temperature range considered. The validity of our three-body, sixth-order EOS seems to be limited to small densities of about 1.5 g cm(-3) and somewhat higher densities at higher temperatures. Termwise analysis and comparison to experimental gas-phase data suggest a small convergence radius of the virial EOS itself as well as a failure of the three-body interaction model (i.e., poor convergence of the many-body expansion for mercury). We conjecture that the nth-order term of the virial EOS is to be evaluated from the full n-body interaction potential for a quantitative picture. Consequently, an ab initio three-body virial equation cannot describe the mercury gas phase. PMID:24547987

  4. Ab initio study of Fe(+)-benzyne

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    1993-01-01

    The interaction of Fe(+) with benzyne is studied using the self-consistent-field (SCF), complete active space SCF, and modified-coupled-pair functional levels of theory. The most stable structure is planar, where the Fe(+) has inserted into the in-plane pi bond, although the C-C bond distance suggests that some in-plane pi bonding remains. This system is compared with Sc(+) bonding to benzyne and other ligands.

  5. Ab Initio Modelling of Steady Rotating Stars

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel; Espinosa Lara, Francisco

    Modelling isolated rotating stars at any rotation rate is a challenge for the next generation of stellar models. These models will couple dynamical aspects of rotating stars, like angular momentum and chemicals transport, with classical chemical evolution, gravitational contraction or mass-loss. Such modelling needs to be achieved in two dimensions, combining the calculation of the structure of the star, its mean flows and the time-evolution of the whole. We present here a first step in this challenging programme. It leads to the first self-consistent two-dimensional models of rotating stars in a steady state generated by the ESTER code. In these models the structure (pressure, density and temperature) and the flow fields are computed in a self-consistent way allowing the prediction of the differential rotation and the associated meridian circulation of the stars. After a presentation of the physical properties of such models and the numerical methods at work, we give the first grid of such models describing massive and intermediate-mass stars for a selection of rotation rates up to 90 % of the breakup angular velocity.

  6. Toward ab initio extremely metal poor stars

    NASA Astrophysics Data System (ADS)

    Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-09-01

    Extremely metal poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 M⊙ Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely-expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051 erg and injected an ample metal mass of 6 M⊙, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 2 - 5 × 10-4 Z⊙, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.

  7. Infrared signature of micro-hydration in the organophosphate sarin: An ab initio study

    SciTech Connect

    Alam, Todd M.; Pearce, Charles Joseph

    2015-06-28

    The infrared (IR) spectra of micro-hydrated Sarin•(H2O)n clusters containing between one and four explicit waters have been studied using ab initio density functional theory (DFT) methods. The phosphate group P=O bond vibration region (~1270 to 1290 cm–1) revealed the largest frequency variation with hydration, with a frequency red shift reflecting the direct hydrogen bond formation between the P=O of Sarin and water. Small variations to the P-F stretch (~810 to 815 cm–1) and the C-O-P vibrational modes (~995 to 1004 cm–1) showed that the water interactions with these functional groups were minor, and that the structures of Sarin were not extensively perturbed in the hydrated complexes. Increasing the number of explicit hydration waters produced only small vibrational changes in the lowest free energy complexes. These minor changes were consistent with a single water-phosphate hydrogen bond being the dominant structure, though a second water-phosphate hydrogen bond was observed in some complexes and was identified by an additional red shift of the P=O bond vibration. As a result, the H2O•H2O vibrational modes (~3450 to 3660 cm–1) increased in complexity with higher hydration levels and reflect the extended hydrogen bonding networks formed between the explicit waters in the hydrated Sarin clusters.

  8. Thermodynamics and phonon dispersion of pyrope and grossular silicate garnets from ab initio simulations

    NASA Astrophysics Data System (ADS)

    Baima, Jacopo; Ferrabone, Matteo; Orlando, Roberto; Erba, Alessandro; Dovesi, Roberto

    2016-02-01

    The phonon dispersion and thermodynamic properties of pyrope ({Mg}_3{Al}_2{Si}_3{O}_{12}) and grossular ({Ca}_3{Al}_2{Si}_3{O}_{12} ) have been computed by using an ab initio quantum mechanical approach, an all-electron variational Gaussian-type basis set and the B3LYP hybrid functional, as implemented in the Crystal program. Dispersion effects in the phonon bands have been simulated by using supercells of increasing size, containing 80, 160, 320, 640, 1280 and 2160 atoms, corresponding to 1, 2, 4, 8, 16 and 27 {k} points in the first Brillouin zone. Phonon band structures, density of states and corresponding inelastic neutron scattering spectra are reported. Full convergence of the various thermodynamic properties, in particular entropy ( S) and specific heat at constant volume (CV), with the number of {k} points is achieved with 27 {k} points. The very regular behavior of the S( T) and CV(T) curves as a function of the number of {k} points, determined by high numerical stability of the code, permits extrapolation to an infinite number of {k} points. The limiting value differs from the 27-{k} case by only 0.40 % at 100 K for S (the difference decreasing to 0.11 % at 1000 K) and by 0.29 % (0.05 % at 1000 K) for CV. The agreement with the experimental data is rather satisfactory. We also address the problem of the relative entropy of pyrope and grossular, a still debated question. Our lattice dynamical calculations correctly describe the larger entropy of pyrope than grossular by taking into account merely vibrational contributions and without invoking "static disorder" of the Mg ions in dodecahedral sites. However, as the computed entropy difference is found to be larger than the experimental one by a factor of 2-3, present calculations cannot exclude possible thermally induced structural changes, which could lead to further conformational contributions to the entropy.

  9. Density functionals not based on the electron gas: local-density approximation for a Luttinger liquid.

    PubMed

    Lima, N A; Silva, M F; Oliveira, L N; Capelle, K

    2003-04-11

    By shifting the reference system for the local-density approximation (LDA) from the electron gas to other model systems, one obtains a new class of density functionals, which by design account for the correlations present in the chosen reference system. This strategy is illustrated by constructing an explicit LDA for the one-dimensional Hubbard model. While the traditional ab initio LDA is based on a Fermi liquid (the three-dimensional interacting electron gas), this one is based on a Luttinger liquid. First applications to inhomogeneous Hubbard models, including one containing a localized impurity, are reported.

  10. Density functionals not based on the electron gas: local-density approximation for a Luttinger liquid.

    PubMed

    Lima, N A; Silva, M F; Oliveira, L N; Capelle, K

    2003-04-11

    By shifting the reference system for the local-density approximation (LDA) from the electron gas to other model systems, one obtains a new class of density functionals, which by design account for the correlations present in the chosen reference system. This strategy is illustrated by constructing an explicit LDA for the one-dimensional Hubbard model. While the traditional ab initio LDA is based on a Fermi liquid (the three-dimensional interacting electron gas), this one is based on a Luttinger liquid. First applications to inhomogeneous Hubbard models, including one containing a localized impurity, are reported. PMID:12731934

  11. Ab Initio Calculations of Water Line Strengths

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry

    1998-01-01

    We report on the determination of a high quality ab initiu potential energy surface (PES) and dipole moment function for water. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base with J less than 6 for H2O. The changes in the PES are small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Using this adjusted PES, we can match 30,092 of the 30,117 transitions in the HITRAN 96 data base for H2O with theoretical lines. The 10,25,50,75, and 90 percentiles of the difference between the calculated and tabulated line positions are -0.11, -0.04, -0.01, 0.02, and 0.07 l/cm. Non-adiabatic effects are not explicitly included. About 3% of the tabulated line positions appear to be incorrect. Similar agreement using this adjusted PES is obtained for the oxygen 17 and oxygen 18 isotopes. For HDO, the agreement is not as good, with root-mean-square error of 0.25 l/cm for lines with J less than 6. This error is reduced to 0.02 l/cm by including a small asymmetric correction to the PES, which is parameterized by simultaneously fitting to HDO md D2O data. Scaling this correction by mass factors yields good results for T2O and HTO. The intensities summed over vibrational bands are usually in good agreement between the calculations and the tabulated results, but individual lines strengths can differ greatly. A high temperature list consisting of 307,721,352 lines is generated for H2O using our PES and dipole moment function.

  12. Progress at the interface of wave-function and density-functional theories

    SciTech Connect

    Gidopoulos, Nikitas I.

    2011-04-15

    The Kohn-Sham (KS) potential of density-functional theory (DFT) emerges as the minimizing effective potential in a variational scheme that does not involve fixing the unknown single-electron density. Using Rayleigh Schroedinger (RS) perturbation theory (PT), we construct ab initio approximations for the energy difference, the minimization of which determines the KS potential directly - thereby bypassing DFT's traditional algorithm to search for the density that minimizes the total energy. From second-order RS PT, we obtain variationally stable energy differences to be minimized, solving the severe problem of variational collapse of orbital-dependent exchange-correlation functionals based on second-order RS PT.

  13. Probing the Si(001) surface with a Si tip: An ab initio study

    NASA Astrophysics Data System (ADS)

    Kantorovich, Lev; Hobbs, Chris

    2006-06-01

    Topographic noncontact atomic force microscopy (NC-AFM) images of the p(2×1) and c(4×2) reconstructions of the Si(001) surface are simulated for the cases of weak and strong tip-surface interactions and various temperatures using ab initio density functional theory. In the simulations the surface is imaged by a sharp silicon tip with a single dangling bond at its apex. At a very close approach to the surface, the tip flips a surface dimer when positioned close to its lower atom. The energy barriers for an individual flipped surface dimer to regain its initial configuration are calculated to be ˜0.1eV , implying that the surface should be able to “heal” itself at all but extremely low temperatures during one oscillation cycle of the cantilever. Thus, at small enough temperatures, T⩽70K , and large frequency shifts, the imaging process is dominated by tip induced dimer flip events resulting in a permanent deformation of the surface and an apparent p(2×1) symmetric phase to be observed. No dissipation is expected as the tip oscillations are conservative at these conditions. At intermediate temperatures, 70K⩽T⩽200K , the flipped dimers are able to return to the ground state during each tip oscillation, resulting in continuous healing of the surface and thus large dissipation is expected. At T⩾200K dimers flip back and forth easily resulting in an apparent symmetric p(2×1) phase and noticeable dissipation. At small frequency shifts the dimers do not flip, still the upper dimer atoms are imaged as bright so that surface reconstruction can easily be determined. The possibility of manipulating the orientation of dimers at low temperatures and large frequency shifts by means of preprogrammed scan directions, is also discussed.

  14. Second-order and third-order elastic properties of diamond: An ab initio study

    NASA Astrophysics Data System (ADS)

    Clerc, Daryl G.; Ledbetter, Hassel

    2005-10-01

    Diamond's second-order elastic properties, and several third-order properties associated with uniform deformation, were calculated using ab initio all-electron density-functional theory. The predicted second-order elastic properties and equilibrium lattice parameter, in units of GPa and nm, are c11=1043(5), c12=128(5), c44=534(17), bulk modulus B=433(5), shear modulus G=502(10), Poisson ratio μ=0.082(5), and a=0.35569(2), where the parenthetic number is the uncertainty. The second-order force constants, in units of GPa, are kI=3843(108), kII=2346(17), kIII=2847(35), and kIV=5635(45). Here, subscripts I IV denote four strains whose tensor elements are [ɛ, ɛ, ɛ, 0, 0, 0], [ɛ, ɛ, 0, 0, 0, 0], [ɛ, ɛ, -ɛ, 0, 0, 0], and [ɛ, ɛ, ɛ, ɛ, ɛ, ɛ], respectively, using 6-component notation in the format [ɛ1, ɛ2, ɛ3, ɛ4, ɛ5, ɛ6]. Predicted inelastic properties include the third-order force constant corresponding to uniform dilation gI=-55,000(3,500) GPa, the bulk-modulus pressure derivative ∂B/∂P=4.7(3), and the overall Gruneisen parameter γG=0.85(15). Both our second-order and third-order properties agree well with measured values obtained by ultrasonics and by Raman spectroscopy.

  15. The reaction mechanisms of heme catalases: an atomistic view by ab initio molecular dynamics.

    PubMed

    Alfonso-Prieto, Mercedes; Vidossich, Pietro; Rovira, Carme

    2012-09-15

    Catalases are ubiquitous enzymes that prevent cell oxidative damage by degrading hydrogen peroxide to water and oxygen (2H(2)O(2) → 2H(2)O+O(2)) with high efficiency. The enzyme is first oxidized to a high-valent iron intermediate, known as Compound I (Cpd I, Por(·+)-Fe(IV)=O) which, at difference from other hydroperoxidases, is reduced back to the resting state by further reacting with H(2)O(2). The normal catalase activity is reduced if Cpd I is consumed in a competing side reaction, forming a species named Cpd I*. In recent years, Density Functional Theory (DFT) methods have unraveled the electronic configuration of these high-valent iron species, helping to assign the intermediates trapped in the crystal structures of oxidized catalases. It has been demonstrated that the a priori assumption that the H(+)/H(-) type of mechanism for Cpd I reduction leads to the generation of singlet oxygen is not justified. Moreover, it has been shown by ab initio metadynamics simulations that two pathways are operative for Cpd I reduction: a His-mediated mechanism (described as H·/H(+) + e(-)) in which the distal His acts as an acid-base catalyst and a direct mechanism (described as H·/H·) in which the distal His does not play a direct role. Independently of the mechanism, the reaction proceeds by two one-electron transfers rather than one two-electron transfer, as previously assumed. Electron transfer to Cpd I, regardless of whether the electron is exogenous or endogenous, facilitates protonation of the oxoferryl group, to the point that formation of Cpd I* may be controlled by the easiness of protonation of reduced Cpd I.

  16. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock; Siddharth Chopra

    2003-09-11

    As the US seeks to develop an energy strategy that reduces the reliance on foreign oil, there is a renewed interest in the research and development of the Fischer Tropsch synthesis for converting syngas into long chain hydrocarbon products. This report investigates some of the basic elementary steps for Fischer-Tropsch synthesis over ideal Pt, Ru and carbon-covered Pt and Ru metal surfaces by using ab initio density functional theoretical calculations. We examine in detail the adsorption sites as well as the binding energies for C, CH, CH{sub 2}, CH3 and CH4 on Pt(111), Ru(0001), 2x2-C-Pt(111) and 2x2-C-Ru(0001). The results indicate that the binding energies increase with decreasing the hydrogen in the fragment molecule, i.e. CH{sub 4} < CH{sub 3} < CH{sub 2} < CH < C. More specifically the work analyzes the elementary steps involved in the activation of methane. This is simply the reverse set of steps necessary for the hydrogenation of C to CH{sub 4}. The results indicate that these hydrocarbon intermediates bind more strongly to Ru than Pt. The introduction of co-adsorbed carbon atoms onto both Ru(0001) as well as Pt(111) significantly increased the overall energies as well as the activation barriers for C-H bond activation. The results suggest that Ru may be so active that it initially can initially activate CH4 into CH or C but ultimately it dies because the CH and C intermediates poison the surface and thus kill its activity. Methane can dissociate on Pt but subsequent hydrocarbon coupling reactions act to remove the surface carbon.

  17. Absolute acidity of clay edge sites from ab-initio simulations

    NASA Astrophysics Data System (ADS)

    Tazi, Sami; Rotenberg, Benjamin; Salanne, Mathieu; Sprik, Michiel; Sulpizi, Marialore

    2012-10-01

    We provide a microscopic understanding of the solvation structure and reactivity of the edges of neutral clays. In particular we address the tendency to deprotonation of the different reactive groups on the (0 1 0) face of pyrophyllite. Such information cannot be inferred directly from titration experiments, which do not discriminate between different sites and whose interpretation resorts to macroscopic models. The determination of the corresponding pKa then usually relies on bond valence models, sometimes improved by incorporating some structural information from ab-initio simulations. Here we use density functional theory based molecular dynamics simulations, combined with thermodynamic integration, to compute the free energy of the reactions of water with the different surface groups, leading to a deprotonated site and an aqueous hydronium ion. Our approach consistently describes the clay and water sides of the interface and includes naturally electronic polarization effects. It also allows to investigate the structure and solvation of all sites separately. We find that the most acidic group is SiOH, due to its ability to establish strong hydrogen bonds with adsorbed water, as it also happens on the quartz and amorphous silica surfaces. The acidity constant of AlOH2 is only 1 pKa unit larger. Finally, the pKa of AlOH is outside the possible range in water and this site should not deprotonate in aqueous solution. We show that the solvation of surface sites and hence their acidity is strongly affected by the proximity of other sites, in particular for AlOH and AlOH2 which share the same Al. We discuss the implications of our findings on the applicability of bond valence models to predict the acidity of edge sites of clays.

  18. Treatment of collinear and noncollinear electron spin within an approximate density functional based method.

    PubMed

    Köhler, Christof; Frauenheim, Thomas; Hourahine, Ben; Seifert, Gotthard; Sternberg, Michael

    2007-07-01

    We report benchmark calculations of the density functional based tight-binding method concerning the magnetic properties of small iron clusters (Fe2 to Fe5) and the Fe13 icosahedron. Energetics and stability with respect to changes of cluster geometry of collinear and noncollinear spin configurations are in good agreement with ab initio results. The inclusion of spin-orbit coupling has been tested for the iron dimer. PMID:17428041

  19. Polymeric nitrogen in a graphene matrix: An ab initio study

    NASA Astrophysics Data System (ADS)

    Timoshevskii, V.; Ji, Wei; Abou-Rachid, Hakima; Lussier, Louis-Simon; Guo, H.

    2009-09-01

    A hybrid material where polymeric nitrogen chains are sandwiched between graphene sheets in the form of a three-dimensional crystal, is predicted by means of ab initio simulations. It is demonstrated that chainlike polymeric nitrogen phase becomes stable at ambient pressure when intercalated in a multilayer graphene matrix. The physical origin of this stabilization is identified by studying the electronic properties of the system. This approach of stabilizing polymeric nitrogen by means of external three-dimensional matrix constitutes a path toward synthesizing different types of nitrogen-based high-energy materials.

  20. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  1. Exploring Transition Metal Catalyzed Reactions via AB Initio Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Hratchian, Hrant P.

    2011-06-01

    The study and prediction of chemical reactivity is one of the most influential contributions of quantum chemistry. A central concept in the theoretical treatment of chemical reactions is the reaction pathway, which can be quite difficult to integrate accurately and efficiently. This talk will outline our developments in the integration of these pathways on ab initio potential energy surfaces. We will also describe results from recent studies on the kinetics of transition metal catalyzed reactions, including the importance of vibrational coupling to the reaction coordinate and the role of this coupling in catalytic rate enhancement.

  2. Ab Initio Computation of the Energies of Circular Quantum Dots

    SciTech Connect

    Lohne, M. Pedersen; Hagen, Gaute; Hjorth-Jensen, M.; Kvaal, S.; Pederiva, F.

    2011-01-01

    We perform coupled-cluster and diffusion Monte Carlo calculations of the energies of circular quantum dots up to 20 electrons. The coupled-cluster calculations include triples corrections and a renormalized Coulomb interaction defined for a given number of low-lying oscillator shells. Using such a renormalized Coulomb interaction brings the coupled-cluster calculations with triples correlations in excellent agreement with the diffusion Monte Carlo calculations. This opens up perspectives for doing ab initio calculations for much larger systems of electrons.

  3. Pseudorotation motion in tetrahydrofuran: an ab initio study.

    PubMed

    Rayón, Víctor M; Sordo, Jose A

    2005-05-22

    The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.

  4. Ab initio molecular dynamics study of water at constant pressure using converged basis sets and empirical dispersion corrections

    NASA Astrophysics Data System (ADS)

    Ma, Zhonghua; Zhang, Yanli; Tuckerman, Mark E.

    2012-07-01

    It is generally believed that studies of liquid water using the generalized gradient approximation to density functional theory require dispersion corrections in order to obtain reasonably accurate structural and dynamical properties. Here, we report on an ab initio molecular dynamics study of water in the isothermal-isobaric ensemble using a converged discrete variable representation basis set and an empirical dispersion correction due to Grimme [J. Comp. Chem. 27, 1787 (2006)], 10.1002/jcc.20495. At 300 K and an applied pressure of 1 bar, the density obtained without dispersion corrections is approximately 0.92 g/cm3 while that obtained with dispersion corrections is 1.07 g/cm3, indicating that the empirical dispersion correction overestimates the density by almost as much as it is underestimated without the correction for this converged basis. Radial distribution functions exhibit a loss of structure in the second solvation shell. Comparison of our results with other studies using the same empirical correction suggests the cause of the discrepancy: the Grimme dispersion correction is parameterized for use with a particular basis set; this parameterization is sensitive to this choice and, therefore, is not transferable to other basis sets.

  5. Ab initio modeling of quasielastic neutron scattering of hydrogen pipe diffusion in palladium

    NASA Astrophysics Data System (ADS)

    Schiavone, Emily J.; Trinkle, Dallas R.

    2016-08-01

    A recent quasielastic neutron scattering (QENS) study of hydrogen in heavily deformed fcc palladium provided the first direct measurement of hydrogen pipe diffusion, which has a significantly higher diffusivity and lower activation barrier than in bulk. While ab initio estimates of hydrogen diffusion near a dislocation corroborated the experimental values, open questions remain from the Chudley-Elliott analysis of the QENS spectra, including significant nonmonotonic changes in jump distance with temperature. We calculate the spherically averaged incoherent scattering function at different temperatures using our ab initio data for the network of site energies, jump rates, and jump vectors to directly compare to experiment. Diffusivities and jump distances are sensitive to how a single Lorentzian is fit to the scattering function. Using a logarithmic least squares fit over the range of experimentally measured energies, our diffusivities and jump distances agree well with those measured by experiment. However, these calculated quantities do not reflect barriers or distances in our dislocation geometry. This computational approach allows for validation against experiment, along with a more detailed understanding of the QENS results.

  6. Conformational Analysis of Thioether Musks Using Density Functional Theory

    PubMed Central

    Setzer, William N.

    2009-01-01

    A conformational analysis of nine macrocyclic thioether musks has been carried out using molecular mechanics (MMFF), density functional theory (DFT) using both B3LYP and M06 functionals, as well as Hartree-Fock and post-Hartree-Fock (MP2) ab initio methods. 6-Thia-, 10-thia- and 4-methyl-5-thia-14-tetradecananolide, 4-thia-, 7-thia-, 11-thia- and 12-thia-15-pentadecanolide and 6-thia- and 12-thia-16-hexadecanolide were modeled. Unfortunately, there was little agreement between the computational methods at the levels of theory used in this study. PMID:20111690

  7. Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H7+ cluster

    NASA Astrophysics Data System (ADS)

    Barragán, Patricia; Prosmiti, Rita; Wang, Yimin; Bowman, Joel M.

    2012-06-01

    Full-dimensional ab initio potential energy surface is constructed for the H_7^+ cluster. The surface is a fit to roughly 160 000 interaction energies obtained with second-order MöllerPlesset perturbation theory and the cc-pVQZ basis set, using the invariant polynomial method [B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009), 10.1080/01442350903234923]. We employ permutationally invariant basis functions in Morse-type variables for all the internuclear distances to incorporate permutational symmetry with respect to interchange of H atoms into the representation of the surface. We describe how different configurations are selected in order to create the database of the interaction energies for the linear least squares fitting procedure. The root-mean-square error of the fit is 170 cm-1 for the entire data set. The surface dissociates correctly to the H_5^+ + H2 fragments. A detailed analysis of its topology, as well as comparison with additional ab initio calculations, including harmonic frequencies, verify the quality and accuracy of the parameterized potential. This is the first attempt to present an analytical representation of the 15-dimensional surface of the H_7^+ cluster for carrying out dynamics studies.

  8. Three-cluster dynamics within an ab initio framework

    SciTech Connect

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to a 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.

  9. Operator evolution for ab initio electric dipole transitions of 4He

    DOE PAGES

    Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; Jurgenson, Eric D.; Navartil, Petr

    2015-07-24

    A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less

  10. Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system

    SciTech Connect

    Hormain, Laureline; Monnerville, Maurice Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón

    2015-04-14

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

  11. Hydrogen Bonds in Crystalline Imidazoles Studied by 15N NMR and ab initio MO Calculations

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Nagatomo, Shigenori; Masui, Hirotsugu; Nakamura, Nobuo; Hayashi, Shigenobu

    1999-07-01

    Intermolecular hydrogen bonds of the type N-H...N in crystals of imidazole and its 4-substituted and 4,5-disubstituted derivatives were studied by 15N CP/MAS NMR and an ab initio molecular orbital (MO) calculation. In the 15N CP/MAS NMR spectrum of each of the imidazole derivatives, two peaks due to the two different functional groups, >NH and =N-, were observed. The value of the 15N isotropic chemical shift for each nitrogen atom depends on both the length of the intermolecular hydrogen bond and the kind of the substituent or substituents. It was found that the difference between the experimen-tal chemical shifts of >NH and =N-varies predominantly with the hydrogen bond length but does not show any systematic dependence on the kind of substituent. The ab initio MO calculations suggest that the hydrogen bond formation influences the 15N isotropic chemical shift predominantly, and that the difference between the 15N isotropic chemical shift of >NH and =N-varies linearly with the hydrogen bond length.

  12. Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential

    SciTech Connect

    Yin, Chih-Chien; Li, Arvin Huang-Te; Chao, Sheng D.

    2013-11-21

    We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform.

  13. Towards an ab-initio treatment of nonlocal electronic correlations with dynamical vertex approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten

    Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.

  14. Ab Initio Classical Dynamics Simulations of CO_2 Line-Mixing Effects in Infrared Bands

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Hartmann, Jean-Michel; Tran, Ha; Snels, Marcel; Stefani, Stefania; Piccioni, Giuseppe

    2013-06-01

    Ab initio calculations of line-mixing effects in CO_2 infrared bands are presented and compared with experiments. The predictions were carried using requantized Classical Dynamics Molecular Simulations (rCDMS) based on an approach previously developed and successfully tested for CO_2 isolated line shapes. Using classical dynamics equations, the force and torque applied to each molecule by the surrounding molecules (described by an ab initio intermolecular potential) are computed at each time step. This enables, using a requantization procedure, to predict dipole and isotropic polarizability auto-correlation functions whose Fourier-Laplace transforms yield the spectra. The quality of the rCDMS calculations is demonstrated by comparisons with measured spectra in the spectral regions of the 3ν_3 and 2ν_1+2ν_2+ν_3 Infrared bands. J.-M. Hartmann, H. Tran, N. H. Ngo, et al., Phys. Rev. Lett. A {87} (2013), 013403. H. Tran, C. Boulet, M. Snels, S. Stefani, J. Quant. Spectrosc. Radiat. Transfer {112} (2011), 925-936.

  15. 4He+n+n continuum within an ab initio framework

    DOE PAGES

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; Hupin, Guillaume

    2014-07-16

    In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known Jπ = 2+ resonance as well as a result consistent with a new low-lying second 2+ resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2–, 1+, and 0– channels, while no low-lying resonances are present in the 0+ and 1– channels.« less

  16. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  17. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation

    NASA Astrophysics Data System (ADS)

    Chibotaru, L. F.; Ungur, L.

    2012-08-01

    A methodology for the rigorous nonperturbative derivation of magnetic pseudospin Hamiltonians of mononuclear complexes and fragments based on ab initio calculations of their electronic structure is described. It is supposed that the spin-orbit coupling and other relativistic effects are already taken fully into account at the stage of quantum chemistry calculations of complexes. The methodology is based on the establishment of the correspondence between the ab initio wave functions of the chosen manifold of multielectronic states and the pseudospin eigenfunctions, which allows to define the pseudospin Hamiltonians in the unique way. Working expressions are derived for the pseudospin Zeeman and zero-field splitting Hamiltonian corresponding to arbitrary pseudospins. The proposed calculation methodology, already implemented in the SINGLE_ANISO module of the MOLCAS-7.6 quantum chemistry package, is applied for a first-principles evaluation of pseudospin Hamiltonians of several complexes exhibiting weak, moderate, and very strong spin-orbit coupling effects.

  18. Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.

    PubMed

    Vadali, Ramkumar V; Shi, Yan; Kumar, Sameer; Kale, Laxmikant V; Tuckerman, Mark E; Martyna, Glenn J

    2004-12-01

    Many systems of great importance in material science, chemistry, solid-state physics, and biophysics require forces generated from an electronic structure calculation, as opposed to an empirically derived force law to describe their properties adequately. The use of such forces as input to Newton's equations of motion forms the basis of the ab initio molecular dynamics method, which is able to treat the dynamics of chemical bond-breaking and -forming events. However, a very large number of electronic structure calculations must be performed to compute an ab initio molecular dynamics trajectory, making the efficiency as well as the accuracy of the electronic structure representation critical issues. One efficient and accurate electronic structure method is the generalized gradient approximation to the Kohn-Sham density functional theory implemented using a plane-wave basis set and atomic pseudopotentials. The marriage of the gradient-corrected density functional approach with molecular dynamics, as pioneered by Car and Parrinello (R. Car and M. Parrinello, Phys Rev Lett 1985, 55, 2471), has been demonstrated to be capable of elucidating the atomic scale structure and dynamics underlying many complex systems at finite temperature. However, despite the relative efficiency of this approach, it has not been possible to obtain parallel scaling of the technique beyond several hundred processors on moderately sized systems using standard approaches. Consequently, the time scales that can be accessed and the degree of phase space sampling are severely limited. To take advantage of next generation computer platforms with thousands of processors such as IBM's BlueGene, a novel scalable parallelization strategy for Car-Parrinello molecular dynamics is developed using the concept of processor virtualization as embodied by the Charm++ parallel programming system. Charm++ allows the diverse elements of a Car-Parrinello molecular dynamics calculation to be interleaved with low

  19. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  20. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.