Ab initio electronic structure study for TTF-TCNQ under uniaxial compression
NASA Astrophysics Data System (ADS)
Ishibashi, Shoji; Hashimoto, Tamotsu; Kohyama, Masanori; Terakura, Kiyoyuki
2004-04-01
We have investigated the electronic structure of TTF-TCNQ under uniaxial compression with ab initio plane-wave pseudopotential calculations within the local-density approximation and generalized gradient approximation. Depending on the compression direction, the constituent molecules are deformed in different ways. Along with these structural deformations, quasi-one-dimensional Fermi surfaces show dramatic changes in their shapes and sizes.
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
NASA Astrophysics Data System (ADS)
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.
Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya
2016-12-01
An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range. PMID:26768147
Kurova, N. V. Burdov, V. A.
2013-12-15
The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.
Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.
Zhang, Dawei; Liu, Chungen
2016-04-12
The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems. PMID:26963572
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.; Tratnyek, Paul G.
2002-12-17
Substituted chloromethyl radicals and anions are potential intermediates in the reduction of substituted chlorinated methanes (CHxCl3-xL, with L- ) F-, OH-, SH-, NO3 -, HCO3 - and (x 0-3). Thermochemical properties, Hf (298.15 K), S(298.15 K,1 bar), and GS(298.15 K, 1 bar), were calculated by using ab initio electronic structure methods for the substituted chloromethyl radicals and anions: CHyCl2-yL and CHyCl2-yL-, for y 0-2. In addition, thermochemical properties were calculated for the aldehyde, ClHCO, and the gemchlorohydrin anions, CCl3O-, CHCl2O-, and CH2ClO-. The thermochemical properties of these additional compounds were calculated because the nitrate-substituted compounds, CHyCl2-y(NO3) and CHyCl2-y(NO3)-,
Klevets, Ivan; Bryk, Taras
2014-12-07
Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed.
Atomic and Electronic Structures of C_60+BN Nanopeapods from ab initio Pseudopotential Calculations
NASA Astrophysics Data System (ADS)
Trave, Andrea; Ribeiro, Filipe; Louie, Steven G.; Cohen, Marvin L.
2004-03-01
Nanopeapods are structures of nanometric size consisting of an external carbon nanotube encapsulating a chain or complex array of fullerenes. Recent calculations and experiments have proven that nanopeapods can be obtained assembling fullerenes within boron nitride nanotubes, creating novel materials of possible interest for electronic transport applications. To improve the understanding of the properties of these composite systems, as compared to empty nanotubes and carbon nanopeapods, ab-initio total energy calculations have been performed within the pseudopotential Density Functional Theory in local density approximation. Results of these calculations on the energetics and geometrical deformations involved in the encapsulation will be presented, followed by a discussion of the consequences on the electronic structures of these systems, with particular focus on aspects relevant to electronic transport phenomena. This work is supported by NFS (Grant DMR00-87088) and DOE (Contract DE-AC03-76SF00098), using computational resources at NERSC and NPACI.
Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules
NASA Astrophysics Data System (ADS)
Zheng, Haoping
The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with precise calculations. Thus the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule has become a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), will be presented in this paper. The reactive sites of the inhibitors are determined and explained. The accuracy of structure determination of the inhibitors are tested theoretically.
Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules
NASA Astrophysics Data System (ADS)
Zheng, Haoping
2003-04-01
The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.
Ab initio study of pressure induced structural and electronic properties in TmPo
Makode, Chandrabhan Pataiya, Jagdish; Sanyal, Sankar P.; Panwar, Y. S.; Aynyas, Mahendra
2015-06-24
We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.
Nekrashevich, S. S. Gritsenko, V. A.; Klauser, R.; Gwo, S.
2010-10-15
Charge transfer {Delta}Q = 0.35e at the Si-N bond in silicon nitride is determined experimentally using photoelectron spectroscopy, and the ionic formula of silicon nitride Si{sub 3}{sup +1.4}N{sub 4}{sup -1.05} is derived. The electronic structure of {alpha}-Si{sub 3}N{sub 4} is studied ab initio using the density functional method. The results of calculations (partial density of states) are compared with experimental data on X-ray emission spectroscopy of amorphous Si{sub 3}N{sub 4}. The electronic structure of the valence band of amorphous Si{sub 3}N{sub 4} is studied using synchrotron radiation at different excitation energies. The electron and hole effective masses m{sub e}{sup *} {approx} m{sub h}{sup *} {approx} 0.5m{sub e} are estimated theoretically. The calculated values correspond to experimental results on injection of electrons and holes into silicon nitride.
NASA Astrophysics Data System (ADS)
Padilha, José Eduardo; Pontes, Renato Borges
2016-01-01
Ab initio electronic structure and transport calculations of 2D hexagonal germanium with four possible structural defects were performed. The considered defects were Stone-Wales (SW), single vacancy (5-9) and two divacancies (5-8-5 and 555-777). We showed that these defects present a local reconstruction that can be clearly identified by STM images. Among the investigated defects, we verified that the SW defect has the lowest formation energy. We showed that in the presence of structural defects the 2D hexagonal germanium maintains its Dirac cone feature only for the single vacancy. The divacancies and the SW defect destroy the linear dispersion relation of the electrons, near the Fermi level, in this system. Moreover, we verified that these defects create scattering centers, which can lead to diminishing of the current by roughly 42% for the Stone-Wales and single vacancy, 55% for the divacancy 5-8-5 and 68% for the 555-777 divacancy.
Hegde, Ganesh Bowen, R. Chris
2015-10-15
The accuracy of a single s-orbital representation of Cu towards enabling multi-thousand atom ab initio calculations of electronic structure is evaluated in this work. If an electrostatic compensation charge of 0.3 electron per atom is used in this basis representation, the electronic transmission in bulk and nanocrystalline Cu can be made to compare accurately to that obtained with a Double Zeta Polarized basis set. The use of this representation is analogous to the use of single band effective mass representation for semiconductor electronic structure. With a basis of just one s-orbital per Cu atom, the representation is extremely computationally efficient and can be used to provide much needed ab initio insight into electronic transport in nanocrystalline Cu interconnects at realistic dimensions of several thousand atoms.
Ab initio electron affinity and hyperfine structure constants of ^231Pa:
NASA Astrophysics Data System (ADS)
Dinov, Konstantin D.; Beck, Donald R.
1996-05-01
We have performed valence shell Relativistic Configuration Interaction calculations(Konstantin D. Dinov and Donald R. Beck, Electron affinity and hyperfine structure constants of Pa^-: 7p attachment.) Submitted to Phys. Rev. A for the Electron Affinity (EA) of ^231Pa. Our result of 0.222 eV for the binding energy of the Pa^- 5f^2 6d 7s^2 7p J=6 state is consistent with the experimental yield(X-L. Zhao, M-J. Nadeau, M.A. Garwan, L.R. Kilius and A.E. Litherland, Nuc. Instr. Meth. B 92), 258-64 (1994). Our result for the hyperfine structure constants of Pa^-, is the first available ab initio result. No other bound states were found for the 7p attachment. We didn't find evidence to support possible 5d attachment in this system. This work extends our previous calculations for the Rare Earth negative ions(K.D. Dinov and D.R. Beck, Phys. Rev. A 52) , 2632-37 (1995); K. Dinov and D.R. Beck, Phys. Rev. A 51 (2), 1680-82 (1995); K. Dinov, D.R. Beck and D. Datta, Phys. Rev. A 50 (2), 1144-48 (1994).
Ab initio calculation of structural stability, electronic and optical properties of Ag{sub 2}Se
Rameshkumar, S.; Jayalakshmi, V.; Jaiganesh, G.; Palanivel, B.
2015-06-24
The structural stability, electronic and optical properties of Ag{sub 2}Se compound is studied using ab initio packages. Ag{sub 2}Se is found to crystallize in orthorhombic structure with two different space groups i.e. P2{sub 1}2{sub 1}2{sub 1} (No. 19) and P222{sub 1} (No. 17). For this compound in these two space groups, the total energy has been computed as a function of volume. Our calculated results suggest that the P2{sub 1}2{sub 1}2{sub 1}–phase is more stable than that of the P222{sub 1}–phase. The band structure calculation show that Ag{sub 2}Se is semimetallic with an overlap of about 0.014 eV in P2{sub 1}2{sub 1}2{sub 1}–phase whereas is metallic in nature in P222{sub 1}–phase. Moreover, the optical properties including the dielectric function, energy loss spectrum are obtained and analysed.
PSI3: an open-source Ab Initio electronic structure package.
Crawford, T Daniel; Sherrill, C David; Valeev, Edward F; Fermann, Justin T; King, Rollin A; Leininger, Matthew L; Brown, Shawn T; Janssen, Curtis L; Seidl, Edward T; Kenny, Joseph P; Allen, Wesley D
2007-07-15
PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis-set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file-system-sizes), especially multi-index quantities such as electron repulsion integrals. This platform is useful for the rapid implementation of both standard quantum chemical methods, as well as the development of new models. Features that have already been implemented include Hartree-Fock, multiconfigurational self-consistent-field, second-order Møller-Plesset perturbation theory, coupled cluster, and configuration interaction wave functions. Distinctive capabilities include the ability to employ Gaussian basis functions with arbitrary angular momentum levels; linear R12 second-order perturbation theory; coupled cluster frequency-dependent response properties, including dipole polarizabilities and optical rotation; and diagonal Born-Oppenheimer corrections with correlated wave functions. This article describes the programming infrastructure and main features of the package. PSI3 is available free of charge through the open-source, GNU General Public License. PMID:17420978
Quarti, Claudio; Mosconi, Edoardo; De Angelis, Filippo
2015-04-14
The last two years have seen the unprecedentedly rapid emergence of a new class of solar cells, based on hybrid organic-inorganic halide perovskites. The success of this class of materials is due to their outstanding photoelectrochemical properties coupled to their low cost, mainly solution-based, fabrication techniques. Solution processed materials are however often characterized by an inherent flexible structure, which is hardly mapped into a single local minimum energy structure. In this perspective, we report on the interplay between structural and electronic properties of hybrid lead iodide perovskites investigated using ab initio molecular dynamics (AIMD) simulations, which allow the dynamical simulation of disordered systems at finite temperature. We compare the prototypical MAPbI3 (MA = methylammonium) perovskite in its cubic and tetragonal structure with the trigonal phase of FAPbI3 (FA = formamidinium), investigating different starting arrangements of the organic cations. Despite the relatively short time scale amenable to AIMD, typically a few tens of ps, this analysis demonstrates the sizable structural flexibility of this class of materials, showing that the instantaneous structure could significantly differ from the time and thermal averaged structure. We also highlight the importance of the organic-inorganic interactions in determining the fluxional properties of this class of materials. A peculiar spatial localization of the valence and conduction band edges is also found, with a dynamics in the range of 0.1 ps, which is associated with the positional dynamics of the organic cations within the cubo-octahedral perovskite cage. This asymmetry in the spatial localization of the band edges is expected to ease exciton dissociation and assist the initial stages of charge separation, possibly constituting one of the key factors for the impressive photovoltaic performances of hybrid lead-iodide perovskites. PMID:25766785
NASA Astrophysics Data System (ADS)
Matsuda, Yuki
This dissertation focuses on ab-initio quantum mechanical calculations of nanoelectronics in three research topics: contact resistance properties of carbon nanotubes and graphenes (Chapters 1 through 3), electrical properties of carbon nanotubes (Chapter 4) and silicon nanowires (Chapter 5). Through all the chapters, the aim of the research is to provide useful guidelines for experimentalists. Chapter 1 presents the contact resistance of metal electrode-carbon nanotube and metal electrode-graphene interfaces for various deposited metals, based on first-principles quantum mechanical density functional and matrix Green's function methods. Chapters 2 and 3 describe inventive ways to enhance contact resistance properties as well as mechanical stabilities using "molecular anchors" (Chapter 2) or using "end-contacted" (or end-on) electrodes (Chapter 3). Chapters 1 through 3 also provide useful guidelines for nanotube assembly process which is one of the main obstacles in nanoelectronics. Chapter 4 shows accurate and detailed band structure properties of single-walled carbon nanotubes using B3LYP hybrid functional, which are critical parameters in determining the electronic properties such as small band gaps (˜0.1 eV) and effective masses. Chapter 5 details both structural and electronic properties of silicon nanowires. These results lead to the findings controlling the diameter and surface coverage by adsorbates (e.g., hydrogen) of silicon nanowires can be effectively used to optimize their properties for various applications. All the theoretical results are compared with other theoretical studies and experimental data. Notably, electronic studies using B3LYP show excellent agreement with experimental studies quantitatively, which previous quantum mechanical calculations had failed. These studies show how quantum mechanical predictions of complex phenomena can be effectively investigated computationally in nanomaterials and nanodevices. Given the difficulty, expense
Ab initio study of the electronic structures of lithium containing diatomic molecules and ions
NASA Astrophysics Data System (ADS)
Boldyrev, Alexander I.; Simons, Jack; Schleyer, Paul von R.
1993-12-01
Ab initio calculations are used to provide bond lengths, harmonic frequencies, and dissociation energies of low-lying electronic states for LiX, LiX+, and LiX- (with X=Li through F and Na through Cl). Most of these species represent hitherto experimentally unknown molecules or ions, which provides the focus of the work presented here. All of these species are stable to dissociation and the anions are stable to loss of an electron. Differences among the electronic structures of the valence isoelectronic LiX; and HX, LiX+, and HX+; and LiX- and HX- species are analyzed. Optimized geometries, dissociation energies, ionization potentials, and electron affinities were calculated for the following ground states of the respective species: 1Σ+ for Li2(1Σ+g) LiNa, LiBe+, LiBe-, LiMg+, LiMg-, LiF, LiAl, LiS-, and LiCl; 2Σ+ for Li+2(2Σ+g), Li-2(2Σ+u) LiBe, LiB+, LiF-, LiNa+, LiNa-, LiMg, LiAl+, and LiCl-; 2Πr for LiB-, LiAl-; 2Πi for LiO, LiF+, LiS, and LiCl+; 3Πr for LiB, LiC+, and LiSi+; 3Σ- for LiN, LiO+, LiSi-, LiP, and LiS+; 4Σ- for LiC, LiN+, LiN-, LiSi, LiP+, and LiP-; and 5Σ- for LiC-.
Hoy, Erik P.; Mazziotti, David A.
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.
Hoy, Erik P; Mazziotti, David A
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory. PMID:26277123
Ab-initio calculations of electronic, transport, and structural properties of boron phosphide
Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D.
2014-09-14
We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.
NASA Astrophysics Data System (ADS)
Trevisanutto, Paolo E.; Vignale, Giovanni
2016-05-01
Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is "native" to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory — density functional theory, GW approximation and Bethe-Salpeter equation — are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.
Trevisanutto, Paolo E; Vignale, Giovanni
2016-05-28
Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is "native" to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory - density functional theory, GW approximation and Bethe-Salpeter equation - are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields. PMID:27250294
Ab initio nuclear structure theory
NASA Astrophysics Data System (ADS)
Negoita, Gianina Alina
Ab initio no core methods have become major tools for understanding the properties of light nuclei based on realistic nucleon-nucleon (NN) and three-nucleon (NNN) interactions. A brief description is provided for the inter-nucleon interactions that fit two-body scattering and bound state data, as well as NNN interactions. Major new progress, including the goal of applying these interactions to solve for properties of nuclei, is limited by convergence issues. That is, with the goal of obtaining high precision solutions of the nuclear many-body Hamiltonian with no core methods (all nucleons treated on the same footing), one needs to proceed to very large basis spaces to achieve a convergence pattern suitable for extrapolation to the exact result. This thesis investigates (1) the similarity renormalization group (SRG) approach to soften the interaction, while preserving its phase shift properties, and (2) adoption of a realistic basis space using Woods-Saxon (WS) single-particle wavefunctions. Both have their advantages and limitations, discussed here. For (1), SRG was demonstrated by applying it to a realistic NN interaction, JISP16, in a harmonic oscillator (HO) representation. The degree of interaction softening achieved through a regulator parameter is examined. For (2), new results are obtained with the realistic JISP16 NN interaction in ab initio calculations of light nuclei 4He, 6He and 12C, using a WS basis optimized to minimize the ground-state energy within the truncated no core shell model. These are numerically-intensive many-body calculations. Finally, to gain insight into the potential for no core investigations of heavier nuclei, an initial investigation was obtained for the odd mass A = 47 - 49 region nuclei straddling 48Ca. The motivation for selecting these nuclei stems from the aim of preparing for nuclear double beta-decay studies of 48Ca. In these heavier systems, phenomenological additions to the realistic NN interaction determined by previous
Gall, D.; Sta''dele, M.; Ja''rrendahl, K.; Petrov, I.; Desjardins, P.; Haasch, R. T.; Lee, T.-Y.; Greene, J. E.
2001-03-15
Experimental and ab initio computational methods are employed to conclusively show that ScN is a semiconductor rather than a semimetal; i.e., there is a gap between the N 2p and the Sc 3d bands. Previous experimental investigators reported, in agreement with band structure calculations showing a band overlap of 0.2 eV, that ScN is a semimetal while others concluded that it is a semiconductor with a band gap larger than 2 eV. We have grown high quality, single crystalline ScN layers on MgO(001) and on TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. ScN optical properties were determined by transmission, reflection, and spectroscopic ellipsometry while in-situ x-ray and ultraviolet valence band photoelectron spectroscopy were used to determine the density of states (DOS) below the Fermi level. The measured DOS exhibits peaks at 3.8 and 5.2 eV stemming from the N 2p bands and at 15.3 eV due to the N 2s bands. The imaginary part of the measured dielectric function {epsilon}{sub 2} consists of two primary features due to direct X- and {Gamma}-point transitions at photon energies of 2.7 and 3.8 eV, respectively. For comparison, the ScN band structure was calculated using an ab initio Kohn--Sham approach which treats the exchange interactions exactly within density-functional theory. Calculated DOS and the complex dielectric function are in good agreement with our ScN valence-band photoelectron spectra and measured optical properties, respectively. We conclude, combining experimental and computational results, that ScN is a semiconductor with an indirect {Gamma}--X bandgap of 1.3{+-}0.3eV and a direct X-point gap of 2.4{+-}0.3eV.
NASA Astrophysics Data System (ADS)
Yoon, Sangmoon; Jin, Kyoungsuk; Kang, Seoung-Hun; Nam, Ki Tae; Kim, Miyoung; Kwon, Young-Kyun
Manganese oxide nanoparticles have attracted a lot of attentions as a promising candidate for next-generation catalyst. Therefore, understanding the electronic structure of manganese oxide in room temperature is highly required for the rational design of catalysts. We study the effects of paramagnetism and electron correlations on the electronic structure of MnO using ab initio density functional theory. Spin configurations of paramagnetism are postulated as the ensemble average of various spin disorders. Each initial disordered spin configuration is randomly generated with two constraints on magnetic local moments. We first investigate the influence of magnetic ordering on the elctronic structure of MnO using noncollinear spin calculations and find that the magnetic disorders make valence band maximum more delocalized. Moreover, we examine the role of electron correlations in the electronic structure of paramagnetic MnO using DFT +U calculations. Strong electron correlations modify not only the size of band gap but also the magnitude of local moments as in the antiferromagnetic MnO. Besides, the initialized spin disorder remains almost unchanged as electron correlation get stronger. Furthermore, our results obtained by considering both strong electron correlation and paramagnetism confirm experimentally-observed oxygen K edge X-ray emission spectra [1] reflecting the feature of valence bands. [1] E. Z. Kurmaev et al., Phys. Rev. B. 77, 165127 (2008).
Ab initio structural and electronic analysis of CH3SH self-assembled on a Cu(110) substrate
NASA Astrophysics Data System (ADS)
D'Agostino, S.; Chiodo, L.; Della Sala, F.; Cingolani, R.; Rinaldi, R.
2007-05-01
Ab initio Density Functional Theory calculations are here reported to characterize the adsorption of methanethiol at the Cu(110) surface. Theoretical results suggest that the binding of the adsorbate to the substrate is rather weak and the molecular geometry is correspondingly almost unaffected by the adsorption. Otherwise, when CH3SH deprotonates producing methanethiolate, a stronger chemical bond is realized between the sulfur atom of CH3S radical and Cu surface atoms. A detailed study of structural and electronic properties of methanethiolate on Cu(110) for a p(2×2) and a c(2×2) overlayer structure has been carried out. We find that, in the most stable configuration, the molecule adsorbs in the shortbridge site. The chemical bond arises due to a strong hybridization among p orbitals of sulfur and d states from the substrate, as it is deduced by an analysis of partial densities of states and charge densities.
NASA Astrophysics Data System (ADS)
Aarset, Kirsten; Hagen, Kolbjørn; Stølevik, Reidar
1997-09-01
Gas-phase electron diffraction data obtained at 23°C, together with results from ab initio molecular orbital calculations ( {HF}/{6-31 G(d)}). were used to determine the structure and conformational composition of 1,1-dichlorobutane. Of the five distinguishable conformers (AA, G + A, AG +, G + G + and G + G -), the G + A conformer was found to be the low-energy form, and the investigation also indicated that certain amounts of the AA and G + G - conformers might be present. The symbols describing the conformers refer to torsion about the C 1C 2 and C 2C 3 bonds, anti (A) with H 5C 1C 2C 3 and C 1C 2C 3C 4 torsion angles of 180° and gauche (G + or G -) with torsion angles of + 60° or 300° (-60°) respectively. The results for the principal distances ( rg) and angles (∠ α) from the combined electron diffraction/ab initio study for the G + A conformer, with estimated 2σ uncertainties, were as follows: r( C1 C2) = 1.521(4) Å, r( C2 C3) = 1.539(4) Å, r( C3 C4) = 1.546(4) Å, r( C Cl6) = 1.782(3) Å, r( CCl7) = 1.782(3) Å,
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Astrophysics Data System (ADS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Astrophysics Data System (ADS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.
2000-01-01
The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. Favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH-, SH-, NO3 -, HCO3 -, HSO3 -, HSO4 -, H2PO4 -, and F-) that can occur in natural waters with the chlorinated methanes, CCl4, CCl3H, CCl2H2, and CClH3. The results of this investigation show that nucleophilic substitution reactions of OH-, SH-, HCO3 -, and F- are significantly exothermic for chlorine displacement, NO3 - reactions are slightly exothermic to thermoneutral, HSO3
NASA Astrophysics Data System (ADS)
Mogulkoc, Y.; Ciftci, Y. O.; Kabak, M.; Colakoglu, K.
2014-07-01
The structural, elastic, thermodynamic, electronic and vibrational properties of CsCl-type TbMg have been studied by performing ab initio calculations based on density functional theory using the Vienna Ab initio Simulation Package (VASP). The exchange correlation potential within the generalized-gradient approximation (GGA) of projector augmented wave (PAW) method is used. The calculated structural parameters, such as the lattice constant, bulk modulus, its pressure derivative, formation energy and second-order elastic constants are presented in this paper. The obtained results are compared with related experimental and theoretical studies. The electronic band calculations, total density of states (DOS), partial DOS and charge density are also presented. Formation enthalpy and Cauchy pressure are determined. In order to obtain more information the elastic properties such as Zener anisotropy factor, Poisson’s ratio, Young modulus, isotropic shear modulus, Debye temperature and melting point have been carried out. The elastic constants are calculated in zero and different pressure ranges (0-50 GPa) with bulk modulus. We have performed the thermodynamic properties of TbMg by using quasi-harmonic Debye model. The temperature and pressure variation of the volume, bulk modulus, and thermal expansion coefficient have been predicted over a pressure range of 0-25 GPa for of TbMg. Pressure dependence of the anisotropy factors, Young’s modulus, Poisson’s ratios, bulk modulus and axis compressibility of TbMg are presented along different directions and planes. Finally, the phonon dispersion curves are presented for TbMg.
NASA Astrophysics Data System (ADS)
Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun
2016-02-01
The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Tohme, Samir N.; Korek, Mahmoud E-mail: fkorek@yahoo.com; Awad, Ramadan
2015-03-21
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
Tohme, Samir N; Korek, Mahmoud; Awad, Ramadan
2015-03-21
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time. PMID:25796254
NASA Astrophysics Data System (ADS)
Tohme, Samir N.; Korek, Mahmoud; Awad, Ramadan
2015-03-01
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
Vázquez-Mayagoitia, Alvaro; Huertas, Oscar; Brancolini, Giorgia; Migliore, Agostino; Sumpter, Bobby G; Orozco, Modesto; Luque, F Javier; Di Felice, Rosa; Fuentes-Cabrera, Miguel
2009-10-29
The structural, tautomeric, hydrogen-bonding, stacking, and electronic properties of a seleno-derivative of thymine (T), denoted here as 4SeT and created by replacing O4 in T with Se, are investigated by means of ab initio computational techniques. The structural properties of T and 4SeT are very similar, and the geometrical differences are mainly limited to the adjacent environment of the C-Se bond. The canonical "keto" form is the most stable tautomer, in the gas phase and in aqueous solution, for both T and 4SeT. It is argued that the competition between two opposite trends, i.e., a decrease in the base-pairing ability and an increase of the stacking interaction upon incorporation of 4SeT into a duplex, likely explains the similar experimental melting points of a seleno-derivative duplex (Se-DNA) and its native counterpart. Interestingly, the underlying electronic structure shows that replacement of O4 with Se promotes a reduction in the HOMO-LUMO gap and an increase in interplane coupling, which suggests that Se-DNA could be potentially useful for nanodevice applications. This finding is further supported by the fact that transfer integrals between 4SeT...A stacked base pairs are larger than those determined for similarly stacked natural T...A pairs. PMID:19813710
Bylaska, E.J.; Dixon, D.A.; Felmy, A.R.
2000-01-27
The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH{sup {minus}}, SH{sup {minus}}, NO{sub 3}{sup {minus}}, HCO{sub 3}{sup {minus}}, HSO{sub 3}{sup {minus}}, HSO{sub 4}{sup {minus}}, H{sub 2}PO{sub 4}{sup {minus}}, and F{sup {minus}}) that can occur in natural waters with the chlorinated methanes, CCk{sub 4}, CCl{sub 3}H, CCl{sub 2}H{sub 2}, and CClH{sub 3}. The results of this investigation show that nucleophilic substitution reactions of OH{sup {minus}}, SH{sup {minus}}, HCO{sub 3}{sup {minus}}, and F{sup {minus}} are significantly exothermic for chlorine displacement, NO{sub 3}{sup {minus}} reactions are slightly exothermic to the thermoneutral, HSO{sub 3}{sup {minus}} reactions are slightly endothermic to thermoneutral and HSO{sub 4}{sup {minus}}, and H{sub 2}PO{sub 4}{sup {minus}} reactions are significantly endothermic. In the case of OH{sup {minus}}, SH{sup {minus}}, and F{sup {minus}} where there are limited experimental data, these results agree well with experiment. The results for HCO{sub 3}{sup {minus}} are potentially important given the near ubiquitous occurrence of carbonate species in natural waters. The calculations reveal that the degree of chlorination, with the exception of substitution of OH{sup {minus}}, does not have a large effect on the Gibbs free energies of the substitution reactions. These results demonstrate that ab initio electronic structure methods can be used to calculate the reaction energetics of a potentially large number of organic compounds with other aqueous species in natural waters and can be used to help identify
Ab initio simulation of the electronic structure of Ta{sub 2}O{sub 5} crystal modifications
Perevalov, T. V. Shaposhnikov, A. V.
2013-06-15
Ab initio simulation of the electronic structure crystalline {beta} and {delta} phases of tantalum(V) oxide (Ta{sub 2}O{sub 5}), representing a promising dielectric material for microelectronics, has been carried out. Both ideal crystals and those with neutral oxygen vacancies in various coordination positions have been studied. The simulation has been performed using the density functional theory with hybrid functionals involving the Hartree-Fock exchange energy. This approach gives a correct description of the bandgap width: 4.1 eV for {beta}-Ta{sub 2}O{sub 5} and 3.1 eV for {delta}-Ta{sub 2}O{sub 5}. The energy levels related to oxygen vacancies in various positions have been determined for the spectra of electron states in {beta}- and {delta}-Ta{sub 2}O{sub 5} polymorphs. It is established that the presence of oxygen vacancies in Ta{sub 2}O{sub 5} crystal modifications leads to the formation of characteristic absorption peaks in their electron energy loss spectra.
Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; Martínez, Todd J.; Gordon, Mark S.
2014-10-20
This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations. PMID:26931704
NASA Astrophysics Data System (ADS)
Keith, J. Brandon; Fennick, Jacob R.; Junkermeier, Chad E.; Nelson, Daniel R.; Lewis, James P.
2009-03-01
FIREBALL is an ab initio technique for fast local orbital simulations of nanotechnological, solid state, and biological systems. We have implemented a convenient interface for new users and software architects in the platform-independent Java language to access FIREBALL's unique and powerful capabilities. The graphical user interface can be run directly from a web server or from within a larger framework such as the Computational Science and Engineering Online (CSE-Online) environment or the Distributed Analysis of Neutron Scattering Experiments (DANSE) framework. We demonstrate its use for high-throughput electronic structure calculations and a multi-100 atom quantum molecular dynamics (MD) simulation. Program summaryProgram title: FireballUI Catalogue identifier: AECF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 279 784 No. of bytes in distributed program, including test data, etc.: 12 836 145 Distribution format: tar.gz Programming language: Java Computer: PC and workstation Operating system: The GUI will run under Windows, Mac and Linux. Executables for Mac and Linux are included in the package. RAM: 512 MB Word size: 32 or 64 bits Classification: 4.14 Nature of problem: The set up and running of many simulations (all of the same type), from the command line, is a slow process. But most research quality codes, including the ab initio tight-binding code FIREBALL, are designed to run from the command line. The desire is to have a method for quickly and efficiently setting up and running a host of simulations. Solution method: We have created a graphical user interface for use with the FIREBALL code. Once the user has created the files containing the atomic coordinates for each system that they are
NASA Astrophysics Data System (ADS)
Bucci, F.; Sanna, A.; Continenza, A.; Katrych, S.; Karpinski, J.; Gross, E. K. U.; Profeta, G.
2016-01-01
As a follow-up to the discovery of a new family of Fe-based superconductors, namely, the RE4Fe2As2Te1 -xO4 (42214) (RE = Pr, Sm, and Gd), we present a detailed ab initio study of these compounds highlighting the role of rare-earth (RE) atoms, external pressure, and Te content on their physical properties. Modifications of the structural, magnetic, and electronic properties of the pure (e.g., x =0.0 ) 42214 compounds and their possible correlations with the observed superconducting properties are calculated and discussed. The careful analysis of the results obtained shows that (i) changing the RE atoms allows one to tune the internal pressure acting on the As height with respect to the Fe planes; (ii) similarly to other Fe pnictides, the 42214 pure compounds show an antiferromagnetic-stripe magnetic ground state phase joined by an orthorhombic distortion (not experimentally found yet); (iii) smaller RE atoms increase the magnetic instability of the compounds possibly favoring the onset of the superconducting state; (iv) external pressure induces the vanishing of the magnetic order with a transition to the tetragonal phase and can be a possible experimental route towards higher superconducting critical temperature (Tc) ; and (v) Te vacancies act on the structural parameters, changing the As height and affecting the stability of the magnetic phase.
NASA Astrophysics Data System (ADS)
Pask, J. E.; Sterne, P. A.
2004-03-01
The finite-element (FE) method is a general approach for the solution of partial differential equations. Like the planewave (PW) method, the FE method is a systematically improvable expansion approach. Unlike the PW method, however, its basis functions are strictly local in real space, which allows for variable resolution in real space and facilitates massively parallel implementation. We discuss the application of the FE method to ab initio electronic-structure calculations.(J.E. Pask, B.M. Klein, C.Y. Fong, and P.A. Sterne, Phys. Rev. B 59), 12352 (1999). In particular, we discuss the use of nonlocal pseudopotentials in bulk calculations, and the handling of long-range interactions in the construction of the Kohn-Sham effective potential and total energy. We show that the total energy converges variationally, and at the optimal theoretical rate consistent with the cubic completeness of the basis. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Milowska, Karolina Z.; Birowska, Magdalena; Majewski, Jacek A.
2013-12-04
We present exemplary results of extensive studies of structural, mechanical and electronic properties of covalent functionalization of carbon nanotubes (CNTs). We report new results for metallic (9,0), and semiconducting (10,0) single-wall carbon nanotubes (CNT) functionalized with -COOH, -OH, and both groups with concentration up to 12.5%. Our studies are performed in the framework of the density functional theory (DFT). We discuss here the stability, local and global changes in structure, elastic moduli (Young's, Shear, and Bulk), electronic structure and resulting band gaps, as a function of the density of the adsorbed molecules.
Ab initio study of structural, electronic, magnetic alloys: XTiSb (X = Co, Ni and Fe)
Ibrir, M. Berri, S.; Lakel, S.; Alleg, S.; Bensalem, R.
2015-03-30
Structural, electronic and magnetic properties of three semi-Heusler compounds of CoTiSb, NiTiSb and FeTiSb were calculated by the method (FP-LAPW) which is based on the DFT code WIEN2k. We used the generalized gradient approximation (GGA (06)) for the term of the potential exchange and correlation (XC) to calculate structural properties, electronic properties and magnetic properties. Structural properties obtained as the lattice parameter are in good agreement with the experimental results available for the electronic and magnetic properties was that: CoTiSb is a semiconductor NiTiSb is a metal and FeTiSb is a half-metal ferromagnetic.
NASA Astrophysics Data System (ADS)
Debbichi, L.; Eriksson, O.; Lebègue, S.
2014-05-01
By means of first-principles GW calculations, we have studied the electronic structure properties of MX2 (M =Mo, W; X =S, Se, Te) bilayers, including hybrid structures of MX2 building blocks. The effect of spin-orbit coupling on the electronic structure and the effect of van der Waals interaction on the geometry were taken into account. All the homogeneous bilayers are identified as indirect band-gap materials, with an increase of the band gap when Mo is changed to W, and a decrease of the band gap when the atomic number of X is increased. The same behavior is also observed for hybrid bilayers with common chalcogen atoms, while bilayers with common metal atoms have a direct band gap. Finally, it is shown that due to their particular band alignment, some heterobilayers enable electron-hole separation, which is of interest for solar cell applications.
Ab initio investigations of the electronic structure and chemical bonding of Li{sub 2}ZrN{sub 2}
Matar, S.F.; Poettgen, R.; Al Alam, A.F.; Ouaini, N.
2012-06-15
The electronic structure of the ternary nitride Li{sub 2}ZrN{sub 2} is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N-N interactions are found dominant at the top of the valence band of Li{sub 2}ZrN{sub 2} and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li{sub 2-x}ZrN{sub 2} (x={approx}1) is favored. - Graphical abstract: Trigonal structure of Li{sub 2}ZrN{sub 2} showing the Zr-N-Li layers along the c-axis. Highlights: Black-Right-Pointing-Pointer Li{sub 2}ZrN{sub 2} calculated insulating with a 1.8 eV gap in agreement with its light green color. Black-Right-Pointing-Pointer Lithium de-intercalation is energetically favored for one out of two Li equivalents. Black-Right-Pointing-Pointer Li plays little role in the change of the structure, ensured by Zr and N binding. Black-Right-Pointing-Pointer Similar changes in the electronic structure as for various intercalated phases of ZrN.
Ab initio study of pressure induced structural and electronic properties in uranium monobismuthide
NASA Astrophysics Data System (ADS)
Pataiya, Jagdish; Aynyas, Mahendra; Makode, C.; Singh, A.; Sanyal, Sankar P.
2014-04-01
We have investigated the pressure induced structural and electronic properties of uranium monobismuthide. The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). We predict structural phase transition from NaCl to CsCl-type structure at a pressure of 4.6 GPa. From energy band diagram it is observed that UBi exhibits metallic behavior. The calculated equilibrium lattice parameter is in good agreement with the experimental and other theoretical work.
Ab initio study of pressure induced structural and electronic properties in uranium monobismuthide
Pataiya, Jagdish Makode, C.; Aynyas, Mahendra; Singh, A.; Sanyal, Sankar P.
2014-04-24
We have investigated the pressure induced structural and electronic properties of uranium monobismuthide. The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). We predict structural phase transition from NaCl to CsCl-type structure at a pressure of 4.6 GPa. From energy band diagram it is observed that UBi exhibits metallic behavior. The calculated equilibrium lattice parameter is in good agreement with the experimental and other theoretical work.
Bylaska, Eric J.; Glaesemann, Kurt R.; Felmy, Andrew R.; Vasiliu, Monica; Dixon, David A.; Tratnyek, P. G.
2010-11-25
Electronic structure methods were used to calculate the gas-phase and aqueous phase reaction energies for reductive dechlorination (i.e. hydrogenolysis), reductive Beta-elimination, dehydrochlorination, and nucleophilic substitution by OH- of 1,2,3-trichloropropane. The thermochemical properties Delta Hof(298.15K), So(298.15K,1 bar), and Delta GS(298.15K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely metabolites. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive Beta-elimination (Delta Gorxn ≈ -32 kcal/mol), followed closely by reductive dechlorination (Delta Gorxn ≈ -27 kcal/mol), dehydrochlorination (Delta Gorxn ≈ -27kcal/mol), and nucleophilic substitution by OH- (Delta Gorxn ≈ -25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate CH2-CHCl-CH2Cl , and CH2Cl-CH-CH2Cl species, was not favorable in the standard state (Delta Gorxn ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.
NASA Astrophysics Data System (ADS)
Suleiman, Mohammed S. H.; Joubert, Daniel P.
2015-11-01
In the present work, the atomic and the electronic structures of Au3N, AuN and AuN2 are investigated using first-principles density-functional theory (DFT). We studied cohesive energy vs. volume data for a wide range of possible structures of these nitrides. Obtained data were fitted to a Birch-Murnaghan third-order equation of state (EOS) so as to identify the most likely candidates for the true crystal structure in this subset of the infinite parameter space, and to determine their equilibrium structural parameters. The analysis of the electronic properties was achieved by the calculations of the band structure and the total and partial density of states (DOS). Some possible pressure-induced structural phase transitions have been pointed out. Further, we carried out GW0 calculations within the random-phase approximation (RPA) to the dielectric tensor to investigate the optical spectra of the experimentally suggested modification: Au3N(D09). Obtained results are compared with experiment and with some available previous calculations.
Ab initio investigation of the structural and electronic properties of amorphous HgTe.
Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei
2014-01-29
We present the structure and electronic properties of amorphous mercury telluride obtained from first-principle calculations. The initial configuration of amorphous mercury telluride is created by computation alchemy. According to different exchange–correlation functions in our calculations, we establish two 256-atom models. The topology of both models is analyzed in terms of radial and bond angle distributions. It is found that both the Te and the Hg atoms tend to be fourfold, but with a wrong bond rate of about 10%. The fraction of threefold and fivefold atoms also shows that there are a significant number of dangling and floating bonds in our models. The electronic properties are also obtained. It is indicated that there is a bandgap in amorphous HgTe, in contrast to the zero bandgap for crystalline HgTe. The structures of the band tail and defect states are also discussed. PMID:24592480
Ab initio investigation of the electronic structure and the magnetic trends within equiatomic FeN
NASA Astrophysics Data System (ADS)
Houari, A.; Matar, S. F.; Belkhir, M. A.
2007-05-01
The magnetic properties of equiatomic FeN nitride have been investigated within the density functional theory (DFT) using the augmented spherical wave method (ASW). Calculation of the energy versus volume in hypothetic rocksalt (RS), zinc-blende (ZB) and wurtzite (W) types structures show that the RS-type structure is preferred. At equilibrium, energy/volume spin polarized calculations indicate that the ground state of RS-FeN is ferromagnetic with a high moment, while ZB-FeN and W-FeN are non magnetic. The magnetovolume effects with respect to the Slater-Pauling-Friedel model are discussed. Analyses of the electronic structure (density of states and chemical bonding) are reported. A discussion of the structural and magnetic properties of FeN compound is given with respect to N local environment of Fe.
Ab-initio study of electronic structure and elastic properties of ZrC
NASA Astrophysics Data System (ADS)
Mund, H. S.; Ahuja, B. L.
2016-05-01
The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.
NASA Astrophysics Data System (ADS)
Makode, Chandrabhan; Sanyal, Sankar P.
2011-09-01
We have investigated the structural and electronic properties of monophospides of thorium, uranium and neptunium. The total energy as a function of volume is obtained by means of the self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). From the present study with the help of total energy calculations it is found that ThP, UP and NpP are stable in NaCl-type structure at ambient pressure. The structural stability of ThP, UP and NpP changes under the application of pressure. We predict a structural phase transition from NaCl-type (B 1-phase) structure to CsCl-type (B 2-phase) structure for these phospides in the pressure range of 37.0-24.0 GPa (ThP-NpP). We also calculate lattice parameter ( a0), bulk modulus ( B0), band structure and density of states. From energy band diagram it is observed that ThP, UP and NpP exhibit metallic behavior. The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.
NASA Astrophysics Data System (ADS)
Aryal, Sita Ram
The alumino-silicate solid solution series (Al 4+2xSi2-2 xO10-x) is an important class of ceramics. Except for the end member (x=0), Al2 SiO5 the crystal structures of the other phases, called mullite, have partially occupied sites. Stoichiometric supercell models for the four mullite phases 3Al2O 3 · 2SiO2 · 2Al 2O3 · SiO2, 4 Al2O3· SiO 2, 9Al2O3 · SiO2, and iota-Al2 O3 (iota-alumina) are constructed starting from experimentally reported crystal structures. A large number of models were built for each phase and relaxed using the Vienna ab initio simulation package (VASP) program. The model with the lowest total energy for a given x was chosen as the representative structure for that phase. Electronic structure and mechanical properties of mullite phases were studied via first-principles calculations. Of the various phases of transition alumina, iota-Al 2O3 is the least well known. In addition structural details have not, until now, been available. It is the end member of the aluminosilicate solid solution series with x=1. Based on a high alumina content mullite phase, a structural model for iota- Al2O3 is constructed. The simulated x-ray diffraction (XRD) pattern of this model agrees well with a measured XRD pattern. The iota-Al2 O3 is a highly disordered ultra-low-density phase of alumina with a theoretical density of 2854kg/m3. Using this theoretically constructed model, elastic, thermodynamic, electronic, and spectroscopic properties of iota-Al2 O3 have been calculated and compared it with those of alpha- Al2O3 and gamma- Al2O3. Boron carbide (B4C) undergoes an amorphization under high velocity impacts. The mechanism of amorphization is not clear. Ab initio methods are used to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B4C), B 11C-CBC, and B12- CCC where B11C or B12 is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms
NASA Astrophysics Data System (ADS)
Hemzalová, P.; Friák, M.; Šob, M.; Ma, D.; Udyansky, A.; Raabe, D.; Neugebauer, J.
2013-11-01
We have employed parameter-free density functional theory calculations to study the thermodynamic stability and structural parameters as well as elastic and electronic properties of Ni4N in eight selected crystallographic phases. In agreement with the experimental findings, the cubic structure with Pearson symbol cP5, space group Pm3¯m (221) is found to be the most stable and it is also the only thermodynamically stable structure at T=0 K with respect to decomposition to the elemental Ni crystal and N2 gas phase. We determine structural parameters, bulk moduli, and their pressure derivatives for all eight allotropes. The thermodynamic stability and bulk modulus is shown to be anticorrelated. Comparing ferromagnetic and nonmagnetic states, we find common features between the magnetism of elemental Ni and studied ferromagnetic Ni4N structures. For the ground-state Ni4N structure and other two Ni4N cubic allotropes, we predict a complete set of single-crystalline elastic constants (in the equilibrium and under hydrostatic pressure), the Young and area moduli, as well as homogenized polycrystalline elastic moduli obtained by different homogenization methods. We demonstrate that the elastic anisotropy of the ground-state Ni4N is qualitatively opposite to that in the elemental Ni, i.e., these materials have hard and soft crystallographic directions interchanged. Moreover, one of the studied metastable cubic phases is found auxetic, i.e., exhibiting negative Poisson ratio.
Electronic structure of Sc C[sub 60]. An ab initio theoretical study
Guo, T.; Odom, G.K.; Scuseria, G.E. )
1994-08-11
We have studied the electronic structure of Sc C[sub 60] at the self-consistent-field Hartree-Fock (SCF-HF) level of theory employing a double-zeta (DZ) basis set. Binding energies have also been calculated employing a hybrid of HF and density functional theory (herein denoted as HF-BLYP). Several electronic states in C[sub 50] and C[sub 30] symmetry were considered. A double-minimum configuration is found for the open-shell [sup 4]A[sub 2] electronic ground state in C[sub 50] symmetry. The lowest energy minimum has Sc located 1.175 [angstrom] away from the center of the cage, approaching a C[sub 60] pentagon along a C[sub 5] axis. Bonding between the Sc atom and the cage occurs by donation of the 4s electrons to the lowest unoccupied orbital of C[sub 60] and by 3d electron interaction with the antibonding orbital associated with the five double bonds radiating from the pentagon closest to Sc ([approximately] 2.5 [angstrom]). The other local minimum has Sc located at the center of the cage and is predicted to be 1.2 eV higher in energy at the highest level of theory employed in this work (DZ/HF-BLYP). The energy barrier for moving Sc from the center of the cage to the lowest energy position is predicted to be 0.1 eV at the same level of theory. 33 refs., 2 figs., 2 tabs.
Ab initio study of the structural, electronic and optical properties of ZnTe compound
Bahloul, B.; Deghfel, B.; Amirouche, L.; Bounab, S.; Bentabet, A.; Bouhadda, Y.; Fenineche, N.
2015-03-30
Structural, electronic and optical properties of ZnTe compound were calculated using Density Functional Theory (DFT) based on the pseudopotentials and planewaves (PP-PW) method as implemented in the ABINIT computer code, where the exchange–correlation functional is approximated using the local density approximation (LDA) and the generalized gradient approximation (GGA). The obtained results from either LDA or GGa calculation for lattice parameter, energy band gap and optical parameters, such as the fundamental absorption edge, the peaks observed in the imaginary part of the dielectric function, the macroscopic dielectric constants and the optical dielectric constant, are compared with the available theoretical results and experimental data.
Electronic structure and anisotropic chemical bonding in TiNF from ab initio study
Matar, Samir F.
2012-01-15
Accounting for disorder in anatase titanium nitride fluoride TiNF is done through atoms re-distributions based on geometry optimizations using ultra soft pseudo potentials within density functional theory DFT. The fully geometry relaxed structures are found to keep the body centering of anatase (I4{sub 1}/amd No. 141). The new structural setups are identified with space groups I-4m2 No. 119 and Imm2 No. 44 which obey the 'group to subgroup' relationships with respect to anatase. In the ground state Imm2 structure identified from energy differences, TiNF is found semi-conducting with similar density of states features to anatase TiO{sub 2} and a chemical bonding differentiated between covalent like Ti-N versus ionic like Ti-F. Inter-anion N-F bonding is also identified. - Graphical Abstract: The geometry optimized ground state anatase derived TiNF structure with arrangement of open faceted TiN3F3 distorted octahedra. The insert shows the arrangement of octahedra in anatase TiO{sub 2}. Highlights: Black-Right-Pointing-Pointer Original approach of TiNF structure for addressing the electronic band structure. Black-Right-Pointing-Pointer Based on anatase, two different ordering scheme models with geometry optimization. Black-Right-Pointing-Pointer New structures obeying the group{yields}subgroup relationships with Imm2 ground state from energy. Black-Right-Pointing-Pointer In the ground state TiNF is found semi-conducting with similar density of states to anatase TiO{sub 2}. Black-Right-Pointing-Pointer Chemical bonding differentiated between covalent like Ti-N and ionic Ti-F.
Ab Initio Study of the Structural, Electronic, and Thermal Properties of Alloy
NASA Astrophysics Data System (ADS)
Benkaddour, I.; Khachai, H.; Chiker, F.; Benosman, N.; Benkaddour, Y.; Murtaza, G.; Omran, S. Bin; Khenata, R.
2015-07-01
The results of a first-principle study of the structural, electronic, and thermal properties of a alloy, using the full-potential linear muffin-tin-orbital (FP-LMTO) method in the framework of density functional theory, within both the local density approximation and the generalized gradient approximation are presented. The composition effect on lattice constants, bulk moduli, band gaps, and effective masses is analyzed. The quasi-harmonic Debye model, using a set of total energy versus volume calculations obtained with the FP-LMTO method, is applied to study the thermal and vibrational effects. The temperature effect on the lattice parameters, thermal expansions, heat capacities, and Debye temperatures is determined from the non-equilibrium Gibbs functions. The microscopic origins of the bowing parameter were explained using the approach of Zunger and coworkers.
NASA Astrophysics Data System (ADS)
Schiffmann, Florian; VandeVondele, Joost
2015-06-01
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.
Schiffmann, Florian; VandeVondele, Joost
2015-06-28
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step. PMID:26133420
Schiffmann, Florian; VandeVondele, Joost
2015-06-28
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.
Ab initio electronic structure study of a model water splitting dimer complex.
Fernando, Amendra; Aikens, Christine M
2015-12-28
A model manganese dimer electrocatalyst bridged by μ-OH ligands is used to investigate changes in spin states that may occur during water oxidation. We have employed restricted open-shell Hartree-Fock (ROHF), second-order Møller-Plesset perturbation theory (MP2), complete active space self-consistent field (CASSCF), and multireference second-order Møller-Plesset perturbation theory (MRMP2) calculations to investigate this system. Multiconfigurational methods like CASSCF and MRMP2 are appropriate methods to study these systems with antiferromagnetically-coupled electrons. Orbital occupations and distributions have been closely analyzed to understand the electronic details and contributions to the water splitting from manganese and oxygen atoms. The presence of Mn(IV)O˙ radical moieties has been observed in this catalytic pathway. Multiple nearly degenerate excited states were found close to the ground state in all structures. This suggests competing potential energy landscapes near the ground state may influence the reactivity of manganese complexes such as the dimers studied in this work. PMID:26593689
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Draayer, Jerry P.
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab initio approach to structural, electronic, and ferroelectric properties of antimony sulphoiodide
NASA Astrophysics Data System (ADS)
Amoroso, Danila; Picozzi, Silvia
2016-06-01
By means of first-principles calculations for the SbSI semiconductor, we show that bare density functional theory fails to reproduce the experimentally observed ferroelectric phase, whereas a more advanced approach, based on hybrid functionals, correctly works. When comparing the paraelectric and ferroelectric phases, our results show polar displacements along the c direction of the Sb and S sublattices with respect to the iodine framework, leading to a predicted spontaneous polarization of P ≃20 μ C/cm2 , in good agreement with experiments. In the ferroelectric phase, the semiconducting behavior of SbSI is confirmed by relatively large values for the indirect and direct gaps (≃2.15 eV and 2.3 eV , respectively). An analysis of the electronic structure, in terms of density of states, charge density distribution, and anomalies in the Born effective charges, reveals (i) the clear presence of a Sb(III) lone pair and (ii) a large covalency in the SbSI bonding, based on the hybridization between Sb and S ions, in turn more ionically bonded to iodine anions. Finally, the interplay between ferroelectricity and spin-orbit coupling reveals a coexistence of Dresselhaus and Rashba relativistic effects and a spin texture that can be reversed by switching the polarization, of potential appeal in electrically controlled spintronics.
NASA Astrophysics Data System (ADS)
Wu, Hai-Ying; Chen, Ya-Hong; Zhou, Ping; Han, Xiang-Yu; Liu, Zi-Jiang
2014-09-01
The structural, electronic, and mechanical stability properties of magnesium sulfide in different phases are presented using the plane wave pseudopotential method within the generalized gradient approximation. Eight different phases such as rocksalt (B1), zincblende (B3), wurtzite (B4), nickel arsenide (B8), cesium chloride (B2), PH4I-type (B11), FeSi-type (B28), and MnP-type (B31) are considered in great detail. The calculated ground-state properties of these phases are consistent with available experimental and theoretical data. It is found that MgS in the B1 and B8 phases are indirect band gap materials, the B3, B4, B11, B28, and B31 phases are all direct gap materials, while the B2 phase displays the metallic character. The B1, B3, B4, B8, B28, and B31 phases are mechanically stable at ambient conditions, but the B2 and B11 phases are mechanically unstable under zero pressure and zero temperature
Wang, Zhiguo; Zhou, Yungang; Bang, Junhyeok; Prange, Micah P.; Zhang, Shengbai; Gao, Fei
2012-08-02
Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of mono-vacancy, di-vacancy, Stone-Wales (SW) and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest to note that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy of above the displacement threshold energy (Td, {approx}19 eV) and can be healed with an energy (14-18 eV) lower than Td. The transformation between four types of divacancies, V2(5-8-5), V2(555-777), V2(5555-6-7777), and V2(55-77) can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner, and to tailor the physical properties of graphene.
NASA Astrophysics Data System (ADS)
Kong, Bo; Zhang, Yachao
2016-07-01
The electronic structures of the cubic GdH3 are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G0W0 calculations give a fundamental band gap of 1.72 eV, while GGA+ GW0 or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn-Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH3 can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G0W0 calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW0 and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G0W0 calculations in the 4f-core case is the closest to the real result. By G0W0 calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH3 occurs around 40 GPa, which might be a satisfied prediction.
Bylaska, Eric J; Glaesemann, Kurt R; Felmy, Andrew R; Vasiliu, Monica; Dixon, David A; Tratnyek, Paul G
2010-11-25
Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely. PMID:21038905
Gas-phase acidities of tetrahedral oxyacids from ab initio electronic structure theory
Rustad, J.R.; Dixon, D.A.; Kubicki, J.D.; Felmy, A.R.
2000-05-04
Density functional calculations have been performed on several protonation states of the oxyacids of Si, P, V, As, Cr, and S. Structures and vibrational frequencies are in good agreement with experimental values where these are available. A reasonably well-defined correlation between the calculated gas-phase acidities and the measured pK{sub a} in aqueous solution has been found. The pK{sub a}/gas-phase acidity slopes are consistent with those derived from previous molecular mechanics calculations on ferric hydrolysis and the first two acidity constants for orthosilicic acid. The successive deprotonation of other H{sub n}TO{sub 4} species, for a given tetrahedral anion T are roughly consistent with this slope, but not to the extent that there is a universal correlation among all species.
van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.
2016-01-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375
NASA Astrophysics Data System (ADS)
Subotnik, Joseph
In this talk, I will give a broad overview of our work in nonadiabatic dynamics, i.e. the dynamics of strongly coupled nuclear-electronic motion whereby the relaxation of a photo-excited electron leads to the heating up of phonons. I will briefly discuss how to model such nuclear motion beyond mean field theory. Armed with the proper framework, I will then focus on how to calculate one flavor of electron-phonon couplings, known as derivative couplings in the chemical literature. Derivative couplings are the matrix elements that couple adiabatic electronic states within the Born-Oppenheimer treatment, and I will show that these matrix elements show spurious poles using formal (frequency-independent) time-dependent density functional theory. To correct this TD-DFT failure, a simple approximation will be proposed and evaluated. Finally, time permitting, I will show some ab initio calculations whereby one can use TD-DFT derivative couplings to study electronic relaxation through a conical intersection.
NASA Astrophysics Data System (ADS)
Ford, Thomas A.
2014-09-01
The molecular structures, vibrational spectra and atomic charges of the alicyclic ethers containing from two to five carbon atoms have been determined by means of ab initio calculations, at the level of second order Møller-Plesset perturbation theory and using Dunning's augmented correlation-consistent polarized valence triple-zeta basis set. Two isomers of the oxetane, tetrahydrofuran and tetrahydropyran molecules have been identified and their relative energies determined. Structural properties, such as the COC bond angles and the CH bond lengths, are found to increase steadily with increasing ring size and with decreasing ionization energy. The mean CH2 stretching and bending wavenumbers exhibit the reverse behaviour, while the mean wavenumbers of the CH2 wagging and twisting modes follow the same trend as the structural features. The ring mode wavenumbers vary in a less regular way. The charges of the oxygen, α-carbon and axial and equatorial α- and β-hydrogen atoms also do not show systematic dependences on ring size or ionization energy. The trends in the values of these properties have been rationalized.
NASA Astrophysics Data System (ADS)
Jaiganesh, G.; Jaya, S. Mathi
2015-06-01
The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.
Jaiganesh, G. Jaya, S. Mathi
2015-06-24
The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.
Ab Initio Structure Analysis Using Laboratory Powder Diffraction Data
NASA Astrophysics Data System (ADS)
Sasaki, Akito
Today, laboratory X-ray diffractometers are seeing increasingly wide use in the ab initio crystal structure analysis of organic powder samples. This is because optics and optical devices have been improved, making it possible to obtain precise integrated intensities of reflections in high 2-theta ranges. Another reason is that one can use direct-space methods, which do not require “high-resolution diffraction data”, much more easily than before. Described here are some key points to remember when performig ab initio crystal structure analysis using powder diffraction data from organic compounds.
NASA Astrophysics Data System (ADS)
Ohsawa, Takeo; Ueda, Shigenori; Suzuki, Motohiro; Tateyama, Yoshitaka; Williams, Jesse R.; Ohashi, Naoki
2015-10-01
Crystalline-polarity-dependent electronic structures of gallium nitride (GaN) were studied by photoemission spectroscopy (PES) using soft and hard x-rays with different linear polarizations. A peak located near the valence band (VB) maximum was enhanced for a (0001) surface compared with that for a ( 000 1 ¯ ) surface regardless of photon energy. Comparison of the VB density of states obtained by ab-initio calculations with the observed VB-PES spectra indicates that the crystalline-polarity dependence is associated with the Ga 4p and N 2p states. The most plausible origin of the crystalline-polarity-dependent VB feature is based on the photoemission phenomena of electrons in the pz-orbitals due to spontaneous electric polarization along the c-axis of GaN.
NASA Astrophysics Data System (ADS)
Choi, Heechae; Lee, Eung-Kwan; Cho, Sung Beom; Chung, Yong-Chae
2012-04-01
Using ab initio calculations, we investigated the changes of the magnetic moment and electronic structures of Fe adatoms on strained graphene sheets. By the uniaxial tensile strains in armchair and zig-zag directions on graphene sheets, the amounts of charge transfers from graphene 2pz orbital to Fe adatom 3d orbitals were linearly increased. The magnetic moments of Fe, however, show the tendency of linear decrements with the uniaxial tensile strains. The increased Fe magnetic moments by uniaxialy graphene compressions resulted from the shifting of spin-minority states of electrons while the decreased Fe magnetic moments were due to the reduction in the spin-majority states of 3dxy-orbitals of the Fe adatom.
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.; Apra, Edoardo; Windus, Theresa L.; Zhan, Chang-Guo; Tratnyek, Paul G.
2004-07-08
Electronic structure methods were used to calculate the aqueous reaction energies for hydrogenolysis, dehydrochlorination, and nucleophilic substitution by OH- of 4,4¢-DDT. Thermochemical properties ¢Hf° (298.15 K), S° (298.15 K, 1 bar), ¢GS (298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for a series of DDT type structures (p-C6H4Cl)2-CH-CCl3, (p-C6H4Cl)2-CH-CCl2¥, (p-C6H4Cl)2-CHCHCl2, (p-C6H4Cl)2-CdCCl2, (p-C6H4Cl)2-CH-CCl2OH, (p-C6H4Cl)2-CH-CCl(dO), and (p-C6H4-Cl)2-CH-COOH. On the basis of these thermochemical estimates, the overall aqueous reaction energetics of hydrogenolysis, dehydrochlorination, and hydrolysis of 4,4¢-DDT were estimated. The results of this investigation showed that the dehydrochlorination and hydrolysis reactions have strongly favorable thermodynamics in the standard state, as well as under a wide range of pH conditions. For hydrogenolysis with the reductant aqueous Fe(II), the thermodynamics are strongly dependent on pH, and the stability region of the (p-C6H4Cl)2-CH-CCl2¥(aq) species is a key to controlling the reactivity in hydrogenolysis. These results illustrate the use of ab initio electronic structure methods to identify the potentially important environmental degradation reactions by calculation of the reaction energetics of a potentially large number of organic compounds with aqueous species in natural waters.
Wang, Xue B.; Fu, Qiang; Yang, Jinlong
2010-09-02
Hydroxyl substituted phenoxide, o-, m-, p- HO(C6H4)O– and the corresponding neutral radicals are important species, in particularly, the p- isomer pair is directly involved in the proton-coupled electron transfer in biological photosynthetic centers. Here we report the first spectroscopic study of these species in the gas phase by means of low-temperature photoelectron spectroscopy (PES) and ab initio calculations. Vibrationally resolved PES spectra were obtained at 70 K and several photon energies for each anion, directly yielding electron affinity (EA) and electronic structure information of the corresponding hydroxyphenoxyl radical. The EAs are found to vary with OH positions, from 1.990 ± 0.010 eV (p-) to 2.315 ± 0.010 (o-) and 2.330 ± 0.010 (m-). Theoretical calculations were carried out to identify the optimized molecular structures for both anions and neutral radicals. The electron binding energies and excited state energies were also calculated to compare with experimental data. Excellent agreement is found between calculations and experiments. Molecular orbital analyses indicate strong OH anti-bonding interaction with the phenoxide moiety for o- as well as p- isomers, whereas such interaction is largely missing for the m- anion. The variance of EAs among three isomers is interpreted primarily due to the interplay between two competing factors: the OH anti-bonding interaction and H-bonding stabilization (existed only in the o- anion).
NASA Astrophysics Data System (ADS)
Ikeda, Tohru; Nagayoshi, Kanade; Kitaura, Kazuo
2003-03-01
A computational procedure is proposed for calculating the lattice energy of molecular crystals using the ab initio MO method. Our method does not require any adjustable parameters and provides a general description for various molecular crystals including electron donor-acceptor (EDA) complexes. Using the method, the packing structure of H 3N-BF 3 crystal was optimized at the HF/3-21 + G level and the lattice energy was calculated at the MP2/6-311 + G * level. The calculation reproduced the experimental lattice constants with reasonable accuracy. Moreover, the structural feature of the H 3N-BF 3 crystal was discussed based on the molecular interactions in the crystal.
Ab Initio Electronic Relaxation Times and Transport in Noble Metals
NASA Astrophysics Data System (ADS)
Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.
Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.
Ab initio studies of phoshorene island single electron transistor.
Ray, S J; Venkata Kamalakar, M; Chowdhury, R
2016-05-18
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications. PMID:27093536
Ab initio studies of phosphorene island single electron transistor
NASA Astrophysics Data System (ADS)
Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.
2016-05-01
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.
NASA Technical Reports Server (NTRS)
Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)
1994-01-01
Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.
Pi, Xiaodong; Ni, Zhenyi; Yang, Deren E-mail: christophe.delerue@isen.fr; Delerue, Christophe E-mail: christophe.delerue@isen.fr
2014-11-21
In contrast to the conventional doping of bulk silicon (Si), the doping of Si nanocrystals (NCs) that are often smaller than 5 nm in diameter may lead to serious structural changes. Since the electronic and optical properties of Si NCs are intimately associated with their structures, it is critical to understand how doping impacts the structures of Si NCs. By means of ab initio calculation we now compare 1.4 nm phosphorus (P)-doped Si NCs without structural relaxation and those with structural relaxation. Structural changes induced by structural relaxation are manifested by the stretching and compressing of bonds and apparent variations in bond angles. With the increase of the concentration of P structural changes induced by structural relaxation become more serious. It is found that structural relaxation makes differences in the energy-level schemes of P-doped Si NCs. Structural relaxation also causes the binding energy of an electron in a P-doped Si NC to more significantly increase as the concentration of P increases. With the increase of the concentration of P structural relaxation leads to more pronounced changes in the optical absorption of P-doped Si NCs.
Ab initio electronic properties of dual phosphorus monolayers in silicon
2014-01-01
In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device components are calculated. PMID:25246862
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling
Ab initio study of hot electrons in GaAs.
Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G
2015-04-28
Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287
NASA Astrophysics Data System (ADS)
Haddadi, K.; Bouhemadou, A.; Bin-Omran, S.; Maabed, S.; Khenata, R.
2015-01-01
The structural parameters, elastic constants, electronic structure and optical properties of the recently reported monoclinic quaternary nitridoaluminate LiCaAlN2 are investigated in detail using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The calculated equilibrium structural parameters are in excellent agreement with the experimental data, which validate the reliability of the applied theoretical method. The chemical and structural stabilities of LiCaAlN2 are confirmed by calculating the cohesion energy and enthalpy of formation. Chemical band stiffness is calculated to explain the pressure dependence of the lattice parameters. Through the band structure calculation, LiCaAlN2 is predicted to be an indirect band gap of 2.725 eV. The charge-carrier effective masses are estimated from the band structure dispersions. The frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for polarized incident light in a wide energy range. Optical spectra exhibit a noticeable anisotropy. Single-crystal and polycrystalline elastic constants and related properties, including isotropic sound velocities and Debye temperatures, are numerically estimated. The calculated elastic constants and elastic compliances are used to analyse and visualize the elastic anisotropy of LiCaAlN2. The calculated elastic constants demonstrate the mechanical stability and brittle behaviour of the considered material.
NASA Astrophysics Data System (ADS)
Fathi, M. B.; Kanjouri, F.; Farhadi, G.
2015-07-01
Nitinol as a superelastic shape memory alloy (SMA) has been the focus of physical-chemical studies in recent decades in respect to functionality of biocompatibility in the body. Superelastic properties of nitinol are the direct results of the electronic structure of this material while dealing with the ab initio behavior of microstructure. In the present work, the elastic properties and electronic structure of B2-phase binary TiNi(1-x)Cux (x = 0, 0.25 and 0.75) shape memory alloys are discussed aiming at understanding of the physical properties underlying superelastic behavior. The calculations have been performed with the program package WIEN2K, in the framework of first-principle, all-electron density functional theory (DFT) within the scheme of the generalized gradient approximation (GGA). The optimized lattice parameters and independent elastic constants are obtained for use in the calculation of the bulk and shear moduli, Young modulus, Poisson ratio and Zener anisotropy parameter. For different alloying fractions x, the tetragonal (C‧) and trigonal (C44) shear constants are calculated and brittle/ductile behavior of these compounds is discussed. Finally, a qualitative discussion of dependence of elastic behavior of these compounds upon the electronic density of states (DOS) is presented.
NASA Astrophysics Data System (ADS)
Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.
1981-09-01
Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.
Nový, Jakub; Böhm, Stanislav; Králová, Jarmila; Král, Vladimír; Urbanová, Marie
2008-02-01
Variations in the structure of d(GGGA)(5) oligonucleotide in the presence of Li(+), Na(+), and K(+) ions and its temperature stability were studied using electronic and vibrational circular dichroism, IR absorption, and ab initio calculations with the Becke 3-Lee-Yang-Parr functional at the 6-31G** level. The samples were characterized by nondenaturing gel electrophoresis. Oligonucleotide d(GGGA)(5) in the presence of Li(+) forms a nonplanar single tetramer, with angles of 102 degrees and 171 degrees between neighboring guanine bases. This tetramer changes its geometry at temperatures >50 degrees C, but does not form a quadruplex structure. In the presence of Na(+), the d(GGGA)(5) structure was optimized to almost planar tetramers with an angle of 177 degrees between neighboring guanines. The spectral results suggest that it stacks into a quadruplex helical structure. This quadruplex structure decayed to a single tetramer at temperatures >60 degrees C. The Hartree-Fock energies imply that d(GGGA)(5) prefers to form complexes with Na(+) rather than Li(+). The d(GGGA)(5) structure in the presence of monovalent ions is stabilized against thermal denaturation in the order Li(+) < Na(+) < K(+). PMID:17960602
NASA Astrophysics Data System (ADS)
Jezierski, Andrzej; Szytuła, Andrzej
2016-02-01
The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in a good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier-Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0
NASA Astrophysics Data System (ADS)
Richard, D.; Muñoz, E. L.; Butz, T.; Errico, L. A.; Rentería, M.
2010-07-01
The time-differential γ-γ perturbed-angular-correlation (TDPAC) technique using T44i→S44c tracers was applied to study the nuclear quadrupole interaction of the first excited I=1 state of S44c in the cubic bixbyite structure of scandium sesquioxide (Sc2O3) . In addition, ab initio calculations of electronic and structural properties and hyperfine parameters at the cationic sites of the Sc2O3 structure were performed using the full-potential augmented plane wave plus local-orbital (APW+lo) method. The accuracy of the calculations and the excellent agreement of the predicted electric-field-gradient (EFG) tensors and the structural properties (lattice parameters, internal positions) with the experimental results enable us to identify the observed hyperfine interactions and to infer the EFG sign that cannot be measured in conventional TDPAC experiments. Additionally, the APW+lo calculations show that the EFG at Sc sites is originated in the population of Sc3p states and give an explanation for the preferential occupation of the asymmetric cationic site C of the structure by the T44i doping impurities. Finally, the validity of the ionic model, usually used to describe the EFG at native cation sites, is discussed.
Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S
2014-06-10
We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good
Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; Martínez, Todd J.; Gordon, Mark S.
2014-10-20
This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitation on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.
NASA Astrophysics Data System (ADS)
Zemen, J.; Mašek, J.; Kučera, J.; Mol, J. A.; Motloch, P.; Jungwirth, T.
2014-04-01
An empirical multiorbital (spd) tight binding (TB) model including magnetism and spin-orbit coupling is applied to calculations of magnetic anisotropy energy (MAE) in CoPt L10 structure. A realistic Slater-Koster parametrisation for single-element transition metals is adapted for the ordered binary alloy. Spin magnetic moment and density of states are calculated using a full-potential linearised augmented plane-wave (LAPW) ab initio method and our TB code with different variants of the interatomic parameters. Detailed mutual comparison of this data allows for determination of a subset of the compound TB parameters tuning of which improves the agreement of the TB and LAPW results. MAE calculated as a function of band filling using the refined parameters is in broad agreement with ab initio data for all valence states and in quantitative agreement with ab initio and experimental data for the natural band filling. Our work provides a practical basis for further studies of relativistic magnetotransport anisotropies by means of local Green's function formalism which is directly compatible with our TB approach.
Haskins, Justin B; Bauschlicher, Charles W; Lawson, John W
2015-11-19
Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li(+) on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li(+) solvation shell through DFT computations of [Li(Anion)n]((n-1)-) clusters, DFT-MD simulations of isolated Li(+) in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI], whereas solvation shells with four anions dominate in [EMIM][BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion)n]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DFT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to
NASA Astrophysics Data System (ADS)
Hamioud, Farida; Alghamdi, Ghadah S.; Al-Omari, Saleh; Mubarak, A. A.
2016-03-01
We have performed ab initio investigation of some physical properties of the perovskite TlMnX3 (X = F, Cl) compounds using the full-potential linearized augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) is employed as exchange-correlation potential. The calculated lattice constant and bulk modulus agree with previous studies. Both compounds are found to be elastically stable. TlMnF3 and TlMnCl3 are classified as anisotropic and ductile compounds. The calculations of the band structure of the studied compounds showed the semiconductor behavior with the indirect (M-X) energy gap. Both compounds are classified as a ferromagnetic due to the integer value of the total magnetic moment of the compounds. The different optical spectra are calculated from the real and the imaginary parts of the dielectric function and connected to the electronic structure of the compounds. The static refractive index n(0) is inversely proportional to the energy bandgap of the two compounds. Beneficial optics technology applications are predicted based on the optical spectra.
Ab initio modelling: Genesis of crystal structures
NASA Astrophysics Data System (ADS)
van de Walle, Axel
2005-05-01
Genetic algorithms prove useful to distil a complex quantum mechanical calculation of interatomic interactions down to its simplest mathematical expression. This makes it possible to predict the structure of new compounds from first principles.
NASA Astrophysics Data System (ADS)
Demkov, Alexander A.; Navrotsky, Alexandra
2001-03-01
The International Technology Roadmap for Semiconductors (ITRS) predicts that the strategy of scaling complementary metal-oxide-semiconductor (CMOS) devices will come to an abrupt end around the year 2012. The main reason for this will be the unacceptably high leakage current through the silicon dioxide gate with a thickness below 20 ÅFinding a gate insulator alternative to SiO2 has proven to be far from trivial. Hafnium and zirconium dioxides and silicates have been recently considered as gate dielectrics with intermediate dielectric constants. Hafnia and ziconia are important ceramic materials as well, and their phase relations are rather well studied. There is also interest in hafnia as a constituent of ceramic waste forms for plutonium, based on its refractory nature and high neutron absorption cross section. We use a combination of the ab-initio calculations and calorimetry to investigate thermodynamic and electronic properties of hafnia and zirconia. We describe the cubic to tetragonal phase transition in the fluorite structure by computing the total energy surface for zone-edge distortions correct to fourth order in the soft-mode displacement with the strain coupling renormalization included. We compare the two materials using some simple chemical concepts.
Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations
Cui Shouxin; Feng Wenxia; Hu Haiquan; Gong Zizheng; Liu Hong
2010-04-15
An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peak near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.
Ab initio electronic stopping power of protons in bulk materials
NASA Astrophysics Data System (ADS)
Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia
2016-01-01
The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.
NASA Astrophysics Data System (ADS)
Abadias, G.; Kanoun, M. B.; Goumri-Said, S.; Koutsokeras, L.; Dub, S. N.; Djemia, Ph.
2014-10-01
The structure, phase stability, and mechanical properties of ternary alloys of the Zr-Ta-N system are investigated by combining thin-film growth and ab initio calculations. Zr1-xTaxN films with 0≤x≤1 were deposited by reactive magnetron cosputtering in Ar +N2 plasma discharge and their structural properties characterized by x-ray diffraction. We considered both ordered and disordered alloys, using supercells and special quasirandom structure approaches, to account for different possible metal atom distributions on the cation sublattice. Density functional theory within the generalized gradient approximation was employed to calculate the electronic structure as well as predict the evolution of the lattice parameter and key mechanical properties, including single-crystal elastic constants and polycrystalline elastic moduli, of ternary Zr1-xTaxN compounds with cubic rocksalt structure. These calculated values are compared with experimental data from thin-film measurements using Brillouin light scattering and nanoindentation tests. We also study the validity of Vegard's empirical rule and the effect of growth-dependent stresses on the lattice parameter. The thermal stability of these Zr1-xTaxN films is also studied, based on their structural and mechanical response upon vacuum annealing at 850 °C for 3 h. Our findings demonstrate that Zr1-xTaxN alloys with Ta fraction 0.51⩽x⩽0.78 exhibit enhanced toughness, while retaining high hardness ˜30 GPa, as a result of increased valence electron concentration and phase stability tuning. Calculations performed for disordered or ordered structures both lead to the same conclusion regarding the mechanical behavior of these nitride alloys, in agreement with recent literature findings [H. Kindlund, D. G. Sangiovanni, L. Martinez-de-Olcoz, J. Lu, J. Jensen, J. Birch, I. Petrov, J. E. Greene, V. Chirita, and L. Hultman, APL Materials 1, 042104 (2013), 10.1063/1.4822440].
Macromolecular ab initio phasing enforcing secondary and tertiary structure
Millán, Claudia; Sammito, Massimo; Usón, Isabel
2015-01-01
Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631
NASA Astrophysics Data System (ADS)
Ramanna, J.; Yedukondalu, N.; Ramesh Babu, K.; Vaitheeswaran, G.
2013-06-01
We report the structural, elastic, electronic, and optical properties of antiperovskite alkali metal oxyhalides Na3OCl, Na3OBr, and K3OBr using two different density functional methods within generalized gradient approximation (GGA). Plane wave pseudo potential (PW-PP) method has been used to calculate the ground state structural and elastic properties while the electronic structure and optical properties are calculated explicitly using full potential-linearized augmented plane wave (FP-LAPW) method. The calculated ground state properties of the investigated compounds agree quite well with the available experimental data. The predicted elastic constants using both PW-PP and FP-LAPW methods are in good accord with each other and show that the materials are mechanically stable. The low values of the elastic moduli indicate that these materials are soft in nature. The bulk properties such as shear moduli, Young's moduli, and Poisson's ratio are derived from the calculated elastic constants. Tran-Blaha modified Becke-Johnson (TB-mBJ) potential improves the band gaps over GGA and Engel-Vosko GGA. The computed TB-mBJ electronic band structure reveals that these materials are direct band gap insulators. The complex dielectric function of the metal oxyhalide compounds have been calculated and the observed prominent peaks are analyzed through the TB-mBJ electronic structures. By using the knowledge of complex dielectric function other important optical properties including absorption, reflectivity, refractive index and loss function have been obtained as a function of energy.
NASA Astrophysics Data System (ADS)
Tsumuraya, Takao; Shishidou, Tatsuya; Oguchi, Tamio
2009-05-01
We study the electronic structure and vibrational modes of several amides M(NH2)n and alanates M(AlH4)n (M = K, Na, Li, Ca and Mg), focusing on the role of cation states. Calculated breathing stretching vibration modes for these compounds are compared with measured infrared and Raman spectra. In the amides, we find a significant tendency such that the breathing mode frequencies and the structural parameters of NH2 vary in accordance with the ionization energy of cation. The tendency may be explained by the strength in hybridization between cation orbitals and molecular orbitals of (NH2)-. The microscopic mechanism of correlations between the vibration frequencies and structural parameters is elucidated in relation to the electronic structure. A possible similar tendency in the alanates is also discussed.
NASA Astrophysics Data System (ADS)
Bentouaf, Ali; Hassan, Fouad El Haj
2015-05-01
Density functional theory based on full-potential linearized augmented plane wave (FP LAPW) method is used to investigate the structural, electronic and magnetic properties of Co2VSi Heusler alloys, with L21 structure. It is shown that calculated lattice constants and spin magnetic moments using the general gradient approximation method are in good agreement with experimental values. We also presented the thermal effects using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. Temperature and pressure effects on the structural parameters, heat capacities, thermal expansion coefficient, and Debye temperatures are determined from the non-equilibrium Gibbs functions.
NASA Astrophysics Data System (ADS)
Pan, Yong; Guan, Weiming
2016-09-01
MoS3 has attracted considerable attention as potential hydrogen storage material due to the interaction between the hydrogen and unsaturated sulfur atoms. However, its structure and physical properties are unknown. By means of first-principles approach and Inorganic crystal structure Database (ISCD), we systematically investigated the structure, relevant physical and thermodynamic properties of MoS3. Phonon dispersion, electronic structure, band structure and heat capacity are calculated in detail. We predicted the orthorhombic B2ab (SrS3-type) and tetragonal P-421m (BaS3-type) structures of MoS3, which prefers to form the SrS3-type (Space group: B2ab, No.41) structure at the ground state. High pressure results in structural transition from SrS3-type structure to BaS3-type structure. This sulfide exhibits a degree of metallic behavior. The calculated heat capacity of MoS3 with SrS3-type structure is about of 39 J/(mol·K).
Sharma, Sheetal; Verma, A.S.; Jindal, V.K.
2014-05-01
Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX{sub 2} (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te). In this study, we have used the accurate full potential linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 33}, C{sub 44} and C{sub 66}). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures.
Electronic structure, magnetism and stability of Co2CrX (X =Al, Ga, In) ab initio study
NASA Astrophysics Data System (ADS)
Dahmane, F.; Mesri, D.; Tadjer, A.; Khenata, R.; Benalia, S.; Djoudi, L.; Doumi, B.; Boumia, L.; Aourag, H.
2016-01-01
The structural, electronic as well as the magnetic properties of the Co2CrX (X =Al, Ga and In) full-Heusler alloy have been studied using first-principles calculations performed in the framework of density functional theory (DFT) within the generalized gradient approximation (GGA). It was taken into account both possible L21 structures (i.e. Hg2CuTi- and Cu2MnAl-type). Basically, for all compounds, the Cu2MnAl-type structure is energetically more stable than Hg2CuTi-type structure at the equilibrium volume. The electronic structure calculations for Co2CrAl reveal that half-metallic (HM) character in Cu2MnAl-type structure, Co2CrGa show nearly HM behavior and Co2CrIn has a metallic character. The predicted total magnetic moment is 3μB for Co2CrX (X =Al, Ga) which is in good convergence with the Slater-Pauling (SP) rule.
Atomic and electronic structure of hydrogen on ZnO (1bar 100) surface: ab initio hybrid calculations
NASA Astrophysics Data System (ADS)
Usseinov, A. B.; Kotomin, E. A.; Zhukovskii, Yu F.; Purans, J.; Sorokin, A. V.; Akilbekov, A. T.
2013-12-01
Hydrogen atoms unavoidably incorporated into ZnO during growth of bulk samples and thin films considerably affect their electrical conductivity. The results of first principles hybrid LCAO calculations are discussed for hydrogen atoms in the bulk and on the non-polar ZnO (1bar 100) surface. The incorporation energy, the atomic relaxation, the electronic density redistribution and the electronic structure modifications are compared for the surface adsorption and bulk interstitial H positions. It is shown that hydrogen has a strong binding with the surface O ions (2.7 eV) whereas its incorporation into bulk is energetically unfavorable. Surface hydrogen atoms are very shallow donors, thus, contributing to the electronic conductivity.
NASA Astrophysics Data System (ADS)
Craco, L.; Laad, M. S.; Müller-Hartmann, E.
2003-12-01
Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.
NASA Astrophysics Data System (ADS)
Benlamari, S.; Amara Korba, S.; Lakel, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.
2016-01-01
The structural, elastic, thermal and electronic properties of perovskite hydrides SrLiH3 and SrPdH3 have been investigated using the all-electron full-potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). For the exchange-correlation potential, local-density approximation (LDA) and generalized gradient approximation (GGA) have been used to calculate theoretical lattice parameters, bulk modulus, and its pressure derivative. The present results are in good agreement with available theoretical and experimental data. The three independent elastic constants (C11, C12 and C44) are also reported. From electronic band structure and density of states (DOSs), it is found that SrLiH3 is an insulator characterized by an indirect gap of 3.48 eV, while SrPdH3 is metallic with a calculated DOSs at Fermi energy of 0.745 states/eV-unit cell. Poisson’s ratio (σ), Young’s modulus (E), shear modulus (G), anisotropy factor (A), average sound velocities (vm) and density (ρ) of these compounds are also estimated for the first time. The Debye temperature is deduced from the average sound velocity. Variation of elastic constants and bulk modulus of these compounds as a function of pressure is also reported. Pressure and thermal effects on some macroscopic properties are predicted using the quasi-harmonic Debye model.
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2016-09-01
Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.
NASA Astrophysics Data System (ADS)
Toprek, Dragan; Belosevic-Cavor, Jelena; Koteski, Vasil
2015-10-01
First principles calculations were performed in the framework of the density functional theory (DFT) using the Full Potential-Linear Augment Plane Wave method (FP-LAPW) within the generalized gradient approximation (GGA) to predict the structural, electronic, elastic and thermal properties of NiTi2 intermetallic compound. By using the Wien2k all-electron code, calculations of the ground state and electronic properties such as lattice constants, bulk modulus, presure derivative of bulk modulus, total energies and density of states were also included. The elastic constants and mechanical properties such as Poisson's ratio, Young's modulus and shear modulus are estimated from the calculated elastic constants of the single crystal. Through the quasi-harmonic Debye model, the preasure and temperature dependences of the linear expansion coefficient, bulk modulus and heat capacity have been investigated. Finally, the Debye temperature has been estimated from the average sound velocity according to the predicted polycrystal bulk properties and from the single crystal elastic constants.
Unified ab initio approaches to nuclear structure and reactions
NASA Astrophysics Data System (ADS)
Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-05-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
An ab initio investigation into the elastic, structural and electronic properties of MoS2 nanotubes
NASA Astrophysics Data System (ADS)
Ansari, R.; Malakpour, S.; Faghihnasiri, M.; Sahmani, S.
2015-06-01
Molybdenum disulfide (MoS2) is a unique semiconductor with a honeycomb structure like graphite, which has the ability to form various nanostructures with distinct characteristics. In the present study, the elastic, structural and electronic properties of armchair and zigzag MoS2 nanotubes with different diameters are investigated using the density functional theory (DFT). The DFT calculations are performed within the framework of generalized gradient approximation and using the Perdew-Burke-Ernzerhof (PBE) exchange model. It is demonstrated that for all of the considered MoS2 nanotubes anharmonicity exists, except for (6,6) MoS2 nanotube. Moreover, it is found that by increasing the tube diameter, Young's modulus of both armchair and zigzag MoS2 nanotubes increases. Also, it is observed that all of armchair MoS2 nanotubes are indirect band gap-type. On the other hand, all of zigzag MoS2 nanotubes have band gaps with the type of direct in Γ point.
Development of Novel Analytical Method for Ab Initio Powder Structural Analysis
NASA Astrophysics Data System (ADS)
Sakata, Makoto; Nishibori, Eiji; Sawa, Hiroshi
Genetic Algorithm (GA) applied to ab initio structure determination from synchrotron powder diffraction is described. It seems to have an advantage over other real space methods for ab initio structure determination because of the existence of schema theorem. As an example, the case of Prednisolone Succinate is shown in some detail. Future development of GA in crystallography is briefly described.
Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel
2015-09-07
Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θ{sub N}(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Np{sub z} state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N{sub 2} molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.
Mathivon, Kevin; Linguerri, Roberto; Hochlaf, Majdi
2014-03-01
In the present theoretical work, we investigated the stationary points (minima and transition states) on the ground state potential energy surfaces of neutral and ionic 1,4-diazabicyclo[2.2.2]octane (DABCO)--Ar(n)⁰,⁺¹ (n = 1-4) clusters. As established in our systematic work on DABCO--Ar cluster (Mathivon et al., J Chem Phys 139:164306, 2013), the (R)MP2/aug-cc-pVDZ level is accurate enough for validating the prediction of stable forms. For n = 1 and 2, further computations at the MP2/aug-cc-pVTZ level confirm these assumptions. We show that some of the already known isomers of these heteroclusters derived using lower levels of theory are not realistic. More interestingly, our work reveals that DABCO is subject to slight deformations when binding to a small number of Ar atoms. Moreover, we computed the potential energy surfaces of the lowest singlet electronic states of DABCO--Ar(n)(n = 1-3) and of DABCO⁺--Ar(n)(n = 1-3), and the transition moments for the Sp(p = 1-3) ← S0 neutral transitions. These electronic states are found to be Rydberg in nature. The shape of their potentials is mainly repulsive with slight stabilization in the S2 potentials. Finally, the effects of microsolvation of DABCO in Ar clusters in ground and electronic excited states are discussed. The photophysical and photochemical dynamics of these electronic states may be complex. PMID:24549795
NASA Astrophysics Data System (ADS)
Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel; Krukowski, Stanislaw
2015-09-01
Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θN(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Npz state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N2 molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.
Aguirrechu-Comerón, Amagoia; Hernández-Molina, Rita; Rodríguez-Hernández, Plácida; Muñoz, Alfonso; Rodríguez-Mendoza, Ulises R; Lavín, Vı́ctor; Angel, Ross J; Gonzalez-Platas, Javier
2016-08-01
Copper(I) iodine compounds can exhibit interesting mechanochromic and thermochromic luminescent properties with important technological applications. We report the synthesis and structure determination by X-ray diffraction of a new polymeric staircase copper(I) iodine compound catena(bis(μ2-iodo)-6-methylquinoline-copper(I), [C10H9CuIN]. The structure is composed of isolated polymeric staircase chains of copper-iodine coordinated to organic ligands through Cu-N bonds. High pressure X-ray diffraction to 6.45 GPa shows that the material is soft, with a bulk modulus K0 = 10.2(2)GPa and a first derivative K'0 = 8.1(3), typical for organometallic compounds. The unit-cell compression is very anisotropic with the stiffest direction [302] arising from a combination of the stiff CuI ladders and the shear of the planar quinolone ligands over one another. Full structure refinements at elevated pressures show that pressures reduce the Cu···Cu distances in the compound. This effect is detected in luminescence spectra with the appearance of four sub-bands at 515, 600, 647, and 712 nm above 3.5 GPa. Red-shifts are observed, and they are tentatively associated with interactions between copper(I) ions due to the shortening of the Cu···Cu distances induced by pressure, below twice the van der Waals limit (2.8 Å). Additionally, ab initio simulations were performed, and they confirmed the structure and the results obtained experimentally for the equation of state. The simulation allowed the band structure and the electronic density of states of this copper(I) iodine complex to be determined. In particular, the band gap decreases slowly with pressure in a quadratic way with dEg/dP = -0.011 eV/GPa and d(2)Eg/dP(2) = 0.001 eV/GPa(2). PMID:27429246
AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS
Turchi, P A
2004-04-14
Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.
NASA Astrophysics Data System (ADS)
Faghaninia, Alireza; Ager, Joel W.; Lo, Cynthia S.
2015-06-01
Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy—particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n -type semiconductors, by explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain the perturbation to the electron distribution—resulting from the dominant scattering mechanisms—and use this to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT, we accurately calculate electrical transport properties of the compound n -type semiconductors, GaAs and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards a fully ab initio carrier transport model that is valid in all compound semiconductors.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Yarkony, David R.
2016-01-01
In this work, we demonstrate that for moderate sized systems, here a system with 13 atoms, global coupled potential energy surfaces defined for several electronic states over a wide energy range and for distinct regions of nuclear coordinate space characterized by distinct electron configurations, can be constructed with precise energetics and an excellent description of non-adiabatic interactions in all regions. This is accomplished using a recently reported algorithm for constructing quasi-diabatic representations, Hd, of adiabatic electronic states coupled by conical intersections. In this work, the algorithm is used to construct an Hd to describe the photodissociation of phenol from its first and second excited electronic states. The representation treats all 33 internal degrees of freedom in an even handed manner. The ab initio adiabatic electronic structure data used to construct the fit are obtained exclusively from multireference configuration interaction with single and double excitation wave functions comprised of 88 × 106 configuration state functions, at geometries determined by quasi-classical trajectories. Since the algorithm uses energy gradients and derivative couplings in addition to electronic energies to construct Hd, data at only 7379 nuclear configurations are required to construct a representation, which describes all nuclear configurations involved in H atom photodissociation to produce the phenoxyl radical in its ground or first excited electronic state, with a mean unsigned energy error of 202.9 cm-1 for electronic energies <60 000 cm-1.
NASA Astrophysics Data System (ADS)
Resat, Marianne Sowa; Smolanoff, Jason N.; Goldman, Ilyse B.; Anderson, Scott L.
1994-06-01
We report a combined experimental and theoretical study of the reaction of small carbon cluster cations with N2O aimed at understanding the reaction mechanism and how it is affected by the electronic and geometric structure of the C+n reactants. Cross sections for reaction of C+n (n=3-12) with N2O were measured over a collision energy range from 0.1-10 eV, using a guided ion beam tandem mass spectrometer. Ab initio calculations were used to examine the structure and energetics of reactant and product species. Small clusters, which are linear, react with no activation barrier, resulting in either oxide or nitride formation. The branching between oxide and nitride channels shows a strong even-odd alternation, with even clusters preferentially forming nitrides. This appears to be correlated with an even/odd alternation in the ionization potential of the CnN. The larger, monocyclic C+n have activation barriers for reaction, and a completely different product distribution. Secondary reactions of the primary oxide and nitride products were studied at high N2O pressures. Products containing two O or two N atoms are not observed, but it is possible to add one of each. Possible reaction mechanisms are discussed and supported by thermochemistry derived from spin restricted ab initio calculations.
NASA Astrophysics Data System (ADS)
Bannikov, V. V.; Beketov, A. R.; Baranov, M. V.; Elagin, A. A.; Kudyakova, V. S.; Shishkin, R. A.
2016-05-01
The phase stability, electronic structure, and magnetic properties of Al1- x Ti x N compositions based on the metastable aluminum nitride modification with the rock-salt structure at low ( x = 0.03) and high ( x = 0.25) concentrations of titanium in the system have been investigated using the results of ab initio band calculations. It has been shown that, at low values of x, the partial substitution is characterized by a positive enthalpy, which, however, changes sign with an increase in the titanium concentration. According to the results of the band structure calculations, the doped compositions have electronic conductivity. For x = 0.03, titanium impurity atoms have local magnetic moments (˜0.6 μB), and the electronic spectrum is characterized by a 100% spin polarization of near-Fermi states. Some of the specific features of the chemical bonding in Al1- x Ti x N cubic phases have been considered.
Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation
NASA Astrophysics Data System (ADS)
Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.
2016-06-01
The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean
2015-02-09
In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser,more » electron and ion irradiations.« less
Ab Initio Infrared Spectra and Electronic Response Calculations for the Insulating Phases of VO2
NASA Astrophysics Data System (ADS)
Hendriks, Christopher; Huffman, Tyler; Walter, Eric; Qazilbash, Mumtaz; Krakauer, Henry
Previous studies have shown that, under doping or tensile strain and upon heating, the well-known vanadium dioxide (VO2) transition from an insulating monoclinic (M1) to a metallic rutile (R) phase progresses through a triclinic symmetry (T) phase and a magnetic monoclinic phase (M2), both of which are insulating. Structurally, this progression from M1 to R through T and M2 can be characterized by the progressive breaking of the V dimers. Investigation of the effect of these structural changes on the insulating phases of VO2 may help resolve questions surrounding the long-debated issue of the respective roles of electronic correlation and Peierls mechanisms in driving the MIT. We investigated electronic and vibrational properties of the insulating phases of VO2 in the framework of DFT+U. We will present ab initio calculations of infrared spectra and optical electronic responses for the insulating phases and compare these to available experimental measurements. Supported by ONR.
Electronic states of lithium passivated germanium nanowires: An ab-initio study
Trejo, A.; Carvajal, E.; Vázquez-Medina, R.; Cruz-Irisson, M.
2014-05-15
A study of the electronic and structural properties of germanium nanowires (GeNWs) was performed using the ab-initio Density Functional Theory within the generalized gradient approximation where electron-ion interactions are described by ultrasoft pseudopotentials. To study the effects of the lithium in the surface of the GeNWs we compare the electronic band structures of Hydrogen passivated GeNWs with those of partial and totally Li passivated GeNWs. The nanowires were constructed in the [001], [111] and [110] directions, using the supercell model to create different wire diameters. The results show that in the case of partial Li passivation there are localized orbitals near the valence band maximum, which would create a p-doped-kind of state. The total Li passivation created metallic states for all the wires.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Booske, John H.; Morgan, Dane
2010-02-01
Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of
Ab-initio study on crystal structure of α-RuCl3
NASA Astrophysics Data System (ADS)
Kee, Hae-Young; Kim, Heung-Sik
α -RuCl3 was recently proposed as a candidate system for materialization of Kitaev model, but precise structural information of the compound has remained elusive. For the clarification of the full three-dimensional crystal structure of α-RuCl3, we performed ab-initio electronic structure calculations including effects of spin-orbit coupling (SOC) and electron correlations. We found that SOC prevents dimerization between Ru atoms, and keeps the system close to honeycomb lattice. The ground state crystal structure has monoclinic C 2 / m -type layer stacking, but trigonal P31 12 -and orthorhombic Cmc21 -type stacking orders are comparable to the C 2 / m structure in energy, so that stacking faults can be easily introduced. The electronic structure and the jeff=1/2 pseudospin exchange interactions and possible magnetic states in α-RuCl3 will be presented.
Structure and Raman spectra in cryolitic melts: simulations with an ab initio interaction potential.
Cikit, Serpil; Akdeniz, Zehra; Madden, Paul A
2014-01-30
The Raman spectra of cryolitic melts have been calculated from molecular dynamics computer simulations using a polarizable ionic potential obtained by force-fitting to ab initio electronic structure calculations. Simulations which made use of this ab initio derived polarizable interaction potential reproduced the structure and dynamical properties of crystalline cryolite, Na3AlF6, rather well. The transferability of the potential model from solid state to the molten state is tested by comparing results for the Raman spectra of melts of various compositions with those previously obtained with empirically developed potentials and with experimental data. The shapes of the spectra and their evolution with composition in the mixtures conform quite well to those seen experimentally, and we discuss the relationship between the bands seen in the spectra and the vibrational modes of the AlFn((3–n)) coordination complexes which are found in the NaF/AlF3 mixtures. The simulations thus enable a link between the structure of the melt as derived through Raman spectroscopy and through diffraction experiments. We report results for quantities which relate to the degree of cross-linking between these coordination complexes and the diffusive properties of ions. PMID:24432905
An improved ab initio structure for fluorine peroxide (FOOF)
NASA Astrophysics Data System (ADS)
Mack, Hans-Georg; Oberhammer, Heinz
1988-03-01
Ab initio calculations with the 6-31G* and Dunning (9s5p/4s2p) basis sets augmented with p and d functions at various levels of theory (RHF, MP2, MP3, and MP4) were carried out on F 2O 2. The best result was obtained at the MP2 level with the Dunning basis plus one set of d functions on fluorine and two sets of d functions on oxygen. These calculations reproduce the experimental bond lengths to within 0.01 Å and the angles to within the experimental uncertainties.
Manson, S.T.; Miller, J.H.
1987-01-01
Ab initio calculations of single and double differential cross sections for ionization by fast, charged particles within the framework of the Born approximation are presented. In addition, a semi-empirical method based on the asymptotic Bethe-Born expansion is also discussed. Both are applied to ionization of helium by electrons and protons in an effort to assess their accuracy and validity. Agreement with experiment is quite good. The implications for other targets is discussed.
NASA Astrophysics Data System (ADS)
Tarighi Ahmadpour, Mahdi; Hashemifar, S. Javad; Rostamnejadi, Ali
2016-07-01
We use density functional computations to study the zero temperature structural, electronic, magnetic, and optical properties of (5,0) finite carbon nanotubes (FCNT), with length in the range of 4-44 Å. It is found that the structural and electronic properties of (5,0) FCNTs, in the ground state, converge at a length of about 30 Å, while the excited state properties exhibit long-range edge effects. We discuss that curvature effects enhance energy gap of FCNTs, in contrast to the known trend in the periodic limit. It is seen that compensation of curvature effects in two special small sizes may give rise to spontaneous magnetization. The obtained cohesive energies provide some insights into the effects of environment on the growth of FCNTs. The second-order difference of the total energies reveals an important magic size of about 15 Å. The optical and dynamical magnetic responses of the FCNTs to polarized electromagnetic pulses are studied by time dependent density functional theory. The results show that the static and dynamic magnetic properties mainly come from the edge carbon atoms. The optical absorption properties are described in terms of local field effects and characterized by Casida linear response method.
Borges, P. D. E-mail: lscolfaro@txstate.edu; Scolfaro, L. E-mail: lscolfaro@txstate.edu
2014-12-14
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
Yu, Dequan; Chen, Jun; Cong, Shulin; Sun, Zhigang
2015-12-17
The FH2– anion has a stable structure that resembles a configuration in the vicinity of the transition state for neutral reaction F + H2 → HF + H. Electron photodetachment spectra of the FH2– anion reveal the neutral reaction dynamics in the critical transition-state region. Accurate quantum dynamics simulations of the photodetachment spectra using highly accurate new ab initio potential energy surfaces for both anionic and neutral FH2 are performed and compared with all available experimental results. The results provide reliable interpretations for the experimental observations of FH2– photoelectron detachment and reveal a detailed picture of the molecular dynamics around the transition state of the F + H2 reaction. The latest high-resolution photoelectron detachment spectra [Kim et al. Science, 2015, 349, 510-513] confirm the high accuracy of our new potential energy surface for describing the resonance-enhanced reactivity of the neutral F + H2 reaction. PMID:26550683
Electron-scattering form factors for 6Li in the ab initio symmetry-guided framework
NASA Astrophysics Data System (ADS)
Dytrych, T.; Hayes, A. C.; Launey, K. D.; Draayer, J. P.; Maris, P.; Vary, J. P.; Langr, D.; Oberhuber, T.
2015-02-01
We present an ab initio symmetry-adapted no-core shell-model description for 6Li. We study the structure of the ground state of 6Li and the impact of the symmetry-guided space selection on the charge density components for this state in momentum space, including the effect of higher shells. We accomplish this by investigating the electron scattering charge form factor for momentum transfers up to q ˜4 fm-1 . We demonstrate that this symmetry-adapted framework can achieve significantly reduced dimensions for equivalent large shell-model spaces while retaining the accuracy of the form factor for any momentum transfer. These new results confirm the previous outcomes for selected spectroscopy observables in light nuclei, such as binding energies, excitation energies, electromagnetic moments, E 2 and M 1 reduced transition probabilities, as well as point-nucleon matter rms radii.
Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure
NASA Astrophysics Data System (ADS)
Mueller, B. Y.; Haag, M.; Fähnle, M.
2016-09-01
Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.
Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects
NASA Astrophysics Data System (ADS)
Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.
2016-05-01
Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.
Ab initio molecular dynamics studies of the structure and dynamics of molten SexTe1-x alloys
NASA Astrophysics Data System (ADS)
Lomba, E.; Katcho, N. A.; Otero-Díaz, L. C.
2005-10-01
We calculate the microscopic structure and dynamics of molten SexTe1-x alloys ( x=0.3 , 0.5, 0.7) at 748 K by means of ab initio molecular dynamics. We present results for the static and dynamic structure factors, diffusion coefficients, and frequency spectra, in addition to the electronic density of states. Both the results for the structural and dynamic properties are in relatively good agreement with the available experimental data, despite the known shortcomings of ab initio techniques for the limiting case x=0 . The results also indicate that, as expected, the increase in the number of Te atoms augments the metallic character of the sample in close connection with a corresponding disruption of the Se chain network that dominates the structure of the condensed phases of pure selenium.
Ab initio phonon coupling and optical response of hot electrons in plasmonic metals
NASA Astrophysics Data System (ADS)
Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.
2016-08-01
Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.
Eremeev, S V; Chukurov, E N; Gruznev, D V; Zotov, A V; Saranin, A A
2015-08-01
Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)[Formula: see text]-Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the [Formula: see text] sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)[Formula: see text]-Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications. PMID:26151642
Hou, Gao-Lei; Feng, Gang; Zhao, Li-Juan; Xu, Hong-Guang; Zheng, Wei-Jun
2015-11-12
The (KI)n(-) (n = 1-4) and K(KI)n(-) (n = 1-3) clusters were studied by negative ion photoelectron spectroscopy and ab initio calculations. Comparison between the theoretical vertical detachment energies and the experimental values revealed that multiple isomers may coexist in the experiments. The existence of two isomers for K(KI)(-) and K(KI)2(-) were confirmed directly by isomer-depletion experiments, in which the low adiabatic detachment energy isomers were depleted by a 1064 nm laser beam before the anions were photodetached by a 532 nm laser beam. Our results show that the most stable structures of the K(KI)(-), (KI)2(-), and K(KI)2(-) anions are chain structures, while those of their neutral counterparts are planar. Three-dimensional structures start to appear at n = 3 for (KI)n(-/0) and K(KI)n(-/0). In the K(KI)n(-) cluster anions, the excess electron is localized on the extra K atom and forms an electron pair with the existing s electron of the K atom; the resulting negatively charged K prefers to interact with the other positively charged K atoms rather than with the I atoms. Both the anionic and neutral (KI)4 clusters have cuboid structures, which may be regarded as the smallest structural motif of KI crystal. PMID:26473992
Numerical criteria for the evaluation of ab initio predictions of protein structure.
Zemla, A; Venclovas, C; Reinhardt, A; Fidelis, K; Hubbard, T J
1997-01-01
As part of the CASP2 protein structure prediction experiment, a set of numerical criteria were defined for the evaluation of "ab initio" predictions. The evaluation package comprises a series of electronic submission formats, a submission validator, evaluation software, and a series of scripts to summarize the results for the CASP2 meeting and for presentation via the World Wide Web (WWW). The evaluation package is accessible for use on new predictions via WWW so that results can be compared to those submitted to CASP2. With further input from the community, the evaluation criteria are expected to evolve into a comprehensive set of measures capturing the overall quality of a prediction as well as critical detail essential for further development of prediction methods. We discuss present measures, limitations of the current criteria, and possible improvements. PMID:9485506
NASA Astrophysics Data System (ADS)
Singh, Ram Sevak; Solanki, Ankit
2016-03-01
Silicon carbide nanotubes (SiCNTs) have received a great deal of scientific and commercial interest due to their intriguing properties that include high temperature stability and electronic properties. For their efficient and widespread applications, tuning of electronic properties of SiCNTs is an attractive study. In this article, electronic properties of sulphur doped (S-doped) zigzag (9 , 0) SiCNT is investigated by ab initio calculations based on density functional theory (DFT). Energy band structures and density of states of fully optimized undoped and doped structures with varying dopant concentration are calculated. S-doped on C-site of the nanotube exhibits a monotonic reduction of energy gap with increase in dopant concentration, and the nanotube transforms from semiconductor to metal at high dopant concentration. In case of S-doped on Si-site doping has less influence on modulating electronic structures, which results in reduction of energy gap up to a moderate doping concentration. Importantly, S preferential substitutes of Si-sites and the nanotube with S-doped on Si-site are energetically more stable as compared to the nanotube with S-doped on C-site. The study of tunable electronic properties in S-doped SiCNT may have potential in fabricating nanoelectronic devices, hydrogen storage and gas sensing applications.
NASA Astrophysics Data System (ADS)
Durig, J. R.; Shen, S.; Guirgis, G. A.
2001-01-01
The far infrared spectrum from 370 to 50 cm -1 of gaseous 2-bromoethanol, BrCH 2CH 2OH, was recorded at a resolution of 0.10 cm -1. The fundamental O-H torsion of the more stable gauche ( Gg') conformer, where the capital G refers to internal rotation around the C-C bond and the lower case g to the internal rotation around the C-O bond, was observed as a series of Q-branch transitions beginning at 340 cm -1. The corresponding O-H torsional modes were observed for two of the other high energy conformers, Tg (285 cm -1) and Tt (234 cm -1). The heavy atom asymmetric torsion (rotation around C-C bond) for the Gg' conformer has been observed at 140 cm -1. Variable temperature (-63 to -100°C) studies of the infrared spectra (4000-400 cm -1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm -1 (4.92±0.48 kJ/mol) for the Gg'/ Tt and 315±40 cm -1 (3.76±0.48 kJ/mol) for the Gg'/ Tg, with the Gg' conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree-Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg' conformers.
Ab initio calculation of the electronic absorption spectrum of liquid water
NASA Astrophysics Data System (ADS)
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-01
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Ab initio calculation of the electronic absorption spectrum of liquid water
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
A Simple ab Initio Model for the Hydrated Electron That Matches Experiment.
Kumar, Anil; Walker, Jonathan A; Bartels, David M; Sevilla, Michael D
2015-08-27
Since its discovery over 50 years ago, the "structure" and properties of the hydrated electron have been a subject for wonderment and also fierce debate. In the present work we seriously explore a minimal model for the aqueous electron, consisting of a small water anion cluster embedded in a polarized continuum, using several levels of ab initio calculation and basis set. The minimum energy "zero Kelvin" structure found for any 4-water (or larger) anion cluster, at any post-Hartree–Fock theory level, is very similar to a recently reported embedded-DFT-in-classical-water-MD simulation (Uhlig, Marsalek, and Jungwirth, J. Phys. Chem. Lett. 2012, 3, 3071−3075), with four OH bonds oriented toward the maximum charge density in a small central "void". The minimum calculation with just four water molecules does a remarkably good job of reproducing the resonance Raman properties, the radius of gyration derived from the optical spectrum, the vertical detachment energy, and the hydration free energy. For the first time we also successfully calculate the EPR g-factor and (low temperature ice) hyperfine couplings. The simple tetrahedral anion cluster model conforms very well to experiment, suggesting it does in fact represent the dominant structural motif of the hydrated electron. PMID:26275103
Time-domain ab initio studies of photoinduced electron dynamics in nanoscale semiconductors
NASA Astrophysics Data System (ADS)
Prezhdo, Oleg
2010-03-01
Design of novel materials for energy harvesting and storage requires an understanding of the dynamical response on the nanometer scale. We have developed state-of-the-art non-adiabatic molecular dynamics techniques and implemented them within time-dependent density functional theory in order to model the ultrafast processes in these materials at the atomistic level and in real time. Quantum dots (QD) are quasi-zero dimensional structures with a unique combination of molecular and bulk properties. As a result, QDs exhibit new physical phenomena such as the electron-phonon relaxation bottleneck and carrier multiplication, which have the potential to greatly increase solar cell efficiencies. Photoinduced charge separation across molecular/bulk interfaces drives the dye-sensitized semiconductor solar cell. A subject of active research, it creates many challenges due to the stark differences between the quantum states of molecular and periodic systems, as well as the different sets of theories and experimental tools used by physicists and chemists. Our time-domain atomistic simulations create a detailed picture of these materials. By comparing and contrasting their properties, we provide a unifying description of quantum dynamics on the nanometer scale, resolve several highly debated issues, and generate theoretical guidelines for development of novel systems for energy harvesting and storage. [4pt] [1] O. V. Prezhdo ``Photoinduced dynamics in semiconductor quantum-dots: insights from time-domain ab initio studies'', Acc. Chem. Res., available online.[0pt] [2] O. V. Prezhdo, W. R. Duncan, V. V. Prezhdo, ``Photoinduced electron dynamics at semiconductor interfaces: a time-domain ab initio prospective'', Prog. Surf. Science, 84, 39 (2009).[0pt] [3] O. V. Prezhdo, et al., ``Dynamics of the photoexcited electron at the chromophore-semiconductor interface'', Acc. Chem. Res., 41, 339 (2008).[0pt] [4] W. R. Duncan, O. V. Prezhdo, ``Theoretical studies of photoinduced electron
Cargnoni, Fausto; Nishibori, Eiji; Rabiller, Philippe; Bertini, Luca; Snyder, G Jeffrey; Christensen, Mogens; Gatti, Carlo; Iversen, Bo Brummerstadt
2004-08-20
The experimental electron density of the high-performance thermoelectric material Zn4Sb3 has been determined by maximum entropy (MEM) analysis of short-wavelength synchrotron powder diffraction data. These data are found to be more accurate than conventional single-crystal data due to the reduction of common systematic errors, such as absorption, extinction and anomalous scattering. Analysis of the MEM electron density directly reveals interstitial Zn atoms and a partially occupied main Zn site. Two types of Sb atoms are observed: a free spherical ion (Sb3-) and Sb2(4-) dimers. Analysis of the MEM electron density also reveals possible Sb disorder along the c axis. The disorder, defects and vacancies are all features that contribute to the drastic reduction of the thermal conductivity of the material. Topological analysis of the thermally smeared MEM density has been carried out. Starting with the X-ray structure ab initio computational methods have been used to deconvolute structural information from the space-time data averaging inherent to the XRD experiment. The analysis reveals how interstitial Zn atoms and vacancies affect the electronic structure and transport properties of beta-Zn4Sb3. The structure consists of an ideal A12Sb10 framework in which point defects are distributed. We propose that the material is a 0.184:0.420:0.396 mixture of A12Sb10, A11BCSb10 and A10BCDSb10 cells, in which A, B, C and D are the four Zn sites in the X-ray structure. Given the similar density of states (DOS) of the A12Sb10, A11BCSb10 and A10BCDSb10 cells, one may electronically model the defective stoichiometry of the real system either by n-doping the 12-Zn atom cell or by p-doping the two 13-Zn atom cells. This leads to similar calculated Seebeck coefficients for the A12Sb10, A11BCSb10 and A10BCDSb10 cells (115.0, 123.0 and 110.3 microV K(-1) at T=670 K). The model system is therefore a p-doped semiconductor as found experimentally. The effect is dramatic if these cells are
NASA Astrophysics Data System (ADS)
Cuong, Nguyen Tien; Mizuta, Hiroshi; Cong, Bach Thanh; Otsuka, Nobuo; Chi, Dam Hieu
2012-09-01
Graphene is a promising candidate as a material used in nano-scale devices because of recent developments in advanced experimental techniques. Motivated by recent successful fabrications of U-shaped graphene channel transistors by using the gallium focused ion beam technology, we have performed ab-initio calculations to investigate the electronic properties and quantum transport in U-shaped graphene nanoribbons. The electronic properties are calculated using a numerical atomic orbital basis set in the framework of the density functional theory. The transport properties are investigated using the non-equilibrium Green's function method. The transmission spectra of U-shaped graphenes are analyzed in order to reveal the quantum transport of the systems. We found that the graphene nanoribbons tend to open a band gap when U-shaped structures are formed in both armchair and zigzag cases. The geometrical structures of U-shaped GNRs had enormous influences on the electron transport around the Fermi energy due to the formation of quasi-bound states at zigzag edges. The obtained results have provided valuable information for designing potential nano-scale devices based on graphenes.
Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study
NASA Astrophysics Data System (ADS)
Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo
2016-07-01
Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.
Feller, D.F.
1993-07-01
This collection of benchmark timings represents a snapshot of the hardware and software capabilities available for ab initio quantum chemical calculations at Pacific Northwest Laboratory`s Molecular Science Research Center in late 1992 and early 1993. The ``snapshot`` nature of these results should not be underestimated, because of the speed with which both hardware and software are changing. Even during the brief period of this study, we were presented with newer, faster versions of several of the codes. However, the deadline for completing this edition of the benchmarks precluded updating all the relevant entries in the tables. As will be discussed below, a similar situation occurred with the hardware. The timing data included in this report are subject to all the normal failures, omissions, and errors that accompany any human activity. In an attempt to mimic the manner in which calculations are typically performed, we have run the calculations with the maximum number of defaults provided by each program and a near minimum amount of memory. This approach may not produce the fastest performance that a particular code can deliver. It is not known to what extent improved timings could be obtained for each code by varying the run parameters. If sufficient interest exists, it might be possible to compile a second list of timing data corresponding to the fastest observed performance from each application, using an unrestricted set of input parameters. Improvements in I/O might have been possible by fine tuning the Unix kernel, but we resisted the temptation to make changes to the operating system. Due to the large number of possible variations in levels of operating system, compilers, speed of disks and memory, versions of applications, etc., readers of this report may not be able to exactly reproduce the times indicated. Copies of the output files from individual runs are available if questions arise about a particular set of timings.
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per
2006-09-01
We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.
Yamaji, Youhei
2015-12-31
Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.
Combined electron beam imaging and ab initio modeling of T{sub 1} precipitates in Al-Li-Cu alloys
Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.
2011-05-16
Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T{sub 1} precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T{sub 1} structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.
Towards Accurate Ab Initio Predictions of the Spectrum of Methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2001-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals
NASA Astrophysics Data System (ADS)
Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano
2015-03-01
Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.
Ab initio studies of equations of state and chemical reactions of reactive structural materials
NASA Astrophysics Data System (ADS)
Zaharieva, Roussislava
subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated
Marquez, A.; Sanz, J.F. )
1992-12-02
Experimental and theoretical research on the electronic and geometric structure of transition-metal-carbenes and -alkylidenes is an active area in chemistry nowadays due to their potential activity in catalysis and in organic and organometallic synthesis. A theoretical investigation of the electronic structure of the high-valent, transition-metal, alkylidene-like complexes MoM[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn) is reported. Based on ab initio calculations carried out at the complete active space multiconfiguration self-consistent field (CASSCF) level, the molecular structure of the ground state and some low-lying excited states have been determined. For M[prime] = C, Si, and Ge, the ground state has C[sub 2v] symmetry (state [sup 5]B[sub 1]) and corresponds to pairing each electron of the M[prime]H[sub 2] triplet [sup 3]B[sub 1] with an electron of Mo ([sup 7]S). In the case of MoSnH[sub 2], the lowest state is bent (C[sub s] symmetry, state [sup 7]A[prime]), the out-of-plane angle being 68[degrees], and dissociates into SnH[sub 2] ([sup 1]A[sub 1]) + Mo ([sup 7]S). Dissociation energies, potential energy profiles for the dissociation, harmonic force constants in terms of internal symmetry coordinates, and vibrational frequencies are reported. The comparison of these properties with those of their pentacarbonylated homologous (CO)[sub 5]M[double bond]M[prime]H[sub 2] shows that the carbene-like (Fischer) type of complexation is stronger than the alkylidene-like one (Schrock). 28 refs., 4 figs., 6 tabs.
Ab-initio crystal structure prediction. A case study: NaBH{sub 4}
Caputo, Riccarda; Tekin, Adem
2011-07-15
Crystal structure prediction from first principles is still one of the most challenging and interesting issue in condensed matter science. we explored the potential energy surface of NaBH{sub 4} by a combined ab-initio approach, based on global structure optimizations and quantum chemistry. In particular, we used simulated annealing (SA) and density functional theory (DFT) calculations. The methodology enabled the identification of several local minima, of which the global minimum corresponded to the tetragonal ground-state structure (P4{sub 2}/nmc), and the prediction of higher energy stable structures, among them a monoclinic (Pm) one was identified to be 22.75 kJ/mol above the ground-state at T=298 K. In between, orthorhombic and cubic structures were recovered, in particular those with Pnma and F4-bar 3m symmetries. - Graphical abstract: The total electron energy difference of the calculated stable structures. Here, the tetragonal (IT 137) and the monoclinic (IT 6) symmetry groups corresponded to the lowest and the highest energy structures, respectively. Highlights: > Potential energy surface of NaBH{sub 4} is investigated. > This is done a combination of global structure optimizations based on simulated annealing and density functional calculations. > We successfully reproduced experimentally found tetragonal and orthorhombic structures of NaBH{sub 4}. > Furthermore, we found a new stable high energy structure.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Pressure-induced structural transitions in BN from ab initio metadynamics
NASA Astrophysics Data System (ADS)
Hromadová, Liliana; Martoňák, Roman
2011-12-01
We report here results of ab initio metadynamics simulations of structural transitions in boron nitride at high pressures. Transitions starting from sp2 bonded (graphite-like) structures are studied in a temperature range from 300 to 3000 K and pressures from 20 to 31 GPa. Rhombohedral boron nitride (r-BN) was found to directly transform at all temperatures into cubic boron nitride (c-BN). Hexagonal boron nitride (h-BN) transforms at T<700 K into wurtzite boron nitride (w-BN). At higher temperatures we found a possible transformation pathway resulting in the fully tetrahedrally (sp3) bonded metastable structure. This structure is tetragonal (P42/mnm) and is an analog of the “bct C4” (I4/mmm) structure recently discussed for carbon. The P42/mnm structure has been predicted theoretically for BN but so far not reported experimentally. We calculate structural, elastic, and electronic properties of this structure and discuss the transition mechanism. We also study the transitions at extreme pressures in the tera-pascal range starting from sp3 bonded c-BN and w-BN structures.
Takeuchi, Hiroshi; Enmi, Jun-ichiro; Onozaki, Manabu; Egawa, Toru; Konaka, Shigehiro
1994-09-01
Gas electron diffusion and HF/4-21 G calculations on geometric parameters and harmonic force constants are used to study the molecular structure of tert-butyl acetate. This determined that C{sub 1} = O{sub 2} is (cis) to O{sub 4}-C{sub 5} and the tert-butyl group is staggered to the C{sub 1}-O{sub 4} bond. The structural parameters are also determined. C{sub 1}-O{sub 4} bond length shortening is rationalized in terms of the resonance effect and the electron-releasing inductive effect of substituents. 29 refs., 4 figs., 4 tabs.
AB Initio Study of the Structure and Spectroscopic Properties of Halogenated Thioperoxy Radicals
NASA Technical Reports Server (NTRS)
Munoz, Luis A.; Binning, R. C., Jr.; Weiner, Brad R.; Ishikawa, Yasuyuki
1997-01-01
Thioperoxy (XSO or XOS) radicals exist in a variety of chemical environments, and they have as a consequence drawn some interest. HSO, an important species in the chemistry of the troposphere, has been examined both experimentally. The halogenated (X = F, Cl or Br) peroxy species and isovalent thioperoxy species have been studied less, but they too are potentially interesting because oxidized sulfur species and halogen sources are present in the atmosphere. Learning the fate of XSO and XOS radicals is important to understanding the atmospheric oxidation chemistry of sulfur compounds. Of these, FSO and ClSO are particularly interesting because they have been directly detected spectroscopically. Recent studies in our laboratory on the photochemistry of thionyl halides (X2SO; where X = F or Cl) have suggested new ways to generate XSO species. The laser-induced photodissociation of thionyl fluoride, F2SO, at 193 nm and thionyl chloride, ClSO, at 248 nm is characterized by a radical mechanism, X2SO -> XSO + X. The structure of FSO has been characterized experimentally by Endo et cd. employing microwave spectroscopy. Using the unrestricted Hartree-Fock (UHF) self-consistent field (SCF) method, Sakai and Morokuma computed the electronic structure of the ground (sup 2)A" and the first excited (sup 2)A' states of FSO. Electron correlation was not taken into account in their study. In a laser photodissociation experiment, Huber et al. identified ClSO mass spectromctrically. ClSO has also been detected in low temperature matrices by EPR and in the gas phase by far IR laser magnetic resonance. Although the structure of FSO is known in detail, the only study, experimental or theoretical, of CISO has been an ab initio HFSCF study by Hinchliffe. Electron correlation corrections were also excluded from this study. In order to better understand the isomerization and dissociation dynamics of the radical species, we have performed ab initio correlated studies of the potential energy
NASA Astrophysics Data System (ADS)
Sarhaddi, Reza; Arabi, Hadi; Pourarian, Faiz
2014-05-01
The structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) isomeric intermetallic compounds were systematically investigated by using density functional theory (DFT) and plane-wave pseudo-potential (PW-PP) method. The macroscopic properties including the lattice constant, bulk modulus and stability for these compounds were studied before and after hydrogenation. For parent compounds, the enthalpy of formation was evaluated with regard to their bulk modules and electronic structures. After hydrogenation of compounds at different interstitial tetrahedral sites (A2B2, A1B3, B4), a volume expansion was found for hydrides. The stability properties of hydrides characterized the A2B2 sites as the site preference of hydrogen atoms for both compounds. The Miedema's "reverse stability" rule is also satisfied in these compounds as lower the enthalpy of formation for the host compound, the more stable the hydride. Analysis of microscopic properties (electronic structures) after hydrogenation at more stable interstitial site (A2B2) shows that the H atoms interact stronger with the weaker (or non) hydride forming element B (Cr) than the hydride forming element A (Ti/Zr). A correlation was also found between the stability of the hydrides and their electronic structure: the deeper the hydrogen band, the less stable the hydride.
Palummo, Maurizia; Hogan, Conor; Sottile, Francesco; Bagalá, Paolo; Rubio, Angel
2009-08-28
We present a theoretical investigation of electronic and optical properties of free-base porphyrins based on density functional theory and many-body perturbation theory. The electronic levels of free-base porphine (H(2)P) and its phenyl derivative, free-base tetraphenylporphyrin (H(2)TPP) are calculated using the ab initio GW approximation for the self-energy. The approach is found to yield results that compare favorably with the available photoemission spectra. The excitonic nature of the optical peaks is revealed by solving the Bethe-Salpeter equation, which provides an accurate description of the experimental absorption spectra. The lowest triplet transition energies are in good agreement with the measured values. PMID:19725603
Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2
NASA Technical Reports Server (NTRS)
Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.
1976-01-01
The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.
Ab initio Structure Determination of Mg10Ir19B16
Xu, Qiang; Klimczuk, T.; Gortenmulder, T.; Jansen, J.; McGuire, Michael A; Cava, R. J.; Zandbergen, H
2009-01-01
The ab initio structure determination of a novel unconventional noncentro-symmetric superconductor Mg{sub 10}Ir{sub 19}B{sub 16} (T{sub c} = 5 K) has been performed using a method that involves a combination of experimental data and calculations. Electron diffraction, X-ray powder diffraction, phase estimation routines, quantum mechanical calculations, high-resolution electron microscopy, and structural chemistry arguments are used. With the strengths of different methods used to eliminate the ambiguities encountered in others, the complete structure, including a very light B atom, has been determined with a high accuracy from impure polycrystalline powder samples, which suggests that the type of analysis described may be used to successfully address other similar intractable problems. The solved structure of Mg{sub 10}Ir{sub 19}B{sub 16} shows a complex nature that irregular coordination environments preclude a conversional description of compact packing of coordination polyhedra; however, it can be easier understood as ordered in an onion-skin-like series of nested polyhedra.
NASA Astrophysics Data System (ADS)
Milošević, Aleksandar S.; Lalić, Milan V.; Popović, Zoran S.; Vukajlović, Filip R.
2013-08-01
Within density functional theory (DFT) with the generalized gradient approximation (GGA), GGA plus on-site Coulomb repulsion method, and improved version of the modified Becke-Johnson exchange potential suggested recently by Tran and Blaha [F. Tran, P. Blaha, Phys. Rev. Lett. 102 (2009) 226401] (TB-mBJ), we investigate the electronic structure and optical properties of noncentrosymmetric multiferroic perovskites PbVO3 and BiCoO3. These two compounds, although similar in lattice distortions and population of crystal-field levels, behave quite differently because of the different interplay between the fundamental Kramers degeneracy and the single-ion anisotropy in them. The main characteristic of the calculated TB-mBJ electronic structures is significant rearrangement of the V and Co 3d states near their valence bands tops when compared to the present and earlier GGA and GGA + U calculations of these compounds. This fact causes the different optical responses of the title compounds as well, which are analyzed and interpreted in terms of the calculated electronic structures. A comparison of the calculated properties with available experimental data indicates that the TB-mBJ approach provides a better description of the electronic and optical properties of PbVO3 and BiCoO3 than the standard GGA and GGA + U approaches.
NASA Astrophysics Data System (ADS)
Ranjbardizaj, Ahmad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki
2013-03-01
Bi2Q3 (Q =Se, Te) are the best-known bulk thermoelectric materials, which have been demonstrated to be topological insulators (TI). TI's are insulators with conductive surface states consisting of a single Dirac cones. These materials have layered structures consisting of stacked quintuple layers (QL), with relatively weak coupling between the QL's. Therefore, it might be easy to prepare the Bi2Q3 in the form of thin films with particular thicknesses using the available experimental techniques. In this study, the electronic and structural properties of bulk Bi2Se3 are investigated using density functional theory. Our results show that the Bi2Se3 is an indirect semiconductor with energy gap of ~ 0.27 eV. Additionally, the electronic structure dependence of Bi2Se3to the thicknesses of thin films (n-QL's with n =1,2...9) is considered. It is observed that the electronic structure of this kind of thin films depends on the number of QL's. For n-QL's with n larger than three, the thin film has a bulk band gap and has protected conducting states on its surface. Moreover, the effect of number of layers (n) on band-gap energy is studied. Similar calculations and discussions are carried out for Bi2Te3 and the results are compared to the Bi2Se3 case and also the available theoretical and experimental results.
NASA Astrophysics Data System (ADS)
Demiray, Ferhat; Sıdır, İsa; Gülseven Sıdır, Yadigar
2016-08-01
Density functional theory calculations at the LDA level have been performed to investigate the geometrical structure, stabilities and electronic properties of cyanide-coated fullerene C20@(CN) n, with n=0-20 in the ground state. From the binding energy, dissociation energy and second-order energy, even-number-coated fullerenes are more stable than odd-number ones. C20 has been successfully coated with electron-withdrawing group CN, achieving fullerene electron acceptors which have low-LUMO levels. The lowest LUMO value obtained for C20@(CN)12 is -5.89 eV, which is comparable with or lower than that of C60 and C60@(CN)2 fullerenes. Each of the cyanide coatings makes the fullerenes more stable with a larger HOMO-LUMO gap. Designed cyanide-coated fullerene compounds are promising and progressive to achieve a wider range of donor materials and high efficiencies in organic photovoltaic devices.
Ab initio study of structural, electronic, magnetic and optical properties of Ti-doped ZnTe and CdTe
NASA Astrophysics Data System (ADS)
El Amine Monir, M.; Baltache, H.; Murtaza, G.; Khenata, R.; Bin Omran, S.; Uğur, Ş.; Benalia, S.; Rached, D.
2014-03-01
The full potential linearized augmented plane wave method within the framework of density functional theory (DFT) is employed to investigate the structural, magnetic, electronic and optical properties of Ti-doped ZnTe and CdTe in the zinc blende phase. In this approach the local spin density approximation (LSDA) is used for the exchange-correlation (XC) potential. Results are provided for the lattice constant, bulk modulus, pressure derivative, magnetic moment, band structure, density of states and refractive indices. Our results are compared with other theoretical works and good agreement is shown.
NASA Astrophysics Data System (ADS)
D'Yachkov, P. N.; Makaev, D. V.
2007-11-01
Every carbon single-walled nanotube (SWNT) can be generated by first mapping only two nearest-neighbor C atoms onto a surface of a cylinder and then using the rotational and helical symmetry operators to determine the remainder of the tubule [C. T. White , Phys. Rev. B 47, 5485 (1993)]. With account of these symmetries, we developed a symmetry-adapted version of a linear augmented cylindrical wave method. In this case, the cells contain only two carbon atoms, and the ab initio theory becomes applicable to any SWNT independent of the number of atoms in a translational unit cell. The approximations are made in the sense of muffin-tin (MT) potentials and local-density-functional theory only. An electronic potential is suggested to be spherically symmetrical in the regions of atoms and constant in an interspherical region up to the two essentially impenetrable cylinder-shaped potential barriers. To construct the basis wave functions, the solutions of the Schrödinger equation for the interspherical and MT regions of the tubule were sewn together using a theorem of addition for cylindrical functions, the resulting basis functions being continuous and differentiable anywhere in the system. With account of analytical equations for these functions, the overlap and Hamiltonian integrals are calculated, which permits determination of electronic structure of nanotube. We have calculated the total band structures and densities of states of the chiral and achiral, semiconducting, semimetallic, and metallic carbon SWNTs (13, 0), (12, 2), (11, 3), (10, 5), (9, 6), (8, 7), (7, 7), (12, 4), and (100, 99) containing up to the 118 804 atoms per translational unit cell. Even for the (100, 99) system with huge unit cell, the band structure can be easily calculated and the results can be presented in the standard form of four curves for the valence band plus one curve for the low-energy states of conduction band. About 150 functions produce convergence of the band structures better then
Ab Initio study of multiple exciton generation in layered structure quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Zhiyong; Zimmerman, Paul; Cui, Yi; Musgrave, Charles
2011-03-01
Multiple Exciton Generation (MEG) can potentially increase the photovoltaic conversion efficiency significantly and has been reported in a large number of systems and has been extensively studies theoretically and experimentally. Here we report our study of the MEG process in inorganic layered structure quantum dots using high level Ab Initio methods that are capable of electronic states of multi-exciton in character. Our results show that multiple states that are of multi-exciton character exist in quantum dots and different mechanisms govern the MEG process in quantum dots: (1) MEG through an internal crossing mechanism from a optically active state to an optically dark multi-exciton state, as in the singlet fission process of pentacene; and (2) direct multi-exciton generation through an optically active excited state. We also discuss detailed structure evolution of quantum dots, from stable molecular like structures of various shapes and sizes, to larger quantum dots of bulk like bonding motifs with distinctive surface structures and illustrate the correlation between structure and the multi-exciton states.
Arghavani Nia, Borhan; Sedighi, Matin; Shahrokhi, Masoud; Moradian, Rostam
2013-11-15
A density functional theory study of structural, electronical and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. In the exchange–correlation potential, generalized gradient approximation (PBE-GGA) has been used to calculate lattice parameters, bulk modulus, cohesive energy, dielectric function and energy loss spectra. The electronic band structure of this compound has been calculated using the above two approximations as well as another form of PBE-GGA, proposed by Engle and Vosko (EV-GGA). It is found that the hexagonal phase of Ca{sub 3}Sb{sub 2} has an indirect gap in the Γ→N direction; while in the cubic phase there is a direct-gap at the Γ point in the PBE-GGA and EV-GGA. Effects of applying pressure on the band structure of the system studied and optical properties of these systems were calculated. - Graphical abstract: A density functional theory study of structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. Display Omitted - Highlights: • Physical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases are investigated. • It is found that the hexagonal phase is an indirect gap semiconductor. • Ca{sub 3}Sb{sub 2} is a direct-gap semiconductor at the Γ point in the cubic phase. • By increasing pressure the semiconducting band gap and anti-symmetry gap are decreased.
Ab initio study on electronically excited states of lithium isocyanide, LiNC
NASA Astrophysics Data System (ADS)
Yasumatsu, Hisato; Jeung, Gwang-Hi
2014-01-01
The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ˜10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.
Holst, Bastian; French, Martin; Redmer, Ronald
2011-06-15
Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.
Electronic and transport properties edge functionalized graphene nanoribbons-An ab initio approach
Chauhan, Satyendra Singh; Srivastava, Pankaj; Shrivastva, A. K.
2014-04-24
With the help of ab initio approach we have investigated the electronic and transport properties of edge functionalized zigzag graphene nanoribbons using density functional theory. We have studied the energetic stability and Fermi energy of ZGNRs. We have reported that the edge functionalization of zigzag graphene nanoribbons can break the degeneracy that can be used to promote the onset of a semiconducting to metal transition or a half metal to semiconducting state. The edge functionalization also promotes a metal-semimetal transition. It has also been observed that the transmission spectrum of the edge functionalized ZGNRs are different from those of pristine.
Hydration structure of salt solutions from ab initio molecular dynamics.
Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L
2013-01-01
The solvation structures of Na(+), K(+), and Cl(-) ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na(+), K(+), and Cl(-), respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed. PMID:23298049
Hydration structure of salt solutions from ab initio molecular dynamics
Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.
2013-01-07
The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.
Hydration structure of salt solutions from ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.
2013-01-01
The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.
Al-Douri, Y.; Ahmad, S.; Hashim, U.; Reshak, Ali Hussain; Baaziz, H.; Charifi, Z.; Khenata, R.
2010-12-15
The structural, electronic and optical properties of cubic CdS{sub 1-x}Te{sub x} alloys, with Te-concentrations varying from 0% up to 100% are investigated. The calculations are based on the total-energy calculations using the full potential-linearized augmented plane wave (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) for the total-energy calculations, while for electronic properties in addition to that the Engel-Vosko (EV-GGA) formalism was also applied. The ground state properties for all Te-concentrations are presented. The optical dielectric constant is also determined for both the binary and their related ternary alloys. (author)
NASA Astrophysics Data System (ADS)
dos Santos, Renato B.; de Brito Mota, F.; Rivelino, R.; Kakanakova-Georgieva, A.; Gueorguiev, G. K.
2016-04-01
Graphite-like hexagonal AlN (h-AlN) multilayers have been experimentally manifested and theoretically modeled. The development of any functional electronics applications of h-AlN would most certainly require its integration with other layered materials, particularly graphene. Here, by employing vdW-corrected density functional theory calculations, we investigate structure, interaction energy, and electronic properties of van der Waals stacking sequences of few-layer h-AlN with graphene. We find that the presence of a template such as graphene induces enough interlayer charge separation in h-AlN, favoring a graphite-like stacking formation. We also find that the interface dipole, calculated per unit cell of the stacks, tends to increase with the number of stacked layers of h-AlN and graphene.
NASA Astrophysics Data System (ADS)
Mousa, Ahmad A.; Khalifeh, Jamil M.
2015-10-01
Structural, electronic, elastic and mechanical properties of ScM (M =Au, Hg and Tl) intermetallic compounds are studied using the full potential-linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA) and the local density approximation (LDA) to the exchange-correlation approximation energy as implemented in the Wien2k code. The ground state properties including lattice parameters, bulk modulus and elastic constants were all computed and compared with the available previous theoretical and experimental results. The lattice constant was found to increase in contrast to the bulk modulus which was found to decrease with every substitution of the cation (M) starting from Au till Tl in ScM. Both the electronic band structure and density-of-states (DOS) calculations show that these compounds possess metallic properties. The calculated elastic constants (C11, C12 and C44) confirmed the elastic stability of the ScM compounds in the B2-phase. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.
Structural, electronic and magnetic properties of Cd1-xTMxS (TM=Co and V) by ab-initio calculations
NASA Astrophysics Data System (ADS)
Yahi, Hakima; Meddour, Athmane
2016-03-01
The structural, electronic and ferromagnetic properties of Cd1-xTMxS (TM=Co and V) compounds at x=0.25, 0.50 and 0.75 in zinc blende (B3) phase, have been investigated using all-electron full-potential linear muffin tin orbital (FP-LMTO) calculations within the frame work of the density functional theory and the generalized gradient approximation. The electronic properties exhibit half-metallic behavior at x=0.25, 0.50, and 0.75 for Cd1-xVxS and x=0.25 and 0.50 for Cd1-xCoxS, while Cd1-xCoxS with x=0.75 is nearly half-metallic. The calculated magnetic moment per substituted transition metal (TM) atom for half-metallic compounds is found to be 3 μB, whereas that of a nearly half-metallic compound is 2.29 μB. The analysis of band structure and density of states shows that the TM-3d states play a key role in generating spin-polarization and magnetic moment in these compounds. Furthermore, we establish that the p-d hybridization reduces the local magnetic moment of Co and enhances that of V from their free space charge value of 3 μB and creates small local magnetic moments on nonmagnetic Cd and S sites. The exchange constant N0α and N0β have been calculated to validate the effects resulting from exchange splitting process.
AB INITIO STUDY OF STRUCTURAL, ELECTRONIC AND OPTICAL PROPERTIES OF MgxCd1-xX (X = S, Se, Te) ALLOYS
NASA Astrophysics Data System (ADS)
Noor, N. A.; Shaukat, A.
2012-12-01
This study describes structural, electronic and optical properties of MgxCd1-xX (X = S, Se, Te) alloys in the complete range 0≤x ≤1 of composition x in the zinc-blende (ZB) phase with the help of full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT). In order to calculate total energy, generalized gradient approximation (Wu-Cohen GGA) has been applied, which is based on optimization energy. For electronic structure calculations, the corresponding potential is being optimized by Engel-Vosko GGA formalism. Our calculations reveal the nonlinear variation of lattice constant and bulk modulus with different concentration for the end binary and their ternary alloys, which slightly deviates from Vegard's law. The calculated band structures show a direct band gap for all three alloys with increasing order in the complete range of the compositional parameter x. In addition, we have discussed the disorder parameter (gap bowing) and concluded that the total band gap bowing is substantially influenced by the chemical (electronegativity) contribution. The calculated density of states (DOS) of these alloys is discussed in terms of contribution from various s-, p- and d-states of the constituent atoms and charge density distributions plots are analyzed. Optical properties have been presented in the form of the complex dielectric function ɛ(ω), refractive index n(ω) and extinction coefficient k(ω) as function of the incident photon energy, and the results have been compared with existing experimental data and other theoretical calculations.
Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung
2014-09-01
A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination. Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ{sub 1} and ϕ{sub 2}) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ{sub DS} list as a criterion to select optimized phases ϕ{sub am} from ϕ{sub 1} or ϕ{sub 2} of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕ{sub SAD} has been developed. Based on this work, reflections with an angle θ{sub DS} in the range 35–145° are selected for an optimized improvement, where θ{sub DS} is the angle between the initial phase ϕ{sub SAD} and a preliminary density-modification (DM) phase ϕ{sub DM}{sup NHL}. The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.
NASA Astrophysics Data System (ADS)
Reffas, Mounir; Bouhemadou, Abdelmadjid; Haddadi, Khelifa; Bin-Omran, Saad; Louail, Layachi
2014-12-01
Structural parameters, electronic structure, elastic constants and thermodynamic properties of the tetragonal ternary intermetallics CaCu2Si2 and SrCu2Si2 are investigated theoretically for the first time using the plane-wave ultra-soft pseudopotential method based on the density functional theory. The calculated equilibrium structural parameters agree well with the existing experimental data. Pressure dependence of the structural parameters is also explored. Analysis of the band structure, total and site-projected l-decomposed densities of states and valence charge distributions reveals the conducting character of both considered materials with a mixture of ionic-covalent chemical bonding character. Pressure dependences of the single-crystal elastic constants C ij for CaCu2Si2 and SrCu2Si2 are explored. The elastic wave velocities propagating along the principal crystallographic directions are numerically estimated. The elastic anisotropy is estimated and further illustrated by 3D-direction-dependent of the Young's modulus. A set of some macroscopic elastic moduli, including the bulk, Young's and shear moduli, Poisson's coefficient, average elastic wave velocities and Debye temperature, were calculated for polycrystalline CaCu2Si2 and SrCu2Si2 from the C ij via the Voigt-Reuss-Hill approximations. Through the quasiharmonic Debye model, which takes into account the phonon effects, the temperature and pressure dependencies of the bulk modulus, unit cell volume, volume thermal expansion coefficient, Debye temperature and volume constant and pressure constant heat capacities of CaCu2Si2 and SrCu2Si2 are explored systematically in the ranges of 0-40 GPa and 0-1400 K.
NASA Astrophysics Data System (ADS)
Hirano, Tsuneo; Okuda, Rei; Nagashima, Umpei; Jensen, Per
2012-12-01
FeCO is a molecule of astrophysical interest. We report here theoretical calculations of its geometrical parameters, electronic structures, and molecular constants (such as dipole moment and spin-orbit coupling constant) in the electronic ground state tilde{X}3Σ - and the low-lying triplet and quintet excited states. The calculations were made at the MR-SDCI+Q_DK3/[5ZP ANO-RCC (Fe, C, O)] and MR-AQCC_DK3/[5ZP ANO-RCC (Fe, C, O)] levels of theory. A multi-reference calculation was required to describe correctly the wavefunctions of all states studied. For all triplet states, the σ-donation through the 10σ molecular orbital (MO) as well as the π-back-donation through the 4π MO are observed, and the dipole moment vector points from O toward Fe as expected. However, in the excited quintet states 5Π, 5Φ, and 5Δ, the almost negligible contribution of Fe 4s to the 10σ MO makes the dipole moment vector point from Fe toward O, i.e., in the same direction as in CO. In the tilde{X}3Σ - state, the electron provided by the σ-donation through the 10σ MO is shared between the Fe atom and the C end of the CO residue to form a coordinate-covalent Fe-C bond. In the tilde{a}5Σ - state (the high-spin counterpart of tilde{X}3Σ -), the σ-donation through the 10σ MO is not significant and so the Fe-C bond is rather ionic. The π-back-donation through the 4π MO is found to be of comparable importance in the two electronic states; it has a slightly larger magnitude in the tilde{X}3Σ - state. The difference in the molecular properties of the low-spin tilde{X}3Σ - and the high-spin tilde{a}5Σ - states can be understood in terms of the dynamical electron correlation effects.
NASA Astrophysics Data System (ADS)
Benkhelifa, F. Z.; Lekhal, A.; Méçabih, S.; Abbar, B.; Bouhafs, B.
2014-12-01
We have investigated the electronic structure, magnetic and thermal properties of the ternary full-Heusler alloys Rh2MnZ (Z=Ge, Sn, Pb) under pressure employing the full potential linearized augmented plane wave (FP-LAPW) plus local orbitals method based on the density functional theory (DFT), For the exchange-correlation effects we have adopted the generalized gradient approximation (GGA).Through the quasi-harmonic Debye model, we also study the thermodynamic properties of Rh2MnZ (Z=Ge, Sn and Pb). The thermal expansion versus temperature and pressure, the thermodynamic parameters (Debye temperature and specific heat) with pressure P, and the heat capacity at various pressures and temperatures in the ranges of 0 GPa to 0.6 GPa and 0 K to 400 K have been obtained.
Zhao, Pengfei; Liang, Chongyun; Gong, Xiwen; Gao, Ran; Liu, Jiwei; Wang, Min; Che, Renchao
2013-09-01
Monodispersed manganese oxide (Mn1-xCox)3O4 (0 ≤ x ≤ 0.5) nanoparticles, less than 10 nm size, are respectively synthesized via a facile thermolysis method at a rather low temperature, ranging from 90 to 100 °C, without any inertia gas for protection. The influences of the Co dopant content on the critical reaction temperature required for the nanoparticle formation, electronic band structures, magnetic properties, and the microwave absorption capability of (Mn1-xCox)3O4 are comprehensively investigated by means of both experimental and theoretical approaches including powder X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), super conductivity quantum interference device (SQUID) examination, and first-principle simulations. Co is successfully doped into the Mn atomic sites of the (Mn1-xCox)3O4 lattice, which is further confirmed by EELS data acquired from one individual nanoparticle. Therefore, continuous solid solutions of well-crystallized (Mn1-xCox)3O4 products are achieved without any impurity phase or phase separation. With increases in the Co dopant concentration x from 0 to 0.5, the lattice parameters change systemically, where the overall saturation magnetization at 30 K increases due to the more intense coupling of the 3d electrons between Mn and Co, as revealed by simulations. The microwave absorption properties of the (Mn1-xCox)3O4 nanoparticles are examined between 2 and 18 GHz. The maximum absorption peak -11.0 dB of the x = 0 sample is enhanced to -11.5 dB for x = 0.2, -12.7 dB for x = 0.25, -15.6 dB for x = 0.33, and -24.0 dB for x = 0.5 respectively, suggesting the Co doping effects. Our results might provide novel insights into the understanding of the influences of metallic ion doping on the electromagnetic properties of metallic oxide nanomaterials. PMID:23868450
NASA Astrophysics Data System (ADS)
Zhao, Pengfei; Liang, Chongyun; Gong, Xiwen; Gao, Ran; Liu, Jiwei; Wang, Min; Che, Renchao
2013-08-01
Monodispersed manganese oxide (Mn1-xCox)3O4 (0 <= x <= 0.5) nanoparticles, less than 10 nm size, are respectively synthesized via a facile thermolysis method at a rather low temperature, ranging from 90 to 100 °C, without any inertia gas for protection. The influences of the Co dopant content on the critical reaction temperature required for the nanoparticle formation, electronic band structures, magnetic properties, and the microwave absorption capability of (Mn1-xCox)3O4 are comprehensively investigated by means of both experimental and theoretical approaches including powder X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), super conductivity quantum interference device (SQUID) examination, and first-principle simulations. Co is successfully doped into the Mn atomic sites of the (Mn1-xCox)3O4 lattice, which is further confirmed by EELS data acquired from one individual nanoparticle. Therefore, continuous solid solutions of well-crystallized (Mn1-xCox)3O4 products are achieved without any impurity phase or phase separation. With increases in the Co dopant concentration x from 0 to 0.5, the lattice parameters change systemically, where the overall saturation magnetization at 30 K increases due to the more intense coupling of the 3d electrons between Mn and Co, as revealed by simulations. The microwave absorption properties of the (Mn1-xCox)3O4 nanoparticles are examined between 2 and 18 GHz. The maximum absorption peak -11.0 dB of the x = 0 sample is enhanced to -11.5 dB for x = 0.2, -12.7 dB for x = 0.25, -15.6 dB for x = 0.33, and -24.0 dB for x = 0.5 respectively, suggesting the Co doping effects. Our results might provide novel insights into the understanding of the influences of metallic ion doping on the electromagnetic properties of metallic oxide nanomaterials.Monodispersed manganese oxide (Mn1-xCox)3O4 (0 <= x <= 0.5) nanoparticles, less than 10 nm size, are respectively synthesized via a facile thermolysis method at a rather low
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean
2015-02-09
In this study, the response of titanate pyrochlores (A_{2}Ti_{2}O_{7}, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O_{2}-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations.
Crystal structure and magnetism in α -RuCl3 : An ab initio study
NASA Astrophysics Data System (ADS)
Kim, Heung-Sik; Kee, Hae-Young
2016-04-01
α -RuCl3 has been proposed recently as an excellent playground for exploring Kitaev physics on a two-dimensional (2D) honeycomb lattice. However, structural clarification of the compound has not been completed, which is crucial in understanding the physics of this system. Here, using ab initio electronic structure calculations, we study a full three-dimensional (3D) structure of α -RuCl3 , including the effects of spin-orbit coupling (SOC) and electronic correlations. The three major results are as follows: (i) SOC suppresses dimerization of Ru atoms, which exists in other Ru compounds such as isostructural Li2RuO3 , and makes the honeycomb closer to an ideal one. (ii) The nearest-neighbor Kitaev exchange interaction between the jeff=1 /2 pseudospin strongly depends on the Ru-Ru distance and the Cl position, originating from the nature of the edge-sharing geometry. (iii) The optimized 3D structure without electronic correlations has P 3 ¯1 m space-group symmetry independent of SOC, but including electronic correlation changes the optimized 3D structure to either C 2 /m or C m c 21 within 0.1 meV per formula unit (f.u.) energy difference. The reported P 3112 structure is also close in energy. The interlayer spin-exchange coupling is a few percent of the in-plane spin-exchange terms, confirming that α -RuCl3 is close to a 2D system. We further suggest how to increase the Kitaev term via tensile strain, which sheds light in realizing the Kitaev spin-liquid phase in this system.
Ab initio quasiparticle band structure of ABA and ABC-stacked graphene trilayers
NASA Astrophysics Data System (ADS)
Menezes, Marcos G.; Capaz, Rodrigo B.; Louie, Steven G.
2014-01-01
We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density-functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low-energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the self-energy corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher-energy bands, which is proportional to the nearest-neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the self-energy corrections. Finally, other effects, such as trigonal warping, electron-hole asymmetry, and energy gaps, are discussed in terms of the associated parameters.
Predicting crystal structures ab initio: group 14 nitrides and phosphides.
Hart, Judy N; Allan, Neil L; Claeyssens, Frederik
2010-08-14
Crystal structures are predicted for a range of group 14 nitrides and phosphides with 1 : 1 stoichiometry, following our method of starting from the known structures for a range of binary compounds and looking for trends in the preferred local bonding environments in the optimised structures. We have previously applied this method to predict the structures of carbon nitride and phosphorus carbide. Here, we use a similar approach to predict the structures of silicon and germanium nitrides and phosphides with 1 : 1 stoichiometry. We find that the local bonding environments in the preferred structures for the nitrides are the same as those for the 3 : 4 stoichiometry. For the phosphides, we have found several possible structures with similar energies. Structures containing hypervalent phosphorus must be considered as these are often low in energy, particularly for GeP; these have not been included in previous work. The greater tendency to form hypervalent phosphorus in GeP than SiP can be rationalised by considering the bond enthalpies for the two compositions. PMID:20603659
Ab Initio Prediction of Transcription Factor Targets Using Structural Knowledge
Kaplan, Tommy; Friedman, Nir; Margalit, Hanah
2005-01-01
Current approaches for identification and detection of transcription factor binding sites rely on an extensive set of known target genes. Here we describe a novel structure-based approach applicable to transcription factors with no prior binding data. Our approach combines sequence data and structural information to infer context-specific amino acid–nucleotide recognition preferences. These are used to predict binding sites for novel transcription factors from the same structural family. We demonstrate our approach on the Cys2His2 Zinc Finger protein family, and show that the learned DNA-recognition preferences are compatible with experimental results. We use these preferences to perform a genome-wide scan for direct targets of Drosophila melanogaster Cys2His2 transcription factors. By analyzing the predicted targets along with gene annotation and expression data we infer the function and activity of these proteins. PMID:16103898
NASA Astrophysics Data System (ADS)
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
Yoshimura, Masato; Chen, Nai-Chi; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Lin, Chien-Chih; Nakagawa, Atsushi; Chen, Chun-Jung
2016-01-01
Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380
Yoshimura, Masato; Chen, Nai Chi; Guan, Hong Hsiang; Chuankhayan, Phimonphan; Lin, Chien Chih; Nakagawa, Atsushi; Chen, Chun Jung
2016-07-01
Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380
Ab initio nuclear structure from lattice effective field theory
Lee, Dean
2014-11-11
This proceedings article reviews recent results by the Nuclear Lattice EFT Collaboration on an excited state of the {sup 12}C nucleus known as the Hoyle state. The Hoyle state plays a key role in the production of carbon via the triple-alpha reaction in red giant stars. We discuss the structure of low-lying states of {sup 12}C as well as the dependence of the triple-alpha reaction on the masses of the light quarks.
Ab initio determination of effective electron-phonon coupling factor in copper
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-04-01
The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.
Ab initio structure determination of n-diamond.
Li, Da; Tian, Fubo; Chu, Binhua; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Lu, Nan; Liu, Bingbing; Cui, Tian
2015-01-01
A systematic computational study on the crystal structure of n-diamond has been performed using first-principle methods. A novel carbon allotrope with hexagonal symmetry R32 space group has been predicted. We name it as HR-carbon. HR-carbon composed of lonsdaleite layers and unique C3 isosceles triangle rings, is stable over graphite phase above 14.2 GPa. The simulated x-ray diffraction pattern, Raman, and energy-loss near-edge spectrum can match the experimental results very well, indicating that HR-carbon is a likely candidate structure for n-diamond. HR-carbon has an incompressible atomic arrangement because of unique C3 isosceles triangle rings. The hardness and bulk modulus of HR-carbon are calculated to be 80 GPa and 427 GPa, respectively, which are comparable to those of diamond. C3 isosceles triangle rings are very important for the stability and hardness of HR-carbon. PMID:26299905
Ab initio structure determination of n-diamond
Li, Da; Tian, Fubo; Chu, Binhua; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Lu, Nan; Liu, Bingbing; Cui, Tian
2015-01-01
A systematic computational study on the crystal structure of n-diamond has been performed using first-principle methods. A novel carbon allotrope with hexagonal symmetry R32 space group has been predicted. We name it as HR-carbon. HR-carbon composed of lonsdaleite layers and unique C3 isosceles triangle rings, is stable over graphite phase above 14.2 GPa. The simulated x-ray diffraction pattern, Raman, and energy-loss near-edge spectrum can match the experimental results very well, indicating that HR-carbon is a likely candidate structure for n-diamond. HR-carbon has an incompressible atomic arrangement because of unique C3 isosceles triangle rings. The hardness and bulk modulus of HR-carbon are calculated to be 80 GPa and 427 GPa, respectively, which are comparable to those of diamond. C3 isosceles triangle rings are very important for the stability and hardness of HR-carbon. PMID:26299905
Ab initio analysis of the defect structure of ceria
NASA Astrophysics Data System (ADS)
Zacherle, T.; Schriever, A.; De Souza, R. A.; Martin, M.
2013-04-01
We calculated the formation energies of all simple point defects in cubic fluorite structured CeO2 using density functional theory within the GGA+U approximation. All possible defect charge states were considered, and also polarons CeCe' and associates of polarons with oxygen vacancies: (VO··-CeCe')· and (CeCe'-VO··-CeCe')×. From the individual defect energies, we extracted Schottky, Frenkel, and anti-Frenkel energies: we find that anti-Frenkel disorder has the lowest energy in ceria. Energies for the reduction and the hydration of ceria are also computed, and the results are in good agreement with experiment. Finally, point-defect concentrations and conductivities are predicted for undoped and donor-doped systems as a function of oxygen partial pressure and temperature. The characteristic slopes found in experiment are reproduced.
Debela, T. T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Wang, S. Y.; Wang, Cai-Zhuang; Jiang, J. Z.
2013-12-12
Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt–Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.
NASA Astrophysics Data System (ADS)
Sivaranjani, T.; Periandy, S.; Xavier, S.
2016-03-01
The FT-IR and FT-Raman spectra of 3-pyridinemethanol (3PYRM) have been recorded in the regions 4000-400 and 4000-100 cm-1 respectively. The vibrational analysis of 3PYRM was carried out using wavenumbers computed by HF and DFT (B3LYP) methods with 6-311++G (d, p) basis set, along with experimental values. The conformational analyses were performed and the energies of the different possible conformers were determined. The total electron density and MESP surfaces of the molecules were constructed using B3LYP/6-311++G (d, p) method to display nucleophilic and electrophilic region globally. The HOMO and LUMO energies were measured and different reactivity descriptors are discussed the active sites of the molecule. Natural Bond Orbital Analysis is discussed and possible transition are correlated with the electronic transitions. Milliken's net charges and the atomic natural charges are also predicted. The 13C and 1H NMR chemical shifts were computed at the B3LYP/6-311++G (2d, p) level by applying GIAO theory and compared with the experimental spectra recorded using the high resolution of 100 MHz and 400 MHz NMR spectrometer with electromagnetic field strength 9.1T, respectively. The temperature dependence of the thermodynamic properties; heat capacity, entropy and enthalpy for the title compounds were also determined by B3LYP/6-311++G (d, p) method.
NASA Astrophysics Data System (ADS)
Zeng, Xiancheng; Hu, Hao; Hu, Xiangqian; Cohen, Aron J.; Yang, Weitao
2008-03-01
Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H2O)62+/3+ and Ru(H2O)62+/3+. The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.
Surface electron density models for accurate ab initio molecular dynamics with electronic friction
NASA Astrophysics Data System (ADS)
Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.
2016-06-01
Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.
Ab initio prediction of protein structure with both all-atom and simplified force fields
NASA Astrophysics Data System (ADS)
Scheraga, Harold
2004-03-01
Using only a physics-based ab initio method, and both all-atom (ECEPP/3) and simplified united-residue (UNRES) force fields, global optimization of both potential functions with Monte Carlo-plus-Minimization (MCM) and Conformational Space Annealing (CSA), respectively, provides predicted structures of proteins without use of knowledge-based information. The all-atom approach has been applied to the 46-residue protein A, and the UNRES approach has been applied to larger CASP targets. The predicted structures will be described.
Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations
NASA Astrophysics Data System (ADS)
Koudriachova, M. V.
2008-06-01
A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.
NASA Astrophysics Data System (ADS)
Govindarajan, M.; Karabacak, M.; Suvitha, A.; Periandy, S.
2012-04-01
In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1 and 50-4000 cm-1, respectively, for 4-chloro-3-nitrotoluene (C7H6NO2Cl) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The effects due to the substitutions of methyl group, nitro group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed.
Govindarajan, M; Karabacak, M; Suvitha, A; Periandy, S
2012-04-01
In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm(-1) and 50-4000 cm(-1), respectively, for 4-chloro-3-nitrotoluene (C7H6NO2Cl) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The effects due to the substitutions of methyl group, nitro group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed. PMID:22261102
NASA Astrophysics Data System (ADS)
Rasool, M. Nasir; Mehmood, Salman; Sattar, M. Atif; Khan, Muhammad Azhar; Hussain, Altaf
2015-12-01
Full potential linearized augmented plane wave method (FPLAPW) has been employed to probe the structural, electronic and magnetic properties of equiatomic yttrium based quaternary Heusler alloys YCoCrZ (Z=Si, Ge, Ga, Al). These calculations have been carried out via ab -initio simulations based on density functional theory (DFT) approach coded by Wien2K. The generalized gradient approximation of Perdew-Burke-Ernzerhof 96 scheme is engaged for calculations in all alloys under investigation. Equilibrium lattice constants are studied by structural optimization performed by computing total energies versus volumes. Structural optimization demonstrates that Y(3/4,3/4,3/4)Co(0,0,0)Cr(1/2,1/2,1/2)Z(1/4,1/4,1/4) (Type-1) configuration is the most stable one. The calculated electronic and magnetic properties based on type-1, indicate that YCoCrZ alloys are half-metallic ferromagnetic. The calculation of spin polarization is also made and further their total magnetic moments follow the Slater Pauling rule of Mtot=NVE-18 conceding the integer value i.e. 4.00μB and 3.00μB for YCoCrSi, Ge and YCoCrGa, Al respectively. The results of density of states (DOS) revealed that yttrium based quaternary Heusler alloys exhibit excellent band gaps i.e. 0.70, 0.65, 0.46 and 0.35 eV for YCoCrSi, Ge, Ga and Al respectively. The formation of band gaps owing to hybridization effect is also described. The half-metallic gaps of these compounds comprising the order YCoCrGa>YCoCrSi>YCoCrAl>YCoCrGe by size, is also manipulated. The incredible spin gapless semiconductor (SGS) type character of YCoCrGa and YCoCrAl having bantam DOS in spin up version is also discoursed. The optimised results of these compounds signpost that these are suitable candidates for spintronics applications.
Ab initio investigation of electronic properties of the magnesium hydride molecular ion.
Khemiri, Noura; Dardouri, Riadh; Oujia, Brahim; Gadéa, Florent Xavier
2013-09-12
In this work, adiabatic potential energy curves, spectroscopic constants, dipole moments, and vibrational levels for numerous electronic states of magnesium hydride molecular ion (MgH(+)) are computed. These properties are determined by the use of an ab initio method involving a nonempirical pseudopotential for the magnesium core (Mg), the core polarization potential (CPP), the l-dependent cutoff functions and the full valence configuration interaction (FCI). The molecular ion is thus treated as a two-electron system. Our calculations on the MgH(+) molecular ion extend previous theoretical works to numerous electronic excited states in the various symmetries. A good agreement with the available theoretical and experimental works is obtained for the spectroscopic constants, the adiabatic potential energy curves, and the dipole moments for the lowest states of MgH(+). PMID:23944679
An ab initio model for the modulation of galactic cosmic-ray electrons
Engelbrecht, N. E.; Burger, R. A.
2013-12-20
The modulation of galactic cosmic-ray electrons is studied using an ab initio three-dimensional steady state cosmic-ray modulation code in which the effects of turbulence on both the diffusion and drift of these cosmic-rays are treated as self-consistently as possible. A significant refinement is that a recent two-component turbulence transport model is used. This model yields results in reasonable agreement with observations of turbulence quantities throughout the heliosphere. The sensitivity of computed galactic electron intensities to choices of various turbulence parameters pertaining to the dissipation range of the slab turbulence spectrum, and to the choice of model of dynamical turbulence, is demonstrated using diffusion coefficients derived from the quasi-linear and extended nonlinear guiding center theories. Computed electron intensities and latitude gradients are also compared with spacecraft observations.
Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones
NASA Astrophysics Data System (ADS)
Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng
2004-04-01
A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.
Xu, Dong; Zhang, Yang
2012-01-01
Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565
Dynamics and Structure of Point Defects in Forsterite: ab initio calculations
NASA Astrophysics Data System (ADS)
Churakov, S.; Khisina, N.; Urusov, V.; Wirth, R.
2001-12-01
OH-bearing fluid inclusions in Fo92 forsterite samples from peridotite nodule 9206 (Udachnaja kimberlite pipe)[1] were documented recently based on TEM and IR studies. The Fourier transform of diffraction pattern from the inclusions exhibited a pattern, which is interpreted as ordered planar (2H)xMg defects. In this study the structure and dynamics of protons associated with Mg(1), Mg(2) vacancies and interstitial polyhedrons ordered in a (100) plane corresponding to double unite cell periodicity of the forsterite lattice has been investigated by ab initio quantum mechanic calculations. Static structure optimizations and ab-initio molecular dynamics (MD) simulations have been performed using the CPMD density functional code[2]. The calculations were accomplished with the BLYP-functional utilizing the generalized gradient approximation. Non-local Goedecker-type pseudopotentials[3] have been applied to account for core electrons. Valence electron orbitals were approximated by plane wave expansion up to 70 Ry energy cutoff. The energy of static structures was sampled on 2x2x2 Monkhorst-Pack mesh[4]. During the structure relaxation parameters of an orthorhombic 2x1x2 supercell contaning 116 atoms corresponding to Mg28Si16O64H8 hydrous olivine was fixed at experimental values of a=9.524Å b=10.225Å and c=11.988Å relative to the Pbnm space group. Series of NVT-MD calculations were performed at 1000 K on 2x1x1 supercell with 58 atoms using four chain Nose thermostat. Randomly disturbed optimized structures were used as initial configuration for MD runs. The 1ps system equilibration is followed by trajectory production over 5 ps interval. A point energy sampling was applied in all MD calculations. A series of geometry optimizations, starting with various initial position of protons in Mg(1), Mg(2) and interstitial sites were carried out to obtain a structure with the lowest lattice energy. It was found that structures with protons completely located within the M1
Ab initio spectroscopic characterization of borane, BH, in its X1Σ+ electronic state.
Koput, Jacek
2015-11-15
The accurate potential energy and electric dipole moment functions of borane, BH, in its X1Σ+ electronic state have been determined from ab initio calculations using the multireference averaged coupled-pair functional method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, adiabatic, and nonadiabatic effects were discussed. Vibration-rotation energy levels of the (11)BH, (11)BD, (10)BH, and (10)BD isotopologues were predicted to near "spectroscopic" accuracy. For the main isotopologue (11)BH, the adiabatic dissociation energy D0 and the effective equilibrium internuclear distance r(e) were predicted to be 28,469 ± 10 cm(-1) and 1.23214 ± 0.0001 Å, respectively. PMID:26444679
Ab Initio Dynamics of AN Electron Interacting with a Lattice Defect
NASA Astrophysics Data System (ADS)
Ivanov, Vsevolod; Bernardi, Marco
We study the scattering process of a charge carrier with a defect in a range of bulk and 2D materials. The scattering potential is obtained using density functional theory, the carrier is represented by a gaussian wavepacket, and the dynamics is carried out with a split-operator technique. Our parallel code can model the electron-defect scattering processes in real space and time, with an electron wavepacket of realistic size (100 - 1000 unit cells) and an accuracy typical of ab initio calculations. We apply our approach to model a carrier scattering with a vacancy in silicon and an impurity in monolayer MoS2, obtaining angular dependent scattering cross sections and resonant states.
Ab initio electron scattering cross-sections and transport in liquid xenon
NASA Astrophysics Data System (ADS)
Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.
2016-09-01
Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac–Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10‑4–1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.
Ab-initio Calculations of Electronic Properties of Boron Phosphide (BP)
NASA Astrophysics Data System (ADS)
Ejembi, John; Franklin, Lashaunda; Malozovsky, Yuriy; Bagayoko, Diola
2014-03-01
We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende boron phosphide (BP). We employed a local density approximation (LDA) potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss our preliminary results for the indirect band gap, from Γ to X, of Boron Phosphide. We also report calculated electron and hole effective masses for Boron Phosphide and total (DOS) and partial (pDOS) density of states. Acknowledgments: This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.
NASA Astrophysics Data System (ADS)
Petit, L.; Paudyal, D.; Mudryk, Y.; Gschneidner, K. A.; Pecharsky, V. K.; Lüders, M.; Szotek, Z.; Banerjee, R.; Staunton, J. B.
2015-11-01
We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f -electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar-1 for GdCd confirmed by our experimental measurements of +1.6 K kbar-1 . Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. Replacing 35% of the Mg atoms with Zn removes this transition, in excellent agreement with long-standing experimental data.
Calderín, L; González, L E; González, D J
2009-05-21
We report a study on several static, dynamic, and electronic properties of liquid Hg at room temperature. We have performed ab initio molecular dynamics simulations using Kohn-Sham density functional theory combined with a nonlocal ultrasoft pseudopotential. The calculated static structure shows good agreement with the available experimental data. We present results for the single-particle dynamics, and recent experimental data are analyzed. The calculated dynamic structure factors S(q,omega) fairly agree with their experimental counterparts as measured by inelastic x-ray (and neutron) scattering experiments. The dispersion relation exhibits a positive dispersion, which however is not so marked as suggested by the experiment; moreover, its slope at the long-wavelength limit provides a good estimate of the experimental sound velocity. We have also analyzed the dynamical processes behind the S(q,omega) in terms of a model including a relaxation mechanism with both fast and slow characteristic time scales. PMID:19466841
Ab initio study of the structure and dynamics of bulk liquid Fe
NASA Astrophysics Data System (ADS)
Marqués, M.; González, L. E.; González, D. J.
2015-10-01
Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the structure factor which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, with an associated dispersion relation which closely follows the experimental data. The dynamic structure factors S (q ,ω ) show a good agreement with their experimental counterparts which have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and the results are compared with the available experimental data.
NASA Astrophysics Data System (ADS)
Kang, Youngho; Jeon, Sang Ho; Cho, Youngmi; Han, Seungwu
2016-01-01
We investigate the vertical ionization potential (IP) and electron affinity (EA) of organic semiconductors in the solid state that govern the optoelectrical property of organic devices using a fully ab initio way. The present method combines the density functional theory and many-body perturbation theory based on G W approximations. To demonstrate the accuracy of this approach, we carry out calculations on several prototypical organic molecules. Since IP and EA depend on the molecular orientation at the surface, the molecular geometry of the surface is explicitly considered through the slab model. The computed IP and EA are in reasonable and consistent agreements with spectroscopic data on organic surfaces with various molecular arrangements. However, the transport gaps are slightly underestimated in calculations, which can be explained by different screening effects between surface and bulk regions.
NASA Astrophysics Data System (ADS)
Kumar, Anupriya; Kołaski, Maciej; Kim, Kwang S.
2008-01-01
Structures of the ground state pyrrole-(H2O)n clusters are investigated using ab initio calculations. The charge-transfer driven femtosecond scale dynamics are studied with excited state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field method for pyrrole-(H2O)n clusters. Upon the excitation of these clusters, the charge density is located over the farthest water molecule which is repelled by the depleted π-electron cloud of pyrrole ring, resulting in a highly polarized complex. For pyrrole-(H2O), the charge transfer is maximized (up to 0.34a.u.) around ˜100fs and then oscillates. For pyrrole-(H2O)2, the initial charge transfer occurs through the space between the pyrrole and the π H-bonded water molecule and then the charge transfer takes place from this water molecule to the σ H-bonded water molecule. The total charge transfer from the pyrrole to the water molecules is maximized (up to 0.53a.u.) around ˜100fs.
Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations
NASA Astrophysics Data System (ADS)
Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.
2012-05-01
An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.
NASA Technical Reports Server (NTRS)
Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray
2011-01-01
Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.
NASA Astrophysics Data System (ADS)
Zhou, Liangcai; Körmann, Fritz; Holec, David; Bartosik, Matthias; Grabowski, Blazej; Neugebauer, Jörg; Mayrhofer, Paul H.
2014-11-01
The dynamical and thermodynamic phase stabilities of the stoichiometric compound CrN including different structural and magnetic configurations are comprehensively investigated using a first-principles density functional theory (DFT) plus U (DFT +U ) approach in conjunction with experimental measurements of the thermal expansion. Comparing DFT and DFT +U results with experimental data reveals that the treatment of electron correlations using methods beyond standard DFT is crucial. The nonmagnetic face-centered cubic B1-CrN phase is both elastically and dynamically unstable, even under high pressure, while CrN phases with nonzero local magnetic moments are predicted to be dynamically stable within the framework of the DFT +U scheme. Furthermore, the impact of different treatments for the exchange-correlation (xc)-functional is investigated by carrying out all computations employing the local density approximation and generalized gradient approximation. To address finite-temperature properties, both magnetic and vibrational contributions to the free energy have been computed employing our recently developed spin-space averaging method. The calculated phase transition temperature between low-temperature antiferromagnetic and high-temperature paramagnetic (PM) CrN variants is in excellent agreement with experimental values and reveals the strong impact of the choice of the xc-functional. The temperature-dependent linear thermal expansion coefficient of CrN is experimentally determined by the wafer curvature method from a reactive magnetron sputter deposited single-phase B1-CrN thin film with dense film morphology. A good agreement is found between experimental and ab initio calculated linear thermal expansion coefficients of PM B1-CrN. Other thermodynamic properties, such as the specific heat capacity, have been computed as well and compared to previous experimental data.
NASA Astrophysics Data System (ADS)
Jakubek, Z. J.; Bunker, P. R.; Zachwieja, M.; Nakhate, S. G.; Simard, B.; Yurchenko, S. N.; Thiel, W.; Jensen, Per
2006-03-01
In this work, the X˜B12 and ÃA12 electronic states of the phosphino (PH2) free radical have been studied by dispersed fluorescence and ab initio methods. PH2 molecules were produced in a molecular free-jet apparatus by laser vaporizing a silicon rod in the presence of phosphine (PH3) gas diluted in helium. The laser-induced fluorescence, from the excited ÃA12 electronic state down to the ground electronic state, was dispersed and analyzed. Ten (υ1υ2υ3) vibrationally excited levels of the ground electronic state, with υ1⩽2, υ2⩽6, and υ3=0, have been observed. Ab initio potential-energy surfaces for the X˜B12 and ÃA12 electronic states have been calculated at 210 points. These two states correlate with a Πu2 state at linearity and they interact by the Renner-Teller coupling and spin-orbit coupling. Using the ab initio potential-energy surfaces with our RENNER computer program system, the vibronic structure and relative intensities of the ÃA12→X˜B12 emission band system have been calculated in order to corroborate the experimental assignments.
Ab initio investigations of A-site doping on the structure and electric polarization of HoMnO3
NASA Astrophysics Data System (ADS)
S, Sathya Sheela; C, Kanagaraj; Natesan, Baskaran
2015-06-01
We have investigated the effect of A-site doping on the structure and electric polarization of orthorhombic HoMnO3 using ab initio density functional theory calculations. We find that the substitution of rare earth ions, such as Lu, Y and La in place of Ho in orthorhombic HoMnO3 modifies the local structure around Mn ions drastically, and leads to the formation of two distinct Mn sites Mn(0) and Mn(1). As a result, large variance between Mn(0)O6 and Mn(1)O6 octahedral distortions arises. This variance in the octahedral distortions drives the disparate hopping of electrons between the eg orbitals enhancing the electronic polarization with increasing rare earth ion radius. The largest polarization of 7 µC/cm2 is obtained for La doped HoMnO3. This increase in polarization has been explained on the basis of radius mismatch induced local structural effects.
The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2 : Ab Initio Calculations
NASA Astrophysics Data System (ADS)
Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.
2016-01-01
Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.
Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W
2015-01-28
X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range. PMID:25524926
NASA Astrophysics Data System (ADS)
Durandurdu, Murat
2009-03-01
Ab initio constant pressure molecular dynamics simulations within a generalized gradient approximation (GGA) are carried out to study the structural phase transformation of ZnSe under hydrostatic and nonhydrostatic conditions. ZnSe undergoes a first-order phase transition from the zinc-blende structure to a rocksalt structure having practically identical transformation mechanisms under hydrostatic and nonhydrostatic compressions. This phase transformation is also analyzed using the enthalpy calculations. Our transition parameters and bulk properties are comparable with experimental and theoretical data. Furthermore, the influence of pressure on the electronic structure of ZnSe is investigated. It is found that the band gap energy increases nonlinearly under both hydrostatic and nonhydrostatic conditions and the effect of stress deviations on the band gap energy is small. The computed pressure coefficients and deformation potential of the band gap are in good agreement with experiments.
Structure and mechanical properties of cement and intermetallic compounds via ab-initio simulations
NASA Astrophysics Data System (ADS)
Dharmawardhana, Chamila Chathuranga
Calcium silicate hydrates comprise a class of minerals formed synthetically during Portland cement hydration or naturally through various geological processes. The importance of these minerals is immense since they are the primary binding phases for Portland cement derived construction materials. Efforts spanning centuries have been devoted to understand the structural aspects of cohesion in these minerals. In recent years, the focus has progressively turned to atomic level comprehension. Structurally these minerals can range from crystalline to highly disordered amorphous phases. This thesis focuses upon unraveling the nature of chemical bonding in a large subset of calcium silicate hydrate (CSH) crystals. Thus their electronic structure was calculated and bonding mechanisms were investigated quantitatively. Results highlight a wide range of contributions from each type of bonding (Si-O, Ca-O, O-H and hydrogen bond) with respect to silicate polymerization, crystal symmetry, water and OH content. Consequently, total bond order density (TBOD) was designated as the overall single criterion for characterizing crystal cohesion. The TBOD categorization indicates that a rarely known orthorhombic phase Suolunite is closest to the ideal composition and structure of cement. Present work finds the relationship of partial bond order density (PBOD) of each bond species, especially HBs to the mechanical properties of CSH crystals. This can be used as a basis to validate existing C-S-H models and to build improved ones. This work goes further and validates the recently proposed models (2014) for C-S-H (I) phase on the same basis of proposed electronic structure parameters. Then the respective Calcium aluminosilicate hydrates C-A-S-H (I) phase models are proposed. Finally, these results lead to improved interpretations and construction of realistic atomistic models of cement hydrates. Ab initio molecular dynamics (AIMD) could be vital to solve critical problems in complex
Ab Initio Calculation of Structure and Thermodynamic Properties of Zintl Aluminide SrAl2
NASA Astrophysics Data System (ADS)
Fu, Zhi-Jian; Jia, Li-Jun; Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong; Sun, Xiao-Wei; Chen, Qi-Feng
2015-12-01
The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl2 at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory methodwithin the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl2 are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations inthe thermal expansion α are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.
Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study
Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z
2014-04-01
The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Rana, Malay Kumar; Chandra, Amalendu
2013-05-28
The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations. PMID:23742495
NASA Astrophysics Data System (ADS)
Liang, Wenkel
This dissertation consists of two general parts: (I) developments of optimization algorithms (both nuclear and electronic degrees of freedom) for time-independent molecules and (II) novel methods, first-principle theories and applications in time dependent molecular structure modeling. In the first part, we discuss in specific two new algorithms for static geometry optimization, the eigenspace update (ESU) method in nonredundant internal coordinate that exhibits an enhanced performace with up to a factor of 3 savings in computational cost for large-sized molecular systems; the Car-Parrinello density matrix search (CP-DMS) method that enables direct minimization of the SCF energy as an effective alternative to conventional diagonalization approach. For the second part, we consider the time dependence and first presents two nonadiabatic dynamic studies that model laser controlled molecular photo-dissociation for qualitative understandings of intense laser-molecule interaction, using ab initio direct Ehrenfest dynamics scheme implemented with real-time time-dependent density functional theory (RT-TDDFT) approach developed in our group. Furthermore, we place our special interest on the nonadiabatic electronic dynamics in the ultrafast time scale, and presents (1) a novel technique that can not only obtain energies but also the electron densities of doubly excited states within a single determinant framework, by combining methods of CP-DMS with RT-TDDFT; (2) a solvated first-principles electronic dynamics method by incorporating the polarizable continuum solvation model (PCM) to RT-TDDFT, which is found to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. (3) applications of the PCM-RT-TDDFT method to study the intramolecular charge-transfer (CT) dynamics in a C60 derivative. Such work provides insights into the
NASA Astrophysics Data System (ADS)
Benassi, R.; Bertarini, C.; Hilfert, L.; Kempter, G.; Kleinpeter, E.; Spindler, J.; Taddei, F.; Thomas, S.
2000-03-01
The structure of a number of 2- exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a, b, 4( X=-CN, -COOEt ) and their 2-cyanoimino substituted analogues 2, 3c, d( X=-CN, -SO 2C 6H 4-Me (p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/ Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push-pull effect in this part of the molecules the restricted rotation about the partial C 2,C 11 and C 2,N 11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1- 4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c, d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.
NASA Astrophysics Data System (ADS)
Baba, Masaak
2009-06-01
Polycyclic aromatic hydrocarbons (PAHs) are fascinating objects of basic studies on molecular structure and excited-state dynamics. We have observed and analyzed rotationally resolved ultrahigh-resolution spectra of the S_1 ← S_0 transition of naphthalene, anthracene, pyrene and perylene (all D_{2h} symmetry) in collimated supersonic jets. We conclude that radiationless transitions are all slow in the S_1 zero-vibrational level of the isolated PAH molecule. Possible radiationless processes are intersystem crossing (ISC), internal conversion (IC), and predissociation. Predissociation does not take place because all of the bond energies are larger than the S_1 ← S_0 excitation energy. The observed radiationless process has been presumed to be ISC so far. However, it is inconsistent with El-Sayed's rule that spin-orbit interaction is very weak between the ^1ππ^* and ^3ππ^* states. We have observed Zeeman splitting of each rotational line and shown that the magnetic moment is very small in the S_1 state. Therefore, the main radiationless process is not ISC to the triplet state, but IC to the hot ground state. IC is caused by non-Born-Oppenheimer vibronic interaction, which is expected to be very weak if the molecular structure is identical for both electronic states. The experimentally determined rotational constants are almost identical for the S_0 and S_1 states. It is consistent with the observed long lifetime and high fluorescence quantum yield of PAHs. We carried out ab initio calculation, and the resultant values of rotational constants of the S_0 state are in extremely good coincidence with the experimental ones for naphthalene and anthracene. On the contrary, for the excited state, it is necessary to perform huge SAC-CI calculation to obtain satisfactory results. Fast IC has been found, for instance, in high vibrational levels of benzene (channel 3), which is due to unavoided potential crossing (conical intersection). However, it is not likely in large
Ab initio calculations of the mechanical and electronic properties of strained Si nanowires
NASA Astrophysics Data System (ADS)
Leu, Paul W.; Svizhenko, Alexei; Cho, Kyeongjae
2008-06-01
This paper reports a systematic study of the mechanical and electronic properties of strained small diameter (0.7-2.6 nm) silicon nanowires (Si NWs) using ab initio density functional theory calculations. The values of Young’s modulus, Poisson ratio, band gap, effective mass, work function, and deformation potentials are calculated for ⟨110⟩ and ⟨111⟩ Si NWs. We find that quantum confinement in ⟨110⟩ Si NWs splits conduction band valleys and decreases transport effective mass compared to the bulk case. Consequently, additional tensile strain should not lead to further significant electron mobility improvement. An interesting finding we report in this paper is that under compressive strain, there is a dramatic decrease in deformation potentials of ⟨110⟩ Si NWs, which may result in a strong increase in electron mobilities, despite a concurrent increase in effective mass. We also observe a similar strain-induced counterplay of hole deformation potentials and effective masses for both ⟨110⟩ and ⟨111⟩ Si NWs. Finally, we do not see any significant effect of tensile or compressive strain on electron effective masses and deformation potentials in ⟨111⟩ Si NWs. The sudden changes in effective mass and deformation potentials are concurrent with a change in the conduction and valence band edge states. In ⟨110⟩ NWs, this change corresponds to a transition from direct-to-indirect band gap under strain.
NASA Astrophysics Data System (ADS)
Spassova, Milena; Enchev, Venelin
2004-03-01
An ab initio HF and MP2 study of the static (hyper)polarizabilities of 2,4-substituted imidazoles and thiazoles is presented. The comparison of the two types of five-membered heterocycles suggests, that the exocyclic heteroatoms have much more influence upon the calculated hyperpolarizabilities, than the ring heteroatoms. It has been found, that adding diffuse functions to the 6-31G** basis set and inclusion of the electron correlation result in drastic changes in the second hyperpolarizability. The changes are more pronounced for the structures with larger number of sulfur atoms. A HF/6-31G** investigation of a push-pull system, in which thiorhodanine has been chosen as acceptor fragment shows an enhancement of the molecular polarizabilities with respect to the corresponding typical donor-acceptor NH 2/NO 2 polyene.
NASA Astrophysics Data System (ADS)
Erba, A.
2014-09-01
A general-purpose, fully automated, computationally efficient implementation is presented of a series of techniques for the simultaneous description of pressure and temperature effects on structural properties of materials, by means of standard ab initio simulations. Equilibrium volume, bulk modulus, thermal expansion coefficient, equation-of-state, Grüneisen parameter, constant-pressure and constant-volume specific heats are computed as a function of temperature and pressure for the simple crystal of diamond and compared with accurate experimental data. Convergence of computed properties with respect to super-cell size is critically discussed. The effect on such properties of the adopted exchange-correlation functional of the density-functional-theory is discussed by considering three different levels of approximation (including hybrids): it is found to be rather small for the temperature dependence of equilibrium volume and bulk modulus, whereas it is quite large as regards their absolute values.
Erba, A
2014-09-28
A general-purpose, fully automated, computationally efficient implementation is presented of a series of techniques for the simultaneous description of pressure and temperature effects on structural properties of materials, by means of standard ab initio simulations. Equilibrium volume, bulk modulus, thermal expansion coefficient, equation-of-state, Grüneisen parameter, constant-pressure and constant-volume specific heats are computed as a function of temperature and pressure for the simple crystal of diamond and compared with accurate experimental data. Convergence of computed properties with respect to super-cell size is critically discussed. The effect on such properties of the adopted exchange-correlation functional of the density-functional-theory is discussed by considering three different levels of approximation (including hybrids): it is found to be rather small for the temperature dependence of equilibrium volume and bulk modulus, whereas it is quite large as regards their absolute values. PMID:25273420
Feng, Wen-Ling; Tian, Shan Xi
2015-03-12
Dissociative electron attachment (DEA) processes of six low-lying conformers (1-6) of dialanine in the gas phase are investigated by using ab initio molecular dynamics simulations. The incoming electron is captured and primarily occupies the virtual molecular orbital π*, which is followed by the different dissociation processes. The electron attachments to conformers 1 and 2 having the stronger N-H···N and O-H···O intramolecular hydrogen bonds do not lead to fragmentations, but two different backbone bonds are broken in the DEAs to conformers 3 (or 4) and 6, respectively. It is interesting that the hydrogen abstraction of -NH from the terminal methyl group -CH3 is found in the roaming dissociation of the temporary anion of conformer 3. The present simulations enable us to have more insights into the peptide backbone bond breaks in the DEA process and demonstrate a promising way toward understanding of the radiation damages of complicated biological system. PMID:25679256
Ab-Initio Calculations of Electronic Properties of InP and GaP
NASA Astrophysics Data System (ADS)
Malozovsky, Y.; Franklin, L.; Ekuma, E. C.; Zhao, G. L.; Bagayoko, D.
2013-06-01
We present results from ab-initio, self-consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende indium phosphide (InP) and gallium phosphide (GaP). We employed a LDA potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). This method searches for the optimal basis set that yields the minima of the occupied energies. This search entails increases of the size of the basis set and the related modifications of angular symmetry and of radial orbitals. Our calculated, direct band gap of 1.398 eV (1.40 eV), at the Γ point, is in excellent agreement with experimental values, for InP, and our preliminary result for the indirect gap of GaP is 2.135 eV, from the Γ to X high symmetry points. We have also calculated electron and hole effective masses for both InP and GaP. These calculated properties also agree with experimental findings. We conclude that the BZW-EF method could be employed in calculations of electronic properties of high-Tc superconducting materials to explain their complex properties.
ab Initio Diabatic energies and dipole moments of the electronic states of RbLi molecule.
Dardouri, Riadh; Habli, Héla; Oujia, Brahim; Gadéa, Florent Xavier
2013-09-15
For all states dissociating below the ionic limit Li(-) Rb(+) , we perform a diabatic study for (1) Σ(+) electronic states dissociating into Rb (5s, 5p, 4d, 6s, 6p, 5d, 7s, 4f) + Li (2s, 2p, 3s). Furthermore, we present the diabatic results for the 1-11 (3) σ, 1-8 (1,3) Π, and 1-4 (1,3) Δ states. The present calculations on the RbLi molecule are complementary to previous theoretical work on this system, including recently observed electronic states that had not been calculated previously. The calculations rely on ab-initio pseudopotential, core polarization potential operators for the core-valence correlation and full valence configuration interaction approaches, combined to an efficient diabatization procedure. For the low-lying states, diabatic potentials and permanent dipole moments are analyzed, revealing the strong imprint of the ionic state in the (1) Σ(+) adiabatic states. The transition dipole moment is used to evaluate the radiative lifetimes of the vibrational levels trapped in the 2 (1) Σ(+) excited states for the first time. In addition to the bound-bound contribution, the bound-free term has been evaluated using the Franck-Condon approximation and also exactly added to the total radiative lifetime. PMID:23804208
Ab-initio Electronic, Transport and Related Properties of Zinc Blende Boron Arsenide (zb-BAs)
NASA Astrophysics Data System (ADS)
Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola
We present results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide (zb-BAs). We utilized a local density approximation (LDA) potential and the linear combination of atomic orbital (LCAO) formalism. Our computational technique follows the Bagayoko, Zhao, and Williams method, as enhanced by Ekuma and Franklin. Our results include electronic energy bands, densities of states, and effective masses. We explain the agreement between these findings, including the indirect band gap, and available, corresponding, experimental ones. This work confirms the capability of DFT to describe accurately properties of materials, provided the computations adhere to the conditions of validity of DFT [AIP Advances, 4, 127104 (2014)]. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.
A nonlocal, ab initio model of dissociative electron attachment and vibrational excitation of NO
Trevisan, Cynthia S.; Houfek, Karel; Zhang, Zhiyong; Orel, Ann E.; McCurdy, C. William; Rescigno, Thomas N.
2005-02-01
We present the results of an ab initio study of elastic scattering and vibrational excitation of NO by electron impact in the low-energy (0-2 eV) region where the cross sections are dominated by resonance contributions. The 3Sigma-, 1Delta and 1Sigma+ NO- resonance lifetimes are taken from our earlier study [Phys. Rev. A 69, 062711 (2004)], but the resonance energies used here are obtained from new configuration-interaction studies. Here we employ a more elaborate nonlocal treatment of the nuclear dynamics, which is found to remedy the principal deficiencies of the local complex potential model we employed in our earlier study, and gives cross sections in better agreement with the most recent experiments. We also present cross sections for dissociative electron attachment to NO leading to groundstate products. The calculations show that, while the peak cross sections starting from NO in its ground vibrational state are very small, the cross sections are extremely sensitive to vibrational excitation of the target and should be readily observable for target NO molecules excited to v = 10 and above.
Ab-Initio Computations of Electronic and Related Properties of cubic Lithium Selenide (Li2Se)
NASA Astrophysics Data System (ADS)
Goita, Abdoulaye; Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola
We present theoretical predictions, from ab-initio, self-consistent calculations, of electronic and related properties of cubic lithium selenide (Li2Se). We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). We performed the computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Our results include electronic energies, total and partial densities of states, effective masses, and the bulk modulus. The theoretical equilibrium lattice constant is 5.882 Å. We found cubic Li2Se to have a direct band gap of 4.363 eV (prediction), at Γ. This gap is 4.065 eV for a room temperature lattice constant of 6.017 Å. The calculated bulk modulus is 31.377 GPa. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.
Ab-initio Calculations of Accurate Electronic Properties of ZnS
NASA Astrophysics Data System (ADS)
Khamala, Bethuel; Franklin, Loushanda; Malozovski, Yuriy; Stewart, Anthony; Bagayoko, Diola; Bagayoko Research Group Team
2014-03-01
We present the results from ab-initio, self consistent, local density approximation (LDA) calculations of the electronic and related properties of zinc-blende zinc sulphide (zb-ZnS). We employed the Ceperley and Alder LDA potential and the linear combination of atomic orbital (LCAO) formalism in our non-relativistic computations. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams method as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method includes a methodical search for the optimal basis set that yields the minima of the occupied energies. This search entails increasing the size of the basis set and related modifications of angular symmetry and of radial orbitals. Our calculated, direct gap of 3.725 eV, at the Γ point, is in excellent agreement with experiment. We have also calculated the total (DOS) and partial (pDOS) densities of states, electron and hole effective masses and total energies that agree very well with available, corresponding experimental results. Acknowledgement: This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.
Ab-initio Calculations of Electronic Properties of InP and GaP
NASA Astrophysics Data System (ADS)
Malozovsky, Yuriy; Franklin, Lashounda; Ekuma, Chinedu; Zhao, Guang-Lin; Bagayoko, Diola
2013-03-01
We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende indium and gallium phosphides (InP & GaP) We employed a local density approximation (LDA) potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). This method searches for the optimal basis set that yields the minima of the occupied energies. This search entails methodically increasing the size of the basis set, up to the optimal one, and the accompanying enrichment of angular symmetry and of radial orbitals. Our calculated, direct band gap of 1.398 eV (1.40 eV) for InP, at the Γ point, is in excellent agreement with experimental values. We discuss our preliminary results for the indirect band gap, from Γ to X, of GaP. We also report calculated electron and hole effective masses for both InP and GaP and the total (DOS) and partial (pDOS) densities of states. This work was funded in part by the National Science Foundation and the Louisiana Board of Regents, through LASiGMA and LS-LAMP, [EPS-1003897, No. NSF (2010-15)-RII-SUBR, and HRD-1002541] and by the Louisiana Optical Network Initiative (LONI) at SUBR.
Ab initio prediction of electronic, transport and bulk properties of Li2S
NASA Astrophysics Data System (ADS)
Malozovsky, Yuriy; Franklin, Lashounda; Ekuma, Chinedu; Bagayoko, Diola
2015-08-01
In this paper, we present results from ab initio, self-consistent, local density approximation (LDA) calculations of electronic and related properties of cubic antifluorite (anti-CaF2) lithium sulfide (Li2S). Our nonrelativistic computations implemented the linear combination of atomic orbital (LCAO) formalism following the Bagayoko, Zhao and Williams method, as enhanced by Ekuma and Franklin (BZW-EF). Consequently, using several self-consistent calculations with increasing basis sets, we searched for the smallest basis set that yields the absolute minima of the occupied energies. The outcomes of the calculation with this basis set, called the optimal basis set, have the full physical content of density functional theory (DFT). Our calculated indirect band gap, from Γ to X, is 3.723 eV, for the low temperature experimental lattice constant of 5.689 Å. The predicted indirect band gap of 3.702 eV is obtained for the computationally determined equilibrium lattice constant of 5.651 Å. We have also calculated the total density of states (DOS) and partial densities of states (pDOS), electron and hole effective masses and the bulk modulus of Li2S. Due to a lack of experimental results, most of the calculated ones reported here are predictions for this material suspected of exhibiting a high temperature superconductivity similar to that of MgB2.
Ab-initio Calculations of Accurate Electronic Properties of Wurzite AlN
NASA Astrophysics Data System (ADS)
Nwigboji, Ifeanyi; Malozovsky, Yuriy; Bagayoko, Diola; Bagayoko Research Group Team
2014-03-01
We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of wurtzite Aluminum Nitride (w-AlN). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbital (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams' method as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method verifiably obtains the minima of the occupied energies; these minima provide the most variationally and physically valid density functional theory (DFT) description of the ground states of materials under study. Our preliminary results for w-AlN show that w-AlN has a direct band gap of 5.82 eV at the Γ point. The preliminary energy bands were obtained with a basis set comprising 48 functions. None of the several, larger basis sets tested to date led to occupied energies lower than those obtained with the above 48. While most previous LDA calculations are 2 eV smaller or more than the experimental value of 5.9 eV that is in excellent agreement with our finding, considering the typical experimental uncertainty of 0.2 eV for absorption measurements on AlN. We also discuss our calculated density of states (DOS) and partial densities of states (pDOS).
Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization
NASA Astrophysics Data System (ADS)
Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng
With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.
NASA Astrophysics Data System (ADS)
Polin, Daniel; Ziegler, Joshua; Malozovsky, Yuriy; Bagayoko, Diola
We present the findings of ab-initio calculations of electronic, transport, and structural properties of cubic sodium oxide (Na2O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO). Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). We describe the electronic band structure of Na2O with a direct band gap of 2.22 eV. Our results include predicted values for the electronic band structure and associated energy eigenvalues, the total and partial density of states (DOS and pDOS), the equilibrium lattice constant of Na2O, and the bulk modulus. We have also calculated the electron and holes effective masses in the Γ to L, Γ to X, and Γ to K directions. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.
Castellano, O; Bermúdez, Y; Giffard, M; Mabon, G; Cubillan, N; Sylla, M; Nguyen-Phu, X; Hinchliffe, A; Soscún, H
2005-11-17
The geometries and the static dipole (hyper)polarizabilities (alpha, beta, gamma) of a series of aromatic anions were investigated at the ab initio (HF, MP2, and MP4) and density functional theory DFT (B3LYP) levels of theory. The anions chosen for the present study are the benzenethiolate (Ph-S-), benzenecarboxylate (Ph-CO2-), benzenesulfinate (Ph-SO2-), benzenesulfonate (Ph-SO3-), and 1,3-benzenedicarboxylate (1,3-Ph-(CO2)2(2-)). For benzenethiolate anion, additional alpha, beta, and gamma calculations were performed at the coupled cluster CCSD level with MP2 optimized geometries. The standard diffuse and polarized 6-31+G(d,p) basis set was employed in conjunction to the ab initio and DFT methods. Additional HF calculations were performed with the 6-311++G(3d,3p) basis set for all the anions. The correlated electric properties were evaluated numerically within the formalism of finite field. The optimized geometries were analyzed in terms of the few reports about the phenolate and sulfonate ions. The results show that electron correlation effects on the polarizabilities are very important in all the anion series. Was found that Ph-SO2- is highly polarizable in terms of alpha and beta, and the Ph-S- is the highest second hyperpolarizable in the series. The results of alpha were rationalized in terms of the analysis of the polarization of charge based in Mulliken atomic population and the structural features of the optimized geometries of anions, whereas the large differences in the beta and gamma values in the series were respectively interpreted in terms of the bond length alternation BLA and the separation of charge in the aromatic ring by effects of the substitution. These results allowed us to suggest the benzenesulfinate and benzenethiolate anions as promising candidates that should be incorporated in ionic materials for second and third-order nonlinear optical devices. PMID:16833334
NASA Astrophysics Data System (ADS)
Souto, J.; Alemany, M. M. G.; Gallego, L. J.; Gonzalez, L. E.; Gonzalez, D. J.
2013-03-01
We perform an ab initio molecular dynamics study of the static, dynamic and electronic properties of the liquid Bi-Pb alloy at three concentrations, including the eutectic one. This alloy is of particular technological interest for its possible use as coolant in fast reactors. Our predictions are in good agreement with the available experimental data. In particular, the computed total static structure factors reproduce accurately the neutron diffraction results, and the predicted adiabatic sound velocity and shear viscosity compare well with the experimental values. The partial dynamic structure factors exhibit clear side peaks indicative of propagating density fluctuations, and the longitudinal and transverse dispersion relations show several branches.The electronic density of states show that the liquid Bi-Pb alloy is a good metal, but with strong deviations from the free-electron parabolic curve. Supported by FIS2008-02490/FIS, FIS2008-04894/FIS, VA068A06, GR120, INCITE09E2R206033ES and INCITE08PXIB206107PR
Ab initio study of the low lying electronic states of ZnF and ZnF-.
Hayashi, Shinsuke; Léonard, Céline; Chambaud, Gilberte
2008-07-28
Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure and of the spectroscopy of the low lying electronic states of the ZnF system. Using effective core pseudopotentials and aug-cc-pVQZ basis sets for both atoms, the potential curves, the dipole moment functions, and the transition dipole moments between relevant electronic states have been calculated at the multireference-configuration-interaction level. The spectroscopic constants calculated for the X(2)Sigma(+) ground state are in good agreement with the most recent theoretical and experimental values. It is shown that, besides the X(2)Sigma(+) ground state, the B(2)Sigma(+), the C(2)Pi, and the D(2)Sigma(+) states are bound. The A(2)Pi state, which has been mentioned in previous works, is not bound but its potential presents a shoulder in the Franck-Condon region of the X(2)Sigma(+) ground state. All of the low lying quartet states are found to be repulsive. The absorption transitions from the v=0 level of the X(2)Sigma(+) ground state toward the three bound states have been evaluated and the spectra are presented. The potential energy of the ZnF(-) molecular anion has been determined in the vicinity of its equilibrium geometry and the electronic affinity of ZnF (EA=1.843 eV with the zero energy point correction) has been calculated in agreement with the photoelectron spectroscopy experiments. PMID:18681652
Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes
NASA Astrophysics Data System (ADS)
Groth, S.; Schoof, T.; Dornheim, T.; Bonitz, M.
2016-02-01
The uniform electron gas (UEG) at finite temperature is of key relevance for many applications in the warm dense matter regime, e.g., dense plasmas and laser excited solids. Also, the quality of density functional theory calculations crucially relies on the availability of accurate data for the exchange-correlation energy. Recently, results for N =33 spin-polarized electrons at high density, rs=r ¯/aB≲4 , and low temperature have been obtained with the configuration path integral Monte Carlo (CPIMC) method [T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015), 10.1103/PhysRevLett.115.130402]. To achieve these results, the original CPIMC algorithm [T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011), 10.1002/ctpp.201100012] had to be further optimized to cope with the fermion sign problem (FSP). It is the purpose of this paper to give detailed information on the manifestation of the FSP in CPIMC simulations of the UEG and to demonstrate how it can be turned into a controllable convergence problem. In addition, we present new thermodynamic results for higher temperatures. Finally, to overcome the limitations of CPIMC towards strong coupling, we invoke an independent method—the recently developed permutation blocking path integral Monte Carlo approach [T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015), 10.1063/1.4936145]. The combination of both approaches is able to yield ab initio data for the UEG over the entire density range, above a temperature of about one half of the Fermi temperature. Comparison with restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013), 10.1103/PhysRevLett.110.146405] allows us to quantify the systematic error arising from the free particle nodes.
Marquardt, Roberto; Sagui, Kenneth; Zheng, Jingjing; Thiel, Walter; Luckhaus, David; Yurchenko, Sergey; Mariotti, Fabio; Quack, Martin
2013-08-15
The analytical, full-dimensional, and global representation of the potential energy surface of NH(3) in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD(T)) and the method of multireference configuration interaction (MRCI). CCSD(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20,000 hc cm(–1). MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10,000 geometries at the CCSD(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r(eq)(NH(3)) ≈ 101.28 pm, α(eq)(NH(3)) ≈ 107.03°, the inversion barrier at r(inv)(NH(3)) ≈ 99.88 pm and 1774 hc cm(–1) above the NH(3) minimum, and dissociation channel energies 41,051 hc cm(–1) (for NH(3) → ((2)B(2))NH(2) + ((2)S(1/2))H) and 38,450 hc cm(–1) (for NH(3) → ((3)Σ(–))NH +((1)Σ(g)(+))H(2)); the average agreement between calculated and experimental vibrational line positions is 11 cm(–1) for (14)N(1)H(3) in the spectral region up to 5000 cm(–1). A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given. PMID:23688044
Li, Zi; Li, Chuanying; Wang, Cong; Zhang, Ping; Kang, Wei
2015-11-15
Ultrafast laser experiments on metals usually induce a high electron temperature and a low ion temperature and, thus, an energy relaxation process. The electron heat capacity and electron-phonon coupling factor are crucial thermal quantities to describe this process. We perform ab initio theoretical studies to determine these thermal quantities and their dependence on density and electron temperature for the metals aluminum and beryllium. The heat capacity shows an approximately linear dependence on the temperature, similar to free electron gas, and the compression only slightly affects the capacity. The electron-phonon coupling factor increases with both temperature and density, and the change observed for beryllium is more obvious than that for aluminum. The connections between thermal quantities and electronic/atomic structures are discussed in detail, and the different behaviors of aluminum and beryllium are well explained.
NASA Astrophysics Data System (ADS)
Li, Zi; Wang, Cong; Kang, Wei; Li, Chuanying; Zhang, Ping
2015-11-01
Ultrafast laser experiments on metals usually induce a high electron temperature and a low ion temperature and, thus, an energy relaxation process. The electron heat capacity and electron-phonon coupling factor are crucial thermal quantities to describe this process. We perform ab initio theoretical studies to determine these thermal quantities and their dependence on density and electron temperature for the metals aluminum and beryllium. The heat capacity shows an approximately linear dependence on the temperature, similar to free electron gas, and the compression only slightly affects the capacity. The electron-phonon coupling factor increases with both temperature and density, and the change observed for beryllium is more obvious than that for aluminum. The connections between thermal quantities and electronic/atomic structures are discussed in detail, and the different behaviors of aluminum and beryllium are well explained.
Kostadinova, O.; Chrissanthopoulos, A.; Petkova, T.; Petkov, P.; Yannopoulos, S.N.
2011-02-15
We report an investigation of the structure and vibrational modes of (AgI){sub x} (AsSe){sub 100-x}, bulk glasses using Raman spectroscopy and first principles calculations. The short- and medium-range structural order of the glasses was elucidated by analyzing the reduced Raman spectra, recorded at off-resonance conditions. Three distinct local environments were revealed for the AsSe glass including stoichiometric-like and As-rich network sub-structures, and cage-like molecules (As{sub 4}Se{sub n}, n=3, 4) decoupled from the network. To facilitate the interpretation of the Raman spectra ab initio calculations are employed to study the geometric and vibrational properties of As{sub 4}Se{sub n} molecular units that are parts of the glass structure. The incorporation of AgI causes appreciable structural changes into the glass structure. AgI is responsible for the population reduction of molecular units and for the degradation of the As-rich network-like sub-structure via the introduction of As-I terminal bonds. Ab initio calculations of mixed chalcohalide pyramids AsSe{sub m}I{sub 3-m} provided useful information augmenting the interpretation of the Raman spectra. -- Graphical abstract: Raman scattering and ab initio calculations are employed to study the structure of AgI-AsSe superionic glasses. The role of mixed chalcohalide pyramidal units as illustrated in the figure is elucidated. Display Omitted Research highlights: {yields} Doping binary As-Se glasses with AgI cause dramatic changes in glass structure. {yields} Raman scattering and ab initio calculations determine changes in short- and medium-range order. {yields} Three local environments exist in AsSe glass including a network sub-structure and cage-like molecules. {yields} Mixed chalcohalide pyramids AsSe{sub m}I{sub 3-m} dominate the AgI-doped glass structure.
Newton, M.D.
1980-01-01
Formalisms suitable for calculating the rate of electron exchange between transition metal complexes in aqueous solution are reviewed and implemented in conjunction with ab initio quantum chemical calculations which provide crucial off-diagonal Hamiltonian matrix elements as well as other relevant electronic structural data. Rate constants and activation parameters are calculated for the hex-aquo Fe^{2 +}-Fe^{3+} system, using a simple activated complex theory, a non-adiabatic semi-classical model which includes nuclear tunnelling, and a more detailed quantum mechanical method based on the Golden Rule. Comparisons are made between calculated results and those obtained by extrapolating experimental data to zero ionic strength. All methods yield similar values for the overall rate constant (∾ 0.1 L/(mol-sec)). The experimental activation parameters (δH^{‡} and δS^{‡}) are in somewhat better agreement with the semi classical and quantum mechanical results than with those from the simple activated complex theory, thereby providing some indication that non-adiabaticity and nuclear tunnelling may be important in the Fe^{2+/3+} exchange reaction. It is concluded that a model based on direct metal-metal overlap can account for the observed reaction kinetics provided the reactants are allowed to approach well within the traditional contact distance of 6.9 Å. 6 figures, 7 tables.
Local Structure in Ab Initio Liquid Water: Signatures of Amorphous Phases
NASA Astrophysics Data System (ADS)
Santra, Biswajit; Distasio, Robert A., Jr.; Martelli, Fausto; Car, Roberto
Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate ab initio liquid water. At ambient conditions, the LSI probability distribution, P(I), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P(I) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies among water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- and high-density amorphous phases of ice are present in the IPES of ambient liquid water This work was supported by the DOE: DE-SC0008626, DE-SC0005180.
NASA Astrophysics Data System (ADS)
Binev, I. G.; Tsenov, J. A.; Velcheva, E. A.; Juchnovski, I. N.
1995-01-01
The structures of phenylacetonitrile and of its carbanion have been studied on the basis of IR spectroscopic data (including literature results) and of ab initio force field calculations. The assignment (D. Croisat et al., J. Org. Chem., 157 (1992) 6435) of the IR bands of phenylacetonitrile, its d5 analogue, and their carbanions has been confirmed. An excellent linear correlation ( R = 0.999) has been found between the theoretical and experimental IR frequencies of the species studied. The calculations predict well the strong increase in intensity (five to 42 fold) of the vCN, vS8 and vI9 bands which accompanies the conversion of the phenylacetonitrile molecule to its carbanion. The structures of both sodium and potassium derivatives of phenylacetonitrile in dimethyl sulfoxide are close to that of the kinetically free phenylacetonitrile carbanion. The carbanionic center is practically planar; the cyano group carries a considerable negative charge, but its influence on the carbanionic center is mainly inductive. The carbanionic charge is delocalized over the phenyl ring (0.42 e -), methide (0.30 e -), and cyano (0.28 e -) groups.
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
Spencer, Matt; Eickholt, Jesse; Cheng, Jianlin
2014-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test data set of 198 proteins, achieving a Q3 accuracy of 80.7% and a Sov accuracy of 74.2%. PMID:25750595
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.
Spencer, Matt; Eickholt, Jesse; Jianlin Cheng
2015-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent. PMID:25750595
Ab initio molecular orbital study of the structures of purine hydrates
Colson, A.O.; Sevilla, M.D.
1996-03-14
The structures of the isomers of purine hydrates [4(5)-hydroxy-5(4)-hydropurines] have been geometry optimized with ab initio quantum chemical methods at the 6-31G{sup *} basis set and with the semiempirical method PM3. These hydrates which can result from reduction of radical species formed by attack of hydroxyl radical at the 4,5 double bond in the purines, show significant geometrical distortion when compared to the natural bases. More specifically, the cis isomers adopt a `butterfly` conformation, while in the trans isomers, the pyrimidine and imidazole rings tilt opposite to each other. Our results predict the cis purine hydrate isomers are far more stable than the trans isomers by 10-18 kcal/mol at the 6-31G{sup *} level, whereas the 4-hydroxy-5-hydropurines are found to be slightly more energetically stable than the 5-hydroxy-4-hydropurines. The `butterfly` conformation of the cis isomers constitutes a bulky lesion which will result in a significant distortion of the DNA helix. 33 refs., 2 figs., 3 tabs.
Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A.
2015-12-28
The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.
Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions
NASA Technical Reports Server (NTRS)
Stallcop, James R.; Partridge, Harry; Levin, Eugene
1996-01-01
Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.
Timoshenko, J.; Shivhare, A.; Scott, R. W.; Lu, D.; Frenkel, A. I.
2016-06-30
We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.
Rahal-Sekkal, Majda; Sekkal, Nezha; Kleb, Dirk C; Bleckmann, Paul
2003-05-01
Optimized geometries and total energies of some conformers of alpha- and beta-D-galactose have been calculated using the RHF/6-31G* ab initio method. Vibrational frequencies were computed at the 6-31G* level for the conformers that favor internal hydrogen bonding, in order to evaluate their enthalpies, entropies, Gibbs free energies, and then their structural stabilities. The semiempirical AM1, PM3, MNDO methods have also been performed on the conformers GG, GT, and TG of alpha- and beta-D-galactose. In order to test the reliability of each semiempirical method, the obtained structures and energies from the AM1, PM3, and MNDO methods have been compared to those achieved using the RHF/6-31G* ab initio method. The MNDO method has not been investigated further, because of the large deviation in the structural parameters compared with those obtained by the ab initio method for the galactose. The semiempirical method that has yielded the best results is AM1, and it has been chosen to perform structural and energy calculations on the galabiose molecule (the disaccharides constituted by two galactose units alpha 1,4 linked). The goal of such calculations is to draw the energy surface maps for this disaccharide. To realize each map, 144 different possible conformations resulting from the rotations of the two torsional angles psi and phi of the glycosidic linkage are considered. In each calculation, at each increment of psi and phi, using a step of 30 degrees from 0 to 330 degrees, the energy optimization is employed. In this article, we report also calculations concerning the galabiose molecule using different ab initio levels such as RHF/6-31G*, RHF/6-31G**, and B3Lyp/6-31G*. PMID:12692790
NASA Astrophysics Data System (ADS)
Bacca, Sonia
2016-04-01
A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.
NASA Astrophysics Data System (ADS)
Sobolewski, Andrzej L.; Domcke, Wolfgang
2000-05-01
Ab initio (RHF, CASSCF and CASPT2) calculations in the ground and lowest excited singlet states have been performed on pyrrole and pyrrole-water clusters. Full geometry optimization in the 1πσ ∗ state, which is energetically accessible from the optically allowed 1ππ ∗ state, reveals the flow of the electronic charge from pyrrole towards the water molecules, i.e., the formation of a charge transfer-to-solvent state. The computational results indicate that pyrrole-water clusters are good models for the investigation of the mechanistic details of the electron solvation process occurring upon ultraviolet photoexcitation of organic chromophores in liquid water.
Structural stability of nitrogen-doped ultrathin single-walled boron nanotubes: an ab initio study
NASA Astrophysics Data System (ADS)
Jain, Sandeep Kumar; Srivastava, Pankaj
2012-09-01
Ab initio calculations have been performed for determining structural stabilities of nitrogen-doped ultrathin single-walled boron nanotube. We have considered ultrathin boron nanotubes of diameters <0.5 nm, which include mainly three conformations of BNTs viz. zigzag (5,0), armchair (3,3) and chiral (4,2) with diameters 4.60, 4.78 and 4.87 Å, respectively. It has been investigated that α-BNTs are highly stable, while hexagonal BNTs are found to be least stable. In view of increasing structural stability of hexagonal BNTs, substitutional doping of foreign atoms, i.e. nitrogen is chosen. The nitrogen atoms substitute the host atoms at the middle of the tubes. The substitution doping is made with all the three conformations. The structural stabilities of BNTs have been investigated by using density functional theory (DFT). Subsequently, the cohesive energy is calculated, which directly measures the structural stability. The cohesive energy of BNTs has been calculated for different nitrogen concentrations. We found that the structures get energetically more stable with increasing nitrogen concentration. Moreover, it is also revealed that all the three BNTs are almost equally stable for single-atom doping, while the armchair BNT (3,3) is highly stable followed by zigzag (5,0) and chiral (4,2) BNTs for two- and three-atom doping. The structural stability is an important factor for realization of any physical device. Thus, these BNTs can be used for field emission, semiconducting and highly conducting devices at nanoscale.
Plašienka, Dušan; Cifra, Peter; Martoňák, Roman
2015-04-21
We present results of ab initio molecular dynamics study of the structural transformation occurring in hot liquid sulfur under high pressure, which corresponds to the recently observed chain-breakage phenomenon and to the electronic transition reported earlier. The transformation is temperature-induced and separates two distinct polymeric forms of liquid sulfur: high-temperature form composed of short chain-like fragments with open endings and low-temperature form with very long chains. We offer a structural description of the two liquid forms in terms of chain lengths, cross-linking, and chain geometry and investigate several physical properties. We conclude that the transformation is accompanied by changes in energy (but not density) as well as in diffusion coefficient and electronic properties—semiconductor-metal transition. We also describe the analogy of the investigated process to similar phenomena that take place in two other chalcogens selenium and tellurium. Finally, we remark that the behavior of heated liquid sulfur at ambient pressure might indicate a possible existence of a critical point in the low-pressure region of sulfur phase diagram. PMID:25903892
Plašienka, Dušan Martoňák, Roman; Cifra, Peter
2015-04-21
We present results of ab initio molecular dynamics study of the structural transformation occurring in hot liquid sulfur under high pressure, which corresponds to the recently observed chain-breakage phenomenon and to the electronic transition reported earlier. The transformation is temperature-induced and separates two distinct polymeric forms of liquid sulfur: high-temperature form composed of short chain-like fragments with open endings and low-temperature form with very long chains. We offer a structural description of the two liquid forms in terms of chain lengths, cross-linking, and chain geometry and investigate several physical properties. We conclude that the transformation is accompanied by changes in energy (but not density) as well as in diffusion coefficient and electronic properties—semiconductor-metal transition. We also describe the analogy of the investigated process to similar phenomena that take place in two other chalcogens selenium and tellurium. Finally, we remark that the behavior of heated liquid sulfur at ambient pressure might indicate a possible existence of a critical point in the low-pressure region of sulfur phase diagram.
Origin of the Hadži ABC structure: An ab initio study
NASA Astrophysics Data System (ADS)
Van Hoozen, Brian L.; Petersen, Poul B.
2015-11-01
Medium and strong hydrogen bonds are well known to give rise to broad features in the vibrational spectrum often spanning several hundred wavenumbers. In some cases, these features can span over 1000 cm-1 and even contain multiple broad peaks. One class of strongly hydrogen-bonded dimers that includes many different phosphinic, phosphoric, sulfinic, and selenic acid homodimers exhibits a three-peaked structure over 1500 cm-1 broad. This unusual feature is often referred to as the Hadži ABC structure. The origin of this feature has been debated since its discovery in the 1950s. Only a couple of theoretical studies have attempted to interpret the origin of this feature; however, no previous study has been able to reproduce this feature from first principles. Here, we present the first ab initio calculation of the Hadži ABC structure. Using a reduced dimensionality calculation that includes four vibrational modes, we are able to reproduce the three-peak structure and much of the broadness of the feature. Our results indicate that Fermi resonances of the in-plane bend, out-of-plane bend, and combination of these bends play significant roles in explaining this feature. Much of the broadness of the feature and the ability of the OH stretch mode to couple with many overtone bending modes are captured by including an adiabatically separated dimer stretch mode in the model. This mode modulates the distance between the monomer units and accordingly the strength of the hydrogen-bonds causing the OH stretch frequency to shift from 2000 to 3000 cm-1. Using this model, we were also able to reproduce the vibrational spectrum of the deuterated isotopologue which consists of a single 500 cm-1 broad feature. Whereas previous empirical studies have asserted that Fermi resonances contribute very little to this feature, our study indicates that while not appearing as a separate peak, a Fermi resonance of the in-plane bend contributes substantially to the feature.
Matrix-isolation study and ab initio calculations of the structure and spectra of hydroxyacetone.
Sharma, Archna; Reva, Igor; Fausto, Rui
2008-07-01
The structure of hydroxyacetone (HA) isolated in an argon matrix (at 12 K) and in a neat solid phase (at 12-175 K) was characterized by using infrared (IR) spectroscopy. The interpretation of the experimental results was supported by high-level quantum chemical calculations, undertaken by using both ab initio (MP2) and density functional theory methods. A potential-energy surface scan, carried out at the MP2/6-311++G(d,p) level of theory, predicted four nonequivalent minima, Cc, Tt, Tg, and Ct, all of them doubly degenerate by symmetry. The energy barriers for conversion between most of the symmetrically related structures and also between some of the nonequivalent minima (e.g., Tg --> Tt and Ct --> Tt) are very small and stay below the zero-point vibrational level associated with the isomerization coordinate in the higher-energy form in each pair. Therefore, only Cc and Tt conformers have physical significance, with populations of 99 and 1%, respectively, in gas phase at room temperature. For the matrix-isolated compound, only the most stable Cc conformer was observed. On the other hand, the polarizable continuum model calculations indicated that in water solution, the population of Tt and Ct conformers might be high enough (ca. 6 and 11%, respectively) to enable their experimental detection, thus supporting the conclusions of a previous IR spectroscopy study [ Spectrochim. Acta A 2005, 61, 477] in which the presence of more than one HA conformer in aqueous solution was postulated. The signatures of these minor conformers, however, do not appear in the spectra of the neat HA crystal, and the crystal structure was rationalized in terms of centrosymmetric hydrogen-bonded dimers consisting of two Cc-like units. Finally, we calculated (1)H, (13)C, and (17)O NMR chemical shifts at different levels of theory and found them to agree with available experimental data. PMID:18537231
Synthesis, crystal structure and ab initio/DFT calculations of a derivative of dithiophosphonates
NASA Astrophysics Data System (ADS)
Karakus, M.; Solak, S.; Hökelek, T.; Dal, H.; Bayrakdar, A.; Özdemir Kart, S.; Karabacak, M.; Kart, H. H.
2014-03-01
The compound 2 has been synthesized from the reaction of 2,4-Bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide and (R)-1-[3,5-Bis(trifloromethyl)phenyl]ethanol in toluene. The obtained crude dithiophosphonic acid 1 has been treated with the excess of N(C2H5)3 to give rise to 2, [(+HN(C2H5)3][(O-CH3CH-C6H3(CF3)2)(CH3OC6H4)PS2-]. The compound 2 has been characterized by using the spectroscopic methods such as IR, 1H, 13C, 31P NMR and structural analysing method such as X-ray crystallography. It crystallizes in the orthorhombic system, whose space group is P212121. It consists of a dithiophosphonate bridged methoxyphenyl and bis(triflorophenylethyl) groups and a triethylammonium moiety linked by Nsbnd H⋯S and Csbnd H⋯F hydrogen bonds. In the crystal structure, the C17H14F6O2PS2 molecule is elongated along the b-axis and stacked along the a-axis. The triethylammonium, N(CH2CH3)3, molecule fill in the cavities between the C17H14F6O2PS2 molecule. Moreover, ab initio methods based on Hartree-Fock (HF) and Density Functional Theory (DFT) calculations with the basis set of 6-31G(d) are also carried out to determine the molecular structural properties and to calculate FT-IR and NMR spectrum of the compound 2. The experimental results and theoretical calculations have been compared, and they are found to be in good agreement.
Alexandrov, Vitali Y.; Rosso, Kevin M.
2015-01-01
Goethite (α-FeOOH) surfaces represent one of the most ubiquitous redox-active interfaces in the environment, playing an important role in biogeochemical metal cycling and contaminant residence in the subsurface. Fe(II)-catalyzed recrystallization of goethite is a fundamental process in this context, but the proposed Fe(II)aq-Fe(III)goethite electron and iron atom exchange mechanism of recrystallization remains poorly understood at the atomic level. We examine the adsorption of aqueous Fe(II) and subsequent interfacial electron transfer (ET) between adsorbed Fe(II) and structural Fe(III) at the (110) and (021) goethite surfaces using density functional theory calculations including Hubbard U corrections (DFT+U) aided by ab initio molecular dynamics simulations. We investigate various surface sites for the adsorption of Fe2+(H2O)6 in different coordination environments. Calculated energies for adsorbed complexes at both surfaces favor monodentate complexes with reduced 4- and 5-fold coordination over higher-dentate structures and 6- fold coordination. The hydrolysis of H2O ligands is observed for some pre-ET adsorbed Fe(II) configurations. ET from the adsorbed Fe(II) into the goethite lattice is calculated to be energetically uphill always, but simultaneous proton transfer from H2O ligands of the adsorbed complexes to the surface oxygen species stabilizes post-ET states. We find that surface defects such as oxygen vacancies near the adsorption site also can stabilize post-ET states, enabling the Fe(II)aq-Fe(III)goethite interfacial electron transfer reaction implied from experiments to proceed.
NASA Astrophysics Data System (ADS)
Suter, James L.; Kabalan, Lara; Khader, Mahmoud; Coveney, Peter V.
2015-11-01
Ab initio molecular dynamics simulations have been performed to gain an understanding of the interfacial microscopic structure and reactivity of fully hydrated clay edges. The models studied include both micropore and interlayer water. We identify acidic sites through dissociation mechanisms; the resulting ions can be stabilized by both micropore and interlayer water. We find clay edges possess a complex amphoteric behavior, which depends on the face under consideration and the location of isomorphic substitution. For the neutral (1 1 0) surface, we do not observe any dissociation on the timescale accessible. The edge terminating hydroxyl groups participate in a hydrogen bonded network of water molecules that spans the interlayer between periodic images of the clay framework. With isomorphic substitutions in the tetrahedral layer of the (1 1 0) clay edge, we find the adjacent exposed apical oxygen behaves as a Brönsted base and abstracts a proton from a nearby water molecule, which in turn removes a proton from an AlOH2 group. With isomorphic substitutions in the octahedral layer of the (1 1 0) clay edge the adjacent exposed apical oxygen atom does not abstract a proton from the water molecules, but increases the number of hydrogen bonded water molecules (from one to two). Acid treated clays are likely to have both sites protonated. The (0 1 0) surface does not have the same interfacial hydrogen bonding structure; it is much less stable and we observe dissociation of half the terminal SiOH groups (tbnd Sisbnd Osbnd H → tbnd Sisbnd O- + H+) in our models. The resulting anions are stabilized by solvation from both micropore and interlayer water molecules. This suggests that, when fully hydrated, the (0 1 0) surface can act as a Brönsted acid, even at neutral pH.
Input/Output of ab-initio nuclear structure calculations for improved performance and portability
Laghave, Nikhil
2010-01-01
Many modern scientific applications rely on highly computation intensive calculations. However, most applications do not concentrate as much on the role that input/output operations can play for improved performance and portability. Parallelizing input/output operations of large files can significantly improve the performance of parallel applications where sequential I/O is a bottleneck. A proper choice of I/O library also offers a scope for making input/output operations portable across different architectures. Thus, use of parallel I/O libraries for organizing I/O of large data files offers great scope in improving performance and portability of applications. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab-initio nuclear structure calculations. We develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient I/O of large datasets along with their portability and ease of use in the down-stream processing. Even situations where the amount of data to be written is not huge, proper use of input/output operations can boost the performance of scientific applications. Application checkpointing offers enormous performance improvement and flexibility by doing a negligible amount of I/O to disk. Checkpointing saves and resumes application state in such a manner that in most cases the application is unaware that there has been an interruption to its execution. This helps in saving large amount of work that has been previously done and continue application execution. This small amount of I/O provides substantial time saving by offering restart/resume capability to applications. The need for checkpointing in optimization code NEWUOA has been identified and checkpoint/restart capability has been implemented in NEWUOA by using simple file I/O.
NASA Astrophysics Data System (ADS)
Ottonello, Giulio; Zuccolini, Marino Vetuschi
2009-11-01
The hexa-aqua complexes [Fe(H 2O) 6-m-n(OH) n] (2-n)+n = 0 → 3, m = 0 → 6 - n; [Fe(H 2O) 6-m-n(OH) n] (3-n)+n = 0 → 4, m = 0 → 6 - n were investigated by ab-initio methods with the aim of determining their ground-state geometries, total energies and vibrational properties by treating their inner solvation shell as part of their gaseous precursor (or " hybrid approach"). After a gas-phase energy optimization within the Density Functional Theory (DFT), the molecules were surrounded by a dielectric representing the Reaction Field through an implicit Polarized Continuum Model (PCM). The exploration of several structural ligand arrangements allowed us to quantify the relative stabilities of the various ionic species and the role of the various forms of energy (solute-solvent electronic interaction, cavitation, dispersion, repulsion, liberation free energy) that contribute to stabilize the aqueous complexes. A comparison with experimental thermochemistries showed that ab-initio gas-phase + solvation energies are quite consistent with experimental evidence and allow the depiction of the most stable form in solution and the eventual configurational disorder of water/hydroxyl species around central cations. A vibrational analysis performed on the 54Fe, 56Fe, 57Fe and 58Fe isotopomers indicated important separative effects systematically affected by the extent of deprotonation. The role of the system's redox state (fO 2) and acidity (pH) on the isotopic imprinting of the aqueous species in solution was investigated by coupling the separative effects with speciation calculations. The observed systematics provided a tool of general utility in the interpretation of the iron isotopic signature of natural waters. Applications to the interpretation of isotopic fractionation in solution dictated by redox equilibria and to the significance of the Fe-isotopic imprinting of Banded Iron Formations are given. With "gaseous precursor" it is intended here the isolated gaseous
NASA Astrophysics Data System (ADS)
Lee, Mal-Soon; Peter McGrail, B.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra
2015-10-01
The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is enthalpically favored, but entropically hindered. Simulated adsorption isotherms show that a water monolayer will form even at the low water concentrations of water-saturated scCO2. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies that readily form in the presence of a water monolayer. These results point to a carbonation mechanism that does not require prior carbonic acid formation in the bulk liquid. This work also highlights the modern capabilities of theoretical methods to address structure and reactivity at interfaces of high chemical complexity.
Lee, Mal-Soon; Peter McGrail, B.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra
2015-01-01
The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is enthalpically favored, but entropically hindered. Simulated adsorption isotherms show that a water monolayer will form even at the low water concentrations of water-saturated scCO2. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies that readily form in the presence of a water monolayer. These results point to a carbonation mechanism that does not require prior carbonic acid formation in the bulk liquid. This work also highlights the modern capabilities of theoretical methods to address structure and reactivity at interfaces of high chemical complexity. PMID:26456362
Ab Initio DFT study of electronic and thermoelectric properties of crystalline Ge2 Sb2 Te5
NASA Astrophysics Data System (ADS)
Ibarra Hernandez, Wilfredo; Raty, Jean-Yves
2015-03-01
Pseudo-binary phase change materials such as (GeTe)n/(Sb2Te3)m have been recently considered for thermoelectric applications. Among these, Ge2Sb2Te5 (GST225, n =2 and m =1) is very popular as it is the leading candidate for non-volatile memory devices such as phase change random access memory. It is well know that the stable crystal structure of GST225 is hexagonal, with atomic layers stacked in the c direction. The stacking sequence is however still under some debate, and structures varying from conventional semiconductor to Dirac semimetal have been claimed to differ only by the nature of the stacking sequence. Here we present electronic, dynamic and thermoelectric calculations on three different stacking sequences of crystalline GST225. We use ab-initio DFT calculations together with Boltzmann transport equations to access thermoelectric properties within the constant relaxation time approximation. Our results show that all three proposed stacking sequences are (meta-)stable. From the density of states we determine that two structures are metallic while the most stable structure has a 0.35 eV band gap. Above 100K, the computed Seebeck coefficient seems to indicate that the experimentally observed structure is the Dirac semimetal one, the doping level being of the order of 1 × 1020 cm-3. The authors acknowledge an A.R.C. grant (TheMoTherm 10/15-03) and the computer time provided by CECI, SEGI-ULg and PRACE projects NanoTherm (2IP FP7 RI-283493) and ThermoSpin on ARCHER (3IP FP7 RI-312763).
NASA Astrophysics Data System (ADS)
Xavier, F. George D.; Kumar, Sanjay
2010-10-01
Ab initio global adiabatic and quasidiabatic potential energy surfaces of lowest four electronic (1-4 A3″) states of the H++O2 system have been computed in the Jacobi coordinates (R,r,γ) using Dunning's cc-pVTZ basis set at the internally contracted multireference (single and double) configuration interaction level of accuracy, which are relevant to the dynamics studies of inelastic vibrational and charge transfer processes observed in the scattering experiments. The computed equilibrium geometry parameters of the bound [HO2]+ ion in the ground electronic state and other parameters for the transition state for the isomerization process, HOO+⇌OOH+ are in good quantitative agreement with those available from the high level ab initio calculations, thus lending credence to the accuracy of the potential energy surfaces. The nonadiabatic couplings between the electronic states have been analyzed in both the adiabatic and quasidiabatic frameworks by computing the nonadiabatic coupling matrix elements and the coupling potentials, respectively. It is inferred that the dynamics of energy transfer processes in the scattering experiments carried out in the range of 9.5-23 eV would involve all the four electronic states.
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties
NASA Astrophysics Data System (ADS)
Sun, Huai; Rigby, David
1997-07-01
Various levels of ab initio calculation have been performed to determine the optimum strategy for parameterization of the valence parameters of a CFF-type force field for siloxanes and polysiloxanes. Electrostatic nonbond parameters have been determined using scaled electrostatic potential (ESP) charges adjusted for known systematic differences between ab initio and experimental data, while van der Waals nonbond parameters have been determined using a classical approach involving fitting to experimental liquid density and cohesive energy density data measured at atmospheric pressure and a single temperature for a set of four small molecules. Simulations have been performed on molecular crystals, liquids and isolated molecules, yielding results which agree favorably with available experimental data. Properties calculated include unit cell parameters and crystal densities, liquid densities from 303-473 K and 0-1800 bar, dependence of oligomer density and solubility parameters on chain length and temperature, gas-phase geometries and vibrational frequencies, and gas and liquid-phase conformational behavior.
Knockout reactions from p-shell nuclei : tests of ab initio structure models.
Grinyer, G. F.; Bazin, D.; Gade, A.; Tostevin, J. A.; Adrich, P.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Navratil, P.; Obertelli, A.; Quaglioni, S.; Siwek, K.; Terry, J. R.; Weisshaar, D.; Wiringa, R. B.
2011-04-22
Absolute cross sections have been determined following single neutron knockout reactions from {sup 10}Be and {sup 10}C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for {sup 10}Be and by 40% to 50% for {sup 10}C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.
Knockout Reactions from p-Shell Nuclei: Tests of Ab Initio Structure Models
Grinyer, G. F.; Bazin, D.; Adrich, P.; Obertelli, A.; Weisshaar, D.; Gade, A.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Siwek, K.; Terry, J. R.; Tostevin, J. A.; Navratil, P.; Quaglioni, S.; Wiringa, R. B.
2011-04-22
Absolute cross sections have been determined following single neutron knockout reactions from {sup 10}Be and {sup 10}C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for {sup 10}Be and by 40% to 50% for {sup 10}C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.
Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method
NASA Astrophysics Data System (ADS)
Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio
2015-04-01
We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.
THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY
Turchi, P A
2004-09-24
Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.
Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems: Ab initio study
NASA Astrophysics Data System (ADS)
Govaerts, K.; Sluiter, M. H. F.; Partoens, B.; Lamoen, D.
2014-02-01
In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure calculations, which accounts for the Bi and Sb bilayer formation. Excellent interlayer distances are obtained with a van der Waals density functional. It is shown that a CE solely based on pair interactions is sufficient to provide an accurate description of the ground-state energies of Bi-Sb-Te-Se binary and ternary systems without making the data set of ab initio calculated structures unreasonably large. For the binary alloys A1-xQx (A =Sb, Bi; Q =Te, Se), a ternary CE yields an almost continuous series of (meta)stable structures consisting of consecutive A bilayers next to consecutive A2Q3 for 0
Origin of the Hadži ABC structure: An ab initio study
Van Hoozen, Brian L.; Petersen, Poul B.
2015-11-14
Medium and strong hydrogen bonds are well known to give rise to broad features in the vibrational spectrum often spanning several hundred wavenumbers. In some cases, these features can span over 1000 cm{sup −1} and even contain multiple broad peaks. One class of strongly hydrogen-bonded dimers that includes many different phosphinic, phosphoric, sulfinic, and selenic acid homodimers exhibits a three-peaked structure over 1500 cm{sup −1} broad. This unusual feature is often referred to as the Hadži ABC structure. The origin of this feature has been debated since its discovery in the 1950s. Only a couple of theoretical studies have attempted to interpret the origin of this feature; however, no previous study has been able to reproduce this feature from first principles. Here, we present the first ab initio calculation of the Hadži ABC structure. Using a reduced dimensionality calculation that includes four vibrational modes, we are able to reproduce the three-peak structure and much of the broadness of the feature. Our results indicate that Fermi resonances of the in-plane bend, out-of-plane bend, and combination of these bends play significant roles in explaining this feature. Much of the broadness of the feature and the ability of the OH stretch mode to couple with many overtone bending modes are captured by including an adiabatically separated dimer stretch mode in the model. This mode modulates the distance between the monomer units and accordingly the strength of the hydrogen-bonds causing the OH stretch frequency to shift from 2000 to 3000 cm{sup −1}. Using this model, we were also able to reproduce the vibrational spectrum of the deuterated isotopologue which consists of a single 500 cm{sup −1} broad feature. Whereas previous empirical studies have asserted that Fermi resonances contribute very little to this feature, our study indicates that while not appearing as a separate peak, a Fermi resonance of the in-plane bend contributes substantially to
NASA Astrophysics Data System (ADS)
Marqués, M.; González, D. J.; González, L. E.
2016-07-01
The melting curve of sodium for a pressure range up to 100 GPa has been evaluated by the orbital free ab initio molecular dynamics method. This method uses the electronic density as the basic variable combined with an approximate electronic kinetic energy functional and a local ionic pseudopotential and makes it possible to perform simulations with a large number of particles and for long simulation times. The calculated melting curve shows a maximum melting temperature at a pressure around 30 GPa followed by a steep decrease up to 100 GPa. For various pressures and temperatures we have evaluated several static properties, including average and local structure, electronic properties, like the electron localization function (ELF), and dynamic properties, both single-particle and collective ones, from which some transport coefficients are deduced. Despite the accurate reproduction of the available experimental data, we do not observe any indication of an early transition from a bcc-like to an fcc-like liquid, as suggested previously by other authors, but rather pressure-induced change in the variation of icosahedral-like order and bcc-like order, with no sign of fcc-like structures in the whole liquid range studied. We also consider the evolution of the ELF within this type of local arrangement upon pressurization. In the dynamic realm, we find an enlarged wave-vector region where atomic collisions play an important role in the dynamic properties of the system as pressure is increased and temperature decreased along the melting line, leading to a peculiar behavior of the dynamic properties.
Xiao, Hai Yan; Gao, Fei; Zu, Xiaotao T.; Weber, William J.
2010-02-04
High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition.
NASA Astrophysics Data System (ADS)
Novko, D.; Blanco-Rey, M.; Juaristi, J. I.; Alducin, M.
2015-11-01
The relaxation dynamics of hot H, N, and N2 on Pd(100), Ag(111), and Fe(110), respectively, is studied by means of ab initio molecular dynamics with electronic friction. This method is adapted here to account for the electron density changes caused by lattice vibrations, thus treating on an equal footing both electron-hole (e -h ) pair and phonon excitations. We find that even if the latter increasingly dominate the heavier is the hot species, the contribution of e -h pairs is by no means negligible in these cases because it gains relevance at the last stage of the relaxation process. The quantitative details of energy dissipation depend on the interplay of the potential energy surface, electronic structure, and kinetic factors.
NASA Astrophysics Data System (ADS)
Harchaoui, N.; Hellal, S.; Grosdidier, B.; Gasser, J. G.
2008-02-01
The physical properties of disordered matter depend on the 'atomic structure' i.e. the arrangement of the atoms. This arrangement is described by the structure factor S (q) in reciprocal space and by the pair correlation function g(r) in real space. The structure factor is obtained experimentally while the numerical simulation enables us to obtain the pair correlation function. Liquid sodium is one of the elements the most studied and one can wonder about new scientific contribution appropriateness. The majority of theoretical calculations are compared with the experiment of Waseda. However two other posterior measurements have been published and give different results, in particular with regard to the height of the first peak of the structure factor. Three models of pseudopotential are considered to describe the electron-ion interaction. The first is a local pseudopotential with the alternative known as 'individual' of the model suggested by Fiolhais et al. The second model considered is that of Bachelet et al. This one, ab-initio and 'norm conserving', is non local. The last model is that proposed by Shaw known as 'first principles' and 'energy dependent'. Various static dielectric functions characteristic of the effects of exchange and correlation have been used and developed by Hellal et al. We calculated the form factors (pseudopotential in reciprocal space) and deduce the normalized energy-wave-number characteristic FN (q), the interatomic pair potential Veff (r), then the pair correlation function g(r) by molecular dynamics. The structure factor S(q) is obtained by Fourier transform and is compared with the experiment. Our calculations with the Bachelet and Shaw pseudopotentials are close to the last experiments of Greenfield et al. and of Huijben et al. Our results are discussed.
NASA Astrophysics Data System (ADS)
Siraleartmukul, Krisana; Siriwong, Khatcharin; Remsungnen, Tawun; Muangsin, Nongnuj; Udomkichdecha, Werasak; Hannongbua, Supot
2004-09-01
The solvation structure of glucosamine in aqueous solution was investigated using Monte Carlo simulation at 298 K. The MCY rigid water model and ab initio glucosamine-water fitted potential were applied. The first hydration shell appears at 4.6 Å from the center of glucosamine with a coordination number of seven water molecules where one water lies in the ligand's plane while two and four of them are about 2-4 Å above and below the plane, respectively. Furthermore, the mobility distribution and orientation of the water molecules around the ligand have been intensively investigated and reported.
2014-01-01
Background The advent of human genome sequencing project has led to a spurt in the number of protein sequences in the databanks. Success of structure based drug discovery severely hinges on the availability of structures. Despite significant progresses in the area of experimental protein structure determination, the sequence-structure gap is continually widening. Data driven homology based computational methods have proved successful in predicting tertiary structures for sequences sharing medium to high sequence similarities. With dwindling similarities of query sequences, advanced homology/ ab initio hybrid approaches are being explored to solve structure prediction problem. Here we describe Bhageerath-H, a homology/ ab initio hybrid software/server for predicting protein tertiary structures with advancing drug design attempts as one of the goals. Results Bhageerath-H web-server was validated on 75 CASP10 targets which showed TM-scores ≥0.5 in 91% of the cases and Cα RMSDs ≤5Å from the native in 58% of the targets, which is well above the CASP10 water mark. Comparison with some leading servers demonstrated the uniqueness of the hybrid methodology in effectively sampling conformational space, scoring best decoys and refining low resolution models to high and medium resolution. Conclusion Bhageerath-H methodology is web enabled for the scientific community as a freely accessible web server. The methodology is fielded in the on-going CASP11 experiment. PMID:25521245
NASA Astrophysics Data System (ADS)
Pietrucci, Fabio; Andreoni, Wanda
2011-08-01
Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.
Phosphine adsorption and dissociation on the Si(001) surface: An ab initio survey of structures
NASA Astrophysics Data System (ADS)
Warschkow, O.; Wilson, H. F.; Marks, N. A.; Schofield, S. R.; Curson, N. J.; Smith, P. V.; Radny, M. W.; McKenzie, D. R.; Simmons, M. Y.
2005-09-01
We report a comprehensive ab initio survey of possible dissociation intermediates of phosphine (PH3) on the Si(001) surface. We assign three scanning tunneling microscopy (STM) features, commonly observed in room-temperature dosing experiments, to PH2+H , PH+2H , and P+3H species, respectively, on the basis of calculated energetics and STM simulation. These assignments and a time series of STM images which shows these three STM features converting into another, allow us to outline a mechanism for the complete dissociation of phosphine on the Si(001) surface. This mechanism closes an important gap in the understanding of the doping process of semiconductor devices.
NASA Technical Reports Server (NTRS)
Komornicki, A.; Jaffe, R. L.
1979-01-01
The infrared spectral intensities for HOCl and HO2 have been calculated using a new ab initio technique. Theoretical results for the geometries, vibrational frequencies, and the dipole moments of these species are also reported. All of the calculations were performed at the SCF level using near Hartree-Fock quality basis sets. The results for the molecular geometries and the vibrational frequencies are in good agreement with available experimental data. It is believed that the computed intensities are accurate to at least 50%. The results should be helpful in attempts to determine the stratospheric abundance of HOCl and HO2 by in situ infrared spectroscopic measurements.
High-pressure stability, structure and compressibility of Cmcm -MgAl2O4: an ab initio study
NASA Astrophysics Data System (ADS)
Catti, M.
Quantum-mechanical solid-state calculations have been performed on the highest-pressure polymorph of magnesium aluminate (CaTi2O4-type structure, Cmcm space group), as well as on the low-pressure (Fd3m) spinel phase and on MgO and Al2O3. An ab initio all-electron periodic scheme with localized basis functions (Gaussian-type atomic orbitals) has been used, employing density-functional-theory Hamiltonians based on LDA and B3LYP functionals. Least-enthalpy structure optimizations in the pressure range 0 to 60 GPa have allowed us to predict: (1) the full crystal structure, the pV equation of state and the compressibility of Cmcm-MgAl2O4 as a function of pressure; (2) the phase diagram of the MgO-Al2O3-MgAl2O4 system (with exclusion of CaFe2O4-type Pmcn-MgAl2O4), and the equilibrium pressures for the reactions of formation/decomposition of the Fd3m and Cmcm polymorphs of MgAl2O4 from the MgO + Al2O3 assemblage. Cmcm-MgAl2O4 is predicted to form at 39 and 57 GPa by LDA and B3LYP calculations, with K0=248 (K'=3.3) and 222 GPa (K'=3.8), respectively. Results are compared to experimental data, where available, and the performance of different DFT functionals is discussed.
NASA Astrophysics Data System (ADS)
Yan, Lingling; Qu, Yizhi; Liu, Chunhua; Wang, Jianguo; Buenker, Robert J.
2012-03-01
An ab initio multireference single- and double-excitation configuration interaction (CI) study is carried out for the ground and excited electronic states of alkali-hydride cations (LiH+, NaH+, KH+, RbH+, and CsH+). For all alkali-metal atoms, the first inner-shell and valence electrons (nine active electrons, three for Li) are considered explicitly in the ab initio self-consistent-field and CI calculations. The adiabatic potential energy curves, radial and rotational couplings are calculated and presented. Short-range (˜3 a.u.) potential wells produced by the excitation of the inner-shell electrons are found. The depths of the inner potential wells are much greater than those of the outer wells for the CsH+ system. The computed spectroscopic constants for the long-range potential well of the 2 2Σ+ state are very close to the available theoretical and experimental data. The electronic states of alkali-hydrogen cations are also compared with each other, it is found that the positions of the potential wells shift to larger internuclear distances gradually, and the depths of these potential wells become greater with increasing alkali-metal atomic number. The relationships between structures of the radial coupling matrix elements and the avoiding crossings of the potential curves are analyzed. From NaH+ to CsH+, radial coupling matrix elements display more and more complex structures due to the gradual decrease of energy separations for avoided crossings. Finally, the behavior of some rotational couplings is also shown.
Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam
2015-01-01
Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568
Rio, Beatriz G del; González, Luis E
2014-11-19
We have performed a comprehensive study of the properties of liquid Be, Ca and Ba, through the use of orbital free ab initio simulations. To this end we have developed a force-matching method to construct the necessary local pseudopotentials from standard ab initio calculations. The structural magnitudes are analyzed, including the average and local structures and the dynamic properties are studied. We find several common features, like an asymmetric second peak in the structure factor, a large amount of local structures with five-fold symmetry, a quasi-universal behaviour of the single-particle dynamic properties and a large degree of positive dispersion in the propagation of collective density fluctuations, whose damping is dictated by slow thermal relaxations and fast viscoelastic ones. Some peculiarities in the dynamic properties are however observed, like a very high sound velocity and a large violation of the Stokes-Einstein relation for Be, or an extremely high positive dispersion and a large slope in the dispersion relation of shear waves at the onset of the wavevector region where they are supported for Ba. PMID:25347355
NASA Astrophysics Data System (ADS)
Kritayakornupong, Chinapong; Hannongbua, Supot
2007-01-01
The structural and dynamical properties of high-spin Ru 2+ in aqueous solution have been theoretically studied using molecular dynamics (MD) simulations. The conventional MD simulation based on pair potentials gives the overestimated average first shell coordination number of 9, whereas the value of 5.9 was observed when the three-body corrected function was included. A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to take into account the many-body effects on the hydration shell structure of Ru 2+. The most important region, the first hydration shell, was treated by ab initio quantum mechanics at UHF level using the SBKJC VDZ ECP basis set for Ru 2+ and the 6-31G ∗ basis sets for water. An exact coordination number of 6 for the first hydration shell was obtained from the QM/MM simulation. The QM/MM simulation predicts the average Ru 2+-O distance of 2.42 Å for the first hydration shell, whereas the values of 2.34 and 2.46 Å are resulted from the pair potentials without and with the three-body corrected simulations, respectively. Several other structural properties representing position and orientation of the solvate molecules were evaluated for describing the hydration shell structure of the Ru 2+ ion in dilute aqueous solution. A mean residence time of 7.1 ps was obtained for water ligands residing in the second hydration shell.
NASA Astrophysics Data System (ADS)
Nikolopoulos, L. A. A.
2003-02-01
A package is presented for the fully ab-initio calculation of one- and two-photon ionization cross sections for two-electron atomic systems (H -, He, Mg, Ca, …) under strong laser fields, within lowest-order perturbation theory (LOPT) and in the dipole approximation. The atomic structure is obtained through configuration interaction (CI) of antisymmetrized two-electron states expanded in a B-spline finite basis. The formulation of the theory and the relevant codes presented here represent the accumulation of work over the last ten years [1-11,13-15]. Extensions to more than two-photon ionization is straightforward. Calculation is possible for both the length and velocity form of the laser-atom interaction operator. The package is mainly, written in standard FORTRAN language and uses the publicly available libraries SLATEC, LAPACK and BLAS.
Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline.
Arjunan, V; Saravanan, I; Ravindran, P; Mohan, S
2009-10-01
The Fourier transform infrared (FTIR) and FT-Raman spectra of 4-amino-2-methylquinoline (AMQ) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The experimental vibrational frequency was compared with the wavenumbers obtained theoretically by ab initio HF and DFT-B3LYP gradient calculations employing the standard 6-31 G** and high level 6-311 ++G** basis sets for optimised geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out using the experimental FTIR and FT-Raman data, and quantum mechanical studies. The geometry and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The potential energy distribution of the fundamental modes was calculated with ab initio force fields utilising Wilson's FG matrix method. The NH-pi interactions and the influence of amino and methyl groups on the skeletal modes are investigated. PMID:19581121
Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline
NASA Astrophysics Data System (ADS)
Arjunan, V.; Saravanan, I.; Ravindran, P.; Mohan, S.
2009-10-01
The Fourier transform infrared (FTIR) and FT-Raman spectra of 4-amino-2-methylquinoline (AMQ) have been recorded in the range 4000-400 and 4000-100 cm -1, respectively. The experimental vibrational frequency was compared with the wavenumbers obtained theoretically by ab initio HF and DFT-B3LYP gradient calculations employing the standard 6-31G** and high level 6-311++G** basis sets for optimised geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out using the experimental FTIR and FT-Raman data, and quantum mechanical studies. The geometry and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The potential energy distribution of the fundamental modes was calculated with ab initio force fields utilising Wilson's FG matrix method. The NH -π interactions and the influence of amino and methyl groups on the skeletal modes are investigated.
Alemany, Manuel M. G.; Longo, Roberto; Gallego, Luis; Gonzales, D. J.; Gonzales, L. E.; Tiago, Murilo L; Chelikowsky, James
2007-01-01
We performed a comprehensive study of the static, dynamic and electronic properties of liquid Pb at T = 650 kelvins, density 0.0309 angstroms^{-3} by means of 216-particle ab initio molecular dynamics simulations based on a real-space implementation of pseudopotentials constructed within density-functional theory. The predicted results and available experimental data are very in good agreement, which confirms the adequacy of this technique to achieve a reliable description of the behavior of liquid metals, including their dynamic properties. Although some of the computed properties of liquid Pb are similar to those of simple liquid metals, others differ markedly. Our results show that an appropriate description of liquid Pb requires the inclusion of relativistic effects in the determination of the pseudopotentials of Pb.
NASA Astrophysics Data System (ADS)
Pati, Ranjit; Karna, Shashi P.
2002-01-01
The dependence of electron transfer (ET) coupling element, VAB, on the length of rigid-rod-like systems consisting of bicyclo[1.1.1]pentane (BCP), cubane (CUB), and bicyclo[2.2.2]octane (BCO) monomers, has been investigated with the use of ab initio Hartree-Fock (HF) method employing Marcus-Hush two-state (TS) model. The value of VAB decreases exponentially with increase in the number of the cage units of the σ-bonded molecules. The calculated decay constant, β, shows good agreement with previously reported data. For molecular length⩾15 Å, the value of VAB becomes negligibly small, suggesting complete suppression of the through bond direct tunneling contribution to ET process.
Electronic and mechanical properties of ZnX (X = S, Se and Te)--An ab initio study
Verma, Ajay Singh; Sharma, Sheetal; Jindal, Vijay Kumar; Sarkar, Bimal Kumar
2011-12-12
Zinc chalcogenides (ZnX, X = S, Se and Te) have been increasing attention as wide and direct band gap semiconductor for blue and ultraviolet optical devices. This paper analyzes electronic and mechanical properties of these materials by ab initio pseudo-potential method that uses non conserving pseudopotentials in fully nonlocal form, as implemented in SIESTA code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. The calculations are given for band gap, elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), shear modulus, and Young's modulus. The results are in very good agreement with previous theoretical calculations and available experimental data.
Collective rotation from ab initio theory
NASA Astrophysics Data System (ADS)
Caprio, M. A.; Maris, P.; Vary, J. P.; Smith, R.
2015-08-01
Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7-9Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction.
da Silva, F Ferreira; Duflot, D; Hoffmann, S V; Jones, N C; Rodrigues, F N; Ferreira-Rodrigues, A M; de Souza, G G B; Mason, N J; Eden, S; Limão-Vieira, P
2015-08-01
We present the first set of ab initio calculations (vertical energies and oscillator strengths) of the valence and Rydberg transitions of the anaesthetic compound halothane (CF3CHBrCl). These results are complemented by high-resolution vacuum ultraviolet photoabsorption measurements over the wavelength range 115-310 nm (10.8-4.0 eV). The spectrum reveals several new features that were not previously reported in the literature. Spin-orbit effects have been considered in the calculations for the lowest-lying states, allowing us to explain the broad nature of the 6.1 and 7.5 eV absorption bands assigned to σ*(C-Br) ← nBr and σ*(C-Cl) ← n(Cl) transitions. Novel absolute photoabsorption cross sections from electron scattering data were derived in the 4.0-40.0 eV range. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of halothane in the upper stratosphere (20-50 km). PMID:26171941
Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
NASA Astrophysics Data System (ADS)
Tzeli, Demeter; Mavridis, Aristides
2008-01-01
The electronic structure and bonding of the ground and some low-lying states of all first row transition metal borides (MB), ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, and CuB have been studied by multireference configuration interaction (MRCI) methods employing a correlation consistent basis set of quintuple cardinality (5Z). It should be stressed that for all the above nine molecules, experimental results are essentially absent, whereas with the exception of ScB and CuB the remaining seven species are studied theoretically for the first time. We have constructed full potential energy curves at the MRCI/5Z level for a total of 27 low-lying states, subsequently used to extract binding energies, spectroscopic parameters, and bonding schemes. In addition, some 20 or more states for every MB species have been examined at the MRCI/4Z level of theory. The ground state symmetries and corresponding binding energies (in kcal/mol) are Σ-5(ScB), 76; Δ6(TiB), 65; Σ+7(VB), 55; Σ+6(CrB), 31; Π5(MnB), 20; Σ-4(FeB), 54; Δ3(CoB), 66; Σ+2(NiB), 79; and Σ+1(CuB), 49.
Optimized Structures and Proton Affinities of Fluorinated Dimethyl Ethers: An Ab Initio Study
NASA Technical Reports Server (NTRS)
Orgel, Victoria B.; Ball, David W.; Zehe, Michael J.
1996-01-01
Ab initio methods have been used to investigate the proton affinity and the geometry changes upon protonation for the molecules (CH3)2O, (CH2F)2O, (CHF2)2O, and (CF3)2O. Geometry optimizations were performed at the MP2/3-2 I G level, and the resulting geometries were used for single-point energy MP2/6-31G calculations. The proton affinity calculated for (CH3)2O was 7 Kjoule/mole from the experimental value, within the desired variance of +/- 8Kjoule/mole for G2 theory, suggesting that the methodology used in this study is adequate for energy difference considerations. For (CF3)20, the calculated proton affinity of 602 Kjoule/mole suggests that perfluorinated ether molecules do not act as Lewis bases under normal circumstances; e.g. degradation of commercial lubricants in tribological applications.
Lister, C.J.; McCutchan, E.A.
2014-06-15
A new generation of ab-initio calculations, based on realistic two- and three-body forces, is having a profound impact on our view of how nuclei work. To improve the numerical methods, and the parameterization of 3-body forces, new precise data are needed. Electromagnetic transitions are very sensitive to the dynamics which drive mixing between configurations. We have made a series of precise (< 3%) measurements of electromagnetic transitions in the A=10 nuclei {sup 10}C and {sup 10}Be by using the Doppler Shift Attenuation method carefully. Many interesting features can be reproduced including the strong α clustering. New measurements on {sup 8}Be and {sup 12}Be highlight the interplay between the alpha clusters and their valence neutrons.
NASA Astrophysics Data System (ADS)
Nishioka, Hirotaka; Ando, Koji
2011-05-01
By making use of an ab initio fragment-based electronic structure method, fragment molecular orbital-linear combination of MOs of the fragments (FMO-LCMO), developed by Tsuneyuki et al. [Chem. Phys. Lett. 476, 104 (2009)], 10.1016/j.cplett.2009.05.069, we propose a novel approach to describe long-distance electron transfer (ET) in large system. The FMO-LCMO method produces one-electron Hamiltonian of whole system using the output of the FMO calculation with computational cost much lower than conventional all-electron calculations. Diagonalizing the FMO-LCMO Hamiltonian matrix, the molecular orbitals (MOs) of the whole system can be described by the LCMOs. In our approach, electronic coupling TDA of ET is calculated from the energy splitting of the frontier MOs of whole system or perturbation method in terms of the FMO-LCMO Hamiltonian matrix. Moreover, taking into account only the valence MOs of the fragments, we can considerably reduce computational cost to evaluate TDA. Our approach was tested on four different kinds of model ET systems with non-covalent stacks of methane, non-covalent stacks of benzene, trans-alkanes, and alanine polypeptides as their bridge molecules, respectively. As a result, it reproduced reasonable TDA for all cases compared to the reference all-electron calculations. Furthermore, the tunneling pathway at fragment-based resolution was obtained from the tunneling current method with the FMO-LCMO Hamiltonian matrix.
Structure electronique de nanorubans de graphene avec des contacts metalliques: Une etude ab initio
NASA Astrophysics Data System (ADS)
Archambault, Chloe
Graphene, a graphite monolayer presenting novel exciting properties, has attracted much attention recently in the scientific community as well as in the high-technology industry. In electronics, nanoribbons -- narrow strips of graphene which happen to be semiconducting-- could possibly allow further miniaturization of electronic devices such as transistors because of their atomic thickness. On the other hand, once making devices, the problem of metallic contacts, which can have critical impact at the nanoscopic scale, cannot be evaded. For example, metal induced gap states may short-circuit very short devices. With this in mind, the interaction of gold, palladium and titanium contacts with finite size graphene nanoribbons has been studied using ab initio density functional theory calculations. This theoretical approach made it possible to study separately and then conjugate four important aspects of the metal-ribbon interaction: bonding, charge transfer, electrostatics and metal induced gap states. Another goal of this project was to study size effects related to the ribbons' dimensions and to estimate the minimal channel length necessary for a device to operate as expected without the unwanted effect of induced gap states. Aside from the high precision achieved, these calculations stand out from earlier studies because they take into account finite size effects which often prevail in small ribbons. Using this model for the metal-nanoribbon junction, it was shown that, as for two-dimensional graphene, the bonding between a ribbon and a metal can be of two types depending on the electronic configuration of the metal. In the first case, physisorption, weak bonding resulting in a large separation distance between ribbon and electrode, is illustrated by the gold contact. On the other hand, titanium, because of its high density of states at the Fermi level, binds more strongly with graphene nanoribbons. This chemisorption is characterized by strong hybridization between
Ab initio non-relativistic spin dynamics
Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.
2014-12-07
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
Ab initio non-relativistic spin dynamics
NASA Astrophysics Data System (ADS)
Ding, Feizhi; Goings, Joshua J.; Frisch, Michael J.; Li, Xiaosong
2014-12-01
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li3 molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W
2016-08-25
Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and
NASA Astrophysics Data System (ADS)
Binev, Ivan G.; Binev, Yuri I.; Stamboliyska, Bistra A.; Juchnovski, Ivan N.
1997-12-01
The potassium cyanide, alkali-metal methoxide and heptylamine adducts of benzylidenemalononitrile were prepared as dimethyl sulphoxide (DMSO) and DMSO- d6 solutions; their structures were studied by IR spectroscopy and ab initio force field calculations. The cyanide and methoxide adducts have a carbanionic structure, whereas heptylamine forms a zwitterion. The IR spectra of the adducts studied are characterized by very intense, low-frequency νCN bands with a strong νCNs- νCNas splitting. The changes in the structure and force field of benzylidenemalononitrile accompanying its conversion into the adducts studied are essential and are spread over the whole molecule. The anionic charge is localized mainly within the dicyanomethide groups of the adducts.
Jakse, N.; Pasturel, A.
2014-12-21
In the present work, the structural and dynamic properties of liquid and undercooled boron are investigated by means of ab initio molecular dynamics simulation. Our results show that both liquid and undercooled states present a well pronounced short-range order (SRO) mainly due to the formation of inverted umbrella structural units. Moreover, we observe the development of a medium-range order (MRO) in the undercooling regime related to the increase of inverted umbrella structural units and of their interconnection as the temperature decreases. We also evidence that this MRO leads to a partial crystallization in the β-rhombohedral crystal below T = 1900 K. Finally, we discuss the role played by the SRO and MRO in the nearly Arrhenius evolution of the diffusion and the non-Arrhenius temperature dependence of the shear viscosity, in agreement with the experiment.
NASA Astrophysics Data System (ADS)
Carrera, Juan J.; Son, Sang-Kil; Chu, Shih-I.
2007-06-01
We present an ab initio quantum investigation of the frequency comb structure formed within each high harmonic generation (HHG) power spectrum driven by a train of equal- spacing short laser pulses. The HHG power spectrum of atomic hydrogen is calculated by solving the time-dependent Schr"o dinger equation accurately and efficiently by means of the time- dependent generalized pseudospectral method. We found that the frequency comb structure is preserved within each harmonic. In addition, the repetition frequency of the comb laser depends upon the pulse separation τ and the spectral width of each individual comb fringe is inversely proportional to the number of pulses (n) used. However, the global HHG power spectrum pattern depends only upon the laser frequency and intensity used and is not sensitive to the τ and n parameters. Finally, the frequency comb structure persists even in the presence of appreciable ionization.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Zeng, X. C.
2003-02-01
Ab initio all-electron molecular-orbital calculations have been carried out to study the structure and relative stability of small silicon clusters (Sin, n=7-11). A number of low-energy geometric isomers are optimized at the second-order Møller-Plesset (MP2) MP2/6-31G(d) level. Harmonic vibrational analysis has been performed to assure that the optimized geometries are stable. The total energies of stable isomers are computed at the coupled-cluster single and double substitutions (including triple excitations) [CCSD(T)] CCSD(T)/6-31G(d) level. The calculated binding energies per atom at both the MP2/6-31G(d) and CCSD(T)/6-31G(d) levels agree with the experiments. For Si7, Si8, and Si10, the lowest-energy structures are the same as those predicted previously from the all-electron optimization at the Hartree-Fock (HF) HF/6-31G(d) level [Raghavachari and Rohlfing, J. Chem. Phys. 89, 2219 (1988)]. For Si9, the lowest-energy isomer is same as that predicted based on density-functional plane-wave pseudopotential method [Vasiliev, Ogut, and Chelikowsky, Phys. Rev. Lett. 78, 4805 (1997)]. Particular attention has been given to Si11 because several low-energy geometric isomers were found nearly isoenergetic. On the basis of MP2/6-311G(2d)//CCSD(T)/6-311G(2d) calculation, we identified that the C2v isomer, a tricapped trigonal prism with two additional caps on side trigonal faces, is most likely the global-minimum structure. However, another competitive geometric isomer for the global minimum is also found on basis of the MP2/6-311G(2d)//CCSD(T)/6-311G(2d) calculation. Additionally, calculations of the binding energy and the cluster polarizability offer more insights into relatively strong stability of two magic-number clusters Si6 and Si10.
Putungan, Darwin Barayang; Lin, Shi-Hsin; Kuo, Jer-Lai
2016-07-27
We systematically investigated the potential of single-layer VS2 polytypes as Na-battery anode materials via density functional theory calculations. We found that sodiation tends to inhibit the 1H-to-1T structural phase transition, in contrast to lithiation-induced transition on monolayer MoS2. Thus, VS2 can have better structural stability in the cycles of charging and discharging. Diffussion of Na atom was found to be very fast on both polytypes, with very small diffusion barriers of 0.085 eV (1H) and 0.088 eV (1T). Ab initio random structure searching was performed in order to explore stable configurations of Na on VS2. Our search found that both the V top and the hexagonal center sites are preferred adsorption sites for Na, with the 1H phase showing a relatively stronger binding. Notably, our random structures search revealed that Na clusters can form as a stacked second layer at full Na concentration, which is not reported in earlier works wherein uniform, single-layer Na adsorption phases were assumed. With reasonably high specific energy capacity (232.91 and 116.45 mAh/g for 1H and 1T phases, respectively) and open-circuit voltage (1.30 and 1.42 V for 1H and 1T phases, respectively), VS2 is a promising alternative material for Na-ion battery anodes with great structural sturdiness. Finally, we have shown the capability of the ab initio random structure searching in the assessment of potential materials for energy storage applications. PMID:27373121
NASA Astrophysics Data System (ADS)
Matar, Samir F.; Maglione, Mario; Nakhl, Michel; Kfoury, Charbel N.; Etourneau, Jean
2016-09-01
From DFT based calculations establishing energy-volume equations of state and electron localization mapping, the electronic structure and crystal chemistry changes from Sn2TiO4 to Sn2TiO6 by oxidation are rationalized; the key effect being the destabilization of divalent tin SnII towards tetravalent state SnIV leading to rutile Sn2TiO6 as experimentally observed. The subsequent electronic structure change is highlighted in the relative change of the electronic band gap which increases from ∼1 eV up to 2.2 eV and the 1.5 times increase of the bulk modulus assigned to the change from covalently SnII based compound to the more ionic SnIV one. Such trends are also confronted with the relevant properties of black SnIIO.
NASA Astrophysics Data System (ADS)
Binev, Y. I.; Petrova, R. R.; Tsenov, J. A.; Binev, I. G.
2000-01-01
The structures of (4-nitrophenyl)acetonitrile and of its carbanion were studied on the basis of both quantitative IR spectra and ab initio force field calculations. The spectral and structural changes, which take place in the course of the conversion of the parent molecule into the carbanion, are essential and spread over the whole species. In agreement between theory and experiment, the conversion studied causes strong frequency decreases (down to 136 cm -1) and intensity increases (up to 90-fold) of the cyano and nitro stretching bands. The molecule→carbanion conversion is accompanied by both quinoidization of the phenylene ring and a change in the configuration of the methylenic carbon atom: from tetrahedral in the molecule it becomes planar in the carbanion. The carbanionic charge is delocalized over the carbanionic center (0.40 e -), phenylene (0.24 e -), nitro (0.21 e -) and cyano (0.15 e -) groups.
Suturina, Elizaveta A; Maganas, Dimitrios; Bill, Eckhard; Atanasov, Mihail; Neese, Frank
2015-10-19
Over the past several decades, tremendous efforts have been invested in finding molecules that display slow relaxation of magnetization and hence act as single-molecule magnets (SMMs). While initial research was strongly focused on polynuclear transition metal complexes, it has become increasingly evident that SMM behavior can also be displayed in relatively simple mononuclear transition metal complexes. One of the first examples of a mononuclear SMM that shows a slow relaxation of the magnetization in the absence of an external magnetic field is the cobalt(II) tetra-thiolate [Co(SPh)4](2-). Fascinatingly, substitution of the donor ligand atom by oxygen or selenium dramatically changes zero-field splitting (ZFS) and relaxation time. Clearly, these large variations call for an in-depth electronic structure investigation in order to develop a qualitative understanding of the observed phenomena. In this work, we present a systematic theoretical study of a whole series of complexes (PPh4)2[Co(XPh)4] (X = O, S, Se) using multireference ab initio methods. To this end, we employ the recently proposed ab initio ligand field theory, which allows us to translate the ab initio results into the framework of ligand field theory. Magneto-structural correlations are then developed that take into account the nature of metal-ligand covalent bonding, ligand spin-orbit coupling, and geometric distortions away from pure tetrahedral symmetry. The absolute value of zero-field splitting increases when the ligand field strength decreases across the series from O to Te. The zero-field splitting of the ground state of the hypothetical [Co(TePh)4](2-) complex is computed to be about twice as large as for the well-known (PPh4)2[Co(SPh)4] compound. It is shown that due to the π-anisotropy of the ligand donor atoms (S, Se) magneto-structural correlations in [Co(OPh)4](2-) complex differ from [Co(S/SePh)4](2-). In the case of almost isotropic OPh ligand, only variations in the first
Long, Run; Fang, Weihai; Akimov, Alexey V
2016-02-18
We report ab initio time-domain simulations of nonradiative electron-hole recombination and electronic dephasing in ideal and defect-containing monolayer black phosphorus (MBP). Our calculations predict that the presence of phosphorus divacancy in MBP (MBP-DV) substantially reduces the nonradiative recombination rate, with time scales on the order of 1.57 ns. The luminescence line width in ideal MBP of 150 meV is 2.5 times larger than MBP-DV at room temperature, and is in excellent agreement with experiment. We find that the electron-hole recombination in ideal MBP is driven by the 450 cm(-1) vibrational mode, whereas the recombination in the MBP-DV system is driven by a broad range of vibrational modes. The reduced electron-phonon coupling and increased bandgap in MBP-DV rationalize slower recombination in this material, suggesting that electron-phonon energy losses in MBP can be minimized by creating suitable defects in semiconductor device material. PMID:26821943
Reshak, Ali Hussain; Khenata, R.; Auluck, S.
2011-08-15
From the refined atomic positions obtained by Belmal et al. (2004) using X-ray diffraction for Li{sub 0.50}Co{sub 0.25}TiO(PO{sub 4}), we have performed a structural optimization by minimizing the forces acting on the atoms keeping the lattice parameters fixed at the experimental values. With this relaxed (optimized) geometry we have performed a comprehensive theoretical study of electronic properties and dispersion of the linear optical susceptibilities using the full potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) exchange-correlation potential was applied. In addition, the Engel-Vosko generalized gradient approximation (EVGGA) was used for comparison with GGA because it is known that EVGGA approach yields better band splitting compared to the GGA. We have calculated the band structure, and the total and partial densities of states. The electron charge densities and the bonding properties were analyzed and discussed. The complex dielectric optical susceptibilities were discussed in detail. - Graphical abstract: It is shown that P is tetrahedrally coordinated by four O ions. Highlights: > Comprehensive theoretical study of electronic and optical properties was performed. > Using X-ray diffraction data we have performed a structural optimization. > The electron charge densities and the bonding properties were analyzed and discussed. > Fermi surface was analyzed since it is useful for predicting thermal, magnetic, and optical properties. > The density of states at E{sub F} and the electronic specific heat coefficient were calculated.
NASA Astrophysics Data System (ADS)
Liu, X. K.; Tang, B.; Zhang, Y.
2013-10-01
The structural and thermodynamic properties of tetragonal-TiH2 under high temperatures and pressures are investigated by Ab initio calculations based on pseudo-potential plane-wave density functional theory method within using the generalized gradient approximation (GGA) and quasi-harmonic Debye model. Some ground state properties such as lattice constants, bulk modulus and elastic constants are good agreement with the available experimental results and other theoretical data. Through the quasiharmonic Debye model, in which the phononic effects are considered, the thermodynamic properties of tetragonal-TiH2 such as thermal expansion coefficient, Debye temperature, heat capacity and Grüneisen parameters dependence of temperature and pressure in the range of 0-1000 K and 0-10 GPa are also presented, respectively.
Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H.; Antusek, Andrej; Parlinska-Wojtan, Magdalena; Bissig, Vinzenz
2012-10-29
Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Rice, Julia E.
1992-01-01
The equilibrium structures, harmonic vibrational frequencies, IR intensities, and relative energetics of HNO3 and its protonated form H2NO3+ were investigated using double-zeta plus polarization and triple-zeta plus polarization basis sets in conjunction with high-level ab initio methods. The latter include second-order Moller-Plesset perturbation theory, the single and double excitation coupled cluster (CCSD) methods, a perturbational estimate of the effects of connected triple excitations (CCSD(T)), and the self-consistent field. To determine accurate energy differences CCSD(T) energies were computed using large atomic natural orbital basis sets. Four different isomers of H2NO3+ were considered. The lowest energy form of protonated nitric acid was found to correspond to a complex between H2O and NO2+, which is consistent with earlier theoretical and experimental studies.
Saalfrank, Peter; Juaristi, J. I.
2014-12-21
Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.
Ab initio calculation of the electronic and optical properties of solid pentacene
Tiago, Murilo L.; Northrup, John E.; Louie, Steve G.
2002-11-01
The optical and electronic properties of crystalline pentacene are studied, using a first-principles Green's-function approach. The quasiparticle energies are calculated within the GW approximation and the electron-hole excitations are computed by solving the Bethe-Salpeter equation. We investigate the role of polymorphism on the electronic energy gap and linear optical spectrum by studying two different crystalline phases: the solution-phase structure and the vapor-phase structure. charge-transfer excitons are found to dominate the optical spectrum. Excitons with sizable binding energies are predicted for both phases.
NASA Astrophysics Data System (ADS)
Kumar, A.; Ahluwalia, P. K.
2012-06-01
We report first principles calculations of the electronic structure of monolayer 1H-MX2 (M = Mo, W; X = S, Se, Te), using the pseudopotential and numerical atomic orbital basis sets based methods within the local density approximation. Electronic band structure and density of states calculations found that the states around the Fermi energy are mainly due to metal d states. From partial density of states we find a strong hybridisation between metal d and chalcogen p states below the Fermi energy. All studied compounds in this work have emerged as new direct band gap semiconductors. The electronic band gap is found to decrease as one goes from sulphides to the tellurides of both Mo and W. Reducing the slab thickness systematically from bulk to monolayers causes a blue shift in the band gap energies, resulting in tunability of the electronic band gap. The magnitudes of the blue shift in the band gap energies are found to be 1.14 eV, 1.16 eV, 0.78 eV, 0.64, 0.57 eV and 0.37 eV for MoS2, WS2, MoSe2, WSe2, MoTe2 and WTe2, respectively, as we go from bulk phase (indirect band gap) to monolayer limit (direct band gap). This tunability in the electronic band gap and transitions from indirect to direct band make these materials potential candidates for the fabrication of optoelectronic devices.
NASA Astrophysics Data System (ADS)
Stepanian, S. G.; Reva, I. D.; Radchenko, E. D.; Latajka, Z.; Wierzejewska, M.; Ratajczak, H.
1999-06-01
The molecular structure of 1-methylaminophosphinic acid (AMPA) was investigated with the matrix isolation IR spectroscopy and ab initio calculations performed with RHF, MP2, MP3, MP4(DQ), MP4(SDQ) and MP4(SDTQ) methods. Three pseudopotential basis sets designed as CEP-31G were used in the calculations: Basis Set I-CEP-31G with the d-functions on phosphorus; Basis Set II-CEP-31G with the d-functions on all heavy atoms; Basis Set III-CEP-31G with the d-functions on all heavy atoms and p-functions on hydrogens. Four stable molecular and four stable zwitterion conformers of aminophosphinic acid were found via ab initio calculations. According to the calculations, molecular conformers are always more stable than the zwitterion conformers, irrespective of the basis set size and level of theory. This result is in good agreement with matrix IR spectrum of the AMPA. The presence of the bands of OH stretching and NH 2 bending vibrations and the absence of the bands of POO - and NH 3+ vibrations are the evidence of molecular structure of AMPA in the isolated state. An increased number of vibrational bands is found in the IR spectrum. It is explained by the high conformation lability of AMPA molecules which is related to very low barrier of rotation about C-P bond. The IR spectrum is actually determined by multiple sites of AMPA molecule packed in the Ar crystal, which considerably increases the number of bands in the IR spectrum.
Ab-initio Calculation of Optoelectronic and Structural Properties of Cubic Lithium Oxide (Li2O)
NASA Astrophysics Data System (ADS)
Ziegler, Joshua; Polin, Daniel; Malozovsky, Yuriy; Bagayoko, Diola
Using the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), we performed ab-initio, density functional theory (DFT) calculations of optoelectronic, transport, and bulk properties of Li2S. In so doing, we avoid ``band gap'' and problems plaguing many DET calculations [AIP Advances 4, 127104 (2014)]. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). With the BZW-EF method, our results possess the full, physical content of DFT and agree with available, corresponding experimental ones. In particular, we found a room temperature indirect band gap of 6.659 eV that compares favorably with experimental values ranging from 5 to 7.99 eV. We also calculated total and partial density of states (DOS and PDOS), effective masses of charge carriers, the equilibrium lattice constant, and the bulk modulus. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.
Chalupský, Jakub Yanai, Takeshi
2013-11-28
The derivation, implementation, and validation of a new approximation to the two-electron spin–orbit coupling (SOC) terms is reported. The approximation, referred to as flexible nuclear screening spin–orbit, is based on the effective one-electron spin–orbit operator and accounts for two-electron SOC effects by screening nuclear charges. A highly flexible scheme for the nuclear screening is developed, mainly using parameterization based on ab initio atomic SOC calculations. Tabulated screening parameters are provided for contracted and primitive Gaussian-type basis functions of the ANO-RCC basis set for elements from H to Cm. The strategy for their adaptation to any other Gaussian basis set is presented and validated. A model to correct for the effect of splitting of transition metal d orbitals on their SOC matrix elements is introduced. The method is applied to a representative set of molecules, and compared to exact treatment and other approximative approaches at the same level of relativistic theory. The calculated SOC matrix elements are in very good agreement with their “exact” values; deviation below 1% is observed on average. The presented approximation is considered to be generally applicable, simple to implement, highly efficient, and accurate.
NASA Astrophysics Data System (ADS)
Chalupský, Jakub; Yanai, Takeshi
2013-11-01
The derivation, implementation, and validation of a new approximation to the two-electron spin-orbit coupling (SOC) terms is reported. The approximation, referred to as flexible nuclear screening spin-orbit, is based on the effective one-electron spin-orbit operator and accounts for two-electron SOC effects by screening nuclear charges. A highly flexible scheme for the nuclear screening is developed, mainly using parameterization based on ab initio atomic SOC calculations. Tabulated screening parameters are provided for contracted and primitive Gaussian-type basis functions of the ANO-RCC basis set for elements from H to Cm. The strategy for their adaptation to any other Gaussian basis set is presented and validated. A model to correct for the effect of splitting of transition metal d orbitals on their SOC matrix elements is introduced. The method is applied to a representative set of molecules, and compared to exact treatment and other approximative approaches at the same level of relativistic theory. The calculated SOC matrix elements are in very good agreement with their "exact" values; deviation below 1% is observed on average. The presented approximation is considered to be generally applicable, simple to implement, highly efficient, and accurate.
Sari, A. Merad, G.
2015-03-30
The structural stability and electronic properties of TiMgCr{sub 2} laves phase have been calculated and compared. It is found that Mg prefer to substitutes titanium than chromium. The values of entalpies of formation show that Ti{sub 1-x}Mg{sub x}Cr{sub 2} may exist for only one concentration x=0.125 and the more favorable alloy is Ti{sub 0.875}Mg{sub 0.125}Cr{sub 2}. For TiCr{sub 2}, the optimized structural parameters were in good agreement with experimental values, while for TiMgCr{sub 2}, there is not experimental data. The electronic densities of states (DOS) are given and the nature of bonds are also discussed.
Ab initio study of electron-phonon coupling in boron-doped SiC
NASA Astrophysics Data System (ADS)
Margine, E. R.; Blase, X.
2008-11-01
Density functional theory calculations have been used to study the electronic structure, lattice dynamics, and electron-phonon coupling in boron-doped silicon carbide in the cubic phase. Our results provide evidence that the recently discovered superconducting transition in boron-doped silicon carbide can be explained within a standard phonon-mediated mechanism. For the same doping rate, the coupling constant λ in B-doped SiC is very close to that of doped diamond and twice as large as that of B-doped silicon. However, doped silicon carbide differs from its diamond counterpart as most of the electron-phonon coupling originates from low energy vibrational modes.
Wu, Xiuxiu; Gao, Liang; Liu, Jinxiang; Yang, Hongfang; Wang, Shoushan; Bu, Yuxiang
2015-10-28
Studies on the structure, states, and reactivity of excess electrons (EEs) in biological media are of great significance. Although there is information about EE interaction with desolvated biological molecules, solution effects are hardly explored. In this work, we present an ab initio molecular dynamics simulation study on the interaction and reactivity of an EE with glycine in solution. Our simulations reveal two striking results. Firstly, a pre-solvated EE partially localizes on the negatively charged -COO(-) group of the zwitterionic glycine and the remaining part delocalizes over solvent water molecules, forming an anion-centered quasi-localized structure, due to relative alignment of the lowest unoccupied molecular orbital energy levels of potential sites for EE residence in the aqueous solution. Secondly, after a period of anion-centered localization of an EE, the zwitterionic glycine is induced to spontaneously fragment through the cleavage of the N-Cα bond, losing ammonia (deamination), and leaving a ˙CH2-COO(-) anion radical, in good agreement with experimental observations. Introduction of the same groups (-COO(-) or -NH3(+)) in the side chain (taking lysine and aspartic acid as examples) can affect EE localization, with the fragmentation of the backbone part of these amino acids dependent on the properties of the side chain groups. These findings provide insights into EE interaction mechanisms with the backbone parts of amino acids and low energy EE induced fragmentation of amino acids and even peptides and proteins. PMID:26399512
Wang, Zhiping; Zhang, Liang; Cukier, Robert I; Bu, Yuxiang
2010-02-28
The structural and electronic properties of an excess electron (EE) in the ionic liquid (IL) 1-methylpyridinium chloride were explored using ab initio molecular dynamics simulations and quantum chemical calculations to give an overall understanding of the solvation and transport behavior of an EE in this IL. The results show that the EE resides in cation pi*-type orbitals and that the electronic states can be characterized by the alternating appearance of localized and delocalized states during the time evolution. The characters of the EE electronic states are determined by the number of cations contributing to the LUMO of the IL. In a localized state one or two cations contribute to the LUMO of the bulk ionic liquid, while in the delocalized state the IL LUMO is composed of pi*-type orbitals spanning nearly all the cations in the cell. The arrangement and fluctuation-induced changes of the orbital components in the empty band produce an alternation of different states and leads to the migration of the excess electron. These findings can be attributed to the special features of the electronic structures and geometries of the IL, and they can be used to explain similarities and differences between pyridinium-based and imidazolium-based ILs in mediating electron migration. PMID:20145852
NASA Astrophysics Data System (ADS)
Benam, M. R.; Abdoshahi, N.; Majidiyan Sarmazdeh, M.
2014-08-01
In this paper the effect of pressure on the structural and electronic properties of cubic-LaAlO3 including the equilibrium lattice constant, bulk modulus, derivative of bulk modulus and band structure have been calculated by density functional theory (DFT) using GGA, LDA, and PBEsol exchange correlation potentials. It is found that the change of the lattice constant with pressure has an exponential behavior: with increasing pressure, the lattice constant decreases first sharply at low pressures, and then more slowly at high pressures. Furthermore, the lattice constant calculated by the PBEsol method and the bulk modulus calculated by LDA and PBEsol methods are closer to the available experimental values than those obtained using other exchange correlation potentials. Regarding the electronic properties, it is shown that an increase in pressure increases the band gap, the change being 0.26 eV at 34.00 GPa. The total density of state (t-DOS) calculations demonstrate that increasing pressure has a significant effect on the core and conduction band, but little effect on the valence band. The band structure calculations indicate that, in this material, the band gap changes from indirect to direct at a pressure of about 25 GPa. Also, increasing pressure produces a clear curvature in the band structure near the bottom of the conduction band, a behavior consistent with the strong pressure dependence of the transport properties.
Ab-initio Calculations of Electronic Properties of AlP, GaP and InP
NASA Astrophysics Data System (ADS)
Malozovsky, Yuriy; Saliev, Azizjon; Franklin, Lashaunda; Ekuma, Chinedu; Zhao, Guang-Lin; Bagayoko, Diola
2014-03-01
We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende aluminum, gallium and indium phosphides (AlP, GaP & InP). We employed a local density approximation (LDA) potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Our calculated, indirect band gap of 2.56 eV for AlP, and of 2.14 eV for GaP, from Γ to X, are in excellent agreement with experimental values. Our calculated direct band gap of 1.40 eV, at Γ -point for InP is also in excellent agreement with experimental value. We also report calculated electron and hole effective masses for AlP, GaP and InP and total (DOS) and partial (pDOS) densities of states. This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.
NASA Astrophysics Data System (ADS)
Watson, G. W.; Wells, R. P. K.; Willock, D. J.; Hutchings, G. J.
2000-07-01
The adsorption of ethene on the {111} surface of copper has been studied by using density functional theory calculations with gradient corrections. The surface is described by a periodic (3×3) slab, three layers thick, with ethene adsorbed on one side. The energy of the adsorption shows great sensitivity to the k-point sampling employed, with single k-point calculations overestimating the binding by over 800% when compared with a calculation converged with respect to the k-point sampling. In addition, the structure of the adsorbed molecule is considerably distorted, which is in contradiction with conclusions drawn from the experimental vibrational frequencies. Calculations that are converged with respect to the k-point sampling indicate a much weaker interaction between the molecule and the surface, with adsorption energies of 11.1 and 10.9 kJ mol -1 for atop-h and atop-b, respectively. This weaker interaction leads to a geometry for the adsorbed molecule that is close to the gas-phase ethene structure, in agreement with the vibrational frequencies. We have proposed a model of molecular adsorption that is a balance between attraction, resulting from localised bond formation, and repulsion, due to interaction between the extended electronic states and the molecule's electron density. If the extended electronic states are underestimated, as in cluster or low k-point calculations, the repulsion is underestimated. This results in stronger bonding to the surface and overestimation of the adsorption energy.
Casassa, S.; Baima, J.; Mahmoud, A.; Kirtman, B.
2014-06-14
Electronic and vibrational contributions to the static and dynamic (hyper)polarizability tensors of ice XI and model structures of ordinary hexagonal ice have been theoretically investigated. Calculations were carried out by the finite field nuclear relaxation method for periodic systems (FF-NR) recently implemented in the CRYSTAL code, using the coupled-perturbed Kohn-Sham approach (CPKS) for evaluating the required electronic properties. The effect of structure on the static electronic polarizabilities (dielectric constants) and second-hyperpolarizabilities is minimal. On the other hand, the vibrational contributions to the polarizabilities were found to be significant. A reliable evaluation of these (ionic) contributions allows one to discriminate amongst ice phases characterized by different degrees of proton-order, primarily through differences caused by librational motions. Transverse static and dynamic vibrational (hyper)polarizabilities were found by extrapolating calculations for slabs of increasing size, in order to eliminate substantial surface contributions.
NASA Astrophysics Data System (ADS)
Vincent, Mark A.; Hillier, Ian H.; Morgado, Claudio A.; Burton, Neil A.; Shan, Xiao
2008-01-01
We have investigated, using both ab initio and density functional theory methods, the minimum energy structures and corresponding binding energies of the van der Waals complexes between phenol and argon or the nitrogen molecule, and the corresponding complexes involving the phenol cation. Structures were obtained at the MP2 level using a large basis, and the corresponding energies were corrected for basis set superposition error (BSSE), higher order electron correlation effects, and for basis set size. The structures of the global minima were further refined for the effects of BSSE and the corresponding binding energies were evaluated. For each neutral species, we find only a single true minimum, π bonded for argon and OH bonded for nitrogen. For both cationic species, we find that the OH-bonded complex is preferred over other minima which we have identified as having Ar or N2 between exogeneous atoms. The ab initio calculations are generally in excellent agreement with experimental binding energies and rotational constants. We find that the B3LYP functional is particularly poor at describing these complexes, while a density functional theory (DFT) method with an empirical correction for dispersive interactions (DFT-D) is very successful, as are some of the new functionals proposed by Zhao and Truhlar [J. Phys. Chem. A 109, 5656 (2005); J. Chem. Theory Comput. 2, 1009 (2006); Phys. Chem. Chem. Phys. 7, 2701 (2005); J. Phys. Chem. A 108, 6908 (2004)]. Both the ab initio and DFT-D methods accurately predict the intermolecular vibrational modes.
Ab initio investigation of the electronic properties of HgmTen clusters
NASA Astrophysics Data System (ADS)
Nanavati, Sachin; Kumar, Vijay; Pandey, Ravindra; Dixit, Ambesh
2014-03-01
Nanostructured HgTe quantum dots have attracted attention due to their potential applications in novel mid-infrared (3 - 5 μm) wavelength photodetectors and other optoelectronic applications. HgTe bulk material is a semimetal with bandgap ~ -0.3 eV, however at nanoscale, we observe drastic changes in the optical and electronic properties such as band gap opening, that makes it possible for engineering optoelectronic properties. We investigated the structural, optical, and electronic properties of HgmTen (m = n = 12, 13, 33, and 34) nanoparticles using density functional theory and the pseudopotential method within the generalized gradient approximation. The structures are relaxed to achieve the stable configurations and corresponding electronic properties are calculated. We investigated the density of states, energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), binding energy, and the Hg-Te bond length variation as a function of the cluster size. We will discuss the changes in the electronic structure and optical properties for these clusters with respect to the cluster size variation. The authors would like to thank C-DAC, Pune, India for the computational resources and MHRD, Gov. of India for financial support.
NASA Astrophysics Data System (ADS)
Ricca, Chiara; Ringuedé, Armelle; Cassir, Michel; Adamo, Carlo; Labat, Frédéric
2016-05-01
The structural, electronic and surface properties of the mixed lithium-sodium (LiNaCO3) and lithium-potassium (LiKCO3) carbonates were studied through periodic calculations performed at the density functional theory (DFT) level, using three different exchange-correlation functionals. The hybrid functional PBE0 was found to be the best one to describe both geometric and electronic features of bulk LiNaCO3 and LiKCO3. Polar (001) and non-polar (110) low index surfaces were taken into account, the first one being found the most stable in both cases, after reconstruction. Both introduction of vacancies (R1) and octopolar terminations (R2) of (001), exposing Li ((001)Li) or Na ((001)Na) were described in detail. The computed stability order for the reconstructed surfaces in gas phase is: (001)R1Na > > (001)R1Li > (001)R2Na ≈ (001)R2Li. The obtained information, in particular regarding the electronic and surface properties, could be used in future to help understanding the role of mixed carbonates as component of oxide-carbonate electrolytes for low temperature solid oxide fuel cells (LT-SOFCs) applications, especially as reasonable starting points for dynamics calculations of liquid molten carbonates based systems.
Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul
2006-01-27
We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.
NASA Astrophysics Data System (ADS)
Magnuson, Martin; Mattesini, Maurizio; Bugnet, Matthieu; Eklund, Per
2015-10-01
The anisotropy in the electronic structure of the inherently nanolaminated ternary phase Cr2GeC is investigated by bulk-sensitive and element selective soft x-ray absorption/emission spectroscopy. The angle-resolved absorption/emission measurements reveal differences between the in-plane and out-of-plane bonding at the (0001) interfaces of Cr2GeC. The Cr L 2, 3, C K, and Ge M 1, M 2, 3 emission spectra are interpreted with first-principles density-functional theory (DFT) including core-to-valence dipole transition matrix elements. For the Ge 4s states, the x-ray emission measurements reveal two orders of magnitude higher intensity at the Fermi level than DFT within the General Gradient Approximation (GGA) predicts. We provide direct evidence of anisotropy in the electronic structure and the orbital occupation that should affect the thermal expansion coefficient and transport properties. As shown in this work, hybridization and redistribution of intensity from the shallow 3d core levels to the 4s valence band explain the large Ge density of states at the Fermi level.
Magnuson, Martin; Mattesini, Maurizio; Bugnet, Matthieu; Eklund, Per
2015-10-21
The anisotropy in the electronic structure of the inherently nanolaminated ternary phase Cr2GeC is investigated by bulk-sensitive and element selective soft x-ray absorption/emission spectroscopy. The angle-resolved absorption/emission measurements reveal differences between the in-plane and out-of-plane bonding at the (0001) interfaces of Cr2GeC. The Cr L(2, 3), C K, and Ge M1, M(2, 3) emission spectra are interpreted with first-principles density-functional theory (DFT) including core-to-valence dipole transition matrix elements. For the Ge 4s states, the x-ray emission measurements reveal two orders of magnitude higher intensity at the Fermi level than DFT within the General Gradient Approximation (GGA) predicts. We provide direct evidence of anisotropy in the electronic structure and the orbital occupation that should affect the thermal expansion coefficient and transport properties. As shown in this work, hybridization and redistribution of intensity from the shallow 3d core levels to the 4s valence band explain the large Ge density of states at the Fermi level. PMID:26414914
NASA Astrophysics Data System (ADS)
Wang, Zi; Bevan, Kirk H.
2016-01-01
In the present work, we study the effects of the electronic relaxation of semicore levels on polaron activation energies and dynamics. Within the framework of adiabatic ab initio theory, we utilize both static transition state theory and molecular dynamics methods for an in-depth study of polaronic hopping in delithiated LiFePO4 (FePO4). Our results show that electronic relaxation of semicore states is significant in FePO4, resulting in a lower activation barrier and kinetics that is one to two orders faster compared to the result of calculations that do not incorporate semicore states. In general, the results suggest that the relaxation of states far below the Fermi energy could dramatically impact the ab initio polaronic barrier estimates for many transition metal oxides and phosphates.
NASA Astrophysics Data System (ADS)
Berriche, Hamid; Gadea, Florent Xavier
1995-02-01
All adiabatic curves of LiH + dissociating into Li(2s, 2p, 3s, 3p, 3d) + H + and Li + + H (1s, 2s, 2p) are determined by an ab initio approach involving a non-empirical pseudopotential for the Li(ls 2) core and core valence correlation corrections. The resulting spectroscopic constants and vibrational level spacings of all these states are presented. From the usual semiclassical approximations an analysis of the high energy vibrational level spacing is performed allowing for accurate long range extrapolations. For the lowest curves dissociating into Li + + H (1s) and Li (2s) + H + an analysis of the main electronic interactions is carried out from a diabatic model and reveals the importance of the binding charge delocalisation effects versus the polarisation (charge localised) ones. In addition the LiH photoelectron spectrum is calculated. An interesting feature of that spectrum is that both bound-bound and bound-free transitions coexist due to the particular shape of the LiH and LiH + potential energy curves.
C 1s and N 1s core excitation of aniline: Experiment by electron impact and ab initio calculations
Duflot, D.; Flament, J.-P.; Giuliani, A.; Heinesch, J.; Grogna, M.; Hubin-Franskin, M.-J.
2007-05-15
Core shell excitation spectra of aniline at the carbon and nitrogen 1s edges have been obtained by inner-shell electron energy-loss spectroscopy recorded under scattering conditions where electric dipolar conditions dominate, with higher resolution than in the previous studies. They are interpreted with the aid of ab initio configuration interaction calculations. The spectrum at the C 1s edge is dominated by an intense {pi}{sup *} band. The calculated chemical shift due to the different chemical environment at the carbon 1s edge calculated is in agreement with the experimental observations within a few tenths of an eV. The transition energies of the most intense bands in the C 1s excitation spectrum are discussed at different levels of calculations. In the nitrogen 1s excitation spectrum the most intense bands are due to Rydberg-valence transitions involving the {sigma}{sup *}-type molecular orbitals, in agreement with the experiment. This assignment is different from that of extended Hueckel molecular orbital calculations. The geometries of the core excited states have been calculated and compared to their equivalent core molecules and benzene.
Elastic, Electronic, Optical and Thermal Properties of Na2Po: An Ab Initio Study
NASA Astrophysics Data System (ADS)
Baki, N.; Eithiraj, R. D.; Khachai, H.; Khenata, R.; Murtaza, G.; Bouhemadou, A.; Seddik, T.; Bin-Omran, S.
2016-01-01
The structural, elastic, electronic, optical and thermodynamic properties of the sodium polonide Na2Po compound have been studied through the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) and tight-binding linear muffin-tin orbital (TB-LMTO) methods. The exchange-correlation potential was treated within the local density approximation for the TB-LMTO calculations and within the generalized gradient approximation for the FP-LAPW + lo calculations. In addition, Tran and Blaha-modified Becke-Johnson (TB-mBJ) potential and Engel-Vosko generalized gradient approximation were used for the electronic and optical properties. Ground state properties such as the equilibrium lattice constant, bulk modulus and its pressure derivative were calculated and compared with available data. The single-crystal and polycrystalline elastic constants of the considered compound were calculated via the total energy versus strain in the framework of the FP-LAPW + lo approach. The calculated electronic structure reveals that Na2Po is a direct band gap semiconductor. The frequency-dependent dielectric function, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for a wide energy range. The variations of the lattice constant, bulk modulus, heat capacity, volume expansion coefficient and Debye temperature with temperature and pressure were calculated successfully using the FP-LAPW + lo method in combination with the quasi-harmonic Debye model.
Mourik, T. van; Dunning, T.H. Jr.; Peterson, K.A.
2000-03-23
The potential energy surfaces of the HCO{sup x} (x = +1, 0, -1) species near their equilibrium geometries have been calculated employing coupled cluster methods with augmented correlation consistent basis sets. The equilibrium structures, vibrational frequencies, zero point energies, and dissociation energies were computed for all three species. Valence-electron CCSD(T) calculations with the aug-cc-pV5Z basis set predict CH bond dissociation energies, D{sub 0}, of 140.3 kcal/mol for HCO{sup +}, 14.0 kcal/mol for HCO, and 4.5 kcal/mol for HCO{sup {minus}}, in good agreement with experiment (140.1 {+-} 1, 13.9--14.3, and 5.2 {+-} 0.2 kcal/mol, respectively). The same calculations predict the electron affinity, EA{sub 0}, and ionization potential, IP{sub 0}, of HCO to be 7.7 and 187.3 kcal/mol; these values are within 0.5 kcal/mol of the measured values. Inclusion of core-valence correlation corrections has only a minor effect on the calculated energetics.
Arockia Doss, M; Savithiri, S; Rajarajan, G; Thanikachalam, V; Anbuselvan, C
2015-12-01
FT-IR and FT-Raman spectra of 3-pentyl-2,6-di(furan-2-yl) piperidin-4-one (3-PFPO) were recorded in the solid phase. The structural and spectroscopic analyses of 3-PFPO were made by using B3LYP/HF level with 6-311++G(d, p) basis set. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Comparison of the observed fundamental vibrational frequencies of 3-PFPO with calculated results by HF and DFT methods indicates that B3LYP is superior to HF method for molecular vibrational problems. The electronic properties such as excitation energies, oscillator strength, wavelengths and HOMO-LUMO energies were obtained by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E((2))) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen, oxygen and hydrogen were calculated using B3LYP/6-311++G(d, p) level theory. Moreover, thermodynamic properties (heat capacities, entropy and enthalpy) of the title compound at different temperatures were calculated in gas phase. PMID:26172464
Szalay, Péter G; Holka, Filip; Fremont, Julien; Rey, Michael; Peterson, Kirk A; Tyuterev, Vladimir G
2011-03-01
The aim of the study was to explore the limits of ab initio methods towards the description of excited vibrational levels up to the dissociation limit for molecules having more than two electrons. To this end a high level ab initio potential energy function was constructed for the four-electron LiH molecule in order to accurately predict a complete set of bound vibrational levels corresponding to the electronic ground state. It was composed from: (a) an ab initio non-relativistic potential obtained at the MR-CISD level including size-extensivity corrections and quintuple-sextuple ζ extrapolation of the basis, (b) MVD relativistic corrections obtained at icMR-CISD/cc-pwCV5Z level, and (c) DBOC obtained at the MR-CISD/cc-pwCVTZ level. Finally, the importance of non-adiabatic effects was also tested by using atomic masses in the vibrational kinetic energy operator. The calculated vibrational levels were compared with those obtained from experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys., 2004, 121, 9378]. Our best estimate of the potential curve results in vibrational energies with a RMS deviation of only ∼1 cm(-1) for the entire set of all empirically determined vibrational levels known so far. These results represent a drastic improvement over previous theoretical predictions of vibrational levels of (7)LiH up to dissociation, D(0), which was predicted to be 19,594 cm(-1). PMID:21180724
Ab initio no core full configuration approach for light nuclei
NASA Astrophysics Data System (ADS)
Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy
2014-07-01
Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.
Ab initio no core full configuration approach for light nuclei
NASA Astrophysics Data System (ADS)
Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy
2015-10-01
Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.
NASA Astrophysics Data System (ADS)
Ming, Xing; Wang, Chun-Zhong; Fan, Hou-Gang; Hu, Fang; Wei, Ying-Jin; Huang, Zu-Fei; Meng, Xing; Chen, Gang
2008-10-01
Based on fully self-consistent first-principles density functional theory (DFT) calculations as well as classical spin analysis, we study the electronic structure and magnetic interactions of the spinel-related compound LiMnVO4. Four possible ordered spin states have been considered by spin-polarized generalized gradient approximation (GGA) calculations. The antiferromagnetic (AFM) configuration with both intra-chain and inter-chain AFM coupling interactions is energetically favorable among these magnetic ordered states. The calculated AFM solution agrees well with a series of experimental measurements. The intra-atomic exchange splitting of the Mn 3d spin-up and spin-down states results in the insulating behavior of LiMnVO4. The Heisenberg Hamiltonian is used to deduce the magnetic coupling parameters by adopting Noodleman's broken symmetry method. The intra-chain AFM interactions are much stronger than the inter-chain AFM interactions and thus LiMnVO4 can be described as a weakly coupled edge-sharing spin \\frac {5}{2} chain system. We propose that the presence of the side groups of edge-sharing LiO4 and VO4 tetrahedra are contributing to the intra-chain AFM interactions in the nearly 90° Mn-O-Mn bond configuration of the edge-sharing MnO4 chains.
Matar, Samir F.; Al-Alam, Adel; Ouaini, Naïm; Pöttgen, Rainer
2013-06-15
The electronic structures of the metal-rich phosphides LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7} were studied by DFT calculations. Both phosphides consist of three-dimensional [Co{sub 6}P{sub 4}] and [Co{sub 12}P{sub 7}] polyanionic networks which leave hexagonal channels for the lithium atoms. COOP data show strong Co–P and Co–Co bonding within the polyanions. The lithium atoms have trigonal prismatic phosphorus coordination. Total energy calculations indicate stability upon de-lithiation towards the Co{sub 6}P{sub 4} and Co{sub 12}P{sub 7} substructures - Graphical abstract: The cobalt–phosphorus networks in LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}. - Highlights: • Chemical bonding resolved in the metal-rich phosphides LiCo{sub 6}P{sub 4} and Li{sub 2}Co{sub 12}P{sub 7}. • Strong covalent Co–P bonding character in the [Co{sub 6}P{sub 4}] and [Co{sub 12}P{sub 7}] substructures. • Total energy calculations indicate stability of the de-lithiated substructures.
Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.
2008-05-20
Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.
NASA Astrophysics Data System (ADS)
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2016-06-01
In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH• radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH• radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.
Mishra, Karuna Kara; Achary, S Nagabhusan; Chandra, Sharat; Ravindran, T R; Sinha, Anil K; Singh, Manavendra N; Tyagi, Avesh K
2016-09-01
Variable-temperature Raman spectroscopic and synchrotron X-ray diffraction studies were performed on BaTe2O6 (orthorhombic, space group: Cmcm), a mixed-valence tellurium compound with a layered structure, to understand structural stability and anharmonicity of phonons. The structural and vibrational studies indicate no phase transition in it over a wider range of temperature (20 to 853 K). The structure shows anisotropic expansion with coefficients of thermal expansion in the order αb ≫ αa > αc, which was attributed to the anisotropy in bonding and structure of BaTe2O6. Temperature evolution of Raman modes of BaTe2O6 indicated a smooth decreasing trend in mode frequencies with increasing temperature, while the full width at half-maximum (fwhm) of all modes systematically increases due to a rise in phonon scattering processes. With the use of our earlier reported isothermal mode Grüneisen parameters, thermal properties such as thermal expansion coefficient and molar specific heat are calculated. The pure anharmonic (explicit) and quasiharmonic (implicit) contribution to the total anharmonicity is delineated and compared. The temperature dependence of phonon mode frequencies and their fwhm values are analyzed by anharmonicity models, and the dominating anharmonic phonon scattering mechanism is concluded in BaTe2O6. In addition to the lattice modes, several external modes of TeOn (n = 5, 6) are found to be strongly anharmonic. The ab initio electronic structure calculations indicated BaTe2O6 is a direct band gap semiconductor with gap energy of ∼2.1 eV. Oxygen orbitals, namely, O-2p states in the valence band maximum and the sp-hybridized states in the conduction band minimum, are mainly involved in the electronic transitions. In addition a number of electronic transitions are predicted by the electronic structure calculations. Experimental photoluminescence results are adequately explained by the ab initio calculations. Further details of the structural and
Ab initio investigation of electron capture by Cl{sup 7+} ions from H
Zhao, L. B.; Stancil, P. C.; Watanabe, A.; Kimura, M.
2007-08-15
An investigation of charge transfer in collisions of ground-state Cl{sup 7+} with H has been conducted based on a fully quantum-mechanical molecular-orbital close-coupling (QMOCC) approach. The charge-transfer process Cl{sup 7+}({sup 1}S)+H{yields}Cl{sup 6+}(2p{sup 6}nl {sup 2}S,{sup 2}P{sup o},{sup 2}D,{sup 2}F{sup o},{sup 2}G)+H{sup +} with n=5 and 6 is taken into account for collision energies between 10{sup -4} eV/u and 1 keV/u. The relevant adiabatic potentials and nonadiabatic coupling matrix elements for the ClH{sup 7+} system are evaluated with the configuration-interaction method. The investigation shows that electron capture into the 5d, 5f, 5g, and 6p states dominates for collision energies less than {approx}1 eV/u, while above 100 eV/u the 5s, 5p, 5d, and 6p are the primary capture channels. Comparison with experimental data for collisions of Cl{sup 7+}({sup 1}S) with D reveals a discrepancy over the full range of measured energies (5-430 eV/u), while no significant isotope effect is found for QMOCC calculations with deuterium. Furthermore, comparison with a previous calculation of the one-electron N{sup 7+}+H system, as well as measurements of the multielectron Al{sup 7+}+H and Fe{sup 7+}+H systems, suggests that the electronic structure of the core has a non-negligible effect on the charge-transfer process. A one-electron model for relative l distributions is found to agree with the QMOCC results for n=5 between 100 and 1000 eV/u, but fails at lower collision energies. Finally, state-selective and total rate coefficients are given for temperatures between 10 and 200 000 K.
Ab-Initio Calculations of the Electronic Properties of Boron Nitride
NASA Astrophysics Data System (ADS)
Stewart, Anthony; Khamala, Bethuel; Hart, Daniel; Bagayoko, Diola
2014-03-01
The potential of Boron Nitride (BN) in nanotechnology is tremendous. BN in its bulk form has a wide band gap with excellent thermal and chemical stability. BN structures can be tailored using various techniques in order to obtain desired materials properties. The State-of-the-art Proton Exchange Membrane Fuel Cell (PEMFCs) technology exploits graphitized carbon as a support for platinum-type catalysts. However, some forms of carbon are susceptible to long-term durability issues such as corrosion which is a detriment to fuel cell performance and viability. Novel non-carbon supports such as BN may provide a pathway for addressing the durability and performance issues associated with carbon support materials. We present preliminary theoretical studies, using an linear combination of atomic orbital (LCAO) quantum chemistry package from Ames Laboratory, of the electronic properties of this potentially important material. Our calculated band gap of 6.48 eV for the cubic structure, obtained with an LDA potential and the BZW-EF method, is in agreement with experiment. LASIGMA/ NNSA_MSIP.
Grimminger, Robert; Clouthier, Dennis J.; Sheridan, Phillip M.
2014-04-28
We have studied the B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence (LIF) spectrum of the jet-cooled F{sub 2}BO radical for the first time. The transition consists of a strong 0{sub 0}{sup 0} band at 446.5 nm and eight weak sequence bands to shorter wavelengths. Single vibronic level emission spectra obtained by laser excitation of individual levels of the B{sup ~} state exhibit two electronic transitions: a very weak, sparse B{sup ~}–X{sup ~} band system in the 450–500 nm region and a stronger, more extensive set of B{sup ~} {sup 2}A{sub 1}–A{sup ~} {sup 2}B{sub 1} bands in the 580–650 nm region. We have also performed a series of high level ab initio calculations to predict the electronic energies, molecular structures, vibrational frequencies, and rotational and spin-rotation constants in the X{sup ~} {sup 2}B{sub 2}, A{sup ~2}B{sub 1} and B{sup ~} {sup 2}A{sub 1} electronic states as an aid to the analysis of the experimental data. The theoretical results have been used as input for simulations of the rotationally resolved B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} 0{sub 0}{sup 0} LIF band and Franck-Condon profiles of the LIF and single vibronic level emission spectra. The agreement between the simulations obtained with purely ab initio parameters and the experimental spectra validates the geometries calculated for the ground and excited states and the conclusion that the radical has C{sub 2v} symmetry in the X{sup ~}, A{sup ~}, and B{sup ~} states. The spectra provide considerable new information about the vibrational energy levels of the X{sup ~} and A{sup ~} states, but very little for the B{sup ~} state, due to the very restrictive Franck-Condon factors in the LIF spectra.
Structure of ZnCl2 Melt. Part I: Raman Spectroscopy Analysis Driven by Ab Initio Methods.
Alsayoud, Abduljabar Q; Venkateswara Rao, Manga; Edwards, Angharad N; Deymier, Pierre A; Muralidharan, Krishna; Potter, B G; Runge, Keith; Lucas, Pierre
2016-05-01
The structure of molten ZnCl2 is investigated using a combination of computer simulation and experimental methods. Ab initio molecular dynamics (AIMD) is used to model the structure of ZnCl2 at 600 K. The structure factors and pair distribution functions derived from AIMD show a good match with those previously measured by neutron diffraction (ND). In addition, Raman spectroscopy is used to investigate the structure of liquid ZnCl2 and identify the relative fractions of constituent structural units. To ascertain the assignment of each Raman mode, a series of ZnCl2 crystalline prototypes are modeled and the corresponding Raman modes are derived by first-principles calculations. Curve fitting of experimental Raman spectra using these mode assignments shows excellent agreement with both AIMD and ND. These results confirm the presence of significant fractions of edge-sharing tetrahedra in liquid ZnCl2. The presence of these structural motifs has significant impact on the fragility of this tetrahedral glass-forming liquid. The assignment of Raman bands present in molten ZnCl2 is revised and discussed in view of these results. PMID:27070739
Ma, Xiaoyan; Cai, Kaicong; Wang, Jianping
2011-02-10
Infrared (IR) experiment, ab initio computations, and molecular dynamics (MD) simulations were used to examine the dynamical structures of ethylene glycol (EG) and 1,2-ethanedithiol (EDT) in carbon tetrachloride and deuterated chloroform. Using the O-H and S-H stretching modes as structural probes, EG and EDT were found to exhibit different conformational preferences, even though they share similar molecular formula. Results suggest that the gauche conformation of EG presents and is stabilized by the intramolecular hydrogen bond (IHB), while both the trans and gauche EDT are possible in the two solvents. Exchangeable IHB donor and acceptor pairs were predicted in the case of EG. Anharmonic vibrational frequencies, anharmonicities, and couplings of the O-H and S-H stretching modes were predicted and found to be structurally dependent. Linear IR and two-dimensional IR spectra containing these structural signatures were simulated and discussed. These results demonstrate that a combination of the methods used here is very useful in revealing structural dynamics of small molecules in condensed phases. PMID:21208002
Ona, Ofelia; Facelli, Julio C.; Bazterra, Victor E.; Caputo, Maria C.; Ferraro, Marta B.
2005-11-15
The results of ab initio global optimizations of the structures of Si{sub n}H, n=4-10, atomic clusters using a parallel genetic algorithm are presented. Driving the global search with the parallel implementation of the genetic algorithm are presented and using the density functional theory as implemented in the Carr-Parinello molecular dynamics code to calculate atomic cluster energies and perform the local optimization of their structures, we have been able to demonstrate that it is possible to perform global optimizations of the structure of atomic clusters using ab initio methods. The results show that this approach is able to find many structures that were not previously reported in the literature. Moreover, in most cases the new structures have considerable lower energies than those previously known. The results clearly demonstrate that these calculations are now possible and in spite of their larger computational demands provide more reliable results.
Ab initio Monte Carlo investigation of small lithium clusters.
Srinivas, S.
1999-06-16
Structural and thermal properties of small lithium clusters are studied using ab initio-based Monte Carlo simulations. The ab initio scheme uses a Hartree-Fock/density functional treatment of the electronic structure combined with a jump-walking Monte Carlo sampling of nuclear configurations. Structural forms of Li{sub 8} and Li{sub 9}{sup +} clusters are obtained and their thermal properties analyzed in terms of probability distributions of the cluster potential energy, average potential energy and configurational heat capacity all considered as a function of the cluster temperature. Details of the gradual evolution with temperature of the structural forms sampled are examined. Temperatures characterizing the onset of structural changes and isomer coexistence are identified for both clusters.
Ab initio study of the structures and hydrogen storage capacity of (H2)nCH4 compound
NASA Astrophysics Data System (ADS)
Wang, Minghui; Cheng, Xinlu; Ren, Dahua; Zhang, Hong; Tang, Yongjian
2015-05-01
The hydrogen-rich compound (H2)nCH4 (for n = 1, 2, 3, 4) or for short (H2)nM is one of the most promising hydrogen storage materials. The (H2)4M molecule is the best hydrogen-rich compound among the (H2)nM structures and it can reach the hydrogen storage capacity of 50.2 wt.%. However, the (H2)nM always requires a certain pressure to remain stable. In this work, we first investigated the binding energy of the different structures in (H2)nM and energy barrier of H2 rotation under different pressures at ambient temperature, applying ab initio methods based on van der Waals density functional (vdW-DF). It was found that at 0 GPa, the (H2)nM is not stable, while at 5.8 GPa, the stability of (H2)nM strongly depends on its structure. We further investigate the Raman spectra of (H2)nM structures at 5.8 GPa and found the results were consistent with experiments. Excitingly, we found that boron nitride nanotubes (BNNTs) and graphite and hexagonal boron nitride (h-BN) can be used to store (H2)4M, which give insights into hydrogen storage practical applications.
NASA Astrophysics Data System (ADS)
Matar, Samir F.; Galy, Jean
2016-02-01
The F- anion mobility of archetype fast ionic conductor PbSnF4 formerly investigated by neutron diffraction with temperature is revisited based on a joint stereochemical and DFT investigation. It is mainly shown that a rapid exchange between F anions at the different tetragonal lattice sites is enhanced within the polyhedra enclosing the lone pair E in a dynamic change of coordination from octahedral to square pyramidal as for Sn(II). E stereoactivity in the interspaces along c direction is illustrated by the electron localization function ELF isosurface representations and followed by the non linear change of the c lattice constant with temperature.
Peterson, Kirk A
2000-09-15
A global, analytical potential energy surface for the ground electronic state of HOBr has been determined using highly correlated multireference configuration interaction wave functions and explicit basis set extrapolations of large correlation consistent basis sets. The ab initio data have been fit to an analytical functional form that accurately includes both the HOBr and HBrO minima, as well as all dissociation asymptotes. Small adjustments to this surface are made based on the limited experimental data available and by indirectly taking into account the effects of spin-orbit coupling on the OH+Br dissociation channel. Vibrational energy levels are calculated variationally for both HOBr and HBrO up to the OH+Br dissociation limit using a truncation/recoupling method. The HOBr isomer is calculated to contain 708 bound vibrational energy levels, while the HBrO minimum lies above the OH+Br dissociation limit but is calculated to have 74 ''quasibound,'' localized eigenstates. Infrared intensities for all of these vibrational transitions are also calculated using MRCI dipole moment functions. The assignment of the HOBr states is complicated by strong stretch-bend resonances even at relatively low energies. In contrast to the HOCl case, these state mixings made it particularly difficult to assign the relatively intense OH overtone bands above v{sub 1}=2. The vibrational density of states of HOBr at the OH+Br dissociation limit is determined to be 0.16 states/cm-1. Comparisons to recent work on HOCl using similar methods are made throughout. (c) 2000 American Institute of Physics.
An Accurate Global Ab Initio Potential Energy Surface for the X(1)A' Electronic State of HOBr
Peterson, Kirk A.
1999-12-01
A global, analytical potential energy surface for the ground electronic state of HOBr has been determined using highly correlated multireference configuration interaction wave functions and explicit basis set extrapolations of large correlation consistent basis sets. The ab initio data have been fit to an analytical functional form that accurately includes both the HOBr and HBrO minima, as well as all dissociation asymptotes. Small adjustments to this surface are made based on the limited experimental data available and by indirectly taking into account the effects of spin-orbit coupling on the OH+Br dissociation channel. Vibrational energy levels are calculated variationally for both HOBr and HBrO up to the OH+Br dissociation limit using a truncation-recoupling method. The HOBr isomer is calculated to contain 708 bound vibrational energy levels, while the HBrO minimum lies above the OH+Br dissociation limit but is calculated to have 74 quasibound, localized eigenstates. Infrared intensities for all of these vibrational transitions are also calculated using MRCI dipole moment functions. The assignment of the HOBr states is complicated by strong stretch-bend resonances even at relatively low energies. In contrast to the HOCl case, these state mixings made it particularly difficult to assign the relatively intense OH overtone bands above v1=2. The vibrational density of states of HOBr at the OH+Br dissociation limit is determined to be 0.16 states/cm-1. Comparisons to recent work on HOCl using similar methods are made throughout.
NASA Astrophysics Data System (ADS)
Mohamed, Tarek A.; Shaltout, I.; Al Yahyaei, K. M.
2006-05-01
Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO 2 + 5%Fe 2O 3 + 10%TMO], where transition metal oxides (TMO) are TiO 2, V 2O 5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm -1) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO 44- triagonal bipyramid ( C2v) and Te 2O 76- bridged tetrahedra ( Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO 3+1 binds to TeO 3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).
NASA Astrophysics Data System (ADS)
Pereira Silva, Pedro S.; Ghalib, Raza Murad; Mehdi, Sayed Hasan; Hashim, Rokiah; Sulaiman, Othman; Silva, Manuela Ramos
2011-05-01
A new polymorph of N', N″, N″'-triphenylbiuret, C 20H 17N 3O 2 (form II), has been synthesized and the structure has been solved by X-ray diffraction. The crystals are monoclinic, space group P2 1/ c, with a = 7.6966 (3) Å, b = 12.5490 (4) Å, c = 18.5996 (6) Å, β = 107.632(2)°, Mr = 331.37, V = 1712.04 (10) Å 3, Z = 4 and R = 0.0454. The hydrogen bonding of this polymorph is considerably different from that of the previously known structure. The molecules are linked in infinite chains, via C-H⋯O hydrogen bonds and there is also an intramolecular N-H⋯O hydrogen bond. The intermolecular interactions present in this polymorph, and on the previously reported polymorph, were analysed by means of the fingerprint plots derived from the Hirshfeld surfaces. The fingerprint plots evidenced the different packing modes of the two structures. Quantum-mechanical ab initio calculations for the free molecule were performed using the Hartree-Fock and DFT/B3LYP methods with the 6-31G(d,p) basis set of wave functions. The solid-state conformations compared with those obtained theoretically from DFT calculations for the isolated molecules show significant differences. Some difficulties of using quantum-mechanical calculations for the determination of relative conformational energies are also discussed.
Hydration structures of U(III) and U(IV) ions from ab initio molecular dynamics simulations
Leung, Kevin; Nenoff, Tina M.
2012-08-21
We apply DFT+U-based ab initio molecular dynamics simulations to study the hydration structures of U(III) and U(IV) ions, pertinent to redox reactions associated with uranium salts in aqueous media. U(III) is predicted to be coordinated to 8 water molecules, while U(IV) has a hydration number between 7 and 8. At least one of the innershell water molecules of the hydrated U(IV) complex becomes spontaneously deprotonated. As a result, the U(IV)-O pair correlation function exhibits a satellite peak at 2.15 A associated with the shorter U(IV)-(OH{sup -}) bond. This feature is not accounted for in analysis of extended x-ray absorption fine structure and x-ray adsorption near edge structure measurements, which yield higher estimates of U(IV) hydration numbers. This suggests that it may be useful to include the effect of possible hydrolysis in future interpretation of experiments, especially when the experimental pH is close to the reported hydrolysis equilibrium constant value.
D Saldin; H Poon; M Bogan; S Marchesini; D Sahpiro; R Kirian; U Weierstall; J Spence
2011-12-31
We report on the first experimental ab initio reconstruction of an image of a single particle from fluctuations in the scattering from an ensemble of copies, randomly oriented about an axis. The method is applicable to identical particles frozen in space or time (as by snapshot diffraction from an x-ray free electron laser). These fluctuations enhance information obtainable from an experiment such as conventional small angle x-ray scattering.
Electronic and thermal properties of TiFe{sub 2} compound: An ab initio study
Sathyakumari, V. S.; Sankar, S. Mahalakshmi, K.; Subashree, G.; Krithiga, R.
2015-06-24
A systematic study of electronic, and thermal properties such as the Density of states, Fermi energy, Debye temperature and specific heat coefficient, has been carried out using the results of electronic bandstructure and related characteristics of the Laves phase compound, TiFe{sub 2}. Computation of electronic bandstructure and associated properties has been carried out using the tight-binding-linear-muffin-tin-orbital (TB-LMTO) method within atomic sphere approximation (ASA). The calculated values are compared with the available results of literature.
Zimmermann, Tomáš; Vaníček, Jiří
2014-10-07
We derive a somewhat crude, yet very efficient semiclassical approximation for computing nonadiabatic spectra. The resulting method, which is a generalization of the multiple-surface dephasing representation, includes quantum effects through interference of mixed quantum-classical trajectories and through quantum treatment of the collective electronic degree of freedom. The method requires very little computational effort beyond the fewest-switches surface hopping or Ehrenfest locally mean-field dynamics and is very easy to implement. The proposed approximation is tested by computing the absorption and time-resolved stimulated emission spectra of pyrazine using the four-dimensional three-surface model which allows for comparison with the numerically exact quantum spectra. As expected, the multiple-surface dephasing representation is not suitable for high-resolution linear spectra, yet it seems to capture all the important features of pump-probe spectra. Finally, the method is combined with on-the-fly ab initio evaluation of the electronic structure (i.e., energies, forces, electric-dipole, and nonadiabatic couplings) in order to compute fully dimensional nonadiabatic spectra of pyrazine without approximations inherent to analytical, including vibronic-coupling models. The Appendix provides derivations of perturbative expressions for linear and pump-probe spectra of arbitrary mixed states and for arbitrary laser pulse shapes.
NASA Astrophysics Data System (ADS)
Salami, N.; Shokri, A. A.; Elahi, S. M.
2016-03-01
Electronic and magnetic properties of a molybdenum disulfide (MoS2) monolayer with some intrinsic and extrinsic vacancies are investigated using ab initio method in the presence of planar strain distributions. The calculations are carried out within the density functional theory (DFT) as implemented in SIESTA package. By using fully relaxed structures and applying a full spin-polarized description to the system, we concentrate on created magnetic moment due to the vacancies under different planar strains. The results show that the extrinsic MoS6 vacancy induces a net magnetic moment of 6.00 μB per supercell. Also, it is found that the pure MoS2 monolayer for the most cases does not show any magnetic properties under the planar strain. While the net magnetic moment of MoS2 monolayer with the vacancies enhances as the planar tensile strain is applied. The tunable magnetic moment of MoS2 monolayer may be utilized for the development of spintronic and flexible electronic nano-devices.
Pressure Induced Structural Phase Transition in Actinide Monophospides: Ab Initio Calculations
NASA Astrophysics Data System (ADS)
Makode, Chandrabhan; Sanyal, Sankar P.
2011-07-01
The structural and electronic properties of monophospides of Thorium, Uranium and Neptunium have been investigated using tight binding linear muffin-in-orbital (TB-LMTO) method within the local density approximation (LDA). From present study with the help of total energy calculations it is found that ThP, UP and NpP are stable in NaCl- type structure under ambient pressure. The structure stability of ThP, UP and NpP changes under the application of pressure. We predict a structural phase transition from NaCl-type (B1-phase) structure to CsCl-type (B2-phase) structure for these phospides in the pressure range of 37.0-24.0 GPa (ThP to NpP). The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.
Pressure induced structural phase transition in actinide mono-bismuthides: Ab initio calculations
NASA Astrophysics Data System (ADS)
Pataiya, J.; Makode, C.; Aynyas, M.; Sanyal, Sankar P.
2013-06-01
The structural and electronic properties of mono-bismuthides of Plutonium and Americium have been investigated using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). From present study with the help of total energy calculations it is found that PuBi and AmBi are stable in NaCl - type structure under ambient pressure. The structure stability of PuBi and AmBi changes under the application of pressure. We predict a structural phase transition from NaCl-type (B1-phase) structure to CsCl-type (B2-phase) structure for these phospides in the pressure range of 45 - 4.5 GPa for PuBi and AmBi respectively. The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.
NASA Astrophysics Data System (ADS)
Shimizu, Toshihiko; Yoshino, Ruriko; Ishiuchi, Shun-ichi; Hashimoto, Kenro; Miyazaki, Mitsuhiko; Fujii, Masaaki
2013-02-01
IR spectra of trans-1-naphthol-(H2O)n (n = 0-3) clusters in the S1 state were measured by UV-IR fluorescence dip spectroscopy. The observed dip spectra were compared with theoretical ones of various stable conformations predicted by ab initio MO calculations. From the comparison, linear (n = 1) and cyclic hydrogen-bond structures (n = 2 and 3) were concluded. The relation between the structures and photochemical reactivity was discussed.
NASA Astrophysics Data System (ADS)
Bahgat, Khaled; Fraihat, Safwan
2015-01-01
In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra of APTT were recorded in solid phase. The UV-Vis absorption spectrum of the APTT was recorded in the range of 200-400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.
Dominance of Low Spin and High Deformation in Ab Initio Approaches to the Structure of Light Nuclei
Dytrych, T.; Draayer, J. P.; Sviratcheva, K. D.; Bahri, C.; Vary, J. P.
2009-08-26
Ab initio no-core shell-model solutions for the structure of light nuclei are shown to be dominated by low-spin and high-deformation configurations. This implies that only a small fraction of the full model space is important for a description of bound-state properties of light nuclei. It further points to the fact that the coupling scheme of choice for carrying out calculations for light nuclear systems is an algebraic-based, no-core shell-model scheme that builds upon an LS coupling [SO(3) x SU(2)] foundation with the spatial part of the model space further organized into its symplectic [SO(3) subset of SU(3) subset of Sp(3, R)] structure. Results for {sup 12}C and {sup 16}O are presented with the cluster nature of the excited 0{sup +} states in {sup 16}O analyzed within this framework. The results of the analysis encourages the development of a no-core shell model code that takes advantage of algebraic methods as well as modern computational techniques. Indeed, although it is often a very challenging task to cast complex algebraic constructs into simple logical ones that execute efficiently on modern computational systems, the construction of such a next-generation code is currently underway.
NASA Astrophysics Data System (ADS)
Burresi, E.; Celino, M.
2012-05-01
A single wurtzite phase of cadmium sulfide cluster is investigated by ab-initio molecular dynamics simulations at different temperatures, ranging from 100 K to 600 K. In this study we propose a possible procedure to characterize the CdS quantum dots system by means of molecular dynamics calculations using a standard Car-Parrinello scheme. In order to ensure the accuracy of the numerical approach, preliminary calculations to test pseudopotentials, cutoff and box size on both single atoms systems and Cd-Cd, S-S, Cd-S dimers have been performed. Calculated binding energies and bond lengths are obtained in good agreement with experimental data. Subsequently, an uncapped CdS cluster with size below 2 nm, 48 atoms of cadmium and 48 atoms of sulfur, in a wurtzite geometry was structurally optimized to minimize internal stresses. The CdS cluster has been carefully characterized structurally at several temperatures up to T = 600 K. At the temperature of 340 K atomic diffusion on the surface allows the onset of a new stable atomic configuration.
NASA Astrophysics Data System (ADS)
Juchnovski, I. N.; Tsenov, J. A.; Binev, I. G.
1996-08-01
The structure of alkane- and cycloalkanecarbonitriles (seven compounds) and of their carbanions has been studied by both infrared spectrometry and ab initio force field calculations. The carbanions (counter ions Li +, Na + and K +) have been found to exist mainly as ionic aggregates in hexamethylphosphoric triamide solutions. The calculations describe well the marked decrease, by 124-214 cm -1, in the nitrile band frequencies and also the strong increase, by 1-2 orders, in the nitrile band integrated intensities which accompany the conversion of the parent neutral molecules into carbanions. Cyclopropanecarbonitrile is remarkable as having the highest nitrile band intensity among all the neutral molecules and the lowest one among all the carbanions studied. This result has also been predicted by the calculations, and it can be explained by certain peculiarities in the structure of the particles. The conjugation of the carbanionic charge with the cyano group in the cyclopropanecarbonitrile carbanion is greatly hindered by the considerable deviation (estimated at 56°) of the cyano group from the ring plane. The carbanionic charges of the carbanions studied are delocalized over the cyano groups (0.30-0.41 e -), carbanionic centres (0.08-0.29 e -) and hydrocarbon moieties (0.34-0.63 e -).
NASA Astrophysics Data System (ADS)
Binev, I. G.; Tsenov, J. A.; Velcheva, E. A.; Radomirska, V. B.; Juchnovski, I. N.
1996-05-01
The structures of o-, m- and p-(cyanophenyl)acetonitrile molecules and their carbanions were studied on the basis of infrared spectroscopic data and ab initio force field calculations. The assignment was given for the 3100-1100 cm -1 bands of the substances studied. The scaled theoretical infrared band frequencies agree well with those measured experimentally. An excellent linear correlation ( R = 0.999) was found between the theoretical and experimental vCN frequencies of both molecules and carbanions. The calculations predict well the strong increase in intensity (1.5- to 70-fold) of the vCN, v8 and v19 bands, which accompanies the conversion of the isomeric (cyanophenyl)acetonitrile molecules into the corresponding carbanions. The structures of the lithium, sodium and potassium derivatives of the nitriles studied in dimethyl sulphoxide are close to those of the kinetically free carbanions. The carbanionic centres are practically planar; the cyano groups carry considerable negative charges, but their influences on the carbanionic centres are mainly inductive. The carbanionic charges are delocalized over the phenylene rings (0.35-0.40 e-), methide (0.22-0.29 e-), α-cyano (0.24-0.27 e-) and ring-cyano (0.08-0.14 e-) groups.
Ab initio Calculations of Electronic Fingerprints of DNA bases on Graphene
NASA Astrophysics Data System (ADS)
Ahmed, Towfiq; Rehr, John J.; Kilina, Svetlana; Das, Tanmoy; Haraldsen, Jason T.; Balatsky, Alexander V.
2012-02-01
We have carried out first principles DFT calculations of the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T) adsorbed on graphene using LDA with ultra-soft pseudo-potentials. We have also calculated the longitudinal transmission currents T(E) through graphene nano-pores as an individual DNA base passes through it, using a non-equilibrium Green's function (NEGF) formalism. We observe several dominant base-dependent features in the LDOS and T(E) in an energy range within a few eV of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases from dI/dV measurements in scanning tunneling spectroscopy (STS) and nano-pore experiments. Thus these electronic signatures can provide an alternative approach to DNA sequencing.
High throughput ab initio modeling of charge transport for bio-molecular-electronics
NASA Astrophysics Data System (ADS)
Bruque, Nicolas Alexander
2009-12-01
Self-assembled nanostructures, composed of inorganic and organic materials, have multiple applications in the fields of engineering and nanotechnology. Experimental research using nanoscaled materials, such as semiconductor/metallic nanocrystals, nanowires (NW), and carbon nanotube (CNT)-molecular systems have potential applications in next generation nano electronic devices. Many of these molecular systems exhibit electronic device functionality. However, experimental analytical techniques to determine how the chemistry and geometry affects electron transport through these devices does not yet exist. Using theory and modeling, one can approximate the chemistry and geometry at the atomic level and also determine how the chemistry and geometry governs electron current. Nanoelectronic devices however, contain several thousand atoms which makes quantum modeling difficult. Popular atomistic modeling approaches are capable of handling small molecular systems, which are of scientific interest, but have little engineering value. The lack of large scale modeling tools has left the scientific and engineering community with a limited ability to understand, explore, and design complex systems of engineering interest. To address these issues, I have developed a high performance general quantum charge transport model based on the non-equilibrium Green function (NEGF) formalism using density functional theory (DFT) as implemented in the FIREBALL software. FIREBALL is a quantum molecular dynamics code which has demonstrated the ability to model large molecular systems. This dissertation project of integrating NEGF into FIREBALL provides researchers with a modeling tool capable of simulating charge current in large inorganic/organic systems. To provide theoretical support for experimental efforts, this project focused on CNT-molecular systems, which includes the discovery of a CNT-molecular resonant tunneling diode (RTD) for electronic circuit applications. This research also
Ab initio calculations on collisions of low energy electrons with polyatomic molecules
Rescigno, T.N.
1991-08-01
The Kohn variational method is one of simplest, and oldest, techniques for performing scattering calculations. Nevertheless, a number of formal problems, as well as practical difficulties associated with the computation of certain required matrix elements, delayed its application to electron--molecule scattering problems for many years. This paper will describe the recent theoretical and computational developments that have made the complex'' Kohn variational method a practical tool for carrying out calculations of low energy electron--molecule scattering. Recent calculations on a number of target molecules will also be summarized. 41 refs., 7 figs.
Long, Run; Prezhdo, Oleg V
2015-11-24
TiO2 sensitized with organohalide perovskites gives rise to solar-to-electricity conversion efficiencies reaching close to 20%. Nonradiative electron-hole recombination across the perovskite/TiO2 interface constitutes a major pathway of energy losses, limiting quantum yield of the photoinduced charge. In order to establish the fundamental mechanisms of the energy losses and to propose practical means for controlling the interfacial electron-hole recombination, we applied ab initio nonadiabatic (NA) molecular dynamics to pristine and doped CH3NH3PbI3(100)/TiO2 anatase(001) interfaces. We show that doping by substitution of iodide with chlorine or bromine reduces charge recombination, while replacing lead with tin enhances the recombination. Generally, lighter and faster atoms increase the NA coupling. Since the dopants are lighter than the atoms they replace, one expects a priori that all three dopants should accelerate the recombination. We rationalize the unexpected behavior of chlorine and bromine by three effects. First, the Pb-Cl and Pb-Br bonds are shorter than the Pb-I bond. As a result, Cl and Br atoms are farther away from the TiO2 surface, decreasing the donor-acceptor coupling. In contrast, some iodines form chemical bonds with Ti atoms, increasing the coupling. Second, chlorine and bromine reduce the NA electron-vibrational coupling, because they contribute little to the electron and hole wave functions. Tin increases the coupling, since it is lighter than lead and contributes to the hole wave function. Third, higher frequency modes introduced by chlorine and bromine shorten quantum coherence, thereby decreasing the transition rate. The recombination occurs due to coupling of the electronic subsystem to low-frequency perovskite and TiO2 modes. The simulation shows excellent agreement with the available experimental data and advances our understanding of electronic and vibrational dynamics in perovskite solar cells. The study provides design principles
Thermochemical data for CVD modeling from ab initio calculations
Ho, P.; Melius, C.F.
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
An ab initio study of the lowest electronic states of yttrium dicarbide, YC2
NASA Astrophysics Data System (ADS)
Puzzarini, Cristina; Peterson, Kirk A.
2005-02-01
The low-lying electronic states of yttrium dicarbide have been calculated using highly correlated wave functions and systematic sequences of correlation consistent basis sets. For the A12 ground electronic state, the near-equilibrium potential energy surface (PES) has been calculated using the coupled cluster method in conjunction with basis sets ranging in size from double to quintuple ζ. The relativistic effects have been taken into account by using pseudopotentials for the Y atom. After extrapolation to the complete basis set limit, additional corrections due to core-valence correlation and spin-orbit effects have also been included. The same approach has been followed for the B12,B22, and A22 states but only the C2V PESs have been considered in these cases. For the two A12 electronic excited states and, for comparison purposes, for the ground state, the multireference configuration interaction (MRCI) approach has been used in conjunction with double-ζ and triple-ζ basis sets for the construction of the PES. The molecular and spectroscopic properties predicted for the ground and excited states investigated in this work compare well with the available experimental data, particularly for the ground electronic state. The 0 K dissociation enthalpy of YC2,ΔHY-C2(0K ), and its atomization enthalpy, ΣD0, are predicted to be 148.4 and 291.5kcal /mol, respectively.
Electron Localization in Fe3 O4 : an Ab Initio Wannier Study
NASA Astrophysics Data System (ADS)
Sakkaris, Perry; Boekema, Carel
2014-03-01
Magnetite, Fe3O4 , is an unusual ferrimagnetic oxide with emergent physical properties that are not yet fully understood. Among these are the metal-insulator transition at the Verwey Temperature TV (123K) and a spin-glass-like transition at about twice TV. The ``extra'' fully spin-polarized 3d electrons that span the t2 g bands of the B sublattice show strong electron correlation effects and are mainly responsible for conduction above TV. We perform a DFT+U calculation to obtain a set of Bloch orbitals describing the t2 g bands. We then use the gauge invariance of Wannier functions to transform the Bloch orbitals into a set of Maximally Localized Wannier Functions (MLWFs). The MLWFs are a real space description of the ``extra'' 3d electrons allowing us to describe their spatial localization and determine the mechanism of conduction above TV. Wannier studies of Fe3O4 may also allow us to determine the extent of electronic coupling to lattice vibrations, which may provide us substantial quantitative clues on the physical mechanism of the Verwey Transition. Research is supported by AFC San Jose.
Putungan, Darwin Barayang; Lin, Shi-Hsin; Wei, Ching-Ming; Kuo, Jer-Lai
2015-05-01
Utilizing ab initio random structure searching, we investigated Li adsorption on MoS2 and hydrogen molecules on Li-decorated MoS2. In contrast to graphene, Li can be adsorbed on both sides of MoS2, with even stronger binding than on the single side. We found that high coverages of Li can be attained without Li clustering, which is essential for hydrogen storage and Li ion batteries. Moreover, regarding battery applications, Li diffusion was also found to be easy. The fully-lithiated MoS2 can then adsorb H2 with 4.4 wt%. Interestingly, our calculations revealed that hydrogen molecules can be dissociated at high Li coverage with a minimal energy barrier. We further showed that the dissociated hydrogen atom can readily diffuse on the surface, thus keeping the reaction site active. We therefore propose that Li-MoS2 could be an inexpensive alternative catalyst to noble metals in hydrogen dissociation reactions. PMID:25849099
NASA Astrophysics Data System (ADS)
Ramya, T.; Gunasekaran, S.; Ramkumaar, G. R.
2015-10-01
The experimental and theoretical spectra of (S)-2-Oxopyrrolidin-1-yl Butanamide (S2OPB) were studied. FT-IR and FT-Raman spectra of S2OPB in the solid phase were recorded and analyzed in the range 4000-450 and 5000-50 cm-1 respectively. The structural and spectroscopic analyses of S2OPB were calculated using ab initio Hartree Fock (HF) and density functional theory calculations (B3PW91, B3LYP) with 6-31G(d,p) basis set. A complete vibrational interpretation has been made on the basis of the calculated Potential Energy Distribution (PED). The HF, B3LYP and B3PW91 methods based NMR calculation has been used to assign the 1H NMR and 13C NMR chemical shift of S2OPB. Comparative study on UV-Vis spectral analysis between the experimental and theoretical (B3PW91, B3LYP) methods and the global chemical parameters and local descriptor of reactivity through the Fukui function were performed. Finally the thermodynamic properties of S2OPB were calculated at different temperatures and the corresponding relations between the properties and temperature were also studied.
Ramya, T; Gunasekaran, S; Ramkumaar, G R
2015-10-01
The experimental and theoretical spectra of (S)-2-Oxopyrrolidin-1-yl Butanamide (S2OPB) were studied. FT-IR and FT-Raman spectra of S2OPB in the solid phase were recorded and analyzed in the range 4000-450 and 5000-50 cm(-1) respectively. The structural and spectroscopic analyses of S2OPB were calculated using ab initio Hartree Fock (HF) and density functional theory calculations (B3PW91, B3LYP) with 6-31G(d,p) basis set. A complete vibrational interpretation has been made on the basis of the calculated Potential Energy Distribution (PED). The HF, B3LYP and B3PW91 methods based NMR calculation has been used to assign the (1)H NMR and (13)C NMR chemical shift of S2OPB. Comparative study on UV-Vis spectral analysis between the experimental and theoretical (B3PW91, B3LYP) methods and the global chemical parameters and local descriptor of reactivity through the Fukui function were performed. Finally the thermodynamic properties of S2OPB were calculated at different temperatures and the corresponding relations between the properties and temperature were also studied. PMID:25956325
NASA Astrophysics Data System (ADS)
Velcheva, Evelina A.; Binev, Yuri I.; Petrova, Milena J.
1999-01-01
The structures of 4-hydroxybenzylidenemalononitrile (HO-C 6H 4-CHC(CN) 2, I), its oxyanion ( -O-C 6H 4-CHC(CN) 2, II), cyanide adduct (HO-C 6H 4-CH(CN)-C¯(CN) 2, III) and adduct-oxyanion ( -O-C 6H 4-CH(CN)-C¯(CN) 2, IV) have been studied by means of both quantitative IR spectra and ab initio force field calculations. The conversion of ( I) into the anionic species causes strong changes in the IR spectra: decreases in the ν CN frequency down to 110 cm -1, up to 7-fold increases in the ACN intensity, up to 58 cm -1 ν CN splitting, etc. The charge analysis shows that the intramolecular charge transfer between the electronegative [C(CN) 2] and electropositive fragments of ( I) is 0.34 e -. Nearly 0.6 e - of the oxyanionic charge of ( II) remains within the oxyphenylene fragment and nearly 0.5 e - of the carbanionic charge of ( III) delocalizes within the dicyanomethide fragment. The two charges in ( IV) are spread over the whole species.
Uranus and Neptune structure models with ab initio EOS data for CH4, NH3, and H2O
NASA Astrophysics Data System (ADS)
Nettelmann, Nadine; Fortney, Jonathan; Hamel, Sebastien; Bethkenhagen, Mandy; Redmer, Ronald
2014-05-01
Uranus and Neptune are supposed to be rich in ices in their deep interiors as their mean density closely resembles that of liquid water. Moreover, highly super-solar abundances of CH4 and CO, indicative of internal water, have been observed in their atmospheres. We here compare ab initio equations of state for CH4, NH3, and H2O and apply them to compute ice-rich, adiabatic internal structure models of Uranus and Neptune. The explicit consideration of the light ices CH4 and NH3 allows us to put tighter constraints on the minimum H/He abundance in their deep interior, which was found to be non-zero in all previous Uranus and in most of the Neptune models that were based on water as a proxy for ices. In particular, we investigate if hydrogen in the deep interior can solely be a result of assumed Carbon sedimentation (diamond rain), as an alternative scenario to the early accretion of H/He containing material during the formation of the planets. We conclude by discussing the deep internal H/He abundance in light of rock-rich and warmer-than-adiabatic interiors, which has been suggested to explain Uranus' low intrinsic luminosity. Our models serve to better understand the formation and bulk composition of Neptune-sized planets.
NASA Astrophysics Data System (ADS)
Bučko, Tomáš; Šimko, František
2016-02-01
Ab initio molecular dynamics simulations in isobaric-isothermal ensemble have been performed to study the low- and the high-temperature crystalline and liquid phases of cryolite. The temperature induced transitions from the low-temperature solid (α) to the high-temperature solid phase (β) and from the phase β to the liquid phase have been simulated using a series of MD runs performed at gradually increasing temperature. The structure of crystalline and liquid phases is analysed in detail and our computational approach is shown to reliably reproduce the available experimental data for a wide range of temperatures. Relatively frequent reorientations of the AlF6 octahedra observed in our simulation of the phase β explain the thermal disorder in positions of the F- ions observed in X-ray diffraction experiments. The isolated AlF63-, AlF52-, AlF4-, as well as the bridged Al 2 Fm 6 - m ionic entities have been identified as the main constituents of cryolite melt. In accord with the previous high-temperature NMR and Raman spectroscopic experiments, the compound AlF5 2 - has been shown to be the most abundant Al-containing species formed in the melt. The characteristic vibrational frequencies for the AlFn 3 - n species in realistic environment have been determined and the computed values have been found to be in a good agreement with experiment.
Bučko, Tomáš; Šimko, František
2016-02-14
Ab initio molecular dynamics simulations in isobaric-isothermal ensemble have been performed to study the low- and the high-temperature crystalline and liquid phases of cryolite. The temperature induced transitions from the low-temperature solid (α) to the high-temperature solid phase (β) and from the phase β to the liquid phase have been simulated using a series of MD runs performed at gradually increasing temperature. The structure of crystalline and liquid phases is analysed in detail and our computational approach is shown to reliably reproduce the available experimental data for a wide range of temperatures. Relatively frequent reorientations of the AlF6 octahedra observed in our simulation of the phase β explain the thermal disorder in positions of the F(-) ions observed in X-ray diffraction experiments. The isolated AlF6(3-), AlF5(2-), AlF4(-), as well as the bridged Al2Fm(6-m) ionic entities have been identified as the main constituents of cryolite melt. In accord with the previous high-temperature NMR and Raman spectroscopic experiments, the compound AlF5(2-) has been shown to be the most abundant Al-containing species formed in the melt. The characteristic vibrational frequencies for the AlFn(3-n) species in realistic environment have been determined and the computed values have been found to be in a good agreement with experiment. PMID:26874492
NASA Astrophysics Data System (ADS)
Binev, Ivan G.; Vassileva-Boyadjieva, Pavlina; Binev, Yuri I.
1998-06-01
The spectral and structural changes taking place during the course of the conversion of 4-hydroxyacetanilide (paracetamol), HOC 6H 4NHCOCH 3, into the corresponding oxyanion, -OC 6H 4NHCOCH 3, and dianion, -OC 6H 4N¯COCH 3, have been followed by both quantitative infrared spectra and ab initio HF/6-31G force-field calculations. The changes accompanying the first deprotonation concern mainly the oxyphenylene fragment; those resulting from the second one are spread over the whole dianion. Analysis of the atomic charge changes shows that over 90% of the first (oxyanionic) charge remains localized within the oxyphenylene fragment. The second (nitranionic) charge delocalizes over the acetyl (0.51 e-) and phenylene (0.26 e-) groups, nitranionic (0.14 e-) and oxyanionic (0.09 e-) centres. The trans conformers (with respect to phenylene and methyl groups) have been calculated to be more stable than the cis ones in all cases studied.
Brain, Paul T.; Cowie, Jill; Donohoe, David J.; Hnyk, Drahomír; Rankin, David W. H.; Reed, David; Reid, Bruce D.; Robertson, Heather E.; Welch, Alan J.; Hofmann, Matthias; Schleyer, Paul von Ragué
1996-03-13
The compound 1-phenyl-1,2-dicarba-closo-dodecaborane(12), 1-C(6)H(5)-1,2-closo-C(2)B(10)H(11) (1), has been synthesized and characterized by a complete assignment of its (11)B NMR spectrum via (11)B{(1)H}/(11)B{(1)H} (COSY), (1)H{(11)B(selective)} and (1)H{(11)B}/(1)H{(11)B} (COSY) spectroscopy. An electron- and X-ray diffraction investigation of 1, complemented by ab initio calculations, has been undertaken. The gas-phase electron-diffraction (GED) data can be fitted by several models describing conformations which differ in the position of the phenyl ring with respect to the carborane cage. Local symmetries ofC(2)(v)() and D(6)(h)() for the 1,2-C(2)B(10) and C(6) moieties, respectively, were adopted in the GED model in order to simplify the problem. In addition, constraints among the close-lying C-C and B-B bonds were employed. However, even though such simplifications led to satisfactory refinements (R(G) = 0.069-0.071), a unique, definitive solution could not be gained. The (C-C)(mean), (C-B)(mean) and (B-B)(mean) bond lengths,r(a), are ca. 1.44, 1.72, and 1.78 Å, respectively. The C(6) hexagon, with r(a)(C-C) = ca. 1.394 Å, either eclipses the C(1)-C(2) vector (overall C(s)() symmetry) or more or less eclipses the C(1)-B(4) cluster bond (overall C(1) symmetry). In contrast, in the solid at 199 K, the ring lies at a position intermediate between the two GED positions, as determined by X-ray crystallography [C(8)H(16)B(10), monoclinic P2(1)/a: a = 12.047(3) Å, b = 18.627(4) Å, c = 12.332(5) Å, beta = 110.09(4) degrees, Z = 8]. The C-B distances span the range 1.681(6)-1.743(5) Å, and B-B lengths lie between 1.756(6) and 1.795(6) Å. A similar conformation was found for the theoretical (RHF/6-31G level) structure which was fully optimized in C(1) symmetry. The r(e) distances are consistent with the dimensions derived in the experimental studies. IGLO calculations of the (11)B chemical shifts, in addition to SCF single-point energies of the GED structures
Ab initio analysis of electron-phonon coupling in molecular devices.
Sergueev, N; Roubtsov, D; Guo, Hong
2005-09-30
We report a first principles analysis of electron-phonon coupling in molecular devices under external bias voltage and during current flow. Our theory and computational framework are based on carrying out density functional theory within the Keldysh nonequilibrium Green's function formalism. Using a molecular tunnel junction of a 1,4-benzenedithiolate molecule contacted by two aluminum leads as an example, we analyze which molecular vibrational modes are most relevant to charge transport under nonequilibrium conditions. We find that the low-lying modes are most important. As a function of bias voltage, the electron-phonon coupling strength can change drastically while the vibrational spectrum changes at a few percent level. PMID:16241682
Ab-initio Calculations of Electronic Properties of Calcium Fluoride (CaF2)
NASA Astrophysics Data System (ADS)
Bohara, Bir; Franklin, Lashounda; Malozovsky, Yuriy; Bagayoko, Diola
We have performed first principle, local density approximation (LDA) calculations of electronic and related properties of cubic calcium fluorite (CaF2) . Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, including the large band gap, total and partial density of states, electron and hole effective masses, and the bulk modulus. Our calculated, indirect (X- Γ) band gap is 12.98 eV; it is 1 eV above an experimental value of 11.8 eV. The calculated bulk modulus (82.89 GPA) is excellent agreement with the experimental result of 82.0 +/-0.7. Our predicted equilibrium lattice constant is 5.42Å. Acknowledgments: This work is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR], and NSF HRD-1002541, the US Department of Energy, National, Nuclear Security Administration (NNSA) (Award No. DE-NA-0002630), LaSPACE, and LONI-SUBR.
Noell, J.O.; Hay, P.J.
1982-01-01
The structures and relative energies of Pt(PH/sub 3/)XY isomers are investigated with use of ab initio molecular orbital theory and effective potentials. In particular, the cis and trans isomers of the dihydride, dichloride, and hydrochloride are studied. In all cases, the trans isomer is the more stable. Available experimental information is in good agreement with calculated bond lengths, bond angles, and vibrational frequencies.
Extensive ab initio study of the electronic states of BSe radical including spin-orbit coupling.
Liu, Siyuan; Zhai, Hongsheng; Liu, Yufang
2016-06-01
The internally contracted multi-reference configuration interaction method (MRCI) with Davidson modification and the Douglas-Kroll scalar relativistic correction has been used to calculate the BSe molecule at the level of aug-cc-pV5Z basis set. The calculated electronic states, including 9 doublet and 6 quartet Λ-S states, are correlated to the dissociation limit of B((2)P(u))+Se((3)P(g)) and B((2)P(u))+Se((1)D(g)). The Spin-orbit coupling (SOC) interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian operator, which causes the entire 15 Λ-S states to split into 32Ω states. This is the first time that the spin-orbit coupling calculation has been carried out on BSe. The potential energy curves of the Λ-S and Ω electronic states are depicted with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound Λ-S and Ω states were determined, which are in good agreement with the experimental data. The transition dipole moments (TDMs) and the Franck-Condon factors (FCs) of the transitions from the low-lying bound Ω states A(2)Π(I)3/2, B(2)Π(I)1/2 and C(2)Δ(I)3/2 to the ground state X(2)Σ(+)1/2 have also been presented. Based on the previous calculations, the radiative lifetimes of the A(2)Π(I)3/2, B(2)Π(I)1/2 and C(2)Δ(I)3/2 were evaluated. PMID:26999315
Extensive ab initio study of the electronic states of BSe radical including spin-orbit coupling
NASA Astrophysics Data System (ADS)
Liu, Siyuan; Zhai, Hongsheng; Liu, Yufang
2016-06-01
The internally contracted multi-reference configuration interaction method (MRCI) with Davidson modification and the Douglas-Kroll scalar relativistic correction has been used to calculate the BSe molecule at the level of aug-cc-pV5Z basis set. The calculated electronic states, including 9 doublet and 6 quartet Λ-S states, are correlated to the dissociation limit of B(2Pu) + Se(3Pg) and B(2Pu) + Se(1Dg). The Spin-orbit coupling (SOC) interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian operator, which causes the entire 15 Λ-S states to split into 32 Ω states. This is the first time that the spin-orbit coupling calculation has been carried out on BSe. The potential energy curves of the Λ-S and Ω electronic states are depicted with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound Λ-S and Ω states were determined, which are in good agreement with the experimental data. The transition dipole moments (TDMs) and the Franck-Condon factors (FCs) of the transitions from the low-lying bound Ω states A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 to the ground state X2Σ+1/2 have also been presented. Based on the previous calculations, the radiative lifetimes of the A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 were evaluated.
Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis.
Chaban, Vitaly V; Prezhdo, Oleg V
2015-10-28
Graphene oxide (GO) holds significant promise for electronic devices and nanocomposite materials. A number of models were proposed for the GO structure, combining carboxyl, hydroxyl, carbonyl and epoxide groups at different locations. The complexity and variety of GO isomers, whose thermodynamic stability and formation kinetics depend on the applied conditions, make determination of the GO structure with atomistic precision challenging. We report high level theoretical investigation of multiple molecular configurations, which are anticipated in GO. We conclude that all oxygen containing groups at the GO surface are thermodynamically permitted, whereas the 'edge' positions are systematically more favorable than the 'center' and 'side' positions. We discuss a potentially novel type of chemical bond or bonding reinforcement in GO, which consists of a covalent bond and a strong electrostatic contribution from a polarized graphene plane. We observe and analyze significant modifications of the graphene geometry and electronic structure upon oxidation. The reported thermodynamic data guide experiments aimed at deciphering the GO chemical composition and structure, and form the basis for predicting GO properties required for nano-technological applications. PMID:26420562
Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis
NASA Astrophysics Data System (ADS)
Chaban, Vitaly V.; Prezhdo, Oleg V.
2015-10-01
Graphene oxide (GO) holds significant promise for electronic devices and nanocomposite materials. A number of models were proposed for the GO structure, combining carboxyl, hydroxyl, carbonyl and epoxide groups at different locations. The complexity and variety of GO isomers, whose thermodynamic stability and formation kinetics depend on the applied conditions, make determination of the GO structure with atomistic precision challenging. We report high level theoretical investigation of multiple molecular configurations, which are anticipated in GO. We conclude that all oxygen containing groups at the GO surface are thermodynamically permitted, whereas the `edge' positions are systematically more favorable than the `center' and `side' positions. We discuss a potentially novel type of chemical bond or bonding reinforcement in GO, which consists of a covalent bond and a strong electrostatic contribution from a polarized graphene plane. We observe and analyze significant modifications of the graphene geometry and electronic structure upon oxidation. The reported thermodynamic data guide experiments aimed at deciphering the GO chemical composition and structure, and form the basis for predicting GO properties required for nano-technological applications.
NASA Astrophysics Data System (ADS)
Mahjoub, Ahmed; Schwell, Martin; Benilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Garcia, Gustavo A.; Gaie-Leverl, Francois; Champion, Norbert; Leach, Sydney
2013-06-01
Cyanoacetylene is one of the key minor constituents in the atmosphere of Titan. The ion HCCCN+ has been detected in this atmosphere and it is supposed to be formed by the reaction between C3H2+ and atomic nitrogen. We present here a spectroscopic investigation of the cyanoacetylene cation using photoexcitation of the neutral by vacuum-ultraviolet (VUV) synchrotron radiation coupled to a velocity map imaging electron/ion coincidence spectrometer. The cation spectroscopy is studied by the Slow Photoelectron Spectroscopy technique (SPES) (figure below) and the Total Ion Yield (TIY). The TIY has been calibrated to absolute units using the known propane absolute cross-section. Quantum chemical calculations are performed in order to interpret these spectra. These calculations deal with the equilibrium geometries, electronic-state patterns and evolutions, and harmonic and anharmonic wavenumbers. Through this study, we observe, in the auto-ionization region above the ionization energy, a number of Rydberg series of neutral cyanoacetylene. These Rydberg series converge to the first and second excited states of the cation. Acknowledgments. We are indebted to the general technical staff of Synchrotron Soleil for the running facility. C. Barrientos, P. Redondo and A. Largo J. Chem. Phys. A {104}(49), 11541-11548. 2000 L. Nahon, N. De Oliveria,J. F. Gil,B. Pilette,O. Marcouillé, B. La garde and F. Polack Journal of Synchrotron Radiation {19}(4), 508-520; 2012
NASA Astrophysics Data System (ADS)
Haxton, Daniel
2009-05-01
Interactions of free electrons with neutral and positively charged molecular species play a role in various physical systems. In interstellar space, reactions such as dissociative recombination determine the balance of various charged and neutral species. In a laboratory equipped with an apparatus like a COLTRIMS device, the dissociative attachment process can be used as a microscope to study polyatomic molecular dynamics. We discuss the theoretical and numerical methods used to calculate dissociative attachment and dissociative recombination of electrons with larger molecules from first principles. Studies using these methods are complimentary to other methods that yield more approximate reaction rates at greatly lesser numerical cost; they may yield precise information about the dissociation dynamics, product distribution, and differential cross section that approximate methods cannot. We discuss calculations performed to date on the target species H2O, NO2, and LiH2^+. We discuss the scaling of our numerical methods with the number of atoms, and the prospects of applying them to tetra-atomics.
Nie, JL; Xiao, Haiyan J.; Gao, Fei; Zu, Xiaotao T.
2009-05-12
First-principles calculations based on density functional theory with the generalized gradient approximation have been performed to study the aluminum (Al) adsorption on the (001) surface of α-uranium (α-U). The geometric, electronic and magnetic properties have been investigated at coverages of 0.25 and 0.5 monolayer. The results show that the quasi-trigonal sites are preferred at both coverages. The bonding of Al with U is found to be metallic, which mainly arises from the mixing of Al 3sp and U 5f states. A ferromagnetic phase is determined for the bare α-U(001) surface, while the adsorption of Al on the surface significantly perturbs the spin arrangement pattern and reduces the local magnetic moment, leading to a ferrimagnetic phase on the α-U(001) surface at the coverage of 0.5 monolayer. However, the Al overlayer is paramagnetic. Generally, the spin polarization has negligible effects on the geometric and electronic properties of Al atoms on the α-U(001) surface.
Sun, J.; Pohl, K.; Mikkelsen, A.; Fuglsang Jensen, M.; Hofmann, Ph.; Koroteev, Y. M.; Bihlmayer, G.; Chulkov, E. V.
2006-12-15
The surface structure of Bi(110) has been investigated by low-energy electron diffraction intensity analysis and by first-principles calculations. Diffraction patterns at a sample temperature of 110 K and normal incidence reveal a bulk truncated (1x1) surface without indication of any structural reconstruction despite the presence of dangling bonds on the surface layer. Good agreement is obtained between the calculated and measured diffraction intensities for this surface containing only one mirror-plane symmetry element and a buckled bilayer structure. No significant interlayer spacing relaxations are found. The Debye temperature for the surface layer is found to be lower than in the bulk, which is indicative of larger atomic vibrational amplitudes at the surface. Meanwhile, the second layer shows a Debye temperature close to the bulk value. The experimental results for the relaxations agree well with those of our first-principles calculation.
NASA Astrophysics Data System (ADS)
Jensen, Per; Buenker, Robert J.; Hirsch, Gerhard; Rai, Sachchida N.
We have calculated ab initio the three-dimensional potential-energy surface of the NH2 molecule at 145 nuclear geometries spanning energy ranges of about 18 000 cm-1 for the NH stretch and 12 000 cm-1 for the bend. The ab initio configuration-interaction calculations were done using the multireference MRD-CI method. The calculated equilibrium configuration has NH bond length re = 1·0207 Å and bond angle α = 103·1°. The rotational-vibrational energies for 14NH2, 14NHD and 14ND2 were calculated variationally using the Morse-oscillator rigid-bender internal-dynamics Hamiltonian. For 14NH2 we calculate that υ1 = 3267 (3219) cm-1, υ2 = 1462 (1497) cm-1 and υ3 = 3283 (3301) cm-1, where experimental values are given in parentheses.
Tuna, Deniz; Udvarhelyi, Anikó; Sobolewski, Andrzej L; Domcke, Wolfgang; Domratcheva, Tatiana
2016-04-14
Eumelanin is a naturally occurring skin pigment which is responsible for developing a suntan. The complex structure of eumelanin consists of π-stacked oligomers of various indole derivatives, such as the monomeric building block 5,6-dihydroxyindole (DHI). In this work, we present an ab initio wave-function study of the absorption behavior of DHI oligomers and of doubly and triply π-stacked species of these oligomers. We have simulated the onset of the electronic absorption spectra by employing the MP2 and the linear-response CC2 methods. Our results demonstrate the effect of an increasing degree of oligomerization of DHI and of an increasing degree of π-stacking of DHI oligomers on the onset of the absorption spectra and on the degree of red-shift toward the visible region of the spectrum. We find that π-stacking of DHI and its oligomers substantially red-shifts the onset of the absorption spectra. Our results also suggest that the optical properties of biological eumelanin cannot be simulated by considering the DHI building blocks alone, but instead the building blocks indole-semiquinone and indole-quinone have to be considered as well. This study contributes to advancing the understanding of the complex photophysics of the eumelanin biopolymer. PMID:27005558
NASA Astrophysics Data System (ADS)
Matar, S. F.; Al Alam, A. F.; Gédéon, D.; Ouaini, N.
2013-11-01
Potential hydrogen storage ternaries Zr3FeH7 and Zr2FeH5, are studied from ab initio with the purpose of identifying changes in electronic structures and bonding properties. Cohesive energy trends: Ecoh. (ZrH2) > Ecoh. (Zr2FeH5) > Ecoh. (Zr3FeH7) > Ecoh. (hypothetic-FeH) indicate a progressive destabilization of the binary hydride ZrH2 through adjoined Fe so that Zr3FeH7 is found less cohesive than Zr2FeH5. From the energy volume equations of states EOS the volume increase upon hydriding the intermetallics leads to higher bulk moduli B0 explained by the Zr/Fe-H bonding. Fe-H bond in Zr2FeH5 leads to annihilate magnetic polarization on Fe whereas Fe magnetic moment develops in Zr3FeH7 identified as ferromagnetic in the ground state. These differences in magnetic behaviors are due to the weakly ferromagnetic Fe largely affected by lattice environment, as opposed to strongly ferromagnetic Co. Hydrogenation of the binary intermetallics weakens the inter-metal bonding and favors the metal-hydrogen bonds leading to more cohesive hydrides as with respect to the pristine binaries. Charge analyses point to covalent like Fe versus ionic Zr and hydrogen charges ranging from covalent H-0.27 to more ionic H-0.5.
An unconventional halogen bond with carbene as an electron donor: An ab initio study
NASA Astrophysics Data System (ADS)
Li, Qingzhong; Wang, Yilei; Liu, Zhenbo; Li, Wenzuo; Cheng, Jianbo; Gong, Baoan; Sun, Jiazhong
2009-02-01
An unconventional halogen bond has been proved to exist in H2C-BrH complex. The halogen bond energy of H2C-BrH complex is calculated at four levels of theory [MP2, MP4, CCSD, and CCSD(T)]. The result shows that the carbene is a better electron donor. The substitution effect is prominent in this interaction. For example, the interaction energy in H2C-BrCN complex is increased by more than 300% relative to H2C-BrH complex. The analyses of NBO, AIM, and energy components were used to unveil the nature of the interaction. The results show that this novel halogen bond has similar characteristics to hydrogen bonds.
Ab Initio Study of the Dielectric and Electronic Properties of Multilayer GaS Films.
Li, Yan; Chen, Hui; Huang, Le; Li, Jingbo
2015-03-19
The dielectric properties of multilayer GaS films have been investigated using a Berry phase method and a density functional perturbation theory approach. A linear relationship has been observed between the number of GaS layers and slab polarizability, which can be easily converged at a small supercell size and has a weak correlation with different stacking orders. Moreover, the intercoupling effect of the stacking pattern and applied vertical field on the electronic properties of GaS bilayers has been discussed. The band gaps of different stacking orders show various downward trends with the increasing field, which is interpreted as giant Stark effect. Our study demonstrates that the slab polarizability as the substitution of conventional dielectric constant can act as an independent and reliable parameter to elucidate the dielectric properties of low-dimensional systems and that the applied electric field is an effective method to modulate the electric properties of nanostructures. PMID:26262870
Structures and optical absorptions of PbSe clusters from ab initio calculations
NASA Astrophysics Data System (ADS)
Zeng, Qun; Shi, Jing; Jiang, Gang; Yang, Mingli; Wang, Fan; Chen, Jun
2013-09-01
Based on the low-lying structures of (PbSe)n (n = 1-10) clusters identified with a first-principles molecular dynamics approach, two growth patterns with distinct structure and energy evolutions were predicted for the even-n and odd-n clusters, respectively. Moreover, the clusters favor a simple cubic and bulk-like growth pattern, unlike the extensively studied II-VI clusters whose structural diversity has been well established. The overlap between 6p of Pb and 4p of Se makes not only the ordered and bulk-like structures but also a stable building block of (PbSe)4. The high stability of (PbSe)4 is recognized in terms of its binding energy, HOMO-LUMO gap, appearance in the structures of larger-size clusters, as well as its appearance in the fragmentation products of PbSe clusters. The geometrical and electronic structures of the PbSe clusters were further studied within the density functional theory framework including spin-orbital (SO) coupling. We found that SO coupling does not change the relative stability of the clusters but reduces their binding energy significantly. Particularly, the SO effect has a great impact on the UV-vis spectra of the clusters, which were simulated with time-dependent density functional theory at SO level of zeroth-order regular approximation.
Tripathi, A.N.; Smith, V.H. Jr. K7L3N6); Kaijser, P.; Siemens, A.G. ); Diercksen, G.H.F. )
1990-03-01
Isotropic scattering functions and Compton profiles together with their directional components for several directions relevant to the molecular structure of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} have been evaluated for {ital ab} {ital initio} self-consistent field and configuration-interaction wave functions. The internally folded density (reciprocal form factor) {ital B}({ital r}) is calculated and discussed as are various momentum expectation values. Comparison is made with available experimental and other theoretical results.
Ab initio investigations of A-site doping on the structure and electric polarization of HoMnO{sub 3}
S, Sathya Sheela; C, Kanagaraj; Natesan, Baskaran
2015-06-24
We have investigated the effect of A-site doping on the structure and electric polarization of orthorhombic HoMnO{sub 3} using ab initio density functional theory calculations. We find that the substitution of rare earth ions, such as Lu, Y and La in place of Ho in orthorhombic HoMnO{sub 3} modifies the local structure around Mn ions drastically, and leads to the formation of two distinct Mn sites Mn(0) and Mn(1). As a result, large variance between Mn(0)O{sub 6} and Mn(1)O{sub 6} octahedral distortions arises. This variance in the octahedral distortions drives the disparate hopping of electrons between the e{sub g} orbitals enhancing the electronic polarization with increasing rare earth ion radius. The largest polarization of 7 µC/cm{sup 2} is obtained for La doped HoMnO{sub 3}. This increase in polarization has been explained on the basis of radius mismatch induced local structural effects.
Ab initio simulations for the ion-ion structure factor of warm dense aluminum.
Rüter, Hannes R; Redmer, Ronald
2014-04-11
We perform ab initio simulations based on finite-temperature density functional theory in order to determine the static and dynamic ion-ion structure factor in aluminum. We calculate the dynamic structure factor via the intermediate scattering function and extract the dispersion relation for the collective excitations. The results are compared with available experimental x-ray scattering data. Very good agreement is obtained for the liquid metal domain. In addition we perform simulations for warm dense aluminum in order to obtain the ion dynamics in this strongly correlated quantum regime. We determine the sound velocity for both liquid and warm dense aluminum which can be checked experimentally using narrow-bandwidth free electron laser radiation. PMID:24765982
An ab-initio study of adsorption of gaseous molecules on doped graphene structures
NASA Astrophysics Data System (ADS)
Balangi, H. R.; Shokri, A. A.
2015-11-01
In this work, electronic properties of bare and doped graphene layers in the presence of N, B and a type of defective impurities are investigated under adsorption of CO, NO, NH3 and NO2 molecules on it's external surface. We use a fully self-consistent density function theory (DFT) based calculations as implemented in SIESTA package. The local-density approximation (LDA) is considered for the exchange-correlation function. Total density of state (TDOS), partial density of state (PDOS) and charge density calculations are also considered to elucidate the difference in the CO, NO, NH3 and NO2 gases detection mechanism of pristine and doped graphene structures. With regard to that the charge transfer is occurring between the graphene sheet and gaseous molecules, the NO2 and NH3 molecules are considered as the recipient and donor of electrons, respectively. We show that the states contributed by the adsorbed CO and NO molecules are quite localized near the center of original band gap and they suggest that the charge transport in such systems cannot be enhanced considerably, while NO2 and NH3 molecules adsorption acts as the acceptor and donor, respectively. Our results can serve as a base for developments in designing nano-electronic devices.
Structure and energy of point defects in TiC: An ab initio study
NASA Astrophysics Data System (ADS)
Sun, Weiwei; Ehteshami, Hossein; Korzhavyi, Pavel A.
2015-04-01
We employ first-principles calculations to study the atomic and electronic structure of various point defects such as vacancies, interstitials, and antisites in the stoichiometric as well as slightly off-stoichiometric Ti1 -cCc (including both C-poor and C-rich compositions, 0.49 ≤c ≤0.51 ). The atomic structure analysis has revealed that both interstitial and antisite defects can exist in split conformations involving dumbbells. To characterize the electronic structure changes caused by a defect, we introduce differential density of states (dDOS) defined as a local perturbation of the density of states (DOS) on the defect site and its surrounding relative to the perfect TiC. This definition allows us to identify the DOS peaks characteristic of the studied defects in several conformations. So far, characteristic defect states have been discussed only in connection with carbon vacancies. Here, in particular, we have identified dDOS peaks of carbon interstitials and dumbbells, which can be used for experimental detection of such defects in TiC. The formation energies of point defects in TiC are derived in the framework of a grand-canonical formalism. Among the considered defects, carbon vacancies and interstitials are shown to have, respectively, the lowest and the second-lowest formation energies. Their formation energetics are consistent with the thermodynamic data on the phase stability of nonstoichiometric TiC. A cluster type of point defect is found to be next in energy, a titanium [100] dumbbell terminated by two carbon vacancies.
Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S. E-mail: hochlaf@univ-mlv.fr; Linguerri, Roberto; Hochlaf, Majdi E-mail: hochlaf@univ-mlv.fr
2013-11-07
Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality. By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.
Extensive ab initio study of the electronic states of S2 molecule including spin-orbit coupling
NASA Astrophysics Data System (ADS)
Xing, Wei; Shi, Deheng; Sun, Jinfeng; Liu, Hui; Zhu, Zunlue
2013-03-01
The potential energy curves (PECs) of 15 Λ-S states and 24 Ω states generated from the 13 Λ-S bound states of the S2 molecule are investigated in detail using an ab initio quantum chemical method. The PECs are calculated for internuclear separations from 0.12 to 1.10 nm by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson modification (MRCI + Q). The spin-orbit (SO) coupling effect is accounted for by the Breit-Pauli Hamiltonian. To discuss the effect on the energy splitting by the core-electron correlations, the all-electron basis set, cc-pCVTZ with and without 2s2p correlations, is used for the SO coupling calculations of the A3 ? and B‧3Πg Λ-S states since their measurements can be found in the literature. By comparison, the cc-pCVTZ basis set with 2s2p correlations is chosen for the SO coupling calculations of 13 Λ-S bound states. To improve the quality of PECs, core-valence correlation and scalar relativistic corrections are included. Scalar relativistic correction calculations are made using the third-order Douglas-Kroll Hamiltonian (DKH3) approximation at the level of a cc-pV5Z basis set. Core-valence correlation corrections are taken into account with a cc-pCVTZ basis set. The spectroscopic parameters of 13 Λ-S bound states and 24 Ω states are calculated. With the PECs obtained by the MRCI + Q/aug-cc-pV6Z + CV + DK + SO calculations, the SO coupling splitting energies are 379.25 cm-1 between the A‧3 and A‧2 Ω state, 83.40 cm-1 between the A1 and A0- Ω state and 210.91 cm-1 between the B‧2 and B‧1 Ω state, which agree well with the corresponding measurements of 383, 77.51 and 209 cm-1, respectively. Moreover, other spectroscopic parameters are also in excellent agreement with the measurements. It demonstrates that the spectroscopic parameters of 24 Ω states reported here for the first time can be expected to be
Ground state structures of tantalum tetraboride and triboride: an ab initio study.
Wei, Shuli; Li, Da; Lv, Yunzhou; Liu, Zhao; Xu, Chunhong; Tian, Fubo; Duan, Defang; Liu, Bingbing; Cui, Tian
2016-07-21
Tantalum-boron compounds, which are potential candidates for superhard multifunctional materials, may possess multiple stoichiometries and structures under pressure. Using first-principle methods, ground-state TaB3 with the monoclinic C2/m space group and high-pressure TaB4 with the orthorhombic Amm2 space group have been found. They are more stable than the previously proposed structures. High-pressure boron-rich Amm2-TaB4 can be quenched to ambient pressure. The ground-state C2/m-TaB3 and high-pressure Amm2-TaB4 are two potential ultra-incompressible and hard materials with a calculated hardness of 17.02 GPa and 30.02 GPa at ambient pressure, respectively. Detailed electronic structure and chemical bonding analysis proved that the high hardness value of Amm2-TaB4 mainly stems from the strong covalent boron-boron bonds in graphene-like B layers as well as B-B bonds between layers. PMID:27327210
Ab-initio calculations on melting of thorium
NASA Astrophysics Data System (ADS)
Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.
2016-05-01
Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.
Ab initio molecular dynamics: concepts, recent developments, and future trends.
Iftimie, Radu; Minary, Peter; Tuckerman, Mark E
2005-05-10
The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed "on the fly" from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204
Miller, J.; Miaskiewicz, K.; Osman, R.
1993-12-01
Studies of ring-saturated pyrimidine base lesions are used to illustrate an integrated modeling approach that combines quantum-chemical calculations with molecular dynamics simulation. Electronic-structure calculations on the lesions in Isolation reveal strong conformational preferences due to interactions between equatorial substituents to the pyrimidine ring. Large distortions of DNA should result when these interactions force the methyl group of thymine to assume an axial orientation, as is the case for thymine glycol but not for dihydrothymine. Molecular dynamics simulations of the dodecamer d(CGCGAATTCGCG){sub 2} with and without a ring-saturated thymine lesion at position T7 support this conclusion. Implications of these studies for recognition of thymine lesions by endonuclease III are also discussed.
Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine
NASA Astrophysics Data System (ADS)
Srivastava, Santosh K.; Singh, Vipin B.
2013-11-01
Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.
NASA Astrophysics Data System (ADS)
Naumov, Panče; Jovanovski, Gligor; Ohashi, Yuji
2002-02-01
Ground-state ab initio molecular geometries and vibrational spectra of 24 N-substituted isolated saccharins with small-size B, Br, C, Cl, F, N, O, P or S-groups and the parent molecule are predicted at RHF/6-31G level to examine the molecular structural changes stemming from N-substitution of saccharin (o-sulfobenzimide). Trends in the molecular geometrical parameters of the sulfimide ring and the carbonyl stretching frequency are discussed in relation to the electronic properties of the substituent and the solid state effects. The results are compared with the crystallographic data for N-substituted saccharins and metal saccharinato salts/complexes retrieved from the Cambridge Structural Database. The ability of several theoretical methods to describe the substitution/deprotonation of the conjugated CONHSO 2 structure is summarized. Electronic properties of the substituent affect significantly only the immediate CN and SN bonds by as much as ±0.014 Å, while other bonds are relatively less influenced (±0.004 Å). Combined with the effects of the crystal packing and thermal vibrations, they impose flexibility on the intramolecular lengths up to ±0.02 Å. High correlation ( R=0.966) between the theoretical ν(CO) frequencies and CO distances is predictable for both of these parameters, but is lowered notably in the crystal by both vibrational and solid-state circumstances. From the structural viewpoint, the N sac-X bonds (X = B, Br, C, Cl, F, N, O, P, S; sac denotes saccharin) behave similarly to the purely covalent N sac-metal bonds.
NASA Astrophysics Data System (ADS)
Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.
2015-10-01
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B
2015-10-14
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range. PMID:26472380
Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P. E-mail: michael.brunger@flinders.edu.au; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J. E-mail: michael.brunger@flinders.edu.au; and others
2015-10-14
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
DiStasio, Robert A.; Santra, Biswajit; Li, Zhaofeng; Wu, Xifan; Car, Roberto
2014-08-28
In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local van der Waals/dispersion (vdW) interactions, via a fully self-consistent density-dependent dispersion correction, and an approximate treatment of nuclear quantum effects, via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx and vdW as resulting from a large-scale AIMD simulation of (H{sub 2}O){sub 128} significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, S{sub OO}(Q), and corresponding oxygen-oxygen radial distribution function, g{sub OO}(r), that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of a hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions. This increasingly more accurate description of the underlying hydrogen bond network in liquid water also yields higher-order correlation functions, such as the oxygen-oxygen-oxygen triplet angular distribution, P{sub OOO}(θ), and therefore the degree of local tetrahedrality, as well as electrostatic properties, such as the effective molecular dipole moment, that are in much better agreement with experiment.
DiStasio, Robert A; Santra, Biswajit; Li, Zhaofeng; Wu, Xifan; Car, Roberto
2014-08-28
In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local van der Waals/dispersion (vdW) interactions, via a fully self-consistent density-dependent dispersion correction, and an approximate treatment of nuclear quantum effects, via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx and vdW as resulting from a large-scale AIMD simulation of (H2O)128 significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, SOO(Q), and corresponding oxygen-oxygen radial distribution function, gOO(r), that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of a hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions. This increasingly more accurate description of the underlying hydrogen bond network in liquid water also yields higher-order correlation functions, such as the oxygen-oxygen-oxygen triplet angular distribution, POOO(θ), and therefore the degree of local tetrahedrality, as well as electrostatic properties, such as the effective molecular dipole moment, that are in much better agreement with experiment. PMID:25173016
NASA Astrophysics Data System (ADS)
de Melo, Pedro Miguel M. C.; Marini, Andrea
2016-04-01
We present a full ab initio description of the coupled out-of-equilibrium dynamics of photons, phonons, and electrons. In the present approach, the quantized nature of the electromagnetic field as well as of the nuclear oscillations is fully taken into account. The result is a set of integrodifferential equations, written on the Keldysh contour, for the Green's functions of electrons, phonons, and photons where the different kinds of interactions are merged together. We then concentrate on the electronic dynamics in order to reduce the problem to a computationally feasible approach. By using the generalized Baym-Kadanoff ansatz and the completed collision approximation, we introduce a series of efficient but controllable approximations. In this way, we reduce all equations to a set of decoupled equations for the density matrix that describe all kinds of static and dynamical correlations. The final result is a coherent, general, and inclusive scheme to calculate several physical quantities: carrier dynamics, transient photoabsorption, and light emission, all of which include, at the same time, electron-electron, electron-phonon, and electron-photon interactions. We further discuss how all these observables can be easily calculated within the present scheme using a fully atomistic ab initio approach.
NASA Astrophysics Data System (ADS)
Dash, S.; Joshi, N.; Drera, G.; Ghosh, P.; Magnano, E.; Bondino, F.; Galinetto, P.; Mozzati, M. C.; Salvinelli, G.; Aguekian, V.; Sangaletti, L.
2016-03-01
The electronic properties of the Mn:GaSe interface, produced by evaporating Mn at room temperature on a ɛ -GaSe(0001) single-crystal surface, have been studied by soft x-ray spectroscopies, and the experimental results are discussed at the light of ab initio DFT+U calculations of a model Ga1 -xMnxSe (x =0.055 ) surface alloy. Consistently with these calculations that also predict a high magnetic moment for the Mn ions (4.73 -4.83 μB), XAS measurements at the Mn L edge indicate that Mn diffuses into the lattice as a Mn2 + cation with negligible crystal-field effects. Ab initio calculations also show that the most energetically favorable lattice sites for Mn diffusion are those where Mn substitutes Ga cations in the Ga layers of the topmost Se-Ga-Ga-Se sandwich. Mn s and p states are found to strongly hybridize with Se and Ga p states, while weaker hybridization is predicted for Mn d states with Se s and p orbitals. Furthermore, unlike other Mn-doped semiconductors, there is strong interaction between the Ga -s and Mn -dz2 states. The effects of hybridization of Mn 3 d electrons with neighboring atoms are still clearly detectable from the characteristic charge-transfer satellites observed in the photoemission spectra. The Mn 3 d spectral weight in the valence band is probed by resonant photoemission spectroscopy at the Mn L edge, which also allowed an estimation of the charge transfer (Δ =2.95 eV) and Mott-Hubbard (U =6.4 eV) energies on the basis of impurity-cluster configuration-interaction model of the photoemission process. The Mott-Hubbard correlation energy U is consistent with the Ueff on-site Coulomb repulsion parameter (5.84 eV) determined for the ab initio calculations.
NASA Astrophysics Data System (ADS)
Szalay, Péter G.; Holka, Filip; Fremont, Julien; Rey, Michael; Tyuterev, Vladimir G.
2011-06-01
The aim of the study was to explore the limits of initio methods towards the description of excited vibrational levels up to the dissociation limit for molecules having more than two electrons. To this end a high level ab initio potential energy function was constructed for the four-electron LiH molecule in order to accurately predict a complete set of bound vibrational levels corresponding to the electronic ground state. It was composed from: a) an ab initio non-relativistic potential obtained at the MR-CISD level including size-extensivity corrections and quintuple-sextuple ζ extrapolation of the basis, b) MVD (Mass-velocity-Darwin) relativistic corrections obtained at icMR-CISD/cc-pwCV5Z level, and c) DBOC (Diagonal Born-Oppenheimer correction) obtained at the MR-CISD/cc-pwCVTZ level. Finally, the importance of non-adiabatic effects was also tested by using atomic masses in the vibrational kinetic energy operator and by calculation of non-adiabatic coupling by ab initio methods. The calculated vibrational levels were compared with those obtained from experimental data [J.A. Coxon and C.S. Dickinson, J. Chem. Phys., 2004, 121, 9378]. Our best estimate of the potential curve results in vibrational energies with a RMS deviation of only ˜1 wn\\ for the entire set of all empirically determined vibrational levels known so far. These results represent a drastic improvement over previous theoretical predictions of vibrational levels of ^7LiH up to dissociation, D_0, which was predicted to be 19594 Cm-1. In addition, rotational levels have also been calculated. The RMS deviation between our ab initio calculations and empirical results by Coxon and Dickinson for rotational spacings Δ E = E(v, J = 1)-E(v, J = 0) over all available vibrational states of ^7LiH from v = 0 to v= 20 is 0.010 wn (with nuclear masses) and 0.006 wn (with atomic masses). Note that for high vibrational states with v > 6 this falls within the uncertainty of the measurements.
NASA Astrophysics Data System (ADS)
Elerman, Y.; Kara, H.; Elmali, A.
2003-06-01
The synthesis and characterization of [Cu2(L1)(3,5 prz)] (L1=1,3-Bis(2-hydroxy-3,5-chlorosalicylideneamino) propan-2-ol) 1 and of [Cu2(L2)(3,5 prz)] (L2=1,3-Bis(2-hydroxy-bromosalicylideneamino) propan-2-ol) 2 are reported. The compounds were studied by elemental analysis, infrared and electronic spectra. The structure of the Cu2(L1)(3,5 prz)] complex was determined by x-ray diffraction. The magnetochemical characteristics of these compounds were determined by temperaturedependent magnetic susceptibility measurements, revealing their antiferromagnetic coupling. The superexchange coupling constants are 210 cm-1 for 1 and 440 cm-1 for 2. The difference in the magnitude of the coupling constants was explained by the metal-ligand orbital overlaps and confirmed by ab-initio restricted Hartree-Fock (RHF) calculations. In order to determine the nature of the frontier orbitals, Extended Hückel Molecular Orbital (EHMO) calculations are also reported.
NASA Astrophysics Data System (ADS)
Tian, T.; Wang, X. F.; Li, W.
2013-03-01
As high-temperature structural materials, L12 intermetallic compounds have attracted the strong interest from both fundamental and industrial aspects. Understanding of elastic property is a basis for the complete investigations of mechanical behavior of L12 alloys. In an effort to explore the electronic origin of elastic properties of L12 intermetallics, we have performed a systematic study on elastic constants for single crystals, and Young's modulus, shear modulus, bulk modulus and Poisson's ratio for poly-crystals of 22 known Al3X and X3Al-type (X=transition or main group metal) intermetallics using the ab initio calculations. Based on the calculations of elastic constants and extreme (both positive and negative) Poisson's ratios, we found a pronounced correlation between the extreme Poisson's ratio and the elastic anisotropy, i.e., approximate 40% of the investigated L12 intermetallics exhibit intrinsic auxetic behavior. Furthermore, based on the distribution of bonding charge densities, we revealed that the ductility and extreme Poisson's ratios were attributable to the directionality of bonds of these alloys. Our findings provide a new method to predict mechanical behavior of intermetallics.
Nicolaides, Cleanthes A.; Mercouris, Theodoros; Komninos, Yannis
2007-11-29
The theoretical quantitative understanding of time-resolved processes of coherent excitation and decay in polyelectronic atoms, induced by hypershort electromagnetic pulses, is a prerequisite for their possible control. We review key elements of an approach to the ab initio determination of perturbative as well as of nonperturbative solutions of the time-dependent Schroedinger equation describing such processes. The essential element of this approach is the development of formalism and methods that utilize physically relevant state-specific wavefunctions of stationary states of the discrete and the continuous spectrum.
NASA Astrophysics Data System (ADS)
Kotmool, K.; Bovornratanaraks, T.; Yoodee, K.
2015-10-01
An ab initio study of structural phase transformations and band structure under high pressure was performed on a ternary semiconductor, AgInTe2. Based on DFT within both LDA and GGA exchange-correlation, US-PP, and plane wave basis set, were employed for this work. Transition pressures and calculated parameters with transformation pathway was identified to be; chalcopyrite→cd-B1→cd-Cmcm, were in good agreement with experiments. We also predicted a higher pressure phase based on supercell with size 2×2×2 of B2 structure in which all the configuration of cation structures were accounted to compare and clarify its'cations-disordered state. The predicted structure probably appeared at around 40 GPa from cd-Cmcm to cd-B2. In the case of band structure calculation, NC-PP in which 4p10 electrons of In were not treated, was also employed in chalcopyrite at a pressure range of 0-4 GPa to improve a very narrow band gap of US-PP, and this failure will be discussed. Partial density of state (PDOS), and electronic population analysis were also calculated to finely investigate the electronic transition around the Fermi level. Our calculated results were in good agreement with experiments. The direct energy gap (Eg) was linearly proportional to pressure with increasing rate of 46.4 and 44.6 meV/GPa. In addition, at ambient conditions, Eg was equal to 1.02 eV and 0.95 eV for GGA and LDA, respectively. Band structure from all the calculations have shown a higher second band gap (Eg‧) which could occur due to crystal-field splitting.
Kobayashi, Takanori; Hayakawa, Daichi; Khishigjargal, Tegshjargal; Ueda, Kazuyoshi
2014-03-31
The crystal structure of cellulose triacetate I (CTA I) was investigated using first-principles density functional theory (DFT) calculations. The results are in good agreement with the experimental structure obtained by Sikorski et al. when performing the calculation with inclusion of the dispersion correction. However, the cell parameters calculated with inclusion of the dispersion correction are slightly smaller than those experimentally obtained, especially along the a-axis. This smaller cell parameter could be reasonably explained by considering thermal expansion effects, since optimization with the density functional calculation gives the structure without inclusion of thermal effects. The atoms-in-molecules (AIM) theory is also employed to identify and characterize interatomic interactions in the CTA I crystal. CH/O interactions sites are shown to exist in the crystal structure of CTA I. Moreover, CH/O interactions are considered the main interactions in operation to maintain the crystal structure of CTA I. PMID:24614690
Ab initio study of phase transition of boron nitride between zinc-blende and rhombohedral structures
Nishida, S.; Funashima, H.; Sato, K.; Katayama-Yoshida, H.
2013-12-04
Boron nitride has polymorphs such as zinc-blende (c-BN), wurtzite (w-BN), rhombohedral (r-BN), and graphite-like (h-BN) forms. We simulate the direct conversion of r-BN to c-BN through electronic excitation. In our calculation, the conversion is made possible by increasing the hole concentration to over 0.06/atom. This conversion should be experimentally possible by hole-doping via an electric double layer transistor (EDLT) or capacitor.
Ab initio calculations on the defect structure of β-Ga2O3
NASA Astrophysics Data System (ADS)
Zacherle, T.; Schmidt, P. C.; Martin, M.
2013-06-01
The intrinsic point defects of β-Ga2O3 are investigated using density functional theory. We have chosen two different exchange-correlation potentials: the generalized gradient approximation (GGA) and a hybrid potential (HSE06). Defect formation energies were determined taking into account finite-size effects. Schottky, anti-Frenkel, and Frenkel energies have been extracted for T=0 K. We calculate formation entropies for an oxygen and a gallium vacancy and determine the Gibbs energy of Schottky disorder. Furthermore, we investigate the defect concentrations as a function of the oxygen partial pressure. The obtained purely intrinsic defect concentrations for charged defects are very small and result in a pO2 dependence of the electron concentration of [e']˜ pO2-1/6, whereas experimentally [e']˜ pO2-1/4 is found. So we assume that, experimentally, a small unintentional donor doping is unavoidable. A small extrinsic donor concentration [D·] = 1018 cm-3 (10 ppm) changes the electron concentration to [e']˜ pO2-1/4 and gives an activation energy of the conductivity σ of 1.7 eV in good agreement to experimental values. So we propose as majority disorder 3[VGa'''] = [D·] with electrons being minority defects.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
NASA Astrophysics Data System (ADS)
Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.
2014-08-01
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.
Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V
2014-08-01
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573
Low-temperature structure of ξ'-Al-Pd-Mn optimized by ab initio methods
NASA Astrophysics Data System (ADS)
Frigan, Benjamin; Santana, Alejandro; Engel, Michael; Schopf, Daniel; Trebin, Hans-Rainer; Mihalkovič, Marek
2011-11-01
We have studied and resolved occupancy correlations in the existing average structure model of the complex metallic alloy ξ'-Al-Pd-Mn [Boudard , Philos. Mag. APMAADG0141-861010.1080/01418619608242169 74, 939 (1996)], which has approximately 320 atoms in the unit cell and many fractionally occupied sites. Model variants were constructed systematically in a tiling-decoration approach and subjected to simulated annealing by use of both density functional theory and molecular dynamics with empirical potentials. To obtain a measure for thermodynamic stability, we reproduce the Al-Pd-Mn phase diagram at T=0 K, and derive an enthalpy of formation for each structure. Our optimal structure resolves a cloud of fractionally occupied sites in pseudo-Mackay clusters. In particular, we demonstrate the presence of rotational degrees of freedom of an Al9 inner shell, which is caged within two icosahedrally symmetric outer shells Al30 and Pd12. Outside these clusters, the chemical ordering on a chain of three nearby sites surprisingly breaks the inversion symmetry of the surrounding structure, and couples to an Al/vacancy site nearby. Our refined tiling-decoration model applies to any structure within the ɛ-phases family, including the metastable decagonal quasicrystalline phase.
Molecular structure and vibrational spectra of dithionite ion by ab initio calculations
NASA Astrophysics Data System (ADS)
Leszczynski, Jerzy; Zerner, Michael C.
1989-07-01
The structure of the dithionite ion, S 2O 42-, is examined using quantum chemical calculations. These studies strongly suggest that only the C 2h (trans) isomer is stable in solution. The C 2v (cis) form reported in Na 2S 2O 4·2H 2O is stabilized by crystal forces. The calculated vibrational spectrum of the C 2h form is in excellent agreement with that observed in aqueous solution. Taking into account the negative frequency calculated for the C 2v structure yields a calculated spectrum in good agreement with that observed for the crystal.
Rong, Xi; Kolpak, Alexie M
2015-05-01
The design of efficient, stable, and inexpensive catalysts for oxygen evolution and reduction is crucial for the development of electrochemical energy conversion devices such as fuel cells and metal-air batteries. Currently, such design is limited by challenges in atomic-scale experimental characterization and computational modeling of solid-liquid interfaces. Here, we begin to address these issues by developing a general-, first-principles-, and electrochemical-principles-based framework for prediction of catalyst surface structure, stoichiometry, and stability as a function of pH, electrode potential, and aqueous cation concentration. We demonstrate the approach by determining the surface phase diagram of LaMnO3, which has been studied for oxygen evolution and reduction and computing the reaction overpotentials on the relevant surface phases. Our results illustrate the critical role of solvated cation species in governing the catalyst surface structure and stoichiometry, and thereby catalytic activity, in aqueous solution. PMID:26263350
Ab initio structural and vibrational properties of GaAs diamondoids and nanocrystals
Abdulsattar, Mudar Ahmed; Hussein, Mohammed T.; Hameed, Hadeel Ali
2014-12-15
Gallium arsenide diamondoids structural and vibrational properties are investigated using density functional theory at the PBE/6-31(d) level and basis including polarization functions. Variation of energy gap as these diamondoids increase in size is seen to follow confinement theory for diamondoids having nearly equiaxed dimensions. Density of energy states transforms from nearly single levels to band structure as we reach larger diamondoids. Bonds of surface hydrogen with As atoms are relatively localized and shorter than that bonded to Ga atoms. Ga-As bonds have a distribution range of values due to surface reconstruction and effect of bonding to hydrogen atoms. Experimental bulk Ga-As bond length (2.45 Å) is within this distribution range. Tetrahedral and dihedral angles approach values of bulk as we go to higher diamondoids. Optical-phonon energy of larger diamondoids stabilizes at 0.037 eV (297 cm{sup -1}) compared to experimental 0.035 eV (285.2 cm{sup -1}). Ga-As force constant reaches 1.7 mDyne/Å which is comparable to Ga-Ge force constant (1.74 mDyne/Å). Hydrogen related vibrations are nearly constant and serve as a fingerprint of GaAs diamondoids while Ga-As vibrations vary with size of diamondoids.
Ab initio structure determination of novel borate NaSrBO{sub 3}
Wu, L. . E-mail: lwu@nankai.edu.cn; Chen, X.L. . E-mail: xlchen@aphy.iphy.ac.cn; Zhang, Y.; Kong, Y.F.; Xu, J.J.; Xu, Y.P.
2006-04-15
A novel orthoborate, NaSrBO{sub 3}, has been successfully synthesized by standard solid-state reaction, and the crystal structure has been determined from powder X-ray diffraction data. It crystallizes in the monoclinic space group P2{sub 1}/c with lattice parameters: a=5.32446(7)A, b=9.2684(1)A, c=6.06683(8)A, {beta}=100.589(1){sup o}. The fundamental building units are isolated BO{sub 3} groups, which are parallelly distributed along two different directions. Because of the anisotropic polarizations of planar BO{sub 3} groups, a considerable birefringence can be expected in it. The Na atoms are six-coordinated with O atoms to form octahedra, and the Sr atoms are nine-coordinated, forming tri-capped trigonal prisms. Those polyhedra connect with each other by bridging-oxygen atoms, forming infinite three-dimensional network, which indicates that the cleaving problem is expected to be overcome during the course of single-crystal growth. The infrared spectrum has been measured, and the result is consistent with the crystallographic study. Moreover, a comparison of the new structure type with the other known orthoborates is presented here.
Furmanchuk, Al'ona; Shishkin, Oleg V; Isayev, Olexandr; Gorb, Leonid; Leszczynski, Jerzy
2010-09-01
The correlation between hydration of Nucleic Acid Bases (NABs) and their conformational flexibility was analyzed based on the results of Car-Parrinello Molecular Dynamics (CPMD) simulations of NABs in bulk water environment. Correlations with quantum chemical results were drawn whenever it was possible. Statistical analysis confirmed that hydration causes bond length alteration in NABs and formation of zwitter-ionic resonance structures. In contrast to the gas phase, bulk hydration results in restricted mobility of amino group and increase in population of its planar-like conformations. At the same time, rings of all NABs become almost equally flexible in the dynamic aqueous environment. Therefore, each NAB possesses a non-planar effective conformation of pyrimidine ring despite the fact that planar geometry corresponds to minimum on the potential energy surface. PMID:20532343
NASA Astrophysics Data System (ADS)
Suwardi; Pranowo, Harno Dwi; Armunanto, Ria
2015-09-01
The structure and dynamics of Hf4+ ion in liquid ammonia have been investigated by an ab initio quantum mechanics molecular mechanics (QM/MM) molecular dynamics simulation. The structural data was obtained in terms of radial distribution, coordination number and angular distribution, and then the dynamics in mean ligand residence time. The Hf4+ ion is coordinated by five ammonia molecules in the first solvation shell showing a distorted square pyramidal structure with an average Hf4+-N distance of 2.38 Å. No ammonia ligand was observed for exchange processes between the first and second shells.
An efficient ab-initio approach for the anharmonic properties of structurally complex ceramics
NASA Astrophysics Data System (ADS)
Huang, Liang-Feng; Rondinelli, James M.
In the conventional quasiharmonic method for the simulation of crystal anharmonic properties (e.g., thermal expansion and thermomechanics), the phonon spectra of about ten (or more) volumes have to be calculated, which is often computationally prohibitive for complex ceramics with large unit cells. In this work, we describe an efficient alternative method, i.e., a self-consistent quasiharmonic approximation (SC-QHA) method, where the phonon modes of only two or three volumes are necessary. At the same time, it provides a convenient framework to analyze the microscopic origins underlying the anharmonic properties. We successfully apply the SC-QHA method to the hybrid improper ferroelectric Ca3Ti2O7 to explain the recent experimentally measured thermal expansion data [Senn, Phys. Rev. Lett., 114, 0 (2015)], and related lattice dynamical properties in an efficient manner. Supported by the ONR MURI Understanding Atomic Scale Structure in Four Dimensions to Design and Control Corrosion Resistant Alloys under Grant No. N00014-14-1-0675.
NASA Astrophysics Data System (ADS)
Xue, X.; Kanzaki, M.
In order to gain insight into the correlations between 29Si, 17O and 1H NMR properties (chemical shift and quadrupolar coupling parameters) and local structures in silicates, ab initio self-consistent field Hartree-Fock molecular orbital calculations have been carried out on silicate clusters of various polymerizations and intertetrahedral (Si-O-Si) angles. These include Si(OH)4 monomers (isolated as well as interacting), Si2O(OH)6 dimers (C2 symmetry) with the Si-O-Si angle fixed at 5° intervals from 120° to 180°, Si3O2(OH)8 linear trimers (C2 symmetry) with varying Si-O-Si angles, Si3O3(OH)6 three-membered rings (D3 and C1 symmetries), Si4O4(OH)8 four-membered ring (C4 symmetry) and Si8O12(OH)8 octamer (D4 symmetry). The calculated 29Si, 17O and 1H isotropic chemical shifts (δiSi, δiO and δiH) for these clusters are all close to experimental NMR data for similar local structures in crystalline silicates. The calculated 17O quadrupolar coupling constants (QCC) of the bridging oxygens (Si-O-Si) are also in good agreement with experimental data. The calculated 17O QCC of silanols (Si-O-H) are much larger than those of the bridging oxygens, but unfortunately there are no experimental data for similar groups in well-characterized crystalline phases for comparison. There is a good correlation between δiSi and the mean Si-O-Si angle for both Q1 and Q2, where Qn denotes Si with n other tetrahedral Si next-nearest neighbors. Both the δiO and the 17O electric field gradient asymmetry parameter, η of the bridging oxygens have been found to depend strongly on the O site symmetry, in addition to the Si-O-Si angle. On the other hand, the 17O QCC seems to be influenced little by structural parameters other than the Si-O-Si angle, and is thus expected to be the most reliable 17O NMR parameter that can be used to decipher Si-O-Si angle distribution information. Both the 17O QCC and the 2H QCC of silanols decrease with decreasing length of hydrogen bond to a second O atom
Sevilla, M.D.; Colson, A.O. ); Besler, B. )
1995-01-19
Ab initio molecular orbital calculations of the electron affinities (EAs) and ionization potentials (IPs) of the DNA bases are presented in this work. Comparisons of calculated and experimental values are made for a series of compounds of size and/or structure similar to the DNA bases. Excellent correlations between calculated and experimental values are found for both Koopmans EAs at the 6-31G[sup *] and D95v levels and calculated vertical EAs of the model compounds. Several basis sets are considered: 6-31G[sup *], 6-31+G(d), and D95v. Calculations at 6-31G[sup *] and 6-31+G(d) using both ROHF and ROMP2 theories show a consistent difference between calculated vertical and adiabatic EAs. This allows for a good estimate of DNA base adiabatic EAs. i.e., -0.7, -0.3, 0.2, 0.3, and 0.4 eV; from the vertical EAs -1.23, -0.74, -0.40, -0.32, and -0.19 eV for G, A, C, T, and U respectively. While EAs must be scaled, we find that Koopmans IPs calculated at the simple 3-21G level predict vertical IPs of the DNA bases with only a 0.15 eV average absolute deviation from the experimentally reported values and calculations at MP2/6-31+G(d)//6-31G[sup *] for the adiabatic ionization potentials of the DNA bases are all within 0.1 eV of experiment. 41 refs., 2 figs., 5 tabs.
Peterson, Kirk A.; Francisco, Joseph S.
2014-01-28
A systematic ab initio treatment of the nitryl halides (XNO{sub 2}) and the cis- and trans- conformers of the halide nitrites (XONO), where X = Cl, Br, and I, have been carried out using highly correlated methods with sequences of correlation consistent basis sets. Equilibrium geometries and harmonic frequencies have been accurately calculated in all cases at the explicitly correlated CCSD(T)-F12b level of theory, including the effects of core-valence correlation for the former. Where experimental values are available for the equilibrium structures (ClNO{sub 2} and BrNO{sub 2}), the present calculations are in excellent agreement; however, the X-O distances are slightly too long by about 0.01 Å due to missing multireference effects. Accurate predictions for the iodine species are made for the first time. The vertical electronic excitation spectra have been calculated using equation-of-motion coupled cluster methods for the low-lying singlet states and multireference configuration interaction for both singlet and triplet states. The latter also included the effects of spin-orbit coupling to provide oscillator strengths for the ground state singlet to excited triplet transitions. While for ClNO{sub 2} the transitions to excited singlet states all occur at wavelengths shorter than 310 nm, there is one longer wavelength singlet transition in BrNO{sub 2} and two in the case of INO{sub 2}. The long wavelength tail in the XNO{sub 2} species is predicted to be dominated by transitions to triplet states. In addition to red-shifting from X = Cl to I, the triplet transitions also increase in oscillator strength, becoming comparable to many of the singlet transitions in the case of INO{sub 2}. Hence in particular, the latter species should be very photolabile. Similar trends are observed and reported for the halogen nitrites, many of which for the first time.
Long, Run; Fang, Weihai; Prezhdo, Oleg V
2016-08-18
Experiments show both positive and negative changes in performance of hybrid organic-inorganic perovskite solar cells upon exposure to moisture. Ab initio nonadiabatic molecular dynamics reveals the influence of humidity on nonradiative electron-hole recombination. In small amounts, water molecules perturb perovskite surface and localize photoexcited electron close to the surface. Importantly, deep electron traps are avoided. The electron-hole overlap decreases, and the excited state lifetime increases. In large amounts, water forms stable hydrogen-bonded networks, has a higher barrier to enter perovskite, and produces little impact on charge localization. At the same time, by contributing high frequency polar vibrations, water molecules increase nonadiabatic coupling and accelerate recombination. In general, short coherence between electron and hole benefits photovoltaic response of the perovskites. The calculated recombination time scales show excellent agreement with experiment. The time-domain atomistic simulations reveal the microscopic effects of humidity on perovskite excited-state lifetimes and rationalize the conflicting experimental observations. PMID:27485025
Fakhraee, Mostafa; Zandkarimi, Borna; Salari, Hadi; Gholami, Mohammad Reza
2014-12-11
The influences of hydroxyl functional group (-OH) on the thermodynamic and structural properties of ionic liquids (ILs) composed of 1-(2-Hydroxyethyl)-3-methyl imidazolium ([C2OHmim](+)) cation and the six different conventional anions, including [Cl](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) have been extensively investigated using classical molecular dynamics (MD) simulations combined with ab initio calculations over a wide range of temperature (298-550 K). The volumetric thermodynamic properties, enthalpy of vaporization, cohesive energy density, Hildebrand solubility parameter, and heat capacity at constant pressure were estimated at desired temperature. The simulated densities were in good agreement with the experimental data with a slight overestimation. The interionic interaction of selected ILs was also computed using both the MD simulations and ab initio calculations. It was found that the highest association of cation and anion is attributed to [C2OHmim][Cl] followed by [C2OHmim][NO3], and [C2OHmim][Tf2N] with the bulkiest anion has the weakest interionic interaction among chosen ILs. The similar trend of interactions energies was nearly observed from cohesive energy density results. Additional structural details were comprehensively yielded by calculating radial distribution functions (RDFs) and spatial distribution function (SDFs) at 358 K. The most stable configurations of isolated and dimer ion pairs of these ILs were in excellent consistency with RDFs and SDFs results. Significant changes in arrangement of anions around the [C2OHmim](+) cation in comparison with conventional imidazolium-based ILs can be inferred from the MD simulations and ab initio results. Also, microscopic structural properties disclosed that the most strong cation-cation interaction is ascribed to the hydroxyl-functionalized ILs composed of bulkier anions, whereas ILs incorporating [Cl](-) and [NO3](-) anions are mainly involved in cation-anion interactions. The
Ab initio infrared and Raman spectra
NASA Astrophysics Data System (ADS)
Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.
1983-06-01
We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum
Kessler, Jan; Elgabarty, Hossam; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D
2015-08-01
The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab initio molecular dynamics simulations in conjunction with an instantaneous surface definition [Willard, A. P.; Chandler, D. J. Phys. Chem. B 2010, 114, 1954]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface. PMID:26174102