An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic
NASA Astrophysics Data System (ADS)
Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.
2018-04-01
The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.
Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY
NASA Astrophysics Data System (ADS)
Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi
2015-03-01
Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.
Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.
2016-11-29
Here, we present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of BCC Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT). All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP). The data is stored in the NIST dSpace repository.
Unexpected carboxylate like CO adsorption at the Sr3Ru2O7 (001) surface
NASA Astrophysics Data System (ADS)
Hieckel, Marcel; Mittendorfer, Florian; Redinger, Josef; Stoeger, Bernhard; Wang, Zhiming; Schmid, Michael; Diebold, Ulrike
2014-03-01
Oxide perovskite materials have attracted enormous attention because of a variety of intriguing physical properties ranging from catalysis to multiferroicity. We present a combined experimental and ab-initio (DFT) study with the Vienna Ab initio Simulation Package (VASP) on the adsorption of CO at the Sr3Ru2O7 (001) surface. We identify both a physisorbed and a chemisorbed CO configuraton. Unexpectedly, in the latter case adsorption occurs in a carboxylate (COO) like state. Both configurations have been confirmed by detailed STM experiments and simulations. In addition we find only a small barrier for the carboxylate formation on the surface. Work supported by the Austrian FWF, SFB F45 (FOXSI).
Determination of NMR chemical shifts for cholesterol crystals from first-principles
NASA Astrophysics Data System (ADS)
Kucukbenli, Emine; de Gironcoli, Stefano
2011-03-01
Solid State Nuclear Magnetic Resonance (NMR) is a powerful tool in crystallography when combined with theoretical predictions. So far, empirical calculations of spectra have been employed for an unambiguous identification. However, many complex systems are outside the scope of these methods. Our implementation of ultrasoft and projector augmented wave pseudopotentials within ab initio gauge including projector augmented plane wave (GIPAW) method in Quantum Espresso simulation package allows affordable calculations of NMR spectra for systems of thousands of electrons. We report here the first ab initio determination of NMR spectra for several crystal structures of cholesterol. Cholesterol crystals, the main component of human gallstones, are of interest to medical research as their structural properties can shed light on the pathologies of gallbladder. With our application we show that ab initio calculations can be employed to aid NMR crystallography.
Coding considerations for standalone molecular dynamics simulations of atomistic structures
NASA Astrophysics Data System (ADS)
Ocaya, R. O.; Terblans, J. J.
2017-10-01
The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.
Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F
2008-02-13
Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.
A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.
Xu, Mingyuan; Zhu, Tong; Zhang, John Z H
2018-01-01
A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.
Ab initio molecular simulations with numeric atom-centered orbitals
NASA Astrophysics Data System (ADS)
Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias
2009-11-01
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.
Hu, Hao; Yang, Weitao
2013-01-01
Determining the free energies and mechanisms of chemical reactions in solution and enzymes is a major challenge. For such complex reaction processes, combined quantum mechanics/molecular mechanics (QM/MM) method is the most effective simulation method to provide an accurate and efficient theoretical description of the molecular system. The computational costs of ab initio QM methods, however, have limited the application of ab initio QM/MM methods. Recent advances in ab initio QM/MM methods allowed the accurate simulation of the free energies for reactions in solution and in enzymes and thus paved the way for broader application of the ab initio QM/MM methods. We review here the theoretical developments and applications of the ab initio QM/MM methods, focusing on the determination of reaction path and the free energies of the reaction processes in solution and enzymes. PMID:24146439
Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
Shen, Lin; Wu, Jingheng; Yang, Weitao
2016-10-11
Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.
Ab-Initio Molecular Dynamics Simulation of Graphene Sheet
NASA Astrophysics Data System (ADS)
Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.
2017-01-01
The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.
Rana, Malay Kumar; Chandra, Amalendu
2013-05-28
The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.
Plane-Wave DFT Methods for Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.
A detailed description of modern plane-wave DFT methods and software (contained in the NWChem package) are described that allow for both geometry optimization and ab initio molecular dynamics simulations. Significant emphasis is placed on aspects of these methods that are of interest to computational chemists and useful for simulating chemistry, including techniques for calculating charged systems, exact exchange (i.e. hybrid DFT methods), and highly efficient AIMD/MM methods. Sample applications on the structure of the goethite+water interface and the hydrolysis of nitroaromatic molecules are described.
Marsalek, Ondrej; Markland, Thomas E
2016-02-07
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
Bicanonical ab Initio Molecular Dynamics for Open Systems.
Frenzel, Johannes; Meyer, Bernd; Marx, Dominik
2017-08-08
Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang Y.; Setyawan, Wahyu; Jiang, Weilin
2014-08-28
The Vienna Ab-initio Simulation Package (VASP) is employed to calculate charge states and the formation energies of Mg, Al and Be transmutants at different lattice sites in 3C-SiC. The results provide important information on the dependence of the most stable charge state and formation energy of Mg, Al, Be and vacancies on electron potentials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less
Timko, Jeff; Kuyucak, Serdar
2012-11-28
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
NASA Astrophysics Data System (ADS)
Yuryev, A. A.; Gelchinski, B. R.; Vatolin, N. A.
2018-03-01
The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors' opinion, this dependence feature is attributed to a change in the liquid short-range order structure.
Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4
NASA Astrophysics Data System (ADS)
Mishra, S. B.; Nanda, B. R. K.
2017-05-01
Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.
NASA Astrophysics Data System (ADS)
Endichi, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.
2018-06-01
The magnetic behavior of LaCr2Si2C compound is investigated in this work, using first principle methods, Monte Carlo simulation (MCS) and mean field approximation (MFA). The structural, electronic and magnetic properties are described using ab initio method in the framework of the Generalized Gradient Approximation (GGA), and the Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method implemented in the WIEN2K packages. We have also computed the coupling terms between magnetic atoms which are used in Hamiltonian model. A theoretical study realized by mean field approximation and Monte Carlo Simulation within the Ising model is used to more understand the magnetic properties of this compound. Thereby, our results showed a ferromagnetic ordering of the Cr magnetic moments below the Curie temperature of 30 K (Tc < 30 K) in LaCr2Si2C. Other parameters are also computed as: the magnetization, the energy, the specific heat and the susceptibility. This material shows the small sign of supra-conductivity; and future researches could be focused to enhance the transport and magnetic properties of this system.
NASA Astrophysics Data System (ADS)
Chan, Ka Wai
The solvation and electronic structures of M+Ln, with M+ = Mg+ and Cat, L = H2O, CH 3OH and NH3, n=1-6 were investigated by ab initio calculations using G03 package and density functional theory based ab initio molecular dynamics (AIMD) simulations with projector augmented-wave (PAW) method and a planewave basis set using Vienna Ab initio Simulation Package (VASP). Furthermore, ab initio studies on the intracluster reactions of Mg+ and Ca+ ions with different solvent molecules, H2O, CH3OH and NH3, were also done using G03 package. Finally, the elimination of a H atom in Na(H2O)n was studied. Such studies on the interactions and reactivity in gas clusters can provide insights into their analogies existing in condense phase. Interactions of Mg+ and Ca+ ions in different solvent molecules, H2O, CH3OH and NH3, were calculated with B3LYP and MP2 methods with basis sets 6-31+g** and 6-311+g**. A systematic comparison on the structures and reactivities of these clusters should provide a better understanding on the interplay of the ion-solvent, solvent-solvent, and electron-solvent interactions. It can provide a better understanding on the structures and bonding of complexes having analogies to those existing in condense phase. For Mg+(CH3OH)n and Ca+(CH 3OH)n, both H-elimination from OH/CH bond and CH3-elimination were investigated. H-elimination from O---H bond becomes more accessible for large cluster due to the diffusion of electron density to O---H bond. Studies on the H-elimination in Mg+(NH3)n and H-elimination from C---H bond in Mg+(CH3OH) n show that the reaction barriers flatten above 20 kcal/mol as n reaches 4 and above. These calculation results prove that the source of loss of H atom in ground state Mg+(CH3OH)n should be through the O---H bond rather than through the C---H bond. Compared to Mg+(CH3OH)n, the reaction barriers for H-elimination in Mg+(NH3)n is much larger, which is in consistent with the experimental observation of little H-elimination for Mg+(NH3)n unless it's photo-excited. The examination of neutral Na(H2O)n clusters, n=4~15 for H-elimination was carried out. The reaction profile for H-elimination was obtained by energy minimization at constrained O---H distance which was successively increased. There was a general trend of decreasing reaction barrier, as the cluster size grows. In contrast to Mg+(H 2O)n, the expected switch-off of H-elimination as in Mg +(H2O)n cannot be observed.
AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions
NASA Astrophysics Data System (ADS)
Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.
2007-12-01
We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.
Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials
NASA Astrophysics Data System (ADS)
Vlasiuk, Maryna; Sadus, Richard J.
2017-06-01
The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.
Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.
Vlasiuk, Maryna; Sadus, Richard J
2017-06-28
The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.
NASA Astrophysics Data System (ADS)
Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning
2018-05-01
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning
2018-05-16
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
NASA Astrophysics Data System (ADS)
Walter, Nathan P.; Jaiswal, Abhishek; Cai, Zhikun; Zhang, Yang
2018-07-01
Neutron scattering is a powerful experimental technique for characterizing the structure and dynamics of materials on the atomic or molecular scale. However, the interpretation of experimental data from neutron scattering is oftentimes not trivial, partly because scattering methods probe ensemble-averaged information in the reciprocal space. Therefore, computer simulations, such as classical and ab initio molecular dynamics, are frequently used to unravel the time-dependent atomistic configurations that can reproduce the scattering patterns and thus assist in the understanding of the microscopic origin of certain properties of materials. LiquidLib is a post-processing package for analyzing the trajectory of atomistic simulations of liquids and liquid-like matter with application to neutron scattering experiments. From an atomistic simulation, LiquidLib provides the computation of various statistical quantities including the pair distribution function, the weighted and unweighted structure factors, the mean squared displacement, the non-Gaussian parameter, the four-point correlation function, the velocity auto correlation function, the self and collective van Hove correlation functions, the self and collective intermediate scattering functions, and the bond orientational order parameter. LiquidLib analyzes atomistic trajectories generated from packages such as LAMMPS, GROMACS, and VASP. It also offers an extendable platform to conveniently integrate new quantities into the library and integrate simulation trajectories of other file formats for analysis. Weighting the quantities by element-specific neutron-scattering lengths provides results directly comparable to neutron scattering measurements. Lastly, LiquidLib is independent of dimensionality, which allows analysis of trajectories in two, three, and higher dimensions. The code is beginning to find worldwide use.
Computer Simulation of Energy Parameters and Magnetic Effects in Fe-Si-C Ternary Alloys
NASA Astrophysics Data System (ADS)
Ridnyi, Ya. M.; Mirzoev, A. A.; Mirzaev, D. A.
2018-06-01
The paper presents ab initio simulation with the WIEN2k software package of the equilibrium structure and properties of silicon and carbon atoms dissolved in iron with the body-centered cubic crystal system of the lattice. Silicon and carbon atoms manifest a repulsive interaction in the first two nearest neighbors, in the second neighbor the repulsion being stronger than in the first. In the third and next-nearest neighbors a very weak repulsive interaction occurs and tends to zero with increasing distance between atoms. Silicon and carbon dissolution reduces the magnetic moment of iron atoms.
Torsional anharmonicity in the conformational thermodynamics of flexible molecules
NASA Astrophysics Data System (ADS)
Miller, Thomas F., III; Clary, David C.
We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule.
Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge
2014-07-14
The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.
NASA Technical Reports Server (NTRS)
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that contains the system and other systems evolves with the CAS as well. The effects of the emerging adaptation and co-evolution are difficult to capture with only combined mathematical and computational experimentation. Therefore, an ab initio flight simulation environment must accommodate individual vehicles, groups of self-organizing vehicles, and large-scale infrastructure behavior. Inspired by Massively Multiplayer Online Role Playing Games (MMORPG) and Serious Gaming, the proposed ab initio simulation environment is similar to online gaming environments in which player participants interact with each other, affect their environment, and expect the simulation to persist and change regardless of any individual player's active participation.
NASA Astrophysics Data System (ADS)
John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.
2016-04-01
We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.
Ab initio study of collective excitations in a disparate mass molten salt.
Bryk, Taras; Klevets, Ivan
2012-12-14
Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.
NASA Astrophysics Data System (ADS)
Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel
2018-06-01
We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.
Kawashima, Yukio; Tachikawa, Masanori
2014-01-14
Ab initio path integral molecular dynamics (PIMD) simulation was performed to understand the nuclear quantum effect on the out-of-plane ring deformation of hydrogen maleate anion and investigate the existence of a stable structure with ring deformation, which was suggested in experimental observation (Fillaux et al., Chem. Phys. 1999, 120, 387-403). The isotope effect and the temperature effect are studied as well. We first investigated the nuclear quantum effect on the proton transfer. In static calculation and classical ab initio molecular dynamics simulations, the proton in the hydrogen bond is localized to either oxygen atom. On the other hand, the proton is located at the center of two oxygen atoms in quantum ab initio PIMD simulations. The nuclear quantum effect washes out the barrier of proton transfer. We next examined the nuclear quantum effect on the motion of hydrogen maleate anion. Principal component analysis revealed that the out-of-plane ring bending modes have dominant contribution to the entire molecular motion. In quantum ab initio PIMD simulations, structures with ring deformation were the global minimum for the deuterated isotope at 300 K. We analyzed the out-of-plane ring bending mode further and found that there are three minima along a ring distortion mode. We successfully found a stable structure with ring deformation of hydrogen maleate for the first time, to our knowledge, using theoretical calculation. The structures with ring deformation found in quantum simulation of the deuterated isotope allowed the proton transfer to occur more frequently than the planar structure. Static ab initio electronic structure calculation found that the structures with ring deformation have very small proton transfer barrier compared to the planar structure. We suggest that the "proton transfer driven" mechanism is the origin of stabilization for the structure with out-of-plane ring deformation.
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
2014-03-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic coordinates from the Python interface, and to return the forces and energy that are used to integrate the equations of motion. Restrictions: This code only deals with distinguishable particles. It does not include fermonic or bosonic exchanges between equivalent nuclei, which can become important at very low temperatures. Running time: Depends dramatically on the nature of the simulation being performed. A few minutes for short tests with empirical force fields, up to several weeks for production calculations with ab initio forces. The examples provided with the code run in less than an hour.
NASA Astrophysics Data System (ADS)
Borges Sebastião, Israel; Kulakhmetov, Marat; Alexeenko, Alina
2017-01-01
This work evaluates high-fidelity vibrational-translational (VT) energy relaxation and dissociation models for pure O2 normal shockwave simulations with the direct simulation Monte Carlo (DSMC) method. The O2-O collisions are described using ab initio state-specific relaxation and dissociation models. The Macheret-Fridman (MF) dissociation model is adapted to the DSMC framework by modifying the standard implementation of the total collision energy (TCE) model. The O2-O2 dissociation is modeled with this TCE+MF approach, which is calibrated with O2-O ab initio data and experimental equilibrium dissociation rates. The O2-O2 vibrational relaxation is modeled via the Larsen-Borgnakke model, calibrated to experimental VT rates. All the present results are compared to experimental data and previous calculations available in the literature. It is found that, in general, the ab initio dissociation model is better than the TCE model at matching the shock experiments. Therefore, when available, efficient ab initio models are preferred over phenomenological models. We also show that the proposed TCE + MF formulation can be used to improve the standard TCE model results when ab initio data are not available or limited.
France-Lanord, Arthur; Soukiassian, Patrick; Glattli, Christian; Wimmer, Erich
2016-03-14
In an effort to extend the reach of current ab initio calculations to simulations requiring millions of configurations for complex systems such as heterostructures, we have parameterized the third-generation Charge Optimized Many-Body (COMB3) potential using solely ab initio total energies, forces, and stress tensors as input. The quality and the predictive power of the new forcefield are assessed by computing properties including the cohesive energy and density of SiO2 polymorphs, surface energies of alpha-quartz, and phonon densities of states of crystalline and amorphous phases of SiO2. Comparison with data from experiments, ab initio calculations, and molecular dynamics simulations using published forcefields including BKS (van Beest, Kramer, and van Santen), ReaxFF, and COMB2 demonstrates an overall improvement of the new parameterization. The computed temperature dependence of the thermal conductivity of crystalline alpha-quartz and the Kapitza resistance of the interface between crystalline Si(001) and amorphous silica is in excellent agreement with experiment, setting the stage for simulations of complex nanoscale heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Binbin; Liu, Lihong; Cui, Ganglong
2015-11-21
In this work, the recently introduced quantum trajectory mean-field (QTMF) approach is implemented and employed to explore photodissociation dynamics of diazirinone (N{sub 2}CO), which are based on the high-level ab initio calculation. For comparison, the photodissociation process has been simulated as well with the fewest-switches surface hopping (FSSH) and the ab initio multiple spawning (AIMS) methods. Overall, the dynamical behavior predicted by the three methods is consistent. The N{sub 2}CO photodissociation at λ > 335 nm is an ultrafast process and the two C—N bonds are broken in a stepwise way, giving birth to CO and N{sub 2} as themore » final products in the ground state. Meanwhile, some noticeable differences were found in the QTMF, FSSH, and AIMS simulated time constants for fission of the C—N bonds, excited-state lifetime, and nonadiabatic transition ratios in different intersection regions. These have been discussed in detail. The present study provides a clear evidence that direct ab initio QTMF approach is one of the reliable tools for simulating nonadiabatic dynamics processes.« less
Shen, Lin; Yang, Weitao
2018-03-13
Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.
Köster, Andreas; Spura, Thomas; Rutkai, Gábor; Kessler, Jan; Wiebeler, Hendrik; Vrabec, Jadran; Kühne, Thomas D
2016-07-15
The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural properties. It is found that although the resulting force-matched water models are typically less accurate than fully empirical force fields in predicting thermodynamic properties, they are nevertheless much more accurate than generally appreciated in reproducing the structure of liquid water and in fact superseding most of the commonly used empirical water models. This development demonstrates the feasibility to routinely parametrize computationally efficient yet predictive potential energy functions based on accurate ab initio molecular dynamics simulations for a large variety of different systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fujimori, Mitsuki; Sogawa, Haruki; Ota, Shintaro; Karpov, Pavel; Shulga, Sergey; Blume, Yaroslav; Kurita, Noriyuki
2018-01-01
Filamentous temperature-sensitive Z (FtsZ) protein plays essential role in bacteria cell division, and its inhibition prevents Mycobacteria reproduction. Here we adopted curcumin derivatives as candidates of novel inhibitors and investigated their specific interactions with FtsZ, using ab initio molecular simulations based on protein-ligand docking, classical molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. Based on FMO calculations, we specified the most preferable site of curcumin binding to FtsZ and highlighted the key amino acid residues for curcumin binding at an electronic level. The result will be useful for proposing novel inhibitors against FtsZ based on curcumin derivatives.
Relating Ab Initio Mechanical Behavior of Intergranular Glassy Films in Γ-Si3N4 to Continuum Scales
NASA Astrophysics Data System (ADS)
Ouyang, L.; Chen, J.; Ching, W.; Misra, A.
2006-05-01
Nanometer thin intergranular glassy films (IGFs) form in polycrystalline ceramics during sintering at high temperatures. The structure and properties of these IGFs are significantly changed by doping with rare earth elements. We have performed highly accurate large-scale ab initio calculations of the mechanical properties of both undoped and Yittria doped (Y-IGF) model by theoretical uniaxial tensile experiments. Uniaxial strain was applied by incrementally stretching the super cell in one direction, while the other two dimensions were kept constant. At each strain, all atoms in the model were fully relaxed using Vienna Ab initio Simulation Package VASP. The relaxed model at a given strain serves as the starting position for the next increment of strain. This process is carried on until the total energy (TE) and stress data show that the "sample" is fully fractured. Interesting differences are seen between the stress-strain response of undoped and Y-doped models. For the undoped model, the stress-strain behavior indicates that the initial atomic structure of the IGF is such that there is negligible coupling between the x- and the y-z directions. However, once the behavior becomes non- linear the lateral stresses increase, indicating that the atomic structure evolves with loading [1]. To relate the ab initio calculations to the continuum scales we analyze the atomic-scale deformation field under this uniaxial loading [1]. The applied strain in the x-direction is mostly accommodated by the IGF part of the model and the crystalline part experiences almost negligible strain. As the overall strain on the sample is incrementally increased, the local strain field evolves such that locations proximal to the softer spots attract higher strains. As the load progresses, the strain concentration spots coalesce and eventually form persistent strain localization zone across the IGF. The deformation pattern obtained through ab initio calculations indicates that it is possible to construct discrete grain-scale models that may be used to bridge these calculations to the continuum scale for finite element analysis. Reference: 1. J. Chen, L. Ouyang, P. Rulis, A. Misra, W. Y. Ching, Phys. Rev. Lett. 95, 256103 (2005)
ERIC Educational Resources Information Center
Jones, Francis R.
1993-01-01
A detailed, nonimpressionistic assessment checklist is presented for teach-yourself language packages. Two example research applications are given: a survey of a range of course packages, and an analysis of the patterns of materials used by an individual learner of Hungarian. (39 references) (Author/LB)
Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...
2018-04-19
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less
Hybrid classical/quantum simulation for infrared spectroscopy of water
NASA Astrophysics Data System (ADS)
Maekawa, Yuki; Sasaoka, Kenji; Ube, Takuji; Ishiguro, Takashi; Yamamoto, Takahiro
2018-05-01
We have developed a hybrid classical/quantum simulation method to calculate the infrared (IR) spectrum of water. The proposed method achieves much higher accuracy than conventional classical molecular dynamics (MD) simulations at a much lower computational cost than ab initio MD simulations. The IR spectrum of water is obtained as an ensemble average of the eigenvalues of the dynamical matrix constructed by ab initio calculations, using the positions of oxygen atoms that constitute water molecules obtained from the classical MD simulation. The calculated IR spectrum is in excellent agreement with the experimental IR spectrum.
Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures
NASA Astrophysics Data System (ADS)
Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark
In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.
NASA Astrophysics Data System (ADS)
Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.
2015-02-01
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
Ohto, Tatsuhiko; Usui, Kota; Hasegawa, Taisuke; Bonn, Mischa; Nagata, Yuki
2015-09-28
Interfacial water structures have been studied intensively by probing the O-H stretch mode of water molecules using sum-frequency generation (SFG) spectroscopy. This surface-specific technique is finding increasingly widespread use, and accordingly, computational approaches to calculate SFG spectra using molecular dynamics (MD) trajectories of interfacial water molecules have been developed and employed to correlate specific spectral signatures with distinct interfacial water structures. Such simulations typically require relatively long (several nanoseconds) MD trajectories to allow reliable calculation of the SFG response functions through the dipole moment-polarizability time correlation function. These long trajectories limit the use of computationally expensive MD techniques such as ab initio MD and centroid MD simulations. Here, we present an efficient algorithm determining the SFG response from the surface-specific velocity-velocity correlation function (ssVVCF). This ssVVCF formalism allows us to calculate SFG spectra using a MD trajectory of only ∼100 ps, resulting in the substantial reduction of the computational costs, by almost an order of magnitude. We demonstrate that the O-H stretch SFG spectra at the water-air interface calculated by using the ssVVCF formalism well reproduce those calculated by using the dipole moment-polarizability time correlation function. Furthermore, we applied this ssVVCF technique for computing the SFG spectra from the ab initio MD trajectories with various density functionals. We report that the SFG responses computed from both ab initio MD simulations and MD simulations with an ab initio based force field model do not show a positive feature in its imaginary component at 3100 cm(-1).
PyRETIS: A well-done, medium-sized python library for rare events.
Lervik, Anders; Riccardi, Enrico; van Erp, Titus S
2017-10-30
Transition path sampling techniques are becoming common approaches in the study of rare events at the molecular scale. More efficient methods, such as transition interface sampling (TIS) and replica exchange transition interface sampling (RETIS), allow the investigation of rare events, for example, chemical reactions and structural/morphological transitions, in a reasonable computational time. Here, we present PyRETIS, a Python library for performing TIS and RETIS simulations. PyRETIS directs molecular dynamics (MD) simulations in order to sample rare events with unbiased dynamics. PyRETIS is designed to be easily interfaced with any molecular simulation package and in the present release, it has been interfaced with GROMACS and CP2K, for classical and ab initio MD simulations, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ab initio interatomic potentials and the thermodynamic properties of fluids
NASA Astrophysics Data System (ADS)
Vlasiuk, Maryna; Sadus, Richard J.
2017-07-01
Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.
A walk through the approximations of ab initio multiple spawning
NASA Astrophysics Data System (ADS)
Mignolet, Benoit; Curchod, Basile F. E.
2018-04-01
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
Brønsted acidity of protic ionic liquids: a modern ab initio valence bond theory perspective.
Patil, Amol Baliram; Mahadeo Bhanage, Bhalchandra
2016-09-21
Room temperature ionic liquids (ILs), especially protic ionic liquids (PILs), are used in many areas of the chemical sciences. Ionicity, the extent of proton transfer, is a key parameter which determines many physicochemical properties and in turn the suitability of PILs for various applications. The spectrum of computational chemistry techniques applied to investigate ionic liquids includes classical molecular dynamics, Monte Carlo simulations, ab initio molecular dynamics, Density Functional Theory (DFT), CCSD(t) etc. At the other end of the spectrum is another computational approach: modern ab initio Valence Bond Theory (VBT). VBT differs from molecular orbital theory based methods in the expression of the molecular wave function. The molecular wave function in the valence bond ansatz is expressed as a linear combination of valence bond structures. These structures include covalent and ionic structures explicitly. Modern ab initio valence bond theory calculations of representative primary and tertiary ammonium protic ionic liquids indicate that modern ab initio valence bond theory can be employed to assess the acidity and ionicity of protic ionic liquids a priori.
A walk through the approximations of ab initio multiple spawning.
Mignolet, Benoit; Curchod, Basile F E
2018-04-07
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
Ab initio interatomic potentials and the thermodynamic properties of fluids.
Vlasiuk, Maryna; Sadus, Richard J
2017-07-14
Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.
OWL: A scalable Monte Carlo simulation suite for finite-temperature study of materials
NASA Astrophysics Data System (ADS)
Li, Ying Wai; Yuk, Simuck F.; Cooper, Valentino R.; Eisenbach, Markus; Odbadrakh, Khorgolkhuu
The OWL suite is a simulation package for performing large-scale Monte Carlo simulations. Its object-oriented, modular design enables it to interface with various external packages for energy evaluations. It is therefore applicable to study the finite-temperature properties for a wide range of systems: from simple classical spin models to materials where the energy is evaluated by ab initio methods. This scheme not only allows for the study of thermodynamic properties based on first-principles statistical mechanics, it also provides a means for massive, multi-level parallelism to fully exploit the capacity of modern heterogeneous computer architectures. We will demonstrate how improved strong and weak scaling is achieved by employing novel, parallel and scalable Monte Carlo algorithms, as well as the applications of OWL to a few selected frontier materials research problems. This research was supported by the Office of Science of the Department of Energy under contract DE-AC05-00OR22725.
Perspective: Ab initio force field methods derived from quantum mechanics
NASA Astrophysics Data System (ADS)
Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.
2018-03-01
It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.
Zeng, Lu; Kortschak, R Daniel; Raison, Joy M; Bertozzi, Terry; Adelson, David L
2018-01-01
Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.
Zeng, Lu; Kortschak, R. Daniel; Raison, Joy M.
2018-01-01
Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package. PMID:29538441
NASA Astrophysics Data System (ADS)
Mei, Yuan; Sherman, David M.; Liu, Weihua; Etschmann, Barbara; Testemale, Denis; Brugger, Joël
2015-02-01
The solubility of zinc minerals in hydrothermal fluids is enhanced by chloride complexation of Zn2+. Thermodynamic models of these complexation reactions are central to models of Zn transport and ore formation. However, existing thermodynamic models, derived from solubility measurements, are inconsistent with spectroscopic measurements of Zn speciation. Here, we used ab initio molecular dynamics simulations (with the PBE exchange-correlation functional) to predict the speciation of Zn-Cl complexes from 25 to 600 °C. We also obtained in situ XAS measurements of Zn-Cl solutions at 30-600 °C. Qualitatively, the simulations reproduced the main features derived from in situ XANES and EXAFS measurements: octahedral to tetrahedral transition with increasing temperature and salinity, stability of ZnCl42- at high chloride concentration up to ⩾500 °C, and increasing stability of the trigonal planar [ZnCl3]- complex at high temperature. Having confirmed the dominant species, we directly determined the stability constants for the Zn-Cl complexes using thermodynamic integration along constrained Zn-Cl distances in a series of MD simulations. We corrected our stability constants to infinite dilution using the b-dot model for the activity coefficients of the solute species. In order to compare the ab initio results with experiments, we need to re-model the existing solubility data using the species we identified in our MD simulations. The stability constants derived from refitting published experimental data are in reasonable agreement with those we obtained using ab initio MD simulations. Our new thermodynamic model accurately predicts the experimentally observed changes in ZnO(s) and ZnCO3(s) solubility as a function of chloride concentration from 200 (Psat) to 600 °C (2000 bar). This study demonstrates that metal speciation and geologically useful stability constants can be derived for species in hydrothermal fluids from ab initio MD simulations even at the generalized gradient approximation for exchange-correlation. We caution, however, that simulations are mostly reliable at high T where ligand exchange is fast enough to yield thermodynamic averages over the timescales of the simulations.
Ab-initio molecular dynamics simulations of liquid Hg-Pb alloys
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2014-04-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-Pb alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-Pb mixtures (Hg30Pb70, Hg50Pb50 and Hg90Pb10) at 600K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and lead (l-Pb). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered three alloys. Among the all considered alloys, Hg50Pb50 alloy shows presence of more chemical ordering and presence of hetero-coordination.
1996-12-01
ranging from academic to industrial demonstrated the utility of the developed procedure for ab initio surface meshing from discrete data, such as...academic to industrial demonstrate the utility of the pro- hypersonic reentry problems, where ray-tracing based on posed procedure for ab initio surface...data input within industrial simulations. The origi- nal CAD dataset had over 500 surface patches, many All of the surface grids shown were obtained
Hirshberg, Barak; Sagiv, Lior; Gerber, R Benny
2017-03-14
Algorithms for quantum molecular dynamics simulations that directly use ab initio methods have many potential applications. In this article, the ab initio classical separable potentials (AICSP) method is proposed as the basis for approximate algorithms of this type. The AICSP method assumes separability of the total time-dependent wave function of the nuclei and employs mean-field potentials that govern the dynamics of each degree of freedom. In the proposed approach, the mean-field potentials are determined by classical ab initio molecular dynamics simulations. The nuclear wave function can thus be propagated in time using the effective potentials generated "on the fly". As a test of the method for realistic systems, calculations of the stationary anharmonic frequencies of hydrogen stretching modes were carried out for several polyatomic systems, including three amino acids and the guanine-cytosine pair of nucleobases. Good agreement with experiments was found. The method scales very favorably with the number of vibrational modes and should be applicable for very large molecules, e.g., peptides. The method should also be applicable for properties such as vibrational line widths and line shapes. Work in these directions is underway.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
Yang, Lina; Minnich, Austin J.
2017-01-01
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484
Ab initio study of the structural properties of acetonitrile-water mixtures
NASA Astrophysics Data System (ADS)
Chen, Jinfan; Sit, Patrick H.-L.
2015-08-01
Structural properties of acetonitrile and acetonitrile-water mixtures are studied using Density Functional Theory (DFT) and ab initio molecular dynamics simulations. Stable molecular clusters consisted of several water and acetonitrile molecules are identified to provide microscopic understanding of the interaction among water and acetonitrile molecules. Ab initio molecular dynamics simulations are performed to study the liquid structure at the finite temperature. Three mixing compositions in which the mole fraction of acetonitrile equals 0.109, 0.5 and 0.891 are studied. These compositions correspond to three distinct structural regimes. At the 0.109 and 0.891 mole fraction of acetonitrile, the majority species are mostly connected among themselves and the minority species are either isolated or forming small clusters without disrupting the network of the majority species. At the 0.5 mole fraction of acetonitrile, large water and acetonitrile clusters persist throughout the simulation, exhibiting the microheterogeneous behavior in acetonitrile-water mixtures in the mid-range mixing ratio.
Ramos, Patrícia; Schmitz, Marcos; Filgueira, Daza; Votto, Ana Paula; Durruthy, Michael; Gelesky, Marcos; Ruas, Caroline; Yunes, João; Tonel, Mariana; Fagan, Solange; Monserrat, José
2017-07-01
Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 10 4 cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL -1 ), STX (200 μg L -1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC. © 2016 SETAC.
In search of a viable reaction pathway in the chelation of a metallo-protein
NASA Astrophysics Data System (ADS)
Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry
2010-03-01
Misfolded metallo-proteins are potential causal agents in the onset of neuro-degenerative diseases, such as Alzheimer's and Parkinson's Diseases (PD). Experimental results involving metal chelation have shown significant promise in symptom reduction and misfolding reversal. We explore, through atomistic simulations, potential reaction pathways for the chelation of Cu^2+ from the metal binding site in our representation of a partially misfolded α-synuclein, the protein implicated in PD. Our ab initio simulations use Density Functional Theory (DFT) and nudged elastic band to obtain the minimized energy coordinates of this reaction. Our simulations include ab initio water at the interaction site and in its first solvation shells, while the remainder is fully solvated with orbital-free DFT water representation [1]. Our ongoing studies of viable chelation agents include nicotine, caffeine and other potential reagents, we will review the best case agents in this presentation. [4pt] [1] Hodak M, Lu W, Bernholc J. Hybrid ab initio Kohn-Sham density functional theory/frozen-density orbital-free density functional theory simulation method suitable for biological systems. J. Chem. Phys. 2008 Jan;128(1):014101-9.
Kubo–Greenwood approach to conductivity in dense plasmas with average atom models
Starrett, C. E.
2016-04-13
In this study, a new formulation of the Kubo–Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman–Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman–Evans formula. Again, results based on this expression are in good agreement withmore » ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollas, Daniel; Sistik, Lukas; Hohenstein, Edward G.
Here, we show that the floating occupation molecular orbital complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the widely used complete active space self-consistent field (CASSCF) method in direct nonadiabatic dynamics simulations. We have simulated photodynamics of three archetypal molecules in photodynamics: ethylene, methaniminium cation, and malonaldehyde. We compared the time evolution of electronic populations and reaction mechanisms as revealed by the FOMO-CASCI and CASSCF approaches. Generally, the two approaches provide similar results. Some dynamical differences are observed, but these can be traced back to energetically minor differences in the potential energy surfaces. We suggest thatmore » the FOMO-CASCI method represents, due to its efficiency and stability, a promising approach for direct ab initio dynamics in the excited state.« less
Multiple time step integrators in ab initio molecular dynamics.
Luehr, Nathan; Markland, Thomas E; Martínez, Todd J
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
Software Applications on the Peregrine System | High-Performance Computing
programming and optimization. Gaussian Chemistry Program for calculating molecular electronic structure and Materials Science Open-source classical molecular dynamics program designed for massively parallel systems framework Q-Chem Chemistry ab initio quantum chemistry package for predictin molecular structures
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-03-01
On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.
NASA Astrophysics Data System (ADS)
Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc
1992-08-01
The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.
Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H
2015-12-08
Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.
A Toolbox for Ab Initio 3-D Reconstructions in Single-particle Electron Microscopy
Voss, Neil R; Lyumkis, Dmitry; Cheng, Anchi; Lau, Pick-Wei; Mulder, Anke; Lander, Gabriel C; Brignole, Edward J; Fellmann, Denis; Irving, Christopher; Jacovetty, Erica L; Leung, Albert; Pulokas, James; Quispe, Joel D; Winkler, Hanspeter; Yoshioka, Craig; Carragher, Bridget; Potter, Clinton S
2010-01-01
Structure determination of a novel macromolecular complex via single-particle electron microscopy depends upon overcoming the challenge of establishing a reliable 3-D reconstruction using only 2-D images. There are a variety of strategies that deal with this issue, but not all of them are readily accessible and straightforward to use. We have developed a “toolbox” of ab initio reconstruction techniques that provide several options for calculating 3-D volumes in an easily managed and tightly controlled work-flow that adheres to standard conventions and formats. This toolbox is designed to streamline the reconstruction process by removing the necessity for bookkeeping, while facilitating transparent data transfer between different software packages. It currently includes procedures for calculating ab initio reconstructions via random or orthogonal tilt geometry, tomograms, and common lines, all of which have been tested using the 50S ribosomal subunit. Our goal is that the accessibility of multiple independent reconstruction algorithms via this toolbox will improve the ease with which models can be generated, and provide a means of evaluating the confidence and reliability of the final reconstructed map. PMID:20018246
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holst, Bastian; French, Martin; Redmer, Ronald
2011-06-15
Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.
Leung, Kevin; Budzien, Joanne L
2010-07-07
The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.
Lattice dynamics calculations based on density-functional perturbation theory in real space
NASA Astrophysics Data System (ADS)
Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias
2017-06-01
A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.
Resolution of ab initio shapes determined from small-angle scattering.
Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I
2016-11-01
Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.
Resolution of ab initio shapes determined from small-angle scattering
Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.
2016-01-01
Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683
NASA Astrophysics Data System (ADS)
Lei, Hongxing; Wu, Chun; Wang, Zhi-Xiang; Zhou, Yaoqi; Duan, Yong
2008-06-01
Reaching the native states of small proteins, a necessary step towards a comprehensive understanding of the folding mechanisms, has remained a tremendous challenge to ab initio protein folding simulations despite the extensive effort. In this work, the folding process of the B domain of protein A (BdpA) has been simulated by both conventional and replica exchange molecular dynamics using AMBER FF03 all-atom force field. Started from an extended chain, a total of 40 conventional (each to 1.0 μs) and two sets of replica exchange (each to 200.0 ns per replica) molecular dynamics simulations were performed with different generalized-Born solvation models and temperature control schemes. The improvements in both the force field and solvent model allowed successful simulations of the folding process to the native state as demonstrated by the 0.80 A˚ Cα root mean square deviation (RMSD) of the best folded structure. The most populated conformation was the native folded structure with a high population. This was a significant improvement over the 2.8 A˚ Cα RMSD of the best nativelike structures from previous ab initio folding studies on BdpA. To the best of our knowledge, our results demonstrate, for the first time, that ab initio simulations can reach the native state of BdpA. Consistent with experimental observations, including Φ-value analyses, formation of helix II/III hairpin was a crucial step that provides a template upon which helix I could form and the folding process could complete. Early formation of helix III was observed which is consistent with the experimental results of higher residual helical content of isolated helix III among the three helices. The calculated temperature-dependent profile and the melting temperature were in close agreement with the experimental results. The simulations further revealed that phenylalanine 31 may play critical to achieve the correct packing of the three helices which is consistent with the experimental observation. In addition to the mechanistic studies, an ab initio structure prediction was also conducted based on both the physical energy and a statistical potential. Based on the lowest physical energy, the predicted structure was 2.0 A˚ Cα RMSD away from the experimentally determined structure.
NASA Technical Reports Server (NTRS)
Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)
1994-01-01
Molecular dynamics simulations of POE melts have been performed utilizing a potential force field parameterized to reproduce conformer energies and rotational energy barriers in dimethoxyethane as determined from ab initio electronic structure calculations. Chain conformations and dimensions of POE from the simulations were found to be in good agreement with predictions of a rotational isomeric state (RIS) model based upon the ab initio conformational. energies. The melt chains were found to be somewhat extended relative to chains at theta conditions. This effect will be discussed in light of neutron scattering experiments which indicate that POE chains are extended in the melt relative to theta solutions. The conformational characteristics of POE chains will also be compared with those of other poly (alkylethers), namely poly(oxymethylene), poly(oxytrimethylene) and poly(oxytetramethylene). Local conformational dynamics were found to be more rapid than in polymethylene. Calculated C-H vector correlation times were found to be in reasonable agreement with experimental values from C-13 NMR spin-lattice relaxation times. The influence of ionic salts on local conformations and dynamics will also be discussed.
Zhang, Yang
2014-01-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. PMID:23760925
Zhang, Yang
2014-02-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. Copyright © 2013 Wiley Periodicals, Inc.
Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides
NASA Astrophysics Data System (ADS)
Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki
2012-09-01
Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.
Ab Initio Classical Dynamics Simulations of CO_2 Line-Mixing Effects in Infrared Bands
NASA Astrophysics Data System (ADS)
Lamouroux, Julien; Hartmann, Jean-Michel; Tran, Ha; Snels, Marcel; Stefani, Stefania; Piccioni, Giuseppe
2013-06-01
Ab initio calculations of line-mixing effects in CO_2 infrared bands are presented and compared with experiments. The predictions were carried using requantized Classical Dynamics Molecular Simulations (rCDMS) based on an approach previously developed and successfully tested for CO_2 isolated line shapes. Using classical dynamics equations, the force and torque applied to each molecule by the surrounding molecules (described by an ab initio intermolecular potential) are computed at each time step. This enables, using a requantization procedure, to predict dipole and isotropic polarizability auto-correlation functions whose Fourier-Laplace transforms yield the spectra. The quality of the rCDMS calculations is demonstrated by comparisons with measured spectra in the spectral regions of the 3ν_3 and 2ν_1+2ν_2+ν_3 Infrared bands. J.-M. Hartmann, H. Tran, N. H. Ngo, et al., Phys. Rev. Lett. A {87} (2013), 013403. H. Tran, C. Boulet, M. Snels, S. Stefani, J. Quant. Spectrosc. Radiat. Transfer {112} (2011), 925-936.
Effects of molecular dissociation on the hydrogen equation of state
NASA Astrophysics Data System (ADS)
Bonev, Stanimir; Schwegler, Eric; Galli, Giulia; Gygi, Francois
2002-03-01
It has been suggested recently(François Gygi and G. Galli, submitted to Phys. Rev. Lett.) that the physical mechanism behind the larger compressibility of liquid deuterium observed in laser shock experiments as compared to ab initio simulations may be related to shock-induced electronic excitations. A possible result of such non-adiabatic processes is hindering of the molecular dissociation. This has motivated us to study the importance of molecular dissociation on the hydrogen equation of state. To this end, we have carried out ab initio molecular dynamics simulations of liquid deuterium where intramolecular dissociation is prevented by the use of bond length contraints. Simulations at both fixed thermodynamic conditions and dynamical simulations of shocked deuterium will be discussed.
NASA Astrophysics Data System (ADS)
Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2014-03-01
In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.
Analysis of Borderline Substitution/Electron Transfer Pathways from Direct ab initio MD Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamataka, H; Aida, M A.; Dupuis, Michel
Ab initio molecular dynamics simulations were carried out for the borderline reaction pathways in the reaction of CH2O?- with CH3Cl. The simulations reveal distinctive features of three types of mechanisms passing through the SN2-like transition state (TS): (i) a direct formation of SN2 products, (ii) a direct formation of ET products, and (iii) a 2-step formation of ET products via the SN2 valley. The direct formation of the ET product through the SN2-like TS appears to be more favorable at higher temperatures. The 2-step process depends on the amount of energy that goes into the C-C stretching mode.
Chen, Ying; Bylaska, Eric J.; Weare, John H.
2017-03-31
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Bylaska, Eric J.; Weare, John H.
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2015-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Hagiwara, Yohsuke; Tateno, Masaru
2010-10-20
We review the recent research on the functional mechanisms of biological macromolecules using theoretical methodologies coupled to ab initio quantum mechanical (QM) treatments of reaction centers in proteins and nucleic acids. Since in most cases such biological molecules are large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Instead, simulations that are jointed with molecular mechanics (MM) calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. Thus, we focus our attention on the methodologies/schemes and applications of jointed QM/MM calculations, and discuss the critical issues to be elucidated in biological macromolecular systems. © 2010 IOP Publishing Ltd
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2009-10-29
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.
NASA Astrophysics Data System (ADS)
Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär
2017-02-01
The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.
NASA Astrophysics Data System (ADS)
Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.
2018-05-01
Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.
Xu, Dong; Zhang, Yang
2013-01-01
Genome-wide protein structure prediction and structure-based function annotation have been a long-term goal in molecular biology but not yet become possible due to difficulties in modeling distant-homology targets. We developed a hybrid pipeline combining ab initio folding and template-based modeling for genome-wide structure prediction applied to the Escherichia coli genome. The pipeline was tested on 43 known sequences, where QUARK-based ab initio folding simulation generated models with TM-score 17% higher than that by traditional comparative modeling methods. For 495 unknown hard sequences, 72 are predicted to have a correct fold (TM-score > 0.5) and 321 have a substantial portion of structure correctly modeled (TM-score > 0.35). 317 sequences can be reliably assigned to a SCOP fold family based on structural analogy to existing proteins in PDB. The presented results, as a case study of E. coli, represent promising progress towards genome-wide structure modeling and fold family assignment using state-of-the-art ab initio folding algorithms. PMID:23719418
Luminescence of BaBrI and SrBrI single crystals doped with Eu2+
NASA Astrophysics Data System (ADS)
Shalaev, A. A.; Shendrik, R.; Myasnikova, A. S.; Bogdanov, A.; Rusakov, A.; Vasilkovskyi, A.
2018-05-01
The crystal growth procedure and luminescence properties of pure and Eu2+-doped BaBrI and SrBrI crystals are reported. Emission and excitation spectra were recorded under ultraviolet and vacuum ultraviolet excitations. The energy of the first Eu2+ 4f-5d transition and SrBrI band gap are obtained. The electronic structure calculations were performed within GW approximation as implemented in the Vienna Ab Initio Simulation Package. The energy between lowest Eu2+ 5d state and the bottom of conduction band are found based on luminescence quenching parameters. The vacuum referred binding energy diagram of lanthanide levels was constructed using the chemical shift model.
The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics.
Yao, Kun; Herr, John E; Toth, David W; Mckintyre, Ryker; Parkhill, John
2018-02-28
Traditional force fields cannot model chemical reactivity, and suffer from low generality without re-fitting. Neural network potentials promise to address these problems, offering energies and forces with near ab initio accuracy at low cost. However a data-driven approach is naturally inefficient for long-range interatomic forces that have simple physical formulas. In this manuscript we construct a hybrid model chemistry consisting of a nearsighted neural network potential with screened long-range electrostatic and van der Waals physics. This trained potential, simply dubbed "TensorMol-0.1", is offered in an open-source Python package capable of many of the simulation types commonly used to study chemistry: geometry optimizations, harmonic spectra, open or periodic molecular dynamics, Monte Carlo, and nudged elastic band calculations. We describe the robustness and speed of the package, demonstrating its millihartree accuracy and scalability to tens-of-thousands of atoms on ordinary laptops. We demonstrate the performance of the model by reproducing vibrational spectra, and simulating the molecular dynamics of a protein. Our comparisons with electronic structure theory and experimental data demonstrate that neural network molecular dynamics is poised to become an important tool for molecular simulation, lowering the resource barrier to simulating chemistry.
Size-induced chemical and magnetic ordering in individual Fe-Au nanoparticles.
Mukherjee, Pinaki; Manchanda, Priyanka; Kumar, Pankaj; Zhou, Lin; Kramer, Matthew J; Kashyap, Arti; Skomski, Ralph; Sellmyer, David; Shield, Jeffrey E
2014-08-26
Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe-Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 compounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.
Comparative study of elastic constantd of α-, β- and Cubic- silicon nitride
NASA Astrophysics Data System (ADS)
Yao, Hongzhi; Ouyang, Lizhi; Ching, Wai-Yim
2003-03-01
Silicon nitride is an important structural ceramic and dielectric insulator. Recently, the new high pressure cubic phase of silicon nitride in spinel structure has attracted a lot of attention.^[1] We have carried out a detailed ab-initio calculation of all independent elastic constants for all three phases of Si_3N4 by using the Vienna Ab-initio Simulation Package (VASP) in both LDA and GGA approxmations. The results for β-Si_3N4 are in reasonable agreement with a experimental measurement on single crystal samples.^[2] For cubic-Si_3N4 , The three independent elastic constants are predicted to be C_11 = 504.16 GPa, C_12 = 176.66 GPa, C_44 = 326.65 GPa and a bulk modulus B = 286 GPa. This value is very close to the experimental value of 300 GPa.^[1] All these results will be compared with those obtained by using the OLCAO method based on localized orbital approach.^[3] [1]. Wai-Yim Ching, Yong-Nian Xu, Jukian D. Gale, and Manfred Ruhle, J. Am. Ceram. Soc. 81, 3189 (1998) [2]. R. Vogelgesang, M. Grimsditch, and J. S. Wallace, Appl. Phys. Lett. 76, 8 (2000) [3]. W.Y.Ching, Lizhi Ouyang, and Julian D. Gale, Phys. Rev. B61, 13, (2000)
Perpendicular magnetic anisotropy in Mn2VIn (001) films: An ab initio study
NASA Astrophysics Data System (ADS)
Zipporah, Muthui; Robinson, Musembi; Julius, Mwabora; Arti, Kashyap
2018-05-01
First principles study of the magnetic anisotropy of Mn2VIn (001) films show perpendicular magnetic anisotropy (PMA), which increases as a function of the thickness of the film. Density functional theory (DFT) as implemented in the Vienna Ab initio simulation package (VASP) is employed here to perform a comprehensive theoretical investigation of the structural, electronic and magnetic properties of the Mn2VIn(001) films of varying thickness. Our calculations were performed on fully relaxed structures, with five to seventeen mono layers (ML). The degree of spin polarization is higher in the (001) Mn2VIn thin films as compared to the bulk in contrast to what is usually the case and as in Mn2VAl, which is isoelectronic to Mn2VIn as well as inCo2VIn (001) films studied for comparison. Tetragonal distortions are found in all the systems after relaxation. The distortion in the Mn2VIn system persists even for the 17ML thin film, resulting in PMA in the Mn2VIn system. This significant finding has potential to contribute to spin transfer torque (STT) and magnetic random access memory MRAM applications, as materials with PMA derived from volume magnetocrystalline anisotropy are being proposed as ideal magnetic electrodes.
Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D
2009-09-01
Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki
2015-07-01
Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.
Characteristics of Raman spectra for graphene oxide from ab initio simulations.
Wang, Lu; Zhao, Jijun; Sun, Yi-Yang; Zhang, Shengbai B
2011-11-14
The Raman spectra of several locally stable structures of the graphene oxide (GO) have been simulated by ab initio calculations. Compared to graphite, the G band of GO is broadened and blueshifted due to the emergence of a series of new Raman peaks. The Raman intensities and positions of the D and G bands depend sensitively on the local atomic configurations. In addition to the normal epoxy and hydroxyl groups, other oxidation groups such as epoxy pairs are also studied. Epoxy pairs induce large blueshift of G band with respect to that of the graphite. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Venâncio, Mateus F.; Rocha, Willian R.
2015-10-01
Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.
Mankodi, T K; Bhandarkar, U V; Puranik, B P
2017-08-28
A new ab initio based chemical model for a Direct Simulation Monte Carlo (DSMC) study suitable for simulating rarefied flows with a high degree of non-equilibrium is presented. To this end, Collision Induced Dissociation (CID) cross sections for N 2 +N 2 →N 2 +2N are calculated and published using a global complete active space self-consistent field-complete active space second order perturbation theory N 4 potential energy surface and quasi-classical trajectory algorithm for high energy collisions (up to 30 eV). CID cross sections are calculated for only a selected set of ro-vibrational combinations of the two nitrogen molecules, and a fitting scheme based on spectroscopic weights is presented to interpolate the CID cross section for all possible ro-vibrational combinations. The new chemical model is validated by calculating equilibrium reaction rate coefficients that can be compared well with existing shock tube and computational results. High-enthalpy hypersonic nitrogen flows around a cylinder in the transition flow regime are simulated using DSMC to compare the predictions of the current ab initio based chemical model with the prevailing phenomenological model (the total collision energy model). The differences in the predictions are discussed.
NASA Astrophysics Data System (ADS)
Ching, W. Y.; Rulis, Paul; Ouyang, Lizhi; Misra, A.
2009-02-01
We report the results of a large-scale ab initio simulation of an intergranular glassy film (IGF) model in β-Si3N4. It is shown that the stress-strain behavior under uniaxial load in the model with prismatic surfaces and few defective bonds is very different from an earlier IGF model with basal planes. The results are explained by the fundamental electronic structure of the model.
Experimental and ab initio molecular dynamics simulation studies of liquid Al60Cu40 alloy
NASA Astrophysics Data System (ADS)
Wang, S. Y.; Kramer, M. J.; Xu, M.; Wu, S.; Hao, S. G.; Sordelet, D. J.; Ho, K. M.; Wang, C. Z.
2009-04-01
X-ray diffraction and ab initio molecular dynamics simulation studies of molten Al60Cu40 have been carried out between 973 and 1323 K. The structures obtained from our simulated atomic models are fully consistent with the experimental results. The local structures of the models analyzed using Honeycutt-Andersen and Voronoi tessellation methods clearly demonstrate that as the temperatures of the liquid is lowered it becomes more ordered. While no one cluster-type dominates the local structure of this liquid, the most prevalent polyhedra in the liquid structure can be described as distorted icosahedra. No obvious correlations between the clusters observed in the liquid and known stable crystalline phases in this system were observed.
Analysis of borderline substitution/electron transfer pathways from direct ab initio MD simulations
NASA Astrophysics Data System (ADS)
Yamataka, Hiroshi; Aida, Misako; Dupuis, Michel
2002-02-01
Ab initio molecular dynamics simulations were carried out for the borderline reaction pathways in the reaction of CH 2O rad - with CH 3Cl. The simulations reveal distinctive features of three types of mechanisms passing through the S N2-like transition state (TS): (i) a direct formation of S N2 products, (ii) a direct formation of ET products, and (iii) a two-step formation of ET products via the S N2 valley. The direct formation of the ET product through the S N2-like TS appears to be more favorable at higher temperatures. The two-step process depends on the amount of energy that goes into the C-C stretching mode.
Towards ab initio Calculations with the Dynamical Vertex Approximation
NASA Astrophysics Data System (ADS)
Galler, Anna; Kaufmann, Josef; Gunacker, Patrik; Pickem, Matthias; Thunström, Patrik; Tomczak, Jan M.; Held, Karsten
2018-04-01
While key effects of the many-body problem — such as Kondo and Mott physics — can be understood in terms of on-site correlations, non-local fluctuations of charge, spin, and pairing amplitudes are at the heart of the most fascinating and unresolved phenomena in condensed matter physics. Here, we review recent progress in diagrammatic extensions to dynamical mean-field theory for ab initio materials calculations. We first recapitulate the quantum field theoretical background behind the two-particle vertex. Next we discuss latest algorithmic advances in quantum Monte Carlo simulations for calculating such two-particle quantities using worm sampling and vertex asymptotics, before giving an introduction to the ab initio dynamical vertex approximation (AbinitioDΓA). Finally, we highlight the potential of AbinitioDΓA by detailing results for the prototypical correlated metal SrVO3.
NASA Astrophysics Data System (ADS)
Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito
2018-05-01
Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.
Elastic and Photoelastic Properties of M(NO3)2, MO (M = Mg, Ca, Sr, Ba)
NASA Astrophysics Data System (ADS)
Zhuravlev, Yu. N.; Korabel'nikov, D. V.
2017-05-01
The paper deals with ab initio investigations of elastic and photoelastic properties of oxides and nitrates of alkaline-earth metals. In gradient approximation of the density functional theory (DFT), these properties are studied with the use of the linear combination of the atomic orbital technique. DFT calculations are done with the CRYSTAL 14 software package. The paper introduces the elastic and photoelastic constants, anisotropy parameters for single-crystalline phases and the elastic modules, hardness, Poisson ratio for polycrystalline phases. Such parameters as sonic speed, Debye temperature, thermal conductivity, and Gruneisen parameter are estimated herein. For the fist time, mechanical stability, anisotropy of elastic and photoelastic properties and their dependences are investigated ab initio in this paper. Experimental results on elastic and photoelastic properties of oxides and nitrates are in good agreement with theoretical calculations.
Ab initio study of the structure and dynamics of bulk liquid Fe
NASA Astrophysics Data System (ADS)
Marqués, M.; González, L. E.; González, D. J.
2015-10-01
Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the structure factor which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, with an associated dispersion relation which closely follows the experimental data. The dynamic structure factors S (q ,ω ) show a good agreement with their experimental counterparts which have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and the results are compared with the available experimental data.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Structural phase transition of BeTe: an ab initio molecular dynamics study.
Alptekin, Sebahaddin
2017-08-11
Beryllium telluride (BeTe) with cubic zinc-blende (ZB) structure was studied using ab initio constant pressure method under high pressure. The ab initio molecular dynamics (MD) approach for constant pressure was studied and it was found that the first order phase transition occurs from the ZB structure to the nickel arsenide (NiAs) structure. It has been shown that the MD simulation predicts the transition pressure P T more than the value obtained by the static enthalpy and experimental data. The structural pathway reveals MD simulation such as cubic → tetragonal → orthorhombic → monoclinic → orthorhombic → hexagonal, leading the ZB to NiAs phase. The phase transformation is accompanied by a 10% volume drop and at 80 GPa is likely to be around 35 GPa in the experiment. In the present study, our obtained values can be compared with the experimental and theoretical results. Graphical abstract The energy-volume relation and ZB phase for the BeTe.
Acceleration of saddle-point searches with machine learning.
Peterson, Andrew A
2016-08-21
In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.
Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models
Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.
2010-01-01
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the current study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives ∂Dlm′m/∂Ω. The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. PMID:20839297
Acceleration of saddle-point searches with machine learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Andrew A., E-mail: andrew-peterson@brown.edu
In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the numbermore » of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.« less
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
2017-03-27
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO 2-CH 4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this paper, we present a set ofmore » fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. Finally, the mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.« less
NASA Astrophysics Data System (ADS)
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
2017-06-01
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO2-CH4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this work, we present a set of fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. The mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO 2-CH 4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this paper, we present a set ofmore » fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. Finally, the mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.« less
Predictions of Crystal Structures from First Principles
2007-06-01
RDX crystal in hoped that the problem could be resolved by the molecular dynamics simulations . The fully ab initio development of density functional... Molecular Dynamics Simulations of RDX i.e., without any use of experimental results (except that Crystal the geometry of monomers was derived from X-ray...applied in molecular dynamics simulations of the RDX system, due to its size, is intractable by any high-level ab crystal. We performed isothermal
Liu, Lihong; Wang, Yating; Fang, Qiu
2017-02-14
Ethylene-bridged azobenzene (br-AB) has aroused broad interests due to its unique photoswitching properties. Numerous dynamical simulations have been performed for the br-AB photoisomerization, which focused mainly on the conformational effect and the funnel role of minimum-energy conical intersection (MECI) on the mechanism. In the present work, we use the "full quantum" ab initio multiple spawning method to simulate the br-AB photoisomerization, which provides new insights into the mechanism. Upon irradiation of br-AB to the first excited singlet state (S 1 ), most of the excess energies are trapped in the azo-moiety. Since the intramolecular vibrational energy redistribution is slower than the S 1 relaxation processes, the nonadiabatic transition from S 1 to the ground state (S 0 ) occurs in the vicinity of high-energy crossing seam and even the largest probabilities of the S 1 → S 0 transition are not distributed in the MECI regions. Once decaying to the S 0 state through the high-energy region, the subsequent isomerization and re-formation of the initial isomer are ultrafast processes in the S 0 state. It is the nonergodic behavior of the S 1 and S 0 dynamics that is mainly responsible for the unique photoswitching properties of the ethylene-bridged azobenzene, which will be discussed in detail.
Hafner, Jürgen
2008-02-13
The development of modern materials science has led to a growing need to understand the phenomena determining the properties of materials on an atomistic level. As the behavior of atoms and electrons is governed by the laws of quantum mechanics, accurate and efficient techniques for solving the basic quantum-mechanical equations for very complex many-atom, many-electron systems are required. The development of density-functional theory (DFT) represents a decisive step forwards in our efforts to develop tools for ab initio atomistic simulations of complex materials, preparing the way towards computational materials design. The development of these ab initio simulation methods, whose aim is to model processes in materials by solving the coupled Newtonian equations of motion of the atoms and the Schrödinger equation for the electrons from first principles without any other input than the atomic numbers of the constituents, is part of fundamental research. Hence, for a long time the development and application of DFT methods has been a domain of academic research. Only during the past decade, based on the development of increasingly sophisticated codes and better computer performance, has the impact of DFT-based simulation methods has spread from academia to industry. New opportunities are opening for innovative materials research across physics, chemistry, surface science and nanotechnology extending even to earth sciences and molecular biology. In 1998 we organized, at the Vienna University of Technology, a first workshop entitled 'Electronic Structure Calculations for Industry and Basic Sciences' (short title 'Theory meets Industry') to celebrate the start of the European Science Foundation (ESF) research program 'Electronic Structure Calculations for Elucidating the Complex Atomistic Behavior of Solids and Surfaces', known as the Ψ(k)-network. At this workshop, researchers from academia presented recent results in the development of ab initio simulation methods and their application to key areas of condensed matter physics. Researchers from industry mainly focused on challenges arising from applied industrial research; contributions describing successful applications of DFT techniques to industrial problems were more scarce. Progress during the last decade has been very fast. The ESF research program has been renewed under the much bolder title 'Towards Computational Materials Design' and is now approaching the end of this second funding period. Due to the development of accurate, efficient and stable software packages for ab initio simulations, DFT-based techniques are now routinely used in many industrial laboratories worldwide. It was therefore considered timely to organize a second 'Theory meets Industry' workshop. The meeting took place between 12-14 June 2007 at the Erwin-Schrödinger-Institute (ESI) for Mathematical Physics in Vienna (Austria). It was sponsored by the Universität Wien through the VASP (Vienna Ab-initio Simulation Program) project, the Center for Computational Materials Science Vienna, the Erwin-Schrödinger-Institute and the ESF Program 'Towards Computational Materials Design'. The program of the workshop was decided by an international advisory board consisting of Ryoji Asahi (Toyota Central Research and Development Laboratory), Risto Nieminen (Helsinki University of Technology), Herve Toulhoat (Institut Français du Pétrole), Erich Wimmer (Materials Design Inc.), Chris Wolverton (Ford Motor Co. and Northwestern University) and Jürgen Hafner (Universität Wien). The 35 invited talks presented at the meeting were divided equally between researchers from academia and from industry. The contributions from academia concentrated on a wide range of new developments in DFT and post-DFT simulations (with contributions from the developers of leading software packages for ab initio simulations), as well as on applications in front-line materials research. In contrast to the first workshop nine years ago, all industrial speakers presented results of extensive ab initio studies in key areas of modern technology, concentrating on catalysis and chemical processing, information technologies, automotive engineering and energy. The proceedings assemble full papers summarizing 23 of the invited talks, abstracts of the remaining invited talks and abstracts of all the poster contributions. It is complemented by a conference summary written by Erich Wimmer. Erich is certainly excellently qualified for this task, because for many years he has played the role of mediator between academia and industry. I shall not anticipate his summary here, but I think that it is fair to say that tremendous progress has been made since the first workshop. Ab initio DFT simulations are now a well established tool for industrial research and, due to the availability of cheap high-performance server clusters, their use is no longer the reserve of large corporate laboratories equipped with supercomputers, but are also accessible to medium-sized enterprises. The basic methodology is still developed by the leading academic research groups. These groups urgently need support from funding agencies and/or industry not only for the basic code development, but also to bring their research codes up to industrial standards of programming, stability, user-friendliness and documentation. The fundamental challenge to theory, however, remains the same: more accurate total energies, application to larger and even more complex systems, and access to new materials properties. Responding to these challenges will require substantial effort at various levels. Achieving greatly improved accuracy of calculated total energies demands an improved description of electronic exchange and correlation. Possible routes (hybrid functionals for solids, dynamical mean field theory (DMFT), many-body perturbation theory (GW), quantum Monte-Carlo) have been presented at this meeting. Access to larger systems could be realized either by codes achieving O (N)-scaling or by adopting a strategy of multi-scale simulations. At least two different O (N)-codes have been discussed at the workshop. But even if these approaches allow ab initio calculations to be performed for ten times as many atoms as before, in terms of linear dimensions, the accessible systems size increases only by a factor of two. Therefore, multi-scale simulations strategies remain a very important issue. Access to new materials properties requires adding new routines to the basic codes. Again, this meeting has highlighted important new developments: evolutionary crystal structure predictions, transport properties of semiconductors and insulators, and calculations of free-energy reaction barriers to name only a few. The task of providing a full 'tool-box' of routines for fast and efficient calculation of many different materials properties evidently exceeds the capacity of a single group of developers. Here, collaboration is necessary between the developers of the basic DFT codes and the expert users of these codes pushing the application of the methodology to new frontiers. Again, it will be important to bring the newly developed routines into a stable, well documented form and to make them accessible to a wide range of users, both in academia and industry. Supporting these efforts is also a challenge to industry. The academic research needs industry's support in many ways. Industry has to make governmental and funding agencies aware of the vital role of our research for future technological development-and a very persuasive way to do that is to invest directly into leading academic groups. As the workshop organizer and editor of the proceedings, I would like to thank all contributors (especially those who accepted the burden of writing a full paper), the members of the Advisory Board for helping to organize such a good program, and the Institute of Physics for their help in the preparation of the proceedings.
NASA Astrophysics Data System (ADS)
Hafner, Jürgen
2008-02-01
The development of modern materials science has led to a growing need to understand the phenomena determining the properties of materials on an atomistic level. As the behavior of atoms and electrons is governed by the laws of quantum mechanics, accurate and efficient techniques for solving the basic quantum-mechanical equations for very complex many-atom, many-electron systems are required. The development of density-functional theory (DFT) represents a decisive step forwards in our efforts to develop tools for ab initio atomistic simulations of complex materials, preparing the way towards computational materials design. The development of these ab initio simulation methods, whose aim is to model processes in materials by solving the coupled Newtonian equations of motion of the atoms and the Schrödinger equation for the electrons from first principles without any other input than the atomic numbers of the constituents, is part of fundamental research. Hence, for a long time the development and application of DFT methods has been a domain of academic research. Only during the past decade, based on the development of increasingly sophisticated codes and better computer performance, has the impact of DFT-based simulation methods has spread from academia to industry. New opportunities are opening for innovative materials research across physics, chemistry, surface science and nanotechnology extending even to earth sciences and molecular biology. In 1998 we organized, at the Vienna University of Technology, a first workshop entitled 'Electronic Structure Calculations for Industry and Basic Sciences' (short title 'Theory meets Industry') to celebrate the start of the European Science Foundation (ESF) research program 'Electronic Structure Calculations for Elucidating the Complex Atomistic Behavior of Solids and Surfaces', known as the Ψk-network. At this workshop, researchers from academia presented recent results in the development of ab initio simulation methods and their application to key areas of condensed matter physics. Researchers from industry mainly focused on challenges arising from applied industrial research; contributions describing successful applications of DFT techniques to industrial problems were more scarce. Progress during the last decade has been very fast. The ESF research program has been renewed under the much bolder title 'Towards Computational Materials Design' and is now approaching the end of this second funding period. Due to the development of accurate, efficient and stable software packages for ab initio simulations, DFT-based techniques are now routinely used in many industrial laboratories worldwide. It was therefore considered timely to organize a second 'Theory meets Industry' workshop. The meeting took place between 12-14 June 2007 at the Erwin-Schrödinger-Institute (ESI) for Mathematical Physics in Vienna (Austria). It was sponsored by the Universität Wien through the VASP (Vienna Ab-initio Simulation Program) project, the Center for Computational Materials Science Vienna, the Erwin-Schrödinger-Institute and the ESF Program 'Towards Computational Materials Design'. The program of the workshop was decided by an international advisory board consisting of Ryoji Asahi (Toyota Central Research and Development Laboratory), Risto Nieminen (Helsinki University of Technology), Herve Toulhoat (Institut Français du Pétrole), Erich Wimmer (Materials Design Inc.), Chris Wolverton (Ford Motor Co. and Northwestern University) and Jürgen Hafner (Universität Wien). The 35 invited talks presented at the meeting were divided equally between researchers from academia and from industry. The contributions from academia concentrated on a wide range of new developments in DFT and post-DFT simulations (with contributions from the developers of leading software packages for ab initio simulations), as well as on applications in front-line materials research. In contrast to the first workshop nine years ago, all industrial speakers presented results of extensive ab initio studies in key areas of modern technology, concentrating on catalysis and chemical processing, information technologies, automotive engineering and energy. The proceedings assemble full papers summarizing 23 of the invited talks, abstracts of the remaining invited talks and abstracts of all the poster contributions. It is complemented by a conference summary written by Erich Wimmer. Erich is certainly excellently qualified for this task, because for many years he has played the role of mediator between academia and industry. I shall not anticipate his summary here, but I think that it is fair to say that tremendous progress has been made since the first workshop. Ab initio DFT simulations are now a well established tool for industrial research and, due to the availability of cheap high-performance server clusters, their use is no longer the reserve of large corporate laboratories equipped with supercomputers, but are also accessible to medium-sized enterprises. The basic methodology is still developed by the leading academic research groups. These groups urgently need support from funding agencies and/or industry not only for the basic code development, but also to bring their research codes up to industrial standards of programming, stability, user-friendliness and documentation. The fundamental challenge to theory, however, remains the same: more accurate total energies, application to larger and even more complex systems, and access to new materials properties. Responding to these challenges will require substantial effort at various levels. Achieving greatly improved accuracy of calculated total energies demands an improved description of electronic exchange and correlation. Possible routes (hybrid functionals for solids, dynamical mean field theory (DMFT), many-body perturbation theory (GW), quantum Monte-Carlo) have been presented at this meeting. Access to larger systems could be realized either by codes achieving O (N)-scaling or by adopting a strategy of multi-scale simulations. At least two different O (N)-codes have been discussed at the workshop. But even if these approaches allow ab initio calculations to be performed for ten times as many atoms as before, in terms of linear dimensions, the accessible systems size increases only by a factor of two. Therefore, multi-scale simulations strategies remain a very important issue. Access to new materials properties requires adding new routines to the basic codes. Again, this meeting has highlighted important new developments: evolutionary crystal structure predictions, transport properties of semiconductors and insulators, and calculations of free-energy reaction barriers to name only a few. The task of providing a full 'tool-box' of routines for fast and efficient calculation of many different materials properties evidently exceeds the capacity of a single group of developers. Here, collaboration is necessary between the developers of the basic DFT codes and the expert users of these codes pushing the application of the methodology to new frontiers. Again, it will be important to bring the newly developed routines into a stable, well documented form and to make them accessible to a wide range of users, both in academia and industry. Supporting these efforts is also a challenge to industry. The academic research needs industry's support in many ways. Industry has to make governmental and funding agencies aware of the vital role of our research for future technological development—and a very persuasive way to do that is to invest directly into leading academic groups. As the workshop organizer and editor of the proceedings, I would like to thank all contributors (especially those who accepted the burden of writing a full paper), the members of the Advisory Board for helping to organize such a good program, and the Institute of Physics for their help in the preparation of the proceedings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Thi Nu; Ono, Shota; Ohno, Kaoru, E-mail: ohno@ynu.ac.jp
Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronicmore » excited state configuration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koskelo, J., E-mail: jaakko.koskelo@helsinki.fi; Juurinen, I.; Ruotsalainen, K. O.
2014-12-28
We present a comprehensive simulation study on the solid-liquid phase transition of the ionic liquid 1,3-dimethylimidazolium chloride in terms of the changes in the atomic structure and their effect on the Compton profile. The structures were obtained by using ab initio molecular dynamics simulations. Chosen radial distribution functions of the liquid structure are presented and found generally to be in good agreement with previous ab initio molecular dynamics and neutron scattering studies. The main contributions to the predicted difference Compton profile are found to arise from intermolecular changes in the phase transition. This prediction can be used for interpreting futuremore » experiments.« less
Ab initio determination of effective electron-phonon coupling factor in copper
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-04-01
The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.
Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.
Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R
2015-07-08
We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.
Kessler, Jan; Elgabarty, Hossam; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D
2015-08-06
The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab initio molecular dynamics simulations in conjunction with an instantaneous surface definition [Willard, A. P.; Chandler, D. J. Phys. Chem. B 2010, 114, 1954]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.
NASA Astrophysics Data System (ADS)
Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D.
2017-08-01
Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.
Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam
2015-01-01
Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568
Ab initio study of Pd carbonyls and CO/Pd(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramprasad, R.; Glassford, K.M.; Adams, J.B.
1994-12-31
Carbon monoxide chemisorption on transition metal surfaces has been one of the most extensively studied in surface science in past years due to its importance in a variety of catalytic processes, especially, automotive catalytic converters using Pt or Pd. The authors have performed ab initio studies to understand the electronic and geometric aspects of the Pd-CO bond in small carbonyl clusters and the CO covered (2 x 1)p2mg superstructure of the Pd(110) surface. They have used the standard quantum chemistry package Gaussian to study the former system and a LDA (local density approximation) formalism using ab initio pseudopotentials and amore » plane wave basis to study the latter. The latter results are preliminary; the authors intended to study thicker slabs in the future. The organization of the paper is as follows. The authors describe the methods used in their calculation in Sec. 2. In Sec. 3, they present results and discussion; here, they first look at the smallest possible clusters, viz, Pd{sub 2} and PdCO, take a brief look at the orbital chemistry involved and then move on to the study of the CO covered Pd(110) surface and examine the geometry of the near equilibrium structure.« less
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factormore » shows the presence of liquid state in the considered alloys.« less
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Nalini, E-mail: nalini-2808@yahoo.co.in; Ahluwalia, P. K.; Thakur, Anil
2016-05-23
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70,.} Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30}, and Hg{sub 90}Pb{sub 10}) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the localmore » arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.« less
Brela, Mateusz Z; Boczar, Marek; Malec, Leszek M; Wójcik, Marek J; Nakajima, Takahito
2018-05-15
Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers. Copyright © 2018 Elsevier B.V. All rights reserved.
Atomic defects in monolayer WSe2 tunneling FETs studied by systematic ab initio calculations
NASA Astrophysics Data System (ADS)
Wu, Jixuan; Fan, Zhiqiang; Chen, Jiezhi; Jiang, Xiangwei
2018-05-01
Atomic defects in monolayer WSe2 tunneling FETs (TFETs) are studied through systematic ab initio calculations aiming at performance predictions and enhancements. The effects of various defect positions and different passivation atoms are characterized in WSe2 TFETs by rigorous ab initio quantum transport simulations. It is suggested that the Se vacancy (VSe) defect located in the gate-controlled channel region tends to increase the OFF current (I off), whereas it can be well suppressed by oxygen passivation. It is demonstrated that chlorine (Cl) passivation at the source-side tunneling region can largely suppress I off, leading to an impressively improved on–off ratio (I on/I off) compared with that without any defect. However, it is also observed that randomly positioned atomic defects tend to induce significant fluctuation of the TFET output. Further discussions are made with focus on the performance-variability trade-off for robust circuit design.
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, Hiroshi; Nakanishi, Akitaka; Uede, Hiroki; Takawashi, Yuki; Fukushima, Tetsuya; Sato, Kazunori
2014-03-01
Based upon ab initio electronic structure calculation, I will discuss the general rule of negative effective U system by (1) exchange-correlation-induced negative effective U caused by the stability of the exchange-correlation energy in Hund's rule with high-spin ground states of d5 configuration, and (2) charge-excitation-induced negative effective U caused by the stability of chemical bond in the closed-shell of s2, p6, and d10 configurations. I will show the calculated results of negative effective U systems such as hole-doped CuAlO2 and CuFeS2. Based on the total energy calculations of antiferromagnetic and ferromagnetic states, I will discuss the magnetic phase diagram and superconductivity upon hole doping. I also discuss the computational materials design method of high-Tc superconductors by ab initio calculation to go beyond LDA and multi-scale simulations.
Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella
2008-05-14
We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.
Ab-initio study of several static and dynamic properties of liquid palladium and platinum
NASA Astrophysics Data System (ADS)
González, L. E.; González, D. J.; Molla, Mohammad Riazuddin; Ahmed, A. Z. Ziauddin; Bhuiyan, G. M.
2017-08-01
We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data.
High order discretization techniques for real-space ab initio simulations
NASA Astrophysics Data System (ADS)
Anderson, Christopher R.
2018-03-01
In this paper, we present discretization techniques to address numerical problems that arise when constructing ab initio approximations that use real-space computational grids. We present techniques to accommodate the singular nature of idealized nuclear and idealized electronic potentials, and we demonstrate the utility of using high order accurate grid based approximations to Poisson's equation in unbounded domains. To demonstrate the accuracy of these techniques, we present results for a Full Configuration Interaction computation of the dissociation of H2 using a computed, configuration dependent, orbital basis set.
Vanduyfhuys, Louis; Vandenbrande, Steven; Verstraelen, Toon; Schmid, Rochus; Waroquier, Michel; Van Speybroeck, Veronique
2015-05-15
QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal-organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three-step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal-organic frameworks (MOFs), QuickFF is used to determine force fields for MIL-53(Al) and MOF-5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, L. A.; Boehly, T. R.; Ding, Y. H.
Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less
Collins, L. A.; Boehly, T. R.; Ding, Y. H.; ...
2018-03-23
Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less
Granhen, Ewerton Ramos; Reis, Marcos Allan Leite; Souza, Fabrício M; Del Nero, Jordan
2010-12-01
We investigate theoretically the charge accumulated Q in a three-terminal molecular device in the presence of an external electric field. Our approach is based on ab initio Hartree-Fock and density functional theory methodology contained in Gaussian package. Our main finding is a negative differential resistance (NDR) in the charge Q as a function of an external electric field. To explain this NDR effect we apply a phenomenological capacitive model based on a quite general system composed of many localized levels (that can be LUMOs of a molecule) coupled to source and drain. The capacitance accounts for charging effects that can result in Coulomb blockade (CB) in the transport. We show that this CB effect gives rise to a NDR for a suitable set of phenomenological parameters, like tunneling rates and charging energies. The NDR profile obtained in both ab initio and phenomenological methodologies are in close agreement.
The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg; Dimov, I.
2014-09-15
The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practicallymore » unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.« less
Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.
NASA Astrophysics Data System (ADS)
Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.
1998-08-01
A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.
Kritayakornupong, Chinapong
2009-12-01
A hybrid ab initio QM/MM molecular dynamics simulation at the Hartree-Fock level has been performed to investigate structural and dynamical parameters of the V(3+) ion in dilute aqueous solution. A distorted octahedral structure with the average V(3+)-O distance of 1.99 A is evaluated from the QM/MM simulation, which is in good agreement with the X-ray data. Several structural parameters such as angular distribution functions, theta- and tilt-angle distributions have been determined to obtain the full description of the hydration structure of the hydrated V(3+). The Jahn-Teller distortions of the V(3+) ion are pronounced in the QM/MM simulation. The mean residence time of 14.5 ps is estimated for the ligand exchange processes in the second hydration shell. (c) 2009 Wiley Periodicals, Inc.
Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry
2015-07-15
There are two prime objectives of the research. One is to develop and apply efficient methods for using ab initio potential energy surfaces (PESs...31-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ab Initio -Based Predictions of Hydrocarbon Combustion Chemistry The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hydrocarbon combustion, ab initio quantum chemistry, potential energy surfaces, chemical
Development of a machine learning potential for graphene
NASA Astrophysics Data System (ADS)
Rowe, Patrick; Csányi, Gábor; Alfè, Dario; Michaelides, Angelos
2018-02-01
We present an accurate interatomic potential for graphene, constructed using the Gaussian approximation potential (GAP) machine learning methodology. This GAP model obtains a faithful representation of a density functional theory (DFT) potential energy surface, facilitating highly accurate (approaching the accuracy of ab initio methods) molecular dynamics simulations. This is achieved at a computational cost which is orders of magnitude lower than that of comparable calculations which directly invoke electronic structure methods. We evaluate the accuracy of our machine learning model alongside that of a number of popular empirical and bond-order potentials, using both experimental and ab initio data as references. We find that whilst significant discrepancies exist between the empirical interatomic potentials and the reference data—and amongst the empirical potentials themselves—the machine learning model introduced here provides exemplary performance in all of the tested areas. The calculated properties include: graphene phonon dispersion curves at 0 K (which we predict with sub-meV accuracy), phonon spectra at finite temperature, in-plane thermal expansion up to 2500 K as compared to NPT ab initio molecular dynamics simulations and a comparison of the thermally induced dispersion of graphene Raman bands to experimental observations. We have made our potential freely available online at [http://www.libatoms.org].
Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr
2015-10-15
The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia atmore » high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.« less
NASA Astrophysics Data System (ADS)
Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi
2007-04-01
The intermolecular potentials for the NO(XΠ2)-Kr and NO(AΣ+2)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1A'2 state [NO(XΠ2)-Kr ] and the multireference singles and doubles configuration interaction method for the excited 2A'2 state [NO(AΣ+2)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic results. A general overall view of the results suggests that, when the Kr-NO interaction takes place inside the matrix, potentials are rather symmetric and less repulsive than those for the triatomic system. pectroscopy, yields a mean absolute deviation of about 5cm-1 over the 22 levels. The dissociation energy with respect to the lowest vibrational energy is calculated within 30cm-1 of the experimental value of 12953±8cm-1. The reported agreement of the theoretical spectrum and dissociation energy with experiment is contingent upon the inclusion of the effects of core-generated electron correlation, spin-orbit coupling, and scalar relativity. The Dunham analysis [Phys. Rev. 41, 721 (1932)] of the spectrum is found to be very accurate. New values are given for the spectroscopic constants.
NASA Astrophysics Data System (ADS)
Ota, Shintaro; Fujimori, Mitsuki; Ishimura, Hiromi; Shulga, Sergiy; Kurita, Noriyuki
2017-10-01
Accumulation of amyloid-β (Aβ) peptides in a brain is closely related with the pathogenesis of Alzheimer's disease. To suppress the production of Aβ peptides, we propose novel curcumin derivatives and investigate their binding properties with the amyloid precursor protein (APP), using protein-ligand docking as well as ab initio molecular simulations. Our proposed derivative (curcumin XIV) is found to have a large binding energy with APP and interacts strongly with the cleavage site Ala19 by secretase. It is thus expected that curcumin XIV can protect APP from the secretase attack and be a potent inhibitor against the production of Aβ peptides.
NASA Astrophysics Data System (ADS)
Kuroki, Nahoko; Mori, Hirotoshi
2018-02-01
Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, the results presented herein demonstrate that EFP2-MD is promising for predicting physicochemical properties of novel mixed solvents.
NASA Astrophysics Data System (ADS)
Sheng, Tian; Sun, Shi-Gang
2017-11-01
Experiments have found that the porphyrin-like FeN4 site in Fe-N-C materials is highly efficient for the electrochemical reduction of CO2 into CO. In this work, we investigated the reduction mechanisms on FeN4 embedded graphene layer catalyst with some explicit water molecules by combining the constrained ab initio molecular dynamics simulations and thermodynamic integrations. The reaction free energy and electron transfer in each elementary step were identified. The initial CO2 activation was identified to go through the first electron transfer to form adsorbed CO2- anion and the CO desorption was the rate limiting step in the overall catalytic cycle.
Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.; ...
2014-12-11
In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.
In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less
Mendelev, M. I.; Zhang, F.; Ye, Z.; ...
2015-04-23
In this study, a semi-empirical potential for the Al 90Sm 10 alloy is presented. The potential provides satisfactory reproduction of pure Al properties, the formation energies of a set of Al–Sm crystal phases with Sm content about 10%, and the structure of the liquid Al 90Sm 10 alloy. During molecular dynamics simulation in which the liquid alloy is cooled at a rate of 10 10 K/s, the developed potential produces a glass structure with lower ab initio energy than that produced by ab initio molecular dynamics (AIMD) itself using a typical AIMD cooling rate of 8 ∙10 13 K/s. Basedmore » on these facts the developed potential should be suitable for simulations of phase transformations in the Al 90Sm 10 alloy.« less
40 CFR 89.126 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certificate void ab initio. (d) When the Administrator denies, suspends, revokes, or voids ab initio a... such fraud or other misconduct that makes the certification invalid ab initio. [59 FR 31335, June 17...
40 CFR 89.126 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... certificate void ab initio. (d) When the Administrator denies, suspends, revokes, or voids ab initio a... such fraud or other misconduct that makes the certification invalid ab initio. [59 FR 31335, June 17...
40 CFR 89.126 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... certificate void ab initio. (d) When the Administrator denies, suspends, revokes, or voids ab initio a... such fraud or other misconduct that makes the certification invalid ab initio. [59 FR 31335, June 17...
40 CFR 89.126 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... certificate void ab initio. (d) When the Administrator denies, suspends, revokes, or voids ab initio a... such fraud or other misconduct that makes the certification invalid ab initio. [59 FR 31335, June 17...
40 CFR 89.126 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... certificate void ab initio. (d) When the Administrator denies, suspends, revokes, or voids ab initio a... such fraud or other misconduct that makes the certification invalid ab initio. [59 FR 31335, June 17...
NASA Astrophysics Data System (ADS)
Imandi, Venkataramana; Nair, Nisanth N.
2016-09-01
The absence of isotope scrambling observed by Henry and coworkers in the Wacker oxidation of deuterated allylic alcohol was used by them as support for the inner-sphere mechanism hydroxypalladation mechanism. One of the assumptions used to interpret their experimental data was that allyl alcohol oxidation takes place through non-cyclic intermediate routes as in the case of ethene. Here we verify this assumption through ab initio metadynamics simulations of the Wacker oxidation of allyl alcohol in explicit solvent. Importance of our results in interpreting the isotope scrambling experiments is discussed.
The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Jakse, N.; Pasturel, A.
2014-09-01
We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.
NASA Astrophysics Data System (ADS)
Baroni, Stefano
Modern simulation methods based on electronic-structure theory have long been deemed unfit to compute heat transport coefficients within the Green-Kubo formalism. This is so because the quantum-mechanical energy density from which the heat flux is derived is inherently ill defined, thus allegedly hampering the use of the Green-Kubo formula. While this objection would actually apply to classical systems as well, I will demonstrate that the thermal conductivity is indeed independent of the specific microscopic expression for the energy density and current from which it is derived. This fact results from a kind of gauge invariance stemming from energy conservation and extensivity, which I will illustrate numerically for a classical Lennard-Jones fluid. I will then introduce an expression for the adiabatic energy flux, derived within density-functional theory, that allows simulating atomic heat transport using equilibrium ab initio molecular dynamics. The resulting methodology is demonstrated by comparing results from ab-initio and classical molecular-dynamics simulations of a model liquid-Argon system, for which accurate inter-atomic potentials are derived by the force-matching method, and applied to compute the thermal conductivity of heavy water at ambient conditions. The problem of evaluating transport coefficients along with their accuracy from relatively short trajectories is finally addressed and discussed with a few representative examples. Partially funded by the European Union through the MaX Centre of Excellence (Grant No. 676598).
NASA Astrophysics Data System (ADS)
Nagakura, H.; Richers, S.; Ott, C. D.; Iwakami, W.; Furusawa, S.; Sumiyoshi, K.; Yamada, S.; Matsufuru, H.; Imakura, A.
2016-10-01
We have developed a 7-dimensional Full Boltzmann-neutrino-radiation-hydrodynamical code and carried out ab-initio axisymmetric CCSNe simulations. I will talk about main results of our simulations and also discuss current ongoing projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCEmore » allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.« less
Li, Hui-Ji; Yan, Dan; Cai, Hou-Qin; Yi, Hai-Bo; Min, Xiao-Bo; Xia, Fei-Fei
2017-05-10
The molecular structure of growth units building crystals is a fundamental issue in the crystallization processes from aqueous solutions. In this work, a systematic investigation of pre-nucleation clusters and their hydration characteristics in aqueous CaSO 4 solutions was performed using ab initio calculations and molecular dynamics (MD) simulations. The results of ab initio calculations and MD simulations indicate that the dominant species in aqueous CaSO 4 solutions are monodentate ion-associated structures. Compared with charged ion clusters, neutral clusters are more likely to be present in an aqueous CaSO 4 solution. Neutral (CaSO 4 ) m clusters are probably the growth units involved in the pre-nucleation or crystallization processes. Meanwhile, hydration behavior around ion associated species in aqueous CaSO 4 solutions plays an important role in related phase/polymorphism selections. Upon ion clustering, the residence of some water molecules around Ca 2+ in ion-associated species is weakened while that of some bridging waters is enhanced due to dual interaction by Ca 2+ and SO 4 2- . Some phase/polymorphism selections can be achieved in aqueous CaSO 4 solutions by controlling the hydration around pre-nucleation clusters. Moreover, the association trend between calcium and sulfate is found to be relatively strong, which hints at the low solubility of calcium sulfate in water.
Ab initio simulations of iron-nickel alloys at Earth's core conditions
NASA Astrophysics Data System (ADS)
Côté, Alexander S.; Vočadlo, Lidunka; Brodholt, John P.
2012-09-01
We report ab initio density functional theory calculations on iron-nickel (FeNi) alloys at conditions representative of the Earth's inner core. We test different concentrations of Ni, up to ∼39 wt% using ab initio lattice dynamics, and investigate the thermodynamic and vibrational stability of the three candidate crystal structures (bcc, hcp and fcc). First of all, at inner core pressures, we find that pure Fe transforms from the hcp to the fcc phase at around 6000 K. Secondly, in agreement with low pressure experiments on Fe-Ni alloys, we find the fcc structure is stabilised by the incorporation of Ni under core pressures and temperatures. Our results show that the fcc structure may, therefore, be stable under core conditions depending on the temperature in the inner core and the Ni content. Lastly, we find that within the quasi-harmonic approximation, there is no stability field for FeNi alloys in the bcc structure under core conditions.
Automated generation of radical species in crystalline carbohydrate using ab initio MD simulations.
Aalbergsjø, Siv G; Pauwels, Ewald; Van Yperen-De Deyne, Andy; Van Speybroeck, Veronique; Sagstuen, Einar
2014-08-28
As the chemical structures of radiation damaged molecules may differ greatly from their undamaged counterparts, investigation and description of radiation damaged structures is commonly biased by the researcher. Radical formation from ionizing radiation in crystalline α-l-rhamnose monohydrate has been investigated using a new method where the selection of radical structures is unbiased by the researcher. The method is based on using ab initio molecular dynamics (MD) studies to investigate how ionization damage can form, change and move. Diversity in the radical production is gained by using different points on the potential energy surface of the intact crystal as starting points for the ionizations and letting the initial velocities of the nuclei after ionization be generated randomly. 160 ab initio MD runs produced 12 unique radical structures for investigation. Out of these, 7 of the potential products have never previously been discussed, and 3 products are found to match with radicals previously observed by electron magnetic resonance experiments.
NASA Astrophysics Data System (ADS)
Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano
2017-12-01
There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.
2016-05-01
We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.
Decohesion models informed by first-principles calculations: The ab initio tensile test
NASA Astrophysics Data System (ADS)
Enrique, Raúl A.; Van der Ven, Anton
2017-10-01
Extreme deformation and homogeneous fracture can be readily studied via ab initio methods by subjecting crystals to numerical "tensile tests", where the energy of locally stable crystal configurations corresponding to elongated and fractured states are evaluated by means of density functional method calculations. The information obtained can then be used to construct traction curves of cohesive zone models in order to address fracture at the macroscopic scale. In this work, we perform an in depth analysis of traction curves and how ab initio calculations must be interpreted to rigorously parameterize an atomic scale cohesive zone model, using crystalline Ag as an example. Our analysis of traction curves reveal the existence of two qualitatively distinct decohesion criteria: (i) an energy criterion whereby the released elastic energy equals the energy cost of creating two new surfaces and (ii) an instability criterion that occurs at a higher and size independent stress than that of the energy criterion. We find that increasing the size of the simulation cell renders parts of the traction curve inaccessible to ab initio calculations involving the uniform decohesion of the crystal. We also find that the separation distance below which a crack heals is not a material parameter as has been proposed in the past. Finally, we show that a large energy barrier separates the uniformly stressed crystal from the decohered crystal, resolving a paradox predicted by a scaling law based on the energy criterion that implies that large crystals will decohere under vanishingly small stresses. This work clarifies confusion in the literature as to how a cohesive zone model is to be parameterized with ab initio "tensile tests" in the presence of internal relaxations.
Bistafa, Carlos; Kitamura, Yukichi; Martins-Costa, Marilia T C; Nagaoka, Masataka; Ruiz-López, Manuel F
2018-06-12
We describe a method to locate stationary points in the free-energy hypersurface of complex molecular systems using high-level correlated ab initio potentials. In this work, we assume a combined QM/MM description of the system although generalization to full ab initio potentials or other theoretical schemes is straightforward. The free-energy gradient (FEG) is obtained as the mean force acting on relevant nuclei using a dual level strategy. First, a statistical simulation is carried out using an appropriate, low-level quantum mechanical force-field. Free-energy perturbation (FEP) theory is then used to obtain the free-energy derivatives for the target, high-level quantum mechanical force-field. We show that this composite FEG-FEP approach is able to reproduce the results of a standard free-energy minimization procedure with high accuracy, while simultaneously allowing for a drastic reduction of both computational and wall-clock time. The method has been applied to study the structure of the water molecule in liquid water at the QCISD/aug-cc-pVTZ level of theory, using the sampling from QM/MM molecular dynamics simulations at the B3LYP/6-311+G(d,p) level. The obtained values for the geometrical parameters and for the dipole moment of the water molecule are within the experimental error, and they also display an excellent agreement when compared to other theoretical estimations. The developed methodology represents therefore an important step toward the accurate determination of the mechanism, kinetics, and thermodynamic properties of processes in solution, in enzymes, and in other disordered chemical systems using state-of-the-art ab initio potentials.
NASA Astrophysics Data System (ADS)
del Rio, Beatriz G.; González, David J.; González, Luis E.
2016-10-01
Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals propagating excitations whose dispersion at long wavelengths is compatible with the experimental sound velocity. Results are also reported for other transport coefficients. Additional simulations have also been performed so as to study the structure of the free liquid surface. The calculated longitudinal ionic density profile shows an oscillatory behaviour, whose properties are analyzed through macroscopic and microscopic methods. The intrinsic X-ray reflectivity of the surface is predicted to show a layering peak associated to the interlayer distance.
Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data
NASA Astrophysics Data System (ADS)
White, Andrew D.; Knight, Chris; Hocky, Glen M.; Voth, Gregory A.
2017-01-01
Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.
Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data.
White, Andrew D; Knight, Chris; Hocky, Glen M; Voth, Gregory A
2017-01-28
Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.
Multiscale simulations of the early stages of the growth of graphene on copper
NASA Astrophysics Data System (ADS)
Gaillard, P.; Chanier, T.; Henrard, L.; Moskovkin, P.; Lucas, S.
2015-07-01
We have performed multiscale simulations of the growth of graphene on defect-free copper (111) in order to model the nucleation and growth of graphene flakes during chemical vapour deposition and potentially guide future experimental work. Basic activation energies for atomic surface diffusion were determined by ab initio calculations. Larger scale growth was obtained within a kinetic Monte Carlo approach (KMC) with parameters based on the ab initio results. The KMC approach counts the first and second neighbours to determine the probability of surface diffusion. We report qualitative results on the size and shape of the graphene islands as a function of deposition flux. The dominance of graphene zigzag edges for low deposition flux, also observed experimentally, is explained by its larger dynamical stability that the present model fully reproduced.
Ab Initio Analysis of Auger-Assisted Electron Transfer.
Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V
2015-01-15
Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu
2015-12-07
We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence ofmore » a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.« less
Decarboxylation of furfural on Pd(111): Ab initio molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Xue, Wenhua; Dang, Hongli; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2013-03-01
Furfural conversion over metal catalysts plays an important role in the studies of biomass-derived feedstocks. We report ab initio molecular dynamics simulations for the decarboxylation process of furfural on the palladium surface at finite temperatures. We observed and analyzed the atomic-scale dynamics of furfural on the Pd(111) surface and the fluctuations of the bondlengths between the atoms in furfural. We found that the dominant bonding structure is the parallel structure in which the furfural plane, while slightly distorted, is parallel to the Pd surface. Analysis of the bondlength fluctuations indicates that the C-H bond is the aldehyde group of a furfural molecule is likely to be broken first, while the C =O bond has a tendency to be isolated as CO. Our results show that the reaction of decarbonylation dominates, consistent with the experimental measurements. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSEDE's and NERSC's supercomputers.
Wu, Jingheng; Shen, Lin; Yang, Weitao
2017-10-28
Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.
Liu, Hanchao; Wang, Yimin; Bowman, Joel M
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
NASA Astrophysics Data System (ADS)
Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
2015-05-01
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
Single-ion 4f element magnetism: an ab-initio look at Ln(COT)2(-).
Gendron, Frédéric; Pritchard, Benjamin; Bolvin, Hélène; Autschbach, Jochen
2015-12-14
The electron densities associated with the Ln 4f shell, and spin and orbital magnetizations ('magnetic moment densities'), are investigated for the Ln(COT)2(-) series. The densities are obtained from ab-initio calculations including spin-orbit coupling. For Ln = Ce, Pr the magnetizations are also derived from crystal field models and shown to agree with the ab-initio results. Analysis of magnetizations from ab-initio calculations may be useful in assisting research on single molecule magnets.
NASA Astrophysics Data System (ADS)
Rulis, P.; Chen, J.; Ouyang, L.; Ching, W.-Y.; Su, X.; Garofalini, S. H.
2005-06-01
The electronic structure and bonding of a realistic model of an intergranular glassy film (IGF) was studied with multiple computational methods. The model has a Si-O-N glassy region sandwiched between crystalline basal planes of β-Si3N4 and contains a total of 798 atoms. It was constructed with periodic boundary conditions via classical molecular dynamics (MD) techniques using an accurate multibody atomic potential. The model was then further relaxed by the VASP (Vienna ab initio simulation package) program. It is shown that the VASP-relaxed structure reduces the total energy from the MD-relaxed structure by only 47.38eV , validating the accuracy of the multiatom potential used. The calculated electronic structure shows the IGF model to be an insulator with a sizable gap of almost 3eV . Quasidefectlike states can be identified near the band edges arising from the more strained Si-N and Si-O bonds at the interface. Calculation of the Mulliken effective charge and bond order values indicates that the bonds in the glassy region and at the interface can be enhanced and weakened by distortions in the bond length and bond angle. The states at the top of the valence band are derived mostly from the crystalline part of the Si-N bonding while the states at the bottom of the conduction band are dominated by the Si-O bonding in the glassy region. Calculation of the electrostatic potential across the interface shows an average band offset of about 1.5eV between the crystalline β-Si3N4 and the glassy Si-O-N region which could be related to the space charge model for IGF.
Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.
2017-04-26
Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Hua Y., E-mail: huay.geng@gmail.com; Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate ismore » about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.
Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2010 CFR
2010-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2013 CFR
2013-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2011 CFR
2011-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2012 CFR
2012-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
40 CFR 91.123 - Denial, revocation of certificate of conformity.
Code of Federal Regulations, 2014 CFR
2014-07-01
....203(f), 91.206(d), 91.208(c) or 91.209(g), the Administrator may void such certificate ab initio. (d) When the Administrator denies, revokes, or voids ab initio a certificate of conformity, the engine... makes the certificate void ab initio. ...
40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conditions specified in § 86.1843-01, the Administrator may deem such certificate void ab initio. (e) When the Administrator denies, suspends, revokes, or voids ab initio a certificate, EPA will provide the... that makes the certification void ab initio. ...
Wu, Yao; Dai, Xiaodong; Huang, Niu; Zhao, Lifeng
2013-06-05
In force field parameter development using ab initio potential energy surfaces (PES) as target data, an important but often neglected matter is the lack of a weighting scheme with optimal discrimination power to fit the target data. Here, we developed a novel partition function-based weighting scheme, which not only fits the target potential energies exponentially like the general Boltzmann weighting method, but also reduces the effect of fitting errors leading to overfitting. The van der Waals (vdW) parameters of benzene and propane were reparameterized by using the new weighting scheme to fit the high-level ab initio PESs probed by a water molecule in global configurational space. The molecular simulation results indicate that the newly derived parameters are capable of reproducing experimental properties in a broader range of temperatures, which supports the partition function-based weighting scheme. Our simulation results also suggest that structural properties are more sensitive to vdW parameters than partial atomic charge parameters in these systems although the electrostatic interactions are still important in energetic properties. As no prerequisite conditions are required, the partition function-based weighting method may be applied in developing any types of force field parameters. Copyright © 2013 Wiley Periodicals, Inc.
Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; ...
2015-01-31
In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A 2Zr 2O 7, A = La, Nd and Sm). It shows that both cations and anions in Nd 2Zr 2O 7 and Sm 2Zr 2O 7 are generally more likely to be displaced than those in La 2Zr 2O 7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd 2Zr 2O 7 and Sm 2Zr 2O 7 are lower than those in La 2Zr 2O 7. These results suggest thatmore » the order–disorder structural transition more easily occurs in Nd 2Zr 2O 7 and Sm 2Zr 2O 7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.« less
Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Jakse, N.; Pasturel, A.
2014-05-01
Ab initio molecular dynamics simulations are used to describe the diffusion of hydrogen in liquid aluminum at different temperatures. Quasi-instantaneous jumps separating periods of localized vibrations around a mean position are found to characterize the hydrogen motion at the microscopic scale. The hydrogen motion is furthermore analyzed using the van Hove function. We highlight a non-Fickian behavior for the hydrogen diffusion due to a large spatial distribution of hydrogen jumps. We show that a generalized continuous time random walk (CTRW) model describes the experimental diffusion coefficients in a satisfactory manner. Finally, the impact of impurities and alloying elements on hydrogen diffusion in aluminum is discussed.
High-throughput ab-initio dilute solute diffusion database.
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-07-19
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
Ab initio simulation of particle momentum distributions in high-pressure water
NASA Astrophysics Data System (ADS)
Ceriotti, M.
2014-12-01
Applying pressure to water reduces the average oxygen-oxygen distance, and facilitates the delocalisation of protons along the hydrogen bond. This pressure-induced delocalisation is further enhanced by the quantum nature of hydrogen nuclei, which is very significant even well above room temperature. Here we will evaluate the quantum kinetic energy and the particle momentum distribution of hydrogen and oxygen nuclei in water at extreme pressure, using ab initio path integral molecular dynamics. We will show that (transient) dissociation of water molecules induce measurable changes in the kinetic energy hydrogen atoms, although current deep inelastic scattering experiments are probably unable to capture the heterogeneity of the sample.
Elastic dipoles of point defects from atomistic simulations
NASA Astrophysics Data System (ADS)
Varvenne, Céline; Clouet, Emmanuel
2017-12-01
The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.
Kritayakornupong, Chinapong; Plankensteiner, Kristof; Rode, Bernd M
2004-10-01
Structural and dynamical properties of the Cr(III) ion in aqueous solution have been investigated using a combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation. The hydration structure of Cr(III) was determined in terms of radial distribution functions, coordination numbers, and angular distributions. The QM/MM simulation gives coordination numbers of 6 and 15.4 for the first and second hydration shell, respectively. The first hydration shell is kinetically very inert but by no means rigid and variations of the first hydration shell geometry lead to distinct splitting in the vibrational spectra of Cr(H(2)O)(6) (3+). A mean residence time of 22 ps was obtained for water ligands residing in the second hydration shell, which is remarkably shorter than the experimentally estimated value. The hydration energy of -1108 +/- 7 kcal/mol, obtained from the QM/MM simulation, corresponds well to the experimental hydration enthalpy value. Copyright 2004 Wiley Periodicals, Inc.
Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; ...
2014-10-20
This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less
40 CFR 86.004-30 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing... the certificate was issued, and the certificate may be deemed void ab initio. (C) The manufacturer... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing...
40 CFR 86.004-30 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing... the certificate was issued, and the certificate may be deemed void ab initio. (C) The manufacturer... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing...
40 CFR 86.007-30 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... certificate may be deemed void ab initio. (C) The manufacturer shall bear the burden of establishing to the... be deemed void ab initio. (C) The manufacturer shall bear the burden of establishing to the... of conformity, the Administrator may deem such certificate void ab initio. (4) In any case in which...
40 CFR 86.004-30 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing... the certificate was issued, and the certificate may be deemed void ab initio. (C) The manufacturer... determined in accordance with this part. The certificate shall be void ab initio for those vehicles causing...
Opletal, George; Drumm, Daniel W; Wang, Rong P; Russo, Salvy P
2014-07-03
Ternary glass structures are notoriously difficult to model accurately, and yet prevalent in several modern endeavors. Here, a novel combination of Reverse Monte Carlo (RMC) modeling and ab initio molecular dynamics (MD) is presented, rendering these complicated structures computationally tractable. A case study (Ge6.25As32.5Se61.25 glass) illustrates the effects of ab initio MD quench rates and equilibration temperatures, and the combined approach's efficacy over standard RMC or random insertion methods. Submelting point MD quenches achieve the most stable, realistic models, agreeing with both experimental and fully ab initio results. The simple approach of RMC followed by ab initio geometry optimization provides similar quality to the RMC-MD combination, for far fewer resources.
reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.
Müller, Julian; Hartke, Bernd
2016-08-09
Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.
NASA Astrophysics Data System (ADS)
Tian, Hua; Zhang, Chong; Wang, Lu; Zhao, JiJun; Dong, Chuang; Wen, Bin; Wang, Qing
2011-06-01
We have performed ab initio molecular dynamics simulation of Cu64Zr36 alloy at descending temperatures (from 2000 K to 400 K) and discussed the evolution of short-range order with temperature. The pair-correlation functions, coordination numbers, and chemical compositions of the most abundant local clusters have been analyzed. We found that icosahedral short-range order exists in the liquid, undercooled, and glass states, and it becomes dominant in the glass states. Moreover, we demonstrated the existence of Cu-centered Cu8Zr5 icosahedral clusters as the major local structural unit in the Cu64Zr36 amorphous alloy. This finding agrees well with our previous cluster model of Cu-Zr-based BMG as well as experimental evidences from synchrotron x ray and neutron diffraction measurements.
Dissociation cross section for high energy O2-O2 collisions
NASA Astrophysics Data System (ADS)
Mankodi, T. K.; Bhandarkar, U. V.; Puranik, B. P.
2018-04-01
Collision-induced dissociation cross section database for high energy O2-O2 collisions (up to 30 eV) is generated and published using the quasiclassical trajectory method on the singlet, triplet, and quintet spin ground state O4 potential energy surfaces. At equilibrium conditions, these cross sections predict reaction rate coefficients that match those obtained experimentally. The main advantage of the cross section database based on ab initio computations is in the study of complex flows with high degree of non-equilibrium. Direct simulation Monte Carlo simulations using the reactive cross section databases are carried out for high enthalpy hypersonic oxygen flow over a cylinder at rarefied ambient conditions. A comparative study with the phenomenological total collision energy chemical model is also undertaken to point out the difference and advantage of the reported ab initio reaction model.
NASA Astrophysics Data System (ADS)
Hao, Qing-Hai; You, Yu-Wei; Kong, Xiang-Shan; Liu, C. S.
2013-03-01
The microscopic structure and dynamics of liquid MgxBi1-x(x = 0.5, 0.6, 0.7) alloys together with pure liquid Mg and Bi metals were investigated by means of ab initio molecular dynamics simulations. We present results of structure properties including pair correlation function, structural factor, bond-angle distribution function and bond order parameter, and their composition dependence. The dynamical and electronic properties have also been studied. The structure factor and pair correlation function are in agreement with the available experimental data. The calculated bond-angle distribution function and bond order parameter suggest that the stoichiometric composition Mg3Bi2 exhibits a different local structure order compared with other concentrations, which help us understand the appearance of the minimum electronic conductivity at this composition observed in previous experiments.
Dynamic Structure of a Molecular Liquid S0.5Cl0.5: Ab initio Molecular-Dynamics Simulations
NASA Astrophysics Data System (ADS)
Ohmura, Satoshi; Shimakura, Hironori; Kawakita, Yukinobu; Shimojo, Fuyuki; Yao, Makoto
2013-07-01
The static and dynamic structures of a molecular liquid S0.5Cl0.5 consisting of Cl--S--S--Cl (S2Cl2) type molecules are studied by means of ab initio molecular dynamics simulations. Both the calculated static and dynamic structure factors are in good agreement with experimental results. The dynamic structures are discussed based on van-Hove distinct correlation functions, molecular translational mean-square displacements (TMSD) and rotational mean-square displacements (RMSD). In the TMSD and RMSD, there are ballistic and diffusive regimes in the sub-picosecond and picosecond time regions, respectively. These time scales are consistent with the decay time observed experimentally. The interaction between molecules in the liquid is also discussed in comparison with that in another liquid chalcogen--halogen system Se0.5Cl0.5.
NASA Astrophysics Data System (ADS)
Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.
2017-09-01
The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.
NASA Astrophysics Data System (ADS)
Burnham, Christian J.; Futera, Zdenek; English, Niall J.
2018-03-01
The force-matching method has been applied to parameterise an empirical potential model for water-water and water-hydrogen intermolecular interactions for use in clathrate-hydrate simulations containing hydrogen guest molecules. The underlying reference simulations constituted ab initio molecular dynamics (AIMD) of clathrate hydrates with various occupations of hydrogen-molecule guests. It is shown that the resultant model is able to reproduce AIMD-derived free-energy curves for the movement of a tagged hydrogen molecule between the water cages that make up the clathrate, thus giving us confidence in the model. Furthermore, with the aid of an umbrella-sampling algorithm, we calculate barrier heights for the force-matched model, yielding the free-energy barrier for a tagged molecule to move between cages. The barrier heights are reasonably large, being on the order of 30 kJ/mol, and are consistent with our previous studies with empirical models [C. J. Burnham and N. J. English, J. Phys. Chem. C 120, 16561 (2016) and C. J. Burnham et al., Phys. Chem. Chem. Phys. 19, 717 (2017)]. Our results are in opposition to the literature, which claims that this system may have very low barrier heights. We also compare results to that using the more ad hoc empirical model of Alavi et al. [J. Chem. Phys. 123, 024507 (2005)] and find that this model does very well when judged against the force-matched and ab initio simulation data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previousmore » spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.« less
Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J
2011-09-21
The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.
NASA Astrophysics Data System (ADS)
Caracas, R.; Stewart, S. T.
2018-05-01
We employ large-scale first-principles molecular dynamics simulations to understand the physical and chemical behavior of the evolution of the molten protolunar disk from its formation all the way to the crystallization of the magma ocean.
Optical properties of an indium doped CdSe nanocrystal: A density functional approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in; Mathew, Thomas
2016-05-06
We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantlymore » alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.« less
NASA Astrophysics Data System (ADS)
Thiessen, P. A.; Treder, H.-J.
Der gegenwärtige Stand der physikalischen Erkenntnis, in Sonderheit die Atomistik und die Quantentheorie, ermöglicht (in wohldefinierten Energie-Bereichen) eine ab initio-Berechnung aller physikalischen und chemischen Prozesse und Strukturen. Die Schrödinger-Gleichung erlaubt zusammen mit den Prinzipien der Quantenstatistik (Pauli-Prinzip) aus dem Planckschen Wirkungsquantum h und den atomischen Konstanten die Berechnung aller Energieumsätze, Zeitabläufe etc., die insbesondere die chemische Physik bestimmen. Die Rechenresultate gelten auch quantitativ bis auf die unvermeidliche Stochastik.Die ab initio-Berechnungen korrespondieren einerseits und sind andererseits komplementär zu den auf den Methoden der theoretischen Chemie und der klassischen Thermodynamik beruhenden Ergebnissen ex eventu. Die theoretische Behandlung ab initio führt zu mathematischen Experimenten, die die Laboratoriums-Experimente ergänzen oder auch substituieren.Translated AbstractAb initio vel ex eventuThe present state of physical knowledge, in peculiar atomistic and quantum theory, makes an ab initio calculation of all physical and chemical processes and structures possible (in well defined reaches of energy). The Schrödinger equation together with the principles of quantum statistics (Pauli principle) permits from the Planck and atomistic constants to calculate all exchanges of energy, courses of time, etc. which govern chemical physics. The calculated results are valid even quantitatively apart from the unavoidable stochastics.
Towards Accurate Ab Initio Predictions of the Spectrum of Methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2001-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Statistical variances of diffusional properties from ab initio molecular dynamics simulations
NASA Astrophysics Data System (ADS)
He, Xingfeng; Zhu, Yizhou; Epstein, Alexander; Mo, Yifei
2018-12-01
Ab initio molecular dynamics (AIMD) simulation is widely employed in studying diffusion mechanisms and in quantifying diffusional properties of materials. However, AIMD simulations are often limited to a few hundred atoms and a short, sub-nanosecond physical timescale, which leads to models that include only a limited number of diffusion events. As a result, the diffusional properties obtained from AIMD simulations are often plagued by poor statistics. In this paper, we re-examine the process to estimate diffusivity and ionic conductivity from the AIMD simulations and establish the procedure to minimize the fitting errors. In addition, we propose methods for quantifying the statistical variance of the diffusivity and ionic conductivity from the number of diffusion events observed during the AIMD simulation. Since an adequate number of diffusion events must be sampled, AIMD simulations should be sufficiently long and can only be performed on materials with reasonably fast diffusion. We chart the ranges of materials and physical conditions that can be accessible by AIMD simulations in studying diffusional properties. Our work provides the foundation for quantifying the statistical confidence levels of diffusion results from AIMD simulations and for correctly employing this powerful technique.
Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
NASA Astrophysics Data System (ADS)
Makhov, Dmitry V.; Symonds, Christopher; Fernandez-Alberti, Sebastian; Shalashilin, Dmitrii V.
2017-08-01
The Multiconfigurational Ehrenfest (MCE) method is a quantum dynamics technique which allows treatment of a large number of quantum nuclear degrees of freedom. This paper presents a review of MCE and its recent applications, providing a summary of the formalisms, including its ab initio direct dynamics versions and also giving a summary of recent results. Firstly, we describe the Multiconfigurational Ehrenfest version 2 (MCEv2) method and its applicability to direct dynamics and report new calculations which show that the approach converges to the exact result in model systems with tens of degrees of freedom. Secondly, we review previous ;on the fly; ab initio Multiple Cloning (AIMC-MCE) MCE dynamics results obtained for systems of a similar size, in which the calculations treat every electron and every nucleus of a polyatomic molecule on a fully quantum basis. We also review the Time Dependent Diabatic Basis (TDDB) version of the technique and give an example of its application. We summarise the details of the sampling techniques and interpolations used for calculation of the matrix elements, which make our approach efficient. Future directions of work are outlined.
Thermal Conductivities in Solids from First Principles: Accurate Computations and Rapid Estimates
NASA Astrophysics Data System (ADS)
Carbogno, Christian; Scheffler, Matthias
In spite of significant research efforts, a first-principles determination of the thermal conductivity κ at high temperatures has remained elusive. Boltzmann transport techniques that account for anharmonicity perturbatively become inaccurate under such conditions. Ab initio molecular dynamics (MD) techniques using the Green-Kubo (GK) formalism capture the full anharmonicity, but can become prohibitively costly to converge in time and size. We developed a formalism that accelerates such GK simulations by several orders of magnitude and that thus enables its application within the limited time and length scales accessible in ab initio MD. For this purpose, we determine the effective harmonic potential occurring during the MD, the associated temperature-dependent phonon properties and lifetimes. Interpolation in reciprocal and frequency space then allows to extrapolate to the macroscopic scale. For both force-field and ab initio MD, we validate this approach by computing κ for Si and ZrO2, two materials known for their particularly harmonic and anharmonic character. Eventually, we demonstrate how these techniques facilitate reasonable estimates of κ from existing MD calculations at virtually no additional computational cost.
Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L
2016-05-13
We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.
NASA Astrophysics Data System (ADS)
Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team
In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.
A new ab initio potential energy surface for the Ne-H 2 interaction
NASA Astrophysics Data System (ADS)
Lique, François
2009-03-01
A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.
Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
NASA Astrophysics Data System (ADS)
Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2015-08-01
Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine
Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less
Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface
NASA Astrophysics Data System (ADS)
Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.
2013-07-01
The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.
Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; ...
2016-05-11
Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less
Dynamics and Novel Mechanisms of SN2 Reactions on ab Initio Analytical Potential Energy Surfaces.
Szabó, István; Czakó, Gábor
2017-11-30
We describe a novel theoretical approach to the bimolecular nucleophilic substitution (S N 2) reactions that is based on analytical potential energy surfaces (PESs) obtained by fitting a few tens of thousands high-level ab initio energy points. These PESs allow computing millions of quasi-classical trajectories thereby providing unprecedented statistical accuracy for S N 2 reactions, as well as performing high-dimensional quantum dynamics computations. We developed full-dimensional ab initio PESs for the F - + CH 3 Y [Y = F, Cl, I] systems, which describe the direct and indirect, complex-forming Walden-inversion, the frontside attack, and the new double-inversion pathways as well as the proton-transfer channels. Reaction dynamics simulations on the new PESs revealed (a) a novel double-inversion S N 2 mechanism, (b) frontside complex formation, (c) the dynamics of proton transfer, (d) vibrational and rotational mode specificity, (e) mode-specific product vibrational distributions, (f) agreement between classical and quantum dynamics, (g) good agreement with measured scattering angle and product internal energy distributions, and (h) significant leaving group effect in accord with experiments.
Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.
Wang, Linjun; Long, Run; Prezhdo, Oleg V
2015-04-01
Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.
A new force field including charge directionality for TMAO in aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usui, Kota; Nagata, Yuki, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de; Hunger, Johannes
We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O{sub TMAO}) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O{sub TMAO} to mimic the O{sub TMAO} lone pairs and we migrate the negative charge on the O{sub TMAO} to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasingmore » TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.« less
NASA Astrophysics Data System (ADS)
Thakur, Anil; Sharma, Nalini; Chandel, Surjeet; Ahluwalia, P. K.
2013-02-01
The electrical resistivity (ρL) of Rb1-XCsX binary alloys has been made calculated using Troullier Martins ab-initio pseudopotentials. The present results of the electrical resistivity (ρL) of Rb1-XCsX binary alloys have been found in good agreement with the experimental results. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys. Hence ab-initio pseudopotentials can be used instead of model pseudopotentials having problem of transferability.
Topological Semimetals Studied by Ab Initio Calculations
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Okugawa, Ryo; Murakami, Shuichi
2018-04-01
In topological semimetals such as Weyl, Dirac, and nodal-line semimetals, the band gap closes at points or along lines in k space which are not necessarily located at high-symmetry positions in the Brillouin zone. Therefore, it is not straightforward to find these topological semimetals by ab initio calculations because the band structure is usually calculated only along high-symmetry lines. In this paper, we review recent studies on topological semimetals by ab initio calculations. We explain theoretical frameworks which can be used for the search for topological semimetal materials, and some numerical methods used in the ab initio calculations.
Exner, Kai S; Over, Herbert
2017-05-16
Multielectron processes in electrochemistry require the stabilization of reaction intermediates (RI) at the electrode surface after every elementary reaction step. Accordingly, the bond strengths of these intermediates are important for assessing the catalytic performance of an electrode material. Current understanding of microscopic processes in modern electrocatalysis research is largely driven by theory, mostly based on ab initio thermodynamics considerations, where stable reaction intermediates at the electrode surface are identified, while the actual free energy barriers (or activation barriers) are ignored. This simple approach is popular in electrochemistry in that the researcher has a simple tool at hand in successfully searching for promising electrode materials. The ab initio TD approach allows for a rough but fast screening of the parameter space with low computational cost. However, ab initio thermodynamics is also frequently employed (often, even based on a single binding energy only) to comprehend on the activity and on the mechanism of an electrochemical reaction. The basic idea is that the activation barrier of an endergonic reaction step consists of a thermodynamic part and an additional kinetically determined barrier. Assuming that the activation barrier scales with thermodynamics (so-called Brønsted-Polanyi-Evans (BEP) relation) and the kinetic part of the barrier is small, ab initio thermodynamics may provide molecular insights into the electrochemical reaction kinetics. However, for many electrocatalytic reactions, these tacit assumptions are violated so that ab initio thermodynamics will lead to contradictions with both experimental data and ab initio kinetics. In this Account, we will discuss several electrochemical key reactions, including chlorine evolution (CER), oxygen evolution reaction (OER), and oxygen reduction (ORR), where ab initio kinetics data are available in order to critically compare the results with those derived from a simple ab initio thermodynamics treatment. We show that ab initio thermodynamics leads to erroneous conclusions about kinetic and mechanistic aspects for the CER over RuO 2 (110), while the kinetics of the OER over RuO 2 (110) and ORR over Pt(111) are reasonably well described. Microkinetics of an electrocatalyzed reaction is largely simplified by the quasi-equilibria of the RI preceding the rate-determining step (rds) with the reactants. Therefore, in ab initio kinetics the rate of an electrocatalyzed reaction is governed by the transition state (TS) with the highest free energy G rds # , defining also the rate-determining step (rds). Ab initio thermodynamics may be even more powerful, when using the highest free energy of an reaction intermediate G max (RI) rather than the highest free energy difference between consecutive reaction intermediates, ΔG loss , as a descriptor for the kinetics.
Ab Initio Predictions of Hexagonal Zr(B,C,N) Polymorphs for Coherent Interface Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G.
2017-10-27
Density functional theory calculations are used to explore hexagonal (HX) NiAs-like polymorphs of Zr(B,C,N) and compare with corresponding Zr(B,C,N) Hagg-like face-centered cubic rocksalt (B1) phases. While all predicted compounds are mechanically stable according to the Born-Huang criteria, only HX Zr(C,N) are found dynamically stable from ab initio molecular dynamics simulations and lattice dynamics calculations. HX ZrN emerges as a candidate structure with ground state energy, elastic constants, and extrinsic mechanical parameters comparable with those of B1 ZrN. Ab initio band structure and semi-classical Boltzmann transport calculations predict a metallic character and a monotonic increase in electrical conductivity with the numbermore » of valence electrons. Electronic structure calculations indicate that the HX phases gain their stability and mechanical attributes by Zr d- non-metal p hybridization and by broadening of Zr d bands. Furthermore, it is shown that the HX ZrN phase provides a low-energy coherent interface model for connecting B1 ZrN domains, with significant energetic advantage over an atomistic interface model derived from high resolution transmission electron microscopy images. The ab initio characterizations provided herein should aid the experimental identification of non-Hagg-like hard phases. Furthermore, the results can also enrich the variety of crystalline phases potentially available for designing coherent interfaces in superhard nanostructured materials and in materials with multilayer characteristics.« less
Towards accurate ab initio predictions of the vibrational spectrum of methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.
2002-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born-Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
High-throughput ab-initio dilute solute diffusion database
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Quantitative verification of ab initio self-consistent laser theory.
Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E
2008-10-13
We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.
Reactive Monte Carlo sampling with an ab initio potential
NASA Astrophysics Data System (ADS)
Leiding, Jeff; Coe, Joshua D.
2016-05-01
We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the "rare-event" character of chemical reactions.
Transferability of polarizable models for ion-water electrostatic interaction
NASA Astrophysics Data System (ADS)
Masia, Marco
2009-06-01
Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li+- water and Cl--water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.
Ab initio study of intrinsic profiles of liquid metals and their reflectivity
NASA Astrophysics Data System (ADS)
del Rio, B. G.; Souto, J.; Alemany, M. M. G.; González, L. E.
2017-08-01
The free surfaces of liquid metals are known to exhibit a stratified profile that, in favourable cases, shows up in experiments as a peak in the ratio between the reflectivity function and that of an ideal step-like profile. This peak is located at a wave-vector related to the distance between the layers of the profile. In fact the surface roughness produced by thermally induced capillary waves causes a depletion of the previous so called intrinsic reflectivity by a damping factor that may hinder the observation of the peak. The behaviour of the intrinsic reflectivity below the layering peak is however far from being universal, with systems as Ga or In where the reflectiviy falls uniformly towards the q → 0 value, others like Sn or Bi where a shoulder appears at intermediate wavevectors, and others like Hg which show a minimum. We have performed extensive ab initio simulations of the free liquid surfaces of Bi, Pb and Hg, that yield direct information on the structure of the profiles and found that the macroscopic capillary wave theory usually employed in order to remove the capillary wave components fails badly in some cases for the typical sample sizes affordable in ab initio simulations. However, a microscopic method for the determination of the intrinsic profile is shown to be succesful in obtaining meaningful intrinsic profiles and corresponding reflectivities which reproduce correctly the qualitative behaviour observed experimentally.
NASA Astrophysics Data System (ADS)
Cerdeira, M. A.; Palacios, S. L.; González, C.; Fernández-Pello, D.; Iglesias, R.
2016-09-01
The formation, binding and migration energetics of helium clusters inside a niobium crystal have been analysed via ab initio simulations. The effect of placing several He atoms within an n-vacancy previously formed or as interstitials inside the initial perfect bulk matrix has been studied. DFT-based results show that He atoms prefer to aggregate forming small clusters at n-vacancy sites rather than at interstitial positions in the perfect crystal. The minimum formation energy is found when NHe is equal to the number of vacancies, n. It follows that vacancies act as almost perfect traps for He atoms, as is well known for other metals. The migration barriers of He atoms inside vacancies increase considerably when compared to what happens for vacancies alone. A secondary consequence is that the full set of energies obtained will be highly relevant as an input for new approaches to KMC simulations of defects in Nb.
Fast Li-Ion Transport in Amorphous Li 2Si 2O 5: An Ab Initio Molecular Dynamics Simulation
Lei, Xueling; Wang, Jie; Huang, Kevin
2016-05-03
The present study reports an ab-initio molecular dynamics (AIMD) simulation of ionic diffusion in the amorphous Li 2Si 2O 5 in a temperature range of 573–823 K. The results show that the amorphous Li 2Si 2O 5 is primarily a Li + conductor with negligible O 2- and Si 4+ contributions. The obtained activation energy of 0.47 eV for Li + diffusion is higher than Na + in the analogue amorphous Na 2Si 2O 5, but close to other types of Li + conductors. The predicted Li + conductivity is on the order of 10 -2 S·cm -1 at 623–823more » K. Our simulations also reveal that Li + in the amorphous Li 2Si 2O 5 diffuses via a hopping mechanism between the nearest sites in the channels formed by two adjacent SiO 4 layers.« less
An ab initio study of the structure and dynamics of bulk liquid Cd and its liquid-vapor interface.
Calderín, L; González, L E; González, D J
2013-02-13
Several static and dynamic properties of bulk liquid Cd at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals collective density excitations with an associated dispersion relation which points to a small positive dispersion. Results are also reported for several transport coefficients. Additional simulations have also been performed at a slightly higher temperature in order to study the structure of the free liquid surface. The ionic density profile shows an oscillatory behavior with two different wavelengths, as the spacing between the outer and first inner layer is different from that between the other inner layers. The calculated reflectivity shows a marked maximum whose origin is related to the surface layering, along with a shoulder located at a much smaller wavevector transfer.
Computational design and experimental validation of new thermal barrier systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Shengmin
2015-03-31
The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validationmore » applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr 2.75O 8 and confirmed it’s hot corrosion performance.« less
A fitting empirical potential for NiTi alloy and its application
NASA Astrophysics Data System (ADS)
Ren, Guowu; Tang, Tiegang; Sehitoglu, Huseyin
Due to its superelastic behavior, NiTi shape memory alloy receives considerable attentions over a wide range of industrial and commercial applications. Limited to its complex structural transformation and multiple variants, semiempirical potentials for performing large-scale molecular dynamics simulations to investigate the atomistic mechanical process, are very few. In this work, we construct a new interatomic potential for the NiTi alloy by fitting to experimental or ab initio data. The fitting potential correctly predicts the lattice parameter, structural stability, equation of state for cubic B2(austenite) and monoclinic B19'(martensite) phases. In particular the elastic properties(three elastic constants for B2 and thirteen ones for B19') are in satisfactory agreement with the experiments or ab initio calculations. Furthermore, we apply this potential to conduct the molecular dynamics simulations of the mechanical behavior for NiTi alloy and the results capture its reversible transformation.
Ab initio ONIOM-molecular dynamics (MD) study on the deamination reaction by cytidine deaminase.
Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako
2007-08-23
We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase by calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket of the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determining step is the release of the NH3 molecule.
Ab initio simulations of molten Ni alloys
NASA Astrophysics Data System (ADS)
Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano
2010-06-01
Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.
Ab initio study on the dynamics of furfural at the liquid-solid interfaces
NASA Astrophysics Data System (ADS)
Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2013-03-01
Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers
NASA Astrophysics Data System (ADS)
Hao, Qing-Hai; Li, Y. D.; Kong, Xiang-Shan; Liu, C. S.
2013-02-01
Ab initio molecular dynamics simulations on liquid Sb have been carried out at five different temperatures from 913 K to 1193 K. We have investigated the temperature dependence of structure properties including structural factor S(Q), pair correlation function g(r), bond-angle distribution function g3(θ), cluster properties and bond order parameter Q4 and Q6. A shoulder was reproduced in the high wave number side of the first peak in the S(Q) implying that the residual structure units of crystalline Sb remain in liquid Sb. There is a noticeable bend at around 1023 K in the temperature dependence of the first-peak height of S(Q), the cluster properties and bond order parameter Q4, respectively, indicating that an abnormal structural change may occur at 973-1023 K.
NASA Technical Reports Server (NTRS)
Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.
1993-01-01
A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.
New force field for molecular simulation of guanidinium-based ionic liquids.
Liu, Xiaomin; Zhang, Suojiang; Zhou, Guohui; Wu, Guangwen; Yuan, Xiaoliang; Yao, Xiaoqian
2006-06-22
An all-atom force field was proposed for a new class of room temperature ionic liquids (RTILs), N,N,N',N'-tetramethylguanidinium (TMG) RTILs. The model is based on the AMBER force field with modifications on several parameters. The refinements include (1) fitting the vibration frequencies for obtaining force coefficients of bonds and angles against the data obtained by ab initio calculations and/or by experiments and (2) fitting the torsion energy profiles of dihedral angles for obtaining torsion parameters against the data obtained by ab initio calculations. To validate the force field, molecular dynamics (MD) simulations at different temperatures were performed for five kinds of RTILs, where TMG acts as a cation and formate, lactate, perchlorate, trifluoroacetate, and trifluoromethylsulfonate act as anions. The predicted densities were in good agreement with the experimental data. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) were investigated to depict the microscopic structures of the RTILs.
NASA Astrophysics Data System (ADS)
Pinney, Nathan Douglas
Due to their high surface area and reactivity toward a variety of heavy metal and oxyanion species of environmental concern, Fe-(oxyhydr)oxide materials play an important role in the geochemical fate of natural and anthropogenic contaminants in soils, aquifers and surface water environments worldwide. In this research, ab initio simulations describe the bulk structure, magnetic properties, and relative phase stability of major Fe-(oxyhydr)oxide materials, including hematite, goethite, lepidocrocite, and ferrihydrite.These bulk models are employed in further studies of point defect and alloy/dopant thermodynamics in these materials, allowing construction of a phase stability model that better replicates the structure and composition of real materials. Li + adsorption at the predominant goethite (101) surface is simulated using ab initio methods, offering energetic and structural insight into the binding mechanisms of metal cations over a range of surface protonation conditions.
Mosey, Nicholas J; Woo, Tom K
2006-09-04
The reactions that occur between metathiophosphate (MTP) molecules are identified and examined through ab initio molecular dynamics simulations and static quantum chemical calculations at the density functional level of theory. The simulations show that certain types of MTPs can react to yield phosphate chains, while others only dimerize. These differences are rationalized in terms of reaction energies and the electronic structures of these molecules. In the reaction leading to the formation of phosphate chains, the reactive center, a tri-coordinate phosphorus atom, is continually regenerated. A polymerization mechanism linking MTPs to phosphate chains is developed on the basis of these results. This information sheds light on the underlying processes that may be responsible for the formation of phosphates under high-temperature conditions and may prove useful in the development of protocols for the rational synthesis of complex phosphate structures.
HPAM: Hirshfeld Partitioned Atomic Multipoles
Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.
2011-01-01
An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274
Malbon, Christopher L; Zhu, Xiaolei; Guo, Hua; Yarkony, David R
2016-12-21
For two electronic states coupled by conical intersections, the line integral of the derivative coupling can be used to construct a complex-valued multiplicative phase factor that makes the real-valued adiabatic electronic wave function single-valued, provided that the curl of the derivative coupling is zero. Unfortunately for ab initio determined wave functions, the curl is never rigorously zero. However, when the wave functions are determined from a coupled two diabatic state Hamiltonian H d (fit to ab initio data), the resulting derivative couplings are by construction curl free, except at points of conical intersection. In this work we focus on a recently introduced diabatization scheme that produces the H d by fitting ab initio determined energies, energy gradients, and derivative couplings to the corresponding H d determined quantities in a least squares sense, producing a removable approximation to the ab initio determined derivative coupling. This approach and related numerical issues associated with the nonremovable ab initio derivative couplings are illustrated using a full 33-dimensional representation of phenol photodissociation. The use of this approach to provide a general framework for treating the molecular Aharonov Bohm effect is demonstrated.
Wu, Ruibo; Hu, Po; Wang, Shenglong; Cao, Zexing; Zhang, Yingkai
2009-01-01
Abstracs The different coordination modes and fast ligand exchange of zinc coordination has been suggested to be one key catalytic feature of the zinc ion which makes it an invaluable metal in biological catalysis. However, partly due to the well known difficulties for zinc to be characterized by spectroscopy methods, evidence for dynamic nature of the catalytic zinc coordination has so far mainly been indirect. In this work, Born-Oppenheimer ab initio QM/MM molecular dynamics simulation has been employed, which allows for a first-principle description of the dynamics of the metal active site while properly including effects of the heterogeneous and fluctuating protein environment. Our simulations have provided direct evidence regarding inherent flexibility of the catalytic zinc coordination shell in Thermolysin (TLN) and Histone Deacetylase 8 (HDAC8). We have observed different coordination modes and fast ligand exchange during the picosecond's time-scale. For TLN, the coordination of the carboxylate group of Glu166 to Zinc is found to continuously change between monodentate and bidentate manner dynamically; while for HDAC8, the flexibility mainly comes from the coordination to a non-amino-acid ligand. Such distinct dynamics in the zinc coordination shell between two enzymes suggests that the catalytic role of Zinc in TLN and HDAC8 is likely to be different in spite of the fact that both catalyze the hydrolysis of amide bond. Meanwhile, considering that such Born-Oppenheimer ab initio QM/MM MD simulations are very much desired but are widely considered to be too computationally expensive to be feasible, our current study demonstrates the viability and powerfulness of this state-of-the-art approach in simulating metalloenzymes. PMID:20161624
Quantum Monte Carlo Methods for First Principles Simulation of Liquid Water
ERIC Educational Resources Information Center
Gergely, John Robert
2009-01-01
Obtaining an accurate microscopic description of water structure and dynamics is of great interest to molecular biology researchers and in the physics and quantum chemistry simulation communities. This dissertation describes efforts to apply quantum Monte Carlo methods to this problem with the goal of making progress toward a fully "ab initio"…
Ab initio molecular dynamics simulation of LiBr association in water
NASA Astrophysics Data System (ADS)
Izvekov, Sergei; Philpott, Michael R.
2000-12-01
A computationally economical scheme which unifies the density functional description of an ionic solute and the classical description of a solvent was developed. The density functional part of the scheme comprises Car-Parrinello and related formalisms. The substantial saving in the computer time is achieved by performing the ab initio molecular dynamics of the solute electronic structure in a relatively small basis set constructed from lowest energy Kohn-Sham orbitals calculated for a single anion in vacuum, instead of using plane wave basis. The methodology permits simulation of an ionic solution for longer time scales while keeping accuracy in the prediction of the solute electronic structure. As an example the association of the Li+-Br- ion-pair system in water is studied. The results of the combined molecular dynamics simulation are compared with that obtained from the classical simulation with ion-ion interaction described by the pair potential of Born-Huggins-Mayer type. The comparison reveals an important role played by the polarization of the Br- ion in the dynamics of ion pair association.
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto
2012-06-07
Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1) region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH(2)F(2) as a prototype molecule to test ab initio calculations and theoretical models.
NASA Astrophysics Data System (ADS)
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Charmet, Andrea Pietropolli; Gambi, Alberto
2012-06-01
Difluoromethane (CH2F2, HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH2F2, providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm-1. Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm-1 while intensities are predicted within few km mol-1 from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν1⟩, |2ν8⟩, |2ν2⟩ three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm-1 region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH2F2 as a prototype molecule to test ab initio calculations and theoretical models.
NASA Astrophysics Data System (ADS)
Ramos, S. B.; González Lemus, N. V.; Deluque Toro, C. E.; Cabeza, G. F.; Fernández Guillermet, A.
2017-07-01
Motivated by the high solubility of In in ( mC44) η'-Cu6Sn5 compound as well as the occurrence of an In-doped η'-intermetallic in the microstructure of Cu/In-Sn/Cu solder joints, a theoretical study has been carried out to investigate the various physical effects of incorporating In at Sn Wyckoff sites of the binary η'-phase. Systematic ab initio calculations using the projected augmented wave method and Vienna Ab initio Simulation Package were used to determine the composition dependence of the structural and cohesive properties of η'-Cu6(Sn,In)5 compounds, compared with those expected from the binary end-member compounds Cu6Sn5 and Cu6In5. The molar volume shows significant deviations from Vegard's law. The predicted composition dependence of the cohesive properties is discussed using two complementary approaches, viz. a valence-electron density approach as well as a bond-number approach, both accounting for the roughly linear dependence of the cohesive energy on the In content. A microscopic interpretation for this general trend is given in terms of the key contributions to chemical bonding in this class of compounds, namely Cu d-electron overlap and hybridization of Cu d-states with In and Sn p-electron states. Moreover, a crystallographic site approach is developed to accurately establish the phase-stabilizing effect of incorporating In at specific Wyckoff positions of the ( mC44) η'-Cu6Sn5 structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattsson, Ann E.
Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia’s capabilities to support engineering sciences. This capability is based on augmenting experimental data with information gained from computational investigations, especially in those parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A key part of the success of the Sandia approach is the fundamental science work supporting the computational capability. Not only does this work enhance the capability to perform highly accurate calculations but it also provides crucial insight into the limitations of the computational tools, providing highmore » confidence in the results even where results cannot be, or have not yet been, validated by experimental data. This report concerns the key ingredient of projector augmented-wave (PAW) potentials for use in pseudo-potential computational codes. Using the tools discussed in SAND2012-7389 we assess the standard Vienna Ab-initio Simulation Package (VASP) PAWs for Molybdenum.« less
Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
NASA Astrophysics Data System (ADS)
Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.
2014-02-01
Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.
An ab initio study of the structure and dynamics of bulk liquid Ag and its liquid-vapor interface
NASA Astrophysics Data System (ADS)
Gonzalez Del Rio, Beatriz; Gonzalez Tesedo, Luis Enrique; Gonzalez Fernandez, David Jose
Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals collective density excitations with an associated dispersion relation which points to a small positive dispersion. Results are also reported at a slightly higher temperature in order to study the structure of the free liquid surface. The ionic density profile shows an oscillatory behaviour with two different wavelenghts, as the spacing between the outer and first inner layer is different from that between the other inner layers.
Energetics of Single Substitutional Impurities in NiTi
NASA Technical Reports Server (NTRS)
Good, Brian S.; Noebe, Ronald
2003-01-01
Shape-memory alloys are of considerable current interest, with applications ranging from stents to Mars rover components. In this work, we present results on the energetics of single substitutional impurities in B2 NiTi. Specifically, energies of Pd, Pt, Zr and Hf impurities at both Ni and Ti sites are computed. All energies are computed using the CASTEP ab initio code, and, for comparison, using the quantum approximate energy method of Bozzolo, Ferrante and Smith. Atomistic relaxation in the vicinity of the impurities is investigated via quantum approximate Monte Carlo simulation, and in cases where the relaxation is found to be important, the resulting relaxations are applied to the ab initio calculations. We compare our results with available experimental work.
First principles prediction of amorphous phases using evolutionary algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nahas, Suhas, E-mail: shsnhs@iitk.ac.in; Gaur, Anshu, E-mail: agaur@iitk.ac.in; Bhowmick, Somnath, E-mail: bsomnath@iitk.ac.in
2016-07-07
We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bondmore » angle are within ∼2% of those reported by ab initio MD calculations and experimental studies.« less
Parkes, Marie V; Greathouse, Jeffery A; Hart, David B; Gallis, Dorina F Sava; Nenoff, Tina M
2016-04-28
The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.
Partovi-Azar, Pouya; Kühne, Thomas D
2015-11-05
We present a novel computational method to accurately calculate Raman spectra from first principles. Together with an extension of the second-generation Car-Parrinello method of Kühne et al. (Phys. Rev. Lett. 2007, 98, 066401) to propagate maximally localized Wannier functions together with the nuclei, a speed-up of one order of magnitude can be observed. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of ab-initio molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
KoleŻyński, Andrzej; Szczypka, Wojciech
2016-03-01
Results from theoretical analysis of the crystal structure, electronic structure, and bonding properties of C46 and B6C40 carbon clathrates doped with selected alkali and alkaline earth metals cations (Li, Na, Mg, Ca) are presented. The ab initio calculations were performed by means of the WIEN2k package (full potential linearized augmented plane wave method (FP-LAPW) within density functional theory (DFT)) with PBESol and modified Becke-Johnson exchange-correlation potentials used in geometry optimization and electronic structure calculations, respectively. The bonding properties were analyzed by applying Bader's quantum theory of atoms in molecules formalism to the topological properties of total electron density obtained from ab initio calculations. Analysis of the results obtained (i.a. equilibrium geometry, equation of state, cohesive energy, band structure, density of states—both total and projected on to particular atoms, and topological properties of bond critical points and net charges of topological atoms) is presented in detail.
A note on AB INITIO semiconductor band structures
NASA Astrophysics Data System (ADS)
Fiorentini, Vincenzo
1992-09-01
We point out that only the internal features of the DFT ab initio theoretical picture of a crystal should be used in a consistent ab initio calculation of the band structure. As a consequence, we show that ground-state band structure calculations should be performed for the system in equilibrium at zero pressure, i.e. at the computed equilibrium cell volume ω th. Examples of consequences of this attitude are considered.
Computational Chemistry Comparison and Benchmark Database
National Institute of Standards and Technology Data Gateway
SRD 101 NIST Computational Chemistry Comparison and Benchmark Database (Web, free access) The NIST Computational Chemistry Comparison and Benchmark Database is a collection of experimental and ab initio thermochemical properties for a selected set of molecules. The goals are to provide a benchmark set of molecules for the evaluation of ab initio computational methods and allow the comparison between different ab initio computational methods for the prediction of thermochemical properties.
NASA Astrophysics Data System (ADS)
Martins, Luan Carvalho; Torres, Pedro Henrique Monteiro; de Oliveira, Renata Barbosa; Pascutti, Pedro Geraldo; Cino, Elio A.; Ferreira, Rafaela Salgado
2018-05-01
Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC50 = 15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure-activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.
NASA Astrophysics Data System (ADS)
Martins, Luan Carvalho; Torres, Pedro Henrique Monteiro; de Oliveira, Renata Barbosa; Pascutti, Pedro Geraldo; Cino, Elio A.; Ferreira, Rafaela Salgado
2018-03-01
Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC50 = 15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure-activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.
Martins, Luan Carvalho; Torres, Pedro Henrique Monteiro; de Oliveira, Renata Barbosa; Pascutti, Pedro Geraldo; Cino, Elio A; Ferreira, Rafaela Salgado
2018-05-01
Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC 50 = 15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure-activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.
Brasil, Christiane Regina Soares; Delbem, Alexandre Claudio Botazzo; da Silva, Fernando Luís Barroso
2013-07-30
This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment-based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well-designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with β-sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called "Multiobjective evolutionary algorithms with many tables" (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG , I-PAES, and Quark) that use different levels of earlier knowledge. Copyright © 2013 Wiley Periodicals, Inc.
Richings, Gareth W; Habershon, Scott
2017-09-12
We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.
NASA Astrophysics Data System (ADS)
Khan, Shehryar; Pollet, Rodolphe; Vuilleumier, Rodolphe; Kowalewski, Jozef; Odelius, Michael
2017-12-01
In this work, we present ab initio calculations of the zero-field splitting (ZFS) of a gadolinium complex [Gd(iii)(HPDO3A)(H2O)] sampled from an ab initio molecular dynamics (AIMD) simulation. We perform both post-Hartree-Fock (complete active space self-consistent field—CASSCF) and density functional theory (DFT) calculations of the ZFS and compare and contrast the methods with experimental data. Two different density functional approximations (TPSS and LC-BLYP) were investigated. The magnitude of the ZFS from the CASSCF calculations is in good agreement with experiment, whereas the DFT results in varying degrees overestimate the magnitude of the ZFS for both functionals and exhibit a strong functional dependence. It was found in the sampling over the AIMD trajectory that the fluctuations in the transient ZFS tensor derived from DFT are not correlated with those of CASSCF nor does the magnitude of the ZFS from CASSCF and DFT correlate. From the fluctuations in the ZFS tensor, we extract a correlation time of the transient ZFS which is on the sub-picosecond time scale, showing a faster decay than experimental estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.
New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less
NASA Astrophysics Data System (ADS)
Di Pasquale, Nicodemo; Davie, Stuart J.; Popelier, Paul L. A.
2018-06-01
Using the machine learning method kriging, we predict the energies of atoms in ion-water clusters, consisting of either Cl- or Na+ surrounded by a number of water molecules (i.e., without Na+Cl- interaction). These atomic energies are calculated following the topological energy partitioning method called Interacting Quantum Atoms (IQAs). Kriging predicts atomic properties (in this case IQA energies) by a model that has been trained over a small set of geometries with known property values. The results presented here are part of the development of an advanced type of force field, called FFLUX, which offers quantum mechanical information to molecular dynamics simulations without the limiting computational cost of ab initio calculations. The results reported for the prediction of the IQA components of the energy in the test set exhibit an accuracy of a few kJ/mol, corresponding to an average error of less than 5%, even when a large cluster of water molecules surrounding an ion is considered. Ions represent an important chemical system and this work shows that they can be correctly taken into account in the framework of the FFLUX force field.
Jones, R. E.; Ward, D. K.
2016-07-18
Here, given the unique optical properties of LiF, it is often used as an observation window in high-temperature and -pressure experiments; hence, estimates of its transmission properties are necessary to interpret observations. Since direct measurements of the thermal conductivity of LiF at the appropriate conditions are difficult, we resort to molecular simulation methods. Using an empirical potential validated against ab initio phonon density of states, we estimate the thermal conductivity of LiF at high temperatures (1000–4000 K) and pressures (100–400 GPa) with the Green-Kubo method. We also compare these estimates to those derived directly from ab initio data. To ascertainmore » the correct phase of LiF at these extreme conditions, we calculate the (relative) phase stability of the B1 and B2 structures using a quasiharmonic ab initio model of the free energy. We also estimate the thermal conductivity of LiF in an uniaxial loading state that emulates initial stages of compression in high-stress ramp loading experiments and show the degree of anisotropy induced in the conductivity due to deformation.« less
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.; ...
2017-10-17
New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less
Unification of the phonon mode behavior in semiconductor alloys: Theory and ab initio calculations
NASA Astrophysics Data System (ADS)
Pagès, O.; Postnikov, A. V.; Kassem, M.; Chafi, A.; Nassour, A.; Doyen, S.
2008-03-01
We demonstrate how to overcome serious problems in understanding and classification of vibration spectra in semiconductor alloys, following from traditional use of the virtual crystal approximation (VCA). We show that such different systems as InGaAs (1- bond→1 -mode behavior), InGaP (modified 2-mode), and ZnTeSe (2- bond→1 -mode) obey, in fact, the same phonon mode behavior—hence probably a universal one—of a percolation type (1- bond→2 -mode). The change of paradigm from the “VCA insight” (an averaged microscopic one) to the “percolation insight” (a mesoscopic one) offers a promising link toward the understanding of alloy disorder. The discussion is supported by ab initio simulation of the phonon density of states at the zone center of representative supercells at intermediary composition (ZnTeSe) and at the impurity-dilute limits (all systems). In particular, we propose a simple ab initio “protocol” to estimate the basic input parameters of our semiempirical “percolation” model for the calculation of the 1- bond→2 -mode vibration spectra of zinc blende alloys. With this, the model turns self-sufficient.
NASA Astrophysics Data System (ADS)
Wimmer, E.
2008-02-01
A workshop, 'Theory Meets Industry', was held on 12-14 June 2007 in Vienna, Austria, attended by a well balanced number of academic and industrial scientists from America, Europe, and Japan. The focus was on advances in ab initio solid state calculations and their practical use in industry. The theoretical papers addressed three dominant themes, namely (i) more accurate total energies and electronic excitations, (ii) more complex systems, and (iii) more diverse and accurate materials properties. Hybrid functionals give some improvements in energies, but encounter difficulties for metallic systems. Quantum Monte Carlo methods are progressing, but no clear breakthrough is on the horizon. Progress in order-N methods is steady, as is the case for efficient methods for exploring complex energy hypersurfaces and large numbers of structural configurations. The industrial applications were dominated by materials issues in energy conversion systems, the quest for hydrogen storage materials, improvements of electronic and optical properties of microelectronic and display materials, and the simulation of reactions on heterogeneous catalysts. The workshop is a clear testimony that ab initio computations have become an industrial practice with increasingly recognized impact.
Magnetic properties and stability of Cu3V2O8 compound in the different phases
NASA Astrophysics Data System (ADS)
Jezierski, Andrzej
2016-11-01
The magnetic and thermodynamic properties of Cu3V2O8 compound in four structures (P-1, P21/c, P21/m and Cmca) are reported. The calculations are performed by using the Full-Potential Local Orbital Minimum Basis (FPLO) and Vienna ab initio Simulation Package (VASP) methods. We have applied the local density approximation (LDA) with the generalized gradient corrections (GGA). The effect of electron correlations was also included in GGA+U approximation. The thermodynamic properties were obtained in the quasi-harmonic Debye-Grüneisen model using the equation of states (EOS) in the form of Poirier-Tarantola. Our ab-intio results indicate that α (P-1) phase is stable below 1.87 GPa, β (P21/c) exists in the region 1.87
Morse-Smale Analysis of Ion Diffusion in Ab Initio Battery Materials Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun
Ab initio molecular dynamics (AIMD) simulations are increasingly useful in modeling, optimizing and synthesizing materials in energy sciences. In solving Schrödinger’s equation, they generate the electronic structure of the simulated atoms as a scalar field. However, methods for analyzing these volume data are not yet common in molecular visualization. The Morse-Smale complex is a proven, versatile tool for topological analysis of scalar fields. In this paper, we apply the discrete Morse-Smale complex to analysis of first-principles battery materials simulations. We consider a carbon nanosphere structure used in battery materials research, and employ Morse-Smale decomposition to determine the possible lithium ionmore » diffusion paths within that structure. Our approach is novel in that it uses the wavefunction itself as opposed distance fields, and that we analyze the 1-skeleton of the Morse-Smale complex to reconstruct our diffusion paths. Furthermore, it is the first application where specific motifs in the graph structure of the complete 1-skeleton define features, namely carbon rings with specific valence. We compare our analysis of DFT data with that of a distance field approximation, and discuss implications on larger classical molecular dynamics simulations.« less
2017-03-24
NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for
An ab initio study of the conformational energy map of acetylcholine
NASA Astrophysics Data System (ADS)
Segall, M. D.; Payne, M. C.; Boyes, R. N.
An ab initio density functional theory study is reported of the conformational energy map of acetylcholine, with respect to the two central dihedral angles of the molecule. The acetylcholine molecule pays a central role in neurotransmission and has been studied widely using semi-empirical computational modelling. The ab initio results are compared with a number of previous investigations and with experiment. The ab initio data indicate that the most stable conformation of acetylcholine is the trans , gauche arrangement of the central dihedral angles. Furthermore, Mulliken population analysis of the electronic structure of the molecule in this conformation indicates that the positive charge of the molecule is spread over the exterior of the cationic head of the molecule.
Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes
NASA Astrophysics Data System (ADS)
Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting
2015-02-01
The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the Cdbnd O bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.
Chilkuri, Vijay Gopal; DeBeer, Serena; Neese, Frank
2017-09-05
Iron-sulfur (FeS) proteins are universally found in nature with actives sites ranging in complexity from simple monomers to multinuclear sites from two up to eight iron atoms. These sites include mononuclear (rubredoxins), dinuclear (ferredoxins and Rieske proteins), trinuclear (e.g., hydrogenases), and tetranuclear (various ferredoxins and high-potential iron-sulfur proteins). The electronic structure of the higher-nuclearity clusters is inherently extremely complex. Hence, it is reasonable to take a bottom-up approach in which clusters of increasing nuclearity are analyzed in terms of the properties of their lower nuclearity constituents. In the present study, the first step is taken by an in-depth analysis of mononuclear FeS systems. Two different FeS molecules with phenylthiolate and methylthiolate as ligands are studied in their oxidized and reduced forms using modern wave function-based ab initio methods. The ab initio electronic spectra and wave function are presented and analyzed in detail. The very intricate electronic structure-geometry relationship in these systems is analyzed using ab initio ligand field theory (AILFT) in conjunction with the angular overlap model (AOM) parametrization scheme. The simple AOM model is used to explain the effect of geometric variations on the electronic structure. Through a comparison of the ab initio computed UV-vis absorption spectra and the available experimental spectra, the low-energy part of the many-particle spectrum is carefully analyzed. We show ab initio calculated magnetic circular dichroism spectra and present a comparison with the experimental spectrum. Finally, AILFT parameters and the ab initio spectra are compared with those obtained experimentally to understand the effect of the increased covalency of the thiolate ligands on the electronic structure of FeS monomers.
West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus
2017-11-22
The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.
NASA Astrophysics Data System (ADS)
Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J.
2016-09-01
The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.
Kapitán, Josef; Johannessen, Christian; Bour, Petr; Hecht, Lutz; Barron, Laurence D
2009-01-01
The samples used for the first observations of vibrational Raman optical activity (ROA) in 1972, namely both enantiomers of 1-phenylethanol and 1-phenylethylamine, have been revisited using a modern commercial ROA instrument together with state-of-the-art ab initio calculations. The simulated ROA spectra reveal for the first time the vibrational origins of the first reported ROA signals, which comprised similar couplets in the alcohol and amine in the spectral range approximately 280-400 cm(-1). The results demonstrate how easy and routine ROA measurements have become, and how current ab initio quantum-chemical calculations are capable of simulating experimental ROA spectra quite closely provided sufficient averaging over accessible conformations is included. Assignment of absolute configuration is, inter alia, completely secure from results of this quality. Anharmonic corrections provided small improvements in the simulated Raman and ROA spectra. The importance of conformational averaging emphasized by this and previous related work provides the underlying theoretical background to ROA studies of dynamic aspects of chiral molecular and biomolecular structure and behavior. (c) 2009 Wiley-Liss, Inc.
CO2 capture in amine solutions: modelling and simulations with non-empirical methods
NASA Astrophysics Data System (ADS)
Andreoni, Wanda; Pietrucci, Fabio
2016-12-01
Absorption in aqueous amine solutions is the most advanced technology for the capture of CO2, although suffering from drawbacks that do not allow exploitation on large scale. The search for optimum solvents has been pursued with empirical methods and has also motivated a number of computational approaches over the last decade. However, a deeper level of understanding of the relevant chemical reactions in solution is required so as to contribute to this effort. We present here a brief critical overview of the most recent applications of computer simulations using ab initio methods. Comparison of their outcome shows a strong dependence on the structural models employed to represent the molecular systems in solution and on the strategy used to simulate the reactions. In particular, the results of very recent ab initio molecular dynamics augmented with metadynamics are summarized, showing the crucial role of water, which has been so far strongly underestimated both in the calculations and in the interpretation of experimental data. Indications are given for advances in computational approaches that are necessary if meant to contribute to the rational design of new solvents.
Xu, Dong; Zhang, Jian; Roy, Ambrish; Zhang, Yang
2011-01-01
I-TASSER is an automated pipeline for protein tertiary structure prediction using multiple threading alignments and iterative structure assembly simulations. In CASP9 experiments, two new algorithms, QUARK and FG-MD, were added to the I-TASSER pipeline for improving the structural modeling accuracy. QUARK is a de novo structure prediction algorithm used for structure modeling of proteins that lack detectable template structures. For distantly homologous targets, QUARK models are found useful as a reference structure for selecting good threading alignments and guiding the I-TASSER structure assembly simulations. FG-MD is an atomic-level structural refinement program that uses structural fragments collected from the PDB structures to guide molecular dynamics simulation and improve the local structure of predicted model, including hydrogen-bonding networks, torsion angles and steric clashes. Despite considerable progress in both the template-based and template-free structure modeling, significant improvements on protein target classification, domain parsing, model selection, and ab initio folding of beta-proteins are still needed to further improve the I-TASSER pipeline. PMID:22069036
Accelerating the design of solar thermal fuel materials through high throughput simulations.
Liu, Yun; Grossman, Jeffrey C
2014-12-10
Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.
NASA Astrophysics Data System (ADS)
Zheng, Lixin; Chen, Mohan; Sun, Zhaoru; Ko, Hsin-Yu; Santra, Biswajit; Dhuvad, Pratikkumar; Wu, Xifan
2018-04-01
We perform ab initio molecular dynamics (AIMD) simulation of liquid water in the canonical ensemble at ambient conditions using the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient approximation (GGA) functional approximation and carry out systematic comparisons with the results obtained from the GGA-level Perdew-Burke-Ernzerhof (PBE) functional and Tkatchenko-Scheffler van der Waals (vdW) dispersion correction inclusive PBE functional. We analyze various properties of liquid water including radial distribution functions, oxygen-oxygen-oxygen triplet angular distribution, tetrahedrality, hydrogen bonds, diffusion coefficients, ring statistics, density of states, band gaps, and dipole moments. We find that the SCAN functional is generally more accurate than the other two functionals for liquid water by not only capturing the intermediate-range vdW interactions but also mitigating the overly strong hydrogen bonds prescribed in PBE simulations. We also compare the results of SCAN-based AIMD simulations in the canonical and isothermal-isobaric ensembles. Our results suggest that SCAN provides a reliable description for most structural, electronic, and dynamical properties in liquid water.
Duboué-Dijon, Elise; Mason, Philip E; Fischer, Henry E; Jungwirth, Pavel
2018-04-05
Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H 2 O and D 2 O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg 2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.
Lin, Yu; Welchman, Evan; Thonhauser, Timo; ...
2017-03-15
Combining X-ray diffraction, Raman spectroscopy, and ab initio simulations we characterize an extremely hydrogen-rich phase with the chemical formula (NH 3BH 3)(H 2) x (x = 1.5). This phase was formed by compressing ammonia borane (AB, NH 3BH 3) in an environment with an excess of molecular hydrogen (H 2). This compound can store a total of 26.8 wt% hydrogen, both as molecular hydrogen and chemically bonded hydrogen in AB, making it one of the most hydrogen-rich solids currently known. The new compound possesses a layered AB structure where additional H 2 molecules reside in channels created through the weavingmore » of AB layers. The unconventional dihydrogen bonding network of the new compound is significantly modified from its parent AB phase and contains H•••H contacts between adjacent AB molecules and between AB and H 2 molecules. H–H can be either a proton donor or a proton acceptor that forms new types of dihydrogen bonding with the host AB molecules, which are depicted as H–H•••H–B or H–H•••H–N, respectively. Furthermore, this study not only demonstrates the strategy and the promise of using pressure for new material synthesis, but also unleashes the power of combining experiments and ab initio calculations for elucidating novel structures and unusual bonding configurations in dense low-Z materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yu; Welchman, Evan; Thonhauser, Timo
Combining X-ray diffraction, Raman spectroscopy, and ab initio simulations we characterize an extremely hydrogen-rich phase with the chemical formula (NH 3BH 3)(H 2) x (x = 1.5). This phase was formed by compressing ammonia borane (AB, NH 3BH 3) in an environment with an excess of molecular hydrogen (H 2). This compound can store a total of 26.8 wt% hydrogen, both as molecular hydrogen and chemically bonded hydrogen in AB, making it one of the most hydrogen-rich solids currently known. The new compound possesses a layered AB structure where additional H 2 molecules reside in channels created through the weavingmore » of AB layers. The unconventional dihydrogen bonding network of the new compound is significantly modified from its parent AB phase and contains H•••H contacts between adjacent AB molecules and between AB and H 2 molecules. H–H can be either a proton donor or a proton acceptor that forms new types of dihydrogen bonding with the host AB molecules, which are depicted as H–H•••H–B or H–H•••H–N, respectively. Furthermore, this study not only demonstrates the strategy and the promise of using pressure for new material synthesis, but also unleashes the power of combining experiments and ab initio calculations for elucidating novel structures and unusual bonding configurations in dense low-Z materials.« less
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-07
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
An efficient and accurate molecular alignment and docking technique using ab initio quality scoring
Füsti-Molnár, László; Merz, Kenneth M.
2008-01-01
An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561
Transfer of training and simulator qualification or myth and folklore in helicopter simulation
NASA Technical Reports Server (NTRS)
Dohme, Jack
1992-01-01
Transfer of training studies at Fort Rucker using the backward-transfer paradigm have shown that existing flight simulators are not entirely adequate for meeting training requirements. Using an ab initio training research simulator, a simulation of the UH-1, training effectiveness ratios were developed. The data demonstrate it to be a cost-effective primary trainer. A simulator qualification method was suggested in which a combination of these transfer-of-training paradigms is used to determine overall simulator fidelity and training effectiveness.
Ab initio theory and modeling of water.
Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C; Calegari Andrade, Marcos F; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L; Perdew, John P; Wu, Xifan
2017-10-10
Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice I h at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner.
Ab initio theory and modeling of water
Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C.; Calegari Andrade, Marcos F.; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L.; Perdew, John P.; Wu, Xifan
2017-01-01
Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice Ih at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner. PMID:28973868
Reactive Monte Carlo sampling with an ab initio potential
Leiding, Jeff; Coe, Joshua D.
2016-05-04
Here, we present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We also discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH 3 to those of ab initio molecular dynamics (AIMD). Furthermore, we find that there are regions of state spacemore » for which RxMC sampling is much more efficient than AIMD due to the “rare-event” character of chemical reactions.« less
Casolo, S; Tantardini, G F; Martinazzo, R
2016-07-14
We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, K.; Xiao, H. Y.; Zhang, Y.
2014-05-19
Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recoverymore » process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.« less
Ab Initio Reactive Computer Aided Molecular Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez, Todd J.
Few would dispute that theoretical chemistry tools can now provide keen insights into chemical phenomena. Yet the holy grail of efficient and reliable prediction of complex reactivity has remained elusive. Fortunately, recent advances in electronic structure theory based on the concepts of both element- and rank-sparsity, coupled with the emergence of new highly parallel computer architectures, have led to a significant increase in the time and length scales which can be simulated using first principles molecular dynamics. This then opens the possibility of new discovery-based approaches to chemical reactivity, such as the recently proposed ab initio nanoreactor. Here, we arguemore » that due to these and other recent advances, the holy grail of computational discovery for complex chemical reactivity is rapidly coming within our reach.« less
Fabrication and ab initio study of downscaled graphene nanoelectronic devices
NASA Astrophysics Data System (ADS)
Mizuta, Hiroshi; Moktadir, Zakaria; Boden, Stuart A.; Kalhor, Nima; Hang, Shuojin; Schmidt, Marek E.; Cuong, Nguyen Tien; Chi, Dam Hieu; Otsuka, Nobuo; Muruganathan, Manoharan; Tsuchiya, Yoshishige; Chong, Harold; Rutt, Harvey N.; Bagnall, Darren M.
2012-09-01
In this paper we first present a new fabrication process of downscaled graphene nanodevices based on direct milling of graphene using an atomic-size helium ion beam. We address the issue of contamination caused by the electron-beam lithography process to pattern the contact metals prior to the ultrafine milling process in the helium ion microscope (HIM). We then present our recent experimental study of the effects of the helium ion exposure on the carrier transport properties. By varying the time of helium ion bombardment onto a bilayer graphene nanoribbon transistor, the change in the transfer characteristics is investigated along with underlying carrier scattering mechanisms. Finally we study the effects of various single defects introduced into extremely-scaled armchair graphene nanoribbons on the carrier transport properties using ab initio simulation.
Ab Initio Reactive Computer Aided Molecular Design
Martínez, Todd J.
2017-03-21
Few would dispute that theoretical chemistry tools can now provide keen insights into chemical phenomena. Yet the holy grail of efficient and reliable prediction of complex reactivity has remained elusive. Fortunately, recent advances in electronic structure theory based on the concepts of both element- and rank-sparsity, coupled with the emergence of new highly parallel computer architectures, have led to a significant increase in the time and length scales which can be simulated using first principles molecular dynamics. This then opens the possibility of new discovery-based approaches to chemical reactivity, such as the recently proposed ab initio nanoreactor. Here, we arguemore » that due to these and other recent advances, the holy grail of computational discovery for complex chemical reactivity is rapidly coming within our reach.« less
NASA Astrophysics Data System (ADS)
Evans, Jim; Han, Yong; Stoldt, Conrad; Thiel, Patricia
Coalescence or sintering of nanoscale features on metal(100) surfaces is mediated by periphery or edge diffusion. These processes are highly sensitive to the multiple diffusion barriers for various local edge environments. We provide an optimal strategy to determine both thermodynamics and kinetics for these systems at the ab initio level. The former requires assessing conventional interactions between adatoms at adsorption sites. The latter requires assessing unconventional interactions between the hopping atom at a bridge site transition state and other nearby atoms. KMC simulation reveals that this formulation recovers observed sintering times for Ag nanoislands on Ag(100), including a novel size dependence. The formulation also applies for nanopits where there are additional challenges to capture kinetics. Work supported by NSF Grant CHE-1507223.
NASA Astrophysics Data System (ADS)
Mohn, Michael J.; Hambach, Ralf; Wachsmuth, Philipp; Giorgetti, Christine; Kaiser, Ute
2018-06-01
High-energy electronic excitations of graphene and MoS2 heterostructures are investigated by momentum-resolved electron energy-loss spectroscopy in the range of 1 to 35 eV. The interplay of excitations on different sheets is understood in terms of long-range Coulomb interactions and is simulated using a combination of ab initio and dielectric model calculations. In particular, the layered electron-gas model is extended to thick layers by including the spatial dependence of the dielectric response in the direction perpendicular to the sheets. We apply this model to the case of graphene/MoS2/graphene heterostructures and discuss the possibility of extracting the dielectric properties of an encapsulated monolayer from measurements of the entire stack.
Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An Ab Initio Study
NASA Astrophysics Data System (ADS)
Jiang, Xiankai; Song, Bo; Tománek, David
2018-04-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We use ab initio molecular dynamics simulations to study the microscopic dynamics of potassium intercalation in graphite. Upon adsorbing on graphite from the vapor phase, K atoms transfer their valence charge to the substrate. K atoms adsorbed on the surface diffuse rapidly along the graphene basal plane and eventually enter the interlayer region following a "U -turn" across the edge, gaining additional energy. This process is promoted at higher coverages associated with higher K pressure, leading to the formation of a stable intercalation compound. We find that the functionalization of graphene edges is an essential prerequisite for intercalation since bare edges reconstruct and reconnect, closing off the entry channels for the atoms.
NASA Astrophysics Data System (ADS)
Han, Seungwu; Cho, Kyeongjae; Ihm, Jisoon
1999-02-01
We have performed ab initio pseudopotential calculations to study the effects of structural deformations of iron porphyrin on the configuration of a carbon monoxide (CO) attached to it. We have considered two proximal deformations around the heme group: (i) rotation of a pyrrole ring in the iron porphyrin, and (ii) rotation of the imidazole side chain bound to the iron atom. We have identified induced changes of the atomic geometry and the electronic structure of the iron porphyrin-CO complex, and the results elucidate the microscopic nature of the CO interaction with the iron porphyrin. Implications on the controversies over the binding angle of the CO molecule on the iron porphyrin under different circumstances are discussed. A potential application to the simulation-based chemical sensor design is also discussed.
HCO3(-) formation from CO2 at high pH: ab initio molecular dynamics study.
Stirling, András
2011-12-15
Ab initio molecular dynamics simulations have been performed to study the dissolution of CO2 in water at high pH. The CO2 + OH(-) --> HCO3(-) forward and the HCO3(-) --> CO2 + OH(-) reverse paths have been simulated by employing the metadynamics technics. We have found that the free energy barrier along the forward direction is predominantly hydration related and significantly entropic in origin, whereas the backward barrier is primarily enthalpic. The main motifs in the forward mechanism are the structural diffusion of the hydroxyl ion to the first hydration sphere of CO2, its desolvation, and the C-O bond formation in concert with the CO2 bending within the hydrate cavity. In the reverse reaction, the origin of the barrier is the rupture of the strong C-O(H) bond. The present findings support the notion that the free energy barrier of the bicarbonate formation is strongly solvation related but provide also additional mechanistic details at the molecular level.
Multiscale Modeling of UHTC: Thermal Conductivity
NASA Technical Reports Server (NTRS)
Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Lee, Mal-Soon; Peter McGrail, B; Rousseau, Roger; Glezakou, Vassiliki-Alexandra
2015-10-12
The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is enthalpically favored, but entropically hindered. Simulated adsorption isotherms show that a water monolayer will form even at the low water concentrations of water-saturated scCO2. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies that readily form in the presence of a water monolayer. These results point to a carbonation mechanism that does not require prior carbonic acid formation in the bulk liquid. This work also highlights the modern capabilities of theoretical methods to address structure and reactivity at interfaces of high chemical complexity.
Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit
Dornheim, Tobias; Groth, Simon; Sjostrom, Travis; ...
2016-10-07
Here we perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N = 1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy F xc of the macroscopic electron gas withmore » an unprecedented accuracy of | Δ V | / | V | , | Δ F xc | / | F | xc ~ 10 $-$3. Finally, a comparison of our new data to the recent parametrization of F xc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Sean A.; Aprà, Edoardo; Govind, Niranjan
2017-02-03
Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting withmore » a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.« less
40 CFR 92.306 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certificate of conformity for such engine families. The certificate of conformity may be voided ab initio for..., and the certificate may be deemed void ab initio. (3) The manufacturer or remanufacturer (as...
40 CFR 92.306 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... certificate of conformity for such engine families. The certificate of conformity may be voided ab initio for..., and the certificate may be deemed void ab initio. (3) The manufacturer or remanufacturer (as...
40 CFR 92.306 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... certificate of conformity for such engine families. The certificate of conformity may be voided ab initio for..., and the certificate may be deemed void ab initio. (3) The manufacturer or remanufacturer (as...
40 CFR 92.306 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... certificate of conformity for such engine families. The certificate of conformity may be voided ab initio for..., and the certificate may be deemed void ab initio. (3) The manufacturer or remanufacturer (as...
40 CFR 92.306 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... certificate of conformity for such engine families. The certificate of conformity may be voided ab initio for..., and the certificate may be deemed void ab initio. (3) The manufacturer or remanufacturer (as...
A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole.
Fonner, John M; Schmidt, Christine E; Ren, Pengyu
2010-10-01
Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials.
Wood, Geoffrey P F; Sreedhara, Alavattam; Moore, Jamie M; Wang, John; Trout, Bernhardt L
2016-05-12
An assessment of the mechanisms of (•)OH and (•)OOH radical-mediated oxidation of tryptophan was performed using density functional theory calculations and ab initio plane-wave Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics simulations. For the (•)OH reactions, addition to the pyrrole ring at position 2 is the most favored site with a barrierless reaction in the gas phase. The subsequent degradation of this adduct through a H atom transfer to water was intermittently observed in aqueous-phase molecular dynamics simulations. For the (•)OOH reactions, addition to the pyrrole ring at position 2 is the most favored pathway, in contrast to the situation in the model system ethylene, where concerted addition to the double bond is preferred. From the (•)OOH position 2 adduct QM/MM simulations show that formation of oxy-3-indolanaline occurs readily in an aqueous environment. The observed transformation starts from an initial rupture of the O-O bond followed by a H atom transfer with the accompanying loss of an (•)OH radical to solution. Finally, classical molecular dynamics simulations were performed to equate observed differential oxidation rates of various tryptophan residues in monoclonal antibody fragments. It was found that simple parameters derived from simulation correlate well with the experimental data.
Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals
Ruiz Pestana, Luis; Mardirossian, Narbe; Head-Gordon, Martin; ...
2017-02-27
We have used ab initio molecular dynamics (AIMD) to characterize water properties using two meta-generalized gradient approximation (meta-GGA) functionals, M06-L-D3 and B97M-rV, and compared their performance against a standard GGA corrected for dispersion, revPBE-D3, at ambient conditions (298 K, and 1 g cm –3 or 1 atm). Simulations of the equilibrium density, radial distribution functions, self-diffusivity, the infrared spectrum, liquid dipole moments, and characterizations of the hydrogen bond network show that all three functionals have overcome the problem of the early AIMD simulations that erroneously found ambient water to be highly structured, but they differ substantially among themselves in agreementmore » with experiment on this range of water properties. We show directly using water cluster data up through the pentamer that revPBE-D3 benefits from a cancellation of its intrinsic functional error by running classical trajectories, whereas the meta-GGA functionals are demonstrably more accurate and would require the simulation of nuclear quantum effects to realize better agreement with all cluster and condensed phase properties.« less
How fragility makes phase-change data storage robust: insights from ab initio simulations
Zhang, Wei; Ronneberger, Ider; Zalden, Peter; Xu, Ming; Salinga, Martin; Wuttig, Matthias; Mazzarello, Riccardo
2014-01-01
Phase-change materials are technologically important due to their manifold applications in data storage. Here we report on ab initio molecular dynamics simulations of crystallization of the phase change material Ag4In3Sb67Te26 (AIST). We show that, at high temperature, the observed crystal growth mechanisms and crystallization speed are in good agreement with experimental data. We provide an in-depth understanding of the crystallization mechanisms at the atomic level. At temperatures below 550 K, the computed growth velocities are much higher than those obtained from time-resolved reflectivity measurements, due to large deviations in the diffusion coefficients. As a consequence of the high fragility of AIST, experimental diffusivities display a dramatic increase in activation energies and prefactors at temperatures below 550 K. This property is essential to ensure fast crystallization at high temperature and a stable amorphous state at low temperature. On the other hand, no such change in the temperature dependence of the diffusivity is observed in our simulations, down to 450 K. We also attribute this different behavior to the fragility of the system, in combination with the very fast quenching times employed in the simulations. PMID:25284316
Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.
Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H
2011-01-28
Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Stocks, George Malcolm; Zhang, Yanwen
2016-08-03
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. In this study, using ab initio calculations based on density functional theory and special quasirandom structure, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni 0.5Co 0.5, Nimore » 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atomic size in the structure, which further determines the elemental diffusion properties. In conclusion, different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.« less
Zhao, Shijun; Stocks, G Malcolm; Zhang, Yanwen
2016-09-14
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. Using ab initio calculations based on density functional theory and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atoms in the structure, which further determines the elemental diffusion properties. Different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.
Recent Progress in GW-based Methods for Excited-State Calculations of Reduced Dimensional Systems
NASA Astrophysics Data System (ADS)
da Jornada, Felipe H.
2015-03-01
Ab initio calculations of excited-state phenomena within the GW and GW-Bethe-Salpeter equation (GW-BSE) approaches allow one to accurately study the electronic and optical properties of various materials, including systems with reduced dimensionality. However, several challenges arise when dealing with complicated nanostructures where the electronic screening is strongly spatially and directionally dependent. In this talk, we discuss some recent developments to address these issues. First, we turn to the slow convergence of quasiparticle energies and exciton binding energies with respect to k-point sampling. This is very effectively dealt with using a new hybrid sampling scheme, which results in savings of several orders of magnitude in computation time. A new ab initio method is also developed to incorporate substrate screening into GW and GW-BSE calculations. These two methods have been applied to mono- and few-layer MoSe2, and yielded strong environmental dependent behaviors in good agreement with experiment. Other issues that arise in confined systems and materials with reduced dimensionality, such as the effect of the Tamm-Dancoff approximation to GW-BSE, and the calculation of non-radiative exciton lifetime, are also addressed. These developments have been efficiently implemented and successfully applied to real systems in an ab initio framework using the BerkeleyGW package. I would like to acknowledge collaborations with Diana Y. Qiu, Steven G. Louie, Meiyue Shao, Chao Yang, and the experimental groups of M. Crommie and F. Wang. This work was supported by Department of Energy under Contract No. DE-AC02-05CH11231 and by National Science Foundation under Grant No. DMR10-1006184.
Vilseck, Jonah Z.; Kostal, Jakub; Tirado-Rives, Julian; Jorgensen, William L.
2015-01-01
Hybrid quantum mechanics and molecular mechanics (QM/MM) computer simulations have become an indispensable tool for studying chemical and biological phenomena for systems too large to treat with quantum mechanics alone. For several decades, semi-empirical QM methods have been used in QM/MM simulations. However, with increased computational resources, the introduction of ab initio and density function methods into on-the-fly QM/MM simulations is being increasingly preferred. This adaptation can be accomplished with a program interface that tethers independent QM and MM software packages. This report introduces such an interface for the BOSS and Gaussian programs, featuring modification of BOSS to request QM energies and partial atomic charges from Gaussian. A customizable C-shell linker script facilitates the inter-program communication. The BOSS–Gaussian interface also provides convenient access to Charge Model 5 (CM5) partial atomic charges for multiple purposes including QM/MM studies of reactions. In this report, the BOSS–Gaussian interface is applied to a nitroaldol (Henry) reaction and two methyl transfer reactions in aqueous solution. Improved agreement with experiment is found by determining free-energy surfaces with MP2/CM5 QM/MM simulations than previously reported investigations employing semiempirical methods. PMID:26311531
Vilseck, Jonah Z; Kostal, Jakub; Tirado-Rives, Julian; Jorgensen, William L
2015-10-15
Hybrid quantum mechanics and molecular mechanics (QM/MM) computer simulations have become an indispensable tool for studying chemical and biological phenomena for systems too large to treat with QM alone. For several decades, semiempirical QM methods have been used in QM/MM simulations. However, with increased computational resources, the introduction of ab initio and density function methods into on-the-fly QM/MM simulations is being increasingly preferred. This adaptation can be accomplished with a program interface that tethers independent QM and MM software packages. This report introduces such an interface for the BOSS and Gaussian programs, featuring modification of BOSS to request QM energies and partial atomic charges from Gaussian. A customizable C-shell linker script facilitates the interprogram communication. The BOSS-Gaussian interface also provides convenient access to Charge Model 5 (CM5) partial atomic charges for multiple purposes including QM/MM studies of reactions. In this report, the BOSS-Gaussian interface is applied to a nitroaldol (Henry) reaction and two methyl transfer reactions in aqueous solution. Improved agreement with experiment is found by determining free-energy surfaces with MP2/CM5 QM/MM simulations than previously reported investigations using semiempirical methods. © 2015 Wiley Periodicals, Inc.
21 CFR 201.150 - Drugs; processing, labeling, or repacking.
Code of Federal Regulations, 2010 CFR
2010-04-01
... part thereof, from such establishment, become void ab initio if the drug comprising such shipment... ab initio with respect to the person who introduced such shipment or delivery into interstate...
21 CFR 201.150 - Drugs; processing, labeling, or repacking.
Code of Federal Regulations, 2013 CFR
2013-04-01
... part thereof, from such establishment, become void ab initio if the drug comprising such shipment... ab initio with respect to the person who introduced such shipment or delivery into interstate...
40 CFR 86.094-30 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., the Administrator may deem such certificate void ab initio. (4) In any case in which certification of... fraud or other misconduct as makes the certification invalid ab initio. (6) The manufacturer may request...
21 CFR 201.150 - Drugs; processing, labeling, or repacking.
Code of Federal Regulations, 2012 CFR
2012-04-01
... part thereof, from such establishment, become void ab initio if the drug comprising such shipment... ab initio with respect to the person who introduced such shipment or delivery into interstate...
21 CFR 201.150 - Drugs; processing, labeling, or repacking.
Code of Federal Regulations, 2011 CFR
2011-04-01
... part thereof, from such establishment, become void ab initio if the drug comprising such shipment... ab initio with respect to the person who introduced such shipment or delivery into interstate...
21 CFR 201.150 - Drugs; processing, labeling, or repacking.
Code of Federal Regulations, 2014 CFR
2014-04-01
... part thereof, from such establishment, become void ab initio if the drug comprising such shipment... ab initio with respect to the person who introduced such shipment or delivery into interstate...
NASA Astrophysics Data System (ADS)
Erkişi, Aytaç
2018-06-01
The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.
40 CFR 94.208 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ab initio. (5) In any case in which certification of an engine is to be withheld, denied, revoked or... makes the certification invalid ab initio. (7) The manufacturer may request, within 30 days of receiving...
40 CFR 92.208 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... such certificate void ab initio. (5) In any case in which certification of a locomotive or locomotive..., except in cases of such fraud or other misconduct that makes the certification invalid ab initio. (7) The...
40 CFR 94.208 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ab initio. (5) In any case in which certification of an engine is to be withheld, denied, revoked or... makes the certification invalid ab initio. (7) The manufacturer may request, within 30 days of receiving...
40 CFR 94.208 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ab initio. (5) In any case in which certification of an engine is to be withheld, denied, revoked or... makes the certification invalid ab initio. (7) The manufacturer may request, within 30 days of receiving...
40 CFR 92.208 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... such certificate void ab initio. (5) In any case in which certification of a locomotive or locomotive..., except in cases of such fraud or other misconduct that makes the certification invalid ab initio. (7) The...
40 CFR 94.208 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ab initio. (5) In any case in which certification of an engine is to be withheld, denied, revoked or... makes the certification invalid ab initio. (7) The manufacturer may request, within 30 days of receiving...
40 CFR 92.208 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... such certificate void ab initio. (5) In any case in which certification of a locomotive or locomotive..., except in cases of such fraud or other misconduct that makes the certification invalid ab initio. (7) The...
40 CFR 92.208 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... such certificate void ab initio. (5) In any case in which certification of a locomotive or locomotive..., except in cases of such fraud or other misconduct that makes the certification invalid ab initio. (7) The...
40 CFR 94.208 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ab initio. (5) In any case in which certification of an engine is to be withheld, denied, revoked or... makes the certification invalid ab initio. (7) The manufacturer may request, within 30 days of receiving...
Goodswen, Stephen J.; Kennedy, Paul J.; Ellis, John T.
2012-01-01
Next generation sequencing technology is advancing genome sequencing at an unprecedented level. By unravelling the code within a pathogen’s genome, every possible protein (prior to post-translational modifications) can theoretically be discovered, irrespective of life cycle stages and environmental stimuli. Now more than ever there is a great need for high-throughput ab initio gene finding. Ab initio gene finders use statistical models to predict genes and their exon-intron structures from the genome sequence alone. This paper evaluates whether existing ab initio gene finders can effectively predict genes to deduce proteins that have presently missed capture by laboratory techniques. An aim here is to identify possible patterns of prediction inaccuracies for gene finders as a whole irrespective of the target pathogen. All currently available ab initio gene finders are considered in the evaluation but only four fulfil high-throughput capability: AUGUSTUS, GeneMark_hmm, GlimmerHMM, and SNAP. These gene finders require training data specific to a target pathogen and consequently the evaluation results are inextricably linked to the availability and quality of the data. The pathogen, Toxoplasma gondii, is used to illustrate the evaluation methods. The results support current opinion that predicted exons by ab initio gene finders are inaccurate in the absence of experimental evidence. However, the results reveal some patterns of inaccuracy that are common to all gene finders and these inaccuracies may provide a focus area for future gene finder developers. PMID:23226328
Oka, M; Kamisaka, H; Fukumura, T; Hasegawa, T
2015-11-21
The oxygen ionic conduction in ZrO2 systems under tensile epitaxial strain was investigated by performing ab initio molecular dynamics (MD) calculations based on density functional theory (DFT) to elucidate the essential factors in the colossal ionic conductivity observed in the yttria stabilized ZrO2 (YSZ)/SrTiO3 heterostructure. Three factors were evaluated: lattice strain, oxygen vacancies, and dopants. Phonon calculations based on density functional perturbation theory (DFPT) were used to obtain the most stable structure for nondoped ZrO2 under 7% tensile strain along the a- and b-axes. This structure has the space group Pbcn, which is entirely different from that of cubic ZrO2, suggesting that previous ab initio MD calculations assuming cubic ZrO2 may have overestimated the ionic conductivity due to relaxation from the initial structure to the stable structure (Pbcn). Our MD calculations revealed that the ionic conductivity is enhanced only when tensile strain and oxygen vacancies are incorporated, although the presently obtained diffusion constant is far below the range for the colossal ionic conduction experimentally observed. The enhanced ionic conductivity is due to the combined effects of oxygen sublattice formation induced by strain and deformation of this sublattice by oxygen vacancies.
Consistent integration of experimental and ab initio data into molecular and coarse-grained models
NASA Astrophysics Data System (ADS)
Vlcek, Lukas
As computer simulations are increasingly used to complement or replace experiments, highly accurate descriptions of physical systems at different time and length scales are required to achieve realistic predictions. The questions of how to objectively measure model quality in relation to reference experimental or ab initio data, and how to transition seamlessly between different levels of resolution are therefore of prime interest. To address these issues, we use the concept of statistical distance to define a measure of similarity between statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the systems' measurable properties. Through systematic coarse-graining, we arrive at appropriate expressions for optimization loss functions consistently incorporating microscopic ab initio data as well as macroscopic experimental data. The design of coarse-grained and multiscale models is then based on factoring the model system partition function into terms describing the system at different resolution levels. The optimization algorithm takes advantage of thermodynamic perturbation expressions for fast exploration of the model parameter space, enabling us to scan millions of parameter combinations per hour on a single CPU. The robustness and generality of the new model optimization framework and its efficient implementation are illustrated on selected examples including aqueous solutions, magnetic systems, and metal alloys.
Yang, Jing; He, Bao-Ji; Jang, Richard; Zhang, Yang; Shen, Hong-Bin
2015-01-01
Abstract Motivation: Cysteine-rich proteins cover many important families in nature but there are currently no methods specifically designed for modeling the structure of these proteins. The accuracy of disulfide connectivity pattern prediction, particularly for the proteins of higher-order connections, e.g. >3 bonds, is too low to effectively assist structure assembly simulations. Results: We propose a new hierarchical order reduction protocol called Cyscon for disulfide-bonding prediction. The most confident disulfide bonds are first identified and bonding prediction is then focused on the remaining cysteine residues based on SVR training. Compared with purely machine learning-based approaches, Cyscon improved the average accuracy of connectivity pattern prediction by 21.9%. For proteins with more than 5 disulfide bonds, Cyscon improved the accuracy by 585% on the benchmark set of PDBCYS. When applied to 158 non-redundant cysteine-rich proteins, Cyscon predictions helped increase (or decrease) the TM-score (or RMSD) of the ab initio QUARK modeling by 12.1% (or 14.4%). This result demonstrates a new avenue to improve the ab initio structure modeling for cysteine-rich proteins. Availability and implementation: http://www.csbio.sjtu.edu.cn/bioinf/Cyscon/ Contact: zhng@umich.edu or hbshen@sjtu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26254435
Methane Adsorption in Zr-Based MOFs: Comparison and Critical Evaluation of Force Fields
2017-01-01
The search for nanoporous materials that are highly performing for gas storage and separation is one of the contemporary challenges in material design. The computational tools to aid these experimental efforts are widely available, and adsorption isotherms are routinely computed for huge sets of (hypothetical) frameworks. Clearly the computational results depend on the interactions between the adsorbed species and the adsorbent, which are commonly described using force fields. In this paper, an extensive comparison and in-depth investigation of several force fields from literature is reported for the case of methane adsorption in the Zr-based Metal–Organic Frameworks UiO-66, UiO-67, DUT-52, NU-1000, and MOF-808. Significant quantitative differences in the computed uptake are observed when comparing different force fields, but most qualitative features are common which suggests some predictive power of the simulations when it comes to these properties. More insight into the host–guest interactions is obtained by benchmarking the force fields with an extensive number of ab initio computed single molecule interaction energies. This analysis at the molecular level reveals that especially ab initio derived force fields perform well in reproducing the ab initio interaction energies. Finally, the high sensitivity of uptake predictions on the underlying potential energy surface is explored. PMID:29170687
77 FR 21154 - BNSF Railway Company-Abandonment Exemption-in Oklahoma County, OK
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... proceeding and reject BNSF's notice of exemption as void ab initio on the grounds that BNSF had provided... misleading information, the exemption is void ab initio. BNSF has filed a combined environmental and historic... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 6 (Sub-No. 480X)] BNSF...
NASA Astrophysics Data System (ADS)
Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel
2017-10-01
We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.
Physical–chemical determinants of coil conformations in globular proteins
Perskie, Lauren L; Rose, George D
2010-01-01
We present a method with the potential to generate a library of coil segments from first principles. Proteins are built from α-helices and/or β-strands interconnected by these coil segments. Here, we investigate the conformational determinants of short coil segments, with particular emphasis on chain turns. Toward this goal, we extracted a comprehensive set of two-, three-, and four-residue turns from X-ray–elucidated proteins and classified them by conformation. A remarkably small number of unique conformers account for most of this experimentally determined set, whereas remaining members span a large number of rare conformers, many occurring only once in the entire protein database. Factors determining conformation were identified via Metropolis Monte Carlo simulations devised to test the effectiveness of various energy terms. Simulated structures were validated by comparison to experimental counterparts. After filtering rare conformers, we found that 98% of the remaining experimentally determined turn population could be reproduced by applying a hydrogen bond energy term to an exhaustively generated ensemble of clash-free conformers in which no backbone polar group lacks a hydrogen-bond partner. Further, at least 90% of longer coil segments, ranging from 5- to 20 residues, were found to be structural composites of these shorter primitives. These results are pertinent to protein structure prediction, where approaches can be divided into either empirical or ab initio methods. Empirical methods use database-derived information; ab initio methods rely on physical–chemical principles exclusively. Replacing the database-derived coil library with one generated from first principles would transform any empirically based method into its corresponding ab initio homologue. PMID:20512968
21 CFR 701.9 - Exemptions from labeling requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., become void ab initio if the cosmetic comprising such shipment, delivery, or part is adulterated or... a cosmetic under paragraph (a)(2) of this section shall become void ab initio with respect to the...
Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism
2011-10-01
Zinc Oxide ( ZnO ) Nanostars: Synthesis and Simulation of Growth Mechanism Jinhyun Cho1, Qiubao Lin2,3, Sungwoo...characterization, and ab initio simulations of star-shaped hexagonal zinc oxide ( ZnO ) nanowires. The ZnO nanostructures were synthesized by a low...Introduction Zinc oxide ( ZnO ) is a wide bandgap (3.37 eV), Ⅱ–Ⅵ semiconductor of great interest for optoelectronic applications [1–3]. Its
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strubbe, David
Octopus is a scientific program aimed at the ab initio virtual experimentation on a hopefully ever-increasing range of system types. Electrons are described quantum-mechanically within density-functional theory (DFT), in its time-dependent form (TDDFT) when doing simulations in time. Nuclei are described classically as point particles. Electron-nucleus interaction is described within the pseudopotential approximation.
Parkes, Marie V.; Greathouse, Jeffery A.; Hart, David B.; ...
2016-04-04
The separation of oxygen from nitrogen using metal–organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O 2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O 2 and N 2 in the M 2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. Lastly, this unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize themore » process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.« less
NASA Astrophysics Data System (ADS)
VandeVondele, Joost; Rothlisberger, Ursula
2000-09-01
We present a method for calculating multidimensional free energy surfaces within the limited time scale of a first-principles molecular dynamics scheme. The sampling efficiency is enhanced using selected terms of a classical force field as a bias potential. This simple procedure yields a very substantial increase in sampling accuracy while retaining the high quality of the underlying ab initio potential surface and can thus be used for a parameter free calculation of free energy surfaces. The success of the method is demonstrated by the applications to two gas phase molecules, ethane and peroxynitrous acid, as test case systems. A statistical analysis of the results shows that the entire free energy landscape is well converged within a 40 ps simulation at 500 K, even for a system with barriers as high as 15 kcal/mol.
Mignolet, Benoit; Curchod, Basile F. E.; Martinez, Todd J.
2016-11-17
Attoscience is an emerging field where attosecond pulses or few cycle IR pulses are used to pump and probe the correlated electron-nuclear motion of molecules. We present the trajectory-guided eXternal Field Ab Initio Multiple Spawning (XFAIMS) method that models such experiments “on-the-fly,” from laser pulse excitation to fragmentation or nonadiabatic relaxation to the ground electronic state. For the photoexcitation of the LiH molecule, we show that XFAIMS gives results in close agreement with numerically exact quantum dynamics simulations, both for atto- and femtosecond laser pulses. As a result, we then show the ability of XFAIMS to model the dynamics inmore » polyatomic molecules by studying the effect of nuclear motion on the photoexcitation of a sulfine (H 2CSO).« less
Ab initio molecular dynamics of the reactivity of vitamin C toward hydroxyl and HO₂/O⁻₂ radicals.
Lespade, Laure
2017-11-21
Vitamin C is one of the most abundant exogenous antioxidants in the cell, and it is of the utmost importance to elucidate its mechanism of action against radicals. In this study, the reactivity of vitamin C toward OH and [Formula: see text] radicals in aqueous medium was analyzed by ab initio molecular dynamics using CPMD code. The simulations led to results similar to those of static studies or experiments for the pair of [Formula: see text] radicals but bring new insights for the reactivity with hydroxyl radical: the reaction takes place before the formation of an adduct and consists of two steps: first an electron is transferred to hydroxyl radical and then the ascorbyl radical loses a proton. Graphical Abstract Reactivity of vitamin C toward hydroxyl and [Formula: see text] radicals.
Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC
NASA Astrophysics Data System (ADS)
Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina
2016-11-01
New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.
NASA Astrophysics Data System (ADS)
de Lara-Castells, María Pilar; Aguirre, Néstor F.; Stoll, Hermann; Mitrushchenkov, Alexander O.; Mateo, David; Pi, Martí
2015-04-01
An ab-initio-based methodological scheme for He-surface interactions and zero-temperature time-dependent density functional theory for superfluid 4He droplets motion are combined to follow the short-time collision dynamics of the Au@4He300 system with the TiO2(110) surface. This composite approach demonstrates the 4He droplet-assisted sticking of the metal species to the surface at low landing energy (below 0.15 eV/atom), thus providing the first theoretical evidence of the experimentally observed 4He droplet-mediated soft-landing deposition of metal nanoparticles on solid surfaces [Mozhayskiy et al., J. Chem. Phys. 127, 094701 (2007) and Loginov et al., J. Phys. Chem. A 115, 7199 (2011)].
21 CFR 801.150 - Medical devices; processing, labeling, or repacking.
Code of Federal Regulations, 2010 CFR
2010-04-01
... such shipment or delivery, or any part thereof, from such establishment, become void ab initio if the...)(2) of this section shall become void ab initio with respect to the person who introduced such...
40 CFR 86.442-78 - Denial, revocation, or suspension of certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ab initio. (d) In any case in which certification of a vehicle is proposed to be withheld, denied... fraud or other misconduct as makes the certification invalid ab initio. (f) The manufacturer may request...
40 CFR 86.442-78 - Denial, revocation, or suspension of certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ab initio. (d) In any case in which certification of a vehicle is proposed to be withheld, denied... fraud or other misconduct as makes the certification invalid ab initio. (f) The manufacturer may request...
40 CFR 86.442-78 - Denial, revocation, or suspension of certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ab initio. (d) In any case in which certification of a vehicle is proposed to be withheld, denied... fraud or other misconduct as makes the certification invalid ab initio. (f) The manufacturer may request...
40 CFR 86.442-78 - Denial, revocation, or suspension of certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ab initio. (d) In any case in which certification of a vehicle is proposed to be withheld, denied... fraud or other misconduct as makes the certification invalid ab initio. (f) The manufacturer may request...
40 CFR 86.442-78 - Denial, revocation, or suspension of certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ab initio. (d) In any case in which certification of a vehicle is proposed to be withheld, denied... fraud or other misconduct as makes the certification invalid ab initio. (f) The manufacturer may request...
21 CFR 501.100 - Animal food; exemptions from labeling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... become void ab initio if the food comprising such shipment, delivery, or part is adulterated or... a food under paragraph (d)(2) of this section shall become void ab initio with respect to the person...
21 CFR 801.150 - Medical devices; processing, labeling, or repacking.
Code of Federal Regulations, 2014 CFR
2014-04-01
... such shipment or delivery, or any part thereof, from such establishment, become void ab initio if the...)(2) of this section shall become void ab initio with respect to the person who introduced such...
21 CFR 801.150 - Medical devices; processing, labeling, or repacking.
Code of Federal Regulations, 2011 CFR
2011-04-01
... such shipment or delivery, or any part thereof, from such establishment, become void ab initio if the...)(2) of this section shall become void ab initio with respect to the person who introduced such...
21 CFR 801.150 - Medical devices; processing, labeling, or repacking.
Code of Federal Regulations, 2012 CFR
2012-04-01
... such shipment or delivery, or any part thereof, from such establishment, become void ab initio if the...)(2) of this section shall become void ab initio with respect to the person who introduced such...
21 CFR 801.150 - Medical devices; processing, labeling, or repacking.
Code of Federal Regulations, 2013 CFR
2013-04-01
... such shipment or delivery, or any part thereof, from such establishment, become void ab initio if the...)(2) of this section shall become void ab initio with respect to the person who introduced such...
Many-body optimization using an ab initio monte carlo method.
Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J
2003-01-01
Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.
Accelerated path-integral simulations using ring-polymer interpolation
NASA Astrophysics Data System (ADS)
Buxton, Samuel J.; Habershon, Scott
2017-12-01
Imaginary-time path-integral (PI) molecular simulations can be used to calculate exact quantum statistical mechanical properties for complex systems containing many interacting atoms and molecules. The limiting computational factor in a PI simulation is typically the evaluation of the potential energy surface (PES) and forces at each ring-polymer "bead"; for an n-bead ring-polymer, a PI simulation is typically n times greater than the corresponding classical simulation. To address the increased computational effort of PI simulations, several approaches have been developed recently, most notably based on the idea of ring-polymer contraction which exploits either the separation of the PES into short-range and long-range contributions or the availability of a computationally inexpensive PES which can be incorporated to effectively smooth the ring-polymer PES; neither approach is satisfactory in applications to systems modeled by PESs given by on-the-fly ab initio calculations. In this article, we describe a new method, ring-polymer interpolation (RPI), which can be used to accelerate PI simulations without any prior assumptions about the PES. In simulations of liquid water modeled by an empirical PES (or force field) under ambient conditions, where quantum effects are known to play a subtle role in influencing experimental observables such as radial distribution functions, we find that RPI can accurately reproduce the results of fully-converged PI simulations, albeit with far fewer PES evaluations. This approach therefore opens the possibility of large-scale PI simulations using ab initio PESs evaluated on-the-fly without the drawbacks of current methods.
Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Grossman, JC
2014-12-01
Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less
Ab initio velocity-field curves in monoclinic β-Ga2O3
NASA Astrophysics Data System (ADS)
Ghosh, Krishnendu; Singisetti, Uttam
2017-07-01
We investigate the high-field transport in monoclinic β-Ga2O3 using a combination of ab initio calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B 76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rotations are done on a fine mesh. This paper reports the high field transport in monoclinic β-Ga2O3 with deep insight into the contribution of electron-phonon interactions and velocity-field characteristics for electric fields ranging up to 450 kV/cm in different crystal directions. A peak velocity of 2 × 107 cm/s is estimated at an electric field of 200 kV/cm.
Adsorption Behavior of Rare Earth Metal Cations in the Interlayer Space of γ-ZrP.
Takei, Takahiro; Iidzuka, Kiyoaki; Miura, Akira; Yanagida, Sayaka; Kumada, Nobuhiro; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro
2016-10-04
Adsorption competencies of rare earth metal cations in γ-zirconium phosphate were examined by ICP, synchrotron X-ray diffraction (SXRD), and ab initio simulation. The adsorption amounts are around 0.06-0.10 per zirconium phosphate. From the SXRD patterns of the adsorbed samples, the basal spacing estimated by c sin β increased linearly with an increasing ionic radius of rare earth metal cation, though a and b lattice constants show no change. These SXRD patterns can be classified into four groups that have different super lattices. The four superlattices have multiplicities of x131, x241, and x221 for the xabc axis, and the location of the rare earth metal cation in the original unit cell changes depending on the superlattice cell. In the x131 superlattice, Yb and Er occupied the site near the zirconium phosphate layer, though La and Ce in the x221 superlattice remained in the center position between the phosphate sheet. For the ab initio simulation of γ-ZrP with the typical rare earth metal cations (Tb, Eu, Dy, and La), the results of simulation show a similar tendency of the position estimated by SXRD refinements.
NASA Astrophysics Data System (ADS)
Moloto, K. D.; Engelbrecht, N. E.; Burger, R. A.
2018-06-01
A simplified ab initio approach is followed to model cosmic-ray proton modulation, using a steady-state three-dimensional stochastic solver of the Parker transport equation that simulates some effects of time dependence. Standard diffusion coefficients based on Quasilinear Theory and Nonlinear Guiding Center Theory are employed. The spatial and temporal dependences of the various turbulence quantities required as inputs for the diffusion, as well as the turbulence-reduced drift coefficients, follow from parametric fits to results from a turbulence transport model as well as from spacecraft observations of these turbulence quantities. Effective values are used for the solar wind speed, magnetic field magnitude, and tilt angle in the modulation model to simulate temporal effects due to changes in the large-scale heliospheric plasma. The unusually high cosmic-ray intensities observed during the 2009 solar minimum follow naturally from the current model for most of the energies considered. This demonstrates that changes in turbulence contribute significantly to the high intensities during that solar minimum. We also discuss and illustrate how this model can be used to predict future cosmic-ray intensities, and comment on the reliability of such predictions.
NASA Astrophysics Data System (ADS)
Petersen, John; Spinks, Michael; Borges, Pablo; Scolfaro, Luisa
2012-03-01
Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric (TE) properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity, with a possible application being in engine exhaust. Here, we examine the effects of altering the lattice parameter on total ground state energy and the band gap using first principles calculations performed within Density Functional Theory and the Projector Augmented Wave approach and the Vienna Ab-initio Simulation Package (VASP-PAW) code. Both PbTe and PbSe, in NaCl, orthorhombic, and CsCl structures are considered. It is found that altering the lattice parameter, which is analogous to applying external pressure on the material experimentally, has notable effects on both ground state energy and the band gap. The implications of this behavior in the TE properties of these materials are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocak, Belgin, E-mail: koakbelgin@gmail.com; Ciftci, Yasemin Oztekin, E-mail: yasemin@gazi.edu.tr
2016-03-25
The structural, electronic band structure and optic properties of the Ni doped MgSiP{sub 2} chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard’s law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions ofmore » Ni doped MgSiP{sub 2}. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.« less
Ab Initio: And a New Era of Airline Pilot Training.
ERIC Educational Resources Information Center
Gesell, Laurence E.
1995-01-01
Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)
Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-06-01
The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.
Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Accurate ab initio quartic force fields for borane and BeH2
NASA Technical Reports Server (NTRS)
Martin, J. M. L.; Lee, Timothy J.
1992-01-01
The quartic force fields of BH3 and BeH2 have been computed ab initio using an augmented coupled cluster (CCSD(T)) method and basis sets of spdf and spdfg quality. For BH3, the computed spectroscopic constants are in very good agreement with recent experimental data, and definitively confirm misassignments in some older work, in agreement with recent ab initio studies. Using the computed spectroscopic constants, the rovibrational partition function for both molecules has been constructed using a modified direct numerical summation algorithm, and JANAF-style thermochemical tables are presented.
NASA Astrophysics Data System (ADS)
Gornostyrev, Yu. N.; Katsnelson, M. I.; Mryasov, Oleg N.; Freeman, A. J.; Trefilov, M. V.
1998-03-01
Theoretical analysis of the fracture behaviour of fcc Au, Ir and Al have been performed within various brittle/ductile criteria (BDC) with ab-initio, embedded atom (EAM), and pseudopotential parameterizations. We systematically examined several important aspects of the fracture behaviour: (i) dislocation structure, (ii) energetics of the cleavage decohesion and (iii) character of the interatomic interactions. Unit dislocation structures were analyzed within a two dimensional generalization of the Peierls-Nabarro model with restoring forces determined from ab-initio total energy calculations and found to be split with well defined highly mobile partials for all considered metals. We find from ab-initio and pseudopotential that in contrast with most of fcc metals, cleavage decohesion curve for Al appreciably differs from UBER relation. Finally, using ab-initio, EAM and pseudopotential parameterizations, we demonstrate that (i) Au (as a typical example of a ductile metal) is well described within existing BDC's, (ii) anomalous cleavage-like crack propagation of Ir is driven predominantly by it's high elastic modulus and (iii) Al is not described within BDC due to it's long-range interatomic interactions (and hence requires adjustments of the brittle/ductile criteria).
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian
2017-01-01
Abstract Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Contact: deane@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28453681
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian; Deane, Charlotte M
2017-05-01
Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Steel — ab Initio: Quantum Mechanics Guided Design of New Fe-Based Materials
NASA Astrophysics Data System (ADS)
Prahl, Ulrich; Bleck, Wolfgang; Saeed-Akbari, Alireza
This contribution reports the results of the collaborative research unit SFB 761 "Steel — ab initio", a cooperative project between RWTH Aachen University and the Max-Planck-Institute for Iron Research in Düsseldorf (MPIE) financed by the German Research Foundation (DFG). For the first time, it is exploited how ab initio approaches may lead to a detailed understanding and thus to a specific improvement of material development. The challenge lies in the combination of abstract natural science theories with rather engineering-like established concepts. Aiming at the technological target of the development of a new type of structural materials based on Fe-Mn-C alloys, the combination of ab initio and engineering methods is new, but could be followed quite successfully. Three major topics are treated in this research unit: a) development of a new method for material- and process-development based on ab initio calculations; b) design of a new class of structural materials with extraordinary property combinations; c) acceleration of development time and reduction of experimental efforts and complexity for material- and process-development. In the present work, an overview of the results of the first five years as well as an outlook for the upcoming three-year period is given.
Antipova, Valeriya N; Zheleznaya, Lyudmila A; Zyrina, Nadezhda V
2014-08-01
In the absence of added DNA, thermophilic DNA polymerases synthesize double-stranded DNA from free dNTPs, which consist of numerous repetitive units (ab initio DNA synthesis). The addition of thermophilic restriction endonuclease (REase), or nicking endonuclease (NEase), effectively stimulates ab initio DNA synthesis and determines the nucleotide sequence of reaction products. We have found that NEases Nt.AlwI, Nb.BbvCI, and Nb.BsmI with non-palindromic recognition sites stimulate the synthesis of sequences organized mainly as palindromes. Moreover, the nucleotide sequence of the palindromes appeared to be dependent on NEase recognition/cleavage modes. Thus, the heterodimeric Nb.BbvCI stimulated the synthesis of palindromes composed of two recognition sites of this NEase, which were separated by AT-reach sequences or (A)n (T)m spacers. Palindromic DNA sequences obtained in the ab initio DNA synthesis with the monomeric NEases Nb.BsmI and Nt.AlwI contained, along with the sites of these NEases, randomly synthesized sequences consisted of blocks of short repeats. These findings could help investigation of the potential abilities of highly productive ab initio DNA synthesis for the creation of DNA molecules with desirable sequence. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Born-Oppenheimer ab initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions
Zhou, Yanzi; Wang, Shenglong; Li, Yongle; Zhang, Yingkai
2016-01-01
There are two key requirements for reliably simulating enzyme reactions: one is a reasonably accurate potential energy surface to describe the bond forming/breaking process as well as to adequately model the heterogeneous enzyme environment; the other is to perform extensive sampling since an enzyme system consists of at least thousands of atoms and its energy landscape is very complex. One attractive approach to meet both daunting tasks is Born-Oppenheimer ab initio QM/MM molecular dynamics simulation (aiQM/MM-MD) with umbrella sampling. In this chapter, we describe our recently developed pseudobond Q-Chem–Amber interface, which employs a combined electrostatic-mechanical embedding scheme with periodic boundary condition and the particle mesh Ewald method for long-range electrostatics interactions. In our implementation, Q-Chem and the sander module of Amber are combined at the source code level without using system calls, and all necessary data communications between QM and MM calculations are achieved via computer memory. We demonstrate the applicability of this pseudobond Q-Chem–Amber interface by presenting two examples, one reaction in aqueous solution and one enzyme reaction. Finally, we describe our established aiQM/MM-MD enzyme simulation protocol, which has been successfully applied to study more than a dozen enzymes. PMID:27498636
Temperature scaling method for Markov chains.
Crosby, Lonnie D; Windus, Theresa L
2009-01-22
The use of ab initio potentials in Monte Carlo simulations aimed at investigating the nucleation kinetics of water clusters is complicated by the computational expense of the potential energy determinations. Furthermore, the common desire to investigate the temperature dependence of kinetic properties leads to an urgent need to reduce the expense of performing simulations at many different temperatures. A method is detailed that allows a Markov chain (obtained via Monte Carlo) at one temperature to be scaled to other temperatures of interest without the need to perform additional large simulations. This Markov chain temperature-scaling (TeS) can be generally applied to simulations geared for numerous applications. This paper shows the quality of results which can be obtained by TeS and the possible quantities which may be extracted from scaled Markov chains. Results are obtained for a 1-D analytical potential for which the exact solutions are known. Also, this method is applied to water clusters consisting of between 2 and 5 monomers, using Dynamical Nucleation Theory to determine the evaporation rate constant for monomer loss. Although ab initio potentials are not utilized in this paper, the benefit of this method is made apparent by using the Dang-Chang polarizable classical potential for water to obtain statistical properties at various temperatures.
Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations.
Lei, Hongxing; Wu, Chun; Liu, Haiguang; Duan, Yong
2007-03-20
High-accuracy ab initio folding has remained an elusive objective despite decades of effort. To explore the folding landscape of villin headpiece subdomain HP35, we conducted two sets of replica exchange molecular dynamics for 200 ns each and three sets of conventional microsecond-long molecular dynamics simulations, using AMBER FF03 force field and a generalized-Born solvation model. The protein folded consistently to the native state; the lowest C(alpha)-rmsd from the x-ray structure was 0.46 A, and the C(alpha)- rmsd of the center of the most populated cluster was 1.78 A at 300 K. ab initio simulations have previously not reached this level. The folding landscape of HP35 can be partitioned into the native, denatured, and two intermediate-state regions. The native state is separated from the major folding intermediate state by a small barrier, whereas a large barrier exists between the major folding intermediate and the denatured states. The melting temperature T(m) = 339 K extracted from the heat-capacity profile was in close agreement with the experimentally derived T(m) = 342 K. A comprehensive picture of the kinetics and thermodynamics of HP35 folding emerges when the results from replica exchange and conventional molecular dynamics simulations are combined.
NASA Astrophysics Data System (ADS)
Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.
2016-07-01
Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and coordination numbers); radial distribution functions for all O-Ti pairs over the entire data domain; comparison of coordination number distributions for dry and wet nanoparticles; dynamics of water reactivity; high-resolution electron density for the rutile NP. A movie of the simulation trajectory for the rutile (TiO2)24.30H2O system. See DOI: 10.1039/C6NR02791A
Cresswell, Alexander J; Wheatley, Richard J; Wilkinson, Richard D; Graham, Richard S
2016-10-20
Impurities from the CCS chain can greatly influence the physical properties of CO 2 . This has important design, safety and cost implications for the compression, transport and storage of CO 2 . There is an urgent need to understand and predict the properties of impure CO 2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO 2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO 2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO 2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO 2 binary mixtures with N 2 , O 2 , Ar and H 2 . A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO 2 and relevant impurities, taking N 2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately predict a much broader set of ab initio force-field calculations at comparatively low numerical cost. Although our method is not yet ready to be implemented in a molecular simulation, we outline the necessary steps here. Such simulations have the potential to deliver first-principles simulation of the thermodynamic properties of impure CO 2 , without fitting to experimental data.
Multiscale Reactive Molecular Dynamics
2012-08-15
biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system ...coupling to slower, cooperative motions of the system . These inherently multiscale problems require computationally efficient and accurate methods to...condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus
Convergence acceleration of molecular dynamics methods for shocked materials using velocity scaling
NASA Astrophysics Data System (ADS)
Taylor, DeCarlos E.
2017-03-01
In this work, a convergence acceleration method applicable to extended system molecular dynamics techniques for shock simulations of materials is presented. The method uses velocity scaling to reduce the instantaneous value of the Rankine-Hugoniot conservation of energy constraint used in extended system molecular dynamics methods to more rapidly drive the system towards a converged Hugoniot state. When used in conjunction with the constant stress Hugoniostat method, the velocity scaled trajectories show faster convergence to the final Hugoniot state with little difference observed in the converged Hugoniot energy, pressure, volume and temperature. A derivation of the scale factor is presented and the performance of the technique is demonstrated using the boron carbide armour ceramic as a test material. It is shown that simulation of boron carbide Hugoniot states, from 5 to 20 GPa, using both a classical Tersoff potential and an ab initio density functional, are more rapidly convergent when the velocity scaling algorithm is applied. The accelerated convergence afforded by the current algorithm enables more rapid determination of Hugoniot states thus reducing the computational demand of such studies when using expensive ab initio or classical potentials.
NASA Astrophysics Data System (ADS)
Landa, Alex; Wynblatt, Paul; Siegel, Donald; Adams, Jim; Johnson, Erik; Dahmen, Uli
2000-03-01
Empirical many-body potentials have been constructed for the Al-Pb system using the ``force matching" method. The potentials have been fitted to a set of the ground state physical quantities calculated within ab initio approach and a massive quantum mechanical forces database for samples of bulk Al-Pb liquid alloys generated using ab initio molecular dynamics program VASP. Monte Carlo simulations using these potentials have been employed to compute an Al-Pb phase diagram, which is in fair agreement with experimental data, and to model the structure of (111) and (100) Pb/Al interfaces. The calculated free energy ratios for the Pb/Al 100 and 111 interfaces are in good agreement with recent high-resolution transmission electron microscopy measurements. The constructed glue potentials correctly reflects the large change in anisotropy which is observed experimentally between isolated Pb crystals and Pb crystals embedded in Al. Support by the DOE under grants DE-FG02-99ER45773 and DE-AC03-76SF00098, the NSF under grant DMR9619353 and the Danish Natural Sciences Research Council.
Atomic and electronic structure of Pd40Ni40P20 bulk metallic glass from ab initio simulations
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Fujita, T.; Konno, K.; Matsuura, M.; Chen, M. W.; Inoue, A.; Kawazoe, Y.
2011-10-01
The atomic structure of Pd40Ni40P20 bulk metallic glass has been simulated using an ab initio molecular dynamics method with projector-augmented wave pseudopotentials for electron-ion interaction and generalized gradient approximation for exchange-correlation energy. The calculated extended x-ray absorption fine structure (EXAFS) spectra of Pd-K and Ni-K edges, the mass density, and the electronic structure agree remarkably well with the available experimental data and the EXAFS spectra measured at the SPring-8 synchrotron radiation facility. Our results show that the atomic structure can be described in terms of P-centered polyhedra. There are no two P atoms that are nearest neighbors at this composition, and this could be a reason for the observed optimal P concentration of about 20 at.%. The neighboring polyhedra share metal (M) atoms and form a polar covalently bonded random network of P-M-P favoring certain angles. The remaining M atoms act as metallic glue with a tendency of nanoscale clustering of Pd-Pd and Ni-Ni atoms.
A new energy transfer channel from carotenoids to chlorophylls in purple bacteria.
Feng, Jin; Tseng, Chi-Wei; Chen, Tingwei; Leng, Xia; Yin, Huabing; Cheng, Yuan-Chung; Rohlfing, Michael; Ma, Yuchen
2017-07-10
It is unclear whether there is an intermediate dark state between the S 2 and S 1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A g + state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.Carotenoids harvest energy from light and transfer it to chlorophylls during photosynthesis. Here, Feng et al. perform ab initio calculations on excited-state dynamics and simulated 2D electronic spectrum of carotenoids, supporting the existence of a new excited state in carotenoids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starrett, C. E.; Saumon, D.
Here, we present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. And while the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method ismore » validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We also calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.« less
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, E; Kowalski, Karol
The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less
The linearly scaling 3D fragment method for large scale electronic structure calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zhengji; Meza, Juan; Lee, Byounghak
2009-07-28
The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) atmore » OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.« less
The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zhengji; Meza, Juan; Lee, Byounghak
2009-06-26
The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) atmore » OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.« less
Nonlocal response with local optics
NASA Astrophysics Data System (ADS)
Kong, Jiantao; Shvonski, Alexander J.; Kempa, Krzysztof
2018-04-01
For plasmonic systems too small for classical, local simulations to be valid, but too large for ab initio calculations to be computationally feasible, we developed a practical approach—a nonlocal-to-local mapping that enables the use of a modified local system to obtain the response due to nonlocal effects to lowest order, at the cost of higher structural complexity. In this approach, the nonlocal surface region of a metallic structure is mapped onto a local dielectric film, mathematically preserving the nonlocality of the entire system. The most significant feature of this approach is its full compatibility with conventional, highly efficient finite difference time domain (FDTD) simulation codes. Our optimized choice of mapping is based on the Feibelman's d -function formalism, and it produces an effective dielectric function of the local film that obeys all required sum rules, as well as the Kramers-Kronig causality relations. We demonstrate the power of our approach combined with an FDTD scheme, in a series of comparisons with experiments and ab initio density functional theory calculations from the literature, for structures with dimensions from the subnanoscopic to microscopic range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, H.; LaRue, J.; Oberg, H.
2015-04-16
We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distributionmore » and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.« less
Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori
2016-12-14
NH 3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH 3 from atmospheric N 2 and oceanic H 2 O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH 3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH 3 . Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N 2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.
Roy, Ahin; Amin, Kazi Rafsanjani; Tripathi, Shalini; Biswas, Sangram; Singh, Abhishek K; Bid, Aveek; Ravishankar, N
2017-06-14
Band structure engineering is a powerful technique both for the design of new semiconductor materials and for imparting new functionalities to existing ones. In this article, we present a novel and versatile technique to achieve this by surface adsorption on low dimensional systems. As a specific example, we demonstrate, through detailed experiments and ab initio simulations, the controlled modification of band structure in ultrathin Te nanowires due to NO 2 adsorption. Measurements of the temperature dependence of resistivity of single ultrathin Te nanowire field-effect transistor (FET) devices exposed to increasing amounts of NO 2 reveal a gradual transition from a semiconducting to a metallic state. Gradual quenching of vibrational Raman modes of Te with increasing concentration of NO 2 supports the appearance of a metallic state in NO 2 adsorbed Te. Ab initio simulations attribute these observations to the appearance of midgap states in NO 2 adsorbed Te nanowires. Our results provide fundamental insights into the effects of ambient on the electronic structures of low-dimensional materials and can be exploited for designing novel chemical sensors.
Efficient calculation of the energy of a molecule in an arbitrary electric field
NASA Astrophysics Data System (ADS)
Pulay, Peter; Janowski, Tomasz
In thermodynamic (e.g., Monte Carlo) simulations with electronic embedding, the energy of the active site or solute must be calculated for millions of configurations of the environment (solvent or protein matrix) to obtain reliable statistics. This precludes the use of accurate but expensive ab initio and density functional techniques. Except for the immediate neighbors, the effect of the environment is electrostatic. We show that the energy of a molecule in the irregular field of the environment can be determined very efficiently by expanding the electric potential in known functions, and precalculating the first and second order response of the molecule to the components of the potential. These generalized multipole moments and polarizabilities allow the calculation of the energy of the system without further ab initio calculations. Several expansion functions were explored: polynomials, distributed inverse powers, and sine functions. The latter provide the numerically most stable fit but require new types of integrals. Distributed inverse powers can be simulated using dummy atoms, and energies calculated this way provide a very good approximation to the actual energies in the field of the environment.
NASA Astrophysics Data System (ADS)
Chen, Chen; Arntsen, Christopher; Voth, Gregory A.
2017-10-01
Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.
Ab initio modeling of steady-state and time-dependent charge transport in hole-only α-NPD devices
NASA Astrophysics Data System (ADS)
Liu, Feilong; Massé, Andrea; Friederich, Pascal; Symalla, Franz; Nitsche, Robert; Wenzel, Wolfgang; Coehoorn, Reinder; Bobbert, Peter A.
2016-12-01
We present an ab initio modeling study of steady-state and time-dependent charge transport in hole-only devices of the amorphous molecular semiconductor α-NPD [N ,N'-Di(1 -naphthyl)-N ,N'-diphenyl-(1 ,1'-biphenyl)-4 ,4'-diamine] . The study is based on the microscopic information obtained from atomistic simulations of the morphology and density functional theory calculations of the molecular hole energies, reorganization energies, and transfer integrals. Using stochastic approaches, the microscopic information obtained in simulation boxes at a length scale of ˜10 nm is expanded and employed in one-dimensional (1D) and three-dimensional (3D) master-equation modeling of the charge transport at the device scale of ˜100 nm. Without any fit parameter, predicted current density-voltage and impedance spectroscopy data obtained with the 3D modeling are in very good agreement with measured data on devices with different α-NPD layer thicknesses in a wide range of temperatures, bias voltages, and frequencies. Similarly good results are obtained with the computationally much more efficient 1D modeling after optimizing a hopping prefactor.
Classical and ab-initio simulations of hydrogen in the dissociating regime
NASA Astrophysics Data System (ADS)
Clerouin, Jean; Blottiau, Patrick; Bernard, Stephane; Dufreche, Jean-Francois
1999-11-01
Recent experiments on shock compressed hydrogen ( L. B. Da Silva, P. Cellires, G. W. Collins., et al., Physical Review Letters 78, 483-486 (1997).) have motivated a large number of theoretical studies to try to reproduce the experimental Hugoniot data. In spite of the simplicity of the hydrogen molecule, a precise description of its dissociation under pressure and temperature is still missing. Here, we compare three different approaches: the empirical Ross model (M. Ross, Physical Review B 58, 669-677 (1998).) which reproduces the experimental data, a classical molecular dynamics model, which allows for the computation of transport coefficients such as the viscosity footnote J. F. Dufreche and J. Clerouin, Physical Review E , submitted (1999). and ab initio simulations for a detailed description of the dissociation process. This comparison reveals that in the region [0.1 g/cm^3< ρ< 1g/cm^3, 2000K
NASA Technical Reports Server (NTRS)
Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel
2018-04-05
Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.
2006-08-15
In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predictingmore » acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.« less
Equation of state of paramagnetic CrN from ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Steneteg, Peter; Alling, Björn; Abrikosov, Igor A.
2012-04-01
The equation of state for chromium nitride has been debated in the literature in connection with a proposed collapse of its bulk modulus following the pressure-induced transition from the paramagnetic cubic phase to the antiferromagnetic orthorhombic phase [F. Rivadulla , Nature Mater.1476-112210.1038/nmat2549 8, 947 (2009); B. Alling , Nature Mater.1476-112210.1038/nmat2722 9, 283 (2010)]. Experimentally the measurements are complicated due to the low transition pressure, while theoretically the simulation of magnetic disorder represents a major challenge. Here a first-principles method is suggested for the calculation of thermodynamic properties of magnetic materials in their high-temperature paramagnetic phase. It is based on ab initio molecular dynamics and simultaneous redistributions of the disordered but finite local magnetic moments. We apply this disordered local moments molecular dynamics method to the case of CrN and simulate its equation of state. In particular the debated bulk modulus is calculated in the paramagnetic cubic phase and is shown to be very similar to that of the antiferromagnetic orthorhombic CrN phase for all considered temperatures.
Machine Learning of Accurate Energy-Conserving Molecular Force Fields
NASA Astrophysics Data System (ADS)
Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel; Poltavsky, Igor; Schütt, Kristof; Müller, Klaus-Robert; GDML Collaboration
Efficient and accurate access to the Born-Oppenheimer potential energy surface (PES) is essential for long time scale molecular dynamics (MD) simulations. Using conservation of energy - a fundamental property of closed classical and quantum mechanical systems - we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio MD trajectories (AIMD). The GDML implementation is able to reproduce global potential-energy surfaces of intermediate-size molecules with an accuracy of 0.3 kcal/mol for energies and 1 kcal/mol/Å for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, malonaldehyde, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative MD simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.
Trumm, Michael; Martínez, Yansel Omar Guerrero; Réal, Florent; Masella, Michel; Vallet, Valérie; Schimmelpfennig, Bernd
2012-01-28
In this work, we investigate the hydration of the halide ions fluoride, chloride, and bromide using classical molecular dynamics simulations at the 10 ns scale and based on a polarizable force-field approach, which treats explicitly the cooperative bond character of strong hydrogen bond networks. We have carried out a thorough analysis of the ab initio data at the MP2 or CCSD(T) level concerning anion/water clusters in gas phase to adjust the force-field parameters. In particular, we consider the anion static polarizabilities computed in gas phase using large atomic basis sets including additional diffuse functions. The information extracted from trajectories in solution shows well structured first hydration shells formed of 6.7, 7.0, and 7.6 water molecules at about 2.78 Å, 3.15 Å, and 3.36 Å for fluoride, chloride, and bromide, respectively. These results are in excellent agreement with the latest neutron- and x-ray diffraction studies. In addition, our model reproduces several other properties of halide ions in solution, such as diffusion coefficients, description of hydration processes, and exchange reactions. Moreover, it is also able to reproduce the electrostatic properties of the anions in solution (in terms of anion dipole moment) as reported by recent ab initio quantum simulations. All the results show the ability of the proposed model in predicting data, as well as the need of accounting explicitly for the cooperative character of strong hydrogen bonds to reproduce ab initio potential energy surfaces in a mean square sense and to build up a reliable force field. © 2012 American Institute of Physics
Integration of QUARK and I-TASSER for ab initio protein structure prediction in CASP11
Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang
2015-01-01
We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score=0.736 and RMSD=2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. PMID:26370505
Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang
2016-09-01
We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score = 0.736 and RMSD = 2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. Proteins 2016; 84(Suppl 1):76-86. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nikitin, A. V.; Rey, M.; Champion, J. P.; Tyuterev, Vl. G.
2012-07-01
The MIRS software for the modeling of ro-vibrational spectra of polyatomic molecules was considerably extended and improved. The original version [Nikitin AV, Champion JP, Tyuterev VlG. The MIRS computer package for modeling the rovibrational spectra of polyatomic molecules. J Quant Spectrosc Radiat Transf 2003;82:239-49.] was especially designed for separate or simultaneous treatments of complex band systems of polyatomic molecules. It was set up in the frame of effective polyad models by using algorithms based on advanced group theory algebra to take full account of symmetry properties. It has been successfully used for predictions and data fitting (positions and intensities) of numerous spectra of symmetric and spherical top molecules within the vibration extrapolation scheme. The new version offers more advanced possibilities for spectra calculations and modeling by getting rid of several previous limitations particularly for the size of polyads and the number of tensors involved. It allows dealing with overlapping polyads and includes more efficient and faster algorithms for the calculation of coefficients related to molecular symmetry properties (6C, 9C and 12C symbols for C3v, Td, and Oh point groups) and for better convergence of least-square-fit iterations as well. The new version is not limited to polyad effective models. It also allows direct predictions using full ab initio ro-vibrational normal mode Hamiltonians converted into the irreducible tensor form. Illustrative examples on CH3D, CH4, CH3Cl, CH3F and PH3 are reported reflecting the present status of data available. It is written in C++ for standard PC computer operating under Windows. The full package including on-line documentation and recent data are freely available at http://www.iao.ru/mirs/mirs.htm or http://xeon.univ-reims.fr/Mirs/ or http://icb.u-bourgogne.fr/OMR/SMA/SHTDS/MIRS.html and as supplementary data from the online version of the article.
Kramer, Christian; Gedeck, Peter; Meuwly, Markus
2013-03-12
Distributed atomic multipole (MTP) moments promise significant improvements over point charges (PCs) in molecular force fields, as they (a) more realistically reproduce the ab initio electrostatic potential (ESP) and (b) allow to capture anisotropic atomic properties such as lone pairs, conjugated systems, and σ holes. The present work focuses on the question of whether multipolar electrostatics instead of PCs in standard force fields leads to quantitative improvements over point charges in reproducing intermolecular interactions. To this end, the interaction energies of two model systems, benzonitrile (BZN) and formamide (FAM) homodimers, are characterized over a wide range of dimer conformations. It is found that although with MTPs the monomer ab initio ESP can be captured better by about an order of magnitude compared to point charges (PCs), this does not directly translate into better describing ab initio interaction energies compared to PCs. Neither ESP-fitted MTPs nor refitted Lennard-Jones (LJ) parameters alone demonstrate a clear superiority of atomic MTPs. We show that only if both electrostatic and LJ parameters are jointly optimized in standard, nonpolarizable force fields, atomic are MTPs clearly beneficial for reproducing ab initio dimerization energies. After an exhaustive exponent scan, we find that for both BZN and FAM, atomic MTPs and a 9-6 LJ potential can reproduce ab initio interaction energies with ∼30% (RMSD 0.13 vs 0.18 kcal/mol) less error than point charges (PCs) and a 12-6 LJ potential. We also find that the improvement due to using MTPs with a 9-6 LJ potential is considerably more pronounced than with a 12-6 LJ potential (≈ 10%; RMSD 0.19 versus 0.21 kcal/mol).
NASA Astrophysics Data System (ADS)
Rey, Michael; Nikitin, Andrei; Bezard, Bruno; Rannou, Pascal; Coustenis, Athena; Tyuterev, Vladimir
2016-06-01
Knowledge of intensities of spectral transitions in various temperature ranges including very low-T conditions is essential for the modeling of optical properties of planetary atmospheres and for other astrophysical applications. The temperature dependence of spectral features is crucial, but quantified experimental information in a wide spectral range is generally missing. A significant progress has been recently achieved in first principles quantum mechanical predictions (ab initio electronic structure + variational nuclear motion calculations) of rotationally resolved spectra for hydrocarbon molecules such as methane , ethylene and their isotopic species [1,2] . We have recently reported the TheoReTS information system (theorets.univ-reims.fr, theorets.tsu.ru) for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces [3] that permits online simulation of radiative properties including low-T conditions of cold planets. In this work, we apply ab initio predictions of the spectra of methane isotopologues down to T=80 K for the modeling of the transmittance in the atmosphere of Titan, Saturn's largest satellite explored by the Cassini-Huygens space mission. A very good agreement over the whole infrared range from 6,000 to 11,000 cm-1 compared with observations obtained by the Descent Imager / Spectral Radiometer (DISR) on the Huygens probe [4,5] at various altitudes will be reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campetella, M.; Caminiti, R.; Bencivenni, L.
2016-07-14
In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm{supmore » −1}), where the vibrational motions involve the NH{sub 3}+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm{sup −1} where the antisymmetric stretching mode (ν{sub 3}) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D{sub 3h} symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.« less
Amorphous Ge quantum dots embedded in crystalline Si: ab initio results.
Laubscher, M; Küfner, S; Kroll, P; Bechstedt, F
2015-10-14
We study amorphous Ge quantum dots embedded in a crystalline Si matrix through structure modeling and simulation using ab initio density functional theory including spin-orbit interaction and quasiparticle effects. Three models are generated by replacing a spherical region within diamond Si by Ge atoms and creating a disordered bond network with appropriate density inside the Ge quantum dot. After total-energy optimisations of the atomic geometry we compute the electronic and optical properties. We find three major effects: (i) the resulting nanostructures adopt a type-I heterostructure character; (ii) the lowest optical transitions occur only within the Ge quantum dots, and do not involve or cross the Ge-Si interface. (iii) for larger amorphous Ge quantum dots, with diameters of about 2.0 and 2.7 nm, absorption peaks appear in the mid-infrared spectral region. These are promising candidates for intense luminescence at photon energies below the gap energy of bulk Ge.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less
Discovering chemistry with an ab initio nanoreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less
Ab initio approach to the ion stopping power at the plasma-solid interface
NASA Astrophysics Data System (ADS)
Bonitz, Michael; Schlünzen, Niclas; Wulff, Lasse; Joost, Jan-Philip; Balzer, Karsten
2016-10-01
The energy loss of ions in solids is of key relevance for many applications of plasmas, ranging from plasma technology to fusion. Standard approaches are based on density functional theory or SRIM simulations, however, the applicability range and accuracy of these results are difficult to assess, in particular, for low energies. Here we present an independent approach that is based on ab initio nonequilibrium Green functions theory, e.g. that allows to incorporate electronic correlations effects of the solid. We present the first application of this method to low-temperature plasmas, concentrating on proton and alpha-particle stopping in a graphene layer. In addition to the stopping power we present time-dependent results for the local electron density, the spectral function and the photoemission spectrum that is directly accessible in optical, UV or x-ray diagnostics. http://www.itap.uni-kiel.de/theo-physik/bonitz/.
Furmanchuk, Al'ona; Isayev, Olexandr; Gorb, Leonid; Shishkin, Oleg V; Hovorun, Dmytro M; Leszczynski, Jerzy
2011-03-14
In the present work, the conventional static ab initio picture of a water-assisted mechanism of the tautomerization of Nucleic Acid Bases (NABs) in an aqueous environment is enhanced by the classical and Car-Parrinello molecular dynamics simulations. The inclusion of the dynamical contribution is vital because the formation and longevity of the NAB-water bridge complexes represent decisive factors for further tautomerization. The results of both molecular dynamic techniques indicate that the longest time when such complexes exist is significantly shorter than the time required for proton transfer suggested by the static ab initio level of theory. New rate constants of tautomerization corrected for the dynamic effect of environment are proposed based on the first principles molecular dynamics data. Those values are used for the evaluation of a water-assisted mechanism that is feasible in such biological systems as E. coli cell.
Gerber, Iann C; Jolibois, Franck
2015-05-14
Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.
Desmet, Gilles B; De Rybel, Nils; Van Steenberge, Paul H M; D'hooge, Dagmar R; Reyniers, Marie-Françoise; Marin, Guy B
2018-01-01
Ab-initio-calculated rate coefficients for addition and fragmentation in reversible-addition fragmentation chain transfer (RAFT) polymerization of styrene with 2-cyano-2-propyl dodecyl trithiocarbonate initiated by azobisisobutyronitrile allow the reliable simulation of the experimentally observed conversion, number average chain length, and dispersity. The rate coefficient for addition of a macroradical R i to the macroRAFT agent R i X at 333 K (6.8 10 4 L mol -1 s -1 ) is significantly lower than to the initial RAFT agent R 0 X (3.2 10 6 L mol -1 s -1 ), mainly due to a difference in activation energy (15.4 vs 3.0 kJ mol -1 ), which causes the dispersity to spike in the beginning of the polymerization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lattice dynamics of Cs2NaYbF6 and Cs2NaYF6 elpasolites: Ab initio calculation
NASA Astrophysics Data System (ADS)
Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.
2015-06-01
The ab initio calculations of the crystal structure and the phonon spectrum of Cs2NaYbF6 and Cs2NaYF6 crystals with the elpasolite structure have been performed. The frequencies and types of fundamental vibrations have been determined. The calculations have been performed in the framework of the density functional theory using the molecular orbital method with hybrid functionals in the CRYSTAL09 program developed for the simulation of periodic structures. The outer 5 s and 5 p shells of the rare-earth ion have been described in Gaussian-type basis sets. The influence of inner shells, including 4 f electron shells, on the outer shells has been described using the pseudopotential. It has been shown that this approach allows the description of the phonon spectrum with the inclusion of the splitting of the longitudinal and transverse optical modes.
NASA Astrophysics Data System (ADS)
Bouhadda, Y.; Bentabet, A.; Fenineche, N. E.; Boudouma, Y.
2012-12-01
By this work, we aim to study the dynamical and the thermodynamic properties of the zinc-blende GaX (X = N, P, As and Sb) using the Ab initio simulation method. Indeed, we studied the lattice dynamics, the constant-volume specific heat (Cv), the internal energy (U), the entropy (S) and the free energy (F). The observed differences between the properties of GaX elements were discussed. Our results and the available literature data (theoretical and experimental) seems to be in good agreement. Moreover, Cv, U, F and S were calculated by using the harmonic approximation in the calculation of the dynamic lattice vibration. The good agreement between our results of both the phonon frequency, the constant-volume specific heat and the experimental data allows us to conclude that our results of S, U and F of GaX were well predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Aguirre, Néstor F.; Stoll, Hermann
2015-04-07
An ab-initio-based methodological scheme for He-surface interactions and zero-temperature time-dependent density functional theory for superfluid {sup 4}He droplets motion are combined to follow the short-time collision dynamics of the Au@{sup 4}He{sub 300} system with the TiO{sub 2}(110) surface. This composite approach demonstrates the {sup 4}He droplet-assisted sticking of the metal species to the surface at low landing energy (below 0.15 eV/atom), thus providing the first theoretical evidence of the experimentally observed {sup 4}He droplet-mediated soft-landing deposition of metal nanoparticles on solid surfaces [Mozhayskiy et al., J. Chem. Phys. 127, 094701 (2007) and Loginov et al., J. Phys. Chem. A 115,more » 7199 (2011)].« less
New Equation of State Models for Hydrodynamic Applications
NASA Astrophysics Data System (ADS)
Young, David A.; Barbee, Troy W., III; Rogers, Forrest J.
1997-07-01
Accurate models of the equation of state of matter at high pressures and temperatures are increasingly required for hydrodynamic simulations. We have developed two new approaches to accurate EOS modeling: 1) ab initio phonons from electron band structure theory for condensed matter and 2) the ACTEX dense plasma model for ultrahigh pressure shocks. We have studied the diamond and high pressure phases of carbon with the ab initio model and find good agreement between theory and experiment for shock Hugoniots, isotherms, and isobars. The theory also predicts a comprehensive phase diagram for carbon. For ultrahigh pressure shock states, we have studied the comparison of ACTEX theory with experiments for deuterium, beryllium, polystyrene, water, aluminum, and silicon dioxide. The agreement is good, showing that complex multispecies plasmas are treated adequately by the theory. These models will be useful in improving the numerical EOS tables used by hydrodynamic codes.
Analysis of PH3 spectra in the Octad range 2733-3660 cm-1
NASA Astrophysics Data System (ADS)
Nikitin, A. V.; Ivanova, Y. A.; Rey, M.; Tashkun, S. A.; Toon, G. C.; Sung, K.; Tyuterev, Vl. G.
2017-12-01
Improved analysis of positions and intensities of phosphine spectral lines in the Octad region 2733-3660 cm-1 is reported. Some 5768 positions and 1752 intensities were modelled with RMS deviations of 0.00185 cm-1 and 10.9%, respectively. Based on an ab initio potential energy surface, the full Hamiltonian of phosphine nuclear motion was reduced to an effective Hamiltonian using high-order Contact Transformations method adapted to polyads of symmetric top AB3-type molecules with a subsequent empirical optimization of parameters. More than 2000 new ro-vibrational lines were assigned that include transitions for all 13 vibrational Octad sublevels. This new fitting of measured positions and intensities considerably improved the accuracy of line parameters in the calculated database. A comparison of our results with experimental spectra of PNNL showed that the new set of line parameters from this work permits better simulation of observed cross-sections than the HITRAN2012 linelist. In the 2733-3660 cm-1 range, our integrated intensities show a good consistency with recent ab initio variational calculations.
Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties.
Zhang, Z; Fenter, P; Cheng, L; Sturchio, N C; Bedzyk, M J; Predota, M; Bandura, A; Kubicki, J D; Lvov, S N; Cummings, P T; Chialvo, A A; Ridley, M K; Bénézeth, P; Anovitz, L; Palmer, D A; Machesky, M L; Wesolowski, D J
2004-06-08
A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.
NASA Technical Reports Server (NTRS)
Grover, Maninder S.; Schwartzentruber, Thomas E.; Jaffe, Richard L.
2017-01-01
In this work we present a molecular level study of N2+N collisions, focusing on excitation of internal energy modes and non-equilibrium dissociation. The computation technique used here is the direct molecular simulation (DMS) method and the molecular interactions have been modeled using an ab-initio potential energy surface (PES) developed at NASA's Ames Research Center. We carried out vibrational excitation calculations between 5000K and 30000K and found that the characteristic vibrational excitation time for the N + N2 process was an order of magnitude lower than that predicted by the Millikan and White correlation. It is observed that during vibrational excitation the high energy tail of the vibrational energy distribution gets over populated first and the lower energy levels get populated as the system evolves. It is found that the non-equilibrium dissociation rate coefficients for the N + N2 process are larger than those for the N2 + N2 process. This is attributed to the non-equilibrium vibrational energy distributions for the N + N2 process being less depleted than that for the N2 +N2 process. For an isothermal simulation we find that the probability of dissociation goes as 1/T(sub tr) for molecules with internal energy (epsilon(sub int)) less than approximately 9.9eV, while for molecules with epsilon (sub int) greater than 9.9eV the dissociation probability was weakly dependent on translational temperature of the system. We compared non-equilibrium dissociation rate coefficients and characteristic vibrational excitation times obtained by using the ab-initio PES developed at NASA's Ames Research Center to those obtained by using an ab-initio PES developed at the University of Minnesota. Good agreement was found between the macroscopic properties and molecular level description of the system obtained by using the two PESs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halasyamani, Shiv; Fennie, Craig
2016-11-03
We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.
7Be(p,gamma)8B S-factor from Ab Initio Wave Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navratil, P; Bertulani, C A; Caurier, E
2006-10-12
There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) predicts low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. We present here a brief overview of the first steps taken toward nuclear reaction applications. In particular, we discuss our calculation of the {sup 7}Be(p,{gamma}){sup 8}B S-factor. We also present our first results of the {sup 3}He({alpha},{gamma}){sup 7}Be S-factor and of the S-factor of the mirror reaction {sup 3}H({alpha},{gamma}){sup 7}Li.more » The {sup 7}Be(p,{gamma}){sup 8}B and {sup 3}He({alpha},{gamma}){sup 7}Be reactions correspond to the most important uncertainties in solar model predictions of neutrino fluxes.« less
An ab initio-based Er–He interatomic potential in hcp Er
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; ye, Yeting; Fan, K. M.
2014-09-01
We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations.more » The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.« less
Ab initio Studies of Magnetism in the Iron Chalcogenides FeTe and FeSe
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Misawa, Takahiro; Miyake, Takashi; Imada, Masatoshi
2015-09-01
The iron chalcogenides FeTe and FeSe belong to the family of iron-based superconductors. We study the magnetism in these compounds in the normal state using the ab initio downfolding scheme developed for strongly correlated electron systems. In deriving ab initio low-energy effective models, we employ the constrained GW method to eliminate the double counting of electron correlations originating from the exchange correlations already taken into account in the density functional theory. By solving the derived ab initio effective models, we reveal that the elimination of the double counting is important in reproducing the bicollinear antiferromagnetic order in FeTe, as is observed in experiments. We also show that the elimination of the double counting induces a unique degeneracy of several magnetic orders in FeSe, which may explain the absence of the magnetic ordering. We discuss the relationship between the degeneracy and the recently found puzzling phenomena in FeSe as well as the magnetic ordering found under pressure.
NASA Astrophysics Data System (ADS)
Ng, T. Y.; Yeak, S. H.; Liew, K. M.
2008-02-01
A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.
Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Madsen, Georg K H; Mingo, Natalio
2018-01-18
Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71 178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high-throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.
Huang, Ying; Chen, Shi-Yi; Deng, Feilong
2016-01-01
In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.
A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface
NASA Technical Reports Server (NTRS)
Koizumi, Hiroyasu; Schatz, George C.; Walch, Stephen P.
1991-01-01
The unimolecular decay lifetimes of several vibrational states of HN2 are determined on the basis of an accurate coupled channel dynamics study using a global analytical potential surface. The surface reproduces the ab initio points with an rms error of 0.08 kcal/mol for energies below 20 kcal/mol. Modifications to the potential that describe the effect of improving the basis set in the ab initio calculations are provided. Converged coupled channel calculations are performed for the ground rotational state of HN2 to determine the lifetimes of the lowest ten vibrational states. Only the ground vibrational state (000) and first excited bend (001) are found to have lifetimes longer than 1 ps. The lifetimes of these states are estimated at 3 x 10 to the -9th and 2 x 10 to the -10th s, respectively. Variation of these results with quality of the ab initio calculations is not more than a factor of 5.
A highly accurate ab initio potential energy surface for methane.
Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-09-14
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.
NASA Astrophysics Data System (ADS)
Kreye, W. C.
1996-07-01
Ab-initio computations at 298.15 K were made of the activation quantities ΔH ‡, ΔS ‡, and ΔG ‡ and of the reaction quantities ΔHr and ΔSr for CF3H + O( 3P) → CF3H … O → .CF3.OH. CF 3H … O is the transition state (TS). GAUSSIAN92 was used and energies computed at a slightly modified Gaussian-2 level. Two potential surfaces for the TS had symmetries 3A' and 3A″. The two rate constants included a semi-classical, quantum-mechanical-tunneling transmission coefficient. The ab-initio ΔH ‡and ΔH r values were in excellent agreement (± 1 kcal/mol) with experiment; but the ΔS ‡, ΔG ‡, and ΔS r values yielded somewhat poorer agreement. Experimental and ab-initio structures were in excellent agreement.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genova, Alessandro, E-mail: alessandro.genova@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide, E-mail: davide.ceresoli@cnr.it
2016-06-21
In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that aremore » linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH{sup •} radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH{sup •} radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.« less
Brüssel, Marc; di Dio, Philipp J.; Muñiz, Kilian; Kirchner, Barbara
2011-01-01
We carried out ab initio molecular dynamic simulations in order to determine the free energy surfaces of two selected reactions including solvents, namely a rearrangement of a ruthenium oxoester in water and a carbon dioxide addition to a palladium complex in carbon dioxide. For the latter reaction we also investigated the gas phase reaction in order to take solvent effects into account. We used two techniques to reconstruct the free energy surfaces: thermodynamic integration and metadynamics. Furthermore, we gave a reasonable error estimation of the computed free energy surface. We calculated a reaction barrier of ΔF = 59.5 ± 8.5 kJ mol−1 for the rearrangement of a ruthenium oxoester in water from thermodynamic integration. For the carbon dioxide addition to the palladium complex in carbon dioxide we found a ΔF = 44.9 ± 3.3 kJ mol−1 from metadynamics simulations with one collective variable. The investigation of the same reactions in the gas phase resulted in ΔF = 24.9 ± 6.7 kJ mol−1 from thermodynamic integration, in ΔF = 26.7 ± 2.3 kJ mol−1 from metadynamics simulations with one collective variable, and in ΔF = 27.1 ± 5.9 kJ mol−1 from metadynamics simulations with two collective variables. PMID:21541065
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2016-06-21
In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.
Computationally Efficient Multiconfigurational Reactive Molecular Dynamics
Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.
2012-01-01
It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Yukio; Sano, Tomokazu
A quadratic equation for the temperature-independent Grueneisen coefficient {gamma} was derived by a method in which the Walsh-Christian and Mie-Grueneisen equations are combined. Some previously existing ab initio temperature Hugoniots for hexagonal close-packed solid Fe are inaccurate because the constant-volume specific heats on the Hugoniots CVH, which are related uniquely to the solutions of the quadratic equation, have values that are too small. A CVH distribution in the solid phase range was demonstrated to agree approximately with a previous ab initio distribution. In contrast, the corresponding {gamma} distribution was significantly different from the ab initio distribution in the lower pressuremore » region. The causes of these disagreements are clarified.« less
Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J
2015-02-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes
NASA Astrophysics Data System (ADS)
Saieswari, A.; Kumar, Sanjay
2007-12-01
An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.
Ab initio calculation of one-nucleon halo states
NASA Astrophysics Data System (ADS)
Rodkin, D. M.; Tchuvil'sky, Yu M.
2018-02-01
We develop an approach to microscopic and ab initio description of clustered systems, states with halo nucleon and one-nucleon resonances. For these purposes a basis combining ordinary shell-model components and cluster-channel terms is built up. The transformation of clustered wave functions to the uniform Slater-determinant type is performed using the concept of cluster coefficients. The resulting basis of orthonormalized wave functions is used for calculating the eigenvalues and the eigenvectors of Hamiltonians built in the framework of ab initio approaches. Calculations of resonance and halo states of 5He, 9Be and 9B nuclei demonstrate that the approach is workable and labor-saving.
40 CFR 86.096-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2010 CFR
2010-07-01
...] (ii) EPA may void ab initio a certificate for a 1994 or 1995 model year light-duty vehicle or light... Administrator upon request. (iii) Any voiding ab initio of a certificate under § 86.091-7(c)(6) and paragraph (h...
Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model.
Sisto, Aaron; Stross, Clem; van der Kamp, Marc W; O'Connor, Michael; McIntosh-Smith, Simon; Johnson, Graham T; Hohenstein, Edward G; Manby, Fred R; Glowacki, David R; Martinez, Todd J
2017-06-14
We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail - enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibrating our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck-Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850 ) between 650-1050 fs, and B800 population decay (τ 800→ ) between 10-50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... section, will cause the exemption to be void ab initio. (6) If any information required under paragraph (c... void ab initio, and may make the party liable for a violation of this subpart. (f) Effects of exemption...
40 CFR 90.108 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the certificate may be determined to be void ab initio. (2) The manufacturer shall bear the burden of... certificates that failure to meet these conditions may result in suspension or revocation or the voiding ab initio of the certificate. [60 FR 34598, July 3, 1995, as amended at 64 FR 15238, Mar. 30, 1999] ...
The Band Structure of Polymers: Its Calculation and Interpretation. Part 2. Calculation.
ERIC Educational Resources Information Center
Duke, B. J.; O'Leary, Brian
1988-01-01
Details ab initio crystal orbital calculations using all-trans-polyethylene as a model. Describes calculations based on various forms of translational symmetry. Compares these calculations with ab initio molecular orbital calculations discussed in a preceding article. Discusses three major approximations made in the crystal case. (CW)
Ab initio calculations of the lattice dynamics of silver halides
NASA Astrophysics Data System (ADS)
Gordienko, A. B.; Kravchenko, N. G.; Sedelnikov, A. N.
2010-12-01
Based on ab initio pseudopotential calculations, the results of investigations of the lattice dynamics of silver halides AgHal (Hal = Cl, Br, I) are presented. Equilibrium lattice parameters, phonon spectra, frequency densities and effective atomic-charge values are obtained for all types of crystals under study.
40 CFR 90.108 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the certificate may be determined to be void ab initio. (2) The manufacturer shall bear the burden of... certificates that failure to meet these conditions may result in suspension or revocation or the voiding ab initio of the certificate. [60 FR 34598, July 3, 1995, as amended at 64 FR 15238, Mar. 30, 1999] ...
40 CFR 90.108 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the certificate may be determined to be void ab initio. (2) The manufacturer shall bear the burden of... certificates that failure to meet these conditions may result in suspension or revocation or the voiding ab initio of the certificate. [60 FR 34598, July 3, 1995, as amended at 64 FR 15238, Mar. 30, 1999] ...
40 CFR 90.108 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the certificate may be determined to be void ab initio. (2) The manufacturer shall bear the burden of... certificates that failure to meet these conditions may result in suspension or revocation or the voiding ab initio of the certificate. [60 FR 34598, July 3, 1995, as amended at 64 FR 15238, Mar. 30, 1999] ...
40 CFR 90.108 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the certificate may be determined to be void ab initio. (2) The manufacturer shall bear the burden of... certificates that failure to meet these conditions may result in suspension or revocation or the voiding ab initio of the certificate. [60 FR 34598, July 3, 1995, as amended at 64 FR 15238, Mar. 30, 1999] ...
Hydrogen interaction with ferrite/cementite interface: ab initio calculations and thermodynamics
NASA Astrophysics Data System (ADS)
Mirzoev, A. A.; Verkhovykh, A. V.; Okishev, K. Yu.; Mirzaev, D. A.
2018-02-01
The paper presents the results of ab initio modelling of the interaction of hydrogen atoms with ferrite/cementite interfaces in steels and thermodynamic assessment of the ability of interfaces to trap hydrogen atoms. Modelling was performed using the density functional theory with generalised gradient approximation (GGA'96), as implemented in WIEN2k package. An Isaichev-type orientation relationship between the two phases was accepted, with a habit plane (101)c ∥ (112)α. The supercell contained 64 atoms (56 Fe and 8 C). The calculated formation energies of ferrite/cementite interface were 0.594 J/m2. The calculated trapping energy at cementite interstitial was 0.18 eV, and at the ferrite/cementite interface - 0.30 eV. Considering calculated zero-point energy, the trapping energies at cementite interstitial and ferrite/cementite interface become 0.26 eV and 0.39 eV, respectively. The values are close to other researchers' data. These results were used to construct a thermodynamic description of ferrite/cementite interface-hydrogen interaction. Absorption calculations using the obtained trapping energy values showed that even thin lamellar ferrite/cementite mixture with an interlamellar spacing smaller than 0.1 μm has noticeable hydrogen trapping ability at a temperature below 400 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaenko, Alexander; Windus, Theresa L.; Sosonkina, Masha
2012-10-19
The design and development of scientific software components to provide an interface to the effective fragment potential (EFP) methods are reported. Multiscale modeling of physical and chemical phenomena demands the merging of software packages developed by research groups in significantly different fields. Componentization offers an efficient way to realize new high performance scientific methods by combining the best models available in different software packages without a need for package readaptation after the initial componentization is complete. The EFP method is an efficient electronic structure theory based model potential that is suitable for predictive modeling of intermolecular interactions in large molecularmore » systems, such as liquids, proteins, atmospheric aerosols, and nanoparticles, with an accuracy that is comparable to that of correlated ab initio methods. The developed components make the EFP functionality accessible for any scientific component-aware software package. The performance of the component is demonstrated on a protein interaction model, and its accuracy is compared with results obtained with coupled cluster methods.« less
NASA Astrophysics Data System (ADS)
Branicio, Paulo S.; Bai, Kewu; Ramanarayan, H.; Wu, David T.; Sullivan, Michael B.; Srolovitz, David J.
2018-04-01
The complete process of amorphization and crystallization of the phase-change material G e2S b2T e5 is investigated using nanosecond ab initio molecular dynamics simulations. Varying the quench rate during the amorphization phase of the cycle results in the generation of a variety of structures from entirely crystallized (-0.45 K/ps) to entirely amorphized (-16 K/ps). The 1.5-ns annealing simulations indicate that the crystallization process depends strongly on both the annealing temperature and the initial amorphous structure. The presence of crystal precursors (square rings) in the amorphous matrix enhances nucleation/crystallization kinetics. The simulation data are used to construct a combined continuous-cooling-transformation (CCT) and temperature-time-transformation (TTT) diagram. The nose of the CCT-TTT diagram corresponds to the minimum time for the onset of homogenous crystallization and is located at 600 K and 70 ps. That corresponds to a critical cooling rate for amorphization of -4.5 K/ps. The results, in excellent agreement with experimental observations, suggest that a strategy that utilizes multiple quench rates and annealing temperatures may be used to effectively optimize the reversible switching speed and enable fast and energy-efficient phase-change memories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Jacquelin, Mathias; De Jong, Wibe A.
2017-10-20
Ab-initio Molecular Dynamics (AIMD) methods are an important class of algorithms, as they enable scientists to understand the chemistry and dynamics of molecular and condensed phase systems while retaining a first-principles-based description of their interactions. Many-core architectures such as the Intel® Xeon Phi™ processor are an interesting and promising target for these algorithms, as they can provide the computational power that is needed to solve interesting problems in chemistry. In this paper, we describe the efforts of refactoring the existing AIMD plane-wave method of NWChem from an MPI-only implementation to a scalable, hybrid code that employs MPI and OpenMP tomore » exploit the capabilities of current and future many-core architectures. We describe the optimizations required to get close to optimal performance for the multiplication of the tall-and-skinny matrices that form the core of the computational algorithm. We present strong scaling results on the complete AIMD simulation for a test case that simulates 256 water molecules and that strong-scales well on a cluster of 1024 nodes of Intel Xeon Phi processors. We compare the performance obtained with a cluster of dual-socket Intel® Xeon® E5–2698v3 processors.« less
On the transport coefficients of hydrogen in the inertial confinement fusion regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Flavien; Recoules, Vanina; Decoster, Alain
2011-05-15
Ab initio molecular dynamics is used to compute the thermal and electrical conductivities of hydrogen from 10 to 160 g cm{sup -3} and temperatures up to 800 eV, i.e., thermodynamical conditions relevant to inertial confinement fusion (ICF). The ionic structure is obtained using molecular dynamics simulations based on an orbital-free treatment for the electrons. The transport properties were computed using ab initio simulations in the DFT/LDA approximation. The thermal and electrical conductivities are evaluated using Kubo-Greenwood formulation. Particular attention is paid to the convergence of electronic transport properties with respect to the number of bands and atoms. These calculations aremore » then used to check various analytical models (Hubbard's, Lee-More's and Ichimaru's) widely used in hydrodynamics simulations of ICF capsule implosions. The Lorenz number, which is the ratio between thermal and electrical conductivities, is also computed and compared to the well-known Wiedemann-Franz law in different regimes ranging from the highly degenerate to the kinetic one. This allows us to deduce electrical conductivity from thermal conductivity for analytical model. We find that the coupling of Hubbard and Spitzer models gives a correct description of the behavior of electrical and thermal conductivities in the whole thermodynamic regime.« less
Ab Initio Modeling of Structure and Properties of Single and Mixed Alkali Silicate Glasses.
Baral, Khagendra; Li, Aize; Ching, Wai-Yim
2017-10-12
A density functional theory (DFT)-based ab initio molecular dynamics (AIMD) has been applied to simulate models of single and mixed alkali silicate glasses with two different molar concentrations of alkali oxides. The structural environments and spatial distributions of alkali ions in the 10 simulated models with 20% and 30% of Li, Na, K and equal proportions of Li-Na and Na-K are studied in detail for subtle variations among the models. Quantum mechanical calculations of electronic structures, interatomic bonding, and mechanical and optical properties are carried out for each of the models, and the results are compared with available experimental observation and other simulations. The calculated results are in good agreement with the experimental data. We have used the novel concept of using the total bond order density (TBOD), a quantum mechanical metric, to characterize internal cohesion in these glass models. The mixed alkali effect (MAE) is visible in the bulk mechanical properties but not obvious in other physical properties studied in this paper. We show that Li doping deviates from expected trend due to the much stronger Li-O bonding than those of Na and K doping. The approach used in this study is in contrast with current studies in alkali-doped silicate glasses based only on geometric characterizations.